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Abstract

Classical iterative methods for tomographic reconstruction include the class of Algebraic Re-

construction Techniques (ART). Convergence of these stationary linear iterative methods is

however notably slow. In this paper we propose the use of Krylov solvers for tomographic

linear inversion problems. These advanced iterative methods feature fast convergence at the

expense of a higher computational cost per iteration, causing them to be generally uncompet-

itive without the inclusion of a suitable preconditioner. Combining elements from standard

multigrid (MG) solvers and the theory of wavelets, a novel wavelet-based multi-level (WMG)

preconditioner is introduced, which is shown to significantly speed-up Krylov convergence.

The performance of the WMG-preconditioned Krylov method is analyzed through a spectral

analysis, and the approach is compared to existing methods like the classical Simultaneous

Iterative Reconstruction Technique (SIRT) and unpreconditioned Krylov methods on a 2D to-

mographic benchmark problem. Numerical experiments are promising, showing the method to

be competitive with the classical Algebraic Reconstruction Techniques in terms of convergence

speed and overall performance (CPU time) as well as precision of the reconstruction.

Keywords: tomography, algebraic reconstruction, Krylov methods,
preconditioning, multigrid, wavelets

1. Introduction

Computed Tomography (CT) is a powerful imaging technique that allows
non-destructive visualization of the interior of physical objects. Besides its
common use in medical applications [1], tomography is also widely applicable in
fields such as biomedical research, materials science, metrology, etc. In all appli-
cations, a certain imaging source (e.g. an X-ray source) and an imaging detector
(e.g. X-ray detector) are used to acquire two-dimensional projection images of

∗Corresponding author
Email address: siegfried.cools@uantwerp.be (Siegfried Cools)

Preprint submitted to Journal of Computational and Applied MathematicsJanuary 22, 2015

ar
X

iv
:1

31
0.

09
56

v5
  [

m
at

h.
N

A
] 

 2
1 

Ja
n 

20
15



A WMG-Krylov method for algebraic tomographic reconstruction 2

the object from different directions. A three-dimensional virtual reconstruction
can then be computed using one of the many reconstruction techniques that
can be found in the literature. In practice, the most commonly used analytical
methods for CT are Filtered Backprojection (FBP) and its cone-beam variant
Feldkamp-Davis-Kress (FDK). These methods make use of various analytical
properties of the projection geometries to compute the reconstructed object at
a low computational cost. A major drawback of analytical methods is their
inflexibility to different experimental setups and their inability to include re-
construction constraints which can be used to exploit possible prior information
about the object.

Iterative Algebraic Reconstruction Techniques (ART) form an interesting
alternative to the aforementioned analytical methods. Here, the reconstruction
problem is described as the solving of a system of linear equations. The Simulta-
neous Iterative Reconstruction Technique (SIRT) is a straightforward method
that has been extensively studied in the literature, see [2] and the references
therein. Another general class of algebraic solution methods are the Krylov
solvers such as CGLS, GMRES, BiCGStab, etc., an overview of which can be
found in [3]. Alternatively, one can resort to more powerful techniques that
apply additional constraints to the reconstruction, which can lead to improved
accuracy, especially when fewer projection images are available (i.e. scans with a
lower radiation dose). Total variation minimization approaches such as FISTA
[4], for example, assume that the variation between neighbouring pixels is low
inside a homogeneous object. Discrete tomography approaches such as DART
[5] improve the reconstruction quality by limiting the number of grey level values
that can be present in the reconstructed image.

While iterative methods for tomography have become widely accepted in the
scientific community, practical applications have not yet adopted these tech-
niques [6], mostly due to the variable computational cost and storage require-
ments of the iterative process (contrary to the fixed costs of analytical methods
based on FFT-type algorithms). The development of efficient new iterative
solvers is therefore crucial. This efficiency can be accomplished in two ways.
Firstly, the computation time of each iteration can be reduced by optimally
exploiting parallelism of the projection and backprojection operators with the
use of modern hardware accelerated computer architectures such as NVIDIA
GPU’s [7] or the Intel Xeon Phi [8]. Secondly, a solver with a fast convergence
rate, requiring only a limited number of iterations should be used. Additionally,
the convergence rate of the ideal solver should not depend on the problem size.

In this work, an approach that fits into the second category will be intro-
duced for non-constrained iterative reconstruction. By analyzing the spectral
properties of the standard SIRT method, it will be shown that the convergence
of classical algebraic reconstruction techniques (stationary iterative schemes) is
notably slow. As it appears, the alleged smoothing property does not hold in
the case of tomographic reconstruction problems. Krylov methods prove to be
more efficient, yet are generally more expensive in terms of memory and com-
putation cost. Therefore, when using Krylov methods, it is mandatory to define
an efficient preconditioner, which allows faster convergence. This approach is
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very common in a wide range of PDE-type problems, yet is still fairly new
for tomographic reconstruction. Related work in the setting of tomographic
reconstruction includes the research on multilevel image reconstruction by Mc-
Cormick et al. [9, 10], and more recently the work done on multigrid methods
for tomographic reconstruction by Webb et al. [11] and Rüde et al. [12].

Originally introduced as a theoretical tool by Fedorenko in 1964 [13] and
later adopted as a solution method by Brandt in 1977 [14], multigrid (MG)
solvers are commonly used as efficient and low-cost Krylov preconditioners for
high-dimensional problems in the PDE literature, see e.g. [15, 16]. One of the
key concepts of the multigrid scheme is the representation of the original fine
grid reconstruction problem on a coarser scale resolution, where the problem is
computationally cheaper to solve. However, we show that the standard multigrid
approach [17, 18, 19, 20] does not act as an efficient preconditioner for algebraic
tomographic systems. Indeed, the ineffectiveness of the smoother in eliminating
the oscillatory modes causes the key complementary action of smoother and
coarse grid correction to fail, resulting in an inefficient multigrid scheme for
algebraic tomographic reconstruction problems.

In this work a new wavelet-based multigrid (WMG) preconditioner is in-
troduced, which is more suited for tomographic reconstruction. The proposed
method combines elements from standard multigrid with the theory of wavelets,
and shows some similarities to the work on wavelet-based multiresolution tomo-
graphic reconstruction in [21] and [22]. Additionally, the main advantage of the
proposed method, i.e. projection of the large fine-scale system onto smaller, easy-
to-solve subproblems, resembles key features of the Hierarchical Basis Multigrid
Method (HBMM) [23, 24]. It is shown through an eigenvalue analysis that
WMG-preconditioning significantly increases Krylov convergence speed, which
is confirmed by various numerical experiments. Additionally, we show that the
WMG-preconditioned Krylov solver allows for an accuracy which is generally
unobtainable by classical SIRT reconstruction. The numerical results presented
in this work show promise, validating the proposed WMG scheme as an efficient
Krylov preconditioning technique for algebraic tomographic reconstruction.

