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A prominent goal within the field of modern heavy-ion collisions is to uncover the phase

diagram of QCD. Studies of the properties of systems created in heavy-ion collisions strongly

suggest that a new state of matter described by quark and gluon degrees of freedom, the

quark-gluon plasma, is created when nuclei are collided at very high-energies. Consequently,

the QCD phase diagram may contain a rich structure in regions currently accessible to

heavy-ion experiments, including a possible critical point where the transformation between

hadronic and partonic matter changes from a smooth crossover to a first-order phase transi-

tion. Whether this is the case will have to be born out through a combination of experimental

analyses and state-of-the-art simulations of heavy-ion collisions.

We present a mean-field model of the dense nuclear matter equation of state designed for

use in computationally demanding hadronic transport simulations. Our approach, based on

the relativistic Landau Fermi-liquid theory, allows us to construct a family of equations of

state spanning a wide range of possible bulk properties of dense QCD matter. For the appli-

cation to simulations of heavy-ion collisions at intermediate beam energies, and in particular

ii



having in mind studies centered on probing the regions of the QCD phase diagram most rele-

vant to the search for the QCD critical point, we further present and discuss parametrizations

of the developed equation of state describing dense nuclear matter with two phase transi-

tions: the known nuclear-liquid gas phase transition in ordinary nuclear matter, with its

experimentally observed properties, and a postulated phase transition at high temperatures

and high baryon number densities, meant to model the QCD phase transition from hadronic

to quark and gluon degrees of freedom.

We implement the developed model in the hadronic transport code SMASH, and show that

the resulting dynamic behavior reproduces theoretical expectations for the thermodynamic

properties of the system based on the underlying equation of state. In particular, we discuss

simulations of systems initialized in regions of the phase diagram affected by the conjectured

QCD critical point, and we demonstrate that they reproduce effects due to critical behav-

ior. Specifically, we show that pair distribution functions calculated from hadronic transport

simulation data are consistent with theoretical expectations based on the second-order cu-

mulant ratio, and can be used as a signature of crossing the phase diagram in the vicinity

of a critical point. Through this, we validate the use of hadronic transport codes as a tool

to study signals of a phase transition in dense nuclear matter.

We additionally present a novel method that may enable a measurement of the speed of

sound and its derivative with respect to the baryon number density in heavy-ion collisions.

The devised approach is based on a connection between the speed of sound and the cumulants

of the net baryon number, which in the context of the search for the QCD critical point are

given considerable attention due to their potential to signal critical fluctuations. We confirm

the applicability of the proposed method in two models of dense nuclear matter, including

the parametrization of the equation of state developed in this work. Application of our

approach to available experimental data implies that the derivative of the speed of sound

is non-monotonic in systems created in collisions at intermediate to low energies, which in

turn may be connected to non-trivial features in the underlying equation of state.
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CHAPTER 1

Introduction to studies of the QCD phase diagram

The goal of heavy-ion collisions is to study the properties of matter composed of quarks and

gluons: the fundamental particles and force carriers associated with the strong interaction.

Although the theory of strong interactions, quantum chromodynamics (QCD) [1], has been

tested and confirmed in an overwhelming number of experiments, its intrinsic computational

complexity poses a challenge to answering many outstanding questions in nuclear physics. In

particular, while first-principle approaches together with perturbation theory can be used in

studies of processes involving large momentum transfers, where the QCD coupling constant is

small and the theory approaches asymptotic freedom [2, 3], the large value of the coupling at

energies of interest to nuclear physics means that the underlying processes cannot presently

be understood through QCD calculations. Even more importantly, the description of studied

problems predominantly involves many-body physics, where using first-principle methods is

notoriously difficult. Therefore heavy-ion experiments and theoretical models, devoted to

investigating the evolution of systems created in collisions of nuclei moving at relativistic

velocities, are presently the only methods of studying the dynamic behavior of nuclear matter

at high temperatures and high densities.

Current understanding of QCD matter at extreme conditions is facilitated by numerous

experimental and theoretical advancements to date. The evidence gathered over 30 years of

experiments carried out at the Super Proton Synchrotron (SPS), the Relativistic Heavy Ion

Collider (RHIC), and the Large Hadron Collider (LHC) strongly suggests that a new state

of matter is produced in high-energy heavy-ion collisions [4, 5, 6, 7, 8, 9]. This new state of
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matter, characterized by deconfined and, at the same time, strongly-interacting color charges,

is called the quark-gluon plasma (QGP), and if it is indeed achieved in high-energy heavy-ion

collisions, then these experiments probe two states of strongly-interacting matter: the state

in which the dominant degrees of freedom are hadrons, and the state in which the dominant

degrees of freedom are quarks and gluons. This in turn means that it is possible to study

the nature of the QGP-hadron transition in the laboratory. The characteristics of this phase

transition are expected to vary at different temperatures and densities, and rich structures

are predicted to be present in the QCD phase diagram. Studies devoted to this subject will

not only lead to a better understanding of the properties of dense QCD matter, but also

have the potential for revealing insights about fundamental aspects of the underlying theory,

such as confinement. Moreover, among the several predicted phase transitions involving

fundamental degrees of freedom of the Standard Model, the QGP-hadron phase transition

is the only one that can be feasibly studied experimentally.

Below, we present a broad overview of heavy-ion collision studies devoted to uncovering

the QCD phase diagram. In particular, we briefly recall what is known about the states

of QCD matter (Section 1.1) and sketch the physics behind probing different regions of the

QCD phase diagram through heavy-ion collisions (Section 1.2). Next, after introducing the

experimental programs devoted to the exploration of the phases of QCD (Section 1.3), we

focus on prominent experimental results to date (Sections 1.4, 1.5, and 1.6), followed by a

summary of challenges to finding the QCD critical point (Section 1.7) and an overview of

simulations of heavy-ion collisions (Section 1.8).

A reader familiar with the field can comfortably omit these introductory parts of this

chapter and proceed directly to Section 1.9, where we introduce the problem addressed in

this thesis, and Section 1.10, where we give a short description of the work presented in each

of the following chapters.

We note here that throughout this work, we adopt the natural units (see Appendix A for

more details on units and notation).

2



1.1. The QCD phase diagram

Studying the QGP phase transition involves mapping out the QCD phase diagram, that

is identifying the phases of QCD matter that exist at given values of temperature T and

baryon number density nB or, alternatively, baryon chemical potential µB. Fig. 1.1 shows

the conjectured QCD phase diagram in the (T, nB) plane as included in the 1983 DOE/NSF

Long Range Plan for Nuclear Science [10], while Fig. 1.2 shows the conjectured QCD phase

diagram in the (T, µB) plane as included in the 2015 Hot QCD White Paper [11]. Although

significant portions of both of these diagrams are speculative, a few regions can be described

with a reasonable certainty, and we briefly introduce them below.

The most experimentally well-known is the region of low temperatures, T . 30 MeV,

and moderate baryon chemical potentials, µB ≈ 800–1000 MeV, or alternatively moderate

baryon densities, nB ≈ 0.1–1.5n0, where n0 ≈ 0.160 fm−3 is the nuclear saturation density,

that is the average central density of nuclei. Here, QCD matter is encountered in the form

of ordinary nuclear matter, that is systems composed of nucleons, with mesons acting as

effective carriers for the strong force (see Section 2.1 for more details). Nuclear matter

appears in one of two states: as a dilute gas of nucleons or as a dense concentration of

nucleons, known as the nuclear liquid. The phase transition between these two states is

of the first order, which means that there exists a range of densities and temperatures at

which the two phases coexist with each other (see Appendix B for a brief description of

properties of first-order phase transitions). The critical point of nuclear matter is located

at values of the temperature and the baryon number density at which the densities of the

gaseous and the liquid phases have the same value, that is at which it is no longer possible

to distinguish between the gaseous and the liquid phase. For all temperatures higher than

the critical temperature, this distinction is likewise impossible. Based on extrapolations

from experimental data, the nuclear matter critical point has been identified at the critical

temperature T (N)
c ≈ 18 MeV and the critical baryon number density n(N)

c ≈ 0.4n0 [12].
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Figure 1.1: A sketch of the conjectured phase diagram of QCD matter in the (T, nB) plane,

included in the 1983 DOE/NSF Long Range Plan for Nuclear Science [10]. The saturation

density of nuclear matter is here denoted as ρnm. The original caption states: “Expected

phases of nuclear matter at various temperatures and baryon (or nucleon) densities, showing

the “hadronic phase” including a gas-liquid phase transition region, and the transition region

to deconfined quarks and gluons. The dashed lines illustrate trajectories in this phase diagram

that can be explored in ultra-relativistic heavy-ion collisions.” The sketch was made by

Gordon Baym.

QCD matter at even higher chemical potentials is encountered in neutron stars, which

are composed of highly isospin-asymmetric nuclear matter at T ≈ 0 and whose central

densities can reach about nB ≈ 5–10n0 [13]. Despite an astounding difference in scales (the

diameter and mass of a heavy nucleus are about 10−14 m and 10−25 kg, respectively, while

the corresponding values for a neutron star are on the order of 104 m and 1030 kg), the

equation of state (EOS) of asymmetric nuclear matter is central to neutron star research.

This is because the behavior of the pressure of asymmetric nuclear matter as a function
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Figure 1.2: A sketch of the conjectured phase diagram of QCD matter in the (T, µB) plane

[11]. Current knowledge on the states of matter at near-zero temperatures and moderate

baryon chemical potentials as well as at high temperatures and near-zero baryon chemical

potentials is relatively well established, while regions of the phase diagram characterized by

finite temperatures and high baryon chemical potentials are subject of ongoing experimental

and theoretical research.

of the energy density determines the relationship between the masses and radii of neutron

stars [14]. In consequence, currently known values of masses and radii of neutron stars put

strong constraints on the EOS of nuclear matter at large densities and small temperatures

[13, 15, 16]. Nevertheless, it is currently not established whether the very dense cores of

neutron stars could be described in terms of quark and gluon degrees of freedom. In addition

to this possibility, a few exotic phenomena are predicted for nuclear matter at very high

densities, including systems described by a mixture of nucleons and meson condensates [17],

or systems with a color superconducting phase [18].
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In the opposite regime, at relatively low temperatures and near-zero densities (vanishing

chemical potentials), QCD matter is well-described by chiral effective field theories [19] and

can be shown to be well-approximated by an interacting gas of pions [20]. As the temperature

increases, other hadronic species as well as their excited states become relevant, and the

description in terms of the hadron resonance gas (HRG) model [21, 22] is appropriate.

At moderate to high temperatures and negligible baryon chemical potentials, the behavior

of QCD matter is well-understood theoretically from the first-principle calculations in lattice

QCD (LQCD). These calculations confirm that for temperatures satisfying 100 MeV . T .

140 MeV and µB ≈ 0, the HRG model gives a very good description of hot QCD matter.

For higher temperatures, however, LQCD shows that QCD matter undergoes a crossover

transition [23] from a hadron gas to a strongly-interacting QGP. (We note that the strongly-

interacting nature of QGP is in opposition to the early expectation that above the phase

transition, QCD matter would be composed of free quarks and gluons.) This result has

been further supported with a Bayesian inference approach applied to heavy-ion collisions

probing this region of the phase diagram [24], where the range of EOSs most consistent

with experimental data has been identified and shown to include the LQCD EOS. Based on

LQCD, the pseudocritical temperature of the crossover QGP-hadron transition at µB ≈ 0

is equal Tpc = 156.6 ± 1.5 MeV [25] (see also Refs. [26, 27]), with the restoration of the

approximate chiral symmetry of QCD occurring at high temperatures.

The region of the QCD phase diagram characterized by both moderate-to-high temper-

atures and moderate-to-high baryon chemical potentials is not known well due to the lack

of first-principle approaches available in this regime: at finite chemical potentials, µB 6= 0,

LQCD suffers from a calculational difficulty known as the fermion sign problem [28]. How-

ever, a number of theoretical considerations lead to the conclusion that the phase diagram of

QCD at moderate ranges of temperature and baryon chemical potential may contain inter-

esting structures. Starting from a more accessible region of µB = 0, theoretical calculations

on the chiral phase transition in QCD suggest that the QGP-hadron phase transition is a
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first-order phase transition in the limit of massless quarks [29], known as the “chiral limit”

due to the chiral symmetry displayed by the QCD Lagrangian for zero quark masses. If

only the two lightest quarks, up and down, are considered massless, while the strange quark

remains sufficiently heavy, the transition at µB = 0 is instead of second-order [30]. Finally,

if the up and down quarks are given small masses, corresponding to the situation found in

nature, the transition becomes a crossover [30], just as obtained in LQCD. (Considerations

of a similar type are also studied in LQCD, and recent results can be found, e.g., in Ref.

[31].) In the last case numerous chiral effective field theory models predict that the first-order

QGP-hadron phase transition line must begin at a critical point located at some finite value

of the baryon chemical potential [30], see Fig. 1.2. If this is true, there are two critical points

related to the strong interaction in the phase diagram of QCD: one corresponding to the or-

dinary nuclear liquid-gas phase transition, and one corresponding to the QGP-hadron phase

transition. Studies devoted to this possibility, as well as to understanding the boundary

between the ordinary nuclear matter and QGP in general, are at the forefront of heavy-ion

collision research.

1.2. Probing the QCD phase diagram

Heavy-ion collision experiments probe different regions of the QCD phase diagram primarily

by changing the energy of the colliding beams. Additionally, experiments can also probe

different baryon densities by choosing particular rapidity acceptance windows in data analy-

sis. We briefly describe the physics behind these two possibilities below. For a rudimentary

introduction to the kinematic variables employed in the description of heavy-ion collisions,

as well as to the heavy-ion collision geometry and baryon transport, see Appendix C.

Varying the energy of beams of colliding nuclei changes the fraction of the initial baryon

number (NB,initial ≈ 400, originating from the projectile and the target, which are often gold

or lead nuclei) transported in the course of the collision to the central rapidity region in the
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Figure 1.3: Visualization of a gold-gold (Au+Au) collision at the center-of-mass energy
√
sNN = 200 GeV, based on a hybrid UrQMD simulation [32] utilizing the Ultra-relativistic

Quantum Molecular Dynamics (UrQMD) hadronic transport code [33, 34] with an intermedi-

ate hydrodynamic stage based on the ideal hydrodynamics simulation code SHASTA [35, 36].

Highly Lorentz-contracted nuclei interpenetrate each other, depositing their energy in the

collision region; the created system, most often assumed to be the QGP, quickly thermalizes

and expands hydrodynamically; when the matter expands enough to cool down to the transi-

tion temperature, the QGP hadronizes into discrete particles that continue moving outward,

scattering among each other, until the system is too dilute for any collisions to occur and

particles travel in straight lines to the detector. See text for more details. Different heavy-ion

collision simulations will be discussed in Section 1.8. Figure from Hannah Elfner (Petersen),

MADAI.us [37].

center-of-mass frame. In highly energetic collisions, where the colliding nuclei are traveling

with velocities approximately equal 99.9% of the speed of light, their Lorentz contraction in

the laboratory frame is significant (as seen in Figs. 1.3 and 1.4). The two contracted nuclei

can be roughly thought of as very dense “mixtures” of valence quarks and the strong force

interaction bosons: the gluons. However, while to a good approximation one can assume

that for each nucleon there are three valence quarks (sharing between each other about

half of the energy of the nucleon), bound in the nucleus speeding towards the collision,
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Figure 1.4: Visualization of a lead-lead (Pb+Pb) collision at the center-of-mass energy
√
sNN = 17.3 GeV, based on a SMASH hadronic transport simulation [38]. Significantly

Lorentz-contracted nuclei collide, depositing their energy in the collision region; the collision

energy is transformed into produced particles and the system naturally expands, with scat-

terings occurring between all participating particles; finally, the system is too dilute for any

collisions to occur and particles travel in straight lines to the detector. Different heavy-ion

collision simulations will be discussed in Section 1.8. Figure from Justin Mohs [39].

the density of gluons in the nucleon increases with the increasing colliding energy, with a

very strong prevalence of low-momentum gluon states (this had been found by the H1 and

ZEUS collaborations from experiments in deep inelastic ep± scattering [40]). Importantly,

the strong interaction coupling constant diminishes with the energy of a particle, and so

do the associated cross sections. Consequently, within a zeroth-order description, when a

heavy-ion collision takes place, the valence quarks belonging to different nuclei “fly through”

each other, while the majority of the gluons, composed of the low-momentum gluon states,

collide and create the highly energetic medium that becomes a QGP.

Beyond the zeroth-order description, even though at very high energies the valence quarks

have very small cross sections for interaction with quarks belonging to the other nucleus,

they still interact with the low-momentum gluons as well as with quarks within the same
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nucleus, where the latter interaction is mediated by gluon fields. Since many of the gluons

are stopped in the collision region while the valence quarks continue to move apart, the

fields between the quarks are “stretched” and form a “string” of gluons. As this process

continues, the potential energy in the gluon strings increases (at the cost of the valence

quarks’ kinetic energy) and it becomes high enough to enable particle production. This

proceeds by breaking individual strings, with a quark-antiquark pair produced at the two

new ends of each broken string. This string-breaking process often further diminishes the

energy of the “original” valence quarks as well as causes them to develop some transverse

momentum. Once the string breaks, however, the further propagation of quarks can be

thought of as largely unimpeded.

Overall, string creation and breaking significantly decreases the initial energy of the va-

lence quarks (by about a half) and slightly changes their transverse momenta (on the order of

0.3 GeV), which corresponds to a rapidity change of about one. When the system hadronizes

(or “freezes out”), the valence quarks form baryons that are detected at high absolute val-

ues of rapidity; this is a direct consequence of the early evolution of the collision system

described above: after the collision takes place, the valence quarks continue to move with a

momentum p ≈ pbeam. On the other hand, the quark-antiquark pairs which appear through

string-breaking are produced more isotropically, so the final state distributions of mesons

and baryons into which they hadronize (with an overwhelming dominance of mesons, as

their production is favored energetically) are peaked at midrapidity. Note that the produced

baryons satisfy NB,prod − NB,prod = 0, so that their contribution to the net baryon density

is zero. Altogether, at very high-energy collisions the net baryon distribution displays a

minimum at midrapidity and rises with increasing |y|. (For a brief review of properties of

rapidity and pseudorapidity distributions, see Appendix C.)

The situation in low-energy collisions differs from the description sketched above in two

ways. First, in nuclei moving at a smaller speed the cross sections for quark-quark and

quark-gluon interactions between the two colliding nuclei increase and a significant fraction
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of the initial baryon number can be “stopped” in the collision region by scattering, leading

to a subsequent detection at midrapidity. Moreover, the initial rapidity of the participating

valence quarks is smaller, so that if string creation and breaking processes occur (which

result in a reduction of the rapidity of valence quarks by about one unit, similarly as in the

high-energy collisions), the final rapidity of detected baryons is smaller as well. Altogether,

this means that in low-energy collisions relatively large values of the net baryon number

are detected at midrapidity, which is in opposition to the behavior of matter in high-energy

collisions. The behavior of the baryon number in collisions at intermediate energies should

interpolate between these two scenarios.

Indeed, the data supports this picture. Fig. 1.5 shows the rapidity spectra of net protons

dNp−p̄/dy [41] as measured in collisions with 0–5% centrality at the AGS (Au+Au collisions

at
√
sNN = 5 GeV, ybeam = 1.64) [42], SPS (Pb+Pb collisions at

√
sNN = 17.2 GeV,

ybeam = 2.91) [43], and RHIC (Au+Au collisions at
√
sNN = 200 GeV, ybeam = 5.36)

[41]. For collisions at
√
sNN = 5 GeV, the net proton distribution is peaked around y ≈

0, while for
√
sNN = 17.2 GeV the distribution develops two separate peaks at relatively

large values of rapidity y ≈ ±1.3. For collisions at
√
sNN = 200 GeV the peaks of the

distribution are beyond the reach of the detector, but fits to data establish them at y ≈ ±4.3.

On the other hand, Fig. 1.6 shows rapidity distributions of charged pions and mesons as

well as their mean transverse momenta as measured in collisions with 0–5% centrality at

RHIC (Au+Au collisions at
√
sNN = 200 GeV) [44]. The meson distributions are peaked

at midrapidity, and their transverse momentum is approximately constant as a function

of rapidity. Similarly, Fig. 1.7 shows pseudorapidity distributions of charged hadrons as

measured in 0–25% most central collisions at RHIC for very high and low beam energies

(Au+Au collisions at
√
sNN = 200 GeV and

√
sNN = 19.6 GeV, respectively) [45]. Rapidity

and pseudorapidity distributions of charged particles are dominated by mesons, and so the

distributions presented in Fig. 1.7 further confirm those shown in Fig. 1.6. Overall, the

behavior of both the net proton and charged meson rapidity distributions reflects the energy
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Figure 1.5: Rapidity distributions of net protons [41] measured in collisions with 0–5%

centrality at the AGS (Au+Au collisions at
√
sNN = 5 GeV, ybeam = 1.64) [42], SPS

(Pb+Pb collisions at
√
sNN = 17.2 GeV, ybeam = 2.91) [43], and RHIC (Au+Au colli-

sions at
√
sNN = 200 GeV, ybeam = 5.36) [41]. For collisions at

√
sNN = 5 GeV, the net

proton distribution is peaked around y ≈ 0, while for
√
sNN = 17.2 GeV the distribution

develops two separate peaks at relatively large values of rapidity y ≈ ±1.3. For collisions at
√
sNN = 200 GeV the peaks of the distribution are beyond the reach of the detector, but fits

to data establish them at y ≈ ±4.3.

dependence of the evolution of a heavy-ion collision sketched above.

We stress that while this simplified picture of the net baryon number evolution is useful

for developing intuition, the exact mechanism of baryon transport in heavy-ion collisions,

often referred to as “baryon stopping”, is not known. Therefore baryon stopping is a subject

of active research, both within the phenomenological approaches [46, 47, 48], as well as within

simulations of heavy-ion collisions [49, 50].

Since the net baryon number measured at given values of rapidity changes with the colli-
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Figure 1.6: Rapidity distributions (a) and mean transverse momenta (b) of pions and

kaons [44] measured in collisions with 0–5% centrality at RHIC (Au+Au collisions at
√
sNN = 200 GeV). The kaon yields are multiplied by a factor of 4 for better visibility,

and the dashed lines are Gaussian fits to the distributions.

sion energy, it follows that varying the beam energy allows one to probe systems characterized

by different values of the net baryon number. Additionally, collisions at varying
√
sNN are

also characterized by different initial temperatures, corresponding to different amounts of

initial energy deposition in the collision region. It is possible to get an intuition about which

regions of the phase diagram are probed in a given class of collisions by fitting the energy

spectra of the final state particles to the HRG model, in this context also often referred

to as the statistical hadronization model (SHM) [51]. By doing so one arrives at a good

estimate of the temperature and baryon chemical potential of the system at the moment

of the evolution, occurring some time after the hadronization and known as the chemical
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Figure 1.7: Rapidity distributions of charged particles [45] measured in collisions with 0–25%

centrality at RHIC (Au+Au collisions at
√
sNN = 19.6 GeV and
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sNN = 200 GeV). The

boxed areas (a)-(d) indicate separate regions in pseudorapidity used for the centrality deter-

mination at each energy.

freeze-out, when the particle-changing processes cease and particle yields of the collision are

established. Fits to particle yield ratios in 0–5% central collisions using SHM lead to the

freeze-out temperatures Tfo and baryon chemical potentials µfo as listed in Table 1.1 for col-

lisions from
√
sNN = 7.7 GeV to

√
sNN = 200 GeV [52]. These values reflect the conclusion,

made above based on rapidity distributions, that particles detected at midrapidity in high-

energy collisions carry close to zero net baryon number (corresponding to very low values of

the baryon chemical potential), while in low-energy collisions the midrapidity region probes

systems with significantly higher net baryon number (corresponding to moderate values of

the baryon chemical potential).

As a result, varying the beam energy as well as analyzing data from specific rapidity

windows allows one to probe different points on the phase diagram of dense nuclear matter.
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Table 1.1: Freeze-out parameters Tfo and µfo [52] (in MeV) for Au+Au collisions at different

center-of-mass energies
√
sNN (in GeV), at 0–5% centrality and a rapidity window |y| ≤ 0.5

(both values and errors have been rounded up to nearest integers here).

√
sNN 7.7 11.5 14.5 19.6 27 39 62.4 200

µfo 398± 13 287± 13 264± 10 188± 8 144± 8 103± 10 70± 11 28± 8

Tfo 144± 2 149± 3 152± 3 154± 3 155± 3 156± 3 160± 4 164± 4

By systematically exploring different beam energies, the experiment is effectively performing

a scan across the QCD phase diagram.

While the means to search for signatures of the QCD phase transition are clear, the

success of this endeavor is premised on the ability to experimentally uncover a number of

effects born out in systems of immense complexity. Some of these predicted signatures

involve Hanbury-Brown-Twiss (HBT) interferometry measurements (discussed in Section

1.4.1), quark number scaling of the elliptic flow (discussed in Section 1.5.1), or enhanced

multiplicity fluctuations of produced hadrons (discussed in Section 1.6), and their dependence

on the beam energy. Often, the magnitudes of these effects and their interaction with other

experimental signals, as well as the influence of the finite lifetime and size of the collision

remain elusive to purely theoretical predictions. A clear interpretation of the experimental

data will have to be supported by comparisons with results of dynamical simulations of

heavy-ion collisions, developed to account for the complex evolution of relevant observables.

1.3. BES-I and BES-II

Probing the phase diagram of QCD matter was one of the main goals behind the Beam

Energy Scan I (BES-I) program and is the driving motivation behind the ongoing Beam
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Energy Scan II (BES-II) program at RHIC, pursued by the Solenoidal Tracker at RHIC

(STAR) experiment [53]. The names of the programs refer to heavy-ion collisions performed

at a series of different beam energies, allowing for a systematic study of the beam-energy–

dependence of observables. Due to the dynamics of heavy-ion collisions (see Section 1.2),

this in fact allows for studying the dependence of observables on the temperature and the

baryon chemical potential.

Running during the years 2010-2017, the BES-I collided two beams of gold nuclei (197Au)

at a series of center-of-mass energies,
√
sNN = 62.4, 54.4, 39.0, 27.0, 19.6, 14.5, 11.5, 7.7 GeV,

and had three major objectives [54]:

i) to search for the “onset” of specific features of collective behavior, such as constituent

quark scaling of the elliptic flow associated with the formation of the QGP, measured in

systems created in the high-energy collisions at
√
sNN = 200 GeV [55],

ii) to search for the evidence of the softening of the equation of state, which would aid

in locating the region of the phase diagram where the phase transition occurs,

iii) to search for fluctuations of conserved charges, expected to be enhanced in the vicinity

of the critical point.

The results from BES-I, which was an exploratory run, were encouraging (we pro-

vide a brief overview in Sections 1.4, 1.5, and 1.6), but at the same time underscored

the need for better experimental statistics at particular collision energies. In response to

this need, the collider mode of the BES-II, starting in 2018 and continuing through 2021,

ran at the center-of-mass energies of
√
sNN = 27.0, 19.6, 14.5, 11.5, 9.2, 7.7 GeV. Ad-

ditionally, BES-II also ran in the fixed target mode, colliding a beam of gold nuclei on

a thin gold foil, covering low-energy collisions at the center-of-mass energies of
√
sNN =

7.7, 6.2, 5.2, 4.5, 3.9, 3.5, 3.2, 3.0 GeV. Through the fixed target mode, freeze-out baryon

chemical potentials on the order of µB ≈ 800 MeV can be reached, thus significantly extend-

ing the phase diagram coverage of the program. The BES-II data-taking campaign concluded
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in 2021, and the program will be followed by several years of analyzing the produced data.

We note that BES-II is not the only ongoing experimental effort probing QCD matter at

high values of the baryon chemical potential. Other experiments include the High Acceptance

Di-Electron Spectrometer (HADES) experiment [56] at the GSI Helmholtz Center for Heavy

Ion Research, Germany, colliding various nuclei in the fixed target mode at center-of-mass

energies
√
sNN ≈ 1–4 GeV, and the NA61/SHINE [57] experiment (where SHINE stands for

“SPS Heavy Ion and Neutrino Experiment”) at CERN, colliding various nuclei at different

energies in a fixed target mode (for lead-lead collisions, the energy range is
√
sNN ≈ 5–

17 GeV). Additionally, several experiments are expected to begin in the near future, including

the Compressed Baryonic Matter (CBM) experiment at the Facility for Antiproton and Ion

Research in Europe (FAIR) in Darmstadt, Germany, experiments at the Nuclotron-based

Ion Collider fAcility (NICA) at the Joint Institute for Nuclear Research (JINR) in Dubna,

Russia, or the Cooling-storage-ring External-target Experiment (CEE) at the Heavy Ion

Research Facility in Lanzhou (HIRFL), China.

1.4. Tantalizing results from BES-I: Softening of the equa-

tion of state

Some of the observables studied in BES-I showed behavior that could be interpreted as

consistent with systems evolving in the vicinity of the QGP-hadron phase transition, where

softening of the EOS should lead to smaller pressure gradients driving the evolution of the

fireball. These include HBT correlations and the slope of the directed flow at midrapidity,

collectively identifying collision energies in the range
√
sNN ≈ 10–40 GeV as possibly probing

the boundary of the QGP-hadron phase transition.
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Figure 1.8: A sketch illustrating the origin of the HBT correlations due to the two ways in

which a particle emitted from one of the sources, a or b, can be registered by one of the

detectors, A or B; see text for more details.

1.4.1 HBT correlations

The spatial and temporal size of the collision system can be established using a technique

known as femtoscopy or Hanbury-Brown–Twiss (HBT) interferometry, referring to Robert

Hanbury Brown’s and Richard Twiss’ 1956 works on photon interferometry [58, 59]. The

HBT analysis has been used in studying nuclear matter since the early years of heavy-ion

collisions, including experiments performed at the Bevalac [60, 61], and is based on a simple

premise. If a source emits two particles at two points a and b, and these particles are then

detected in two detectors A and B, there are two ways in which this can happen: either par-

ticle emitted at a is detected by detector A and particle emitted at b is detected by detector

B, or particle emitted at a is detected by detector B and particle emitted at b is detected

by detector A (see Fig. 1.8). Quantum-mechanically, these possibilities correspond to two

probability amplitudes, which may be symbolically denoted as 〈A|a〉〈B|b〉 and 〈B|a〉〈A|b〉.
The probability of detecting the particles is then described by the sum of these amplitudes,

which can constructively or destructively interfere depending on the details of the problem

such as the distance between the points a and b and the distance between the detectors.

Measuring the enhancement or suppression in the signal (HBT correlations) for different

values of the spacing between the detectors allows one to determine the distance between
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Figure 1.9: One-dimensional pion-pion correlation functions for p+p (upper), d+Au (mid-

dle), and Au+Au (lower) collisions at
√
sNN = 200 GeV [64]; the p+p and d+Au results are

based on minimum bias data, while the correlation function for Au+Au is shown for central

collisions.

the point sources or, more generally, the size of a continuous source. Naturally, the details

become more complicated for more complex systems such as heavy-ion collisions (see Refs.

[62] or [63] for a review). In particular, because in heavy-ion collisions the measured emitted

particles are hadrons, HBT correlations reveal the geometry of the system at hadronization

(or “freeze-out”); nevertheless, this geometry is naturally affected by the evolution of the

system up to that point, and so the HBT interferometry can be used to, e.g., constrain the

dynamics of the early stages of the fireball evolution.

If one focuses on a one-dimensional extent of the fireball R (which, for example, in the

case of a spherical system would directly correspond to its radius r), then the HBT 2-particle

correlation function can be parametrized with a Gaussian

C2,HBT(Qinv) = 1± λ exp
(
−R2Q2

inv

)
, (1.1)
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Figure 1.10: Orientation of the Rlong, Rout, and Rside directions with respect to the collision

geometry at high collision energies [63]. Particles emitted at different correlated values of

the transverse momentum pT (indicated with red and blue arrows) correspond to different

source regions in the spacetime volume of the collision.

where λ represents the strength of the correlation at zero momentum difference and Qinv ≡√
(p1 − p2)µ(p1 − p2)µ, where p1, p2 are four-momenta of the two particles, is a Lorentz

invariant related to the relative momentum of the particles. From Eq. (1.1) it is clear that

a source characterized by a large extent R will lead to a small value of the correlation,

while the opposite is true for sources characterized by a small R. Indeed, measurements of

one-dimensional pion-pion correlations for proton-proton (p+p), deuteron-gold (d+Au), and

gold-gold (Au+Au) collisions [64] show that as the system size increases, the width of the

correlation function decreases, see Fig. 1.9.

In analyses devoted to studying the 3-dimensional geometry of the collisions, the size of

the collision system is usually encoded in three variables: Rlong, Rout, and Rside. In Fig.

1.10, these three directions are shown in two views: the view in the left panel is along the

rapidity y = 0 axis (that is the beam axis goes left to right, while the y = 0 axis goes
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into the page), while the view in the right panel is along the center of the transverse plane

axis (that is the beam axis goes into the page, while the y = 0 axis goes left to right).

The “long” axis is defined to point along the beam, that is in the z-direction, the “out” axis

points along the average transverse momentum of the contributing correlated pair, and the

“side” axis is perpendicular to the “out” and “long” axis. The figure shows particle emission

corresponding to two different values of the transverse momentum pT , indicated with blue

(larger values) and red (smaller values) arrows. On average, particles emitted with larger

momenta correspond to earlier times in the collision, where the system has a smaller size. One

can see that Rlong reflects the longitudinal extent of the source, Rout reflects the “transverse

depth” of the source, and Rside reflects the “transverse width” of the source when looking

along the Rout axis.

The HBT 2-particle correlation function can then be decomposed according to

C2,HBT(q) = 1± λ exp
(
−R2

longq
2
long −R2

outq
2
out −R2

sideq
2
side

)
, (1.2)

where qlong, qout, and qside are the relative momenta of the particle pair in the long, out,

and side directions. It can be further shown that Rlong, Rout, and Rside are given by the

following averages involving the position differences in the long, out, and side directions

(∆xlong, ∆xout, ∆xside), the average pair velocity in the long and transverse directions (vL,

vT ), and the difference between the emission times of the particles (∆t):

R2
long = 〈

(
∆xlong − vL∆t

)2〉 , (1.3)

R2
out = 〈

(
∆xout − vT∆t

)2〉 , (1.4)

R2
side = 〈

(
∆x2

side〉 (1.5)

(for a detailed derivation, see Ref. [62]). Combinations of Rlong, Rout, and Rside can then

reveal the characteristics of the spacetime geometry of the system. In particular, it can be

shown that R2
out −R2

side is proportional to the duration of the emission of detected particles

[65, 66].
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NNs

Figure 1.11: The beam energy dependence of R2
out − R2

side [67] extracted from two-pion

correlation functions as measured by the STAR Collaboration [68] and by the ALICE Col-

laboration [69]. The results imply that the lifetime of the system as a function of the collision

energy has a maximum around
√
sNN ≈ 20–40 GeV.

Fig. 1.11 shows the beam energy dependence of interferometry measurements of two-pion

correlation functions [67] as obtained by the STAR Collaboration during the BES-I program

[68] as well as by the ALICE Collaboration [69]. The shown behavior of R2
out−R2

side implies

that the lifetime of the system as a function of the collision energy has a maximum around
√
sNN ≈ 20–40 GeV; a slight dependence on centrality can also be observed. As suggested in

Refs. [70, 71, 72], these results can be interpreted to mean that around
√
sNN ≈ 20–40 GeV,

systems created in heavy-ion collisions evolve through regions of the phase diagram where the

EOS is soft, and the corresponding relatively small pressure gradients result in an expansion

22



that takes place at a slower rate and, consequently, for a longer time. Because softening of

the EOS is expected in the vicinity of a phase transition, the data implies that collisions at
√
sNN ≈ 20–40 GeV may be accessing a region of the phase diagram containing the QCD

critical point.

While these results are encouraging, to date they have not been reproduced in simula-

tions. Existing studies utilizing models including an EOS with a first-order phase transition

reproduce the qualitative, but the quantitative behavior of the HBT correlations; for exam-

ple, Ref. [73] predicts significantly larger values of Rout/Rside (which is another measure of

the lifetime of the system expected to be less sensitive to effects due to flow) than obtained

in experiment [74].

1.4.2 Slope of the directed flow at midrapidity

The flow coefficients (or flow harmonics) vn describe the asymmetry of the particle azimuthal

distribution dN/dφ, where φ is the azimuthal angle, that is the angle measured with respect

to rotations around the beam axis (with φ = 0 usually coincident with the positive x-axis

of the transverse plane; see Appendix C.2 for more details). Formally, given the invariant

particle distribution ,

E d3N

d3p
=

d3N

pTdpT dy dφ
, (1.6)

vn are defined as Fourier decomposition coefficients of dN/dφ,

d3N

pTdpT dy dφ
=

d2N

pTdpT dy

1

2π

[
1 +

∞∑
n=1

2vn(pT , y) cos
(
nφ
)]

. (1.7)

From this definition it is straightforward to obtain the expression for vn,

vn(pT , y) =

∫ 2π

0
dφ cos

(
nφ
)

d3N
pT dpT dy dφ∫ 2π

0
dφ d3N

pT dpT dy dφ

≡
〈
cos
(
nφi
)〉

. (1.8)

In practice, given experimental data, vn is simply given by

vn(pT , y) =
1

N

N∑
i=1

cos
(
nφi
)
, (1.9)

23



where N is the number of detected particles characterized by a transverse momentum pT

and rapidity y, and φi is the azimuthal angle of the i-th particle. One can also calculate

integrated vn, that is vn calculated from the particle distribution, Eq. (1.6), integrated over,

e.g., the transverse momentum pT ,

vn(y) =

∫
dpT

∫ 2π

0
dφ cos

(
nφ
)

d3N
pT dpT dy dφ∫

dpT
∫ 2π

0
dφ d3N

pT dpT dy dφ

. (1.10)

Often, vn(y) is calculated for particles in a given range of rapidity, for example vn(|y| < 0.5).

We note here that while the concept of measuring the angle φ with respect to the reaction

plane is simple, its realization in experiment is far from trivial; in practice, it is approximately

done either by utilizing the transverse distribution of the spectators or particle-particle cor-

relations. For an in-depth review of flow observables and relevant calculation methods, see

Ref. [75].

The directed flow (used to be known as the “sideways flow”) is obtained by taking n = 1

in Eq. (1.8), yielding

v1 =

〈
px
pT

〉
, (1.11)

where px is the component of the transverse momentum along the x-axis of the transverse

plane. The directed flow is often calculated for particles characterized by different values of

rapidity y, v1(y), and averaged over events within the same centrality class. The behavior

of the directed flow as a function of rapidity is affected by both the collision geometry and

the collective expansion of the system, which we explain below.

Before the collision, the total transverse momentum of the system is zero, and by con-

servation of momentum it is also zero after the collision has taken place. This means, in

particular, that the directed flow at midrapidity is by construction equal zero, v1(y = 0) = 0.

This does not have to be the case, however, for v1 measured at finite rapidity (naturally, one

still has
∫
dy v1(y) = 0). Let us consider a mid-central collision as depicted in Fig. 1.12.

Using a perspective from above the reaction plane, the figure shows that the collision will
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Figure 1.12: A sketch illustrating the geometric and thermodynamic origin of the directed

flow v1, with the beam axis indicated by the long-dashed gray line, the reaction plane indi-

cated by the short-dashed red line, and the planes of constant values of rapidity indicated

by the green dash-dotted lines. The geometry of a non-central collision between two nu-

clei, depicted with orange and turquoise circles, creates a pressure gradient along the short

axis of the elliptical overlap region in the reaction plane, leading to asymmetrical particle

trajectories in the forward and backward directions. See text for more details.

lead to a formation of an almond-shaped overlap region (also referred to as the collision or

participants zone) at an angle to the beam axis. Matter in this region (manifesting itself

in the detector mostly through produced particles such as pions) will naturally experience

large pressure gradients; importantly, because of the shape of the overlap region, the largest

pressure gradient will occur in the direction of the short axis of the region, denoted in Fig.

1.12 with a purple double-headed arrow. As a result, trajectories of the particles in the for-

ward and backward directions will not be symmetric with respect to the y = 0 axis, leading

to non-zero values of v1 at |y| > 0. Note that, for example, the value of v1 at y = +1 will be
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Figure 1.13: Sketches illustrating the relation between the directed flow of nucleons and the

EOS, with the beam axis indicated by the long-dashed gray line, the reaction plane indicated

by the short-dashed red line, and the planes of constant values of rapidity indicated by the

green dash-dotted lines. Nucleons incoming into the collision region, depicted with orange

and turquoise dots, will likely penetrate it if the EOS is soft (corresponding to small pressure

gradients in the collision zone), or be pushed away if the EOS if hard (corresponding to large

pressure gradients in the collision zone), resulting in two different directed flow patterns as

shown on the left and right panel, respectively. See text for more details.

approximately opposite to the value at y = −1.

The behavior of v1(y) of net protons can be connected to the EOS of dense nuclear

matter [76, 77] in the following way, sketched in Fig. 1.13: At early stages of the evolution,

the initial collision zone is formed from nucleons that were the first to participate in the

collision. At that time, the remaining nucleons in the two nuclei, depicted with orange and

turquoise dots, are still coming into the collision zone, and their further trajectories depend

on the magnitude of the pressure gradients present in the overlap region. If the EOS is soft

(corresponding to smaller pressure gradients), the incoming nucleons will be able to penetrate

the initial overlap region; once this happens, the pressure gradients present in the overlap
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region will deflect these nucleons such that they will contribute negatively to the directed flow

at forward rapidity, v1

(
y > 0

)
< 0, and positively to the directed flow at backward rapidity,

v1

(
y < 0

)
> 0 (left panel). On the other hand, if the EOS is hard (which corresponds to large

pressure gradients), the incoming nucleons are going to be “pushed” out of the initial overlap

region, and will contribute positively to the directed flow at forward rapidity, v1

(
y > 0

)
> 0,

and negatively to the directed flow at backward rapidity, v1

(
y < 0

)
< 0 (right panel). As a

result, values of directed flow for different signs of rapidity reveal the stiffness of the EOS.

In practice, a more convenient measure of the EOS is not the value of v1 itself, but its slope

at midrapidity, dv1/dy (y = 0): this slope will be negative for a soft EOS and positive for a

hard EOS.

In reality, the behavior of dv1/dy is a result of a rather complicated interplay of the

collision geometry, pressure gradients, and scattering off of the collision zone; nevertheless,

it is perceived as a promising measure of the EOS of nuclear matter. Indeed, if some of

the collision energies studied in the BES create systems evolving in the proximity of the

critical point, then the pressure gradients characterizing the overlap region created in these

collisions should be much smaller than in collisions evolving far from the critical point, and

one expects the following behavior of the slope of directed flow: dv1/dy (y = 0) > 0 for

regions away from the critical point, then dv1/dy (y = 0) < 0 for regions in the vicinity of

the critical point, and again dv1/dy (y = 0) > 0 for points away from the critical point.

Such non-monotonic behavior has indeed been observed [78]: Fig. 1.14 shows the slope of

the directed flow of antiprotons, protons, and net protons as a function of the beam energy in

10–40% central Au+Au collisions. The figure also shows the behavior of dv1/dy as obtained

from Ultra-relativistic Quantum Molecular Dynamics (UrQMD) simulations [33, 34], which are

simulations of heavy-ion collision evolution that do not include effects related to the QCD

EOS and therefore are often used as a baseline expectation, deviations from which highlight

the influence of the EOS on the dynamics of the collisions (various simulations of heavy-ion

collisions will be further discussed in Section 1.8). The upper panel of Fig. 1.14 shows that
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Figure 1.14: The slope of the directed flow of protons, anti-protons, and net protons as

measured in 10–40% Au+Au collisions, with UrQMD simulation results for comparison [78].

For antiprotons, which are produced baryons created at the hadronization stage of the col-

lision, dv1/dy is a monotonic function of the beam energy; in contrast, for protons and net

protons (the latter being a good proxy for the transported baryon number) dv1/dy displays

a pronounced minimum around
√
sNN ≈ 10–20 GeV. See text for more details.

the slope of the directed flow of antiprotons does not display any non-monotonic behavior

as a function of the beam energy, while the dv1/dy of protons, shown in the middle panel,

is indeed non-monotonic and displays a pronounced negative minimum at beam energies

around
√
sNN ≈ 10–20 GeV. This difference in behavior can be explained by the fact that

antiprotons are produced baryons, created at the hadronization stage of the collision, while

protons embody both the produced and the transported baryon number, the latter of which

is affected by the stages of the evolution leading to the formation of the v1 signal. The slope
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of the directed flow of net protons, which are considered to be the best indicator of the

behavior of the transported baryon number, is shown in the bottom panel of Fig. 1.14; it is,

like the dv1/dy of protons, characterized by a non-monotonic behavior with a minimum that

suggests the softest point of the EOS at low energies.

Unfortunately, to date efforts to reproduce the directed flow in dynamical models have not

been successful [79, 80, 81]. This must mean that there are effects, contributing significantly

to the v1, that are as of now missing from simulations of heavy-ion collisions. Uncovering

these effects would greatly increase our understanding of the microscopic origin of the v1

signal.

1.5. Tantalizing results from BES-I: Turning off the quark-

gluon plasma

Mapping the QCD phase diagram consists not only of searching for signals of the QCD

phase transition, but also includes identifying collision energies at which QGP ceases to

be produced. The occurrence of QGP in high-energy collisions is argued based on several

signatures which are expected to vanish in collisions where a QGP state is not created. Many

of these signatures rely on the collective expansion of the QGP phase of the collisions, and one

can ask: when does the collective behavior of the systems, and with it the evidence for QGP,

turn off? A number of measurements addressed this question, and even though the answer

remains elusive, these studies showed inconsistencies in the behavior of the observables that

could lead to identifying collision energies, and through that regions of the QCD phase

diagram, in which QGP is not produced.
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1.5.1 Quark number scaling of the elliptic flow

The integrated elliptic flow v2(y) is the second Fourier decomposition coefficient of the parti-

cle azimuthal distribution integrated over transverse momenta of the particles, given by Eq.