The paper is structured as follows. In Section 2 the classical SIRT and
MG-Krylov solvers for iterative tomographic reconstruction are reviewed and
analyzed. Section 3 introduces a novel preconditioning approach to account for
the defects of the MG preconditioner, which greatly improves convergence speed
of the BiCGStab Krylov solver. In Section 4, a series of experimental simulations
is presented to validate our contribution. Ultimately, Section 5 concludes this
work with an overview of the main results in this paper and a discussion on
possible future research options.

2. Notation and key concepts of tomographic reconstruction

2.1. Algebraic tomographic reconstruction

Consider a data vector b ∈ RM , with M = m×n, where m is the number of
projection angles and n is the number of beams. We assume that the number of
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pixels in every spatial dimension equals n, such that the data is reconstructed on
a 2D n×n grid. We denote the total number of pixels in the image by N = n×n.
Algebraic reconstruction methods consider tomographic reconstruction as the
problem of solving the linear system of equations

Wx = b, (1)

where x = (xj) ∈ RN are the unknown attenuation values on the grid in the
image domain, which represent the object of interest, and b = (bi) ∈ RM are the
measured projection values for each beam and under each angle. The matrix
W = (wij) ∈ RM×N is a linear projection operator that maps an image in the
object or reconstruction domain onto the projection domain, see Figure 3. It
can be computed or approximated in a variety of ways. In this work, Joseph’s
projection kernel [25] will be used. Note that the matrix W is generally large
and sparse, featuring O(

√
N) non-zero elements per column.

For solving purposes, system (1) is frequently rewritten as the equivalent
system of normal equations (NE)

WTWx = WT b, (2)

replacing the (possibly underdetermined) rectangular system (1) by a system
with a square symmetric matrix WTW ∈ RN×N . The normal form is com-
monly used when solving the above system for x using Algebraic Reconstruction
Techniques or Krylov methods as described in Section 2.2. In view of efficient
implementation, the matrix multiplication WTW is never computed explicitly,
as this would result in a dense matrix of (O)(N) non-zero elements per col-
umn. Instead, the application of WTW to a vector x is computed as two sparse
matrix-vector products (SpMV): WT (Wx).

For convenience of the analysis we consider an ideal experiment without the
incorporation of noise throughout the following sections. Additionally, we as-
sume that a sufficient number of projections is given, such that (1) has a unique
solution, i.e. we effectively assume that problem (1) is well-posed. We refer to
Section 4.2 for the more realistic case of noisy and/or low-data problems, where
regularization is introduced to account for the ill-posedness of the problem.

We first discuss some well-known classes of iterative methods for the tomo-
graphic system (1)-(2). It will be shown that standard Algebraic Reconstruction
Techniques (ART) fail to efficiently solve the problem. Krylov methods prove
to be more efficient, yet require a suitable preconditioner to allow for fast con-
vergence. We show that classical multigrid preconditioning is not efficient in the
context of tomography, which motivates the introduction of a new multi-level
type preconditioner in Section 3.

2.2. Classical algebraic reconstruction techniques

Algebraic reconstruction algorithms are among the current-day state-of-the-
art methods for solving tomographic systems. The results presented in this
section are well-known in the literature, see standard works on the basic princi-
ples of computerized tomography [26, 27] and the references therein. However,
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the presented insights provide a strong motivation for the construction of the
WMG preconditioner in Section 3.

2.2.1. SIRT method.

The Simultaneous Iterative Reconstruction Technique (SIRT) is a basic sta-
tionary iterative scheme for the solution of linear systems of equations, which
aims at solving (1) iteratively using a basic residual estimation scheme. Consider
the scaled system of normal equations, equivalent to (1),

CWTRWx = CWTRb, (3)

where R = (rij) ∈ RM×M is a diagonal matrix of the inverse row sums of W ,

rii =

 N∑
j=1

wij

−1 for i = 1, . . . ,M ; rij = 0 for i 6= j. (4)

Likewise, C = (cij) ∈ RN×N is a diagonal matrix of the inverse column sums of
W ,

cjj =

(
M∑
i=1

wij

)−1
for j = 1, . . . , N ; cij = 0 for i 6= j. (5)

The scaled system (3) was proposed by Gregor and Benson in [2], where it was
shown that this scaling is mandatory to ensure the stability of the SIRT scheme.
The SIRT iteration scheme can be written recursively as a stationary iteration

x(k+1) = x(k) + r(k) = x(k) + CWTR(b−Wx(k)), k ∈ {1, 2, . . .}. (6)

Note that the SIRT scheme allows for a matrix-free implementation; in practice
the operator CWTRW is never formed explicitly, but its application is typically
implemented as a series of SpMVs or a matrix-free projection simulator. Key
features of the SIRT method are its low storage cost (only the current guess
x(k) and the residual r(k) = b−Wx(k) need to be stored) and its relatively low
computational cost per iteration (only two SpMV operations, which can be eas-
ily parallelized). However, as will be discussed in Section 2.2.2, the convergence
rate of the SIRT scheme for tomographic reconstruction is very slow. A large
number of iterations is typically required, implying long overall computational
times. Nevertheless, due to its straightforward implementation SIRT is com-
monly used throughout the scientific literature and in practical tomographic
implementations. In this work, the SIRT solver will act as the benchmark alge-
braic solution scheme for tomographic reconstruction.

2.2.2. Spectral analysis of SIRT.

The origin of the slow SIRT convergence can be found by analyzing the
spectrum of the iteration matrix. From the recursion (6), the SIRT method can
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Figure 1: A selection of eigenmodes ϕi of the SIRT iteration matrix S (7) with N = 40× 40
and M = 100 × 40. First row (f.l.t.r.): very smooth modes ϕ2, ϕ3, ϕ4 and ϕ5. Second row
(f.l.t.r.): smooth modes ϕ10, ϕ20 and ϕ50, and the oscillatory mode ϕ800. Corresponding
eigenvalues: λS2 = 0.52, λS3 = 0.52, λS4 = 0.66, λS4 = 0.70, λS10 = 0.80, λS20 = 0.86, λS50 = 0.92,
and λS800 = 0.98.

be interpreted as a basic stationary iterative scheme (cf. Richardson iteration,
weighted Jacobi or Gauss-Seidel), with iteration matrix S given by

S = I − CWTRW. (7)

Consequently, the error in every iteration k ∈ {1, 2, . . .} can be written as

e(k) = Se(k−1) = Ske(0), k ∈ {1, 2, . . .}. (8)

Writing the error e(k) as a linear combination of the eigenmodes ϕi (i = 1, . . . , N)
of CWTRW , which notably are also eigenmodes of S, we have

e(k) =

N∑
i=1

α
(k)
i ϕi, k ∈ {1, 2, . . .}. (9)

The eigenmodes of S are interpreted as basis functions for the error after each
iteration, and the eigenvalues of S, λSi (i = 1, . . . , N), represent the propagation
factors for the basis functions in the error, as

e(k) = Se(k−1) =

N∑
i=1

λSi α
(k)
i ϕi, k ∈ {1, 2, . . .}. (10)

This implies that the reduction of the error components ϕi in each SIRT iteration
is governed by the eigenvalues of the iteration matrix S. Figure 1 shows a
number of eigenmodes ϕi of the SIRT iteration matrix S for a volume size ofN =
40×40 with 100 equiangular parallel beam projections over 180◦ of 40 rays each.
The eigenmodes are ordered according to the magnitude of their corresponding
eigenvalues λSi , from small (low index) to large (high index). Low-indexed
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Figure 2: Spectrum λSi (i = 1, . . . , N) of the SIRT iteration matrix S, see (7), with N = 40×40
and M = 100 × 40. Eigenvalues act as propagation factors for the error basis functions
(eigenmodes), see (10).

eigenmodes are slow-varying across the numerical domain in both directions,
while high-indexed eigenvalues correspond to highly oscillatory modes. For 2D
problems, the first quarter of eigenmodes in the spectrum (ϕi with i ≤ N/4)
are commonly referred to as smooth modes, while the remaining eigenmodes
(i > N/4) are oscillatory in one or both spatial directions [17].

A characteristic property of all stationary linear iterative schemes (alterna-
tively called relaxation schemes or smoothers) in the setting of Laplace-type
PDEs is the damping of oscillatory eigenmodes, while preserving the smooth
components in the error [15, 17]. This is commonly referred to as the smoothing
property. However, it appears that this property generally does not hold in the
setting of tomographic reconstruction. The numerical eigenvalues λS1 , . . . , λ

S
N

of the SIRT iteration matrix S are shown in Figure 2. A very limited number
of eigenvalues are significantly smaller than one, implying only a small frac-
tion of the error components is damped through successive SIRT iterations.
Furthermore, the smallest eigenvalues correspond exactly to the very smoothest
eigenmodes of S, cf. Figure 1, which directly contradicts the smoothing property.

Hence, only a small subset of very smooth eigenmodes are effectively elim-
inated in every SIRT iteration. Convergence of the SIRT solver – and thus,
by extension, all basic stationary iterative methods – is therefore notably slow
for tomographic reconstruction problems. In addition, these basic stationary
iterative methods primarily eliminate the smooth error components, contrary
to possessing the smoothing property. These observations provide an impor-
tant motivation for the use of Krylov methods and the construction of a novel
multi-level preconditioner.

2.3. Krylov methods and classical multigrid preconditioning

2.3.1. Krylov methods.

Primarily used in the solution of high-dimensional PDE’s, Krylov methods
are less well-known as a class of iterative solvers in the context of tomographic
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Figure 3: Schematic representation of the fine h-grid Ωh (a) and coarse 2h-grid Ω2h (b) for
2D multi-level tomographic reconstruction. The projection matrix W 2h is redefined to the
coarse grid setting.

reconstruction. Consider a general linear system of the form

Ax = f, (11)

where A ∈ RN×N and f ∈ RN . Note that the tomographic system (2) is of this
form with A = WTW and f = WT b. In every Krylov iteration, the residual (or
some other vector quantifying deviation from the solution) is minimized over
the k-th Krylov subspace

Kk(A, f) = span {f,Af,A2f, . . . , Ak−1f}. (12)

Many varieties of Krylov solvers may be used to solve system (11): GMRES,
MINRES, CG, BiCG, CGLS, LSQR, etc. In this work we consider BiCGStab
[28] as the primary Krylov solver for system (2), where we assume that A =
WTW and f = WT b in the above definitions (11)-(12).

While Krylov methods converge considerably faster than most stationary
linear iterative schemes, their per-iteration computational cost and storage re-
quirements are generally higher. To keep the number of iterations as low as
possible, Krylov methods often incorporate preconditioning by multiplying the
system matrix A (from the left or the right) by M−1. For the tomographic
reconstruction problem (2), the Krylov method is either applied to the left pre-
conditioned system

M−1WTWx = M−1WT b, (13)

or the right preconditioned system

WTWM−1y = WT b, x = M−1y, (14)

for some preconditioning operator M−1 ∈ RN×N . The application of the op-
erator M−1 to a vector v ∈ RN is often computed by some numeric scheme
(possibly different from the scheme used to compute the SpMV’s with WTW ),
thus avoiding explicit computation of the inverse. Note that the experiments in
this paper are based on right preconditioning.
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2.3.2. Multigrid preconditioning.

In this work we propose preconditioning of the system of normal equations
(2) by a multi-level type scheme [14]. In recent years, standard multigrid meth-
ods [17, 18, 19, 20] have been broadly used as Krylov preconditioners in various
application areas, e.g. seismic imaging, see [29, 30].

Let Ωh denote a grid with pixel size h, and let Ah, xh and fh respectively de-
note the system matrix, solution vector and data vector represented on Ωh. The
main idea of multi-level schemes is to represent the original fine grid equation

Ahxh = fh, xf ∈ Ωh, (15)

on a coarser grid Ω2h, which consists of bigger pixels formed by 2-by-2 blocks
of pixels of the original fine resolution grid Ωh, see Figure 3. To convert data
from the fine to coarse grid and vice versa, two intergrid operators are defined:
the restriction operator I2hh and the interpolation operator Ih2h. The main ad-
vantage of a multi-level approach is that the system is much cheaper to solve
numerically on the coarse Ω2h grid. The coarse grid matrix A2h is either formed
by recalculating the attenuation values for the Ω2h grid explicitly, or through
Galerkin coarsening,

A2h = I2hh AhIh2h. (16)

The restriction and interpolation operators used for 2D tomographic recon-
struction in this work are based upon the following one-dimensional intergrid
operators:

I2hh,1D =
1√
2


1 1

1 1
· ·

1 1

 ∈ R
n
2×n, Ih2h,1D = (I2hh,1D)T ∈ Rn×

n
2 .

(17)
The 2D restriction and interpolation operators I2hh and Ih2h are defined as

I2hh = I2hh,1D ⊗ I2hh,1D ∈ R
N
4 ×N , Ih2h = (I2hh )T ∈ RN×

N
4 , (18)

where ⊗ is the Kronecker product. These operators represent a set of first-
order restriction and interpolation operators. Note that higher-order intergrid
operators may be used for improved accuracy if required. Classical multigrid is
based upon the two-grid correction scheme.

Classical two-grid correction scheme (TG)

1. Relax ν1 times on the equation Ahxh = fh.

2. Calculate rh = fh −Ahxh and restrict the residual r2h = I2hh rh.

3. Solve the residual equation A2he2h = r2h for e2h on the coarse grid.

4. Interpolate the coarse grid error eh = Ih2he
2h to obtain a fine grid error

approximation, and correct the initial guess xh ← xh + eh.