(1.10) with n = 2, and experimentally it is calculated from

v2(y) =
1

N

N∑
i=1

cos
(
2φi
)

= 〈cos
(
2φi
)
〉 , (1.12)

where the sum is performed over all particles characterized by a given rapidity y. The

elliptic flow vanishes in systems with an azimuthal symmetry, while non-zero values of v2

are a consequence of an asymmetric initial geometry of the collision and the subsequent

thermodynamics-driven expansion. To explain how an asymmetry in the momentum space

can arise from the initial geometry, it is helpful to consider a mid-central collision, depicted

in Fig. 1.15 in a view along the beam axis. Parts of the nuclei that do not overlap during the

collision (indicated by the dashed orange and turquoise lines) are “sheared off” of the overlap

region and continue moving along the z-axis in their respective directions, leaving behind

the collision zone. The collision zone (indicated by the solid orange and turquoise lines)

displays a largely elliptic azimuthal asymmetry: its size along the principal axis coincident

with the y-direction of the transverse plane is larger than its size along the principal axis

coincident with the reaction plane. The pressure is the largest in the center of the overlap

region while it is equal zero outside of it, and as a consequence of the geometry described

above, the pressure gradient is larger along the short axis of the ellipse than along it’s long

axis (indicated in the figure by long and short purple arrows, respectively). This means that

the expansion rate in directions coincident with the reaction plane (“in-plane”) will be larger

than the expansion rate in directions perpendicular to the reaction plane (“out-of-plane”),

so that particles from the collision zone will overall gain more transverse momentum in the

“in-plane” direction than in the “out-of-plane” direction. In this way, the initial azimuthal

asymmetry in the coordinate space will be transformed into an azimuthal asymmetry in the

transverse momenta of detected particles. Since particles moving in the “in-plane” direction
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Figure 1.15: A sketch of a mid-central heavy-ion collision in a view along the beam axis, with

the reaction plane indicated by the short-dashed red line and the transverse plane indicated

by the blue dotted line. The sketch illustrates the geometric and thermodynamic origin of

the elliptic flow v2: a non-central collision between two nuclei, depicted with orange and

turquoise circles, creates strong pressure gradients along the short axis of the collision zone

and results in larger transverse momenta of particles emitted in the “in-plane” direction,

which contribute positively to the elliptic flow. See text for more details.

will contribute positively to Eq. (1.12), while particles moving “out-of-plane” will contribute

negatively, in general one obtains a positive elliptic flow, v2 > 0, for overlap regions of

asymmetry characterized by a long axis that is perpendicular to the reaction plane, as in

Fig. 1.15.

This simple picture becomes more complicated at very low beam energies where the

spectators cannot be neglected, as the combination of smaller velocities of the nuclei and

the resulting smaller Lorentz contraction means that the spectators largely remain in the

vicinity of the collision when the collision region is being formed. As a result, for beam
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Figure 1.16: Elliptic flow at midrapidity for 0–25% most central collisions, integrated

over particle species and transverse momenta, as a function of projectile energies

Ekin ≈ 0.2–104 AGeV, corresponding to
√
sNN ≈ 2–200 GeV [75]. The leading mecha-

nism behind the elliptic flow signal changes as the collision energy is varied, resulting in

different behavior in the respective energy regimes; see text for more details.

energies in the range
√
sNN ≈ 2–5 GeV, the spectators intercept particles emitted from the

collision region in the “in-plane” direction, while paths of particles emitted “out-of-plane” are

unobstructed. This effect, known as “squeeze-out”, leads to negative values of the elliptic

flow, v2 < 0, and it has been both reported experimentally [75] as well as reproduced in

simulations [82].

At even lower energies the very concepts of participants and spectators cease to be ap-

plicable, as the colliding nuclei may fuse to form a rotating compound nucleus. For these

systems, emitting particles “in-plane” is more favorable due to the system’s non-zero angular

momentum, which again yields a positive elliptic flow, v2 > 0.
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Altogether, the physics from which v2 originates changes as the beam energy is varied,

and the corresponding behavior can be seen in Fig. 1.16, showing elliptic flow of charged

particles at midrapidity, integrated over particle transverse momenta, for 0–25% most central

collisions as a function of the beam energy. Nevertheless, for
√
sNN & 5 GeV (corresponding

to Ekin ≈ 12 AGeV) the physics of the elliptic flow is driven by the collision geometry and the

thermodynamics-driven expansion as sketched in Fig. 1.15. The beam energy dependence of

v2 observed in this region may convey information about the EOS, viscosity, or the number

of degrees of freedom characterizing the system. In particular, changes in any of these

characteristics could lead to a change in the magnitude or slope of the elliptic flow.

One of the most striking arguments supporting the creation of QGP in high-energy heavy-

ion collisions utilizes the concept of quark number scaling of the elliptic flow [55], based on

the following simple picture:

If the collision region contains the QGP, the degrees of freedom undergoing the transverse

expansion due to the pressure gradients are those of quarks and gluons, and in the course of

the expansion any given quark will gain some transverse momentum ∆pT . On average, due

to the elliptic flow, the magnitude of the “in-plane” component of ∆pT will be larger than

the “out-of-plane” component, so that more quarks will be traveling in the approximately

“in-plane” direction. Then, following the expansion of the system, the quarks eventually

hadronize into various mesons and baryons. This is thought to occur largely through two

processes: fragmentation and coalescence. During fragmentation, the energy of the interac-

tion between a given system of partons increases as the system expands, eventually leading to

a production of a quark-antiquark pairs, which then contribute to the formation of hadrons;

notably, the emerging hadrons carry a fraction of the initial quark momentum. On the other

hand, in a quark coalescence mechanism [83] quarks that are close enough to each other

both in the position and in the momentum space (that is, which are close to each other

in the phase space) will form a hadron; in this case the produced hadrons carry momenta

which are sums of the momenta of the initial quarks. Importantly, this implies that hadrons
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characterized by intermediate to high values of pT are predominantly produced via quark

coalescence. (On a side note, at very high values of pT the probability of production through

quark coalescence becomes negligibly small, and these hadrons are thought to be produced

by fragmentation of high-energy jets.)

It follows that within the coalescence picture the invariant spectrum of produced particles

is proportional to the product of invariant spectra of their constituents [84, 85], and in partic-

ular, assuming that quarks and antiquarks are described by the same invariant distribution

dNq/d
2pT , independent of flavor, the meson and baryon distributions are given by

dNM

d2pT
(pT ) = CM(pT )

[
dNq

d2pT

(pT
2

)]2

, (1.13)

dNB

d2pT
(pT ) = CB(pT )

[
dNq

d2pT

(pT
3

)]3

, (1.14)

where coefficients CM and CB are the probabilities for the meson and baryon coalescence, re-

spectively. Using these relations allows one to relate the elliptic flow of mesons and baryons to

the flow of partons: for example, if partons are characterized by a purely elliptical anisotropy,

dNq

pTdpT dφ
=

1

2π

dNq

pTdpT

[
1 + 2v2,q cos(2φ)

]
, (1.15)

then utilizing Eqs. (1.14-1.13) in Eq. (1.8) immediately leads to

v2,M(pT ) =
2v2,q

(
pT
2

)
1 + 2v2

2,q

(
pT
2

) (1.16)

and

v2,B(pT ) =
3v2,q

(
pT
3

)
+ 3v2

2,q

(
pT
3

)
1 + 6v2

2,q

(
pT
3

) . (1.17)

Provided that v2,q � 1, we obtain the following relation

v
(B)
2

3
≈ v

(M)
2

2
, (1.18)

which states that, for particles produced via coalescence of deconfined quarks, the elliptic

flow calculated for a specific particle species scales with the number of constituent quarks of
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Figure 1.17: Quark number scaling of the elliptic flow of neutral kaons and the sum of

Lambda baryons and antibaryons in minimum bias Au+Au collisions at
√
sNN = 200 GeV

[55]. The elliptic flow and transverse momenta of kaons are divided by a factor of 2, while

the elliptic flow and transverse momenta of Lambda baryons and antibaryons are divided by

a factor of 3. See text for more details.

that species n = {2, 3}. Eq. (1.18) can be understood intuitively: since the probability for

any three quarks to be found in the same region of the phase space is smaller than finding

any two quarks in the same region, in the context of the elliptic flow hadronization occurring

through coalescence means that producing baryons in the more dilute “out-of-plane” regions

is more suppressed, relative to the dense “in-plane” regions, than the corresponding meson

production; therefore, relative to mesons, baryons are more likely to be found in the “in-

plane” regions than in the “out-of-plane” regions.

Fig. 1.17 shows scaled elliptic flows of neutral kaons and the sum of Lambda baryons

and antibaryons, denoted by v2/n, against transverse momentum, also scaled by the number

of constituent quarks, pT/n (the latter scaling is introduced as the momentum of hadrons

emerging from the fireball through coalescence is a sum of the momentum carried by the
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Figure 1.18: Elliptic flow of identified particles in minimum bias Au+Au collisions at
√
sNN = 11.5 GeV and 62.4 GeV as a function of the transverse part of the kinetic en-

ergy mT −m0 [86]. Panels b) and d): at
√
sNN = 64 GeV, both baryons and antibaryons

show quark number scaling of the elliptic flow. Panels a) and c): at
√
sNN = 11.5 GeV, only

baryons behave consistently with quark number scaling. See text for more details.

quarks from which they are formed, and through that the momentum of baryons is on

average trivially larger than the momentum of mesons). The scaling of the elliptic flow with

the number of constituent quarks is evident.

Because quark number scaling is based on an assumption that the evolution of a heavy-

ion collision involves a deconfined phase followed by quark coalescence, deviation from the

scaling shown in Fig. 1.17 could signal that this assumption is broken. Fig. 1.18 shows

the elliptic flow of identified particles in minimum bias Au+Au collisions at beam energies
√
sNN = 11.5 GeV and 62.4 GeV as a function of the transverse part of the kinetic energy

mT−m0 [86]. Panels a) and b) show v2 of baryons as well as of neutral and positively charged

mesons, while panels c) and d) show v2 of antibaryons as well as of neutral and negatively

charged mesons (the division of mesons between the two sets of panels is arbitrary and serves

to provide largely equal baselines for the elliptic flows of baryons and antibaryons). In panels

b) and d), corresponding to collisions at
√
sNN = 62.4 GeV, the elliptic flow of both baryons
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and antibaryons is enhanced relative to the elliptic flow of mesons at high values of the

transverse kinetic energy (where the coalescence mechanism should dominate), supporting

the notion that quark number scaling applies in this case. In panels a) and c), corresponding

to collisions at
√
sNN = 11.5 GeV, baryons exhibit enhancement expected from coalescence,

however, antibaryons do not. While one could argue, based on the behavior of produced

baryons (for which antibaryons are a good proxy), that this may be a signal for the regime

in which the coalescence mechanism stops being applicable, the lack of consistency between

the behavior displayed on panels a) and c) makes the interpretation less clear. Additionally,

the deviations in the scaling of the elliptic flow could also be caused by final state interactions

such as baryon-antibaryon annihilation or large decay contributions.

1.5.2 Disappearance of the triangular flow

The integrated triangular flow v3(y) is the third Fourier decomposition coefficient of the

particle azimuthal distribution integrated over transverse momenta of the particles, given by

Eq. (1.10) with n = 3, and in practice it is calculated from

v3(y) =
1

N

N∑
i=1

cos
(
3φ
)

= 〈cos
(
3φi
)
〉 , (1.19)

where the sum is performed over all particles characterized by a given rapidity y. Until

fairly recently [87, 88], it had been thought that all odd harmonics (that is v1, v3, v5, etc.)

must average to zero at midrapidity due to the symmetry of the overlap region. Indeed, it

is easy to convince oneself, looking at Fig. 1.15, that sums over particles emerging from the

collision weighted with cos
(
φ
)
, cos

(
3φ
)
, etc., will add up to zero. However, this conclusion

is only true for an overlap region with a density profile that has an approximately elliptical

symmetry (see Fig. C.2 in Appendix C.2). In any given collision this is not, in fact, the case,

as the density profile of the colliding nuclei is not a continuous and spherically symmetric

function, ρ = ρ(r), but instead it is a sum of discrete contributions, ρ =
∑A

i=1 ρi(r), which

only yields ρ(r) on average (see the left-hand side part of Fig. 1.19). When two nuclei collide,
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Figure 1.19: A sketch illustrating the geometric and thermodynamic origin of the triangular

flow v3. The granularity of the density distribution in the collision region, originating from

the “overlapping” of individual nucleons in the colliding nuclei, leads to small scale fluctu-

ations in pressure gradients. Locally, matter expands preferentially in the direction of the

steepest pressure gradient, resulting in a non-zero contribution to the triangular flow v3. See

text for more details.

these intrinsic fluctuations in the densities of the nuclei seed fluctuations in the density profile

of the overlap region. Because of that, the density profile of the collision zone is not in fact

elliptical, and the odd flow harmonics can take finite values at y = 0 (see the lower center

part of Fig. 1.19). (We note here that intrinsic fluctuations also contribute to the even flow

harmonics at y = 0, however, in this case it’s a second-order effect as compared to the

contributions stemming from the collision geometry.)

Although the length scale of the intrinsic density fluctuations is small compared to the
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size of the overlap region, generating v3 proceeds through a similar mechanism as in the case

of v2, and both depend on pressure gradients. On the right-hand side part of Fig. 1.19, a

close-up sketch of a part of the overlap zone is shown where a more dense and a less dense

region are formed in the initial stage of the collision due to the underlying anisotropies in

the positions of the nucleons. The pressure gradient will drive the matter from the more

dense to the less dense region; this process diminishes the spacial anisotropy and at the same

time creates a momentum anisotropy (in the example sketched in the Figure, particles will

on average gain some momentum to the right, in the φ ≈ 0 direction). This is the azimuthal

momentum anisotropy that drives the v3 signal [87, 88]. Notably, the fact that the scale of

the initial anisotropies is small means that they only survive for a short time, and so it is

likely that v3 is a snapshot of pressure anisotropies in the earliest stages of the collision [89].

Importantly, matter whose evolution is sensitive to small scale structures (such as the

density fluctuations in the initial overlap region) must be characterized by a small viscosity.

Indeed, the damping rate in a hydrodynamic medium is proportional to η/λ2 [90], where η

is the viscosity and λ is the wavelength of the propagated fluctuation, and therefore small-

scale fluctuations can be expected to dissipate more quickly as compared with larger-scale

fluctuations. Consequently, as an example, effects due to the density profile arising from

the shape of the overlap region, leading to the formation of the elliptic flow, should be more

robust against dissipation than fluctuations due to the positions of individual nucleons,

leading to the formation of the triangular flow. The fact that the magnitudes of v2 and v3

are often of the same order indicates that damping does not play a big role in the evolution

of the system, which can only be the case for a small value of η. Moreover, the hadronic

state of nuclear matter is found to be characterized by a relatively large viscosity, and so it

can be argued that the measurement of a significant v3 in high-energy collisions is a signal

for the creation of a new state of matter, most likely the QGP, characterized by a very low

viscosity.

Consequently, vanishing of the triangular flow could mean that the collisions probe regions
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Figure 1.20: Triangular flow of charged hadrons as a function of ∆η for beam energies
√
sNN = 200, 27, 14.5, 7.7 GeV in 0–5%, 20–30%, and 60–70% central Au+Au collisions,

with UrQMD simulation results for comparison [91]. For the most central collisions, the tri-

angular flow displays a strong signal at most energetic collisions and diminishes with the

collision energy, but remains finite. For peripheral collisions, the triangular flow is consistent

with zero for all but the most energetic collisions. See text for more details.

of the phase diagram in which QGP is not produced. It has been found that v3 indeed

disappears in low-energy peripheral collisions. Fig. 1.20 shows plots of the triangular flow

of charged hadrons as a function of particle-particle pseudorapidity difference ∆η for beam

energies
√
sNN = 200, 27, 14.5, and 7.7 GeV in 0–5%, 20–30%, and 60–70% central Au+Au

collisions [91]. The figure also shows the behavior of the triangular flow as calculated in

UrQMD simulations [33, 34], used as a baseline expectation for systems in which QGP is not

created (various simulations of heavy-ion collisions will be further discussed in Section 1.8).
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The top row displays results for central collisions, where v3 is measured to be non-zero for

all collision energies analyzed. In the bottom row, corresponding to peripheral collisions,

v3 is only non-zero at the highest considered energy (we note here that the peak present

in all plots at small values of ∆η is found to correspond to nonflow correlations like the

HBT correlations, resonance decays, and effects due to Coulomb interactions, and can be

considered as background to the v3 measurement [92, 91]). This suggests that a stage of

the collision necessary for the production of the v3 signal is not reached in small systems

created in low-energy peripheral collisions. Such systems are characterized by a relatively

small energy density, and it is therefore possible that QGP ceases to be produced in these

collisions. On the other hand, the fact that the v3 signal persists in the most central collisions

down to the lowest of the studied energies, where QGP was not expected to occur, needs to

be understood better in order to draw firm conclusions.

1.6. Tantalizing results from BES-I: Non-statistical event-

by-event fluctuations of conserved charges

A set of observables that gained significant attention in the context of the search for the

QCD critical point are fluctuations of the net baryon number distribution, which are related

to derivatives of the pressure with respect to the order parameter and which can be shown

to diverge in the critical region. If such critical fluctuations can be measured in experiment,

they would constitute a signal for systems evolving in the vicinity of the critical point.

The behavior of pressure derivatives with respect to the order parameter can be encoded

in the susceptibilities of the conserved charge, which in the context of heavy-ion collisions

means susceptibilities of the net baryon number, defined as

χj ≡
(
djP

dµjB

)
T

, (1.20)

where P is the pressure and µB is the baryon chemical potential. In particular, we have χ1 =
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(dP/dµB)T ≡ nB, the net baryon number density of the system. Notably, susceptibilities of

the net baryon number are directly related to cumulants of the net baryon number, where

the latter can be defined as

κj ≡ T j
dj

dµjB

∣∣∣∣
T

lnZ(T, V, µB) . (1.21)

Indeed, with the grand canonical partition function given by

Z(T, V, µB) =
∞∑
N=0

eβµBNZN(T, V,N) , (1.22)

where β = 1/T and ZN(T, V,N) is the canonical partition function, it is straightforward to

show, based on Eq. (1.21), that the following relations hold

κ1 =
1

Z(T, V, µB)

∞∑
N=0

NeβµBNZN(T, V,N) ≡ 〈N〉 , (1.23)

κ2 =

(
−
[

1

Z(T, V, µB)

∞∑
N=0

NeβµBNZN(T, V,N)

]2

+

+
1

Z(T, V, µB)

∞∑
N=0

N2eβµBNZN(T, V,N)

)
= µ2 ≡

〈(
N −

〈
N
〉)2〉

, (1.24)

κ3 = µ3 =
〈(
N −

〈
N
〉)3〉

, (1.25)

κ4 = µ4 − 3µ2
2 =

〈(
N −

〈
N
〉)4〉

− 3κ2
2 , (1.26)

where we only showed explicit expressions for the first two cumulants, and where µj are

central moments of the net baryon distribution. At the same time, because the pressure is

related to the grand canonical partition function through P = T lnZ(T, V, µB)/V , cumulants

of the net baryon number are related to the thermodynamic fluctuations in the system by

κj = V T j−1χj (1.27)

where V is the volume and T is the temperature. From this representation it is clear that

the susceptibilities of the net baryon number reflect the fluctuations in the conserved charge

that occur in the system at hand. Using Eq. (1.27), one can obtain explicit expressions for
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the first four cumulants expressed in terms of derivatives of the pressure with respect to the

net baryon number density (see Appendix D for the explicit calculation),

κ1 = V nB = NB , (1.28)

κ2 =
V TnB(
dP
dnB

)
T

, (1.29)

κ3 =
V T 2nB(
dP
dnB

)2

T

1− nB(
dP
dnB

)
T

(
d2P

dn2
B

)
T

 , (1.30)

κ4 =
V T 3nB(
dP
dnB

)3

T

1− 4nB(
dP
dnB

)
T

(
d2P

dn2
B

)
T

+
3n2

B(
dP
dnB

)2

T

(
d2P

dn2
B

)2

T

− n2
B(

dP
dnB

)
T

(
d3P

dn3
B

)
T

 . (1.31)

As an example of pressure in a model with a first-order phase transition, Fig. 1.21 shows

the pressure as a function of density at a series of temperatures for the Van der Waals EOS

(a brief overview of first-order phase transitions is given in Appendix B). By analyzing the

pressure curves in this figure, one can notice that the behavior of the cumulants at a given

temperature identifies the position on a pressure isotherm with respect to the critical region.

For example, because the derivative of the pressure with respect to the net baryon density

approaches zero in the vicinity of the spinodal lines in general and at the critical point in

particular, the second-order cumulant κ2, Eq. (1.29), diverges in the corresponding regions.

Similarly, one sees that because the curvature of the pressure tends to be negative for densities

smaller than the critical density, the third-order cumulant κ3, Eq. (1.30), is positive, with

increasing magnitude when approaching the critical region due to the diverging factors of

(dP/dnB)T in the denominator. Conversely, for densities larger than the critical density, κ3

is negative in the vicinity of the critical point due to the positive curvature of the pressure.

Finally, as one approaches the critical region from below, the curvature of the pressure first

becomes more negative, then increases across the critical region until it reaches a positive

maximum, and then decreases again. Thus as one goes from densities below the critical

point to densities above it, the fourth-order cumulant κ4, driven in the critical region by
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Figure 1.21: The isotherms of pressure as a function of density for the Van der Waals EOS

[93]; the density is shown in units of the critical density and the pressure is shown in units

of the critical pressure. Blue lines mark paths along the isotherms which are thermody-

namically stable, and for temperatures lower than the critical temperature they terminate

at coexistence densities for a given temperature. Black lines correspond to regions which

are thermodynamically unstable. Red lines correspond to parts of the isotherms for which

the derivative of the pressure with respect to density is negative, that is to the mechanically

unstable spinodal regions of the transition. At the critical point both the first and the second

derivative of the pressure with respect to the density vanish.

the derivative of the pressure curvature entering in the last term in Eq. (1.31), will be first

positive, then negative, and then again positive. This behavior is magnified in the vicinity of

the critical point, where κ4 diverges. In general, the divergence of the higher order cumulants

in the vicinity of a phase transition is directly connected to small values of the first-order

pressure derivative, (dP/dnB)T ≈ 0, and signals the softness of the EOS (pressure) near the

critical region.

Such behavior of cumulants as a function of the order parameter (directly connected to
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Figure 1.22: Density plots of the first four susceptibilities of pressure, obtained using a

universal 3D Ising EOS exhibiting a critical point, mapped onto coordinates of the QCD

phase diagram, T and µB [101]. Red and blue denote regions of positive and negative

susceptibilities, respectively, and the intensity of color corresponds to the magnitude of

plotted values. The behavior of the susceptibilities in the vicinity of the critical point, along

lines of constant temperature, follows a universal pattern. See text for more details.

the behavior of the corresponding susceptibilities) will be qualitatively the same for every

theory with a critical point, leading to detailed expectations for their behavior [94, 95, 96],

see Fig. 1.22. In particular, one again sees that in the vicinity of the critical point κ3 is

expected to change its sign once [97], while κ4 is expected to change its sign twice [98]. The

dependence of the magnitude of the cumulants on the location in the phase diagram, and

in particular their divergent behavior near the critical point, can be expressed through their

dependence on the correlation length, ξ. To the leading order in ξ [99],

κ2 ∝ ξ2 , κ3 ∝ ξ9/2 , κ4 ∝ ξ7 . (1.32)

As the correlation length diverges at the critical point [100], so do the values of the cumulants.

Crucially, cumulants of the net proton distribution can be measured in experiment. If

either the net proton distribution measured in experiment can be considered as a good proxy

for the net baryon distribution of systems of infinite extent considered in the theory, or the

connection between the two distributions can be made ([102] makes such connection in the

case of non-interacting systems, while [103] takes into account systems of finite size), then
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Figure 1.23: Ratios of cumulant of the net proton number for |y| < 0.5 in 0–5% central

Au+Au collisions [104]; also shown are values of the cumulant ratios obtained from UrQMD

simulations and from HRG models within experimental acceptances. Note the different

notation used for the cumulant ratios. See text for more details.

there exists a direct link between the thermodynamics driving the evolution of heavy-ion

collisions and the experimental observables. In order to compare the values of the cumulants

across different energies and centralities (characterized by different volumes of the created

systems), one excludes the volume dependence by considering ratios of the cumulants,

κ2

κ1

,
κ3

κ2

,
κ4

κ2

. (1.33)

The results for measured cumulants of the net proton number [104] are shown in Fig. 1.23.

In the bottom panel, the fourth-order cumulant ratio κ4/κ2 (denoted in the Figure as C4/C2)

is seen to show hints of a non-monotonic behavior in the collision energy range
√
sNN ≈ 5–
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20 GeV, where it also differs significantly from results obtained in UrQMD simulations [33, 34],

which do not include effects related to the QCD EOS and therefore can be used as a baseline

expectation (various simulations of heavy-ion collisions will be further discussed in Section

1.8). This suggests that collisions in this region may be probing the QCD phase diagram near

the critical point. However, the limited statistical precision precludes making a definitive

statement. Moreover, the second- and third-order cumulants (denoted in the Figure as C3/C2

and C2/C1, respectively) fail to simultaneously show behavior that would also correspond to

probing the vicinity of a critical region; in fact, they are shown to behave fairly consistently

with UrQMD.

Arguments can be made [99] that the fourth-order cumulant should be the most sensitive

to critical fluctuations due to its higher order dependence on the correlation length, Eq.

(1.32), and that therefore it is more robust against dissipation. However, it can be also

shown that the finite size and, more importantly, finite lifetime of the system [105] affect

the magnitudes of the cumulants, and furthermore, simulations show that the magnitudes

of all cumulants should be affected in a similar way [106]. In view of this, the fact that

the experimental results for the cumulants do not provide a firm conclusion calls for more

research with improved statistics.

1.7. Challenges for finding the QCD critical point

In Sections 1.4, 1.5, and 1.6 we described several experimental observables expected to

behave in specific ways for systems evolving in the vicinity of the critical point, and thus

to help uncover features of the QCD phase diagram at moderate-to-high temperatures and

moderate-to-high baryon chemical potentials. Each of these signatures, however, carries with

it significant theoretical uncertainties. Additionally, the dynamics of heavy-ion collisions,

relatively simple at ultra-relativistic energies, becomes significantly more complicated at

lower energies which are central to the BES program. Below, we list a few experimental and
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theoretical challenges for locating the critical point on the QCD phase diagram.

First, at lower energies the nuclei move at smaller velocities, resulting in a smaller Lorentz

contraction. Consequently, each of the nuclei is characterized by an appreciable depth in

the longitudinal (beam) direction, and the assumption that the colliding nuclei cross each

other instantaneously (well-justified at high energies) doesn’t apply. This means that the

evolution of the initial stage of the collision is significantly different from that at high ener-

gies; in particular, the extended duration of energy deposition in the collision region likely

significantly affects final-state observables.

Next, at low energies some of the baryon number characterizing the colliding nuclei is

trapped in the collision zone and transported into the midrapidity region (a process known

as “baryon stopping”, already described in Section 1.2 and Appendix C.3). Naturally, this is

a necessary component of exploring the behavior of QCD matter at finite baryon densities,

however, understanding the influence of baryon transport dynamics on the experimental ob-

servables, in particular baryon number fluctuations, will be required for their interpretation.

Further, matter created in a heavy-ion collision samples large ranges of both temperatures

and baryon number densities, or alternatively baryon chemical potentials, during its evolu-

tion. This means that any single collision, rather than following a narrow path in the phase

diagram, is affected by a significant area of the phase diagram (see, e.g., Refs. [107, 108]).

In particular, probing exclusively regions close to the critical point is in practice impossible,

meaning that any signal coming from a possible QCD critical point will be contaminated by

signals from adjacent regions of the phase diagram.

Moreover, it is likely that a significant portion (if not all) of the collision evolution

takes place out of equilibrium. The extent to which observables reflect an equilibrated state

depends on the ratio of their equilibration time τeq to the expansion time τexp. Crucially,

while the correlation length diverges in the vicinity of the critical point, the time needed

for critical fluctuations to equilibrate and reflect that fact, τeq, diverges as well, which is a

phenomenon referred to as “critical slowing down” [109, 105]. Consequently, the magnitude
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of critical fluctuations in the vicinity of the critical point, instead of following the equilibrium

dependence on the correlation length given by Eq. (1.32), will also depend on the interplay

of τeq and τexp [110, 111]. (Additionally, it should also be kept in mind that in a system of a

finite size characterized by a length L, the correlation length can at most become comparable

to L, but not larger.) On the other hand, while finite τeq will likely suppress the magnitude of

critical fluctuations (which won’t have enough time to equilibrate to their diverging values),

it will also work towards “preserving” the developed correlations as the system evolves away

from the critical point towards hadronization and hadron rescattering.

Most notably, while initial correlations in the colliding system are correlations in the posi-

tion space, measurable observables are related to momentum space correlations. The details

of transforming the former into the latter are not trivial at low energies (in contrast to high

energies, where an approximate boost-invariance along the beam-direction near midrapidity

can be assumed, and a mapping between the two types of correlations exists [112] and is

shown to be valid [113, 114]), and must be fully understood to interpret the data. This is

especially important in view of the fact that long-distance correlations characterized by low

relative momentum would be subject to a significant background from the HBT correlations.

Finally, the hadronic phase of the collision, occurring after the QGP hadronizes and

lasting over an ever increasing fraction of the total collision time for decreasing beam energies,

is likely to influence many of the observables. Among others, hadronic scatterings and decays

will change the number of detected baryons and modify the magnitude of measured baryon

number fluctuations [111, 115]. These effects should be quantitatively understood in order

to interpret the experimental data and draw conclusions about fluctuations in a hot and

expanding QGP.
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1.8. Simulations of heavy-ion collisions

Experimental observables in heavy-ion collisions are likely influenced by an array of thermo-

dynamic and dynamic factors, as outlined in the previous section, and therefore a definite

statement on the sensitivity of given observables to probing the QCD phase diagram as well

as on their expected quantitative behavior at different beam energies can only be made by

utilizing reliable models and state-of-the-art simulations. In particular, such simulations

can test the influence of different possible EOSs on the observables and identify EOSs most

consistent with nature through comparisons against data. In this way, the search for the

properties of the QCD phase transition is a natural extension of the search for the QGP, in

which simulations were essential for interpreting the experimental results.

The multi-stage evolution of the nuclear matter fireball created in a heavy-ion collision

is reflected in the many modules comprising modern heavy-ion collision simulations. Below,

we give a brief overview of most sophisticated setups, often referred to as hybrid models or

hybrid simulations.

A hybrid model of heavy-ion collisions begins with a simulation of the initial state, which

primarily describes the initial energy density distribution in the collision zone, and may also

model the initial evolution of the system towards thermalization. Popular approaches to

the primary task of the initial state modeling include those based on the Glauber model

[116], the IP-Glasma (impact-parameter–dependent saturation model with glasma fields)

model [117, 118], or TRENTo (Reduced Thickness Event-by-event Nuclear Topology) model

[119] (whose parameters can be adjusted to reproduce either the Glauber model or the IP-

Glasma model), while simulations of the approach to equilibrium can be achieved by using

a hadronic transport simulation of the collision as the initial state [120, 121], through a 3D

Monte-Carlo–Glauber model with string deceleration [122], or with a non-equilibrium linear

response model KøMPøST (named for the authors of the code) [123].
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Such obtained distributions of initial density, energy density, and four-velocities present

in the system are then used as the starting point for a relativistic hydrodynamics simula-

tion. The applicability of hydrodynamics in simulations of heavy-ion collisions has been

confirmed [113, 114] through reproducing measurements of collective behavior of matter cre-

ated in heavy-ion collisions [124]. This in turn indicates that for a considerable fraction of

a heavy-ion collision’s evolution, it can be thought of as a locally thermal system described

by an EOS. Hydrodynamic simulations explicitly depend on the EOS used to describe the

system, and using different EOSs leads to different behavior of the simulated QGP, although

these differences are by no means trivial (especially taking into the account other model

parameters such as the value of viscosity) and the produced effects are rather subtle (for

constraining the EOS in high-energy collisions through Bayesian analysis of hydrodynamic

simulations, see Ref. [24]). State-of-the-art 3+1D relativistic viscous hydrodynamics simula-

tions evolve the matter according to equations of non-ideal hydrodynamics; we note that at

very high energies it is possible to use the boost invariance of the system and employ hydro-

dynamics with reduced dimensionality, for example 1+1D or 2+1D, however, a full spacetime

evolution is necessary for realistic simulations at BES energies. Examples of hydrodynamic

simulation codes include MUSIC [125], v-USPhydro (viscous Ultrarelativistic Smoothed Par-

ticle hydrodynamics) [126, 127], and BEShydro [128]; notably, only MUSIC and BEShydro

include effects due to diffusion of the net baryon current, important for the collision energy

range studied in BES. (We also note that another 3+1D viscous hydrodynamics code with

baryon diffusion has been recently developed [129].)

As the system expands, it becomes more dilute, and eventually it becomes too dilute for a

description in terms of a hydrodynamically evolved bulk to be applicable; this can be thought

of as the time of the collision when hadronization occurs. For different points in the system

this takes place at a different time, and a suitable criterion for ending the hydrodynamic

simulation must be used. Studies suggest [130] that evolving the system hydrodynamically
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until the energy density decreases to a chosen fixed value, usually in the range

E ∈ (0.2, 0.5) GeV/fm3 , (1.34)

yields results most consistent with data. Using Eq. (1.34) as a condition to stop the hy-

drodynamic evolution yields a hypersurface in the 4-dimensional spacetime characterized by

varying values of the parameters of the propagated bulk. Because hydrodynamic simulations

evolve systems discretized on a 3-dimensional lattice, this hypersurface is not a continuous

field, but rather a collection of cells, each characterized by the chosen fixed value of E and

individual values of position xµ, temperature T , baryon chemical potential µB, etc. (We

stress that by construction, hydrodynamics evolves energy density E and baryon number

density nB; values of (E , nB)i in the i-th cell of the hypersurface are used together with the

EOS to obtain the corresponding values of (T, µB)i.)

To obtain a description in terms of discrete particles, one performs particlization, in which

the values of T and µB in a given cell of the hypersurface are used to sample hadrons. Sam-

pling requires choosing a probability distribution describing the expected yields of hadrons

for a given T and µB provided by the hydrodynamic simulation. Most often the distribution

is an ideal relativistic Boltzmann distribution, but one can also use, for example, a rela-

tivistic Bose distribution to sample pions, whose quantum-mechanical character can become

important at low temperatures (in this case the correction is on the order of 5–10% already

at T ' 150 MeV). Some particle samplers in addition take into account viscous corrections

(see, e.g., the iS3D code [131]), finite decay widths of resonances obtained through spec-

tral functions [132], or local event-by-event conservation of energy, momentum, and charges

[133, 134].

The final stage of a heavy-ion collision simulation is devoted to propagating and scattering

hadrons that emerge from the fireball until the system is so dilute that all interactions

cease to take place. This is done through a hadronic transport code such as, among others,

UrQMD (Ultra-relativistic Quantum Molecular Dynamics) [33, 34] or SMASH (Simulating Many

Accelerated Strongly-interacting Hadrons) [38]. (We note here that since version 3.4, UrQMD
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is a hybrid simulation with an intermediate hydrodynamic stage, activated at
√
sNN ≥

17.3 GeV, based on the ideal hydrodynamics simulation code SHASTA [35, 36].) Hadronic

transport evolves the final stage hadrons from particlization onward by numerically solving

the Boltzmann equation. In practice, this means propagating hadrons according to equations

of motion consistent with the Boltzmann equation and allowing the hadrons to scatter and

decay. The extensive list of evolved particle species, including their scattering cross sections

and decay widths, is compiled based on the best currently known experimental results aided

by phenomenological models when needed, with resonances accounted for through spectral

functions.

Notably, while hadronic transport is often used as part of a hybrid heavy-ion simulation

framework, where it propagates hadrons from particlization to the final state as described

above, transport codes are also capable of simulating the entire span of a heavy-ion collision,

starting from the mutual approach of the two colliding nuclei and ending when the evolved

particles are too far apart to interact. Because most hadronic transport codes do not include

any effects due to the possible phase transition between hadrons and a QGP, these simulations

are often used as a baseline for comparisons with experimental data, deviations from which

could signal the presence of effects related to the creation of the QGP; see, e.g., Figs. 1.14,

1.20, and 1.23.

Altogether, while there has been a significant progress in modern heavy-ion collision sim-

ulations over the recent years, there is still a lot to be done. At low energies, initial state

models should include a description of all conserved charges relevant to heavy-ion collisions,

namely the baryon, strangeness, and electric charge; this feature is already present in a

recently developed model ICCING (Initial Conserved Charges in Nuclear Geometry) [135]

which can be applied at high energies. Hydrodynamic evolution codes need to not only in-

clude transport of all conserved charges listed above (while this is a highly non-trivial task,

initial theoretical work on transport coefficients in a fluid with multiple charges [136, 137]

as well as a study in a 1+1D kinetic theory for baryon and strangeness diffusion [138] have
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been done), but should also include dynamics of correlations (notably, a framework including

both the bulk hydrodynamic evolution and the non-equilibrium evolution of critical fluctu-

ations has been recently presented in the form of Hydro+ [139, 140], however, this approach

hasn’t been used yet to make a connection with experimental data). Particlization, so far

predominantly using ideal grand-canonical probability distributions which do not conserve

charge or energy on an event-by-event basis, should in fact conserve baryon number and

energy exactly and locally (an approach that enables this, as well as the conservation of

charge, strangeness, and momentum, has been recently developed in Refs. [133, 134], but

requires further work on, among others, implementing viscous corrections), as well as take

fluctuations and interactions between the hadrons into account (a recent work has addressed

the problem of particlization with critical fluctuations through an effective coupling between

the particles and the critical field [141]). Finally, hadronic transport codes need to include a

more sophisticated description of hadronic interactions. Below, we describe this last problem

in more detail, while Section 1.10 introduces the work presented in this thesis which aims at

providing a solution.

1.9. The need for generalized mean-field interactions in

hadronic transport simulations

With a few exceptions (see, e.g., Ref. [80]), state-of-the-art hadronic transport simulations,

also known as “afterburners”, typically neglect bulk hadronic interactions (in which case a

transport simulation is often called a “cascade”). This is motivated mainly by the fact that

simulations including hadronic potentials are computationally expensive. Additionally, while

nuclear potentials are well-known at low temperatures and moderate densities characterizing

ordinary nuclear matter, they are not well-constrained in other parts of the QCD phase

diagram. In consequence, the role of many-body interactions in the hadronic stage of a heavy-

ion collision evolution and their influence on final state observables are largely unexplored.
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While this may be approximately correct for studies at high-energies, where the hadronic

phase is relatively short, for low-energy collisions both the baryon densities (which are related

to the strength of the mean-field interactions) and the fraction of the collision time that the

system spends in a hadronic state are substantial. Because of this, hadronic interactions

described by mean fields may have a significant influence on the system’s evolution, including

the diffusion dynamics affecting, among others, the propagation of fluctuations which may

signal the existence of the critical point [111] (a study addressing this question utilizing

UrQMD in the cascade mode was performed in Ref. [115]). Therefore it is possible that in

simulations of low-energy collisions, afterburners without potentials are missing important

effects.

Moreover, understanding the behavior of QCD matter at finite temperature and baryon

chemical potential, where it cannot at this time be known from first principles, depends on

inferring the QCD EOS from systematic model comparisons with experimental data. In order

to reach this goal, elements of hybrid heavy-ion collision simulations should consistently treat

the interactions occurring in the evolved systems. In the case of afterburners, this means

employing hadronic interactions that reproduce the properties (such as, e.g., the conjectured

position of the QCD critical point) of a given EOS used in the hydrodynamic stage of

the evolution. However, while continued theoretical efforts to model different variants of

the QCD EOS with criticality, intended for use in hydrodynamic simulations, are being

undertaken (see, e.g., Refs. [142, 143]), hadronic afterburners are often only equipped with

mean-field potentials modeling the behavior of the ordinary nuclear matter without the

possible QGP phase transition. To address this issue, one needs a hadronic EOS that can be

easily parametrized to reproduce given properties of the conjectured QCD phase transition,

and that at the same time provides the corresponding relativistic single-particle dynamics

in a form that is feasible to implement in a hadronic transport code.
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1.10. Overview of the thesis

The work presented in this thesis addresses the need for including generalized mean-field

potentials in hadronic transport simulations, described in the previous section.

In Chapter 2, after a pedagogical introduction to modeling the EOS of nuclear matter

and to the Landau Fermi-liquid theory, we develop a model in which the EOS of hadronic

matter and the corresponding single-particle dynamics are both obtained from a relativistic

density functional with fully parametrizable vector- and scalar-current interactions. The

model we construct is Lorentz covariant and thermodynamically consistent, and is shown to

obey conservation laws.

In Chapter 3, with application to simulations of heavy-ion collisions in mind, we con-

strain the developed model to describe two phase transitions: the known nuclear liquid-gas

phase transition with its experimentally observed properties as well as a postulated phase

transition at high temperature and high baryon density, meant to model the QGP-hadron

phase transition. We discuss the thermodynamic properties of the obtained family of EOSs

based on several representative examples.

In Chapter 4, we discuss the implementation our model of mean-field hadronic interac-

tions in the hadronic transport code SMASH [38], where we pay particular attention to details

of the simulation such as baryon density and mean-field calculation algorithms.

In Chapter 5, we present results of hadronic transport simulations utilizing the developed

model of the nuclear matter EOS. First, we confirm that SMASH simulations using the obtained

single-particle equations of motion reproduce the thermodynamic behavior described by the

underlying EOS. Next, we study systems initialized at various points of the nuclear matter

phase diagram, including inside the spinodal region of the phase transition and in the vicinity

of the critical point, and we investigate the collective behavior of simulated systems. We

also note the effects of finite number statistics on obtained observables.
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In Chapter 6, we apply the developed EOS in a study addressing the possibility of

using data from heavy-ion collision experiments to infer the magnitude and the behavior of

the speed of sound in dense nuclear matter. To this end, we show a connection between

the cumulants of the baryon number distribution and the speed of sound, and we test the

applicability of our approach within two models of nuclear matter. We then apply our

method to experimental data and use model calculations to interpret the results.

Finally, in Chapter 7, we summarize the presented work.
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CHAPTER 2

Model of dense nuclear matter based on a relativistic

density functional equation of state

The goal of this chapter is to introduce a framework within which one can obtain a flexi-

ble equation of state (EOS) of dense nuclear matter with the corresponding single-particle

equations of motion that can be feasibly implemented in a hadronic transport simulation.

In Section 2.1, we give a short overview of two popular methods of describing strongly

interacting dense matter, the Walecka model and the Landau Fermi-liquid theory, with some

emphasis on the underlying fundamental assumptions; a reader who is familiar with these

two approaches can safely skip this part. In Section 2.2, we give a short motivation for the

particular approach to describing nuclear matter developed in this thesis. In Section 2.3,

we present the theoretical framework that allows one to obtain a flexible, relativistically

covariant, and thermodynamically consistent EOS, and we summarize in Section 2.4.

2.1. Nuclear matter, quasiparticles, and the Landau Fermi-

liquid theory

This section is based on works discussing various theoretical approaches to describing nuclear

matter [144, 145, 146] (see also Ref. [19]), as well as sources devoted to the Landau Fermi-

liquid theory [147, 148, 149].

58



2.1.1 Microscopic models of nuclear matter

Nuclear physics aims at understanding the structure of nuclei in terms of their elementary

constituents (nucleons) and their mutual interactions. Due to difficulties in describing the

nuclei from first principles (arising not only from the intrinsic non-perturbative nature of

QCD at the energies of interest, but also predominantly due to the complexity of the many-

body problem), one often uses some simplifying limit of the fundamental theory. A natural

question that arises in this situation is what characteristics of nuclei should emerge within

such a simplified approach. Here some guidance can be obtained from one of the most

noteworthy descriptions of nuclei provided by the nuclear shell model (first developed, inde-

pendently, by Maria Goeppert Mayer and Johannes Jensen in 1949 [150, 151]), in which each

nucleon moves in a central potential created by the remaining nucleons. Based on the suc-

cess of this model, one can postulate that an approach satisfactorily reproducing the known

properties of nuclei should be reducible to a description utilizing a set of single-particle states

and effective interactions among nucleons described by those states.

Because calculations involving finite nuclei are a formidable task even when using effective

approaches, one often considers a simplified scenario: nuclear matter, that is a uniform,

infinite, isospin-symmetric (composed of an equal number of protons and neutrons) system

in which the Coulomb interaction is neglected. In this limit, nuclear matter is well-described

by an interacting Fermi gas at zero temperature. By definition, the system is translationally

invariant and therefore must be composed out of the eigenstates of the momentum operator,

which means that the single-particle states are plane waves. Having in this way sidestepped

the need for calculating the wave-functions describing the states of the system (a task central

to problems involving finite nuclei), the core quantity of interest in this approach is the

energy per particle E/A (where E denotes the total energy and A denotes the total number

of nucleons) as a function of baryon (nucleon) density nB.

An expectation for the behavior of E/A as a function of nB can be formed based on the
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Figure 2.1: A sketch of the nucleon-nucleon potential as a function of distance r between

two nucleons [152]. The hard core radius is around 0.4 fm, the attraction at intermediate

ranges, at radius ≈ 1 fm, is believed to be dominated by the exchange of scalar mesons, and

the long-range attraction, starting at around 2 fm, is due to the single-pion exchange. The

mediation of the interaction by mesons is discussed further in the text.

known properties of nuclear matter. Scattering experiments and phenomenology [152] show

that the volume of a nucleus is a linear function of A. This means that the compression of

nucleons in a nucleus is approximately the same for all nuclei, and in particular it follows

that the central densities of all nuclei are similar [152] (note that this is different than in

the case of long range forces, such as for example gravity, which causes more massive stars

to have denser cores). This implies that the range of the strong interaction is small, so that

while adjacent nucleons are very strongly bound to each other, their effect on nucleons in a

more distant part of the nucleus is much smaller. Additionally, it means that the nuclear

forces become repulsive at very small separations, and as a consequence the nuclear binding

forces are the largest (saturate) at some close distance r0. Indeed, experiments show that
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the nucleon-nucleon interaction exhibits a strong attraction for an internucleonic distance of

about 1.4 fm, while for smaller distances the potential sharply rises and becomes strongly

repulsive at about 0.5 fm, see Fig. 2.1.

This property of the nuclear force is often referred to as saturation of nuclear matter,

and it means that there is a certain density of nucleons n0 (corresponding to some average

distance r0 between the nucleons) at which the energy of the system is minimized. If one

then considers a uniform many-body system composed of nucleons, the energy per particle

must exhibit a minimum occurring at the equilibrium density n0 and characterized by some

value B0, B = E(n0)
A
−mN = B0 (here, we subtract the trivial contribution to the energy per

particle due to the nucleon mass mN ; in result, B is nothing else than the binding energy).