5. Relax ν2 times on the equation Ahxh = fh.
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ϕi

LL LH HL HH

i = 1 i = N
h-level

i = 1 i = N
4LL

2h-level

I2hh

Figure 4: Schematic representation of the action of the classical 2D restriction operator I2hh on
the smoothest (LL), semi-oscillatory (LH and HL) and oscillatory (HH) fine grid eigenmodes.
Each set of four fine grid harmonics is projected onto a single coarse grid eigenmode in the
LL range, see (20).

The relaxation in Step 1. and 5. applies a basic iterative relaxation scheme
(e.g. weighted Jacobi, Gauss-Seidel, SIRT) to the system. This is commonly
referred to as pre- and post-smoothing. The coarse grid solve in Step 3. is
typically done by recursively embedding the correction scheme, restricting the
coarse grid solution to an even coarser grid, etc., building a complete multi-level
hierarchy. The resulting self-embedded multi-level structure is typically referred
to as a multigrid V-cycle.

For the purpose of analysis, the two-grid correction scheme is commonly
considered as an approximation to the entire multigrid cycle [18, 20]. The
correction is given by

e(k) = TGe(k−1) = Sν2(I − Ih2hA2h−1I2hh Ah)Sν1 e(k−1), (19)

where the operator S represents the iteration matrix of a basic iterative scheme,
and ν1 and ν2 are the number of pre- and post-smoothing steps respectively.
Sets of so-called harmonic modes coincide on Ω2h due to restriction [17]. In 2D,
sets of four harmonic modes coincide on the coarse grid [19, 31],

ϕ2h
i = I2hh ϕhi = I2hh ϕh

i+N
4

= I2hh ϕh
i+N

2
= I2hh ϕh

i+3N
4
, i = 1, . . . ,

N

4
. (20)

Note that the eigenmodes in (20) are ordered in function of the sets of harmonics
for notational convenience. This ordering may differ slightly from the sorted
eigenvalue-based ordering introduced in Section 2.2. The concept of coinciding
modes is visualized on Figure 4. A well-known result from multigrid theory, see
[17, 20], states that for k ∈ {0, 1, 2, 3}

(I − Ih2hA2h−1I2hh Ah)ϕh
i+kN

4
≈

(
1−

λh
i+kN

4

λ2hi

)
ϕh
i+kN

4
, i = 1, . . . ,

N

4
, (21)

where λhi denotes the eigenvalue of Ah corresponding to the i-th eigenmode
ϕhi . Under the assumption that λhi ≈ λ2hi for the smooth eigenmodes, which
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Figure 5: Left: spectrum λhi (i = 1, . . . , N) of the fine grid operator Ah = WTW , with

N = 40 × 40 and M = 100 × 40. Right: spectrum λ2hi (i = 1, . . . , N
4

) of the coarse grid

operator A2h, see (16).

generally holds (see Figure 5), Eqn. (21) implies that the smoothest modes
are approximately mapped onto zero by the two-grid operator. For oscillatory
modes, however, it holds that λh

i+kN
4

� λ2hi (k ∈ {1, 2, 3}), hence oscillatory

modes are left unchanged. This in principle opposes the action of the smoother
S, which is assumed to damp oscillatory modes while leaving smooth modes
unaffected. The complementary action of smoother and two-grid correction is
crucial for the effectiveness of the multigrid scheme.

Although multigrid methods allow for fast and scalable solving and/or pre-
conditioning of a wide range of PDE-type problems, this is generally not true
for tomographic reconstruction. As shown by Rüde et al. in their work on AMG
for ART acceleration [12], multigrid preconditioning does not significantly re-
duce the number of Krylov iterations. This ineffectiveness is evident from the
discussion above, since basic iterative relaxation schemes do not possess the
smoothing property for algebraic tomographic reconstruction problems. Hence,
the classical multigrid scheme induces a damping of the smooth modes by both
the smoother and correction operator while oscillatory modes remain present in
the error, causing reduced convergence and performance.

3. Wavelet-based multigrid preconditioner

In this section we introduce a new multi-level preconditioner for Krylov
methods, which is specifically tailored to tomographic reconstruction problems.
Contrarily to standard multigrid preconditioners, the proposed scheme does not
rely on the smoothing properties of a basic relaxation scheme. Instead, we aim
at constructing a multi-level scheme in which the damping of all eigenmodes
is incorporated within the correction scheme itself, and the intergrid operators
are adapted to this purpose. We introduce different wavelet-based operators for
the various spectral regions, which allows elimination of all error components
by consecutive coarse grid projection.
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3.1. Definition and notation

We define a more advanced multigrid correction scheme, inspired by the
theory of scaling- and wavelet-functions.

3.1.1. Intergrid operators.

Let the basic 1D intergrid operators I2hh,1D and Ih2h,1D be defined by (17).

The rows of I2hh,1D are commonly referred to as discrete Haar scaling functions
in the wavelet literature [32]. Additionally, we define the wavelet operators
J2h
h,1D and J2h

h,1D based upon the Haar wavelet functions corresponding to these
scaling functions as

J2h
h,1D =

1√
2


1 −1

1 −1
· ·

1 −1

 ∈ R
n
2×n, Jh2h,1D = (J2h

h,1D)T ∈ Rn×
n
2 .

(22)
Higher order scaling and wavelet functions, e.g. D4 Daubechies functions [33],
may be used to replace the Haar functions to obtain a higher precision, but are
computationally more expensive. Hence, we restrict ourselves to the simplest
class of Haar-type scaling and wavelet functions. Using these one-dimensional
scaling and wavelet operators, four sets of 2D intergrid operators are defined:

I2hh,LL = I2hh,1D ⊗ I2hh,1D ∈ R
N
4 ×N , Ih2h,LL = (I2hh,LL)T ∈ RN×

N
4 , (23)

I2hh,LH = I2hh,1D ⊗ J2h
h,1D ∈ R

N
4 ×N , Ih2h,LH = (I2hh,LH)T ∈ RN×

N
4 , (24)

I2hh,HL = J2h
h,1D ⊗ I2hh,1D ∈ R

N
4 ×N , Ih2h,HL = (I2hh,HL)T ∈ RN×

N
4 , (25)

I2hh,HH = J2h
h,1D ⊗ J2h

h,1D ∈ R
N
4 ×N , Ih2h,HH = (I2hh,HH)T ∈ RN×

N
4 . (26)

As illustrated by Figure 6, these operators project the eigenspace of Ah onto
four disjunct coarse grid subspaces, designated by the subscript indices LL, LH,
HL and HH. The first restriction operator I2hh,LL is the standard restriction,
which maps sets of four harmonic eigenmodes onto a single smooth coarse grid
representative, see Eqn. (20) and Figure 4. The operators I2hh,LH and I2hh,HL
map the harmonics onto a coarse grid representative which is slowly varying in
the x-direction but oscillatory in the y-direction, or vice versa. The action of
I2hh,LH is illustrated on Figure 6. Finally, I2hh,HH maps the harmonic eigenmodes
onto a subset of coarse grid representatives which are highly oscillatory in all
directions. Formally we write, in analogy to (20),

ϕ2h
i,id = I2hh,id ϕ

h
i = I2hh,id ϕ

h
i+N

4
= I2hh,id ϕ

h
i+N

2
= I2hh,id ϕ

h
i+3N

4
, i = 1, . . . ,

N

4
, (27)

for id ∈ {LL,LH,HL,HH}, where ϕ2h
i,id is the i-th coarse grid eigenmode in

the respective range of the restriction operator I2hh,id .
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ϕi

LL LH HL HH

i = 1 i = N
h-level

i = 1 i = N
4

LL
LH

HL
HH

2h-level

I2hh,LH

Figure 6: Schematic representation of the action of the 2D wavelet-based restriction operator
I2hh,LH on the smoothest (LL), semi-oscillatory (LH and HL) and oscillatory (HH) fine grid

eigenmodes. Each set of four fine grid harmonics is projected onto a single coarse grid mode
in the LH range, see (27).

3.1.2. Wavelet-based two-grid scheme.

We now define a wavelet-based two-grid scheme that performs four (con-
secutive) two-grid correction steps, using the sets of intergrid operators defined
above.

Wavelet-based two-grid correction scheme (WTG)

for id ∈ {LL,LH,HL,HH}

1. Calculate rh = bh −Ahxh and project to a coarse grid r2hid = I2hh,idr
h.

2. Solve the residual equation A2h
id e

2h
id = r2hid for e2hid on the coarse grid.

3. ‘Interpolate’ the coarse grid error ehid = Ih2h,ide
2h
id to obtain a fine grid error

approximation, and correct the initial guess xh ← xh + ehid.

The coarse grid operators A2h
id are defined using Galerkin products

A2h
id = I2hh,idA

h Ih2h,id, id ∈ {LL,LH,HL,HH}. (28)

In terms of error propagation, the wavelet two-grid scheme can be written as

e(k) =WTGe(k−1)

= (I − Ih2h,HH(A2h
HH)−1I2hh,HHA

h)(I − Ih2h,HL(A2h
HL)−1I2hh,HLA

h) (29)

(I − Ih2h,LH(A2h
LH)−1I2hh,LHA

h)(I − Ih2h,LL(A2h
LL)−1I2hh,LLA

h) e(k−1)

This correction scheme solves the error equation by consecutive projection onto
the four coarse grid subspaces consisting of smooth (LL), semi-oscillatory (LH
and HL) and oscillatory (HH) modes. This leads to an elimination of smooth,
semi-oscillatory and highly oscillatory error modes respectively, thus resolving
the entire error spectrum in every iteration. Note that no relaxation is incorpo-
rated in the WMG scheme, since standard relaxation methods perform poorly
for tomographic reconstruction problems. Instead, damping of the oscillatory
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eigenmodes is accomplished in a natural way by projection onto the oscillatory
coarse grid subspaces LH, HL and HH. Analogously to (21), the projection
onto the oscillatory subspaces satisfies the following relations for k ∈ {0, 1, 2, 3}
and i = 1, . . . , N4 :

(I − Ih2h,id(A2h
id )−1I2hh,idA

h)ϕh
i+kN

4
≈

(
1−

λh
i+kN

4

λ2hi,id

)
ϕh
i+kN

4
. (30)

Observing that for oscillatory eigenmodes (k ∈ {1, 2, 3}) we have λh
i+kN

4

≈ λ2hi,id
(id ∈ {LH,HL,HH}), Eqn. (30) implies oscillatory modes are eliminated by
the projection onto the oscillatory coarse grid subspaces, while smooth modes
are left unchanged since λhi � λ2hi,LL. This indicates that the projections onto
the oscillatory coarse grid subspaces LH, HL and HH indeed eliminate the
oscillatory eigencomponents from the error.

Note that the above definition of the WTG scheme implies a multiplicative
multi-level formulation, as the residual is recalculated in every step using the
corrected guess xh. Alternatively, the residual calculation may be performed
outside the loop, leading to an additive variant of the WTG scheme, which
is ideally suited for multi-core parallelization yet generally features reduced
convergence speed compared to the multiplicative variant. In this work we have
opted for a hybrid approach, where one residual calculation is performed after
the elimination of the smooth components by the LL projection step. Since the
initial error guess on every level is zero, this yields a computational cost of one
SpMV per projection, analogous to standard multigrid, while retaining optimal
stability. Additionally, our approach allows for a parallel execution of the three
latter projections (LH, HL and HH). For the numerical experiments in this
work, however, we have alternatively chosen to parallelize the (dense) coarse
grid exact solves using BLAS3 routines, instead of parallellizing over the coarse
grid projection spaces.

3.1.3. Wavelet-based multigrid (WMG).

A WMG V-cycle consists of a recursive embedding of the WTG two-grid
scheme. Denoting the total number of levels in the WMG hierarchy by ` and
assuming that Ah ∈ RN×N as above, the original fine grid problem Ahxh = fh

is split up into a collection of 4`−1 subproblems of size N
4`−1× N

4`−1 on the coarsest
grid, which are computationally much cheaper to solve. Note that the coarse
grid operators A2h

id feature the same sparsity structure over all levels (including
identical nonzeros-zeros ratio) due to the choice of the projector basis functions
(23)-(26).

The advantage of WMG as a Krylov preconditioner over other precondition-
ing techniques like e.g. incomplete Cholesky factorization [34] is that instead
of directly solving the large-scale fine grid system, the problem is reorganized
towards solving a collection of small subproblems, which are more amenable to
direct solution. Note that this key idea of the WMG method resembles the Hi-
erarchical Basis Multigrid Method (HBMM) [23, 24]. For both techniques, the
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(a) (b) (c)

Figure 7: Spectra of the N = 40 × 40 by M = 100 × 40 iteration matrices of (a) the un-
preconditioned Krylov method (31) with corresponding condition number κ = 8.68e4, (b)
the TG-Krylov method (33) with κ = 4.52e4, and (c) the WTG-Krylov method (32) with
κ = 3.42e2. Vertical axis in log scale.

division of the large scale system into a collection of smaller-basis subproblems
allows for a direct solution of the coarse grid problems. Moreover, this collec-
tion of subproblems is particularly suited for multi-core parallelization (see the
discussion on parallellization in Section 3.1.2 above).