The values of parameters B0 and n0 can be established based on the experimentally observed

properties of nuclei, for example as encoded in the semi-empirical Bethe-Weizsäcker mass

formula extrapolated to the case of infinite nuclear matter, and are approximately equal

B0 ≈ −16 MeV and n0 ≈ 0.160 fm−3 [153].

In view of these universal properties of nuclei, any model claiming to describe nuclear

matter must reproduce its saturation properties encoded in the values of B0 and n0. Inter-

estingly, two different potentials that lead to the same scattering phase shifts may at the

same time yield disparate results for the properties of nuclear matter; naturally, a poten-

tial implying unphysical properties of nuclear matter should be abandoned. For example,

it is known that nuclear potentials based on even very sophisticated two-body forces, fit to

scattering experiments, do not satisfactorily reproduce the saturation properties of nuclear

matter, while at the same time, inclusion of somewhat simplistic three-body forces results

in a much better agreement with data [153].

On the other hand, one can also reverse the problem and fit the parameters of a given

potential such that the saturation properties of nuclear matter are reproduced. This is the

approach employed in a model developed by John Walecka in 1974 [154, 155], known as

the Walecka model, which is a relativistic model of nuclear matter with nucleons interacting
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through the exchange of scalar and vector mesons. (In other words, the Walecka model uti-

lizes an effective field theory picture of nuclear interactions, first proposed by Hideki Yukawa

in 1935 [156], in which mesons are treated as interaction bosons. This approach is also used

in numerous other models, such as, e.g., the Bonn potential [157] or the Argonne potential

[158]. Naturally, neither baryons nor mesons are elementary particles and ultimately these

interactions should be described by QCD; however, such an effective approach invoking QCD

bound states lying close to the ground state (vacuum), in this case nucleons and low-mass

mesons, should be correct at distances & 1 fm which do not probe the internal structure of

baryons or mesons.) The choice of the omega meson, ω, and the sigma meson, σ, as the

sole carriers of the interaction can be argued based on the fact that the most significant

meson exchanges in uniform isospin-symmetric nuclear matter are indeed those coming from

ω’s and σ’s, as measured by experiments on intermediate-energy nucleon-nucleon scattering

which report a large Lorentz scalar and a large four-vector interaction [159, 160, 161, 162].

(In uniform symmetric nuclear matter, the nuclear forces coming from a single-pion exchange

average to zero unless parity is broken, and contributions from the ρ meson vanish due to

the isospin symmetry. Note that this is not true in more general applications, in particu-

lar because the attractive interaction between the nucleons is effectively realized through a

single-pion and a correlated-pion exchange, and for example the Bonn potential has explicit

contributions from both pions and ρ mesons. Nevertheless, it is possible to show that the

correlated-pion exchange, responsible for the short-range attraction, can be re-expressed as a

sigma meson exchange [157, 163], which is why for applications to isospin-symmetric nuclear

matter it is possible to neglect explicit contributions from both π’s and ρ’s.)

The Walecka Lagrangian with interactions proceeding through the σ and ω mesons can

be written down as

LW = ψ̄
(
iγµ∂µ −mN

)
ψ +

1

2

(
∂µσ∂

µσ −m2
σσ

2
)

+ gσψ̄ψσ

− gωψ̄γλω
λψ − 1

4
FλνF

λν +
1

2
m2
ωωλω

λ . (2.1)
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Here, ψ is a nucleon field of rest mass mN , σ is a neutral scalar meson field of rest mass

mσ, ωλ is a neutral vector meson of rest mass mω, and the field tensor Fλν , capturing the

dynamics of the vector meson, is given by

Fλν = ∂λων − ∂νωλ . (2.2)

It can be shown that in the static limit with heavy nucleons, the above Lagrangian corre-

sponds to the following effective nucleon-nucleon potential (see Appendix E for more details),

Veff =
g2
ω

4π

e−mωr

r
− g2

σ

4π

e−mσr

r
, (2.3)

which mimics the long-range attraction and short-range repulsion characteristic of the nucleon-

nucleon interaction.

It is clear from the Lagrangian in Eq. (2.1) that the neutral vector meson field couples to

the baryon current jλ ≡ ψ̄γλψ with a strength gω, while the scalar meson field couples to the

baryon scalar density ns ≡ ψ̄ψ with a strength gσ. Using Lagrange equations, one arrives at

the field equations for nucleons and mesons,[
iγµ∂µ −mN

]
ψ(x) +

[
gσσ(x)− gωγλωλ(x)

]
ψ(x) = 0 , (2.4)[

∂µ∂
µ +m2

σ

]
σ(x) = gσψ̄(x)ψ(x) , (2.5)

∂νF
νµ +m2

ωω
µ(x) = gωψ̄(x)γµψ(x) , (2.6)

where we explicitly wrote the x-dependence of the fields. Importantly, the nucleon-meson

couplings lead to the appearance of nucleons as sources in the meson field equations, and

this means that a finite net baryon density leads to a non-zero expectation values of the

meson fields.

To calculate properties of the system described by the Walecka Lagrangian, Eq. (2.1), the

wave-function ψ(x) must be found. Since the fields are strongly-interacting, the couplings

gω and gσ are large, which precludes obtaining solutions using trivial perturbation theory.

Several simplifying assumptions can be made to proceed. First, one can take the local density
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approximation, in which one neglects the derivative terms present in Eqs. (2.5) and (2.6),

leading to

m2
σσ = gσψ̄ψ , (2.7)

m2
ωω

µ = gωψ̄γ
µψ . (2.8)

Formally, the local density approximation is equivalent to the limit of mσ →∞, mω →∞,

and physically it implies that the meson masses are significantly larger than any gradients

present in the system; importantly, while this implies that the system is somewhat smooth,

the density is still allowed to vary. Next, the non-zero expectation values of the meson fields,

already mentioned above, suggest that the fields can be rewritten as sums of expectation

values and fluctuations around those values,

σ = σ̄ + σ′ , (2.9)

ωµ = ω̄µ + ω′µ , (2.10)

where σ̄ and ω̄µ are field averages. Further, if the rest frame baryon density nB is large, then

the source terms on the right-hand side of Eqs. (2.7) and (2.8) are also large. In this case,

it is a valid approximation to consider the meson fields as well-described by classical fields

and replace their source terms by expectation values of the scalar baryon density and the

baryon 4-current, 〈ψ̄ψ〉 ≡ ns and 〈ψ̄γµψ〉 ≡ jµ (note that this is exactly the way one treats

classical electromagnetic fields). This approach, known as the mean-field approximation, is

equivalent to neglecting the meson field fluctuations in Eqs. (2.9) and (2.10), and leads to

replacing Eqs. (2.7) and (2.8) by their expectation values,

m2
σσ̄ = gσns , (2.11)

m2
ωω̄

µ = gωj
µ . (2.12)

Physically, the mean-field approximation corresponds to a situation in which the propagation

of the nucleon field, rather than being affected by the particular values of the meson fields at
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a given point in space, can be treated as a practically independent propagation in an average

constant background of the meson fields. Computationally, this means that the meson-field

operators are reduced to complex-valued fields.

Eqs. (2.11) and (2.12) can be used to replace the meson fields in the nucleon field equation,

Eq. (2.4), by the baryon vector and scalar currents,[
γµ
(
i∂µ −

g2
ω

m2
ω

jµ(x)

)
−
(
mN −

g2
σ

m2
σ

ns(x)

)]
ψ(x) = 0 ; (2.13)

here, the terms have been rearranged in a way which makes it apparent that the coupling

to the vector field is a “minimal coupling”, appearing through a covariant derivative term

(similarly as in electrodynamics), while the coupling to the scalar field results in an effective

mass,

m∗ ≡ mN −
g2
σ

m2
σ

ns . (2.14)

In the case of equilibrated, infinite nuclear matter the system is uniform (translationally

and rotationally invariant), so that ω̄µ = δ0
µω̄0 (as the rotational invariance of the system

warrants that ω̄i = 0), which means that all currents in the system vanish, j = 0. In that

case, Eq. (2.13) reduces to[
γµ
(
i∂µ − δ0

µ

g2
ω

m2
ω

j0

)
−m∗

]
ψ(x) = 0 . (2.15)

Note that now the nucleon field equation, Eq. (2.15), can be rewritten as γµ∂µψ(x) = Cψ(x),

from which it follows that ψ(x) is a plane wave; as mentioned at the beginning of this section,

one can expect this to be a reasonable result based on the wide applicability of the nuclear

shell model. Looking for normal-mode solutions, ψ(x) = U(p)e−ip
νxν , further leads to[

γ · p+m∗
]
U(p) = γ0

(
p0 −

g2
ω

m2
ω

j0(x)

)
U(p) , (2.16)

and multiplying both sides by γ0 and squaring yields the eigenvalue relation

p0 = ±
√
p2 +m∗2 +

g2
ω

m2
ω

j0 , (2.17)
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in which the influence of the vector and scalar interactions on the nucleon energy are clear.

Finally, the general plane wave solution for the nucleon field operator ψ(x) can always be

expanded in the basis of solutions to the Dirac equation,

ψ(x) =
1√
V

∑
p

∑
s

[
U(p, s)ap,se

ip·x + V (−p, s)b†p,se−ip·x
]
, (2.18)

where the amplitudes for the normal modes, ap,s and b†p,s, are destruction and creation

operators satisfying the anticommutation relations

{
cp,s, c

†
p′,s′

}
= δpp′δss′ , c = {a, b} . (2.19)

Importantly, it is possible to solve Eq. (2.13) without making an assumption of uniform

nuclear matter, that is for j 6= 0. This is done using the relativistic Wigner function

formalism [146], and leads to the eigenvalues

p0 = ±
√(

p− gω2

m2
ω

j(x)

)2

+m∗2 +
g2
ω

m2
ω

j0 . (2.20)

Here, it is apparent that the mean-field vector interaction results in the emergence of an

effective nucleon momentum, Πµ ≡ pµ − g2ω
m2
ω
jµ(x), often called a kinetic momentum. (It’s

worth noting that while the canonical momentum pµ is the momentum subject to momentum

conservation, the kinetic momentum determines the motion of the nucleon.) The effects of

vector and meson fields can be then summarized in terms of “shifts” of the energy (including

the effective mass) and momentum of the nucleon.

From Eq. (2.20) it is also evident that the effects due to the mean-field vector potential

“mimic” the influence of the electromagnetic four-potential (φ,A). This is to be expected

based on the “minimal coupling” of the mean-field vector field to the nucleon field, and we

further elucidate this fact in Appendix F, where in particular in Section F.3 we show that the

mean-field Dirac equation, Eq. (2.13), leads to a Pauli-like equation in the non-relativistic

limit.
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To obtain the energy-momentum tensor of the theory, one uses the Noether theorem

[164],

T µν ≡
∑
a

∂L
∂
(
∂φa
∂xµ

) ∂φa
∂xν
− gµνL , (2.21)

where the sum goes over the fields present in the Lagrangian; in particular, T 00
W ≡ EW ,

the energy density. Using the nucleon field expanded in terms of the mean-field Dirac

equation solutions, Eq. (2.18), leads to summations over contributions from given momentum

states and the corresponding probabilities of these states being occupied. In the language

of thermodynamics, this is nothing else than sums weighted with a distribution function of

the system, and thus one arrives at

EW = g

∫
d3p

(2π)3

√
Π2 +m∗2 fp +

gω2

m2
ω

(j0)2 +
1

2

(
g2
σ

m2
σ

)
n2
s −

1

2

(
g2
ω

m2
ω

)
jµj

µ , (2.22)

where g is the degeneracy of the system (for isospin-symmetric nuclear matter, g = gspingiso =

4) and fp is the distribution function, and where the vector and scalar currents are given by

jµ ≡ 〈ψ̄γµψ〉 = g

∫
d3p

(2π)3

Πµ

Π0
fp (2.23)

and

ns ≡ 〈ψ̄ψ〉 = g

∫
d3p

(2π)3

m∗√
Π2 +m∗2

fp . (2.24)

Note that in view of Eq. (2.14), Eq. (2.24) is in fact a self-consistent equation for the scalar

density, which has to be solved numerically for a given temperature T and baryon density

nB (or equivalently baryon chemical potential µB).

In the case of uniform nuclear matter, the Walecka energy density becomes

EW = g

∫
d3p

(2π)3

√
p2 +m∗2 fp +

1

2

(
g2
ω

m2
ω

)
n2
B +

1

2

(
g2
σ

m2
σ

)
n2
s . (2.25)

Importantly, both ratios of the coupling constants to the meson masses, Cω =
(
g2ω
m2
ω

)
and

Cσ =
(
g2σ
m2
σ

)
, are unknown constants (the meson masses are in fact known relatively well from
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the experiment, however, the coupling constants are not, making the ratios unconstrained).

These constants are established by demanding that the binding energy per particle, B =

EW
A
−mN = EW

nB
−mN , has a minimum value of B0 at nB = n0. In this way, the mean-field

Yukawa couplings are fitted to be used as effective couplings that capture, at least up to the

first order, many-body effects not included in the original Lagrangian.

Having fitted the coupling constants Cω and Cσ, one can proceed to calculate other

properties of nuclear matter. In particular, one of the early successes of the Walecka model

was not only that it allowed for a correct description of the saturation properties of ordinary

nuclear matter (a feature that was not attained in nonrelativistic models of nucleon-nucleon

interactions), but also that it accurately identified the critical point of the nuclear liquid-gas

phase transition (see Section 1.1 for more details).

2.1.2 Quasiparticles

Within the approach used in the Walecka model, outlined in the previous section, the starting

point is a microscopic model. Employing the mean-field approximation is equivalent to

assuming that the states of the system are single-particle wave functions, with dispersion

relations “shifted” due to uniform background meson fields, Eq. (2.20). Based on this picture,

one can obtain macroscopic observables, such as the energy density, which are then used to

fit the coupling constants such that they reproduce macroscopic properties of nuclear matter.

The use of plane waves (corresponding to freely propagating particles) with some of the free-

particle properties “shifted” due to the interactions is equivalent to using “quasiparticles”, a

concept that we introduce in this section.

The notion of quasiparticles originates from the many-body theory, which aims at de-

scribing phenomena occurring in systems with many degrees of freedom. This includes, for

example, the behavior of metals or the behavior of liquid helium. In such systems there are

macroscopic numbers of elementary constituents, such as ions and electrons of a crystal lat-

tice, or liquid 3He atoms. These constituents interact with each other in some very complex
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ways, which are not only challenging to capture on the level of particle-particle interactions,

but would be absolutely impossible to handle when considering a macroscopic sample of the

system. However, it can be argued that such detailed description of all interactions occur-

ring in a given system is simply unnecessary for capturing the macroscopic properties of that

system, which largely reflect average properties of the interactions in the system as a whole.

This average behavior of the system can be described by means of collective excitations.

One of the most illustrative examples of collective excitations is provided by vibrations of a

lattice of N atoms. If the oscillations are assumed to be small, such lattice can be represented

by a set of coupled harmonic oscillators. Through introducing normal coordinates one can

arrive at a description in which the system is represented by 3N linear oscillators, each

described by a given eigenfrequency ωi. From quantum mechanics, the energy of such a

system is then given by the formula

E =
3N∑
i=1

(
ni +

1

2

)
ωi , (2.26)

and taking different sets of values of ni leads to constructing the energy spectrum of the sys-

tem. In the case where the potential energy of the lattice takes into the account anharmonic

terms (which become more important with the amplitude of the vibrations, that is with in-

creasing temperature), the system will start to exhibit non-zero probability of transitioning

between states with different values of the ni.

On the other hand, lattice vibrations can be always decomposed into a sum of monochro-

matic waves propagating in the crystal. Based on the correspondence principle of quantum

mechanics, a plane wave can be associated with a moving “particle”: the wave vector k is

directly related to the momentum of such a particle, and the frequency ω(k) is related to

its energy. Any excited state of the lattice can be described as a set of such “particles” mov-

ing throughout the volume of the considered solid, and so the energy levels of the system

will be very similar to energy states of an ideal gas of these “particles”, called “phonons”

(a name first introduced by Igor Tamm in 1932, in an analogy to “photon” and based on
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a Greek word meaning “sound”). In consequence, one can reinterpret the number ni as the

number of phonons in the state i. Because ni can take any values, evidently phonons are

subject to Bose-Einstein statistics (this holds also in the case when the lattice atoms have

half-odd-integer spin). The number of phonons increases with temperature, which leads to

an increased role of phonon-phonon interactions (in analogy to an increasing importance of

anharmonic terms). In particular, one can reinterpret the finite probability of the system

going from one energy state to another, characterized by different values of {ni}, in terms

of different interactions between the phonons, such as scattering, creation, or decay.

Based on the above, one can see that the excitations of a lattice, energy levels of which

are a result of an incomprehensible number of interactions between a macroscopic number of

particles, can to a good approximation be constructed out of energy levels of free “particles”,

which are entirely independent for sufficiently low temperatures and are weakly-interacting

for higher temperatures. These “particles” are often called “collective excitations” or “quasi-

particles” (the former is often used when the “particles” are governed by the Bose-Einstein

statistics, while the latter when they are governed by the Fermi-Dirac statistics, although

this is by no means a strict rule, and we will not always follow it). Intuitively, quasiparti-

cles can be understood as emergent phenomena occurring when a microscopically complex

system of “real” particles can be described as if it was made of different, weakly interacting

“quasiparticles” in free space, which are characterized by a particular value of the momen-

tum p and the corresponding dispersion relation ε(p). A widely known example of a system

that can be described using this concept is a semiconductor, in which the behavior of an

electron interacting with the ion lattice can be described as a motion of a free electron with

a different, “effective” mass.

One needs to remember that the collective excitations are born out of the collective be-

havior of the studied system, and as such do not exist “on their own”; rather, their properties

are determined by the state of the system. Importantly, the number of quasiparticles can,

but need not be equal to the total number of “real” particles considered. Furthermore, be-
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cause of a finite probability of a transition from one state of the system to another, each

described by a different set of quasiparticles, the quasiparticles are characterized by a finite

decay width. Finally, it should be stressed that the concept of collective excitations only

makes sense for length scales larger then some fundamental scale of the problem such as the

lattice spacing; for example, if one resolves the individual microscopic motions of the lattice

ions, the description in terms of phonons becomes meaningless.

In view of the above, it is clear that the nucleon fields described in the mean-field Walecka

model are in fact quasiparticles. We can think of them as nucleons “dressed” by their inter-

actions with mesons, which results in a “quasi-nucleon” field characterized by an effective,

density- and temperature-dependent mass, and an effective (kinetic) momentum, both re-

flecting the fact that each nucleon is interacting with baryon currents created by all other

nucleons in the system. The next section is devoted to introducing a quasiparticle theory

for spin-1
2
particles which indeed can be used to reproduce Walecka model results.

2.1.3 Landau Fermi-liquid theory

A system of non-interacting particles of spin-1
2
(which are therefore governed by the Fermi-

Dirac statistics) is called a Fermi gas. A system of interacting spin-1
2
particles at low tem-

peratures is called a Fermi liquid. Examples of such systems include liquid 3He, electrons

in metals, or nuclear matter. One of the most fruitful phenomenological theories of Fermi

liquids was developed by Lev Landau between 1956 and 1959 [165, 166, 167], and is nowadays

known as the Landau Fermi-liquid theory.

Landau’s theory is based on an assumption that the excitation spectrum of a Fermi

liquid has a structure similar to that of an ideal Fermi gas. This is a strong assumption

on the dominating type of interactions occurring between the particles of the liquid which

must preserve their quantum statistics (an example of a system in which the opposite is the

case is deuterium atoms, in which nucleons, governed by the Fermi-Dirac statistics, interact

in a way leading to the formation of molecules governed by the Bose-Einstein statistics).
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Furthermore, the theory assumes that the number of particles in the liquid and the number

of quasiparticles are equal, and the Fermi momentum of the system is related to the particle

density of the liquid, n, in a way completely mirroring the ideal gas case,

pF =

(
6π2n

g

)1/3

, (2.27)

where g is the degeneracy (the above equation follows from the fact that the particle density

n is given by the momentum integral of the distribution function fp, n = g
∫

d3p
(2π)3

fp, which

for the ideal Fermi gas at T = 0, where the system occupies all momentum states from 0 to

pF and no momentum states above pF , reduces to nB = g
2π2

∫ pF
0
dp p2).

The bulk behavior of a system of quasiparticles is assumed to be described by a quasi-

particle distribution function, constructed based on the one-to-one correspondence between

quasiparticles and “real” particles. This correspondence can be introduced formally as fol-

lows: One begins by considering an ideal (nonrelativistic) Fermi gas, in which the dispersion

relation (neglecting spin) is

εfreep =
p2

2m
. (2.28)

The state of the system as whole can be specified by giving the number of particles Np =

{0, 1} in each of the single-particle states defined by a specific value of the momentum p.

Thus for example in the ground state, each of the states with momenta less than the Fermi

momentum, pF , is occupied (Np = 1), and all other states are empty (Np = 0). One can

then imagine that interactions in the system are slowly turned on in such a way that the

process is adiabatic. Quantum mechanics shows that while such an adiabatic change will

lead to a distortion of the energy levels, it will preserve their number. This means that the

distribution function Np, while also smoothly distorted, preserves its functional form. Now,

however, the dispersion relation εintp takes interactions into the account, and so it differs

from that of a free particle, Eq. (2.28). (Note that the dependence of the construction of the

quasiparticle distribution function on the one-to-one correspondence between quasiparticles

and “real” particles means that the formalism is not appropriate for describing phenomena
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in which the number of particles in the system changes as a result of the interactions, such as

formation or dissolution of bound states.) For describing macroscopic properties of a Fermi

liquid, it is sufficient to use a mean or smoothed quasiparticle distribution function, often

denoted by fp, which is an average of Np over a group of neighboring single-particle states.

While Np is a discrete function of p, fp and is a continuous function of p.

It follows from the above that the quasiparticle distribution function fp has the same

functional form as the Fermi-Dirac distribution function; a more formal derivation of this

fact can be found in Appendix G. Importantly, the Fermi distribution function satisfies the

constraint that the quasiparticles are subject to the Pauli exclusion principle, which is an

essential ingredient of the theory. At low temperatures (T � pF ), all states deep in the

Fermi sphere are occupied, so that available states only appear in the vicinity of the Fermi

surface. Excitation from one of the states from deep within the Fermi sphere to one of the

available states is then strongly suppressed by a factor of 1/∆E, where ∆E is the energy

difference between the two considered states. In consequence, only the states in the vicinity

of the Fermi surface can actively contribute to the dynamics of the system, while the rest of

the states constitute a necessary (from the point of view of Pauli blocking) but kinematically

suppressed “background”.

As the next step in developing the theory, Landau assumed that the interaction between

the quasiparticles takes the form of a self-consistent field, whose effect on any given quasi-

particle is considered to be produced by the remaining quasiparticles. He then proceeded

to construct a theory of quasiparticles in which energy and momentum were conserved. To

this end, he utilized the Boltzmann equation for quasiparticles,

dfp
dt

=
∂fp
∂t

+
dx

dt

∂fp
∂x

+
dp

dt

∂fp
∂p

=

(
dfp
dt

)
coll

, (2.29)

where fp denotes the quasiparticle distribution function and
(
dfp/dt

)
coll is the change in

the distribution function due to collisions, often referred to as the “collision term” or the

“collision integral” (a more thorough discussion of the Boltzmann equation can be found in

Chapter 4 and Appendix Q). From Hamilton’s equations we know that dx/dt ≡ ∂H(1)/∂p
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and dp/dt = −∂H(1)/∂x, where H(1) is the single-particle Hamiltonian. Equating H(1) with

the energy of a quasiparticle εp yields

∂fp
∂t
− ∂εp
∂pi

∂fp
∂xi

+
∂εp
∂xi

∂fp
∂pi

=

(
dfp
dt

)
coll

, (2.30)

where we utilize the Einstein summation convention as well as co- and contravariant vector

notation (as summarized in Appendix A), the latter of which leads to a change in signs as

compared with Eq. (2.29).

To ensure momentum conservation, Landau wanted to obtain an expression for the conti-

nuity of the momentum density (leading to the conservation of the quasiparticle momentum

by assuming that the momentum density flux is zero on the surface of the integrated volume),

which formally can be written as

∂

∂t
g

∫
d3p

(2π)3
pi fp +

∂

∂xk
Πik = 0 , (2.31)

where Πik is the momentum density flux tensor of an as of yet unspecified form. To arrive at

the momentum conservation law through the Boltzmann equation, Eq. (2.30), one multiplies

both sides of the equation by pk and integrates over all possible momenta,

g

∫
d3p

(2π)3
pk

∂fp
∂t
− g

∫
d3p

(2π)3
pk
∂εp
∂pi

∂fp
∂xi

+ g

∫
d3p

(2π)3
pk
∂εp
∂xi

∂fp
∂pi

= 0 ; (2.32)

here, the right hand side vanishes as the integral g
∫

d3p
(2π)3

pk
(dfp
dt

)
coll is equal zero due to

the conservation of momentum in collisions (see Appendix H for more details). Using the

product rule for derivatives and the fact that the distribution function fp vanishes at the

boundary, fp
(
|p| = +∞

)
= 0, it is possible to rewrite Eq. (2.32) as (a similar calculation is

performed in detail in Appendix I.2)

g

∫
d3p

(2π)3
pk

∂fp
∂t
− ∂

∂xi
g

∫
d3p

(2π)3
pk
∂εp
∂pi

fp

− ∂

∂xi
gki g

∫
d3p

(2π)3
εp fp + gki g

∫
d3p

(2π)3
εp

∂fp
∂xi

= 0 , (2.33)

where we have used ∂pk

∂pi
= δki = gkjgji = gki. The first three terms in the above equation are

already of the from required by Eq. (2.31), however, the same cannot be achieved trivially

74



for the last term. The only way to write that term as a divergence of some quantity is to

assume that the integrand is a functional differential of some functional E , that is to assume

that

δE [fp] = g

∫
d3p

(2π)3
εp δfp . (2.34)

If this is the case, then one achieves the goal of bringing Eq. (2.33) to the form of Eq. (2.31)

(which is equivalent to establishing that momentum density is conserved), with

Πik = −g
∫

d3p

(2π)3
pi
dεp
dpk

fp + gik
[
E − g

∫
d3p

(2π)3
εp fp

]
. (2.35)

Looking at Eq. (2.34), it is quite natural to assume that E is the energy density of the

system. Then the quasiparticle energy εp, which based on the above derivation is a functional

derivative of the energy density,

εp ≡
δE
δfp

, (2.36)

can be interpreted as the change in the energy density of the system due to an addition of

a quasiparticle with a momentum p. So defined, the quasiparticle energy naturally contains

information about the interactions in the liquid. Consequently, the energy of a quasiparticle

includes potential energy terms arising due to the interactions with all other quasiparticles,

and from this it follows that the energy of the system as a whole is not equal to the sum of the

energies of individual quasiparticles. (Note that this is similar to the case of a classical electro-

static system, where in the calculation of the total electrostatic potential energy U one needs

to avoid summing over the same particle pair twice, U =
∑N

i=0

∑
j>i Uij = 1

2

∑N
i=0

∑
j 6=i Uij,

where Uij = (4πε0)−1qiqj/rij is the potential energy of the particle i due to the presence of the

particle j, with qi and qj denoting charges of the i-th and the j-th particle and rij denoting

the distance between these particles. Defining the overall potential energy of the i-th particle

as Ui =
∑

j 6=i Uij, the potential energy of the system can be rewritten as U = 1
2

∑
i Ui. Then

the total energy of the system can be expressed as E =
∑N

i=0

(
Ki +Ui

)
− 1

2

∑
i Ui, where Ki

is the kinetic energy contribution from the i-th particle and Ki +Ui = εi, the total energy of
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that particle. The term −1
2

∑
i Ui is known as the “counterterm”, and its purpose is to cancel

out the double-counting of potential energy terms that occurs in the sum over the energies of

all particles. In a complete analogy, the energy density of a system of quasiparticles always

has the form E = g
∫

d3p
(2π)3

εp + Ecounter, where Ecounter is the counterterm.)

With Eq. (2.36) established, it is straightforward to show that the developed Landau

Fermi-liquid theory conserves not only the quasiparticle momentum, but also the number of

quasiparticles and the quasiparticle energy. The conservation of the number of quasiparticles

is obtained by integrating both sides of Eq. (2.30) over all momenta; here, the right-hand

side of the obtained expression vanishes due to the conservation of the number of particles

in collisions (see Appendix H for more details), and after some algebra we get

∂

∂t

∫
d3p

(2π)3
f − ∂

∂xi

∫
d3p

(2π)3

∂εp
∂pi

f = 0 . (2.37)

Using −∂εp/∂pi = ∂εp/∂p
i ≡ vi, where vi is the velocity of a quasiparticle, we immediately

obtain

∂

∂t

∫
d3p

(2π)3
f +

∂

∂xi

∫
d3p

(2π)3
vi f = 0 , (2.38)

where identifying
∫

d3p
(2π)3

f and
∫

d3p
(2π)3

vi f with the number density n and the number

current ji, respectively, reveals Eq. (2.38) as the continuity equation for the quasiparticle

number density. Similarly, the law of the conservation of the quasiparticle energy is obtained

by multiplying both sides of Eq. (2.30) by εp and integrating over all momenta. As before,

the right-hand side of the obtained expression vanishes (see Appendix H for more details),

leading to ∫
d3p

(2π)3
εp

∂f

∂t
− ∂

∂xi

∫
d3p

(2π)3
εp
∂εp
∂pi

f = 0 . (2.39)

Using Eq. (2.34) to rewrite the first term and the definition of the quasiparticle velocity vi,

the above equation becomes

∂E
∂t

+
∂

∂xi

∫
d3p

(2π)3
εpv

i f = 0 , (2.40)
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where identifying
∫

d3p
(2π)3

εpv
i f as the quasiparticle energy density flux yields the continuity

equation for the quasiparticle energy density.

Let us further discuss two features of the Landau theory.

First, because the system is interacting, the concept of quasiparticles only has a well-

defined meaning for energies close to the Fermi energy εF , or equivalently momenta close to

the Fermi momentum pF . This is because for excitations far away from the Fermi surface,

processes such as scattering into other states become kinematically allowed. In the “real”

system, these correspond to a finite probability for the system to transition from one state

to another, leading to damping (finite decay width) of the excitation that the quasiparticles

are to represent. This means that the description in terms of quasiparticles is strictly valid

only for temperatures which are low in comparison with the Fermi momentum. (Note,

however, a recent work which shows that the expectation of broadening and disappearance

of quasiparticle states at high energies, correct for weak interactions, is invalid when strong

interactions are considered [168].)

Second, one notes that the above derivation assumes a uniform distribution of quasi-

particles in space. Such an assumption can be considered valid as long as any spatial non-

uniformity occurs at distances not probed by quasiparticles, that is distances that exceed

the quasiparticle wavelength. At the Fermi surface, the momenta are close to the Fermi

momentum pF =
[

(6π2N/gV )
]1/3, and consequently the quasiparticle wavelengths are of

order (V/N)1/3, which is the average inter-particle spacing. It follows that the system only

needs to be approximately uniform on a length scale of the average distance between the

particles, which in practice doesn’t impose any restrictions for systems at low temperatures.

How does one use the Landau-Fermi liquid theory in practice? First, one postulates

the energy density of the system, and in particular its dependence on the distribution func-

tion, E = E [fp]. (Note that this is very much different than the strategy used in micro-

scopic approaches, which start from microscopic interactions and then endeavor to calculate

macroscopic observables such as the energy density or pressure.) Next, one calculates the
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quasiparticle energy using Eq. (2.36). Then one can also calculate the second functional

derivative of the energy density,

φ ≡ δE
δfp′δfp

, (2.41)

which can be interpreted as a quasiparticle interaction energy and generally depends on

the two quasiparticles’ momenta, p and p′, as well as their spins, s and s′. By neglecting

the spin dependence and assuming that both quasiparticles are close to the Fermi surface,

|p| ≈ |p′| ≈ pF , one has φ = φ(pF , θ), where θ = ](p,p′). It is then possible to expand φ in

spherical harmonics, and coefficients of this expansion are known as the Landau coefficients;

often, it is enough to know the two first coefficients of the expansion, F0 and F1. Many

properties of matter, such as the quasiparticle velocity at the Fermi surface or the zero sound,

can then be calculated and expressed in terms of the Landau coefficients. One can utilize

experimental measurements of some of these quantities to obtain phenomenological values

of F0 and F1, and then use these to predict the values of other experimental observables.

In general, this has been a very successful approach in describing phenomena occurring in

Fermi liquids, including the behavior of liquid 3He [169], electrons in metals [170], and nuclear

matter [171].

In a 1975 paper, Gordon Baym and Siu Chin [172] generalized the Landau Fermi-liquid

theory to include relativistic effects. Soon after, the formalism was used by Tetsuo Matsui

[173] as an alternative way of obtaining some of the results predicted by the Walecka model,

such as the incompressibility or the speed of sound of nuclear matter. This further un-

derscored the equivalency between the Landau Fermi-liquid theory and the Walecka model

field theory in the mean-field approximation. In particular, both of these approaches are

appropriate in sufficiently dense regimes, where excitations are low-energetic in comparison

with the Fermi surface and the collective effects due to a self-consistent background are more

important than contributions from fluctuations in the fields. For nuclear matter, the Fermi

momentum at saturation density is pF (n0) ≈ 260 MeV, resulting in a relatively substantial

range of temperatures in which the description in terms of quasiparticles is appropriate.
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2.2. Relativistic Landau Fermi-liquid theory for hadronic

transport

In the previous section, we reviewed two phenomenological methods of describing nuclear

matter: First, we introduced the Walecka model as an example of a Lagrangian-based, self-

consistent approach at the mean-field level. Then we introduced the Landau Fermi-liquid

theory, in which the relevant physics is entirely encoded in the postulated energy density and

its variations with respect to the distribution function governing the system. Both methods

utilize the concept of quasiparticles, which can be thought of as “dressed” real particles whose

properties, defined through self-consistent equations, incorporate the effects of interactions.

Based on that, we concluded that the two approaches describe the same physics. The

advantage of the Landau Fermi-liquid theory is that one can freely postulate any energy

density functional (as long as it transforms like the 00-component of the energy-momentum

tensor under a Lorentz boost and includes correct counterterms) and rely on the formalism to

yield a description of the studied system in terms of quasiparticles whose dynamics conserve

particle number, energy, and momentum. At the same time, the advantage of the Walecka

model is that it provides a clear example of what such an energy density functional could

look like based on a Lagrangian incorporating nucleon-meson interactions.

In the following, we will draw on both approaches to form a flexible equation of state

for nuclear matter. We will use the energy density stemming from the Walecka model as an

inspiration for postulating a generalized energy density in a model with an arbitrary number

of scalar- and vector-type interactions. We will then obtain the single-particle energies of the

quasiparticles using the Landau Fermi-liquid theory, from which all other properties of the

system will be derived. Unlike in the original Landau Fermi-liquid approach, which uses the

properties of the interactions between the quasiparticles (as encoded in the Landau param-

eters) to constrain the free parameters of the model, we will instead fit these parameters to
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reproduce a set of chosen bulk properties of nuclear matter (this will take place in Chapter

3). In this regard, the formalism we develop is similar to a large class of effective approaches

to describing nuclear matter using self-consistent models based on the density functional

theory (DFT) [174, 175]. Such models are a starting point for numerous Skyrme-like poten-

tials of varying degrees of complexity which are successfully applied in low-energy nuclear

physics [176].

2.3. Relativistic density functional equation of state for

nuclear matter

The contents of this section are a generalization of the model presented in Ref. [177].

2.3.1 Formalism

We adopt the relativistic Landau Fermi-liquid theory [172] with vector- and scalar-density–

dependent interactions as the basis for constructing a vector and scalar density functional

(VSDF) model of dense nuclear matter EOS. To simplify the notation, we will introduce a

VSDF model with a single vector-current- and a single scalar-current–dependent interaction

term, however, it is straightforward to generalize to a model with multiple interaction terms

of both kinds, which we do in the next subsection. Some of the details of the derivation will

be referred to Appendix I.

We introduce the energy density of a system composed of one species of fermions of

rest mass m0, interacting through a single mean-field vector interaction term and a single

mean-field scalar interaction term,

Ev1s1 = g

∫
d3p

(2π)3
ε∗kin fp + C1

(
jµj

µ
) b1

2
−1(

j0
)2

− g00C1

(
b1 − 1

b1

)(
jµj

µ
) b1

2 +G1

(
d1 − 1

d1

)
nd1s . (2.42)
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Here, the subscript “v1s1” underscores the fact that we have one vector and one scalar

interaction term, g is the degeneracy, ε∗kin is the kinetic energy of a single quasiparticle,

ε∗kin =

√(
p− C1

(
jµjµ

) b1
2
−1
j

)2

+m∗2 , (2.43)

j and j0 are the spatial and temporal components of the number current jµ, given by

j = g

∫
d3p

(2π)3

p− C1

(
jµj

µ
) b1

2
−1
j

ε∗kin
fp (2.44)

and

j0 = g

∫
d3p

(2π)3
fp , (2.45)

respectively, fp is the quasiparticle distribution function, m∗ = m∗(x) is an effective mass

given by a self-consistent equation,

m∗ = m0 −G1n
d1−1
s , (2.46)

where the number density ns is given by

ns = g

∫
d3p

(2π)3

m∗

ε∗kin
fp , (2.47)

g00 is the 00-component of the metric tensor (see Appendix A for the metric convention),

and finally C1, G1, b1, d1 are constants specifying the interaction, as of yet undetermined.

The coefficients and powers of the interaction terms have number indeces in anticipation

of adding more interaction terms. We note that Eq. (2.42) reduces to the Walecka model

energy density, Eq. (2.22), for b1 = 2 and d1 = 2 (and an appropriate identification of the

coefficients of the interaction terms).

The quasiparticle energy εp is obtained from the definition (details of the calculation can

be found in Appendix I.1),

ε∗p ≡
δEv1s1
δfp

= ε∗kinetic + C1

(
jµj

µ
) b1

2
−1
j0 . (2.48)
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Also here setting b1 = 2 and d1 = 2 reduces the quasiparticle energy, Eq. (2.48), to the

expression known from the Walecka model, Eq. (2.20).

To simplify the notation, we introduce a vector field,

Aλ(1) = Aλ(x;C1, b1) = C1

(
jµj

µ
) b1

2
−1
jλ , (2.49)

which allows us to concisely write

ε∗p =

√(
p−A(1)

)2

+m∗2 + A
(1)
0 (2.50)

and

Ev1s1 = g

∫
d3p

(2π)3
ε∗p fp − g00

(
b1 − 1

b1

)
A

(1)
λ jλ +G1

(
d1 − 1

d1

)
nd1s . (2.51)

For clarity, in the following derivation we will temporarily suppress the interaction term

index (1) and refer to this variable simply as Aλ(x).

Quite generally, the quasiparticle energy is equivalent to the single-particle Hamiltonian,

ε∗p = H(1). Given the single-particle Hamiltonian, the equations of motion governing the

evolution of quasiparticles follow immediately from Hamilton’s equations,

dxi

dt
≡ −∂H(1)

∂pi
= −∂ε

∗
p

∂pi
, (2.52)

dpi

dt
≡ ∂H(1)

∂xi
=
∂ε∗p
∂xi

. (2.53)

where we utilize the co- and contravariant vector notation as summarized in Appendix A.

Inserting Eqs. (2.52) and (2.53) into the Boltzmann equation (where we use the Einstein

summation convention) gives

∂fp
∂t
− ∂ε∗p
∂pi

∂fp
∂xi

+
∂ε∗p
∂xi

∂fp
∂pi

=

(
dfp
dt

)
coll

, (2.54)

where
(
dfp/dt

)
coll is the change in the distribution function due to collisions occurring in

the system (a thorough discussion of the Boltzmann equation can be found in Chapter 4 and

Appendix Q). Multiplying both sides of Eq. (2.54) by X = {1, ε∗p, pj} and integrating over
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all momenta, g
∫

d3p
(2π)3

, yields the conservation laws for quasiparticle number (X = 1), energy

(X = ε∗p), and momentum (X = pj). In particular, terms entering the energy and momentum

conservation laws can be identified with the components of the energy-momentum tensor (see

Appendix I.2 for the derivation), given by

T 00 = E , (2.55)

T 0i = −g
∫

d3p

(2π)3
ε∗p
∂ε∗p
∂pi

fp , (2.56)

T i0 = g

∫
d3p

(2π)3
pi fp , (2.57)

T ij = −g
∫

d3p

(2π)3
pi
∂ε∗p
∂pj

fp + gij
(
E − g

∫
d3p

(2π)3
ε∗p fp

)
. (2.58)

One can show [172] that such obtained T µν has the correct transformation properties under

a Lorentz boost. Additionally, the conservation of energy and momentum, ∂νT µν = 0, is

ensured by construction.

Inserting the expression for the quasiparticle energy, Eq. (2.50), into Eqs. (2.52) and

(2.53) yields

dxi

dt
= −∂ε

∗
p

∂pi
=
pi − Ai
ε∗kin

, (2.59)

dpi

dt
=

∂ε∗p
∂xi

=

(
pk − Ak

)
∂Ak
∂xi

+m∗ ∂m
∗

∂xi

ε∗kin
+
∂A0

∂xi
, (2.60)

while the energy-momentum tensor becomes

T 00 = Ev1s1 , (2.61)

T 0i = g

∫
d3p

(2π)3
ε∗p

pi − Ai
ε∗kin

fp , (2.62)

T i0 = g

∫
d3p

(2π)3
pi fp , (2.63)

T ij = g

∫
d3p

(2π)3
pi
pj − Aj
ε∗kin

fp + gij
(
E − g

∫
d3p

(2π)3
ε∗p fp

)
. (2.64)

In particular, we can immediately check that the energy current T 0i is equal to the momentum
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density T i0, as required by hydrodynamics,

T 0i = g

∫
d3p

(2π)3

[
ε∗kinetic + A0

] [pi − Ai
ε∗kinetic

]
fp

= g

∫
d3p

(2π)3
pi fp − Ai g

∫
d3p

(2π)3
fp + A0 g

∫
d3p

(2π)3

pi − Ai
ε∗kinetic

fp

= g

∫
d3p

(2π)3
pi fp − Aij0 + A0j

i

= g

∫
d3p

(2π)3
pi fp = T i0 , (2.65)

where we have used the definition of vector current, Eq. (2.44), the definition of vector density,

Eq. (2.45), and the fact that from the definition of Aλ, Eq. (2.49), we have −Aij0 +A0j
i = 0.

For completeness, we note that the quasiparticle number conservation law as obtained

by taking the zeroth moment (X = 1) of the Boltzmann equation, Eq. (2.54), is

∂

∂t
g

∫
d3p

(2π)3
fp −

∂

∂xi
g

∫
d3p

(2π)3

∂ε∗p
∂pi

fp = 0 . (2.66)

Using Eq. (2.59), the above equation becomes

∂

∂t
g

∫
d3p

(2π)3
fp +

∂

∂xi
g

∫
d3p

(2π)3

pi − Ai
ε∗kin

fp = ∂tj
0 + ∂ij

i = 0 , (2.67)

where we used the defining equations for the number current ji and density j0, Eqs. (2.44)

and (2.45). The above result can be taken as a confirmation that ji and j0 have been

correctly defined.

2.3.2 Multiple terms, kinetic momentum, and manifestly covariant equations

of motion

Having derived the properties of the VSDF model with one vector and one scalar interaction

term, we can easily extend the formalism to an arbitrary number of interaction terms of

each kind. Here, we are dealing with multiple vector fields labeled by an index k (where one

should remember that k is a numbering subscript and not a space-time index),

Aλk(x;Ck, bk) = Ck
(
jνj

ν
) bk

2
−1
jλ , (2.68)
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in terms of which a general energy density with K vector-density–dependent terms and M

scalar-density–dependent terms can be written as

E(K,M) =

∫
d3p̃ ε∗kin fp +

K∑
k=1

A0
kj0 − g00

K∑
k=1

(
bk − 1

bk

)
Aµkjµ +

M∑
m=1

Gm

(
dm − 1

dm

)
ndms

=

∫
d3p̃ ε∗p fp − g00

K∑
k=1

(
bk − 1

bk

)
Aµkjµ +

M∑
m=1

Gm

(
dm − 1

dm

)
ndms . (2.69)

We note that taking K = 2, M = 0 and evaluating E2,0 in the rest frame results in the

interaction of the same form as in commonly used parametrizations of the Skyrme model

(see, e.g., Ref. [178]); in particular, using b1 = 2 and b2 = 3 (b2 = 13
6
) leads to the stiff (soft)

parametrization. In our approach, however, we leave the interaction parameters, including

the powers of vector and scalar number densities in the interaction terms, unspecified until

a later time, when we will fit them to match chosen properties of nuclear matter.

The generalization of the remaining parts of the VSDF model is straightforward, and in

particular we arrive at the quasiparticle energy,

ε∗p =

√√√√(p− K∑
k=1

Ak

)2

+m∗2 +
K∑
k=1

A0
k , (2.70)

with the conserved current and the effective mass given by

j =

∫
d3p̃

p−∑K
k=1Ak

ε∗kin
fp (2.71)

and

m∗ = m0 −
M∑
m=1

Gmn
dm−1
s , (2.72)

respectively, while the equations of motion become

dxi

dt
=

pi −∑K
k=1(Ak)

i

ε∗kin
, (2.73)

dpi

dt
=

(
pj −∑K

k=1(Ak)
j

)(∑K
k=1

∂(Ak)j
∂xi

)
+m∗ ∂m

∗

∂xi

ε∗kin
+

K∑
k=1

∂A0
k

∂xi
. (2.74)
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We stress that the generalization to (K,M) interaction terms preserves the conservation laws

and the relativistic covariance of the T µν tensor.

Finally, the equations of motion, Eqs. (2.73) and (2.74), can be rewritten in a manifestly

covariant way. First, we rewrite Eq. (2.70) as

ε∗p −
K∑
k=1

A0
k =

√√√√(p− K∑
k=1

Ak

)2

+m∗2 . (2.75)

It is then natural to define a quantity known as the kinetic momentum Πµ [146],

Πµ ≡ pµ −
K∑
k=1

(Ak)
µ , (2.76)

which by construction satisfies

Π0 =
√

Π2 +m2 . (2.77)

Note that in terms of the kinetic momentum Πµ, the baryon 4-current can be naturally

defined as

jµ = g

∫
d3p

(2π)3

Πµ

Π0

fp . (2.78)

Using the kinetic momentum, one can rewrite the equations of motion as (see Appendix I.3

for details)

dxµ

dt
=

Πµ

Π0

, (2.79)

dΠµ

dt
=
∑
ν

Πν

Π0

K∑
k=1

[
∂µ(Ak)

ν − ∂ν(Ak)µ
]

+
m∗

Π0

∂m∗

∂xi
. (2.80)

It is apparent that the first force term on the right-hand side of Eq. (2.80), stemming from

the vector interaction terms, is similar to the electromagnetic force known from covariantly

formulated electrodynamics [179], except that in our case there is an arbitrary number K of

vector fields. In particular, this means that the equation of motion in Eq. (2.80) naturally

includes a Lorentz force (see Appendix I.4 for an explicit demonstration).
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2.3.3 Thermodynamics and thermodynamic consistency

The thermodynamic properties of the VSDF model are obtained in the following way. In

equilibrium, the distribution function must have the form of the Fermi-Dirac distribution

(for details, see Appendix G),

fp =
1

eβ(ε∗p−µ) + 1
, (2.81)

where β is the inverse temperature, β = 1/T , and µ is the chemical potential. We consider

the energy-momentum tensor in the rest frame, where it has the form

T µν = diag
(
E , P, P, P

)
(2.82)

and where the spatial components of the current vanish, ji = 0, while jµjµ = n2, with n

being the rest frame density. Then the pressure is given by

P(K,M) =
1

3

∑
k

T kk
∣∣∣∣ rest
frame

=

= g

∫
d3p

(2π)3
T ln

[
1 + e−β

(
ε∗p−µB

)]
rest
frame

+
K∑
k=1

Ck

(
bk − 1

bk

)
nbk −

M∑
m=1

Gm

(
dm − 1

dm

)
ndms . (2.83)

We note that in an equilibrated system, vector-density–dependent interactions can be de-

scribed in terms of a shift of the chemical potential µ. Using the expression for the quasi-

particle energy, Eq. (2.70), in the exponent of the distribution function, Eq. (2.81), we see

that it is convenient to define an effective chemical potential µ∗ through

µ∗ ≡ µ−
K∑
k=1

A0
k , (2.84)

so that

ε∗p − µ = ε∗kin − µ∗ = Π0 − µ∗ . (2.85)
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Consequently, the dependence of the thermal part of the pressure, Eq. (2.83), on temperature

T and effective chemical potential µ∗ is just like that of an ideal Fermi gas, with the effects

due to scalar interactions “folded into” the effective mass m∗ and the effects due to vector

interactions “folded into” the effective chemical potential µ∗.

The grand canonical potential is related to the pressure through Ω(T, µ, V ) = −PV , and

we can immediately calculate the entropy density,

s ≡ − 1

V

(
dΩ

dT

)
V,µ

= g

∫
d3p

(2π)3

(
ln
[
1 + e−β(ε∗p−µ)

]
+
ε∗p − µ
T

fp

)
, (2.86)

and the number density,

n ≡ − 1

V

(
dΩ

dµ

)
V,T

= g

∫
d3p

(2π)3
fp , (2.87)

where the latter equation proves the correct normalization of the distribution function fp.

We note that the entropy density, Eq. (2.86), can be rewritten as

s =
1

T

[(
P ∗FG + E∗FG

)
− µ∗n

]
= s∗FG , (2.88)

where we marked the dependence of the ideal Fermi gas pressure, energy density, and entropy

density on m∗ and µ∗ by a star superscript. Thus we see that the entropy density in the

VSDF model is just like that of an ideal Fermi gas with the effective mass m∗ and effective

chemical potential µ∗.

Minimizing the thermodynamic potential (which in the grand canonical ensemble is equiv-

alent to finding the extremum of the pressure) with respect to the auxiliary fields, n and ns,

confirms the defining equations for the effective mass and the baryon density, Eqs. (2.72)

and (2.78) (see Appendix I.5 for more details). Finally, calculating the energy density using

the fundamental equation of thermodynamics, E ≡ sT −P +µn, yields Eq. (2.69) evaluated

in the rest frame, thus proving that the VSDF model is thermodynamically consistent.
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2.4. Summary

In this chapter, we have given a short review of the mean-field approach to describing nu-

clear matter and of the Landau Fermi-liquid theory, followed by a derivation of the flexible

vector and scalar density functional (VSDF) model. The VSDF model, which obeys Lorentz

covariance, preserves conservation laws, and is shown to be thermodynamically consistent,

allows one to construct a parametrized dense nuclear matter EOS. In particular, the energy

density and pressure as obtained in the VSDF model can be used to fix the thermodynamic

properties of the system, while the corresponding quasiparticle energies and quasiparticle

equations of motion can be implemented in a hadronic transport simulation.

For convenience, we recall the most important equations from the derivation above.

Starting from the energy density of the form

E(K,M) = g

∫
d3p

(2π)3
ε∗kin fp +

K∑
k=1

A0
kj0 − g00

K∑
k=1

(
bk − 1

bk

)
Aµkjµ

+
M∑
m=1

Gm

(
dm − 1

dm

)
ndms , (2.89)

where the vector Aλk field is defined as

Aλk(x;Ck, bk) = Ck
(
jνj

ν
) bk

2
−1
jλ , (2.90)

the kinetic energy is given by

ε∗kin =

√√√√(p− K∑
k=1

Ak

)2

+m∗2 , (2.91)

and the conserved current and the scalar density are given by

jµ = g

∫
d3p

(2π)3

pµ −∑K
k=1A

µ
k

ε∗kin
fp (2.92)

and

ns = g

∫
d3p

(2π)3

m∗

ε∗kin
fp . (2.93)
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respectively, with the effective mass satisfying

m∗ = m0 −
M∑
m=1

Gmn
dm−1
s , (2.94)

we arrive at the quasiparticle energy

ε∗p =

√√√√(p− K∑
k=1

Ak

)2

+m∗2 +
K∑
k=1

A0
k , (2.95)

the quasiparticle equations of motion,

dxi

dt
=

pi −∑K
k=1(Ak)

i

ε∗kin
, (2.96)

dpi

dt
=

(
pj −∑K

k=1(Ak)
j

)(∑K
k=1

∂(Ak)j
∂xi

)
+m∗ ∂m

∗

∂xi

ε∗kin
+

K∑
k=1

∂A0
k

∂xi
, (2.97)

and the pressure of the system,

P(K,M) = g

∫
d3p

(2π)3
T ln

[
1 + e−β

(
ε∗p−µB

)]
rest
frame

+
K∑
k=1

Ck

(
bk − 1

bk

)
nbk −

M∑
m=1

Gm

(
dm − 1

dm

)
ndms . (2.98)

We again note that all of the presented expressions reduce to the Walecka model for K =

M = 1 and b1 = d1 = 2.

Let us once more stress that within the Landau Fermi-liquid theory, the form of the

energy density E , Eq. (2.89), determines all other quantities of interest. A natural question

that arises here is: Does the particular choice of E presented in Eq. (2.89) provide maximal

flexibility? If one considers a mean-field model with self-consistently defined baryon current

and effective mass, and one demands that the coefficients of the interaction are constant,

then it can be shown (see Appendix J) that the interaction terms must have the form

of polynomials of vector and scalar number densities, n and ns. While it is not entirely

inconceivable to construct a model within which the interaction coefficients are functions of

n and ns, such model would present significant computational challenges. Therefore for the

90



purposes of this thesis, which centers on applications in hadronic transport models, an energy

density of the form displayed in Eq. (2.89) provides a maximal flexibility for a mean-field

model of vector and scalar interactions.
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CHAPTER 3

Parametrization and model results

The contents of this chapter are largely based on Ref. [177]. We note, however, that unlike

in Ref. [177], we include antiparticles in our description of nuclear matter.

The VSDF model (see Section 2.4 for the model summary) has been constructed with

applications to hadronic transport simulations in mind. Most importantly, in opposition to

theories in which the chemical potential µ is the independent variable, we chose the number

density n, naturally accessible in hadronic transport, to be the dynamical variable of the

theory (the scalar number density is a function of n and temperature T ). The constructed

EOS is easily parametrizable through fitting the interaction parameters (Ck, bk, Gm, dm) to

reproduce a chosen set of nuclear matter properties. Here, the number of vector and scalar

interaction terms, K andM in Eq. (2.89), is entirely determined by the number of constraints

that one want to impose on the EOS. In particular, it is straightforward to construct a family

of EOSs that on the one hand reproduces the known properties of ordinary nuclear matter,

and on the other allows one to postulate and explore critical behavior in dense nuclear matter

over vast regions of the phase diagram. The former will ensure that the model takes into

the account the behavior of nuclear matter known from the experiment (see Section 2.1.1

for more details), while the latter will allow for meaningful comparisons of the influence of

different possible properties of the QGP phase transition on observables. Such comparisons

can be made, among others, through Bayesian analysis [180, 181].

Apart from the flexibility of the EOS allowing for a systematic exploration of possible

phase diagrams, another factor to consider in simulations is numerical efficiency. This is
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especially important for afterburner studies, which often require simulating thousands or

even millions of events, depending on the studied observables, to reach statistical significance

comparable with the experiment. Here, vector-type interactions are more convenient for

numerical evaluation of mean-field potentials than scalar-type interactions, which require

solving a self-consistent equation at each point where mean-fields are calculated (usually, this

means at every node of a discrete 3-dimensional lattice representing the fields). Therefore, as

an initial step in studies of critical behavior in hadronic transport, in this thesis we develop

the parametrization of the flexible VSDF EOS that includes only interactions of the vector

type, that is we set M = 0 in Eqs. (2.89-2.98). In this case, the energy density reduces

to a vector density functional (VDF) model of the EOS. While using an energy density

that is a VDF instead of a VSDF leads to a smaller flexibility of the obtained family of

EOSs (which is connected with the fact that vector interactions depend only on the baryon

density, which in our model, along with the temperature T , is one of the two independent

variables), it nevertheless allows for creating a large family of EOSs that can be easily utilized

in simulations and whose behavior can be easily understood. (We note that in spite of the

significantly increased numerical cost of simulations utilizing scalar mean-field interactions,

this cost is not entirely prohibitive, especially for observables requiring lower statistics such

as particle yields or elliptic flow, and future studies will be devoted to this area; among the

existing approaches, a prominent example of simulations with scalar-type interactions are

those using equations of motion stemming from the Walecka model, see Refs. [182, 146, 183].)

To apply our approach to studies of heavy-ion collisions and the search for the location

of the conjectured QCD critical point, we want to parametrize the VDF model so that it

describes hadronic matter whose phase diagram contains two first-order phase transitions.

The first of these is the experimentally observed low-temperature, low-density phase transi-

tion in nuclear matter, sometimes known as the nuclear liquid-gas transition. The second is

a postulated high-temperature, high-density phase transition that is intended to correspond

to the QCD phase transition.
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We want to stress that while the latter may, in principle, coincide with the location of

the phase transition in the real QCD phase diagram, its nature is fundamentally different.

This is because within Landau Fermi-liquid theory, unlike in QCD, the degrees of freedom

do not change across the phase transition. Interestingly, this is also the case in some other

approaches to the QCD EOS, for example in models based on quarkyonic matter [184], where

the active degrees of freedom at the Fermi surface remain hadronic even after quark degrees

of freedom appear (although the extent to which such dynamics may be captured in the VDF

or VSDF model remains to be seen). The nature of the phase transition that we can simulate

in the VDF (or VSDF) model is that of going from a less organized to a more organized state.

This is easily visualized in the case of the transition from gas to liquid (nucleon gas to nuclear

drop). In the case of the high-temperature, high-density phase transition, we may think of

it as a transition from a fluid to an even more dense, and more organized, fluid (nuclear

matter to quark matter). This interpretation is supported by the functional dependence of

entropy per particle on the order parameter (number density), which decreases across the

phase transition from a less dense to a more dense state (for an extended discussion, see Ref.

[185]). For brevity, in the following we will refer to the high-temperature, high-density phase

transition within the VDF model as the “QGP-like” or “quark-hadron” phase transition, with

the expectation that it is understood as a useful moniker rather than a statement on the

nature of the described transformation.

We also emphasize that the degrees of freedom used in the VDF model agree with those

expected after hadronization by design. Since the VDF model is ultimately intended to be

used in the hadronic afterburner stage of a hybrid heavy-ion collision simulation, the issue

of hadronic degrees of freedom present above the QGP-like phase transition will never arise

in realistic calculations. At the same time, in parts of the phase diagram close to the critical

region, the hadronic systems studied will display effects typical for approaching a phase

transition, such as for example those expected due to the softening of the EOS.
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3.1. Parametrization

We present a rather simplified version of the VDF model, in which we choose the degrees

of freedom to be those of isospin symmetric nuclear matter, that is nucleons with nucleon

mass mN = 938 MeV and degeneracy factor gN = 4. Additionally, we also consider the

case including thermally induced ∆ resonances, whose mass and degeneracy factor are taken

to be m∆ = 1232 MeV and g∆ = 16, respectively. We note that the model can be easily

extended to include arbitrarily many baryon resonances (which is done through a substitution

gfp →
∑

i gif
(i)
p ), however, a thorough study of the corresponding effects is beyond the scope

of this thesis. Finally, we modify the defining expressions of our model, Eqs. (2.89-2.98),

to include contributions from antiparticles. For example, in this case j0 represents the net

baryon density given by

j0 ≡ j0
baryons − j0

antibaryons = g

∫
d3p

(2π)3

[
fp − f̄p

]
, (3.1)

where we introduce the distribution function for antibaryons,

f̄p(T, µB) ≡ 1

eβ
(
εp+µB

)
+ 1

= fp(T,−µB) , (3.2)

and the remaining VDF model equations are likewise modified, in particular the equations

for the energy density

E(K,M) = g

∫
d3p̃ ε∗kin

[
fp + fp

]
+

K∑
k=1

A0
kj0 − g00

K∑
k=1

(
bk − 1

bk

)
Aµkjµ (3.3)

and the pressure,

P(K,M) = g

∫
d3p

(2π)3
T ln

[
1 + e−β

(
ε∗p−µB

)]
+ g

∫
d3p

(2π)3
T ln

[
1 + e−β

(
ε∗p+µB

)]
+

K∑
k=1

Ck

(
bk − 1

bk

)
nbkB , (3.4)

where nB ≡
√
jµjµ is the rest frame net baryon number density.
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In a system that undergoes two first-order phase transitions, the pressure exhibits two

mechanically unstable regions, known as the spinodal regions (see Appendix B for more

details), defined by the condition that the first derivative of the pressure with respect to the

order parameter is negative [186, 187]. In a minimal VDF model realizing such behavior,

the pressure needs to be a four-term polynomial in the order parameter, and thus we adopt

a version of the VDF model in which we utilize four interaction terms. (We note that

to describe only one of the phase transitions mentioned above, it is enough to adopt a

model with two interaction terms. In the case of the nuclear liquid-gas phase transition, the

resulting model will be similar to many Skyrme-based parametrizations of the EOS [176]).

The energy density, Eq. (3.3), is easily adapted to include K = 4 interaction terms, and in

the rest frame we have

E
∣∣ rest
frame

= g

∫
d3p

(2π)3
εkin

[
fp + fp

]
+

4∑
i=1

Ci
bi
nbiB . (3.5)

Similarly, we take K = 4 in the expression for the pressure, Eq. (3.4).

To construct an EOS with a general QGP-like phase transition properties while ensuring

that the known properties of ordinary nuclear matter are well reproduced, we choose the

following constraints to fix the eight free parameters {b1, b2, b3, b4, C1, C2, C3, C4} in the VDF

model:

1) the position of the minimum of energy per particle of nuclear matter at the saturation

density nB = n0,

d
(
E(K=4)

nB

)
dnB

∣∣∣∣
T=0
nB=n0

= 0 , (3.6)

2) the value of the binding energy at the minimum,

E(K=4)

nB

∣∣∣∣
T=0
nB=n0

−mN = B0 , (3.7)
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3, 4) the position of the critical point
(
T

(N)
c , n

(N)
c

)
for the nuclear liquid-gas phase transition,

dP

dnB

(
T = T (N)

c , nB = n(N)
c

)
= 0 , (3.8)

d2P

dn2
B

(
T = T (N)

c , nB = n(N)
c

)
= 0 , (3.9)

5, 6) the position of the critical point
(
T

(Q)
c , n

(Q)
c

)
for the quark-hadron phase transition,

dP

dnB

(
T = T (Q)

c , nB = n(Q)
c

)
= 0 , (3.10)

d2P

dn2
B

(
T = T (Q)

c , nB = n(Q)
c

)
= 0 , (3.11)

7, 8) the position of the lower (left) and upper (right) boundaries of the spinodal region, ηL

and ηR, for the quark-hadron phase transition at T = 0,

dP

dnB

(
T = 0, nB = ηL

)
= 0 , (3.12)

dP

dnB

(
T = 0, nB = ηR

)
= 0 . (3.13)

(Explicit forms of the above equations are shown in Appendix K.) The set of quantities

(n0, B0, T
(N)
c , n

(N)
c , T

(Q)
c , n

(Q)
c , ηL, ηR) is referred to as the characteristics of an EOS.

We choose the properties of the ordinary nuclear matter, encoded in conditions (3.6-3.9),

based on experimentally determined values [12, 153]:

n0 = 0.160 fm−3 , B0 = −16.3 MeV , (3.14)

T (N)
c = 18 MeV , n(N)

c = 0.06 fm−3 . (3.15)

On the other hand, the properties of dense nuclear matter, nB � n0, are only weakly con-

strained by experiment at this time. We are then in a position to create a family of possible

EOSs based on a number of different postulated characteristics (3.10-3.13), while ensuring

that nuclear matter properties are preserved. The resulting family of EOSs encompasses

QGP-like phase transition characteristics spanning vast regions of the dense nuclear matter

phase diagram. This allows for a systematic comparison with experimental data, with the
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Table 3.1: Example characteristics
(
T

(Q)
c , n

(Q)
c , ηL, ηR

)
of the QGP-like phase transition:

critical temperature T (Q)
c , critical baryon number density n

(Q)
c , and the boundaries of the

spinodal region at T = 0, ηL and ηR. The corresponding parameter sets can be found

in Appendix L. Characteristics in sets I-V are obtained based on systems composed only of

nucleons, while in set VI we consider a system composed of nucleons and thermally produced

∆-resonances. We also show the incompressibility at saturation density and zero temperature

K0 calculated for the parametrized EOSs.

set T
(Q)
c [MeV] n

(Q)
c [n0] ηL[n0] ηR[n0] particle species K0[MeV]

I 50 3.0 2.70 3.22 N 260

II 50 3.0 2.85 3.12 N 279

III 50 4.0 3.90 4.08 N 280

IV 100 3.0 2.50 3.32 N 261

V 125 4.0 3.60 4.28 N 278

VI 125 4.0 3.60 4.28 N + ∆ 277

goal of constraining the properties of allowed EOSs to a small subfamily with qualitatively

similar properties.

In the remainder of this chapter, we illustrate properties of the VDF model by discussing

key results for a few representative EOSs which exhibit chosen sets of the QGP-like phase

transition characteristics
(
T

(Q)
c , n

(Q)
c , ηL, ηR

)
listed in Table 3.1. The corresponding parame-

ter sets can be found in Appendix L.
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Figure 3.1: An example of the fitting procedure used for the VDF model. Pressure is plotted

as a function of baryon number density at three significant temperatures (T = 0, nuclear

critical temperature T (N)
c , and quark-hadron critical temperature T (Q)

c ) for an EOS with

characteristics from set I, see Table 3.1 or the legend (where T (Q)
c is given in MeV, while the

critical density n(Q)
c and the boundaries of the spinodal region at T = 0, ηL and ηR, are given

in units of saturation density, n0 = 0.160 fm−3). Specific points at which the parameters of

the EOS are fixed are indicated on the plot; see text for more details. Figure from [177].

3.2. VDF model results: Pressure, the speed of sound, and

energy per particle

We illustrate the fitting procedure in Fig. 3.1, where we show pressure as a function of baryon

number density at three significant temperatures (T = 0, nuclear critical temperature T (N)
c ,

and quark-hadron critical temperature T (Q)
c ) for an EOS with characteristics from set I (see

Table 3.1) and where we also indicate the location of key features that determine the fit
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parameters. At temperature T = 0, conditions (3.6) and (3.7) are applied at the saturation

density of nuclear matter, marked with a blue circle; we note here that because at T = 0 the

pressure is given by

P ≡ n2
B

d

dnB

( E
nB

)
, (3.16)

condition (3.6) is equivalent to demanding that P = 0. Also at T = 0, conditions (3.12) and

(3.13) fix the positions of the lower (left) and upper (right) boundary of the high density

spinodal region, ηL and ηR; these are denoted with blue diamonds. At the critical point of

nuclear matter, T = T
(N)
c and nB = n

(N)
c , denoted with a green square, conditions (3.8)

and (3.9) are enforced. Finally, conditions (3.10) and (3.11) are applied to set the position

of the QGP-like critical point
(
T

(Q)
c , n

(Q)
c

)
, denoted with a red star. Note that in general,

the values of pressure at baryon densities corresponding to ordinary nuclear matter are

significantly smaller than the values at large baryon densities, including the region where

the QGP-like phase transition and the corresponding softening of the EOS occur.

Fig. 3.2 shows pressure as a function of baryon number density at zero temperature, where

the curves correspond to all EOSs defined by the sets of characteristics listed in Table 3.1.

While most of the results are calculated in the presence of nucleons only, the thin dotted red

line shows pressure for a system with both nucleons (protons and neutrons) and thermally

excited ∆ resonances. By construction, all of the EOSs display the same behavior for baryon

number densities corresponding to ordinary nuclear matter and only start differing from each

other in regions currently not constrained by experimental data, nB & 1.5n0.

A few regularities are apparent in the behavior of the pressure curves at zero tempera-

ture in regions corresponding to the QGP-like phase transition. Let us focus on the value of

the pressure at the lower boundary of the spinonal region P (ηL) (which is directly related

to the average value of the pressure across the transition region), and compare its values

for sets of characteristics between which only one property of the QGP-like phase transi-

tion changes substantially. First, P (ηL) increases with the critical baryon number density

n
(Q)
c , which can be seen by comparing the pressure curves for the second and third sets of
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Figure 3.2: Pressure is plotted as a function of baryon number density at temperature T = 0

for all sets of characteristics listed in Table 3.1. In the legend, the critical temperature of

the QGP-like phase transition T (Q)
c is given in MeV, while the critical density n(Q)

c and the

boundaries of the spinodal region at T = 0, ηL and ηR, are given in units of saturation

density, n0 = 0.160 fm−3. The hardness of the EOSs is noticeable for densities above the

quark-hadron transition regions, and is a consequence of employing interaction terms with

high powers (bi > 2) of baryon number density nB (see text for details).

characteristics (delineated with medium dashed green and thin dashed magenta lines, re-

spectively). Second, P (ηL) decreases with the critical temperature T (Q)
c , as evidenced by

pressure curves for the first and fourth sets of characteristics (delineated with thick dashed

orange and solid purple lines, respectively). Third, P (ηL) decreases with the width of the

spinodal region, ∆η = ηR − ηL, which can be seen by comparing pressure curves for the

first and second sets of characteristics (thick dashed orange and medium dashed green lines,

respectively). Furthermore, the magnitude of the drop in the pressure across the spinodal
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region ∆P = P (ηR)− P (ηL), increases with the critical temperature, as seen by comparing

curves for the first and fourth sets of characteristics (thick dashed orange and solid purple

lines, respectively). Importantly, these features create a physical bound on which QGP-like

transitions are allowed in the VDF model. A transition with a wide spinodal region, with

a critical point at a relatively low baryon number density and at the same time a relatively

high critical temperature can often be excluded, as it leads to such a significant drop in

the pressure across the spinodal region that the pressure becomes negative in some parts

of the quark-hadron coexistence region, which would correspond to an unphysical “QGP

bound state”. This is because at T = 0 the pressure is given by Eq. (3.16), and locally

negative pressure implies that there exists a baryon density for which d (E/nB) /dnB = 0

and d2 (E/nB) /dn2
B > 0, corresponding to a local minimum in energy per particle, E/nB.

While such a minimum is in fact expected in the region of the phase diagram corresponding

to ordinary nuclear matter, where d (E/nB) /dnB = 0 at the nuclear saturation density n0, it

is forbidden for large baryon number densities, where it would correspond to a metastable or

even stable state of QGP. As an example, most obtained phase transitions with n(Q)
c = 2.5n0

and T (Q)
c ≥ 125 MeV are rejected based on this argument.

Next, it is easy to notice that the pressure rises rapidly after leaving the quark-hadron

transition region. This hardness of the EOS is a general feature of models based on high

powers of baryon number density (specifically, with exponents higher than 2), and is ubiqui-

tous among various Skyrme-type models (see, e.g., Ref. [188]). In fact, it can be shown that

any relativistic Lagrangian with vector-type interactions leading, in the mean-field approxi-

mation, to terms of the form nαB, where α > 2, results in acausal phenomena at high baryon

number densities [189]. Indeed, Fig. 3.3 shows the isentropic speed of sound squared (cσ/c)
2

at T = 0 for the chosen sets of phase transition characteristics listed in Table 3.1 (we note

that at T = 0, the isothermal and isentropic speeds of sound are identical; for the derivation

of the formula used to calculate the speed of sound, see Appendix N). The speed of sound

squared is negative within the spinodal region, as expected for a first-order phase transition
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Figure 3.3: The isentropic speed of sound c2
σ at T = 0 as a function of baryon number

density, plotted for all sets of characteristics listed in Table 3.1. In the legend, the critical

temperature of the QGP-like phase transition T (Q)
c is given in MeV, while the critical density

n
(Q)
c and the boundaries of the spinodal region at T = 0, ηL and ηR, are given in units of

saturation density, n0 = 0.160 fm−3. The speed of sound becomes acausal for relatively large

baryon number densities above the quark-hadron transition region, which is a consequence

of the hardness of the equation of state in the same region (see Fig. 3.2). See text for details.

[187], while for large baryon number densities above the quark-hadron phase transition it

eventually becomes acausal. Although the latter feature of the speed of sound is not ideal,

such pathological behavior of the EOS can be, in fact, expected outside of the region in

which its parameters are fitted. Moreover, it is not going to pose challenges to using the

VDF model in a hadronic afterburner, where nuclear matter is simulated at densities below

the coexistence region which in general are not affected by this problem. Out of the abun-

dance of caution, in creating parameter sets we make sure that the speed of sound preserves
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Figure 3.4: The binding energy at T = 0 as a function of baryon number density, plotted

for all sets of characteristics listed in Table 3.1. In the legend, the critical temperature of

the QGP-like phase transition T (Q)
c is given in MeV, while the critical density n(Q)

c and the

boundaries of the spinodal region at T = 0, ηL and ηR, are given in units of saturation

density, n0 = 0.160 fm−3. The degree of the softening in energy per particle at high baryon

number density is directly related to the width of the spinodal region of a given EOS (see

text for more details).

causality for all baryon number densities below the upper boundary of the quark-hadron

coexistence region. We note that in some of the studied phase transitions this still allows

for a speed of sound above the conformal bound of (cσ/c)
2 ≤ 1/3; it is presently unclear

whether this bound is satisfied in dense nuclear matter, see, e.g., Refs. [15, 190, 184, 191].

Finally, in Fig. 3.4 we show the binding energy E(4)/nB −mN at T = 0 as a function of

baryon number density for EOSs corresponding to all sets of characteristics listed in Table

3.1. All obtained EOSs describe the same physics in the region nB . 1.5n0, where the
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behavior of nuclear matter is relatively well known; in particular, all curves reproduce the

value of the chosen binding energy at nuclear matter saturation as well as the location of

the saturation density, Eq. (3.14). On the other hand, at high densities the binding energy

displays a softening related to the postulated QGP-like phase transition, which is different

for each of the considered EOS. We note that the extent of this softening is directly related

to the width of the spinodal region of a given EOS. This can again be seen from the fact that

at zero temperature the pressure is given by Eq. (3.16), from which it immediately follows

that the curvature of the energy density, (d2E/dn2
B), must be negative in the spinodal region;

consequently, the region over which (d2E/dn2
B) < 0 is related to (ηL, ηR).

Although we have only shown results corresponding to a few possible QGP-like phase

transitions, it should be understood that arbitrarily many versions of the dense nuclear

matter EOS can be obtained in the VDF model, as can be seen in Fig. (3.5), which shows

pressure curves at T = 0 for all EOSs obtained by demanding the critical density of n(Q)
c ∈

{3.0, 4.0, 5.0} [n0] (green, magenta, and blue curves, respectively), the critical temperature

of T (Q)
c ∈ {50, 100, 150} [MeV] (light, medium, and dark curves, respectively), and the lower

boundary of the spinodal region varied according to ηL = nc − 0.1 − i × 0.05n0, where

i = {0, 1, 2, . . . }. While the obtained EOSs vary widely in the high baryon density region,

by construction they all reproduce the same physics in the range of baryon number densities

corresponding to ordinary nuclear matter, nB . 1.5n0. In fact, fitting the VDF model to

reproduce the experimental values of the saturation density, the binding energy, and the

nuclear critical point gives a remarkably good prediction for the value of pressure at the

nuclear critical point Pc and the value of incompressibility at the saturation point K0 as

compared with experiment and against other models (summarized in Table 3.2). This is

partially expected, as the value of the incompressibility K0 depends strongly on the critical

temperature [192], and the latter is used in the VDF model as an input parameter fixed

based on the known experimental results. Nevertheless, it is noteworthy that the minimal

VDF model, based on a few characteristics taken at their experimentally established values

105



0 1 2 3 4 5 6

pr
es

su
re

 
 [M

eV
/fm

]
P

3

0

20

40

60

80

100

120

140

160

−20

baryon number density nB [n0]

Figure 3.5: Pressure as a function of baryon number density at T = 0 for 283 VDF EOSs.

Green, magenta, and blue curves mark EOSs with the critical density of nc = 3.0n0, 4.0n0,

and 5.0n0, respectively, while light, medium dark, and dark curves mark EOSs with the

critical temperature Tc = 50, 100, and 150 MeV. For each (nc, Tc), the left boundary of the

spinodal region at T = 0 was set a series of values given by ηL = nc − 0.1 − i × 0.05n0,

with i = {0, 1, 2, . . . }. Small variations in the right boundary of the spinodal region at zero

temperature ηR, explained further in Section 3.3, result in “bundles” of EOSs that correspond

to slightly differing ηR’s for a given set of the EOS characteristics (nc, Tc, ηL).

(here n0, B0, T
(N)
c , n(N)

c ), leads to predictions for other properties of nuclear matter agreeing

remarkably well with experimental data. Apparently, constraining four properties of the

EOS is enough to reproduce the thermodynamic behavior of nuclear matter in the fitted

region. The same could be true in the case of nuclear matter at high baryon number density.

We may be hopeful that postulating QGP-like phase transition characteristics that happen

to lay close to their true QCD values will lead to a VDF model parametrization correctly

describing other properties of dense nuclear matter in the transition region. We expect that
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Table 3.2: Comparison of the nuclear phase transition critical temperature T (N)
c [MeV], the

critical baryon number density n
(N)
c [fm−3], pressure at the critical point Pc [MeV fm−3],

and incompressibility K0 [MeV] obtained in experiment [12] and in various models: the

Walecka model [154, 155], the quantum Van der Waals model [193] (denoted with “Quantum

VdW”), the VDF model with nuclear phase transition only (using two interaction terms

and denoted by “V2DF (N)”), and the VDF model with both nuclear and quark-hadron

phase transitions (using four interaction terms and denoted by “V4DF (N+Q)”). For the

latter, values of Pc and K0 are given as averages calculated across all obtained EOSs for

quark-hadron critical temperatures T (Q)
c ∈ {50, 100, 150} [MeV] and critical baryon number

densities n(Q)
c ∈ {3.0, 4.0, 5.0} [n0], see Fig. 3.5. Asterisks mark input values of the models.

Experiment Walecka Quantum VdW V2DF (N) V4DF (N+Q)

T
(N)
c 17.9± 0.4 18.9 19.7 18* 18*

n
(N)
c 0.06± 0.01 0.070 0.072 0.06* 0.06*

Pc 0.31± 0.07 0.48 0.52 0.311 〈Pc〉 = 0.3067± 0.0014

K0 230-315 553 763 282 〈K0〉 = 273.1± 5.1

this correct description would manifest itself through agreement of simulation results with

experimental data.

3.3. VDF model results: Phase diagrams

The phase diagrams for the EOSs corresponding to the characteristics listed in Table 3.1 are

shown in Figs. 3.6 and 3.7. Solid and dashed lines represent the boundaries of the coexistence

and spinodal regions, respectively. The coexistence and spinodal regions of the nuclear phase
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Figure 3.6: Phase diagrams in the (T, nB) plane for sets of characteristics listed in Table 3.1.

Solid (dashed) lines represent the boundaries of the coexistence (spinodal) regions. In the

legend, the critical temperature of the QGP-like phase transition T (Q)
c is given in MeV, while

the critical baryon number density n(Q)
c and the boundaries of the spinodal region, ηL and

ηR, are given in units of saturation density, n0 = 0.160 fm−3. The coexistence and spinodal

regions of the nuclear phase transition, depicted with black lines, are common to all shown

EOSs. The phase diagrams of sets V and VI coincide, which is expected.

transition, depicted with black lines, are common for all used EOSs by construction. For

sets V and VI, which differ only by the number of species contributing to the baryon number

density nB, the phase diagrams in Fig. 3.6 coincide, which is expected.

It is immediately apparent that the QGP-like coexistence curves in the phase diagrams

all look alike. This is a consequence of our choice to employ only interactions depending

on vector baryon number density, as in this case the dependence of the thermal part of the

pressure on temperature T and effective chemical potential µ∗ is just like that of an ideal
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Fermi gas, as can be seen from Eq. (2.98). Consequently, all VDF EOSs display similar

behavior with increasing temperature T . This can be especially easily seen in the (T, µB)

phase diagram (Fig. 3.7), where the coexistence lines exhibit the exact same curvature. An

exception from this behavior as shown on this phase diagram is the curve calculated for a

system with both nucleons and thermally produced ∆ resonances (denoted with a red line),

which bends more forcefully towards the µB = 0 axis as the temperature increases. This

is to be expected, as including an additional baryon species lowers the value of the baryon

chemical potential for a given baryon number density. Including even more baryon species

would strengthen this effect.

Another feature, easily discerned in the (T, nB) phase diagram (Fig. 3.6), is that the spin-

odal regions [ηL, ηR] (and likewise the coexistence regions [nL, nR]) are always approximately

centered around the critical baryon number density n(Q)
c . This is again a consequence of the

fact that vector-like interactions do not have a temperature dependence, so that the thermal

contribution to the pressure is just like that of an ideal gas of fermions with mass mN (for a

detailed explanation see Appendix M). As a result, the critical baryon number density n(Q)
c

and the boundaries of the spinodal region, ηL and ηR, are not independent. In consequence,

we have effectively one less free parameter. For example, once we set the ordinary nuclear

matter properties, the critical point of the quark-hadron phase transition, and the lower

spinodal boundary at T = 0, ηL, the right spinodal boundary at T = 0, ηR, is practically

fixed. This could be already observed in Fig. 3.5, where the minimal allowed changes in ηR,

given (nc, Tc, ηL), result in easily discernible “bundles” of EOSs.

We expect that all these regularities in the behavior of the spinodal and coexistence

lines would not be as prominent if scalar-type interactions were included, rendering the

thermal part of the pressure non-trivial. In particular, we expect that this would allow us

to obtain coexistence regions bending towards the nB = 0 axis in the (T, nB) plane, which

would correspond to an even stronger tendency to bend towards the µB = 0 axis in the

(T, µB) plane. This expectation is based on the fact that, typically, scalar interactions result
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Figure 3.7: Phase diagrams in the (T, µB) plane for sets of characteristics listed in Table

3.1. The legend is the same as in Fig. 3.6. Solid lines represent the coexistence lines. The

coexistence line of the nuclear phase transition, depicted with a solid black line, is common to

all sets of characteristics. Also shown are chemical freeze-out points obtained in experiment

and a parametrization of the freeze-out line from [51]. The noticeably different curvature of

the coexistence line at high temperatures for set IV (solid red line) is due to employing both

nucleons and thermally induced Delta resonances.

in a small effective mass, which in addition decreases with temperature, and that in turn

produces a relatively larger thermal contribution to the pressure for a given nB and T . As a

result, such phase transitions would more significantly affect the region of the phase diagram

covered by the Beam Energy Scan program at RHIC. Parametrizations of the VSDF model

leading to such effects are planned for the near future.
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3.4. VDF model results: Cumulants of baryon number

In analyses of heavy-ion collision experiments, considerable attention has been paid to cumu-

lants of the baryon number distribution. In the grand canonical ensemble, the jth cumulant

of the baryon number κj can be calculated from

κj = V T j−1 d
jP

dµjB
, (3.17)

and the first four cumulants in terms of derivatives with respect to the baryon number density

were already given in Eqs. (1.28-1.31), repeated here for convenience,

κ1 = V nB = NB , (3.18)

κ2 =
V TnB(
dP
dnB

)
T

, (3.19)

κ3 =
V T 2nB(
dP
dnB

)2

T

1− nB(
dP
dnB

)
T

(
d2P

dn2
B

)
T

 , (3.20)

κ4 =
V T 3nB(
dP
dnB

)3

T

1− 4nB(
dP
dnB

)
T

(
d2P

dn2
B

)
T

+
3n2

B(
dP
dnB

)2

T

(
d2P

dn2
B

)2

T

− n2
B(

dP
dnB

)
T

(
d3P

dn3
B

)
T

 . (3.21)

In the VDF model, analytic expressions for derivatives of the pressure djP/dnjB are available,

and in particular we provide these formulas up to j = 3 in Appendix O. Cumulants may also

be expressed in terms of derivatives of the baryon chemical potential djµB/dnjB; we provide

these formulas up to the sixth-order cumulant in Appendix P. Which expressions are used

is purely a question of preference.

While cumulants measure the derivatives of the EOS, Eq. (3.17), at the same time they

can be related to the moments of the baryon number distribution, see Eqs. (1.23-1.26).

Because cumulants of the proton number distribution (serving as a proxy for the cumulants

of the baryon number distribution) can be measured in experiment, cumulants provide one of

the strongest links between theoretical predictions and experimental data. The experimental
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Figure 3.8: Contour plots of the cumulant ratio κ2/κ1 for the fourth (IV) EOS listed in Table

3.1. Coexistence (spinodal) regions are denoted with black (yellow) lines, and critical points

are marked with yellow dots. White regions correspond to κ2/κ1 = 1± 0.03. Legend entries

denote upper limits of values of the cumulant ratios.

values of cumulants are expected to be influenced by enhanced fluctuations of conserved

charges in the vicinity of the critical point, rendering them a signal for the existence of

the critical point and a first-order phase transition in QCD [94, 95, 96]. In particular, it is

argued that, for systems crossing the phase diagram close to and above the critical point, the

sign of the third-order cumulant κ3 will change once [97], while the sign of the fourth-order

cumulant κ4 will change twice [98]. This is explained at length in Section 1.6.

The explicit volume dependence of the cumulants, which is typically divided out in the-

oretical calculations, is difficult to control in experiment. Therefore, it is customary to

consider ratios of cumulants, most commonly

σ2

µ
=
κ2

κ1

, Sσ =
κ3

κ2

, κσ2 =
κ4

κ2

, (3.22)

where µ denotes the mean, σ2 denotes variance, S denotes skewness, and κ denotes excess

kurtosis. Preliminary results from the Beam Energy Scan indeed suggest that the fourth-
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Figure 3.9: Contour plots of the cumulant ratio κ3/κ2 for the fourth (IV) EOS listed in Table

3.1. Coexistence (spinodal) regions are denoted with black (yellow) lines, and critical points

are marked with yellow dots. White regions correspond to κ3/κ2 = 1± 0.03. Legend entries

denote upper (lower) limits of positive (negative) values of the cumulant ratios.

order cumulant ratio κ4/κ2 exhibits non-monotonic behavior with the collision energy [104].

In this section, we will focus on results for the fourth (IV) set of characteristics listed

in Table 3.1. The choice of this set is arbitrary and does not reflect any preference for the

location of the QCD critical point, but simply serves as an illustration of the properties of

the VDF model which are qualitatively comparable for all obtained EOSs. In Figs. 3.8, 3.9,

and 3.10 we plot the cumulant ratios (3.22) in the (T, nB) and (T, µB) planes; we note here

that gray areas on these diagrams signify regions in which either the cumulant calculation is

invalid (inside the spinodal regions, visible in the (T, nB) diagrams) or where data has not

been produced (at very small values of nB, which affects the (T, µB) diagrams). Dramatic

increase in magnitudes of cumulant ratios as well as sudden changes in sign, observed in

regions close to and above the critical point, agree with the expectations for the behavior of

the cumulants described above and in Section 1.6. Interestingly, the effects of the nuclear

phase transition are clearly present even at very high temperatures (this has been also
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Figure 3.10: Contour plots of the cumulant ratio κ4/κ2 for the fourth (IV) EOS listed in

Table 3.1. Coexistence (spinodal) regions are denoted with black (yellow) lines, and critical

points are marked with yellow dots. White regions correspond to κ4/κ2 = 1± 0.03. Legend

entries denote upper (lower) limits of positive (negative) values of the cumulant ratios.

observed in Ref. [194]). This raises the question to what extent the presence of the nuclear

phase transition affects the interpretation of experimental data, either by damping the signal

originating at the QGP phase transition, or by acting as an imposter. Such questions could

be answered by comparing outcomes of simulations utilizing a VDF EOS with either nuclear

phase transition only, or both nuclear and quark-hadron phase transitions. Studies of this

type are planned for future research and are beyond the scope of this thesis.

3.5. Summary

In this chapter, we parametrized the vector density functional (VDF) model to describe two

first-order phase transitions: the experimentally observed nuclear liquid-gas phase transition,

and a postulated high-temperature, high-density phase transition intended to model the QGP

phase transition. We then described gross properties of the obtained family of EOSs based
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on several EOSs which are representative of the range of EOSs available in the parametrized

family. In particular, we focused on the behavior of the pressure, the speed of sound, and

the energy per particle as functions of the baryon density, as well as on the features of the

phase diagrams in the (T, nB) and (T, µB) planes and the cumulants of baryon number.
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CHAPTER 4

Implementation in a hadronic transport code

A significant part of work underlying this thesis was devoted to implementing and testing

the VDF equations of motion, Eqs. (2.79) and (2.80) with M = 0, in the hadronic transport

code SMASH [38]. This implementation is available in SMASH starting with the SMASH-2.1

release. As a hadronic transport code, SMASH simulates hadronic non-equilibrium dynamics

through numerically solving the Boltzmann equation. Below, we briefly sketch the theoretical

foundations of hadronic transport simulations and discuss some of the technical details of

the implementation. A brief introduction to the kinetic theory is provided in Appendix Q.

4.1. Transport simulations

The contents of this section are largely based on Ref. [177].

In statistical physics, a transport equation describes the time evolution of a distribution

function of a system of N particles fN(x,p), where we use a short-hand notation x =

(x1, . . . ,xN) and p = (p1, . . . ,pN). The distribution fN(x,p) can be understood as the

density of particles in the phase space, or equivalently as the probability that the i-th particle

has a given position xi and a given momentum pi, i = 1, . . . , N . From the Liouville theorem

(see Appendix Q.3) we know that the time evolution of fN satisfies

dfN
dt

=

(
∂fN
∂t

)
drift

+
dx

dt

∂fN
∂x

+
dp

dt

∂fN
∂p

= 0 . (4.1)

In practice, many of the most relevant features of the system are described by the 1-body
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distribution function f1(x1,p1), which gives the probability that any of the N particles in the

system has a given position x1 and a given momentum p1. The time evolution of f1(x1,p1)

is given by

∂f1

∂t
+
dx1

dt

∂f1

∂x1

+
dp1

dt

∂f1

∂p1

= Icoll , (4.2)

where on the right-hand side we introduced the collision integral Icoll, which is an often-used

common notation for all terms contributing to changes in f1 due to particle-particle collisions

(particles colliding into or out of the phase space volume element) and particle transforma-

tions such as decays or resonance formation. If the collision term is constructed according

to the assumption of molecular chaos (meaning that particles are not correlated neither be-

fore nor after a collision takes place), also known as the Stosszahlansatz, then Eq. (4.2) is

known as the Boltzmann equation. A formal derivation of the Boltzmann equation from

the Liouville theorem, Eq. (4.1), can be obtained using the BBGKY hierarchy of equations

(see Appendix Q.5 for a simplified derivation of the Boltzmann equation from the BBGKY

hierarchy, which is itself derived in Appendix Q.4). In the following, we will suppress the

subscript “1” and assume that f(x,p) always refers to a 1-body distribution function.

In the context of heavy-ion collision simulations, the Boltzmann equation is often also

called the Boltzmann-Uehling-Uhlenbeck (BUU) equation, the Vlasov-Uehling-Uhlenbeck

(VUU) equation, or the Boltzmann-Nordheim-Vlasov (BNV) equation. The specification

comes from considering the phase space distribution in the presence of a self-consistent mean

field U(x,p) entering the dynamics of the system through the single-particle Hamiltonian

H(1) =
√
p2 +m2 + U(x,p),[

∂

∂t
+
∂H(1)

∂p
∇x −

∂H(1)

∂x
∇p

]
f(t,x,p) = Icoll , (4.3)

where we inserted Hamilton’s equations of motion into the Boltzmann equation (4.2). In

cases where there are no collisions, Icoll = 0, the term “Vlasov equation” is also often used.

The function f(t,x,p) is a continuous distribution function for a given total number of

nucleons, denoted by A, and solving the Boltzmann equation is equivalent to obtaining the
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time evolution of f(t,x,p). (We note here that in general, heavy-ion collision simulations

evolve hundreds of hadron species, described by a system of hundreds of coupled Boltzmann

equations; the following discussion, treating explicitly the Boltzmann equation in the pres-

ence of nucleons only, can be straightforwardly generalized to include all necessary particle

species.) Numerically, given the initial condition in form of the distribution function at

some time t0, f(t0,x0,p0), we solve for the distribution at a slightly later time t = t0 + δt,

f(t0 + δt,x,p), and repeat the process until a final time t = tend is reached. In more detail,

the numerical solution of the VUU equation is achieved within a numerical approach known

as the method of test particles [195], which is based on the assumption that the continu-

ous phase space distribution f(t,x,p) of a system of A nucleons can be approximated by

the distribution of a large number N of discrete test particles with phase space coordinates(
xi(t),pi(t)

)
,

f(t,x, t) ≈ 1

NT

N∑
i=1

δ
(
x− xi(t)

)
δ
(
p− pi(t)

)
. (4.4)

Here, NT is the number of test particles per nucleon and N = NTA. Each test particle

contributes to the total charge in the system with a charge of the corresponding real particle

divided by NT (for example, a “nucleon test particle” contributes a baryon charge of 1/NT ),

so that the total charge in the simulation equals that of a system of A particles. The

cornerstone of the method of test particles is the realization that if we demand that these

test particles are propagated according to

dx

dt
=
∂H(1)

∂p
,

dp

dt
= −∂H(1)

∂x
, (4.5)

then the Vlasov equation, which is the left-hand side of Eq. (4.3), immediately follows from

the Liouville theorem. In other words, given some configuration of the positions and mo-

menta of the test particles at a time t0, which approximates the phase space distribution

f(t0,x,p) according to Eq. (4.4), we can propagate the test particles over a time dt using the

Hamilton equations, Eq. (4.5), and use the configuration of positions and momenta of the

propagated test particles to approximate f(t0 + dt,x,p). We note here that in SMASH, the
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equations of motion propagate the kinetic momentum of particles, see Eq. (2.76), which is

numerically more straightforward. An alternative approach, in which the canonical momenta

are propagated, is possible [196].