The WMG method can in principle be applied as a stand-alone solver to the
system (1)-(2). In this work we however opt to use the WMG scheme as a Krylov
preconditioner, since the embedding in a governing Krylov solver generally leads
to a faster and more robust solution scheme. Note that the preconditioner is
approximately inverted using only one WMG cycle, as is common practice in the
MG literature. In the next sections the efficiency of the WMG-preconditioned
Krylov method is analyzed. We again stress that the matrix Ah = WTW
and its coarse grid representations A2h

id = I2hh,idW
T W Ih2h,id are never computed

explicitly, as this would result in a dense matrix operator with a large memory
footprint. Instead, the ‘tall-and-skinny’ sparse matrices (W Ih2h,id) ∈ RM×N/4
are computed and stored on each level in a preliminary setup step, and can
hence be applied as an SpMV operation at any point in the algorithm.

Finally, we briefly comment on the computational complexity of one WMG
cycle. Assuming the fine level SpMV operation features a cost of O(N), we note
that each coarse level SpMV operation is four times cheaper. However, since the
number of coarse grid subproblems increases by a factor 4 on each coarser level,
the per-level cost of the WMG scheme is a constant O(N) operations. Hence,
since the number of levels is proportionate to O(logN), the total computational
cost of one WMG cycle is O(N logN).

3.2. Spectral properties of the WMG-Krylov method

To obtain more insight in the potential convergence improvement when using
the WMG scheme as a Krylov preconditioner (WMG-Krylov), we analyze the
spectral properties of the WTG-Krylov method. The analysis presented here is
based on the analysis of multigrid-preconditioned Krylov methods performed in
[31] and [35]. The spectrum of the original system matrix WTW ,

σ(WTW ), (31)
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is compared to the spectrum of the WTG-preconditioned Krylov iteration ma-
trix (right preconditioning), given by

σ(I − (WTW )WTG (WTW )−1), (32)

see [35], page 590, Eqn. (21), where the operator WTG is defined by (29).
For completeness of comparison, we also consider the spectrum of the standard
TG-preconditioned Krylov iteration matrix

σ(I − (WTW )TG (WTW )−1), (33)

with TG defined by (19). Figure 7 shows the spectrum of the unpreconditioned
operator WTW (31), the operator preconditioned by classical TG(1, 1) two-
grid with one pre- and post-smoothing SIRT iteration (33) and the operator
preconditioned by the WTG correction scheme (32) for a volume size of N =
40 × 40 with 100 equiangular parallel beam projections (over 180◦) of 40 rays
each. Note how only the WMG-preconditioned spectrum is efficiently clustered
around one, showing it to be much more amenable to Krylov solution than the
unpreconditioned or MG-preconditioned systems. Indeed, the condition number

κ(A) =
maxi |λi(A)|
mini |λi(A)|

, (i = 1, . . . , N), (34)

is reduced significantly by the WMG preconditioner, lying in the order of mag-
nitude O(102) compared to O(104) for the unpreconditioned and MG-Krylov
method. Hence, the WMG-Krylov method is expected to converge significantly
faster than the unpreconditioned Krylov method.

4. Numerical results

In this section a variety of 2D benchmark problems is presented to compare
the performance of the proposed WMG-Krylov solver to the SIRT iterative
reconstruction technique and the unpreconditioned Krylov solver. We first con-
sider a simple test case with noiseless data to validate the effectiveness of the
WMG preconditioner. Subsequently, a more realistic benchmark problem with
the addition of an artificial random noise component to the data is analyzed.

4.1. Shepp-Logan type model problem with non-noisy data

For the first test case we restrict ourselves to a model problem with non-noisy
data, aiming at an exact reconstruction of the image. Consider a Shepp-Logan
type model problem consisting of a 160-by-160 pixel image. The exact solution
to this model problem is denoted by xex (see Figure 9, top left) and is known
explicitly, allowing to calculate the error norm ‖ek‖ = ‖xk − xex‖ after every
Krylov iteration. The Shepp-Logan phantom object of interest is projected
under 400 equiangular projection angles (equally distributed over 180◦) using
160 rays per angle, inducing a complete dataset since the object of interest is
contained within the inner circle of the image.
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Figure 8: Shepp-Logan type model problem with N = 160 × 160 and M = 400 × 160 (no
noise). Displayed are the relative residual L2 norms ‖rk‖2/‖r0‖2 in function of the number of
iterations for SIRT (light gray), BiCGStab (dark gray) and WMG-BiCGStab (black). Vertical
axis in log scale.

We compare the convergence of the WMG-BiCGStab solver to the SIRT and
unpreconditioned BiCGStab algorithms. A three-level WMG scheme (l = 3) is
used as a preconditioner, and the collection of 40-by-40 pixel coarse level sub-
problems is solved exactly using Cholesky factorization. Figure 8 shows the
residual history for all methods. Shown is the scaled L2 norm of the resid-
ual ‖rk‖2/‖r0‖2 in every iteration. Convergence of the SIRT scheme tends to
stagnate rapidly, and the method is clearly outperformed by the Krylov solvers.
Furthermore, the WMG-Krylov method displays a significant speedup compared
to the unpreconditioned Krylov solver. The WMG preconditioner considerably
improves Krylov convergence speed, as was predicted by the spectral analysis
in Section 3.2.

The resulting reconstructions are shown in Figure 9. Note that the number
of iterations was capped at 1000 and is subject to the relative error criterion
‖ek‖2/‖e0‖2 < tol, where we have chosen tol = 0.02. Details on the reconstruc-
tion can be found in Table 1. The SIRT solution displays a large number of
small-scale artifacts resulting in an L2 error of approximately 10% after 1000 it-
erations. The unpreconditioned Krylov method generates less artifacts, yielding
an L2 error of 1.7% after 300 BiCGStab iterations. Although the WMG-Krylov
solution displays some artifacts near the center of the image, the overall recon-
struction is very good, displaying an L2 error of 1.5% after only 50 iterations.

Note that Krylov methods are particularly good at reconstructing the sharp,
high-contrast edges of the image, as opposed to the SIRT method which gen-
erally tends to smear out sharp edges through consecutive iterations. This is
reflected in the relative L∞ norm of the error ‖ek‖∞/‖e0‖∞, which is 3.17%
and 6.69% for the Krylov and WMG-Krylov methods respectively, compared
to 20.1% for SIRT. The total computational cost of the WMG-Krylov method
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Figure 9: Shepp-Logan type model problem with N = 160 × 160 and M = 400 × 160 (no
noise). Displayed are (f.l.t.r.) the exact solution xex and numerical solutions computed by 1000
SIRT iterations, 300 BiCGStab iterations and 50 WMG-preconditioned BiCGStab iterations
respectively. Specifications: see Table 1.

iterations CPU time L2 error
SIRT 1000+ 80.6 s. 0.1015

BiCGStab 300 25.1 s. 0.0166
WMG-BiCGStab 50 17.4 s. 0.0152

Table 1: Shepp-Logan type model problem with N = 160 × 160 and M = 400 × 160 (no
noise). Displayed are the number of iterations required to reach the error criterion (tol =
2%), elapsed CPU time (in seconds), and relative L2 error ‖ek‖2/‖e0‖2 for different solution
methods.

is significantly lower than the cost of the SIRT method, see CPU timings.1

Although the per-iteration computational cost of the WMG-Krylov method is
higher than the cost of a single unpreconditioned Krylov iteration, the reduced
number of Krylov iterations pays off in terms of total computational cost.

The small artifact in the center of the WMG-Krylov reconstruction is due to
the action of the WMG scheme, which resolves all error eigenmodes, see Section
3. This causes the backprojection to display a small and natural accumulation
of high-oscillatory artifacts near the center of the image, which is reflected in the
relative L∞ norm of the WMG-Krylov error. This artifact is however naturally
resolved by the incorporation of a minor regularization term in the system, as
shown in Section 4.2.

4.2. Regularization

When solving a noisy and/or underdetermined ill-posed system, the dis-
crepancy between the exact non-noisy object of interest xex and the noisy re-
constructed image x∗ has to be accounted for. This is commonly done by the

1System specifications: Intel Core i7-2720QM 2.20GHz CPU, 6MB Cache, 8GB RAM.
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Figure 10: Shepp-Logan type model problem with N = 160 × 160 and M = 400 × 160
(no noise, regularized). Displayed are the numerical solutions computed by 300 BiCGStab
iterations (left panel) and 50 WMG-preconditioned BiCGStab iterations (right panel), with
a small regularization parameter λ = 0.4 for both methods. Specifications: see Table 2.

iterations CPU time L2 error
BiCGStab 300 25.5 s. 0.0180

WMG-BiCGStab 50 17.7 s. 0.0165

Table 2: Shepp-Logan type model problem with N = 160×160 and M = 400×160 (no noise,
regularized). Displayed are the number of iterations required to reach the error criterion (tol
= 2%), elapsed CPU time (in seconds), and relative L2 error ‖xk−xex‖2/‖xex‖2 for different
solution methods.

inclusion of a regularization term in the linear system (1). In this work, we apply
standard Tikhonov regularization [36, 37], minimizing the regularized residual

min
x
{‖Wx− b̃‖2 + λ‖x‖2}. (35)

This is equivalent to solving the regularized system of normal equations

(WTW + λ)x = WT b̃, (36)

where λ is the regularization parameter which is generally chosen to be small
with respect to the spectral radius of WTW . We remark that the exact value
of λ depends on the solution method.

In addition to the suppression of noise (see Section 4.3), regularization natu-
rally eliminates small-scale artifacts like the one rendered by the WMG precon-
ditioner from the reconstruction. Figure 10 shows the Krylov and WMG-Krylov
solutions to the model problem from Section 4.1, with the inclusion of a rela-
tively small regularization parameter λ = 0.4 for both methods. The resulting
solutions are of comparable quality, see the corresponding Table 2. However,
the regularization term removes the artifact in the center of the WMG-Krylov
reconstruction, yielding a relative L∞ error norm of 3.99%, which is comparable
to the Krylov method L∞ error norm (3.19%).
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Figure 11: Shepp-Logan type model problem with N = 160× 160 and M = 400× 160 (noisy,
non-regularized). Displayed are the scaled error L2 norms ‖ek‖2/‖e0‖2 for the SIRT (light
gray), BiCGStab (dark gray) and WMG-preconditioned BiCGStab (black) method in function
of the number of iterations. Error minima at kopt = 3000 (SIRT), kopt = 100 (BiCGStab)
and kopt = 14 (WMG-BiCGStab) iterations. Horizontal axis in log scale.

4.3. Shepp-Logan type model problem with noisy data

The numerical experiments in the previous section were primarily intended
as an academic test case to demonstrate the performance of the WMG pre-
conditioner. In this section we consider a more realistic model problem by
incorporating artificially generated noise into the data. In realistic applications,
one aims at solving system (1)-(2) with a noisy right-hand side,

Wx = b̃, (37)

where b̃ = b+ε. Here b represents the non-noisy projection data and ε is a noise
term. We consider a noise vector of randomly distributed white noise

ε = αU(−1, 1) max(|b|), (38)

where α is the noise level, commonly given in % of max(|b|), and U(−1, 1)
designates the realization of an M -dimensional random variable selected from
the M -dimensional uniform distribution on the open interval (−1, 1). We note
that the exact object of interest xex is generally not a solution to system (37).
Let the solution to (37) be denoted by x∗, then

x∗ = xex + δ, (39)

where δ is the discrepancy between the exact non-noisy target image xex and
the noisy solution x∗ to (37). This discrepancy δ is the backprojection of the
noise term ε.

4.3.1. Semi-convergence.

In the inverse problems literature [38, 39, 40], a typical convergence phe-
nomenon referred to as semi-convergence is described, which occurs when trying
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Figure 12: Shepp-Logan type model problem with N = 160× 160 and M = 400× 160 (noisy,
regularized). Displayed are the scaled error L2 norms ‖ek‖2/‖e0‖2 for the SIRT (light gray),
BiCGStab (dark gray), and WMG-preconditioned BiCGStab (black) method in function of
the number of iterations. Error minima at kopt = 3000 (SIRT), kopt = 100 (BiCGStab), and
kopt = 14 (WMG-BiCGStab) iterations. Regularization parameter: SIRT: λ = 0.001, Krylov:
λ = 10, WMG-Krylov: λ = 10. Horizontal axis in log scale.

to recover the exact solution xex from a noisy system like (37) using iterative
methods. Comparing the iterative solution to (37) with the exact image xex in
each step, we observe that convergence of all methods tends to stagnate gradu-
ally, with the error ‖ek‖2 reaching a minimum after a certain problem-dependent
(up-front unknown) number of iterations. Beyond this point the error increases,
and additional iterations push the iterative solution increasingly further away
from the exact solution. Note that this behaviour is not apparent from the
residual history, as the residual tends to keep decreasing with every iteration.
For each iterative method, there exists an optimal number of iterations kopt
which minimizes the error,

kopt = arg min
k

‖ek‖2. (40)

To illustrate this concept, we recall the 160-by-160 pixels Shepp-Logan type
model problem with 400 × 160 element data vector, as introduced in Section
4.1, and we artificially add α = 1% of white noise to the data vector b. Figure
11 shows the scaled L2 norm of the error ‖ek‖2/‖e0‖2 for the SIRT method,
the unpreconditioned Krylov method and the WMG-Krylov method for the
noisy model problem. As predicted by the analysis in [38], an error minimum
is reached for all methods, with SIRT reaching a minimum after 3000 itera-
tions, while the Krylov and WMG-Krylov method require 100 and 14 iterations
respectively to reach the error minimum.