In practice, there exist two ways of realizing the method of test particles in hadronic

transport. Within the first approach, one initializes a system with NTA test particles,

which are then propagated according to the equations of motion. Scatterings are performed

according to cross sections that are scaled as σ/NT , where σ is the physical cross section,

which ensures that an average number of scatterings is the same as in a system of A particles.

Each test particle carries the charge of the corresponding real particle, but contributes to

the density with a scaling factor of 1/NT , which preserves the total baryon number evolved

in the simulation and, for NT � 1, results in a mean field that is a smoothed out version of

the mean field corresponding to A particles. This approach is sometimes referred to as the

“full ensemble”.

An alternative approach is known as “parallel ensembles” [197]. In this method, NT

instances of a system of A particles are created. Particles in each instance are propagated

according to the equations of motion, and scatterings are performed using the physical

cross section σ. Each test particle carries the charge of the corresponding real particle,

but contributes to the density and the corresponding mean field, which are calculated by

summing contributions from all NT instances of the system, with a scaling factor of 1/NT .

Evolving the NT systems with mean fields calculated in this fashion means that the systems

are not in fact independent, and their evolution due to the mean fields is shared. At the

same time, this approach is computationally much more efficient, as collision searches are

performed only within individual instances of the system, thus reducing the numerical cost

of performing the collisions within one event by a factor on the order of O(N2
T ), and the

overall cost of the simulation by a factor on the order of O(NT ) (this is because the parallel

ensembles mode evolves NT events at the same time, while the full ensemble mode evolves

only one event).
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It can be checked that these two simulation paradigms lead to the same results in typical

cases [198]. In this thesis we utilize the full ensemble approach to the test particle method, as

this is the primary method supported in SMASH. Recently, the option to run the simulations

in the parallel ensembles mode has been added to SMASH [199], and it is currently being

tested.

Let us discuss in some detail the numerical method used to evolve the test particles in

time. In SMASH, the positions and momenta of particles are advanced using the leapfrog

algorithm. In this method, the evolutions of positions and momenta are “interlaced” in the

following way: We start from some initial positions x0 and momenta p0. The momenta at

time t0 are advanced by half a time step to time t0 + 1
2
dt using forces calculated based on

positions at the initial time F (x0), p0 → p1/2. Then, the positions of particles are advanced

through the time step ∆t using the values of the momenta p1/2, x0 → x1. These positions

are used to calculate the forces on test particles F (x1), which are then used to update the

values of momenta from p1/2 to p3/2. Then positions x1 are advanced through the second

time step ∆t using the momenta p3/2, and so on. Thus within the leapfrog method, the

positions and momenta are updated at interleaved time points, so that the evolutions of x

and p “leapfrog” over each other. This is markedly different from Euler integration, in which

we would advance the positions from x0 to x1 using momenta p0, and advance the momenta

from p0 to p1 using forces calculated based on the particle positions x0 (see Fig. 4.1).

In fact, it can be shown that the leapfrog algorithm, although it requires the same number

of steps as the Euler integration (which is a first-order method), is a second-order method,

and consequently it leads to more stable solutions. Indeed, we have tested the quality of

solving the equations of motion using the SMASH leapfrog algorithm against the 4th-order

Runge-Kutta integrator by tracking the energy conservation throughout the simulations

(although energy should be conserved exactly by the Boltzmann equation, various effects

connected with the method of integration, density calculation, and other elements of the

simulation result in deviations from this theoretical expectation; studies of this nature are
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Initial state: x(t0), p(t0)

Take x0, p0 Calculate the force: F (x0)

Propagate by ∆t: p1 = p0 + F (x1)∆t,

x1 = x0 + p0∆t, t1 = t0 + ∆t

Does t1 = tend?
Substitute new initial state:

x0 = x1, p0 = p1, t0 = t1

no

Final state: x1, p1

yes

Initial state: x(t0), p(t0)

Calculate the force: F
(
x(t0)

)
Propagate p(t0) by 1

2
∆t:

p1/2 = p0 + F (x1)∆t
2

Take x0, p1/2

Propagate x0 by ∆t: x1 = x0 + p1/2∆t,

calculate the force: F (x1)

Propagate p1/2 by ∆t: p3/2 = p1/2 + F (x1)∆t,

update time: t1 = t0 + ∆t

Does t1 = tend?
Substitute new initial state:

x0 = x1, p1/2 = p3/2, t0 = t1

no

Final state: x1, p3/2

yes

Figure 4.1: A schematic representation of the Euler (top diagram) and leapfrog (bottom

diagram) integration algorithms.
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further discussed in Section 4.4). We confirmed that the two algorithms behave comparably

for the standard simulation time step of ∆t = 0.1 fm/c. At the same time, the leapfrog

algorithm is considerably more numerically efficient. We note here for completeness that

the leapfrog algorithm as implemented in SMASH misses the first step of advancing the initial

momenta by half a time step. Such an omission could be disastrous for applications of the

leapfrog integrator to problems with precise initial conditions, however, in SMASH the initial

conditions are always created by random sampling of the desired phase space distribution

with a large number of test particles. Advancing the initial momenta by half a time step

is in this case equivalent to another random sample of the phase space distribution, and in

result has no tangible consequences; this has been confirmed in tests.

Finally, we note that while the momentum changes due to the presence of potentials are

addressed in SMASH at evolution times separated by a constant time interval ∆t, particle-

particle collisions and decays can take place at any time during advancing the particle po-

sitions. As a result, in SMASH the propagation within one time step is performed in the

following way:

1. At t = t0: Take particles’ momenta p; find all collisions (and decays) that will occur

based on particle trajectories given by x(t0) + p∆t, and order them according to the

time at which they occur; identify the time of the first occurring collision (or decay) t′.

2. Propagate the particles in straight lines until t = t′.

3. At t = t′: perform the collision (decay), which in particular will produce new momenta

for the interacting particles; find collisions (decays) for the particles that have just

interacted, include them in the list of all collisions (decays); identify the time of the

next occurring collision (decay) t′′.

4. Propagate the particles until t = t′′, and repeat the above. Repeat steps 2-3 until

t = t0 + ∆t is reached.
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5. At t = t0 + ∆t: Update particles’ momenta according to the equations of motion, with

forces calculated at the propagated positions, F
(
x(t+ ∆t)

)
.

Steps 1-5 are then repeated for each time step until the end of the simulation.

In the next section, we discuss some details of the density and mean field calculation in

SMASH. There are, however, many other features and properties of SMASH not presented in

this brief overview. A complete SMASH User Guide can be found online [200], and similarly

for the SMASH development documentation [201].

4.2. Calculation of mean fields

Parts of this section are based on Ref. [177].

For an evolution without mean fields (that is for an evolution which does not require

density calculations) it is most natural to take the number of test particles exactly corre-

sponding to the actual number of nucleons present in the system, N = A, NT = 1. However,

employing mean-fields dependent on local density and its gradients requires adopting an

approach in which the statistical noise due to a finite number of test particles is suppressed.

This is especially important in the case of models with competing repulsive and attractive

potentials of large magnitudes, where relatively small numerical fluctuations can produce

significant errors in the mean field calculation. Thus, for example, for studies of nuclear

matter with average density around the saturation density n0, a number of test particles per

nucleon NT = 100 is often used.

The local baryon current can be defined on a discrete lattice, and the current at a given

lattice node can be calculated as a sum of contributions from all test particles which are in

the volume element Vi corresponding to that lattice node,

jµ(ri) =
1

NT

1

Vi

∑
k∈Vi

Bk
Πµ
k

Π0
k

, (4.6)
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where Bk is the baryon charge of the k-th test particle. This prescription, known as the

particle-in-cell method, naturally reproduces the baryon number in a given volume element,

B(i) = j0(i)Vi =
N(i)

NT

, (4.7)

where N(i) is the (net) number of test particles in Vi. In practice, in order for the local

densities and currents to be smooth enough, a prescription is used in which currents at a

given lattice node i are weighted sums of contributions from all test particles in some chosen

volume Vs around that lattice node i, with Vs taken to be larger than the volume element

Vi, Vs > Vi. In this case the baryon current is given by

jµ(ri) =
∑
k∈Vs

Bk
Πµ
k

Π0
k

S(ri − rk) , (4.8)

where the weight S(ri− rk) is known as the smearing function (often also referred to as the

smearing factor or the smearing kernel), normalized such that∑
i

Vi S(ri − rk) =
1

NT

. (4.9)

Note that the volume Vs from which test particles contribute to the density at a given

node effectively establishes the range of the interaction and therefore it is a parameter of

the algorithm that has a physical relevance; while this smearing range can be adjusted to

reproduce certain physical behaviors of studied systems, in most applications it is often set

at around r ≈ 2 fm [202]. Having calculated the current jµ, current gradients are usually

calculated by taking a finite difference of baryon current values at adjacent lattice nodes, for

example

dj0(xi, yj, zk)

dx
=
j0(xi + 1, yj, zk)− j0(xi − 1, yj, zk)

2Lx
, (4.10)

where Lx is the lattice spacing in the x-direction. Consequently, derivatives calculated in

hadronic transport can only resolve structures of size bigger than the lattice spacing.

To achieve a higher resolution, one can in principle use a smaller lattice spacing, however,

the computational cost of using finer lattices is often prohibitive. This is because finer lattices
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not only mean that there are more lattice nodes at which the baryon current is computed,

but more importantly, the number of test particles per particle must be increased so that

the number of test particles per lattice cell is high enough to ensure a smooth density calcu-

lation. This significantly affects the time cost of the simulation, and the effect is especially

pronounced for simulations run in the full ensemble mode, where the number of performed

particle-particle collisions scales as N2
T . As a result, one needs to find a compromise between

the resolution and a viable computation time. In practice, the lattice spacing in SMASH is

often chosen at a typical value of 1 fm (which is also the case in this work), and so the

constraint on the resolution coming from the range of the smearing factor is typically more

important.

The time derivatives of densities and currents are most often also calculated using the

finite difference method, based on the difference between the values of the baryon current at

times t0 + δt and t0 at each node. The resolution here naturally depends on the time step

∆t used to advance the evolution.

Finally, because the positions of the test particles take continuous values, while the lattice

nodes are located at discrete positions xi, a question arises what density should be used for

the mean-field evolution of a test particle located at a position x 6= xi ∀i. Currently in SMASH

this is treated within a zeroth-order approximation, where the density at x is assumed to be

equal to the density at the nearest lattice node. Naturally, this approximation is good only

as long as the density doesn’t change appreciably over distances on the order of Li/
√

2.

The existing transport codes employ various numerical approaches for calculating the

effects of the mean-field potentials (for an exhaustive comparison of mean-field calculations

in nuclear matter simulated in several different transport codes, see Ref. [202]). In the case

of results presented in Chapter 5, we employ a triangular smearing function, originating from

the lattice Hamiltonian method of solving nuclear dynamics [203], and derivatives based on

the finite difference method. Below, we briefly discuss and compare three smearing schemes

available in SMASH together with some additional details on the calculation of derivatives.
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The Gaussian smearing scheme is the original smearing available in SMASH, while the discrete

and triangular smearing have been added as part of this work. Likewise, we introduced the

option to calculate the gradients of currents using the chain rule or direct finite difference

derivatives scheme. All of the options discussed below are available starting with the SMASH-

2.1 release. We note here for clarity that although we always refer to calculating the baryon

current, in SMASH it is also possible to calculate currents of different particle charges such as,

e.g., isospin.

4.2.1 Discrete smearing

Within a smearing scheme which in SMASH is referred to as “discrete smearing”, each test

particle contributes a fraction Fc = 1/a of its charge to the lattice cell in which it is located

(center cell) and a fraction Fn = (1 − Fc)/6 = (a − 1)/6a of its charge to each of its six

nearest neighbor lattice cells, that is nearest lattice cells in the −x, +x, −y, +y, −z, and
+z directions. In order for Fc > Fn to hold, the discrete smearing parameter must satisfy

Fc ≥ 1/7; an often used choice is Fc = 1/3. Such weighted contributions are then further

scaled by the number of test particles per particle NT (if it hasn’t been already taken into

the account in the charge of the test particle) and the volume of the cells Vc to obtain the

baryon current at each node. This smearing scheme has the advantage that the integration

of the baryon density calculated on the lattice equals the number of baryon charges present

within the bounds of the lattice exactly, meaning that the smearing conserves the baryon

number. Additionally, it is very computationally efficient. However, at the same time it

often requires using a very large number of test particles per particle NT , on the order of

NT ≈ 1000, to provide reliable results. This considerably lowers the efficiency of this scheme

in the full ensemble mode.
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4.2.2 Triangular smearing

In the smearing scheme referred to in SMASH as “triangular smearing”, originating from the

lattice Hamiltonian method of solving nuclear dynamics [203], each test particle contributes

to the baryon current at a given node with a smearing factor

S(ri − r) =
B

NT (nLx)
2 (nLy)

2 (nLz)
2 g(∆x)g(∆y)g(∆z) , (4.11)

where

g(∆q) =
(
nLq − |∆q|

)
θ
(
nLq − |∆q|

)
. (4.12)

Here, ri is the position of the node, r is the position of the test particle, B is the baryon

charge of the contributing test-particle (not scaled by NT ), Lx, Ly, Lz are the lattice spacings

in the x-, y-, and z-direction, the smearing parameter n is an integer which determines the

range of S in terms of the lattice spacings, and ∆x, ∆y, ∆z are the x, y, and z components

of ri − r. Because the triangular smearing is linear, the summation of the resulting baryon

density over volume integrates to the number of baryons present within the bounds of the

lattice exactly (this is because Euler integration is exact for a linear function). Additionally,

the triangular smearing is very efficient numerically, and a smooth density calculation is

obtained for a standard number of test particles per particle on the order of NT ≈ 100.

4.2.3 Gaussian smearing

Finally, the type of smearing referred to in SMASH as “Gaussian smearing” and present in the

original release of SMASH uses a Lorentz covariant Gaussian kernel as its basis [204]. Starting

from a smearing kernel in the rest frame of a test particle defined as

K(r − ri) =
1(

2πσ2
)3/2

exp

(
−
(
r − ri

)2

2σ2

)
, (4.13)

one can perform a boost to the computational frame in the usual manner. Additionally

adopting a normalization ensuring that volume integrations over K(r− ri) are also Lorentz
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covariant leads to the expression for the baryon current in the computation frame of the

form

jµcomp(r) =
γ

NT

(
2πσ2

)3/2

N∑
i=1

Bi
Πµ
i

Π0,i

exp

(
−
(
Λi(r − ri)

)2

2σ2

)
, (4.14)

where γ =
(
1 − v2

)−1/2 is the Lorentz factor, the sum is performed over all test particles,

Bi is the baryon charge of the i-th test particle (not scaled by NT ), and Λi is the Lorentz

transformation matrix from the test particle’s rest frame to the computational frame. The

Gaussian smearing is characterized by two parameters: the first of them is the Gaussian

width, usually taken to be σ = 1 fm, and the second is a finite cut-off radius expressed in

units of the Gaussian width, often taken to be rc = 4σ, which is the radius beyond which the

test particle’s contribution to the density is considered negligible. This cut-off is introduced

to save the computation time and not evaluate near-zero contributions to density at distances

far from a given test particle; for a given chosen rc, the Gaussian smearing kernel is again

normalized such that it integrates to 1/NT , as it should.

While the use of exponentials is numerically very costly, the Gaussian smearing has the

advantage in that it is Lorentz covariant and therefore properly treats relativistic effects

through the contraction of the smearing kernel in the direction of a test particle’s motion

(in other smearing schemes, these effects are often dealt with by using ad-hoc methods such

as, for example, increasing the fineness of the lattice in a direction in which the system is

expected to be contracted). Additionally, using the fact that the Gaussian smearing kernel

is everywhere differentiable, in SMASH the derivatives of the baryon current can be calculated

analytically (naturally, only in the case of the Gaussian smearing). For example, the gradient

of the baryon current, Eq. (4.14), is given by

djµ

dr
=

γ

NT

(
2πσ2

)3/2

N∑
i=1

Bi
Πµ
i

Π0,i

exp

(
−(Λi(r − ri))2

2σ2

)
Λ2
i (r − ri)
σ2

, (4.15)

where we can see that the derivative has been applied directly to the smearing function.

Consequently, these “Gaussian gradients” do not depend on the size of the lattice spacing, but
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rather on the Gaussian smearing parameters σ and rc. In certain situations this may prove

to be problematic: tests have shown that because of this feature, rapidly varying gradients

are not reproduced well due to the fact that the analytic expressions for derivatives are

“smoothed out” over large distances. Additionally, this derivative scheme misses a possibly

important term when mean fields are present, as in this case the kinetic momentum has itself

a spacetime-dependence through Πµ
i = pµi −

∑
k A

µ
k(x), see Eq. (2.76); we show this explicitly

below.

Finally, the complex functional form of the Gaussian smearing factor means that the sum

of its contributions to discrete lattice nodes does not add up to 1/NT (this is because the

Euler integration is not exact in the case of a smearing kernel of the form Eq. (4.13)), which

means that the baryon number is not completely preserved on the lattice.

4.2.4 Gaussian smearing and the time derivative of vector baryon current

Let us consider the time derivative of the vector baryon current calculated within the Gaus-

sian smearing scheme, Eq. (4.14), which we rewrite here with explicit time dependence,

j
(
x, t
)

=
∑
i

Πi(t)

Π0,i(t)
K
(
x− xi(t)

)
, (4.16)

where Πi and Π0,i denote the spatial and temporal components of the kinetic momentum

Πµ, respectively, and K is the smearing factor which includes the baryon number coefficient

Bi as well as the normalization for clarity of calculations. The current at the time t+ ∆t is

given by

j
(
x, t+ ∆t

)
=
∑
i

Πi(t+ ∆t)

Π0,i(t+ ∆t)
K
(
x− xi(t+ ∆t)

)
, (4.17)

which we can expand around t,

j
(
x, t+ ∆t

)
=

∑
i

Πi(t) + ∆t∂Πi

∂t

Π0,i(t) + ∆t
∂Π0,i(t)

∂t

[
K
(
x− xi(t)

)
+ ∆t

∂xi
∂t

∂K

∂xi

]
+O

(
(∆t)2

)
≈
∑
i

Πi(t) + ∆t∂Πi

∂t

Π0,i(t)

(
1− ∆t

Π0,i

Πi

Π0,i

∂Πi(t)

∂t

)[
K
(
x− xi(t)

)
+ ∆t

∂xi
∂t

∂K

∂xi

]
. (4.18)
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Keeping only terms up to linear order in ∆t results in

j
(
x, t+ ∆t

)
≈

∑
i

Πi(t)

Π0,i(t)
K
(
x− xi(t)

)
+ ∆t

∑
i

1

Π0,i(t)

[
m2
i

Π2
0,i

]
∂Πi(t)

∂t
K
(
x− xi(t)

)
+ ∆t

∑
i

Πi(t)

Π0,i(t)

[
∂xi
∂t

∂K

∂xi

]
, (4.19)

where we have used the fact that Π2
0,i = Π2

i +m2. We can then calculate

∂

∂t
j
(
x, t
)
≡ lim

∆t→0

j
(
x, t+ ∆t

)
− j
(
x, t
)

∆t

=
∑
i

1

Π0,i(t)

[
m2
i

Π2
0,i

]
∂Πi(t)

∂t
K
(
x− xi(t)

)
+
∑
i

Πi(t)

Π0,i(t)

[
∂xi
∂t

∂K

∂xi

]
. (4.20)

By comparing with Eq. (4.15), adapted to the case of the derivative with respect to time, one

can see that the analytical derivative used in the Gaussian smearing scheme includes only

the second term in the above expression. This, in particular, misses contributions coming

directly from changes in the momentum due to the mean-field potential.

4.2.5 Chain rule and direct finite difference derivatives

A convenient form of the equation of motion for the kinetic momentum in the VSDF model,

Eq. (2.80), has been derived in Appendix I.4, Eq. (I.54), which we rewrite here for the VDF

case,

dΠ

dt
=

K∑
k=1

{
−
(
∇A0

k + ∂0Ak

)
+

Π

Π0

×
(
∇×Ak

)}
. (4.21)

The finite difference derivatives of the vector field
∑K

k=1A
µ
k , where A

µ
k is given by Eq. (2.90),

repeated here for convenience

Aµk(x;Ck, bk) = Ckn
bk−2
B jµ , (4.22)
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can be performed in two ways. We can apply the chain rule to the derivative expressions in

Eq. (4.21), obtaining

K∑
k=1

∇A 0
k =

K∑
k=1

Ckn
bk−3
B

(
(bk − 2)

(
∇nB

)
j0 + nB

(
∇j0

))
, (4.23)

K∑
k=1

∂

∂t
Ak =

K∑
k=1

Ckn
bk−3
B

(
(bk − 2)

(
∂nB
∂t

)
j + nB

(
∂j

∂t

))
, (4.24)

K∑
k=1

∇×Ak =
K∑
k=1

Ckn
bk−3
B

(
(bk − 2)

(
∇nB

)
× j + nB

(
∇× j

))
, (4.25)

and then use the finite difference derivatives of the rest frame density nB and current jµ

at a given node to obtain
∑K

k=1 ∇A 0
k ,
∑K

k=1 ∂Ak/∂t, and
∑K

k=1 ∇ × Ak at that node.

Alternatively, we can use the values of nB and jµ at a given node to compute
∑K

k=1A
µ
k at

that node, and then compute the finite difference derivatives of the relevant terms. As an

example, let us consider the gradient of the zeroth component of the field
∑K

k=1 ∇A0
k. The

z-direction component of the gradient is then simply given by

K∑
k=1

∇zA
0
k(z0) =

∑K
k=1 A

0
k(z0 + ∆z)−∑K

k=1A
0
k(z0 −∆z)

2∆z
, (4.26)

where ∆z is the lattice spacing the z-direction.

We refer to the former method of calculating derivatives as the chain rule finite difference

derivative and to the latter as the direct finite difference derivative. In our studies, the

direct finite difference derivative has proven to be numerically more stable, as evaluated by

the degree to which energy is conserved in the simulation.

4.3. Potentials in SMASH

SMASH was introduced with a density-based mean-field potential of the Skyrme parametriza-

tion type, which we will refer to simply as the “Skyrme” potential. Based on a semi-relativistic

generalization of the rest-frame Skyrme potential, the equation of motion for the kinetic mo-
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mentum as used in the SMASH Skyrme mean-field mode is given by

dΠ

dt
=

∂U

∂nB

[
−
(
∇j0 +

∂j

∂t

)
+
dx

dt
×
(
∇× j

)]
, (4.27)

where nB ≡
√
jµjµ is the rest frame baryon density and U is the rest frame single-particle

potential given by

U(nB) = a

(
nB
n0

)
+ b

(
nB
n0

)τ
, (4.28)

where n0 is the saturation density, so that

∂U

∂nB
=

a

n0

+ bτ
nτ−1
B

nτ0
. (4.29)

(We note here that SMASH allows the user to vary the values of the Skyrme parameters a, b,

and τ , but uses a fixed value of saturation density n0 = 0.168 fm−3.) Importantly, while Eq.

(4.27) has a form similar to that of the equations of motion in relativistic electrodynamics,

it is not fully relativistic, as we show below.

Within the work presented in this thesis, we implemented the VDF potential and the

corresponding fully relativistic equations of motion in SMASH. Using the VDF model, it is

straightforward to reproduce the Skyrme potential of the form given in Eq. (4.28) by using

the vector field
∑K

k=1 ∇Aµk =
∑K

k=1 C̃k(nB/n0)bk−2(jµ/n0) (see Appendix L for more details

on the conversion of the VDF interaction coefficients to units of energy) with

K = 2 , C̃1 = a , b1 = 2 , C̃2 = b , b2 = τ + 1 , n0 = 0.168 fm−3 . (4.30)

This possibility is very useful for comparisons of simulation results obtained using the two

potentials. On the theoretical level, comparing Eq. (4.27) with Eq. (4.21), supported by

Eqs. (4.23-4.25), immediately reveals that the SMASH Skyrme equation of motion, Eq. (4.27),

misses contributions proportional to (∇nB)j0, (∂nB/∂t)j, and ∇nB × j. Notably, the

VDF equation of motion, Eq. (4.21), becomes the SMASH equation of motion, Eq. (4.27), for

j0 ≈ nB, which is the nonrelativistic limit.
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In addition to the Skyrme potential, SMASH also includes the option to use a symmetry

potential, which is of relevance for systems characterized by a non-zero isospin asymmetry.

This possibility is at this time only available for simulations using the Skyrme potential and

therefore will not be discussed here.

4.4. Comparison of different numerical procedures

As part of the implementation of the VDF equations of motion and different baryon current

calculation schemes in SMASH, we thoroughly compared their behavior against the original

SMASH Skyrme potentials and the Gaussian smearing scheme. In particular, we extensively

studied deviations from perfect energy conservation in systems initialized at different points

of the phase diagram, with different EOSs, characterized by various geometries, using differ-

ent smearing and derivative calculation schemes, and employing different mean fields.

We note that problems related to energy conservation are present in many hadronic trans-

port codes and can be directly linked not only to the integration algorithm for the equations

of motion, but also to the particular details of density and density gradient calculations

(including the influence of statistical noise fluctuations on the magnitude of local density

gradients) as well as to the readout of these quantities from the discrete lattice. Although

methods ensuring energy conservation are known [205] for transport simulations dealing with

nonrelativistic systems, an application of such approaches in relativistic transport codes has

not been attempted.

One of the best ways to test the robustness of the integration of equations of motion is to

study systems evolving under extreme conditions. An example of such a situation is uniform

nuclear matter initialized at a low temperature inside the spinodal region of the nuclear

phase transition. This system is mechanically unstable, and because the initialized matter is

not perfectly uniform due to the finite number of test particles used to sample the uniform

density profile, there are initial density fluctuations which over time will be magnified by
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the mean field, leading to a spontaneous separation into two coexisting phases: a nuclear

liquid and a gas of nucleons (more details on this and other simulations mentioned in this

section will be provided in Chapter 5). This separation causes the system to exhibit steep

density gradients, and the degree to which the density calculation and the integration of the

equations of motion deals well with these gradients is reflected in the deviation of the energy

conservation from the ideal case, where the energy of the whole system is conserved over

time, dEsystem/dt = 0. This deviation is best measured as the energy difference per particle,

denoted here as ∆E = (Efinal − Einitial)/N .

While the total energy of the system should stay constant, the kinetic energy and the

mean-field energy are allowed to change their values, and in fact it is expected that they do

so, since the non-optimal initial value of the mean-field energy is what drives the system to

undergo a phase separation in the first place. Here, the evolution of the system can be, to a

zeroth degree, captured within the ratio of the final mean-field energy of the system to the

initial mean-field energy, RMF = EMF,final/EMF,initial.

Finally, an important part of testing a given scheme for integrating the equations of

motion is keeping track of the amount of time it takes to simulate a single event tsim, as

typical simulations of heavy-ion collisions require on the order of 1,000 or even 10,000 events.

For the ballpark calculations presented here we used a personal computer with a 2.6 GHz

processor and 16 GB of memory.

In Tables 4.1, 4.2, and 4.3 we show the values of ∆E (in MeV/nucleon), RMF, and tsim (in

minutes), obtained from simulations initializing uniform nuclear matter in a box of side 10 fm

with periodic boundary conditions (SMASH Box modus) at T = 1 MeV and nB = 0.25 n0,

and averaged over 10 events. The lattice used for the density calculation had 10 nodes per

side, so that Lx = Ly = Lz = 1 fm, and we turned off all collisions and decays between

the test particles to focus on the effects of the mean-field calculation. We tested different

smearing schemes: Gaussian, triangular, and discrete, at different values of their respective

parameters (with the Gaussian width always equal σ = 1 fm), as well as different derivative
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Table 4.1: Values of ∆E (in MeV/nucleon), RMF, and tsim (in minutes) for uniform nuclear

matter simulated in a box with periodic boundary conditions, initialized in the spinodal

region of the nuclear phase transition, as calculated using the Skyrme potential for differ-

ent smearing schemes (“Sm.”, with abbreviations for Gaussian (“G.”), triangular (“tr.”), and

discrete (“dis.”) smearing), values of smearing parameters (“par.”), numbers of test particles

(“NT ”), and derivative modes (“∇”). Gaussian smearing always used a width of σ = 1 fm/c.

Uniform matter in a box, Skyrme potential: T = 1 MeV, nB = 0.25 n0, tend = 200 fm.

Sm. par. NT

Gaussian ∇ finite ∇ (chain rule)

∆E RMF tsim ∆E RMF tsim

G. rc = 4 20 2.40± 0.21 1.36± 0.04 0.74 1.96± 0.21 1.34± 0.02 0.53

G. rc = 2 20 1.30± 0.24 1.15± 0.02 0.10 2.39± 0.23 1.39± 0.03 0.08

G. rc = 4 200 1.85± 0.11 1.39± 0.01 7.22 1.25± 0.09 1.37± 0.02 4.68

G. rc = 2 200 −0.04± 0.07 1.08± 0.02 1.11 1.41± 0.12 1.45± 0.02 0.78

tr. n = 2 200 — — — 1.40± 0.08 1.43± 0.02 0.54

tr. n = 4 200 — — — 0.07± 0.04 1.01± 0.00 2.60

dis. Fc = 1
3

200 — — — 3.66± 0.20 1.43± 0.02 0.21

dis. Fc = 1
3

1000 — — — 2.02± 0.19 1.51± 0.02 2.96

calculation schemes: Gaussian, chain rule finite difference, and direct finite difference, for

both the original SMASH Skyrme potential, Eq. (4.28), and the implemented VDF potential

reproducing the SMASH Skyrme potential, Eq. (4.30), with Skyrme parameters taken at their

usual values of a = −209.2 MeV, b = 156.4 MeV, and τ = 1.35. The difference between

the two models, as discussed in Section 4.3, is that the Skyrme potential is semi-relativistic,

while the VDF potential is fully relativistic.

The direct finite difference derivatives are only available for the VDF model, and Gaussian
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Table 4.2: Values of ∆E (in MeV/nucleon), RMF, and tsim (in minutes) for uniform nuclear

matter simulated in a box with periodic boundary conditions, initialized in the spinodal

region of the nuclear phase transition, as calculated using the VDF potential for different

smearing schemes (“Sm.”, with abbreviations for Gaussian (“G.”), triangular (“tr.”), and dis-

crete (“dis.”) smearing), values of smearing parameters (“par.”), numbers of test particles

(“NT ”), and derivative modes (“∇”). Gaussian smearing always used a width of σ = 1 fm/c.

Uniform matter in a box, VDF potential: T = 1 MeV, nB = 0.25 n0, tend = 200 fm.

Sm. par. NT

Gaussian ∇ finite ∇ (chain rule)

∆E RMF tsim ∆E RMF tsim

G. rc = 4 20 2.26± 0.17 1.35± 0.02 0.72 1.88± 0.22 1.35± 0.03 0.46

G. rc = 2 20 1.29± 0.34 1.14± 0.03 0.11 2.47± 0.21 1.39± 0.03 0.08

G. rc = 4 200 1.73± 0.12 1.39± 0.01 7.14 1.24± 0.09 1.36± 0.02 4.48

G. rc = 2 200 −0.02± 0.09 1.08± 0.02 1.11 1.38± 0.13 1.45± 0.02 0.79

tr. n = 2 200 — — — 1.38± 0.09 1.43± 0.02 0.50

tr. n = 4 200 — — — 0.07± 0.04 1.01± 0.00 2.46

dis. Fc = 1
3 200 — — — 4.25± 0.18 1.40± 0.01 0.23

dis. Fc = 1
3 1000 — — — 2.11± 0.18 1.51± 0.02 2.92

derivatives only make sense when used together with the Gaussian smearing. Additionally,

finite difference derivatives properly account for the time derivative of the baryon current,

as already discussed in Section 4.3. Table 4.1 focuses on results using the Skyrme potential,

while Tables 4.2 and 4.3 show results using the VDF potential (the first of these tables

compares the performance of Gaussian versus finite difference chain rule derivatives, and the

second compares the performance of chain rule versus direct finite difference derivatives).

For an easier analysis of the simulations results shown in Tables 4.1, 4.2, and 4.3, we color

coded the most important cases. A red font marks simulation schemes which result in a com-
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Table 4.3: Values of ∆E (in MeV/nucleon), RMF, and tsim (in minutes) for uniform nuclear

matter simulated in a box with periodic boundary conditions, initialized in the spinodal

region of the nuclear phase transition, as calculated using the VDF potential for different

smearing schemes (“Sm.”, with abbreviations for Gaussian (“G.”), triangular (“tr.”), and dis-

crete (“dis.”) smearing), values of smearing parameters (“par.”), numbers of test particles

(“NT ”), and derivative modes (“∇”). Gaussian smearing always used a width of σ = 1 fm/c.

Uniform matter in a box, VDF potential: T = 1 MeV, nB = 0.25 n0, tend = 200 fm.

Sm. par. NT

finite ∇ (chain rule) finite ∇ (direct)

∆E RMF tsim ∆E RMF tsim

G. rc = 4 20 1.88± 0.22 1.35± 0.03 0.46 1.85± 0.25 1.36± 0.02 0.46

G. rc = 2 20 2.47± 0.21 1.39± 0.03 0.08 2.24± 0.21 1.41± 0.04 0.09

G. rc = 4 200 1.24± 0.09 1.36± 0.02 4.48 1.19± 0.07 1.38± 0.02 4.59

G. rc = 2 200 1.38± 0.13 1.45± 0.02 0.79 1.28± 0.08 1.47± 0.02 0.78

tr. n = 2 200 1.38± 0.09 1.43± 0.02 0.50 1.29± 0.09 1.45± 0.01 0.48

tr. n = 4 200 0.07± 0.04 1.01± 0.00 2.46 0.07± 0.03 1.01± 0.00 2.55

dis. Fc = 1
3

200 4.25± 0.18 1.40± 0.01 0.23 4.13± 0.24 1.41± 0.02 0.23

dis. Fc = 1
3

1000 2.11± 0.18 1.51± 0.02 2.92 2.04± 0.15 1.52± 0.02 2.90

pletely incorrect evolution. For all of these cases, in each event the system fails to separate

at all or the degree of separation is very low, which can be seen from the low values of RMF.

This failure to undergo the spinodal decomposition is connected to a faulty combination of

density and gradient calculation schemes; for example, in the case of the triangular smearing

with the range parameter n = 4 (corresponding to the smearing range equal 4Li = 4 fm),

the intrinsic density variations due to the finite number of test particles are spread over a

considerable volume, so that fluctuations at any given part of the box never become large
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enough to sustain a spinodal breakup. With orange font we denoted simulation schemes

which result in the deviation from energy conservation larger than ∆E = 2 MeV/nucleon,

while green font denotes simulation schemes where ∆E ≤ 1.5MeV/nucleon. The best per-

forming simulations are those utilizing finite difference derivatives and either the Gaussian

smearing scheme at NT = 200 and rcut = {2σ, 4σ} or the triangular smearing with NT = 200

and the triangular smearing range parameter n = 2. We see that using Gaussian derivatives

is strongly disfavored in most cases, which is understood to be a consequence of not properly

resolving the density gradients in this derivative scheme; indeed, by construction, Gaussian

derivatives are affected by smearing in the same manner as the density calculation, making

the effects of density fluctuations highly non-local. We also found that among the best per-

forming simulation schemes mentioned above, characterized by ∆E ≤ 1.5MeV/nucleon, the

simulation time for the Gaussian smearing with rcut = 4σ is significantly longer than in the

other two cases. Additionally, simulations utilizing the VDF model show that using direct

finite difference derivatives leads to a further improvement in energy conservation.

To conclude our study of violations of the energy conservation in hadronic transport,

we simulated systems initialized at different points of the phase diagram, where we also

varied the simulation time tend and the time step ∆t, both measured in fm/c. In these

simulations, we used a parametrization of the VDF model reproducing the fourth (IV) set of

characteristics listed in Table 3.1 (the parameters of this potential can be found in Appendix

L), which describes nuclear matter with two phase transitions: one corresponding to the

ordinary nuclear matter liquid-gas phase transition, and one corresponding to a possible

QGP-like phase transition with the critical temperature T (Q)
c = 100 MeV, the critical density

n
(Q)
c = 3.0n0, and the boundaries of the spinodal region at T = 0 given by ηL = 2.50n0 and

ηR = 3.32n0, where n0 is the saturation density of nuclear matter, n0 = 0.160 fm−3 (this

and similar EOSs are discussed in Chapter 3, while a detailed discussion of the results of

simulations using the chosen EOS is given in Chapter 5). For the density and gradients

calculation, we used triangular smearing with the triangular smearing parameter n = 2 and
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Table 4.4: Values of ∆E (in MeV/nucleon), RMF, and tsim (in minutes) for uniform nuclear

matter simulated in a box with periodic boundary conditions, initialized for a series of baryon

densities (“nB”, in units of the saturation density n0 = 0.160 fm−3), temperatures (“T ”, in

MeV), and evolution times (“tend”, in [fm/c]) while varying the number of test particles (“NT ”)

and the time step (“∆t”, in [fm/c]), as calculated using the VDF potential with two phase

transitions, triangular smearing with n = 2, and direct finite difference derivatives.

nB T tend NT ∆t ∆E RMF tsim

0.25 1 200 200 1.0 1.496± 0.121 1.455± 0.012 0.09

0.25 1 200 200 0.1 1.435± 0.121 1.463± 0.012 0.53

0.25 1 200 200 0.01 1.424± 0.117 1.458± 0.011 4.71

0.25 1 400 200 0.1 1.784± 0.114 1.465± 0.014 1.04

0.25 1 200 500 0.1 1.295± 0.104 1.478± 0.014 1.64

0.25 25 200 200 0.1 0.138± 0.023 1.002± 0.001 0.54

1.00 1 200 200 0.1 0.012± 0.001 1.0± 1.2× 10−5 3.27

3.00 1 50 50 0.1 1.903± 0.087 1.054± 0.004 0.59

3.00 50 50 50 0.1 0.714± 0.040 1.031± 0.004 1.06

3.00 125 50 50 0.1 0.324± 0.042 1.004± 0.001 0.82

finite difference direct derivatives. As previously, the systems were initialized in a box of

size 10 fm with periodic boundary conditions, the lattice used had 10 nodes per side, and

we averaged over 10 events.

A representative collection of results of these simulations is gathered in Table 4.4. First,

in the case of nuclear matter initialized in the spinodal region of the nuclear phase transition,

at nB = 0.25n0 and T = 1 MeV, we see that the degree to which the energy is not conserved

depends on the time step ∆t, with smaller unphysical contributions to the energy for smaller
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values of ∆t. Consequently, the violation of energy conservation is seen to occur partially due

to errors stemming from the numerical integration of the equations of motion. However, very

small time steps ∆t lead to significant increases in the simulation time, therefore obtaining

greater accuracy must be balanced with practical considerations.

We also find that doubling the duration of a simulation tend does not lead to doubling of

the unphysical energy gain ∆E. This underscores the fact that the rapid non-equilibrium

evolution of the system undergoing a spontaneous spinodal decomposition leads to the most

significant contributions to the violation of energy conservation. In other words, once the

spinodal decomposition has taken place (which for the case of the nuclear spinodal decom-

position at T = 1 MeV, considered here, occurs around t ≈ 100 fm/c), the evolution of the

system is shown to be more smooth.

Next, we consider the case of nuclear matter initialized deep inside the spinodal region of

the QGP-like phase transition, at nB = 3.0n0 and T = 1 MeV. Similarly to the spontaneous

spinodal decomposition in ordinary nuclear matter, we can see that the unphysical energy

gain ∆E is substantial. (We note that the relatively small values of RMF obtained in this case

do not indicate an incorrect evolution, unlike in the example of the spinodal decomposition

in ordinary nuclear matter. This can be understood as follows: After the nuclear spinodal

fragmentation occurs, nearly all test particles can be found in the region where the nuclear

liquid drop forms, and consequently the change in the mean-field energy of the system

roughly corresponds to the difference between the mean-field energy at nB = 0.25n0 and

the mean-field energy at nB = n0. In contrast, during the spinodal decomposition due to

the QGP-like phase transition, the system separates into a “less dense” (nB ≈ 2.13n0) and a

“more dense” (nB ≈ 3.57n0) phase, and the corresponding changes in the mean-field energies

of these parts of the system are opposite in sign. Consequently, the total change in the

mean-field energy is relatively smaller in the latter case.) At the same time, ∆E decreases

appreciably for an initialization at nB = 3.0n0 and T = 50 MeV; based on the phase diagram

of the chosen VDF EOS (Fig. 3.6), we can see that at this higher temperature the widths
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of the spinodal and coexistence regions are smaller than at T = 1 MeV, which likely leads

to less steep density gradients developing in the system and through that prevents large

unphysical energy gains. Furthermore, the results obtained for systems initialized above the

critical point of either of the transitions (T = 25 MeV and T = 125 MeV for the nuclear and

QGP-like phase transition, respectively) show values of ∆E that are fractions of the values

obtained at T = 1 MeV. This is similarly understood to be a consequence of the fact that

at high temperatures, the thermal noise prevents the system from forming any sustained

density gradients. Note that by construction, the VDF potential does not depend on the

temperature; therefore, the differences observed in the deviations from energy conservation

at different temperatures can be entirely assigned to the presence or lack of non-uniform

density regions in the simulated systems.

Finally, we can easily see that ∆E is negligible for the initialization at the equilibrium

point of nuclear matter, that is at nB = n0 and T = 1 MeV. This is, naturally, connected

with the fact that at the equilibrium point of nuclear matter the forces acting on the system

are vanishing and, at the same time, any fluctuations away from equilibrium decay fast,

leading to only minuscule violation of the conservation of energy.

In general, we conclude that contributions to ∆E are large for systems initialized in

regions of the phase diagram where the density gradients, and therefore forces acting on the

test particles, are also large, e.g., inside the spinodal region of a phase transition. Conversely,

energy conservation is very satisfactory when forces acting on the test particles are small,

e.g., in regions of the phase diagram where nuclear matter is thermodynamically stable.

4.5. Summary

In this chapter, we have given a brief overview of hadronic transport simulations, includ-

ing the description of the method of test particles, and we have also described some of the

computational details specific to simulations performed with the hadronic transport code
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SMASH. In particular, we focused on the aspects of the simulation connected with the calcu-

lation of the baryon density, and we described the density calculation schemes available in

SMASH, many of which were introduced as part of this work. Next, we described the types

of mean-field potentials available in SMASH, including the implementation of the fully rela-

tivistic VDF model potentials, which was part of the work underlying this thesis. Finally,

we provided a comparison of different numerical schemes for calculating mean fields and

mean-field evolution in SMASH, based on the degree to which the integration of the equations

of motion satisfies energy conservation. We demonstrated that both the implemented VDF

potentials as well as the implemented density and mean-field calculation schemes perform

better than the original options available in SMASH; in addition, these schemes are shown to

be computationally more efficient. We concluded by discussing the numerical performance

of simulations initialized at different points of the phase diagram.
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CHAPTER 5

Results from hadronic transport simulations

The contents of this chapter are largely based on Ref. [177].

We investigate simulations of nuclear matter in SMASH [38] (version 1.8 [206]) realized

in a box with periodic boundary conditions. Such studies are best suited for testing the

thermodynamic behavior following from equations of motion with mean-field interactions,

as well as for exploring observables sensitive to critical phenomena in a scenario in which

matter is allowed to equilibrate. While admittedly systems considered here cannot be repro-

duced in the laboratory, insights gained in this study will provide a useful stepping stone to

understanding results of simulations of heavy-ion collisions utilizing the VDF EOS, planned

for future work.

5.1. Analysis

In contrast to heavy-ion collision experiments, semi-classical hadronic transport simulations

have an access to the positions of individual particles. Consequently, observables that can be

used as a measure of the collective behavior of the system include the spatial pair correlation

function and the distribution of particles in coordinate space. Below, we describe the details

of extracting these observables.
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5.1.1 Pair distribution function

The radial distribution function g(r) gives the probability of finding a particle at a distance

r from a reference particle. While in select simple cases it can be calculated analytically,

in practice, given a distribution of particles, g(r) is obtained by determining the distance

between the reference particle and all other particles and constructing a corresponding his-

togram. Thus for finding the radial distribution about the ith (reference) particle at a given

distance r, we count all particles within an interval ∆r around r, which can be written as

gi(r,∆r) =
N∑
j=1
j 6=i

θ
(
r + ∆r −Rij

)
θ
(
Rij − (r −∆r)

)
. (5.1)

Here, the sum is performed over all particles (with the exception of the ith particle) which

we index by j, N is the total number of particles, θ is the Heaviside theta function, and

Rij = |ri− rj|, where ri is the position of the reference particle and rj is the position of the

jth particle. The role of the Heaviside theta functions is to only allow contributions from

particles whose positions are within a distance Rij ∈ (r − ∆r, r + ∆r) from the reference

particle. The obtained histogram is then normalized with respect to an ideal gas, whose

radial distribution histogram is that of completely uncorrelated particles, g0(r) ∝ n 4πr2 dr,

where n denotes density.

We can further define the radial distribution function of all distinct pairs in the system,

or the pair distribution function,

g̃(r,∆r) = N
N∑
i=1

gi(r,∆r) =
N
2

N∑
i=1

N∑
j=1
j 6=i

θ
(
r + ∆r −Rij

)
θ
(
Rij − (r −∆r)

)
, (5.2)

where the factor of 1/2 appears to avoid counting any of the particle pairs twice, and whereN
is a normalization factor, so far unspecified (as already mentioned above, in practice the radial

distribution function is compared to that of an ideal gas, in which case the normalization

factors cancel out). It can be easily seen that g̃(r,∆r) is equal to the number of distinct

(hence the factor of 1/2) particle pairs separated by a distance r±∆r. As a simple example,
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Figure 5.1: Three particles positioned at the vertices of a unilateral triangle of side r0. The

arrows point to particles at a distance r0 from a given reference particle (color coded). The

figure helps to interpret the pair distribution function g̃(r0,∆r) as the number of distinct

pairs of particles separated by a distance r0 ±∆r (see text for details).

consider a system composed of 3 particles whose relative distances are equal, Rij = r0 ∀ i, j;
naturally, these particles must sit at the vertices of a unilateral triangle of side r0, see Fig.

5.1. The pair distribution function g̃(r0,∆r) is equal to half the sum over the number of

particles that each reference particle sees at a distance r0 ± ∆r away. Clearly, the first

reference particle sees 2 particles at a distance r0, and likewise for the second and third

reference particles, so that in this case g̃(r0,∆r) = (3× 2)/2, that is the number of distinct

particle pairs separated by a distance r0 ±∆r.

The pair distribution function of an ideal gas, denoted by g̃0(r), is related to g0(r) through

g̃0(r) ' (N/2)g0(r), where N is the total number of particles in the system, which stems

directly from the fact that the total number of distinct pairs in the system is equal N(N −
1)/2. For simulations in a box with periodic boundary conditions, however, this relationship

becomes more complicated for distances r > L/2, where L is the side length of the box, due

to geometry effects (see the discussion below). For this reason and because in simulations
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presented in this work we initialize the systems uniformly, in our analysis we use the t = 0

histogram as the reference pair distribution function, g̃0 = g̃(t = 0).

We stress that taking the pair distribution function of a uniform system as the reference

ensures that the normalized pair distribution function g̃/g̃0 is sensitive to density fluctuations

in the system. A prominent example here is the spinodal breakup, where a spontaneous

separation into two coexistent phases with different densities occurs. If the system is confined

to some constant volume V , then the average density of the system is the same before and

after the spinodal decomposition takes place. However, local fluctuations in the number of

particles will be visible in the pair distribution function, as more particle pairs reside inside

a high density region as compared to a low density region.

While the spinodal decomposition is the most obvious example of a situation where

g̃/g̃0 6= 1, the normalized pair distribution function deviates from unity for any system in

which the interactions between the particles affect their collective behavior. In particular, at

small r, the normalized pair distribution function satisfies g̃/g̃0 > 1 for correlated particles

and g̃/g̃0 < 1 for anti-correlated particles (see Appendix R for a detailed derivation), which

corresponds to attractive and repulsive interactions between the particles, respectively. Since

the number of particles and thus the number of pairs is conserved, one sees an opposite trend

at intermediate to large distances.

We note that in our simulations the range of r over which g̃(r)/g̃0(r) significantly deviates

from 1 is related to the range of the interaction, which is determined by the smearing range

in the density calculation (for more details see Section 4.2).

5.1.1.1 Pair distribution function in a system with periodic boundary conditions

Importantly, for a system with periodic boundary conditions the radial distance between

two particles R is not uniquely defined. This is because for any reference particle the

distance to any other particle can be calculated using the position of that other particle in
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Figure 5.2: A 2D diagram of geometry effects affecting the pair distribution function of a

uniform system in a box with periodic boundary conditions. We draw the simulated box,

with the reference particle denoted with a blue triangle and three other particles denoted

with a green square, a red dot, and a red square, as well as its 8 equivalent images (faded

colors). A green dashed circle of radius L/2 and a red dashed circle of radius L/
√

2 are

drawn around the reference particle. Distances from the reference particle to other particles

which contribute to the pair distribution function are implied with gray arrows.

the original box or in any of its 26 equivalent images. We adopt a prescription in which

the smallest distance between particles is used in calculating the pair distribution function

g̃ (known as the minimum image criterion). This smallest distance can range from Rmin = 0

to Rmax =
√

3L/2, where L is the side length of the box.

That said, even for a uniform and uncorrelated system the geometry of the problem

affects the number of particles that can be encountered at the maximal distance Rmax. Let

us show this based a 2D illustration of this issue, see Fig. 5.2. To calculate the minimal
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distance between any two particles, we consider the original system (in the middle) and its

8 equivalent images (the latter are indicated by faded colors). We consider a particle at

a position denoted with a blue triangle, and to aid the analysis we draw a green dashed

circle of radius L/2 and a red dashed circle of radius L/
√

2 around it. Consider two other

particles, whose positions are denoted with a red square and a red dot, separated from the

blue triangle by an equal distance R such that L/2 < R < L/
√

2. For the particle pair

composed of the blue triangle and the red dot, the line separating the particles lies along

the diagonal of the box; since R is already the smallest distance between the blue triangle

and any of the equivalent images of the red dot, this particle pair contributes to the pair

distribution function at R. For the particle pair composed of the blue triangle and the red

square, the line separating the particles lies along one of the principle directions of the box;

in contrast to the previous case, there is an equivalent image of the red square characterized

by a smaller distance to the blue triangle R′ < R; consequently, this pair contributes to the

pair distribution function at R′. In fact, particles pairs lying along the diagonal and along

one of the principal box directions are special cases. Notice, in particular, that the only

points for which it is possible to have R = Rmax are points on the diagonal of the box; for

any points separated by Rmax that are not on the diagonal, there exists a smaller R obtained

by using the position of the second particle from one of the equivalent box images. This

problem also affects, to a proportionally lesser extent, interparticle distances R in the range

L/2 < R < Rmax. Only in the case of particles which are L/2 or less apart the geometry of

the box never affects the pair distribution function, as can be seen from the example of the

particle depicted with a green square.

This influence of finite size effects on the pair distribution function can be clearly seen in

Fig. 5.3, which shows the pair distribution function for a uniform matter in a cubic box of

side length L = 10 fm and subject to periodic boundary conditions. In infinite matter, the

pair distribution function of uncorrelated particles grows like r2. However, finite geometry

effects described above introduce an effective cut on the distribution starting at L/2 = 5 fm,
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Figure 5.3: Pair distribution function of spatially uniform matter in a cubic box with pe-

riodic boundary conditions (red histogram). To obtain the histogram, a cubic box of side

length L = 10 fm was initialized with proton and neutron numbers Np = Nn = 20 (corre-

sponding to a baryon density of 0.25n0), and the number of test particles per particle was

set at NT = 200, resulting in the test particle density of n = 8 fm−3. For r < L/2, the

pair distribution function is given by the pair distribution function of a uniform ideal gas,

g̃(r) ' (N/2) n 4π r2 ∆r (solid blue line), where ∆r = 0.433 is the histogram bin width.

For r > L/2, geometric effects related to the periodic boundary conditions start playing a

role; see text for more details.

explaining the shape of the presented histogram.

Naturally, geometry and periodic boundary conditions also play a role in the shape of

the normalized pair distribution function in non-uniform systems. As an easy illustration,

consider a 2D system composed of particles forming a spherical “clump” of matter surrounded

by vacuum, see Fig. 5.4. It is easy to see that if the diameter of the clump satisfies D >

L/2, then for some of the particles forming the clump the smallest distance to some of the

other particles in that same clump will be “across the vacuum”, to one of the equivalent

mirror images of the latter particles; in the figure this is showcased by the example of
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Figure 5.4: A 2D diagram of the geometry effects affecting the normalized pair distribution

function of a non-uniform system. A clump of particles (blue circle) surrounded by vacuum

is shown in a box of side L (middle box), and positions of three hypothetical particles are

indicated with a green square, a blue circle, and a red triangle. We indicate a range over

which the pair distribution function is calculated for the particle in the middle of the clump

(blue dot) with a circle of radius L/
√

2 centered around that particle, and we also show the

8 equivalent images of the box (faded colors). The smallest equivalent distance between the

particles represented by the red triangle and the green box is realized “across the vacuum”,

either from the red triangle to the faded green square, or from the green square to the faded

red triangle. Such a situation will arise for many particles on the edge of the clump, leading

to a peculiar behavior of the pair distribution function at distances comparable to L/
√

2.

See text for more details.
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particle positions represented by the green square and the red triangle. In result, on average,

the normalized pair distribution function for this system will display a strong correlation

for small values of r (reflecting the existence of the clump), then an anticorrelation for

intermediate values of r (reflecting the vacuum), and finally a significant correlation for

values of r approaching Rmax (reflecting the smallest distances “across the vacuum”).

In our simulations, which we will discuss at length in the following Sections, we clearly

observe the above described effect in the case of nuclear spinodal decomposition, which yields

a nuclear drop surrounded by a nearly perfect vacuum. The diameter of the nuclear drop

turns out to satisfy D > L/2, which means that for some of the test particles belonging

to that drop, the smallest distance to some of the other test particles in that same drop is

obtained “across the vacuum”. This explains the rise in the normalized distribution function

for r > L/2, which can be seen, e.g., on the right-hand panel in Fig. 5.8. The magnitude of

this effect depends on the drop diameter D.

Finally, we note that the artifacts produced by the geometry of the simulation and

periodic boundary conditions do not present a significant complication in analyzing critical

behavior if we resolve to only probe the system at length scales on the order of L/2 or

smaller.

5.1.1.2 Pair distribution function and Boltzmann transport

One may ask whether calculating a pair distribution function in hadronic transport is jus-

tified in view of the fact that the BUU equation explicitly evolves a one-body distribution

function which does not carry any information about the two-body distribution, usually

employed in the description of two-particle correlations (see Appendix Q.5 for a derivation

of the Boltzmann equation from the BBGKY hierarchy, where the relevant steps leading to

neglecting the two-body contributions are shown). While this may appear to be problem-

atic, a closer look reveals that our analysis is correct. First, one needs to note that hadronic

transport simulations only solve the Boltzmann equation exactly in the limit of an infinite
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number of test particles per particle NT . The finite number of test particles employed in

simulations leads to intrinsic numerical fluctuations. These numerical fluctuations are of

statistical nature, similarly to variances of microscopic observables, and likewise, through

both scattering and mean fields, they can become a seed for collective behavior such as

spontaneous spinodal decomposition. Such effects have been described, e.g., in Ref. [207]

(see also Refs. [208, 209]), where fluctuation observables calculated using hadronic transport

with the method of test particles agree with both theoretical predictions and experimental

results. Additionally, it was established that for large enough NT (which the authors of that

particular study found to be NT & 40) the numerical noise intrinsic to the method of test

particles is negligible, while the correct statistical fluctuations are preserved.

It is possible to construct a Boltzmann-Langevin extension of the standard BUU equa-

tion, which ensures that the simulated fluctuations are physically correct (see, e.g., [210]).

However, it has been found that, for example, in the case of the nuclear spinodal fragmen-

tation the source of the noise seeding the spinodal decomposition is not essential, and it

is possible to develop good approximations to the Boltzmann-Langevin equation that are

numerically favorable, including the method of test particles [187].

We note here that a particular problem that arises in the method of test particles is that

the fluctuations in the events, simulating the evolution of NTNB test particles, are suppressed

by a factor of NT . The authors of [207] dealt with this issue by employing the method of

parallel ensembles at final simulation times, that is a posteriori, which allows one to obtain

events with the number of test particles corresponding to the physical baryon number NB

(we briefly describe this method in Section 4.1, while Appendix S explains the a posteriori

application of the method).

Based on the above it is apparent that the distribution function obtained through hadronic

transport simulations, and in particular through the method of test particles, contains in-

formation not only about the mean of the distribution function 〈fp〉, but also about its

fluctuations. Consequently, calculating fluctuation observables such as the pair distribution
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function is well-defined in hadronic transport. Some questions regarding the quantitative be-

havior of fluctuation observables obtained in simulations using the number of test particles

NT > 1 remain, in particular regarding the specific methods used to connect fluctuations

in systems evolving NTNB particles as compared to systems evolving NB particles. For

that reason we refrain from making quantitative statements at this time, and focus on the

qualitative behavior of the pair distribution functions. Future work will be devoted to a

quantitative analysis of this problem, and in Section 5.2.3 we give a short overview of the

effects due to this issue.

5.1.2 Number distribution functions

A complementary method of analyzing the collective behavior in a simulation utilizes co-

ordinate space number distribution functions. To calculate number distribution functions,

we divide the simulation box into C cells of side length ∆l (also referred to as cell width),

and construct a histogram of the number of cells in which the number of particles lies in

a given interval Ni ± ∆N , where Ni is the central value of the ith bin. We note that we

scale the entries by the total number of cells C so that the resulting histogram is a properly

normalized representation of the corresponding probability distribution. We also note that

in the subsequent parts of this work we scale the histogram entries by the volume of the cells

(∆l)3 in order to obtain the histogram as a function of number density.

The test-particle evolution in SMASH is governed by the mean field, which depends on the

underlying continuous baryon number density for a given baryon number NB,

nB(x;NB) = g

∫
d3p

(2π)3
f(x,p) . (5.3)

Formally, hadronic transport can give access to nB(x;NB) through solving the Boltzmann

equation, Eq. (4.3), in the limit of infinitely many test particles per particle, and substituting

the obtained distribution function f(x,p) in Eq. (5.3). Below, we present three number

distribution functions accessible in practice given the finite number of test particles used.
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5.1.2.1 Test particle number distribution function

Hadronic transport simulations of nuclear matter are realized through evolving N = NBNT

test particles in space and time (where NB is the baryon number in the simulation and NT

is the number of test particles per particle), giving a direct access to a discrete test particle

number distribution function. This distribution can be written as a probability of obtaining

a cell contributing to the ith bin of the histogram with a center value Ni (that is, a cell with

N ∈ (Ni −∆N,Ni + ∆N) test particles),

PN(Ni) = P
(
Ni, N(NB, NT ),∆l

)
= (5.4)

=
N

(i)
c

(
N(NB, NT ),∆l

)
C

. (5.5)

Here, C is the total number of cells used and N (i)
c is the number of cells containing a number

of test particles N within the range Ni ± ∆N . We note that the number of test particles

in any given cell depends both on the baryon number evolved in the simulation NB and the

number of test particles per particle NT . We also stress that the distribution PN depends

on the scale (chosen cell width ∆l) at which the system is analyzed.

5.1.2.2 Continuous baryon number distribution function

The discrete test particle distribution function, Eq. (5.4), can be thought of as having been

obtained through sampling from the underlying continuous baryon number distribution func-

tion with a finite number NTNB of test particles. Given access to the underlying baryon

number distribution, one could use it directly to create a corresponding histogram. Indeed,

the number of baryons at a cell at position xk is given by the integral of the continuous

baryon number density, Eq. (5.3),

B(xk) =

∫
Vk=(∆l)3

dV nB(x, NB) , (5.6)
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where k indexes the histogram cells. Adding contributions from all cells yields the total

baryon number in the system, B. We can then construct a probability distribution function

for encountering a cell with a given number of baryons Ni,

PB(Ni) =
N

(i)
c

(
Ni, B,∆l

)
C

, (5.7)

whereN (i)
c is the number of cells containing a number of baryonsN within the rangeNi±∆N .

For a large number of test particles per particle NT , statistical observables calculated

using the test particle number distribution, with the number of test particles in a given

sample scaled by 1/NT , are a very good approximation to the underlying continuous baryon

number distribution [211]. That is, it can be shown that

PB(Ni) = lim
NT→∞

P

(
Ni,

N(NB, NT )

NT

,∆l

)
. (5.8)

Given that in our simulations we use sufficiently large numbers of test particles per particle

NT , we will refer to histograms constructed through the prescription on the right-hand side

of Eq. (5.8) as the continuous baryon number distribution function (or just baryon number

distribution function) PB(Ni), with the understanding that it is only exact in the limit

NT →∞.

5.1.2.3 Physical baryon number distribution function

Both the test particle and the continuous baryon number distribution functions, Eqs. (5.4)

and (5.8), are markedly different from the physical baryon number distribution function

corresponding to a discrete baryon number NB. Here we can intuitively think of the physical

baryon number distribution function as obtained through sampling from the underlying

continuous baryon number distribution with NB test particles,

PNB(Ni) = P
(
Ni, N(NB, NT = 1),∆l

)
. (5.9)

Strictly speaking, the physical baryon number distribution function could be obtained in

transport by solving the Boltzmann equation in the limit of infinitely many test particles
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per particle, thus obtaining the underlying continuous baryon number distribution function,

Eq. (5.3), and sampling nB(x, NB) with NB particles. While such an approach is in prin-

ciple valid, in practice it is impractical due to the enormous numerical coast necessary to

approximate the limit of infinitely many test particles well. Alternatively, one can turn to

the concept of parallel ensembles (introduced in Section 4.1). It can be shown that the test

particle distribution obtained within a parallel ensembles mode can serve as a proxy for the

physical baryon number distribution. To reiterate, within the concept of parallel ensembles,

a simulation corresponding to NB baryons with NT test particles per baryon is divided into

NT events with NB test particles each. These NT events are not independent, as they share

a common mean field. Nevertheless, at the end of the simulation we have access to NT

events with the test particle number exactly corresponding to the baryon number in the

“real” system. That is, each of the NT events is described by the probability distribution

function PNB(Ni) = P
(
Ni;N(NB, NT = 1); ∆l

)
. Observables calculated using PNB(Ni) are

probably the closest to those one would find in an experiment if one could measure positions

of the particles.

5.2. Infinite matter simulation results

To simulate isospin-symmetric infinite nuclear matter, we initialize equal numbers of proton

and neutron test particles in a box with periodic boundary conditions. The side length of

the box is taken to be L = 10 fm; this is informed by the fact that with periodic boundary

conditions, the box can be kept relatively small with no significant finite-size effects. The

time step used in the simulation needs to be small enough to resolve all gradients occurring

during the evolution (intuitively speaking, a test particle should not “jump over” a potential

gradient within a single time step). We found that a time step of ∆t = 0.1 fm/c is small

enough to satisfy this condition, and it correctly solves the equations of motion, Eqs. (2.79)

and (2.80), using the leapfrog algorithm. The mean field is calculated using the triangular
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smearing with triangular smearing parameter n = 2 and finite difference direct derivatives

(for more details see Chapter 4) on a lattice with lattice spacing a = 1 fm, which has been

tested to be sufficiently fine for accurately resolving mean-field gradients. To ensure smooth

density and mean-field gradient calculations, we utilize a large number of test particles

per particle, specifically, we use NT = 200 for ordinary nuclear matter (Section 5.2.1) and

NT = 50 for dense nuclear matter (Sections 5.2.2 and 5.2.3). Using different numbers of test

particles in these two cases is justified by the fact that smooth density and density gradient

calculations are ensured when the average number of test particles encountered in a cell of

the lattice Navg is large enough. As an example, within the described setup, this number will

be equal to Navg = 8 for ordinary nuclear matter at nB = 0.25n0, and equal to Navg = 24 for

dense nuclear matter at nB = 3n0. We choose Navg to be bigger in the case of dense nuclear

matter as mean fields encountered in that region of the phase diagram are significantly larger

and require an even more smooth gradient computation.

For studying the thermodynamic behavior of nuclear matter, we are simulating systems

in which all collision and decay channels are turned off. We have checked that the thermody-

namic effects described here persist when collisions are allowed, and in this work we choose

to omit them because our goal is to study mean-field dynamics. As in Section 3.4, we are

considering only one of the many EOSs accessible within the VDF model, namely, the one

corresponding to the fourth (IV) set of characteristics listed in Table 3.1. The choice of this

set is arbitrary and serves as an illustration of the properties of the VDF model which are

qualitatively comparable for all obtained EOSs.

5.2.1 Ordinary nuclear matter

We investigate the behavior of systems initialized at temperatures and baryon number den-

sities specific to ordinary nuclear matter to validate the implementation of the VDF model

in SMASH [38]. For illustrative purposes, we discuss results for a single simulation run, that

is one event. Remarkably, the thermodynamic behavior of the system is apparent already
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Figure 5.5: Baryon number distribution, scaled by the volume of the cell and shown in units

of the saturation density, n0 = 0.160 fm−3. The cell width is ∆l = 2 fm. Red histograms

show distributions at initialization (t = 0), while blue shaded histograms show distributions

at the end of the evolution, t = tend. Left panel: Nuclear matter initialized at the saturation

density n0 and temperature T = 1 MeV, evolved until tend = 200 fm/c. The system,

initialized in a stable configuration, remains in the same state at tend. Right panel: Nuclear

matter initialized in the spinodal region of the nuclear phase transition, at baryon density

nB = 0.25n0 and temperature T = 1 MeV, evolved until tend = 100 fm/c. The system,

initialized in a mechanically unstable region of the phase diagram, spontaneously separates

into a nucleon gas and a nuclear liquid drop with central density nB ≈ n0. Figure from [177].

for this minimal statistics. This is a consequence of the large number of test particles per

particle used (NT = 200), as well as the fact that the investigated effects are characterized

by large fluctuations, which result in clear signals.

To start, we initialize symmetric nuclear matter at saturation density nB = n0, which

for the box setup described above corresponds to the number of protons and neutrons Np =

Nn = 80, and at temperature T = 1 MeV. Except for a slight increase in temperature

from the degenerate limit, which is not significant enough to introduce any relevant changes,

this is the saturation point of nuclear matter, where the configuration is stable. We let the

158



0 50 100 150 200
t [fm/c]

21.908

21.91

21.913

21.915

21.917
 [MeV]

N
Kinetic energy per particle - m

0 50 100 150 200
t [fm/c]

38.1271−

38.1267−

38.1263−

38.1259−

38.1256−
Mean field energy per particle [MeV]

0 50 100 150 200
t [fm/c]

16.218−

16.216−

16.214−

16.212−

16.21−
 [MeV]

N
Total energy per particle - m

Figure 5.6: Time evolution of kinetic energy per particle (left panel), mean-field energy per

particle (middle panel), and total (binding) energy per particle (right panel) for a system

initialized at nuclear saturation density n0 = 0.160 fm−3 and temperature T = 1 MeV.

The binding energy per particle at initialization, EB(t = 0) ≈ −16.218 MeV, is within

0.1% from the value expected from model calculations. The mean-field energy oscillates

slightly throughout the evolution, reflecting local fluctuations in density, but its average

value remains constant. The increase in the kinetic energy per particle in time, which also

causes the increase in the total energy per particle in time, is an unwanted feature of the

simulation. A slight violation of the conservation of energy is a common feature of many

hadronic transport codes, and is connected to the choice of the integration method for the

equations of motion as well as to details of density and density gradient calculations (see

Section 4.4 for more details). Figure from [177].

simulation evolve until tend = 200 fm/c and investigate whether the equilibrium is preserved

by hadronic transport.

To address this question, we examine the continuous baryon number distribution function

(for details, see Section 5.1.2), which we calculate using the cell width ∆l = 2 fm; we

scale the histogram entries by the volume of the cell to obtain the distribution in units of

the baryon number density, and further scale the results to express them in units of the

saturation density, n0 = 0.160 fm−3. As expected for matter in equilibrium, the baryon

number distribution remains unchanged throughout the evolution, as can be seen in the left
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Figure 5.7: Visualization of spinodal decomposition in a system initialized inside the nuclear

spinodal region (at temperature T = 1 MeV and baryon number density nB = 0.25n0, where

n0 is the saturation density, n0 = 0.160 fm−3). In the left panel one sees uniform nuclear

matter at initialization, in the middle panel the mechanically unstable system is “collapsing”

around a local random density fluctuation, and in the right panel the system has reached

equilibrium where matter consists of a dense “nuclear drop” surrounded by a very dilute gas

of nucleons. The effects due to periodic boundary conditions are clearly visible. We note

that the black dots do not represent individual test particles, but rather are indicative of

relative test particle density in a given region of the box.

panel of Fig. 5.5. Note that the finite width of the shown distribution is a direct consequence

of using a finite number of test particles; we will address this issue and related effects in

Section 5.2.3. We find that throughout the simulation, the binding energy per particle

agrees with the theoretically obtained value within 0.1%, see Fig. 5.6 (see Section 4.4 for

more details on energy conservation in hadronic transport). An in-depth discussion of the

mean-field response to fluctuations around nuclear saturation density, comparing the results

from several transport codes including SMASH utilizing the VDF model, can be found in Ref.

[202].

Next, we study nuclear matter inside the spinodal region of the nuclear phase transition.

Specifically, we initialize the system with the number of protons and neutrons Np = Nn = 20,
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corresponding to a baryon number density nB = 0.25n0, at temperature T = 1 MeV. We

let the system evolve until tend = 100 fm/c. The spinodal region is both thermodynamically

and mechanically unstable, and so we expect that local density fluctuations will drive the

matter to separate into two coexisting phases: a dense phase, also known as a nuclear drop,

and a dilute phase which is a nucleon gas. That this indeed happens can be seen on the right

panel in Fig. 5.5, which shows the change in the baryon number distribution function due

to the system’s separation into two coexisting phases. The distribution, initially centered at

nB = 0.25n0, at the end of the evolution has a large contribution at nB ≈ 0, corresponding

to the majority of box cells that after the separation are empty or nearly empty, and a long

tail reaching out to nB ≈ n0, which corresponds to the center of the nuclear drop. Even

more directly, this separation can be seen in a visualization of the decomposition process,

shown at three chosen evolution times, t = 0, 50, 100 fm/c, in Fig. 5.7.

We then proceed to calculate the pair distribution function (for details, see Section 5.1.1)

for the system initialized in the spinodal region of nuclear matter. The results are shown

in Fig. 5.8. Here, the three panels correspond to three time slices of the evolution: t =

0, 50, 100 fm/c. The t = 0 plot (left) shows the pair distribution function, Eq. (5.2), at

initialization g̃0(r,∆r), while plots at t = 50 and 100 fm/c (middle and right, respectively)

show normalized pair distribution functions g̃(r,∆r)/g̃0(r,∆r). The time evolution of the

pair distribution function shows that during the spinodal decomposition the test particles

cluster into the nuclear drop. The half width at half maximum of the pair distribution

function is about 2 fm, which corresponds to the density smearing range used, see Section

5.1.1 as well as Section 4.2 for more details. The influence of the periodic boundary conditions

on the shape and behavior of the pair distribution function at large inter-particle distances is

also discussed in Section 5.1.1. Additionally, the number of drops that form during spinodal

decomposition depends both on the size of the box and the size of a drop, where the latter

again depends on the smearing range used in density calculation.

Altogether, the results presented above demonstrate that the VDF equations of motion
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Figure 5.8: Time evolution of the pair distribution function for a system initialized inside the

nuclear spinodal region (at temperature T = 1 MeV and baryon number density nB = 0.25n0,

where n0 is the saturation density, n0 = 0.160 fm−3). The t = 0 plot (left) shows the distri-

bution at initialization, while plots at t = 50 and 100 fm/c (middle and right, respectively)

show normalized distributions. Spontaneous spinodal decomposition occurs at t > 0 and

leads to a formation of a nuclear drop surrounded by a near-perfect vacuum, resulting in

a strong correlation between particles clustered within the drop. See Section 5.1.1 for a

discussion of the influence of finite-size effects on the shape and large-distance behavior of

the pair distribution function. Figure from [177].

implemented in SMASH reproduce the expected bulk behavior of ordinary nuclear matter.

5.2.2 Dense nuclear matter and the QGP-like phase transition

For simulations of critical behavior in dense symmetric nuclear matter, we run Nev = 500

events and average the results, calculated event-by-event. We first initialize the system at

nB = 3n0, which corresponds to the number of protons and neutrons Np = Nn = 240, and

at temperature T = 1 MeV. It can be seen in Figs. 3.6 and 3.8-3.10 that this corresponds to

initializing dense nuclear matter inside the spinodal region of the QGP-like phase transition

described by the EOS employed (the fourth (IV) set of characteristics listed in Table 3.1).

We evolve the system until tend = 50 fm/c, which is sufficient for reaching equilibrium after

a spinodal decomposition at high baryon number densities, since due to considerably larger
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Figure 5.9: Time evolution of the baryon number distribution, scaled by the volume of

the cell and shown in units of the saturation density of nuclear matter, n0 = 0.160 fm−3,

for a system initialized inside the quark-hadron spinodal region (at baryon number density

nB = 3n0 and temperature T = 1 MeV), averaged over Nev = 500 events. The cell width

is chosen at ∆l = 2 fm. Histograms delineated with red curves correspond to the baryon

distribution at initialization (t = 0), while histograms delineated and shaded with blue curves

correspond to baryon distributions at a chosen time during the evolution (t = {25, 50} fm/c).
The system, initialized in a mechanically unstable region of the phase diagram, undergoes

a spontaneous separation into a less dense and a more dense nuclear liquid (see Section 3.1

for more discussion), resulting in a double-peaked baryon number distribution. The green

arrows point to values of baryon number densities corresponding to the boundaries of the

coexistence region at T = 1 MeV, nL = 2.13n0 and nR = 3.57n0. Figure from [177].

values of the mean-field forces on test particles the density instabilities develop more rapidly.

In Fig. 5.9, we show the evolution of the baryon number distribution (see Section 5.1.2.2).

The cell width is chosen at ∆l = 2 fm, and the histogram entries are scaled by the volume

of the cell in order to be given in units of the baryon number density; we then further scale

the results to express them in units of the saturation density, n0 = 0.160 fm−3. In the figure,

the red curve corresponds to the distribution at time t = 0, while the blue curves delineate

the distribution at times t > 0. At t = 0, the distribution is peaked at the initialization

density nB = 3n0, with its width reflecting the finite number statistics. In the course of the
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Figure 5.10: Time evolution of the pair distribution function for a system initialized in-

side the QGP-like spinodal region (at baryon number density nB = 3.0n0 and temperature

T = 1 MeV), averaged over Nev = 500 events. The t = 0 plot (first panel) shows the pair

distribution at initialization, while plots at t = 10, 20, 30 fm/c (second, third, and fourth

panels) show normalized pair distributions. Spontaneous spinodal decomposition occurs at

t > 0 and leads to a formation of two coexisting phases: a less dense and a more dense

nuclear liquid. The increased relative concentration of particles in the more dense phase

results in an elevated normalized pair distribution at small distances. Figure from [177].

evolution the system separates into two coexisting phases, a “less dense” and a “more dense”

nuclear liquid (see Section 3.1 for more discussion). As a result, the baryon distribution

displays two peaks largely coinciding with the theoretical values of the coexistence region

boundaries, nL = 2.13n0 and nR = 3.57n0, indicated by the green arrows. We find that

the prominence of the peaks depends slightly on the choice of the EOS. For example, an

equation of state with the same value of critical density n(Q)
c and the same spinodal region

(ηL, ηR), but a higher critical temperature T (Q)
c will correspond to a more negative slope of

the pressure in the spinodal region and, correspondingly, to stronger mean-field forces inside

the spinodal region, leading to more prominent peaks.

Next, in Fig. 5.10 we show the evolution of the pair distribution function. Similarly as

in the case of nuclear spinodal decomposition, the “hadron-quark” spinodal decomposition

leads to a pair distribution function indicating the formation of two phases of different

densities. Unlike in nuclear spinodal decomposition, where drops of a “nuclear liquid” form
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in vacuum, in this case we have drops of a “more dense liquid” submerged in a “less dense

liquid” (for a detailed discussion, see Section 3.1). Consequently, the absolute values of the

normalized pair distribution function g̃(r)/g̃0(r) are much smaller for the case of the “hadron-

quark” spinodal decomposition, as the difference between the number of test particle pairs

occupying the dense and dilute regions is less pronounced in this case. Nevertheless, the

effect, although small, is clearly distinguishable and statistically significant.

We note here that a phase separation is such a distinct behavior of the system that the

baryon distribution function and the pair distribution function as shown in Figs. 5.9 and

5.10, respectively, can be largely recovered even in the case of minimal statistics, that is for

one event. However, effects at and around the critical point, as discussed below, are much

more subtle and require a relatively large number of events.

To conclude our study of dense nuclear matter in SMASH, we want to investigate the

behavior of systems initialized at various points of the phase diagram above the critical

point, inspired by possible phase diagram trajectories of heavy-ion collisions at different

beam energies. Specifically, we initialize the system at one chosen temperature and a series

of baryon number densities

T = 125 MeV, nB ∈ {2.0, 2.5, 3.0, 3.5, 4.0}n0 . (5.10)

In contrast with most of the previous examples, systems initialized in this region of the phase

diagram are thermodynamically stable, and there are specific predictions for the behavior

of thermodynamic observables such as ratios of cumulants of baryon number (see Figs. 3.8-

3.10). In the upper panel of Fig. 5.11, we show values of the second-order cumulant ratio,

κ2/κ1, as calculated from the VDF model, both in the (T, nB) and the (T, µB) plane. The

dots on the cumulant diagrams mark the points at which we initialize the system, specified

in Eq. (5.10), and are intended to guide the eye toward the corresponding normalized pair

distribution plots at the end of the evolution, t = tend, displayed in the lower panel of the

same figure. The deviation of values of the normalized pair distributions at small distances

from 1 (where 1 corresponds to a system of non-interacting particles) directly follows the
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deviation of values of the second-order cumulant ratio κ2/κ1 from the Poissonian limit of 1,

g̃ (0,∆r)

g̃0(0,∆r)
> 1 ⇔ κ2

κ1

> 1 , (5.11)

g̃ (0,∆r)

g̃0(0,∆r)
< 1 ⇔ κ2

κ1

< 1 . (5.12)

We show a detailed derivation of this fact in Appendix R. It is clear that a two-particle

correlation corresponds to a value of the cumulant ratio κ2/κ1 > 1, and a two-particle

anticorrelation corresponds to a value of the cumulant ratio κ2/κ1 < 1. This behavior is

exactly reflected in Fig. 5.11.

We want to stress that the pair distributions shown in Fig. 5.11 develop relatively fast. In

Fig. 5.10, where we explored the behavior of a system initialized at a temperature T = 1 MeV,

one can see by comparing the second and the fourth panels that already at t = 10 fm/c a

significant part of the pair distribution has developed. This effect is further magnified at

higher temperatures, where relatively larger momenta of the test particles result in a faster

propagation of effects related to mean fields, and consequently the system settles faster

as well. For systems shown in Fig. 5.11, we have verified that the majority of the pair

distribution function development occurs within ∆t = 3 fm/c.

These results show not only that hadronic transport is sensitive to critical behavior of

systems evolving above the critical point, but also that this behavior is exactly what is ex-

pected based on the underlying model. Moreover, we note that the behavior of both the

second-order cumulant and the pair distribution function across the region of the phase dia-

gram affected by the critical point is remarkably distinct. It is evident that an equilibrated

system traversing the phase diagram through the series of chosen points, Eq. (5.10), follows

a clear pattern: first displaying anticorrelation, then correlation, and then again anticorrela-

tion. Thus already the second-order cumulant ratio presents sufficient information to explore

the phase diagram, and, provided that correlations in the coordinate space are transformed

into correlations in the momentum space during the expansion of the fireball, this pattern

may be utilized to help locate the QCD critical point, in addition to signals carried by the
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Figure 5.11: Comparison of the cumulant ratio κ2/κ1 (upper panel), calculated in the VDF

model, and the normalized pair distribution function g̃/g̃0 at t = 30 fm/c (lower panel), for a

series of initialization points, Eq. (5.10), marked with green dots on the cumulant diagrams.

The description of the cumulant diagrams is the same as in Fig. 3.8. The deviation of g̃/g̃0

from the behavior of an uncorrelated system (red line) directly follows the deviation of κ2/κ1

from the Poissonian limit of 1. Figure from [177].

third- [97] and fourth-order [98] cumulant ratios. This may prove to be especially important

given that the quantity observed in heavy-ion collision experiments is not the net baryon

number, but the net proton number. In calculations of the net baryon number cumulants

based on the net proton number cumulants, the higher order observables are increasingly

more affected by Poisson noise [102]. In view of this, the second-order cumulant ratio (or

equivalently the two-particle correlation) could be considered among the key observables

utilized in the search for the QCD critical point, and it remains to be seen if this somewhat
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smaller signal (as compared to higher order cumulant ratios) is nevertheless noteworthy due

to the much higher precision with which it can be measured in experiments.

5.2.3 Effects of finite number statistics

Qualitative and quantitative features of observables are influenced by the finite number of

particles in the analyzed samples. When analyzing observables such as the baryon distribu-

tion, one has to keep in mind that fluctuations due to finite number statistics may wash out

the expected signals. This is not only a numerical problem but, as we shall discuss below, it

is also an issue relevant for experiments.

First, we discuss this subject in the context of the choice of binning width. In particular,

the double-peak structure in the baryon number distribution shown in the right panel of Fig.

5.9 depends on the size of the cell used to construct the histogram, chosen to be ∆l = 2 fm.

In this case, the Poissonian finite number statistics superimposed on the underlying baryon

distribution is characterized by a certain width σ(2 fm). If we reduce the cell width ∆l by a

factor of 2, the average number of particles in a cell is reduced by a factor of 8. Consequently,

the width of the Poissonian fluctuations will be σ(1 fm) = 2
√

2σ(2 fm), which is considerably

larger than previously and which in fact washes out the double-peak structure. This can be

seen in Fig. 5.12, where we show the baryon number distribution for a sampling cell width of

∆l = 1 fm for the same events as used to create Fig. 5.9; the red and blue lines correspond

to the distribution at time t = 0 and tend = 50 fm/c, respectively. For the system at hand,

the Poissonian widths in the two cases, in terms of baryon density, were σ(2 fm) = 0.22n0

and σ(1 fm) = 0.62n0. If we then estimate the full width at half maximum as approximately

given by 2.355σ (the full width at half-maximum of a normal distribution), it is clear that

in the case of the cell width ∆l = 1 fm, the full width is comparable with the separation

of the peaks given by the width of the coexistence region, nR − nL = 1.44n0. As a result,

the two-peak structure cannot be resolved for this sampling statistics. Let us note here that

decreasing the volume of the cells (∆l)3 can be done without penalty if one proportionally
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Figure 5.12: Time evolution of the continuous baryon number distribution, scaled by

the volume of the cell and shown in units of the saturation density of nuclear matter,

n0 = 0.160 fm−3, for the same system as described in Fig. 5.9. Here, the cell width is

∆l = 1 fm. The red histogram shows the baryon distribution at initialization (t = 0), while

the blue shaded histogram shows the distribution at the end of the evolution (tend = 50 fm/c).

Nuclear matter, initialized in a mechanically unstable region of the phase diagram, spon-

taneous separates into a less dense and a more dense nuclear liquid, and the distribution

function becomes wider; however, due to the size of the binning cell, the average number of

test particles in a cell is small and consequently the double-peaked structure, clearly seen on

the right panel in Fig. 5.9, is washed out by Poissonian fluctuations. Figure from [177].

increases the number of test particles per particle, NT . Conversely, decreasing the number

of test particles per particle NT exacerbates the effects of finite number statistics.

While this discussion may appear to be of purely numerical nature, experimental data are

similarly affected by finite number statistics. In experiments, one always deals with exactly

NB particles per event, which in our simulations corresponds to NT = 1. Naturally, it must

lead to a distribution in which any possible peaks are even more washed out. This can be

seen in Fig. 5.13, where we show results for the case of NT = 1 and ∆l = 2 fm; the red

169



0 2 4 6 8 10 12 14 16
]

0
 [nBn

0

0.05

0.1

0.15

0.2

0.25

BP

t = 0 fm/c
t = 50 fm/c

nice title

Figure 5.13: Time evolution of the continuous baryon distribution, scaled by the volume of

the cell and shown in units of the saturation density of nuclear matter, n0 = 0.160 fm−3, for

the same system as described in Figs. 5.9 and 5.12, but calculated using the parallel ensembles

method; the results are averaged over N (parallel)
ev = NT × Nev = 25, 000 events. Cell width

is ∆l = 2 fm. The red histogram shows the distribution at initialization (t = 0), while the

blue shaded histogram shows the distribution at the end of the evolution (tend = 50 fm/c).

Nuclear matter, initialized in a mechanically unstable state, spontaneously separates into

a less dense and a more dense nuclear liquid, and the distribution widens; however, small

numbers of particles in cells used to construct the histogram and related finite number effects

wash out the structure clearly seen in the right panel of Fig. 5.9. Figure from [177].

and blue lines correspond to the distribution at time t = 0 and tend = 50 fm/c, respectively.

Here, in order to ensure that we are comparing systems with identical dynamics, we used the

same simulation data as in Figs. 5.9 and 5.12, but this time we accessed the baryon number

distribution corresponding to NT = 1 using the parallel ensembles method (for details, see

Section 4 and Appendix S). Not surprisingly, the signal is almost entirely washed out and

only a slight broadening of the distribution is discernible. We note that increasing the

number of events does not resolve this issue, as the resolution is determined by Poissonian

fluctuations in individual events. Consequently, one needs to devise other methods to extract
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Figure 5.14: Pair distribution function at t = 30 fm/c for a system initialized inside the

quark-hadron spinodal region (at baryon number density nB = 3.0n0 and temperature

T = 1 MeV), calculated with the parallel ensembles method; the results are averaged over

N
(parallel)
ev = NT × Nev = 25, 000 events. Spontaneous spinodal decomposition leads to a

formation of two coexisting phases: a “less dense” and a “more dense” nuclear liquid. The

increased relative concentration of particles in the “more dense” phase results in an elevated

normalized pair correlation at small distances. The correlation is exactly the same as shown

on the rightmost panel in Fig. 5.10. Figure from [177].

the information about the underlying baryon distribution; this task is beyond the scope of

this work.

Finally, we note that the pair distribution function is less affected by finite number

statistics. In Fig. 5.14, we show the pair distribution function calculated within the parallel

ensembles method, which is nearly identical to the pair distribution function calculated in the

full ensemble, Fig. 5.10. Indeed, the normalized pair distribution function is not determined

by the total number of test particles in an event or in a given subvolume of the system, but

by relations between any two test particles. The only difference between the pair distribution

functions obtained within the two methods is in the error bars, which are larger in the parallel
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ensembles case due to smaller statistics: the number of pairs in the full ensemble is given

by Nev(NBNT )2, while in the parallel ensembles it’s equal NTNev(NB)2. Obtaining the same

pair distribution function demonstrates that the physics accessible in the full ensemble and

the parallel ensembles approach is the same.

5.3. Summary

Results from simulations in SMASH, presented above, demonstrate that critical behavior in

dense nuclear matter can be studied within a hadronic transport approach equipped with

interactions corresponding to a chosen EOS. In particular, we have shown that systems

initialized in unstable regions of the phase diagram undergo spontaneous spinodal decom-

position, followed by an evolution towards an equilibrated mixture of two coexisting phases

with compositions matching the predictions from the underlying EOS. The correct descrip-

tion of both the thermodynamics and the non-equilibrium phenomena implies that hadronic

transport can be used as a tool with unique capabilities to investigate the dynamic evolution

of matter created in heavy-ion collisions.

We have also shown that for systems initialized at various points of the phase diagram,

including in the vicinity of a critical point, the pair distribution functions calculated from

hadronic transport simulation data follow theoretical expectations based on the second-

order cumulant ratio κ2/κ1. In particular, as the baryon number density (and, consequently,

baryon chemical potential) is increased in the region of the phase diagram affected by the

critical point, the pair distribution function follows a clear pattern: displaying first anti-

correlation, then correlation, and then again anticorrelation. The behavior of two-particle

correlations (and, on the theoretical side, of the second-order cumulant ratio κ2/κ1) is there-

fore a clear signature of crossing the phase diagram above the critical point. This is especially

important in view of the experimental search for the QCD critical point, as lower order sta-

tistical observables, such as κ2/κ1, are more likely to be measured with accuracy sufficient
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for discerning signals of critical behavior.

Further, we have shown that finite number statistics affects both the qualitative and

quantitative features of statistical observables. We have discussed two complementary sim-

ulation paradigms (described in Section 4.1 and in Appendix S), within which hadronic

transport gives access to both the continuous baryon number distribution, employed in the-

oretical calculations, and the physical baryon number distribution relevant to experimental

results. Though driven by the same physics, these distributions lead to starkly different

values for integrated statistical observables, which has consequences for comparisons with

experimental data.
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CHAPTER 6

Beyond hadronic transport: the speed of sound in

heavy-ion collisions

The contents of this chapter are largely based on Ref. [212].

One of the ultimate goals of heavy-ion collision studies is connecting experimental ob-

servables to the underlying EOS of dense nuclear matter. Here, we present a method that

may allow an estimate of the value of the speed of sound as well as its logarithmic derivative

with respect to the baryon number density in matter created in heavy-ion collisions. To

this end, we utilize well-known observables: cumulants of the baryon number distribution.

In analyses aimed at uncovering the phase diagram of strongly interacting matter, cumu-

lants gather considerable attention as their qualitative behavior along the explored range

of collision energies is expected to aid in detecting the QCD critical point (see Sections 1.6

and 3.4 for more details). We show that the cumulants may also reveal the behavior of the

speed of sound in the temperature and baryon chemical potential plane. We demonstrate

the applicability of such estimates within two models of nuclear matter: the Walecka model

and the VDF model presented in this thesis (see Section 2.3 and Chapter 3), and we explore

what might be understood from known experimental data.

6.1. Background

The speed of sound cs is one of the fundamental properties of any substance. In fluids, it is

the velocity with which a longitudinal compression wave propagating through the medium,
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and its square can be computed as the ratio of a change in the pressure P corresponding to a

change in the energy density E . As such, it is directly related to a number of thermodynamic

properties of the system, including its equation of state (EOS).

In dense nuclear matter, cs is of particular interest to neutron star research: its behavior as

a function of baryon number density nB has a direct influence on the mass-radius relationship

and, consequently, on the maximum possible mass of a neutron star [13]. Current neutron

star data suggest that cs rises significantly for an nB larger than the nuclear saturation

density n0, and that it approaches and perhaps exceeds cs ∼ 1/
√

3 at densities as low as a

few times that of normal nuclear matter. This possibility was first suggested in Ref. [190]

and followed by multiple studies on the subject, see, e.g., Refs. [213, 184, 15].

Presently, heavy-ion collisions are the only means of studying dense nuclear matter in a

laboratory. Many experiments probing nuclear matter at high nB, such as the Beam Energy

Scan (BES) program at the Relativistic Heavy Ion Collider (RHIC), put special significance

on the search for the QCD critical point (CP). Also in this case the behavior of cs conveys

relevant information: a crossover transition is characterized by a local minimum of the speed

of sound, whereas at the CP and on the associated spinodal lines of the first-order phase

transition, the speed of sound vanishes. Indeed, lattice QCD (LQCD) results show that at

vanishing baryon chemical potential, µB = 0, a local minimum in cs occurs at temperature

T0 = 156.5±1.5 MeV [25] (see also Ref. [27]), corresponding to a crossover transition between

hadron gas and quark-gluon plasma (QGP).

To date, a few attempts have been made to evaluate cs from heavy-ion collision data.