4.3.2. Regularizing the noisy problem.

As proposed in standard works on regularization of inverse problems [38, 39],
Tikhonov regularization is often imposed to ensure proper convergence of the
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iterations CPU time error L2 error L∞
SIRT 1000 81.1 s. 0.1385 0.2697

BiCGStab 100 9.35 s. 0.1074 0.1459
WMG-BiCGStab 14 5.44 s. 0.1083 0.1386

Table 3: Shepp-Logan type model problem with N = 160 × 160 and M = 400 × 160 (noisy,
regularized). Displayed are the number of iterations kopt (see Figure 11), elapsed CPU time
(in seconds), relative L2 error ‖ek‖2/‖e0‖2, and relative L∞ error ‖ek‖∞/‖e0‖∞ for different
solution methods.

iterative solvers towards the non-noisy solution. Note that Figure 11 proves
the existence of an error minimum in the non-regularized case, but does not
predict a realistic estimation of the regularized error. Figure 12 is the analogon
of Figure 11 with the inclusion of a Tikhonov regularization term. When the
regularization parameter λ is well-chosen, the regularization term ensures a
denoising (or smoothing) of the reconstruction in every iteration. Consequently,
the error L2 norm ‖ek‖2 decreases in every iteration, even after reaching the
optimal number of iterations kopt, see Figure 12. As shown by Hansen in [38],
the error decreases only marginally from this point onwards and the iteration is
typically stopped after kopt iterations.

4.3.3. Performance results.

We again consider the 160-by-160 pixels Shepp-Logan type model problem
with the addition of α = 1% white noise. Figure 13 compares the resulting
reconstructions after kopt = 1000 SIRT iterations, kopt = 100 BiCGStab itera-
tions and kopt = 14 WMG-BiCGStab iterations respectively. The regularization
parameters are chosen as λ = 0.001 for the SIRT iteration and λ = 10 for the
Krylov methods. Note that the regularization parameter for the SIRT method
is smaller than the Krylov parameter due to rescaling of the SIRT system (3).
An overview of the corresponding reconstruction characteristics can be found in
Table 3. Note that the accuracy of the Krylov reconstructions is comparable;
however, the Krylov solutions feature less artifacts and a sharper characteriza-
tion of the edges, resulting in a smaller L2 and L∞ norm compared to the SIRT
method. Additionally, the WMG-BiCGStab method uses only 14 iterations to
reach an accuracy comparable to that of the BiCGStab solution after 100 it-
erations. This results in a computational time of less than 5.5 seconds by the
WMG-BiCGStab method, which is significantly lower than the time elapsed by
the BiCGStab iterations (9.35 s.) in order to obtain a comparable accuracy. A
CPU time speed-up of approximately 42% is achieved by the WMG precondi-
tioner. The improved convergence speed of the WMG-Krylov method is a major
advantage over classical Algebraic Reconstruction Techniques, and the WMG
preconditioner features a significantly reduced number of iterations compared
to standard unpreconditioned Krylov solvers.
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Figure 13: Shepp-Logan type model problem with N = 160 × 160 and M = 400 × 160
(noisy, regularized). Displayed are the numerical solutions to the regularized system (36)
after kopt = 1000 (SIRT), kopt = 100 (BiCGStab) and kopt = 14 (WMG-BiCGStab) itera-
tions. Regularization parameters: SIRT: λ = 0.001, Krylov: λ = 10, WMG-Krylov: λ = 10.
Specifications: see Table 3.

5. Conclusions and discussion

In this paper we proposed a novel algebraic reconstruction method for the
linear inversion problems that arise from computerized tomographic reconstruc-
tion. Driven by the observed slow convergence of classical Algebraic Reconstruc-
tion Techniques, Krylov methods are suggested as a more efficient alternative
for algebraic tomographic reconstruction. However, these methods are known
to be generally uncompetitive without a suitable preconditioner.

Inspired by the work done by McCormick et al. [9, 10] and Rüde et al. [12], a
multi-level type preconditioning approach is suggested. An eigenvalue analysis
of the SIRT method and the classical multigrid scheme shows that standard
multigrid is unsuitable as a Krylov preconditioner for algebraic tomographic
reconstruction. Consequently, a novel wavelet-based multigrid (WMG) precon-
ditioner is introduced that projects the large fine-level matrix operator onto a
collection of smaller coarse level subproblems. The advantage of this approach
is that the coarse grid subproblems are computationally cheaper to solve, re-
sulting in a fast and efficient overall preconditioning scheme. It is shown that
the WMG-preconditioned Krylov method has improved spectral properties, and
thus yields a performant iterative solver for tomographic reconstruction.

Additionally, when the domain and the matrix operator W become larger
and no longer fit in fast cache memory, performance of the SpMV, and thus
stationary iterations like SIRT, typically decreases. This is because the SpMV is
memory bandwidth limited, cf. [8]. The WMG preconditioner suffers much less
from this effect, because it applies (small) dense matrix operations (triangular
solves) on the coarsest level, which achieve high efficiency because they have
a high flop-to-memory-access ratio and are implemented in highly optimized
BLAS3 routines. Due to the strong reduction in the number of Krylov iterations
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and the scalable nature of the WMG scheme, the WMG-preconditioned Krylov
method is expected to be increasingly performant when solving large-scale and
3D reconstruction problems.

The WMG-preconditioned Krylov method is primarily analyzed on a 2D
non-noisy benchmark problem, where a notable convergence speedup is observed
compared to standard unpreconditioned Krylov methods. Furthermore, the ap-
proach is successfully validated on a more realistic noisy benchmark problem,
where Tikhonov regularization is introduced to account for the ill-posedness of
the problem. Comparing the new WMG-Krylov method to existing Algebraic
Reconstruction Techniques like the classical SIRT scheme and unpreconditioned
Krylov methods, we find a comparable quality of the reconstruction at a signif-
icantly reduced number of iterations. Numerical experiments on semi-realistic
benchmark problems confirm that the WMG-Krylov method outperforms the
classical reconstruction methods in terms of computational time, while retaining
a comparable precision on the numerical solution.

We note that the WMG method can in principle be applied directly to the
(possibly underdetermined) system (1), cf. the work done by Rüde et al. in [12].
The embedding in a governing Krylov solver generally improves robustness, but
requires the use of the normal equations formulation (2). If the WMG method is
applied directly to the underdetermined system, restriction can theoretically be
applied on both sides of the system, i.e. simultaneously restricting the number
of pixels and the number of rays or projection angles. This strategy could be
explored in future research.

To conclude, the work done in this paper is an initial effort to designing
a performance based preconditioning technique for algebraic tomographic re-
construction problems. Whereas preconditioning approaches suggested in other
works focus primarily on regularization properties (noise reduction, deblurring,
etc.), the most important feature of the WMG preconditioner is the signifi-
cant reduction in the number of Krylov iterations, which allows to effectively
speed-up Krylov convergence, and hence reduces the reconstruction time.
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