In Ref. [214], cs is estimated in ultrarelativistic collisions based on the proportionality of

entropy density s and temperature T to charged particle multiplicity and mean transverse

momentum, respectively, and the obtained value agrees with LQCD results. Unfortunately,

the method used relies on the fact that at highest collision energies µB ≈ nB ≈ 0, making this

approach inapplicable for most of the energy range covered at RHIC. At values of the baryon

chemical potential relevant to the BES program, cs was estimated in Ref. [215], where both
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the Landau model as well as hybrid hydrodynamics and hadronic transport simulations were

used to reproduce the widths of the negatively charged pion rapidity distribution. That study

purports to locate a robust minimum in cs within the collision energy range
√
sNN = 4-9 GeV.

Below, we suggest a novel approach to exploring the behavior of cs by using cumulants of

the baryon number distribution. The sensitivity of the cumulants to the EOS near the CP

[97, 98], which makes them central observables pursued in the Beam Energy Scan, follows

directly from their sensitivity to derivatives of the pressure with respect to µB. The key

observation we make here is that, besides the vicinity of the CP, cumulants of the baryon

number distribution provide rich information about the EOS at all points of the phase

diagram, and in particular they allow a measurement of cs in matter created in heavy-ion

collisions.

6.2. Relation between cumulants and the speed of sound

Cumulants of net baryon number κj can be obtained from κj = V T j−1
(
djP/dµjB

)
T
, where V

is the volume. Expressed in terms of derivatives with respect to nB, the first three cumulants

are given by Eqs. (1.28-1.30), repeated here for convenience,

κ1 = V nB , (6.1)

κ2 =
V TnB(
dP
dnB

)
T

, (6.2)

κ3 =
V T 2nB(
dP
dnB

)2

T

1− nB(
dP
dnB

)
T

(
d2P

dn2
B

)
T

 . (6.3)

Importantly, cumulants can be also given in terms of moments of the net baryon distribution,

which can be directly measured in experiment; in particular, for j ≤ 3, κj ≡
〈(
NB−

〈
NB

〉)j〉
(for more details, see Sections 1.6 and 3.4).

The exact definition of cs depends on specifying which properties of the system can be
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considered constant during the propagation of the compression wave. One often uses the

speed of sound at constant entropy S per net baryon number NB, c2
σ ≡ (dP/dE)σ, where

σ = S/NB. Similarly, the speed of sound at constant temperature is c2
T ≡ (dP/dE)T . These

two variants have specific regions of applicability. For example, the propagation of sound in

air is governed by adiabatic compression, so that using c2
σ is appropriate. On the other hand,

when there is a temperature reservoir (e.g., in porous media) or when the cooling timescale

is very fast compared with the sound wave period (as is the case, e.g., for an interstellar

medium subject to radiative cooling), c2
T is applicable.

Explicitly, c2
σ and c2

T can be written as (see Appendix N for a detailed derivation)

c2
σ =

(
dP
dnB

)
T

(
ds
dT

)
nB

+
(
dP
dT

)
nB

[
s
nB
−
(

ds
dnB

)
T

]
(
sT
nB

+ µB

)(
ds
dT

)
nB

(6.4)

and

c2
T =

(
dP
dnB

)
T

T
(

ds
dnB

)
T

+ µB
, (6.5)

respectively. In the limit T → 0, the above expressions both lead to

c2
∣∣∣
T=0

=
1

µB

(
dP

dnB

)
T

. (6.6)

Consequently, for (µB/T ) � 1, the values of c2
σ and c2

T should largely coincide. Moreover,

Eq. (6.5) can be transformed to express c2
T as a function of the cumulants, Eqs. (6.1-6.3) ,

c2
T =

[(
∂log κ1

∂log T

)
µB

+
µB
T

κ2

κ1

]−1

. (6.7)

Therefore, cumulants can be used to compute c2
T if they are known as functions of T and µB.

The first term in Eq. (6.7) is challenging to estimate from experimental data, however, it

can be shown to be negligible for a degenerate Fermi gas, (µB/T )� 1, where it constitutes

an order (T/µB)2 correction; in that case we can write

c2
T ≈

Tκ1

µBκ2

. (6.8)
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We note that Eq. (6.8) provides an upper limit to the value of c2
T as long as (∂ log κ1/∂ log T )µB >

0.

Using Eq. (6.5), one can also calculate the logarithmic derivative of c2
T ,(

d ln c2
T

d lnnB

)
T

=
nB

(
d2P
dn2
B

)
T(

dP
dnB

)
T

−

(
dP
dnB

)
T

+ TnB

(
d2s
dn2
B

)
T

µB + T
(

ds
dnB

)
T

. (6.9)

It is again possible to represent the above equation in terms of the cumulants,(
d ln c2

T

d lnnB

)
T

+ c2
T = 1− κ3κ1

κ2
2

− c2
T

(
d ln(κ2/T )

d lnT

)
nB

, (6.10)

and neglecting the last term on the right-hand side yields(
d ln c2

T

d lnnB

)
T

+ c2
T ≈ 1− κ3κ1

κ2
2

. (6.11)

This approximation is again valid for (µB/T ) � 1, and the correction due to the neglected

term is likewise of order (T/µB)2.

It is worth noting that in the opposite limit, µB → 0, Eq. (6.7) reveals a similarly simple

form, c2
T = (d lnκ2/d lnT )−1

µB=0 (see Appendix T for the derivation), suggesting that c2
T can be

estimated in ultrarelativistic heavy-ion collisions, provided measurements of κ2 are available

at different temperatures with sufficient precision. It might be possible to achieve this with

data from a combination of centralities, energies, collision species, or rapidity ranges. At

this time, however, we are interested in utilizing Eqs. (6.8) and (6.11) applied to collisions

at medium and low energies.

6.3. Validation

We are interested in finding the limitations of the low-temperature approximation used to

derive Eqs. (6.8) and (6.11), and for this we turn to effective models. Because the regions of

the phase diagram where we expect to apply our formulas are described by hadronic degrees

of freedom, we choose two models of dense nuclear matter: the VDF model with two phase
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Figure 6.1: Model study of regions of applicability of Eqs. (6.8) and (6.11). The left

(right) panels show results obtained in the VDF (Walecka) model. The upper and

lower panels show quantities entering Eq. (6.8) and Eq. (6.11), respectively. Results at

T = 50, 100, 150, 200 MeV are given by blue and green solid lines, dark and light purple

long-dashed lines, red and pink short-dashed lines, and orange and brown dash-dotted lines.

For each T , the thickest lines show the exact results and the medium-thick lines show the

approximations, given by the right-hand sides of Eqs. (6.8) and (6.11). Additionally, in up-

per panels the thinnest lines show c2
σ. For both models, Eq. (6.8) is valid for T . 100 MeV

and µB & 600 MeV, while Eq. (6.11) is valid for all values of T and µB & 200 MeV, with

the exception of the Walecka model at T = 200 MeV, where a phase transition to an almost

massless gas of nucleons decreases the applicability of both Eqs. (6.8) and (6.11). Figure

from [212].
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transitions (see Chapter 3) and the Walecka model [154, 155]. The VDF model utilizes

only interactions of the vector type, while the Walecka model employs both vector- and

scalar-type interactions. Both models describe the nuclear liquid-gas phase transition, while

the VDF model additionally describes a conjectured high-density, high-temperature phase

transition modeling the QGP phase transition. In this study, the QGP-like phase transition

is chosen to exhibit a CP at Tc = 100 MeV and nc = 3n0, with the T = 0 boundaries of

the spinodal region in the (T, nB) plane given by nB,left spinodal(T = 0) ≡ ηL = 2.5n0 and

nB,right spinodal(T = 0) ≡ ηR = 3.32n0, where n0 = 0.160 fm−3 (which altogether correspond

to the fourth (IV) set of characteristics listed in Table 3.1); this choice is arbitrary and serves

as a plausible example.

To test the derived expressions, we plot both sides of Eqs. (6.8) and (6.11) as functions

of µB at a series of temperatures in Fig. 6.1. We note that the explored temperature range

reaches beyond the region of the phase diagram where hadronic models plausibly describe

matter created in heavy-ion collisions; nevertheless, it is still instructive to test the validity

of our approximations at these extreme conditions.

We use natural units in which the speed of light in vacuum is c = 1. We note that in the

VDF model, cs quickly becomes acausal for µB exceeding the values defining the coexistence

line of the QGP-like phase transition. As we already detailed in Section 3.2, it is an expected

behavior in models using interactions dependent on high powers of nB, and while generally

not ideal, it does not affect the current analysis.

In all panels in Fig. 6.1, the exact model calculations show expected features as functions

of µB. In the upper left panel, showing both c2
T and c2

σ in the VDF model, at small µB we

see a softening of the EOS due to the influence of the nuclear CP, followed by an increase at

densities of the order of n0, then a deep dive in c2
s caused by the QGP-like phase transition,

and finally a steep rise for high values of µB. In the upper right panel, showing c2
T and

c2
σ in the Walecka model, we similarly observe a soft EOS at small µB, while the value

of c2
s goes asymptotically to 1 for large µB. Additionally, for T = 200 MeV, the Walecka

180



model shows effects due to a phase transition in the nucleon-antinucleon plasma, occurring

around T ≈ 190 MeV and nB = 0; above this transition, the model describes an almost

noninteracting gas of nearly massless nucleons [216]. The behavior of the curves in the lower

panels, showing c2
T +

(
d ln c2

T/d lnnB
)
T
, can be directly traced to the behavior of the curves

in the upper panels. In particular, for the VDF model we observe strong divergences due to

the softening of the EOS in the QGP-like phase transition region.

Comparing the exact results to the approximations, we see that while Eq. (6.8) is valid

for small to moderate temperatures, T . 100 MeV, and moderate to high baryon chemical

potentials, µB & 600 MeV, it behaves poorly, both qualitatively and quantitatively, for T and

µB corresponding to regions of the phase diagram probed by moderately to highly energetic

heavy-ion collisions (upper panels). On the other hand, the approximation introduced in Eq.

(6.11) is qualitatively valid for most of the probed T and µB, with the exception of regions

characterized by low chemical potentials, µB . 200 MeV (lower panels).

6.4. Experimental data and interpretation

We proceed to apply Eqs. (6.8) and (6.11) to heavy-ion collision data. We consider cumulants

of the net proton number and chemical freeze-out parameters, (Tfo, µfo), in collisions at 0–5%

centrality, determined by the solenoidal tracker at RHIC (STAR) [104] and high acceptance

dielectron spectrometer (HADES) [217, 218] experiments, and we use them to plot Eqs. (6.8)

and (6.11) (red triangles, left and right panel in Fig. 6.2, respectively) against µB.

Based on the model validation study presented in Section 6.3, we trust the results pre-

sented in the left panel of Fig. 6.2, approximating c2
T , only for the lowest collision energy,

√
s = 2.4 GeV from the HADES experiment. At this collision energy, the value of c2

T as

obtained from Eq. (6.8) is small: less than half of the ideal gas value (see insert). At the

same time, the value of 1−κ3κ1/κ
2
2 (shown in the right panel in Fig. 6.2), which we assume is

dominated by (d ln c2
T/d lnnB)T , drops with decreasing collision energy to reach a minimum
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Figure 6.2: Comparison of the right-hand sides of Eq. (6.8) (left panel) and Eq. (6.11) (right

panel) for experimental data (red triangles), ideal gas at the freeze-out (small gray circles),

the VDF model at the freeze-out (light green stars), and the VDF model at a set of points

chosen to reproduce the data (dark purple stars); exact results, that is, the left-hand sides

of Eqs. (6.8) and (6.11), are shown for the two cases considered in the VDF model (green

and purple circles). The data points for the matched VDF results are chosen to reproduce

experimental values of 1− κ3κ1/κ
2
2 (see Fig. 6.3). We note that at

√
s = 2.4 GeV, matching

the value of 1− κ3κ1/κ
2
2 exactly is possible, but would place the matched point close to the

nuclear liquid-gas CP, which we find unlikely. Figure from [212].

at the lowest STAR point,
√
s = 7.7 GeV, and then steeply rises for the HADES point. This

could mean that in matter created in
√
s = 7.7 GeV collisions, c2

T is approximately constant

as a function of nB, while in
√
s = 2.4 GeV collisions the matter is characterized by a small

c2
T which nevertheless has a large positive slope as a function of nB.

To further understand this behavior, we study the dependence of 1− κ3κ1/κ
2
2 on µB and

T within the VDF model, shown as a contour plot in Fig. 6.3. Remarkably, the softening

of the EOS, leading to negative values of (d ln c2
T/d lnnB)T , occurs in two regions of the

phase diagram, corresponding to the ordinary nuclear matter phase transition and to the
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Figure 6.3: Contour plot of 1 − κ3κ1/κ
2
2 in the VDF model. Yellow (black) lines cor-

respond to the spinodal (coexistence) lines, while white contours mark regions where

1−κ3κ1/κ
2
2 = 1±0.03. Light green stars denote experimentally measured freeze-out param-

eters (Tfo, µfo), while dark purple stars denote points where 1 − κ3κ1/κ
2
2, taken along lines

informed by average phase diagram trajectories for STAR collision energies [219], matches

the experimentally measured values for a given collision energy. Figure from [212].

conjectured QGP-like phase transition. In order to compare model results to experiment,

we need to choose at which T and µB to take values of 1 − κ3κ1/κ
2
2. A natural choice is

to use values at the freeze-out points (Tfo, µfo) (marked in Fig. 6.3 with light green stars),

however, as can be seen in the right panel of Fig. 6.2, the VDF model values of 1− κ3κ1/κ
2
2

taken at these points (also denoted with light green stars) do not lead to an agreement

with experimental data; in particular, the biggest discrepancy occurs for the HADES point.

(We note here that the values of the freeze-out parameters (Tfo, µfo) are established with
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hadron interactions neglected, and the degree to which this affects our results may vary

significantly across the phase diagram.) However, critical fluctuations are shown to exhibit a

large relaxation time [105, 139, 220], and as such their measured values could be affected by

stages of the collision preceding the chemical freeze-out. Guided by this insight and aided by

the average phase diagram trajectories of hybrid simulations of heavy-ion collisions [219], we

consider values of 1−κ3κ1/κ
2
2 at points in the phase diagram corresponding to slightly earlier

stages of the collisions. Additionally demanding that the values of 1 − κ3κ1/κ
2
2 reproduce

the experimentally obtained values for a given collision energy results in points denoted

with dark purple stars in both Fig. 6.2 and in Fig. 6.3 (where we choose to show points

only for collisions at low energies, for which using the model is justified); here the exception

from the exact matching occurs for the HADES point, for which we prioritized choosing a

point in a reasonable vicinity of the measured freeze-out over obtaining a value equal to the

experimental data. Comparing to the exact model results for c2
T and c2

T +
(
d ln c2

T/d lnnB
)
T
,

also displayed in Fig. 6.2, as well as to the upper left panel of Fig. 6.1, we can confirm

that at the point reproducing the experimental value of 1 − κ3κ1/κ
2
2 for the lowest STAR

energy, c2
T is nearly constant as a function of µB (thick short-dashed line, T = 150 MeV, at

µB ≈ 410 MeV in Fig. 6.1), while at the point reproducing the result for the HADES energy,

c2
T increases sharply with µB (thick solid line, T = 50 MeV, at µB ≈ 850 MeV in Fig. 6.1).

Naturally, the choice of T and µB at which we compare model calculations with STAR

and HADES cumulant data is driven by the wish to match the experimental results, and as

such it serves mainly to show that baryon number cumulants measured in heavy-ion collisions

can be connected to the speed of sound in hot and dense nuclear matter. Whether values of

higher order cumulants are indeed significantly affected by stages of the evolution preceding

the freeze-out needs to be further investigated (for recent developments, see Ref. [106, 221]).

Moreover, while experiments measure proton number cumulants, the VDF model provides

baryon number cumulants, putting more strain on a direct interpretation of our results.

Effects due to baryon number conservation should likewise be important [222, 103]. Finally,
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it is understood that our model results may not be applicable in regions of the phase diagram

where quark and gluon degrees of freedom become increasingly relevant.

Nonetheless, hadronic models are well-justified for describing low-energy collisions whose

evolution is dominated by the hadronic stage, and it is the results in this region of the phase

diagram that we want to stress. The comparison between the experimental data and the

VDF model suggests that collisions at the lowest STAR and HADES energies may be probing

regions of the phase diagram where the cumulants of the baryon number tell us more about

hadronic physics than the QCD CP. In particular, the change in the sign of κ3, predicted to

take place in the vicinity of a critical point [97] and apparent in the HADES data (see the

right panel of Fig. 6.2), may mark the region of the phase diagram affected by the nuclear

liquid-gas phase transition. If this is true, it may be worthwhile to study the cumulants at

even lower collision energies, starting from 0.1 GeV projectile kinetic energy, and obtain the

speed of sound around the nuclear liquid-gas CP. Conversely, at higher energies it could be

possible to use collisions at different centralities and different rapidity windows to estimate

the neglected terms in Eqs. (6.8) and (6.11), and obtain a stronger estimate for the speed of

sound in the respective regions of the phase diagram.

6.5. Summary

In this chapter, we have used cumulants of the baryon number distribution to estimate the

isothermal speed of sound squared and its logarithmic derivative with respect to the baryon

number density. The approximations and the model comparisons we considered here apply

to experiments at low energies, however, the presented method can be used at any collision

energy provided that measurements of cumulants of the baryon number distribution as well

as their temperature dependence are available. Further studies of effects due to dynamics,

in particular using state-of-the-art simulations, will be essential in determining the extent

to which the proposed method provides a reliable extraction of sound velocities and their
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derivatives. Nevertheless, this result provides a new approach to obtaining information about

fundamental properties of nuclear matter studied in heavy-ion collisions, with consequences

for both the search for the QCD critical point and neutron star studies.
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CHAPTER 7

Thesis summary

The work described in this thesis is devoted to developing, testing, and applying a parametriz-

able equation of state (EOS) of dense nuclear matter to studies centered on the phase diagram

of quantum chromodynamics (QCD). The presented formalism has the potential to help in-

terpret the measurements obtained from heavy-ion collisions experiments and, in particular,

to reveal the thermodynamics of strongly-interacting QCD matter. Because the constructed

family of EOSs shows a substantial flexibility in postulating the properties of the possi-

ble QCD phase transition at high temperatures and high baryon densities, it is perfectly

suited for use in systematic studies of effects of different dense nuclear matter EOS on final

state observables (e.g., using Bayesian analysis) and can facilitate meaningful comparisons

of simulation results with experimental data.

Below, we provide a summary of the developments presented in this work, followed by a

brief outlook on future research directions.

In Chapter 1, we have given an overview of the search for the conjectured first-order

phase transition in dense QCD matter and the most relevant results obtained within the

Phase I of the Beam Energy Scan program at the Relativistic Heavy-Ion Collider. We have

also discussed the state-of-the-art approaches to simulations of heavy-ion collisions and the

indispensable role they will play in the interpretation of experimental data from the Phase

II of the Beam Energy Scan.

In Chapter 2, after an introductory overview of the mean-field and Landau Fermi-liquid

theory approaches to describing strongly-interacting many-body systems, we have devel-
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oped an easily parametrizable EOS with an arbitrary number of scalar- and vector-density-

functional–based interactions (the VSDF model). We have also shown that this model leads

to Lorentz-covariant equations of motion, preserves conservation laws, and is thermodynam-

ically consistent.

In Chapter 3, we first discussed the parametrization procedure used to obtain a family of

EOSs based on the version of the model introduced in Chapter 2 that utilizes only interac-

tions of the vector type (the VDF model). With application to studies of the phase diagram

of QCD in mind, we chose parametrizations of the VDF model with two phase transitions:

one corresponding to the well-known low-temperature, low-density phase transition in ordi-

nary nuclear matter, and one corresponding to a conjectured high-temperature, high-density

QGP-like phase transition, meant to model the transition from matter described by hadronic

degrees of freedom to matter described by quark and gluon degrees of freedom. Then, based

on several EOSs chosen to represent the flexibility of the model, we discussed at length the

thermodynamic properties of described systems.

In Chapter 4, we have discussed the implementation of the equations of motion stem-

ming from the VDF model in the hadronic transport code SMASH, which we started with an

overview of modeling many-body mean-field dynamics within hadronic transport approaches.

In particular, we provided a detailed description of several different density and mean-field

calculation algorithms available within SMASH, a few of which were introduced as part of the

work underlying this thesis, and we included a comparison of the numerical performance of

these options.

In Chapter 5, we have presented results of SMASH simulations of infinite nuclear matter,

realized as matter in a cubic box with periodic boundary conditions. While the development

of the V(S)DF model and the introduction of its supporting framework in SMASH have been

done to enable large-scale comparisons between experimental data and simulations spanning

a broad family of EOSs, the investigation of the qualitative behavior of dense nuclear mat-

ter presented in this thesis has been facilitated by using one specific parametrization of the
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dense nuclear matter EOS. After detailing the analysis methods used to study the simula-

tion data, we discussed results pertaining to two distinct regions of the QCD phase diagram.

First, we discussed simulations of nuclear matter in the density range corresponding to the

ordinary nuclear matter, and we confirmed that the implemented VDF mean-field poten-

tials lead to the correct thermodynamic behavior of nuclear matter as simulated in SMASH.

Then we discussed results of simulations run in the high baryon density regime, affected by

a conjectured QCD phase transition, stressing the excellent agreement of the behavior of

the simulated systems with the thermodynamic predictions stemming from the underlying

EOS. Furthermore, we have shown that the calculated fluctuation observables reproduce the

thermodynamic behavior expected in the vicinity of the critical point based on the model

predictions, proving that hadronic transport can be sensitive to effects due to phase transi-

tions. In addition, we have discussed effects due to finite number statistics, whose thorough

understanding is crucial to connecting theoretical calculations as well as simulation results

to values of fluctuations measured in experiment.

In Chapter 6, we have discussed a novel method of estimating the speed of sound as well

as its logarithmic derivative with respect to the baryon number density in matter created

in heavy-ion collisions. The method, based on a connection between the isothermal speed

of sound and the susceptibilities of pressure characterizing the system, utilizes one of the

most prominent observables used in the search for the QCD critical point: the cumulants of

the baryon number distribution. The results of our analysis, based on available data on the

cumulants measured by the STAR and HADES experiments, suggest that the logarithmic

derivative of the speed of sound exhibits a non-monotonic behavior at low beam energies, on

the order of
√
sNN ≈ 2–10 GeV, which signals robust changes in the thermodynamic behavior

of matter created in these collisions. In particular, our results imply that matter at the lowest

collision energy explored in these experiments is characterized by a very small value of the

speed of sound which nevertheless grows very fast with increasing density, suggesting a stiff

equation of state at high baryon densities, relevant to neutron star studies. Furthermore,
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comparing the experimental results with a parametrization of the VDF model including a

QGP-like phase transition at high baryon density suggests that at low collision energies,

the experimentally observed cumulants of baryon number may reflect the properties of the

ordinary nuclear matter rather than the features of the conjectured QCD phase transition.

Altogether, the presented method offers a new approach to studying the thermodynamic

properties of dense nuclear matter through heavy-ion collisions, and has the potential to

influence the exploration of the QCD phase diagram in regions relevant both to the Beam

Energy Scan and the neutron star research.

Multiple future directions, carrying this research further, are possible, and we highlight

a few of them below.

First, a natural next step in our studies is to use the VSDF model, which includes both

vector- and scalar-density–dependent interactions, to parametrize a family of possible QCD

EOSs. While interactions of the scalar type are significantly more computationally demand-

ing, their addition will facilitate more robust comparisons with experiment. This is partic-

ularly important in view of the fact that scalar interactions lead to a correct momentum-

dependence of the mean-field potential, which is found to play a considerable role in the

description of the known behavior of nuclear matter at low energies. Additionally, exten-

sions of the VSDF model using interaction terms with explicit momentum dependence can

also be considered.

Next, hadronic transport simulations provide an excellent tool to investigate the effects

of finite number statistics on both qualitative and quantitative features of statistical observ-

ables. In particular, these simulations allow one to isolate and compare effects connected

to utilizing a finite number of test particles, effects related to the finite baryon number as

measured in experiment, and effects driven by the physics described by the underlying the-

ory. Studies of this kind will be crucial to establishing firm expectations for the influence

of particular features of the conjectured QCD phase diagram on the behavior of heavy-ion

collision observables.
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Finally, our study of the connection between the speed of sound and the cumulants of

baryon number can be naturally followed by an investigation of the relationship between

these quantities as obtained in hadronic transport simulations, with a particular emphasis

on the region of the QCD phase diagram probed by low-energy collisions. First, studies

must be done to fully understand effects due to non-equilibrium evolution, conservation

laws, and differences between proton and baryon number cumulants. Next, the considerable

flexibility of the V(S)DF EOS can play an important role in modeling the expected thermo-

dynamic behavior of simulated systems: while so far the VDF model has been parametrized

to describe dense nuclear matter undergoing two phase transitions, one can also pursue a

parametrization that reflects the properties of the speed of sound as suggested by our study,

and compare results from hadronic transport simulations utilizing such a parametrization

with experimental data. Additionally, generalizations of the VSDF model utilizing custom

(instead of polynomial) forms of the interaction terms, allowing for an even greater freedom

in postulating the properties of nuclear matter in different regions of the phase diagram, are

currently being developed.
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APPENDIX A

Units and notation

Throughout this thesis, we adopt natural units, that is we take ~ = c = kB = 1.

We use the metric tensor

gµν = gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (A.1)

Greek indices run over 0, 1, 2, 3, or equivalently over t, x, y, z. Roman indices denote only

the three spatial components. Repeated indices are summed over in all cases. For clarity

and consistent notation of co- and contravariant vectors, we use a notation in which repeated

indices occur only at different levels (superscript and subscript).

In view of this we introduce a general 4-vector as

V µ =
(
V 0,V

)
. (A.2)

Consequently,

Vµ = gµνV
ν =

(
V 0,−V

)
. (A.3)

We thus establish

Vi = −V i . (A.4)

We note here that we may write a contravariant vector as V =
(
Vx, Vy, Vz

)
, even though

strictly speaking the location of the indeces in this case could be take to mean that V is
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covariant. The cases where such somewhat misleading notation is used are few and far in

between, and we never use it in contexts where it could lead to any confusion or misconcep-

tion.

The scalar product of two 4-vectors is given by

V · U = gµνV
µUν = VνU

ν = V0U
0 + ViU

i = V 0U0 − V ·U . (A.5)

In consequence

V ·U = −VkUk . (A.6)

The four-gradient is given by

∂µ =
∂

∂xµ
=

(
∂

∂x0
,∇
)
. (A.7)

where xµ is the position four-vector. In particular,

(∇)i =
∂

∂xi
= − ∂

∂xi
. (A.8)

A specific example of the consequences of the adopted notation is that the expression for

the kinetic energy becomes

εkinetic =
√
p2 +m2 =

√
−pkpk +m2 . (A.9)

As another example, note that the conservation of current is given by

∂j0

∂t
+ ∇ · j =

∂j0

∂x0
+
∑
i

(
∇)ij

i =
∂j0

∂x0
+

∂

∂xi
ji = ∂µj

µ = 0 . (A.10)
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APPENDIX B

Phase transitions

This appendix is largely based on Ref. [186].

Phase transitions are processes involving a change between two states (phases) of a given

medium characterized by different properties, and they can be largely divided into two types.

A first-order phase transition is characterized by a discontinuity of the first derivative

of the thermodynamic potential (the Ehrenfest classification) and involves a latent heat

(modern classification), that is, a finite amount of energy has to be released or absorbed

for the system to undergo the phase transition. A canonical example of a first-order phase

transition is the melting of ice: In order for this transition to occur, heat must be absorbed

by the ice, and during this process of absorption there exist parts of the system that have

already melted (parts that have completed the transition) and parts which are still frozen; in

other words, there is a coexistence of phases. Note that the coexistence of the frozen and the

melted phase means that different parts of the system are characterized by different densities

corresponding to the densities of ice and water. This can be reformulated as the discontinuity

of the first derivative of the pressure (the thermodynamic potential) with respect to the

chemical potential, ∂P/∂µ = n.

A second-order phase transition is characterized by a discontinuity in the second deriva-

tive of the thermodynamic potential (the Ehrenfest classification) and involves a divergent

susceptibility and an infinite correlation length (modern classification). A prominent example

here is the ferromagnetic phase transition, within which the entire volume of a ferromagnet,

when cooled below the transition temperature (known as the Curie temperature), develops
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a spontaneous magnetization, that is the magnetic moments in the system align with each

other. Here the magnetization, which is the first derivative of the thermodynamic poten-

tial with respect to the external magnetic field, is zero above the Curie temperature and

increases continuously from zero below the Curie temperature; consequently, the magnetic

susceptibility, which is the second derivative of the thermodynamic potential with respect

to the external magnetic field, is discontinuous.

It is known that the nuclear liquid-gas phase transition in the ordinary nuclear matter is

of the first order, and effective models suggest that the phase transition from the hadronic

to quark and gluon degrees of freedom may also be of first order in the region of the QCD

phase diagram characterized by high values of the baryon chemical potential. Let us therefore

discuss further certain features of this type of phase transitions.

As already mentioned, first-order phase transitions are characterized by the occurrence of

states with mixed phases, like melting ice floating in water or a liquid and its vapor. These

coexisting phases are in mutual equilibrium, which means that they are characterized by the

same temperature, pressure, and chemical potential,

T1 = T2 , P1 = P2 , µ1 = µ2 . (B.1)

If we plot the points at which two phases of a given system coexist, we obtain a phase diagram

of a given substance. Phase diagrams can be drawn using different primary variables. For

example in the case of the liquid-gas phase transition, it can be convenient to draw a phase

diagram in the temperature and chemical potential (T, µ) or temperature and density (T, n)

planes, see Fig. B.1. Note that the coexistence of phases is given by a single line in the

(T, µ) plane, while the phase diagram of the same system in the (T, n) plane is characterized

by a coexistence region bounded by two coexistence lines; this is because for every set of

values (T, P, µ) at which the two phases coexist, there are two corresponding coexistence

densities, n1 and n2. As can be clearly seen from the diagrams in Fig. B.1, the coexistence

chemical potential or, alternatively, the coexistence densities are functions of temperature.

Importantly, for a given temperature T = T1 at which the coexistence densities are given
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Figure B.1: Phase diagrams in the temperature and chemical potential (T, µ), plane (left

panel) and the temperature and density (T, n) plane (right panel), drawn for a hypothetical

system with a first-order phase transition. Orange dots mark points at which the system is

characterized by a given temperature T1, chemical potential µ1, and pressure P1 (not shown);

note that there are two such points in the (T, n) plane, indicating a coexistence of two phases

with different densities, n1 and n2. A continuum of coexistence points forms the coexistence

curves, shown by the solid blue lines; note that in the (T, n) plane, the coexistence curves

bound a region where a mixed phase occurs. The coexistence lines terminate either on

another phase transition line, or on a critical point; these possibilities are not depicted here.

by n1 and n2, an equilibrated system of N particles in volume V such that the density

n = N/V satisfies n1 < n < n2 cannot exist. This is because the coexistence region of

the phase diagram is thermodynamically and, in a specific subregion, also mechanically

unstable (we will elaborate on this below). If such a system is obtained as a result of a

non-equilibrium evolution (for example as a result of an adiabatic quench), the system will

spontaneously separate into two phases occupying volumes V1 = αV and V2 = (1 − α)V ,

where α = (n− n1)/(n2 − n1) (the latter is a simple consequence of the fact that the numbers

of particles in each of the phases must satisfy N1 +N2 = N).
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Figure B.2: Isotherms of pressure as functions of the density n (left panel) and the chemical

potential µ (right panel), drawn for a hypothetical system with a first-order phase transition.

Points on the pressure isotherms where two phases coexist are marked with orange dots, the

coexistence regions are denoted with dashed blue lines, and the thermodynamically unstable

parts of the pressure curves are denoted with purple lines; in particular, in the left panel,

the solid purple lines show the functional form of the pressure, while the dashed purple lines

show the Maxwell construction.

Let us now discuss isotherms of pressure as a function of density, see left panel in Fig. B.2.

At a given temperature, for densities smaller than the lower (or “left”) coexistence density

nL = nL(T ), the pressure is a monotonously rising function of the density n. Likewise, for

densities larger than the upper (or “right”) coexistence density nR = nR(T ), the pressure is

also monotonic and rising. That the pressure satisfies dP/dn > 0 is in fact a condition for

the system to be mechanically stable (this can be easily seen by noticing that if the pressure

decreased with density, the system would have a tendency to collapse in on itself).

However, in order to have P (nL) = P (nR) the pressure must be a non-monotonic function

of n for nL(T ) < n < nR(T ), as depicted. In particular, this means that there exist densities

for which dP (T )/dn < 0. This shows that the matter in this region, called the spinodal
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Figure B.3: Phase diagram in the temperature and density (T, n) plane, drawn for a hypo-

thetical system with a first-order phase transition ending in a critical point. It is possible

to devise a path in the phase diagram such that the system will go from phase 1 to phase 2

without experiencing the coexistence of phases.

region, is mechanically unstable: any system brought into the spinodal region (e.g., through a

sudden quench) will undergo a spontaneous and violent separation into two coexisting phases

with densities given by nL(T ) and nR(T ). The boundaries of the spinodal region at a given

temperature T , here denoted by ηL and ηR, are given by the condition dP (ηL,R, T )/dn = 0.

The ranges of densities satisfying nL < n < ηL and ηR < n < nR, are thermodynamically,

but not mechanically unstable; this means that the states of the system in these regions are

metastable, as is the case for example for overheated liquid or supercooled vapor. For the

isotherms of pressure shown as functions of the chemical potential, see right panel of Fig.

B.2, the metastable and unstable portions of the isotherms are the ones that form a closed

curve beginning and ending on the crossing point.

We can further see in the left panel of Fig. B.2 that as the temperature is increased,

the width of the coexistence region (and likewise the width of the spinodal region) becomes

smaller, until finally at a temperature T = Tc, known as the critical temperature, the

coexistence lines merge at n = nc, known as the critical density. The point (Tc, nc) is known
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as the critical point. Importantly, for temperatures higher than the critical temperature Tc,

the notion of the two phases of the studied substance does not have a well-defined sense:

the system is neither in phase 1, nor in phase 2 (see Fig. B.3). Therefore, it is possible to

devise a path in the phase diagram following which brings the system from phase 1 into

phase 2 without matter ever separating into two phases. This underscores the notion that

the concept of phases is somewhat arbitrary and is only really well-defined when the two

phases coexist and are in contact. In the case of the liquid-gas phase transition, while below

Tc the system may be described as being either in the liquid or the gas phase, above Tc, to

stress the fact that these two descriptors do not apply anymore, it is usually referred to as

a “fluid”.

An in-depth review of the thermodynamics related to the first-order phase transitions in

general, and to the spinodal region in particular, can be found in Ref. [187].
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APPENDIX C

Kinematic variables, collision geometry, and baryon

transport in heavy-ion collisions

C.1. Kinematic variables

This section is based on Ref. [223].

The kinematics of relativistic particles in heavy-ion collisions is often described using two

notable variables. Customarily, the direction of the heavy-ion beam defines the z-axis of the

collision systems. If we then consider a relativistic particle with a 4-momentum pµ = (E,p),

where p = (px, py, pz), then the transverse mass, mT , can be defined as

m2
T ≡ E2 − p2

z = m2 + p2
T , (C.1)

where pz = |p̂z| is the component of the particle’s momentum along the beam axis, often

called the longitudinal momentum, m is the particle’s rest mass, and pT = |pT | = |pxx̂+pyŷ|
is the component of the particle’s momentum transverse to the beam direction, called the

transverse momentum. It is easy to see that the transverse mass is invariant under Lorentz

transformations along the beam direction.

The rapidity of the particle, yr, is defined as

yr ≡
1

2
ln
E + pz
E − pz

=
1

2
ln

1 + β

1− β , (C.2)

where the second equality uses the longitudinal velocity of the particle β = pz/E. (Here

we note that while in this appendix we denote rapidity as yr to avoid confusion with the
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y-axis in the coordinate space, it is customarily denoted with just y; the distinction between

the two variables is usually clear from the context.) The rapidity can be thought of as a

measure of the contribution of the particle’s velocity in the beam direction to the particle’s

total energy. Note that if pz = 0, then yr = 0.

The advantage of yr, as compared to the velocity β, is that it transforms more easily

under Lorentz boosts. Consider two observers, A and B, where the observer B is moving

with a constant velocity β0 with respect to the observer A (to simplify, let us consider only

one spatial dimension). If B observes some object C moving with velocity β′, then A sees

the same object moving with velocity

β ≡ dx

dt
=
γ0

(
dx′ + β0dt

′)
γ0

(
dt′ + β0dx′

) =
β′ + β0

1 + β0β′
, (C.3)

that is the velocities in the two frames are related by a composition law. On the other hand,

the rapidities reported by the two observers are simply related by

yr =
1

2
ln
γ0

(
E ′ + β0p

′
z

)
+ γ0

(
p′z + β0E

′)
γ0

(
E ′ + β0p′z

)
− γ0

(
p′z + β0E ′

) =
1

2
ln

(E ′ + p′z)(1 + β0)

(E ′ − p′z)(1− β0)
= y′r + y0 , (C.4)

where y0 is the rapidity of B with respect to A, so that the rapidities in the two frames

are additive. In particular, this means that a difference of rapidities, ∆yr = y
(1)
r − y(2)

r , is

a Lorentz-invariant quantity (which is not the case for the difference of velocities). This is

especially useful in the context of heavy-ion collisions, where many observables either depend

on the difference in rapidities of two observed particles (e.g., two-particle correlations), or are

calculated within a certain chosen rapidity window ∆y (e.g., cumulants of baryon number).

In experiment, it is not always possible to identify the mass of a particle, necessary to

calculate the rapidity, Eq. (C.2). For particles with very high momentum, however, the mass

contribution to the energy can often be neglected, E ≈ p, where p = |p|. In that case the

rapidity is approximately equal to the pseudorapidity η, which is defined as

η ≡ 1

2
ln
p+ pz
p− pz

=
1

2
ln

1 + pz
p

1− pz
p

=
1

2
ln

1 + cos θ

1− cos θ
= − ln tan

(
θ

2

)
, (C.5)
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θ	=	π/3

θ	=	π/6

η	=	∞,	θ	=	0

η	=	4
η	=	3

η	=	2

η	=	1

η	=	0.5η	=	0,	θ	=	π/2

Figure C.1: A plot showing the relation between values of the pseudorapidity η and the polar

angle θ = ]
(
p̂, ẑ

)
. Note that η

(
θ = π

2

)
= 0 and η

(
θ = 0

)
= +∞.

where θ is the angle between the direction of the particle’s momentum and the beam axis, θ =

]
(
p̂, ẑ

)
. Being a function of θ only, pseudorapidity has a clear geometrical interpretation.

In particular, a detector often covers a well-defined range of θ with respect to the beam axis,

and it is not unusual for particles with high values of pseudorapidity to fall beyond the region

where detection is possible. Note that a pseudorapidity window ∆η = 1 around η = 0 covers

about a quarter of the entire range of the angle θ, while for example the same rapidity window

about η = 4 covers only a small angle, as shown in Fig. C.1. This is a consequence of the

non-linear dependence of η on θ. For the same reason, a particle distribution that is isotropic

in the coordinate space (that is a distribution uniform in sin θdθ dφ) is, when expressed in

terms of η, a distribution with a peak at small values of η. The same conclusions can be

approximately applied to the rapidity. In consequence, experimental observables are often

considered at small (relative to the beam rapidity) values of rapidity or pseudorapidity; the
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corresponding range of considered values of yr or η is referred to as “midrapity” or “central

rapidity region”.

Notably, using the transverse mass and rapidity, it is possible to write the energy and

longitudinal momentum of a particle as

E = mT cosh yr and pz = mT sinh yr , (C.6)

respectively.

Using the center-of-mass frame for expressing the beam energy allows one to make easy

comparisons between collisions in the collider mode and collisions in the target mode. Con-

veniently, for collisions of identical nuclei of mass M moving with velocities of equal mag-

nitudes and opposite directions, the lab frame is the center-of-mass frame. If one denotes

the 4-momentum of one of the nuclei as pµ1 = (E, 0, 0, pz), then the 4-momentum of the

other nucleus is pµ2 = (E, 0, 0,−pz), and the Lorentz invariant Mandelstam variable s sat-

isfies
√
s =

√(
pµ1 + pµ2

)2
= 2E. For collisions in the target mode, in which one of the

nuclei is at rest while the other nucleus is moving with energy E (in the lab frame), one

has
√
s =

√
2M(M + E) =

√
2M(2M + Ekin), where Ekin ≡ E −M is the kinetic energy

of the projectile nucleus. To enable comparisons between collisions of nuclei with different

mass numbers A, one further defines
√
sNN as the center-of-mass energy of two protons

colliding with kinetic energy Ekin,NN = Ekin/A. Up to a slight discrepancy due to neglecting

the binding energy of the nuclei,
√
sNN can be thought of as the center-of-mass energy per

nucleon pair in the system,
√
sNN ≈

√
s/A.

C.2. Collision geometry

Fig. C.2 shows a simplified sketch of a heavy-ion collision in the collider mode. Two heavy

ions are moving along the beam pipe, which is coincident with the z-axis, with equal energies

E =
√
m2 + p2

z. In the figure, the orange heavy ion moves with momentum p1 = +pzẑ, while
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Figure C.2: A sketch of a heavy-ion collision geometry in the collider mode. Note that two

nuclei moving at relativistic speeds should be Lorentz contracted, but the sketch does not

include the contraction for clarity. The outer cylinder on the sketch, indicated with a solid

gray line, is supposed to indicate the geometry of a typical detector such as STAR, but its

relative dimensions are not to scale to make the figure more clear. The nuclei are moving

along the beam pipe, coincident with the z-axis, indicated with a long-dashed gray line.

The short-dashed red line indicates the reaction plane, the dotted blue line indicates the

transverse plane, and the green dash-dotted line indicates the intersection of the reaction

and transverse planes, where yr = 0. The insert shows the geometry of the collision when

looking along the beam pipe. See text for more details.
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0-5% (b=2.34 fm)

40-60% (b=10.8 fm)

0-5% (b=2.34 fm)

40-60% (b=10.8 fm)

0-5% (b=2.34 fm)

60-80% (b=12.8 fm)

Figure C.3: A plot of different collision centralities, corresponding to a series of impact

parameters b, shown in a view along the beam axis. The concentric rings indicate regions of

the same density. The sketch does not include the intrinsic fluctuations in the positions of

nucleons inside the nuclei. Figure from [224].

the turquoise heavy ion moves with momentum p2 = −pzẑ. The impact parameter b of the

collision is defined as the length of the vector b connecting the centers of the colliding nuclei

at the point of closest approach (see the insert in Fig. C.2). The z-axis together with b

create a plane called the reaction plane, indicated in the figure by short-dashed red lines.

One can also define the transverse plane, which is a plane perpendicular to the beam axis,

indicated in the figure with a blue dotted line; usually, the intersection of the beam axis

and the transverse plane is set at a point where the rapidity is zero, yr = 0; in the figure,

the intersection of the reaction and the transverse planes is indicated by the green dash-

dotted line. The directions in the transverse plane are given by the x-axis and the y-axis, as

indicated on the insert in Fig. C.2.

Collisions can occur at different values of the impact parameter b, see Fig. C.3. Nucle-

ons from the two nuclei which overlap in the transverse plane are called participants. The

remaining nucleons, which “detach” from the colliding nucleus at the moment of the colli-

sion and then continue to move with the beam momentum, are called spectators. Different

impact parameters will lead to different geometries of the initial collision region, numbers

of participants, and initial energy depositions. Therefore, to enable meaningful comparisons
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between different geometries of the initial systems, collisions are sorted into classes corre-

sponding to ranges of impact parameters. Because measuring the impact parameter itself

is impossible in experiment, the collisions are instead characterized by a parameter known

as centrality. There are many ways of establishing the centrality of a collision, varying be-

tween detectors, however, the intuitive picture for most of these methods is the following:

Collisions with a small impact parameter will lead to a greater amount of energy deposited

in the collision region and through that to a larger number of produced particles and a

larger number of detected charged particles, or charged particle multiplicity, Nch. When the

collisions are sorted by their respective values of Nch, one can define specific ranges of Nch

as corresponding to “more central” or “less central” collisions. And so, for example, one can

define the most central collisions as the top 10% of all collisions with respect to the number of

detected charged particles Nch; such collisions are then said to be characterized by a 0–10%

centrality. Correspondingly, one can define mid-central collisions as those falling between

the top 10% and the top 40% of all collisions, and peripheral collisions as those falling in

the top 40%–80%. Typically, the most peripheral collisions, in this case the bottom 20%,

are discarded to avoid biases due to detector trigger inefficiencies. The entire range of used

centralities, here 0–80%, is referred to as “minimum bias”. We note that the ranges defining

the centralities are chosen to best suit a specific analysis and a particular experiment, and

are by no means set to the example values provided above.

C.3. Baryon transport

The initial rapidity of the beam, or equivalently the collision energy, influences the rapidity

distributions of detected particles. Initially, the transverse momentum of the entire system

as well as of each of the nucleons inside the colliding nuclei is zero (here, we neglect the Fermi

momenta of the nucleons inside the nuclei). Because momentum is conserved, the total trans-

verse momentum after the collision is also zero, but individual particles (both transported
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as well as produced) develop non-zero values of pT through scattering or collective motion

of the system (e.g., collective flow). At the same time, on average, there is only so much

transverse momentum that a particle can plausibly develop through these means. Indeed,

head-on collisions of quarks or gluons can result in scattering products with almost zero lon-

gitudinal momentum and a large fraction of their initial energy converted into the transverse

momenta; for example, at
√
sNN = 200 GeV, which corresponds to Ekin,NN ≈ 100GeV, the

individual quarks inside the proton may typically have pz ≈ 10–20 GeV, and so, if two such

quarks collide, there is a finite chance to produce a 10–20 GeV transverse jet (where by a jet

we understand a collection of final state particles originating from a single hard scattering

at the initial stage of the collision). However, aside from these somewhat exceptional events,

ordinarily the final transverse momentum of a detected particle is much smaller, on the order

of pT ≈ 0.5 GeV (the average transverse momentum of protons tends to be pT ≈ 1.0 GeV,

see below for more details).

A typical detector can detect particles with pseudorapidities |η| ≤ 1.5 (and therefore,

approximately, rapidities |yr| ≤ 1.5), while the beam rapidity ybeam (that is the rapidity of

a single proton moving with pbeam,NN) characterizing the collisions is often much higher. It

is evident that a large change in the rapidity, ∆yr = y′r − yr, requires a correspondingly

large change in the longitudinal momentum, ∆pz, where the latter will also grow with the

magnitude of y′r. Changes in the rapidity of baryons occurring during the collisions can

be established by measuring the rapidity distribution of net protons dNp−p̄/dyr at a given

collision energy and centrality. Fig. 1.5 in Chapter 1 shows dNp−p̄/dyr as measured in

collisions with 0–5% centrality at the AGS (Au+Au collisions at
√
sNN = 5 GeV, ybeam =

1.64) [42], SPS (Pb+Pb collisions at
√
sNN = 17.2 GeV, ybeam = 2.91) [43], and RHIC

(Au+Au collisions at
√
sNN = 200 GeV, ybeam = 5.36) [41]. We see that for the lowest

collision energies the net proton distribution is peaked around yr ≈ 0, and the mean absolute

value of rapidity is 〈|yr|〉 ≈ 0.7 (note that mean rapidity 〈yr〉 is always 0 due to the geometry

of symmetric collisions in the center-of-mass frame), while for collisions at the SPS the
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distribution has two peaks around yr ≈ ±1.3, with the mean absolute rapidity of about

〈|yr|〉 ≈ 1.22. For collisions at RHIC the peaks of the distribution are beyond the reach of

the detector, but numerical fits suggest the peaks at about yr ≈ 4.25, and the corresponding

mean absolute rapidity is 〈|yr|〉 ≈ 3.32. The average rapidity loss, defined as 〈δyr〉 ≡
ybeam−〈|yr|〉, for the three experiments is then approximately 1.0, 1.7, and 2.0, respectively.

It is instructive to ask what is the change in the longitudinal momentum (between the

initial and final state) of a typical proton measured within a given rapidity window, assuming

that the proton has remained intact throughout the collision. (Here one has to bear in mind

that this exercise only serves to develop a rough intuition about possible final longitudinal

and transverse momenta in the system, as in a true collision any given final state particle

will not only be a product of multiple scatterings and decays, but will also most probably

originate in the deconfined QGP. One can hope, however, that final state protons can be

used as a good proxy for the effects of the complex evolution of the baryon number, itself

originating in the protons and neutrons from the colliding nuclei.) We consider protons

with transverse momentum pT = 0.9 GeV. This value is chosen based on the BRAHMS

experiment analysis of Au+Au collisions at
√
sNN = 200 GeV and 0–5% centrality, which

measured 〈pT 〉 = 1.01±0.01(stat) GeV at yr ≈ 0 and 〈pT 〉 = 0.84±0.01(stat) GeV at yr ≈ 3

[41]. For comparison, at lower energies, for example in Pb+Pb collisions at
√
sNN = 17.2 GeV

and 0–5% centrality, the mean transverse momentum of protons is 〈pT 〉 = 0.825 ± 37 GeV

at yr = 0 and 〈pT 〉 = 0.600± 17 GeV at yr = 2.4 [43].

Table C.1 lists values of pbeam,NN and the beam rapidity ybeam corresponding to different

values of the center-of-mass energy
√
sNN . Also listed are values of the longitudinal momen-

tum difference ∆pz ≡ pbeam,NN−pz,final required for the final state proton to have a transverse

momentum of pT = 0.9 GeV and a rapidity of y0, where we consider y0 = {1, 2, 3, 4}. Nega-
tive values of ∆pz signify a longitudinal momentum loss (y0 < ybeam), while positive values

correspond to a gain in longitudinal momentum (y0 > ybeam). In experiment, collision par-

ticipants tend to lose momentum due to the initial energy deposition in the collision region
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Table C.1: Center-of-mass energies
√
sNN (in GeV), beam momenta pbeam,NN (in GeV), beam

rapidities ybeam, and differences between the final and initial state longitudinal momenta

∆pz(y0) (in GeV) of a hypothetical proton undergoing an evolution from the initial state

inside the colliding nucleus to the final state characterized by pT = 0.9 GeV and a particular

value of rapidity yr = y0. See text for more details.

√
sNN pbeam,NN ybeam ∆pz(y0 = 1.0) ∆pz(y0 = 2.0) ∆pz(y0 = 3.0) ∆pz(y0 = 4.0)

3.0 1.170 1.046 0.358 3.545 11.854 34.310

7.7 3.734 2.090 -2.206 0.981 9.291 31.747

19.6 9.755 3.037 -8.227 -5.040 3.270 25.726

62.4 31.186 4.197 -29.658 -26.470 -18.161 4.295

200.0 99.996 5.362 -98.468 -95.280 -86.971 -64.515

and scattering, although momentum gains are also possible through either collective effects

or as excited remnants of the sheared off nuclei emit particles.

From the results of our simple calculation, displayed in Table C.1, we see that decreasing

the rapidity of a proton moving with pbeam,NN at
√
sNN = 200.0 GeV by about 2 units

of rapidity requires a momentum loss of 65–85 GeV. We can compare this value with the

experiment, where an average energy of measured baryons can be calculated through

〈E〉 =
1

Npart

∫ +ybeam

−ybeam
dyr

〈
E(yr)

〉 dNB−B̄

dyr
. (C.7)

The difference δE ≡ Ebeam − 〈E〉 is the average energy loss, and in
√
sNN = 200.0 GeV

Au+Au collisions at 0–5% centrality it has been established to be equal ∆E = 73± 6 GeV

[41], which agrees with our basic estimate. Importantly, ∆E can be thought of as the energy

deposited in the collision region, available for, e.g., particle production.
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We stress that although the values of ∆pz(y0) listed in Table C.1 may aid in building

an intuition about the kinematics of a heavy-ion collision, one should remember that the

evolution of heavy-ion collision is much more complicated than the simple picture suggested

here and includes, among others, formation of the fireball, deconfinement, evolution of a

strongly-interacting QGP, and hadronization.

The energy dependence of net proton rapidity distributions (see Fig. 1.5 in Chapter

1) shows that although in very high-energy collisions a significant amount of longitudinal

momentum is converted into energy available for particle production, the midrapidity region

is mostly baryon-free. The opposite is true at the lowest energies, where almost all baryon

number participating in the collision is found within one unit of rapidity around yr = 0.

Models explaining this behavior exist, however, the exact mechanism of transporting baryon

number to smaller absolute values of rapidity, also known as “baryon stopping”, is unknown

and continues to be a subject of ongoing research.
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APPENDIX D

Cumulants in terms of derivatives of the pressure with

respect to the net baryon number density

We start by noting that, based on Eq. (1.27), the cumulants satisfy

κj+1 ≡ T (dκj/dµB)T . (D.1)

The first cumulant is given by

κ1 ≡ V

(
dP

dµB

)
T

= V nB . (D.2)

Following Eq. (D.1), the second cumulant is given by

κ2 ≡ V T

(
dnB
dµB

)
T

. (D.3)

From dP = Tds+ nBdµB we know that(
dµB
dnB

)
T

=
1

nB

(
dP

dnB

)
T

, (D.4)

so that Eq. (D.3) can be rewritten as

κ2 =
V TnB(
dP
dnB

)
T

. (D.5)

Similarly, the third cumulant is given by

κ3 ≡ T

(
dκ2

dµB

)
T

= V T 2

(
dnB
dµB

)
T

d

dnB

∣∣∣∣
T

 nB(
dP
dnB

)
T


=

V T 2nB(
dP
dnB

)2

1− nB(
dP
dnB

)
T

(
d2P

dn2
B

)
T

 . (D.6)
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where in the second equality we have used Eq. (D.5) and in the third equality we again

utilized Eq. (D.4). Finally, the fourth cumulant can be obtained in the same way, yielding

κ4 ≡ T

(
dκ3

dµB

)
T

= T

(
dnB
dµB

)
T

(
dκ3

dnB

)
T

=
V T 3nB(
dP
dnB

)3

T

1− 4nB(
dP
dnB

)
T

(
d2P

dn2
B

)
T

+
3n2

B(
dP
dnB

)2

T

(
d2P

dn2
B

)2

T

− n2
B(

dP
dnB

)
T

(
d3P

dn3
B

)
T

 . (D.7)
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APPENDIX E

The static limit of the Walecka model

This appendix is based on Ref. [225] .

E.1. A simple case of a scalar interaction field

Let us consider a simple 2-nucleon scattering as shown in Fig. E.1 (note that by consider-

ing only this diagram we neglect the exchange term, which is equivalent to a simplifying

assumption that the nucleons taking part in the interaction are distinguishable). We can

explicitly write the conditions for energy and momentum conservation (throughout the entire

scattering event and at each vertex) as

p1 + p2 = p3 + p4 , (E.1)

E1 + E2 = E3 + E4 , (E.2)

p3 = p1 − q , (E.3)

p4 = p2 + q , (E.4)

E3 = E1 − q0 , (E.5)

E4 = E2 + q0 . (E.6)

Then we easily see that we can write, for example,

q0 = E4 − E2 =
√
p2

4 +M2 −
√
p2

2 +M2 . (E.7)
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p1

p3 p4

p2

q

Figure E.1: A diagram of two-nucleon scattering occurring through an exchange of a scalar

interaction boson.

If the nucleon mass M is very large (or, conversely, the nucleons are not too fast), which is

known as the limit of static sources, then we can approximate

q0 = M

(√
1 +

p2
4

M2
−
√

1 +
p2

2

M2

)
≈ p

2
4 − p2

2

2M
. (E.8)

Now, let us assume that the scattering is described by the interaction Lagrangian density

LI = gψ̄ψφ (E.9)

where φ denotes a scalar interaction field and g is the coupling constant. The propagator of

the scalar interaction field quanta is given by

D(q) =
i

q2 −m2
s

, (E.10)

where q is the momentum transfer and ms denotes the mass of the field quanta, so that the

lowest order scattering matrix element in the momentum space is given by

Sfi = (−ig)2 (2π)4δ4
(
k1 + k2 − k3 − k4

) 1

Ω2

i

q2 +m2
f

ūa(k3)ua(k1)ūb(k4)ub(k2) , (E.11)

where Ω is the quantization volume. Using the limit of static sources, Eq. (E.8), we get

D(q) =
i

q2
0 − ~q2 −m2

s

≈ i(
p2
4−p2

2

2M

)2

− q2 −m2
s

≈ − i

|q|2 +m2
s

, (E.12)
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so that Eq. (E.11) becomes

Sfi = (2π)4δ4
(
k1 + k2 − k3 − k4

) 1

Ω2

ig2

|q|2 +m2
s

ūa(k3)ua(k1)ūb(k4)ub(k2) . (E.13)

On the other hand, to the lowest order in nonrelativistic potential scattering we should

have

S
(1)
fi = −i

∫
d4x HI(x) . (E.14)

In the formalism of the second quantization this can be rewritten as

S
(1)
fi = −i

∫
d4x

∫
d4y ψ†a(x)ψ†b(y) Veff(y − x) ψb(y)ψa(x) . (E.15)

We can always express ψ in terms of its Fourier components

ψ =
1√
Ω

∑
λ

∑
k

aλkχλe
−k·x , (E.16)

which leads to

S
(1)
fi = − i

Ω2
(2π)4δ4(k1 + k2 − k3 − k4) Ṽeff(q) , (E.17)

where q = k1 − k3 = k4 − k2. Upon comparing Eqs. (E.13) and (E.17) we see that we must

have

Ṽeff(q) = − g2

|q|2 +m2
s

. (E.18)

To recover the potential in the position space we need to Fourier transform Ṽeff(q),

Veff(r) =

∫
d3q

(2π)3
Ṽeff(q)eiq·r

=
1

4π2

∫ ∞
0

dq q2

∫ +1

−1

d(cos θ) Ṽeff(q)eiqr cos θ

= − g2

4π2 ir

∫ ∞
0

dq q
eiqr − e−iqr
q2 +m2

s

= − g2

4π2 ir

∫ ∞
−∞

dq q
eiqr

q2 +m2
s

. (E.19)
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The last integral has to be done by means of complex integration. We can always rewrite

qeiqr

q2 +m2
s

=
eiqr

2

(
1

q + ims

+
1

q − ims

)
, (E.20)

from which we immediately see that closing the contour in the upper half plane encloses the

q = ims pole. Since now the integral is just 2πi times the residue of the pole with an overall

plus sign as the contour is traversed counterclockwise, we have

Veff(r) = − g
2

4π

e−msr

r
, (E.21)

which is an attractive Yukawa potential.

E.2. The Walecka model

In the Walecka model the interaction Lagrangian density is of the form

LI = igωψ̂γλψω
λ + gσψ̄ψσ , (E.22)

which leads to the momentum-space potential

VW (q) = g2
ω

γ
(1)
λ · γ

(2)
λ

q2 −m2
ω − iε

− g2
σ

1(1) · 1(2)

q2 −m2
σ − iε

, (E.23)

where q is the four-momentum transfer and γ(1,2)
λ refer to the first and second particle, re-

spectively. If we assume that the baryons are nonrelativistic (which is equivalent to assuming

that they are heavy), we can approximate

γ
(1)
λ · γ

(2)
λ → 1(1) · 1(2) (E.24)

and, just as before,

|q0| � |q| , (E.25)

in which case the potential becomes instantaneous and spin-independent. Following similar

steps as before we can be write VW (q) in the coordinate space as

V (r) =
1

4π

(
g2
ω

e−mr

r
− g2

σ

e−mσr

r

)
. (E.26)
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If g2
ω > g2

σ, this potential is repulsive at short distances. If additionally mω > mσ, the

potential will be attractive at large distances. In result, such an interaction will display all

main features of the nucleon-nucleon interaction, and indeed we can see that its form is just

like that of a Lennard-Jones–type potential.
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APPENDIX F

Dirac field with vector and scalar interactions

F.1. The Dirac equation

In general, the Dirac equation for a fermion interacting with a classical vector field Aµ and

a classical scalar field S is given by(
iγµ∂µ − γµAµ −m+ S

)
ψ(x) = 0 ; (F.1)

the above equation can be brought to the form displayed in Eq. (2.13) by making the fields

Aµ and S appropriately dependent on mean fields. Multiplying Eq. (F.1) by γ0 from the left

and writing out the terms leads to

i∂0ψ(x) =
(
− iγ0γ ·∇− γ0γ ·A+ A0 + γ0(m− S)

)
ψ(x) . (F.2)

We know that the momentum operator is P̂ ≡ −i∇, so that furthermore we have

i∂0ψ(x) =
(
γ0γ · P̂ − γ0γ ·A+ A0 + γ0(m− S)

)
ψ(x) (F.3)

=
( 0 σ · P̂

σ · P̂ 0

−
 0 σ ·A
σ ·A 0

+ A014 +

 12 0

0 −12

 (m− S)
)
ψ(x) .(F.4)

where in the second line we have used the explicit form of the gamma matrices in the Dirac

representation,

γ0 =

 1 0

0 −1

 , γi =

 0 σi

−σi 0

 , (F.5)
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where σ1, σ2, σ3 are Pauli matrices. Taking the wavefunction ψ to be a stationary solution

and expressing it in the bispinor form,

ψ = e−iEt

 ϕ

χ

 , (F.6)

leads to two coupled equations,

Eϕ =
[(
σ · P̂

)
−
(
σ ·A(x)

)]
χ+

[
A0 + (m− S)

]
ϕ , (F.7)

Eχ =
[(
σ · P̂

)
−
(
σ ·A(x)

)]
ϕ+

[
A0 − (m− S)

]
χ , (F.8)

where we have made the dependence of the A field on the position explicit. The second of

the above equations can be solved for χ in terms of ϕ,

χ =

[
σ ·
(
P̂ −A(x)

)]
E −

[
A0 − (m− S)

] ϕ , (F.9)

which inserted into the first equation results in

Eϕ =


[
σ ·
(
P̂ −A(x)

)]2

E −
[
A0 − (m− S)

] +
[
A0 + (m− S)

]ϕ . (F.10)

Denoting Π = P̂ −A(x) we further arrive at([
E − A0

]2 − (m− S)2

)
ϕ =

[
σ ·Π

]2
ϕ . (F.11)

F.2. Evaluating
[
σ · Π

]2
In order to evaluate the right-hand side of Eq. (F.11) we need to remember that P̂ does

not commute with any function of the coordinate x, which in particular includes A(x).

Specifically, we have [
F (x), P̂k

]
= i

∂F (x)

∂xk
(F.12)
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(where we note that here and generally in the following part of this appendix, the subscripts

do not denote covariant quantities, and in particular in Eq. (F.12) the subscripts k both refer

to components of contravariant vectors). This means that we need to perform the square in

Eq. (F.11) carefully, as
[
Πi,Πj

]
6= 0.

We can write out the square in Eq. (F.11) as[
σ ·Π

]2
=
∑
i

∑
j

σiσjΠiΠj . (F.13)

Because the Pauli matrices satisfy the anticommutation relation {σi, σj} = 2δij, we can write

σiσj = 2δij − σjσi , (F.14)

which used in Eq. (F.13) along with ΠiΠj =
[
Πi,Πj

]
+ ΠjΠi yields∑

i

∑
j

σiσjΠiΠj =
∑
i

∑
j

2δij
[
Πi,Πj

]
+ 2

∑
i

∑
j

δijΠjΠi

−
∑
i

∑
j

σjσi
[
Πi,Πj

]
−
∑
i

∑
j

σjσiΠjΠi . (F.15)

The first term on the right-hand side is identically zero, the second term is simply equal

2Π2, and the fourth term, after a change of indeces according to i → j, j → i, is equal in

magnitude to the left-hand side of the equation, so that altogether we get∑
i

∑
j

σiσjΠiΠj = Π2 − 1

2

∑
i

∑
j

σjσi
[
Πi,Πj

]
. (F.16)

We can always rewrite the last term according to

−1

2

∑
i

∑
j

σjσi
[
Πi,Πj

]
= −1

4

∑
i

∑
j

σjσi
[
Πi,Πj

]
− 1

4

∑
i

∑
j

σjσi
[
Πi,Πj

]
i→j, j→i

= −1

4

∑
i

∑
j

σjσi
[
Πi,Πj

]
− 1

4

∑
i

∑
j

σiσj
[
Πj,Πi

]
= −1

4

∑
i

∑
j

σjσi
[
Πi,Πj

]
+

1

4

∑
i

∑
j

σiσj
[
Πi,Πj

]
=

1

4

∑
i

∑
j

[
σi, σj

][
Πi,Πj

]
. (F.17)
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We know that
[
σi, σj

]
= 2iεijkσk, and we can explicitly calculate[

Πi,Πj

]
=

[
P̂i − Ai(x), P̂j − Aj

]
=
[
P̂i, P̂

]
−
[
P̂i, Aj

]
−
[
Ai, P̂j

]
+2
[
Ai, Aj

]
(F.18)

=

(
i
∂Aj
∂xi
− i∂Ai

∂xj

)
, (F.19)

where Eq. (F.12) has been used. We thus arrive at

[σ ·Π]2 =
∑
i

∑
j

σiσjΠiΠj = Π2 +
1

2

∑
i

∑
j

εijkσk

(
∂Ai
∂xj
− ∂Aj
∂xi

)
. (F.20)

Finally, we perform the summation explicitly. Writing out all non-zero terms we arrive at∑
i

∑
j

εijkσk

(
∂Ai
∂xj
− ∂Aj
∂xi

)
(F.21)

= 2

[
ε12kσk

(
∂A1

∂x2

− ∂A2

∂x1

)
+ ε23kσk

(
∂A2

∂x3

− ∂A3

∂x2

)
+ ε13k

(
∂A1

∂x3

− ∂A3

∂x1

)]
. (F.22)

At this point, we define a “magnetic” field B such that

B ≡∇×A = x̂1

(
∂A3

∂x2

− ∂A2

∂x3

)
+ x̂2

(
∂A1

∂x3

− ∂A3

∂x1

)
+ x̂3

(
∂A2

∂x1

− ∂A1

∂x2

)
. (F.23)

Clearly then,∑
i

∑
j

εijkσk

(
∂Ai
∂xj
− ∂Aj
∂xi

)
= 2
[
− ε12kσkB3 − ε23kσkB1 + ε13kB2

]
. (F.24)

Inserting the only values of k that result in a non-zero Levi-Civita tensor we obtain∑
i

∑
j

εijkσk

(
∂Ai
∂xj
− ∂Aj
∂xi

)
= −2σ ·B , (F.25)

and in this way we ultimately arrive at

[σ ·Π]2 =
∑
i

∑
j

σiσjΠiΠj = Π2 − σ ·B . (F.26)

F.3. The Pauli equation

Using Eq. (F.26), Eq. (F.10) becomes

Eϕ =

(
Π2 − σ ·B

E − A0 + (m− S)
+
[
A0 + (m− S)

])
ϕ . (F.27)
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Let us for a moment neglect the scalar field by putting S = 0, and let us consider the non-

relativistic limit, in which the total energy E = m+ εkin, where εkin is the kinetic energy of

the particle such that εkin � m. Then

(E −m)ϕ =

(
Π2 − σ ·B

2m+ εkin − A0

+ A0

)
ϕ . (F.28)

Since both A0 � m and εkin � m, we can neglect these small terms in the denominator,

leading to

εkinϕ =

(
Π2 − σ ·B

2m
+ A0

)
ϕ . (F.29)

By realizing that εkinϕ = i∂tϕ we arrive at the Pauli equation, which describes a spin-1
2

particle in an external electromagnetic field,

i∂tϕ =

((
p−A

)2

2m
− σ ·B

2m
+ A0

)
ϕ . (F.30)

(Note that in our notation the coupling constant is absorbed into the field Aµ.)

F.4. Energy solutions in uniform nuclear matter

Similarly, using Eq. (F.26) in Eq. (F.11) results in

[
E − A0

]2
ϕ =

[(
Π2 − eσ ·B

)
+ (m− S)2

]
ϕ . (F.31)

In nuclear matter, the potential field Aµ(x) is spatially uniform, which in particular means

that A = 0, so that B = 0 . With this, Eq. (F.31) becomes

[
E − A0

]2
ϕ =

[
Π2 + (m− S)2

]
ϕ , (F.32)

and we immediately obtain

E = ±
√

Π2 + (m− S)2 + A0 . (F.33)

Note that because the matter in uniform, we in fact have Π = p.
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APPENDIX G

Form of the quasiparticle distribution function

The functional form of the quasiparticle distribution function fp can be obtained using

fundamental thermodynamic relations. Any variation in the energy density is connected to

a variation in entropy density s and particle density n through the fundamental equation of

thermodynamics,

δE = T δs+ µ δn . (G.1)

It follows from Eq. (2.36) that δE ≡ εp δfp. The dependence of δs on fp can be easily

established by remembering that it is possible to calculate the entropy of a given state by

combinatorial considerations only. In view of the one-to-one correspondence between the

states of the Fermi liquid and the free Fermi gas, it is natural to assume that the entropy

density must have the same form as in the case of the free Fermi gas,

s = −
∑
p

[
fp ln fp + (1− fp) ln(1− fp)

]
. (G.2)

Consequently,

δs = −
∑
p

[
δfp ln

fp
1− fp

]
. (G.3)

Similarly, because the number of quasiparticles in the interacting system directly corresponds

to the number of particles in the corresponding state of the free Fermi gas, and the inter-

action between the particles is assumed to conserve the particle number, the total number

of particles in a state of the interacting system must be the same as in the non-interacting
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system. In consequence, the quasiparticle density can be expressed using the quasiparticle

distribution function in the familiar way,

n =
∑
p

fp , (G.4)

from which it follows that δn =
∑

p δfp. With all this, Eq. (G.1) can be rewritten as

∑
p

εp δfp = −T
∑
p

ln
fp

1− fp
δfp + µ

∑
p

δfp , (G.5)

which can be further rearranged as

∑
p

[
εp + T ln

fp
1− fp

− µ
]
δfp = 0 . (G.6)

The above equality will hold for any variation δfp if and only if the term in the square

bracket vanishes for any p, and this fact can be used to solve for the quasiparticle distribution

function,

fp =
1

exp
( εp−µ

T

)
+ 1

, (G.7)

which turns out to be of the Fermi-Dirac form. This naturally follows one’s basic expecta-

tions, as the Landau Fermi-liquid theory is based on an assumption that the states of the

Fermi liquid can be obtained as a result of a continuous deformation of the states of the

ideal Fermi gas, and it is natural that they would be governed by a distribution function

of the same form. We stress, however, that because the quasiparticle energy εp itself de-

pends on the quasiparticle distribution fp, the above equation is in fact a rather complicated

self-consistent equation for fp, in contrast to the free Fermi gas case.
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APPENDIX H

Vanishing of the collision integral

Vanishing of the right-hand side of Eq. (2.30), multiplied by X and integrated over all

momenta (the available phase space), where X = {1, εp, pj} (corresponding to laws of the

conservation of particle number, energy, and momentum, respectively), can be shown as

follows. Let us first considerX = 1, and let us take the discrete limit, in which the integration

over all momenta becomes a sum over all particles,

g

∫
d3p

(2π)3

(
dfp
dt

)
coll

→
∑
i

(
dfi
dt

)
coll

; (H.1)

here the index i numbers the momenta states. In the discrete limit, the Fermi quasiparticle

distribution function is just a list of occupation numbers {0, 1} for states indexed by i, and

so
(
dfi
dt

)
coll is the change in the occupation numbers due to collisions. Consider an event in

which two quasiparticles in states i = 1 and i = 2 collide and as a result change their states

to i = 3 and i = 4. We have a situation in which before the collision, the states i = {1, 2}
were occupied and the states i′ = {3, 4} were unoccupied, while the opposite is true after

the collision. Therefore we can see that(
dfi
dt

)
coll

∣∣∣∣
i={1,2}

= −1 and
(
dfi
dt

)
coll

∣∣∣∣
i={3,4}

= +1 . (H.2)

Thus in this event (let us assume that only the states indexed by i = {1, 2, 3, 4} have been

changed, so that contributions from all other states are zero,
(
dfi
dt

)
coll

∣∣
i>4

= 0)

4∑
i=1

(
dfi
dt

)
coll

= −1− 1 + 1 + 1 = 0 . (H.3)

In the continuous limit, this corresponds to g
∫

d3p
(2π)3

(dfp
dt

)
coll = 0.
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For the case X = εp, it is again convenient to use the discrete limit. Consider an event in

which two quasiparticles with energies ε1 and ε2 collide and as a result change their energies

to ε3 and ε4,

ε1 + ε2 → ε3 + ε4 . (H.4)

Before the collision, the states i = {1, 2} were occupied and the states i′ = {3, 4} were

unoccupied, while the opposite is true after the collision, as in Eq. (H.2). Thus in this event

(let us again assume that only the states indexed by i = {1, 2, 3, 4} have been changed,(
∂fi
∂t

)
coll

∣∣
i>4

= 0)

4∑
i=1

εi

(
∂fi
∂t

)
coll

= −ε1 − ε2 + ε3 + ε4 . (H.5)

By conservation of energy, the right-hand side of Eq. (H.5) must be zero, and in the contin-

uous limit this corresponds to g
∫

d3p
(2π)3

εp
(∂fp
∂t

)
coll = 0.

The case for X = pj can be shown analogously.
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APPENDIX I

VSDF model derivations

I.1. The quasiparticle energy

To calculate the quasiparticle energy, we calculate a functional differential of the energy

density,

ε∗p ≡
δE
δfp

. (I.1)

Taking the energy density to be given by Ev1s1, Eq. (2.42), and varying the first term,

corresponding to the kinetic energy of the particles in the system, yields

δEv1s1,kin = δ

∫
d3p̃ ε∗kin fp =

∫
d3p̃ δε∗kin fp +

∫
d3p̃ ε∗kin δfp , (I.2)

where we take into account that the kinetic energy εkin, Eq. (2.43), is also a functional of

the quasiparticle distribution function through its dependence on the baryon current and

effective mass. Explicitly,

δε∗kin = δ

[√(
p− C1

(
jµjµ

)α1−1
j
)2

+m∗2

]
=

δ

[(
p− C1

(
jµj

µ
)α1−1

j
)2

+m∗2
]

2

√(
p− C1

(
jµjµ

)α1−1
j
)2

+m∗2

=

(
p− C1

(
jµj

µ
)α1−1

j
)
·
[
δ
(
p− C1

(
jµj

µ
)α1−1

j
)]

+m∗ δm∗√(
p− C1

(
jµjµ

)α1−1
j
)2

+m∗2
. (I.3)

We have

δ
(
p− C1

(
jµj

µ
)α1−1

j
)

= −C1δ
((
jµj

µ
)α1−1

j
)

= −C1

[
2(α1 − 1)

(
jµj

µ
)α1−2

jµ δj
µ j +

(
jµj

µ
)α1−1

δj
]

(I.4)
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and

δm∗ = −G1δ
[
nγ1−1
s

]
= −G1(γ1 − 1)nγ1−2

s δns , (I.5)

where in the second equality we used Eq. (2.46), so that altogether∫
d3p̃ δε∗kin fp

= − C1

[
2(α1 − 1)

(
jµj

µ
)α1−2

jµ δj
µ j +

(
jµj

µ
)α1−1

δj
]

·
∫
d3p̃

p− C1

(
jµj

µ
)α1−1

j√(
p− C1

(
jµjµ

)α1−1
j
)2

+m∗2
fp

− G1(γ1 − 1)nγ1−2
s δns

∫
d3p̃

m∗√(
p− C1

(
jµjµ

)α1−1
j
)2

+m∗2
fp . (I.6)

By Eqs. (2.44) and (2.47) this becomes∫
d3p̃ δε∗kin fp = −C1

[
2(α1 − 1)

(
jµj

µ
)α1−2

jµ δj
µ j +

(
jµj

µ
)α1−1

δj
]
· j

− G1(γ1 − 1)nγ1−1
s δns , (I.7)

and consequently

δEv1s1,kin =

∫
d3p̃ ε∗kin δfp − 2C1(α1 − 1)

(
jµj

µ
)α1−2

j · j jµ δjµ

− C1

(
jµj

µ
)α1−1

j · δj −G1(γ1 − 1)nγ1−1
s δns . (I.8)

Varying the interaction part of the energy density Ev1s1, Eq. (2.42), term by term yields

δ
[
C1

(
jµj

µ
)α1−1(

j0
)2
]

= 2C1

[
(α1 − 1)

(
jµj

µ
)α1−2(

j0
)2
jµ δj

µ +
(
jµj

µ
)α1−1

j0 δj
0
]
, (I.9)

δ

[
−C1

(
2α1 − 1

2α1

)(
jµj

µ
)α1

]
= −C1(2α1 − 1)

(
jµj

µ
)α1−1

jµ δj
µ , (I.10)

δ

[
G1
γ1 − 1

γ1

nγ1s

]
= G1(γ1 − 1)nγ1−1

s δns , (I.11)

so that the variation of the entire interaction part is

δEv1s1,int = C1(2α1 − 2)
(
jµj

µ
)α1−2(

j0
)2
jµ δj

µ − C1(2α1 − 1)
(
jµj

µ
)α1−1

jµ δj
µ

+ 2C1

(
jµj

µ
)α1−1

j0 δj
0 +G1(γ1 − 1)nγ1−1

s δns . (I.12)
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Putting Eqs. (I.8) and (I.12) together, we obtain the variation of the energy density as

given by Eq. (2.42),

δEv1s1 =

∫
d3p̃ ε∗kin δfp − C1(2α1 − 2)

(
jµj

µ
)α1−2

j · j jµ δjµ

− C1

(
jµj

µ
)α1−1

j · δj −G1(γ1 − 1)nγ1−1
s δns

+ C1(2α1 − 2)
(
jµj

µ
)α1−2(

j0
)2
jµ δj

µ − C1(2α1 − 1)
(
jµj

µ
)α1−1

jµ δj
µ

+ 2C1

(
jµj

µ
)α1−1

j0 δj
0 +G1(γ1 − 1)nγ1−1

s δns . (I.13)

The fourth and eighth term, induced by variation of the scalar density and thus proportional

to G1, cancel out. Further, the second, fifth, and sixth term can be combined using the fact

that
(
j0
)2 − j · j = jµj

µ, so we can write

δEv1s1 =

∫
d3p̃ ε∗kin δfp − C1

(
jµj

µ
)α1−1

jµ δj
µ

− C1

(
jµj

µ
)α1−1

j · δj + 2C1

(
jµj

µ
)α1−1

j0 δj
0 . (I.14)

Noting that jµδjµ = j0δj
0 − j · δj, we further reduces the above equation to

δEv1s1 =

∫
d3p̃ ε∗kin δfp + C1

(
jµj

µ
)α1−1

j0 δj
0 . (I.15)

Finally, using the definition of baryon density j0, Eq. (2.45), we arrive at

δEv1s1 =

∫
d3p̃

[
ε∗kin + C1

(
jµj

µ
)α1−1

j0

]
δfp , (I.16)

from which we immediately obtain the quasiparticle energy,

ε∗p = ε∗kin + C1

(
jµj

µ
)α1−1

j0 . (I.17)

I.2. Construction of the energy-momentum tensor

The energy-momentum tensor, T µν , can be constructed by taking moments of the Boltzmann

equation, Eq. (2.54), and identifying the components of T µν which must satisfy the energy

and momentum conservation, ∂νT µν = 0.
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First, we multiply both sides of Eq. (2.54) by the quasiparticle energy, ε∗p, and integrate

over all momenta,

g

∫
d3p

(2π)3
ε∗p

∂fp
∂t
− g

∫
d3p

(2π)3
ε∗p
∂ε∗p
∂pi

∂fp
∂xi

+ g

∫
d3p

(2π)3
ε∗p
∂ε∗p
∂xi

∂fp
∂pi

= 0 , (I.18)

where get zero on the right-hand side due to the fact that quasiparticle energy is conserved

in collisions (see Appendix H for more details). By using the product rule for derivatives,

g

∫
d3p

(2π)3
εp
∂ε∗p
∂pi

∂fp
∂xi

=
∂

∂xi
g

∫
d3p

(2π)3
εp
∂ε∗p
∂pi

fp

−g
∫

d3p

(2π)3

∂εp
∂xi

∂ε∗p
∂pi

fp − g
∫

d3p

(2π)3
εp

∂2ε∗p
∂xi∂pi

fp (I.19)

and

g

∫
d3p

(2π)3
εp
∂ε∗p
∂xi

∂fp
∂pi

=
∂

∂pi
g

∫
d3p

(2π)3
εp
∂ε∗p
∂xi

fp

− g

∫
d3p

(2π)3

∂εp
∂pi

∂ε∗p
∂xi

fp − g
∫

d3p

(2π)3
εp

∂2ε∗p
∂pi∂xi

fp , (I.20)

we can rewrite Eq. (I.18) as

g

∫
d3p

(2π)3
ε∗p

∂fp
∂t
− ∂

∂xi
g

∫
d3p

(2π)3
ε∗p
∂ε∗p
∂pi

fp +
∂

∂pi
g

∫
d3p

(2π)3
ε∗p
∂ε∗p
∂xi

fp = 0 . (I.21)

The last term is a definite integral of the integrand, and it is identically zero because the

distribution function must vanish for |p| = +∞, so that we have

g

∫
d3p

(2π)3
ε∗p

∂fp
∂t
− ∂i g

∫
d3p

(2π)3
ε∗p
∂ε∗p
∂pi

fp = 0 . (I.22)

Because from the definition δE ≡ g
∫

d3p
(2π)3

ε∗p δfp (see Section 2.1.3), where E is the generic

energy density of the system, we can further rewrite the first term, thus arriving at

∂0E − ∂i g
∫

d3p

(2π)3
ε∗p
∂ε∗p
∂pi

fp = 0 . (I.23)

Finally, using −∂ε∗p/∂pi ≡ vi, where vi is the velocity of a quasiparticle, the second term in

the above equation can be identified as the quasiparticle energy flux, and thus it becomes
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apparent that Eq. (I.23) must be an energy density conservation equation. By comparing

with ∂νT 0ν = 0 we see that we must have

T 00 = E (I.24)

and

T 0i = −g
∫

d3p

(2π)3
ε∗p
∂ε∗p
∂pi

fp . (I.25)

To obtain momentum conservation, we multiply both sides of Eq. (2.54) by the k-th

component of the quasiparticle’s momentum, pk, and again integrate over all momenta,

g

∫
d3p

(2π)3
pk

∂fp
∂t
− g

∫
d3p

(2π)3
pk
∂ε∗p
∂pi

∂fp
∂xi

+ g

∫
d3p

(2π)3
pk
∂ε∗p
∂xi

∂fp
∂pi

= 0 , (I.26)

where the right-hand side vanishes because momentum, like energy, is also conserved in

collisions (see Appendix H for more details). Using the product rule for derivatives,

g

∫
d3p

(2π)3
pk
∂ε∗p
∂pi

∂fp
∂xi

=
∂

∂xi
g

∫
d3p

(2π)3
pk
∂ε∗p
∂pi

fp − g
∫

d3p

(2π)3
pk

∂2ε∗p
∂xi∂pi

fp (I.27)

and

g

∫
d3p

(2π)3
pk
∂ε∗p
∂xi

∂fp
∂pi

=
∂

∂pi
g

∫
d3p

(2π)3
pk
∂ε∗p
∂xi

fp

− g

∫
d3p

(2π)3

∂pk

∂pi
∂ε∗p
∂xi

fp − g
∫

d3p

(2π)3
pk

∂2ε∗p
∂pi∂xi

fp , (I.28)

leads to

g

∫
d3p

(2π)3
pk

∂fp
∂t
− ∂

∂xi
g

∫
d3p

(2π)3
pk
∂ε∗p
∂pi

fp

+
∂

∂pi
g

∫
d3p

(2π)3
pk
∂ε∗p
∂xi

fp − g
∫

d3p

(2π)3
gki
∂ε∗p
∂xi

fp = 0 , (I.29)

where we have used ∂pk

∂pi
= δki = gkjgji = gki, with gki being a component of the metric tensor.

The third term vanishes due to the fact that fp
(
|p| = +∞

)
= 0, while the fourth term can

be further rewritten as

gki g

∫
d3p

(2π)3

∂ε∗p
∂xi

fp = gki ∂
ig

∫
d3p

(2π)3
ε∗p fp − gki ∂iE , (I.30)
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where we again used the derivative product rule and δE ≡ g
∫

d3p
(2π)3

ε∗p δfp. Altogether we

then have

∂

∂t
g

∫
d3p

(2π)3
pk fp − ∂i g

∫
d3p

(2π)3
pk
∂ε∗p
∂pi

fp + ∂i g
ik

[
E − g

∫
d3p

(2π)3
ε∗p fp

]
= 0 , (I.31)

and, using ∂νT iν = 0, we can identify

T i0 = g

∫
d3p

(2π)3
pi fp (I.32)

and

T ij = −g
∫

d3p

(2π)3
pi
∂ε∗p
∂pj

fp + gij
[
E − g

∫
d3p

(2π)3
ε∗p fp

]
. (I.33)

In this way, we constructed all components of the energy-momentum tensor T µν as introduced

in Eqs. (2.55-2.58).

I.3. Relativistic covariance of the equations of motion

With the definition of the kinetic momentum Πµ, Eq. (2.76), the Hamilton’s equations, Eqs.

(2.73) and (2.74), can be rewritten as

dxi

dt
=

Πi

Π0

, (I.34)

dpi

dt
=

K∑
k=1

∑
j Πj

Π0

(
∂(Ak)

j

∂xi

)
+
m∗

Π0

∂m∗

∂xi
+

K∑
k=1

∂(Ak)
0

∂xi
. (I.35)

Using the fact that H(1) = εp = p0, we can see that for the temporal component of xµ

we have trivially

dx0

dt
=
∂H(1)

∂p0

= 1 =
Π0

Π0

, (I.36)

which allows us to write Eqs. (I.34) and (I.36) together as

dxµ

dt
=

Πµ

Π0

. (I.37)
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For the temporal part of pµ we can likewise write

dp0

dt
=
dp0

dx0

=
K∑
k=1

∑
j Πj

Π0

∂(Ak)
j

∂x0

+
m∗

Π0

∂m∗

∂x0

+
K∑
k=1

∂(Ak)
0

∂x0

, (I.38)

where on the right-hand side we have simply carried out the differentiation with respect to

x0, and it follows that Eqs. (I.35) and (I.38) can be jointly written as

dpµ

dt
=

K∑
k=1

[∑
j Πj

Π0

∂(Ak)
j

∂xµ
+
∂(Ak)

0

∂xµ

]
+
m∗

Π0

∂m∗

∂x0

=
K∑
k=1

[∑
j Πj

Π0

∂(Ak)
j

∂xµ
+

Π0

Π0

∂(Ak)
0

∂xµ

]
+
m∗

Π0

∂m∗

∂x0

=
K∑
k=1

[∑
ν

Πν

Π0

∂(Ak)
ν

∂xµ

]
+
m∗

Π0

∂m∗

∂x0

. (I.39)

Let us note that from the definition of the kinetic momentum Π we have

dΠµ

dt
=
dpµ

dt
−

K∑
k=1

d(Ak)
µ

dt
. (I.40)

Using Eq. (I.39), the above equation becomes

dΠµ

dt
=

K∑
k=1

[∑
ν

Πν

Π0

∂(Ak)
ν

∂xµ

]
+
m∗

Π0

∂m∗

∂x0

−
K∑
k=1

d(Ak)
µ

dt
. (I.41)

We can always write

d(Ak)
µ

dt
=
∑
ν

∂(Ak)
µ

∂xν
dxν

dt
=
∑
ν

∂(Ak)
µ

∂xν
Πν

Π0

, (I.42)

so that Eq. (I.41) can be transformed into

dΠµ

dt
=

K∑
k=1

∑
ν

[
Πν

Π0

∂(Ak)
ν

∂xµ
− Πν

Π0

∂(Ak)
µ

∂xν

]
+
m∗

Π0

∂m∗

∂x0

=
K∑
k=1

∑
ν

Πν

Π0

[
∂µ(Ak)

ν − ∂ν(Ak)µ
]

+
m∗

Π0

∂m∗

∂x0

(I.43)

=
∑
ν

Πν

Π0

K∑
k=1

(Fk)
µν +

m∗

Π0

∂m∗

∂x0

, (I.44)

where (Fk)
µν is defined similarly as the field strength in relativistic electrodynamics.

Both Eq. (I.37) and Eq. (I.44) are written in a relativistically covariant form.
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I.4. Lorentz force

The relativistically covariant equation of motion for the quasiparticle momentum, Eq. (2.80),

naturally includes the Lorentz force. Explicitly, let us see that for µ = i we get

dΠi

dt
=

K∑
k=1

∑
ν

Πν

Π0

[
∂i(Ak)

ν − ∂ν(Ak)i
]

+
m∗

Π0

∂m∗

∂x0

(I.45)

=
K∑
k=1

{[
∂i(Ak)

0 − ∂0(Ak)
i
]

+
∑
j

Πj

Π0

[
∂i(Ak)

j − ∂j(Ak)i
]}

+
m∗

Π0

∂m∗

∂x0

. (I.46)

By summing over i we obtain (here one needs to remember that (∇)i = ∂
∂xi

= − ∂
∂xi

, see

Appendix A)

dΠ

dt
=

K∑
k=1

{[
−∇A0

k − ∂0Ak

]
+
∑
i

∑
j

Πj

Π0

[
∂i(Ak)

j − ∂j(Ak)i
]}

+
m∗

Π0

∂m∗

∂x0

. (I.47)

To interpret the second term in the above equation, let us see that

Π×
(
∇×A

)
=

∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

Πx Πy Πz(
∇×A

)
x

(
∇×A

)
y

(
∇×A

)
z

∣∣∣∣∣∣∣∣∣
= x̂

[
Πy

(
∇×A

)
z
− Πz

(
∇×A

)
y

]
+ ŷ

[
Πz

(
∇×A

)
x
− Πx

(
∇×A

)
z

]
+ ẑ

[
Πx

(
∇×A

)
y
− Πy

(
∇×A

)
x

]
=

∑
a

[∑
b

∑
c

εabc x̂
aΠb
(
∇×A

)c]
, (I.48)

where εabc is the Levi-Civita symbol and x̂a are the unit vectors. In the same way, we can

further rewrite

(
∇×A

)c
=
∑
d

∑
f

εcdf ∂dA
f , (I.49)
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so that altogether

Π×
(
∇×A

)
=

∑
a

[∑
b

∑
c

∑
d

∑
f

εabc εcdf x̂
aΠb ∂dA

f

]
. (I.50)

It can be shown that ∑
i

εijkε
imn = δ m

j δ n
k − δ n

j δ
m
k , (I.51)

which, bearing in mind that εijk = εjki, can be used to obtain∑
c

εabcεcdf = δ d
a δ

f
b − δ f

a δ
d
b . (I.52)

Then Eq. (I.50) becomes

Π×
(
∇×A

)
=
∑
a

[∑
b

∑
d

∑
f

(
δ d
a δ

f
b

)
x̂aΠb ∂dA

f −
∑
b

∑
d

∑
f

(
δ f
a δ

d
b

)
x̂aΠb ∂dA

f

]

=
∑
a

[∑
b

x̂aΠb ∂aA
b −
∑
b

x̂aΠb ∂bA
a

]
= −

∑
a

∑
b

Πb
[
∂aAb x̂a − ∂bAa x̂a

]
=
∑
a

∑
b

Πb

[
∂aAb x̂a − ∂bAa x̂a

]
, (I.53)

where in the two last lines we have used the fact that ∂i = −∂i and Πi = −Πi. Comparing

Eq. (I.47) against the above formula reveals that

dΠ

dt
=

K∑
k=1

{[
−∇A0

k − ∂0Ak

]
+

Π

Π0

×
(
∇×Ak

)}
+
m∗

Π0

∂m∗

∂x0

. (I.54)

Noting that by the equation of motion for the quasiparticle position, Eq. (2.79), we have
Π
Π0

= dx
dt
, we see that the middle term in the above equation is evidently the Lorentz force,

v ×B, where B ≡∇×Ak.

I.5. Minimization of the auxiliary fields

Thermodynamic consistency demands that the thermodynamic potential is minimized by the

auxiliary fields, ns and n. In the grand canonical ensemble, this is equivalent to minimizing
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the pressure,

dP

dns

∣∣∣∣
T,µ

= 0 and
dP

dn

∣∣∣∣
T,µ

= 0 . (I.55)

With the density dependence of the kinetic term explicit, the pressure, Eq. (2.83), is given

by

P(K,M) = g

∫
d3p

(2π)3
T ln

[
1 + e−β

(√
p2+m∗2+

∑
k Ckn

bk−1−µ
)]

+
K∑
k=1

Ck

(
bk − 1

bk

)
nbk −

M∑
m=1

Gm

(
dm − 1

dm

)
ndms . (I.56)

Then we can calculate

dP

dns

∣∣∣∣
T,µ

= −g
∫

d3p

(2π)3

(
dm∗

dns

m∗

ε∗
+
dn

dns

∑
k

Ck(bk − 1)nbk−2

)
fp

+
dn

dns

K∑
k=1

Ck(bk − 1)nbk−1 −
M∑
m=1

Gm(dm − 1)ndm−1
s (I.57)

= −ns
(
dm∗

dns
+

M∑
m=1

Gm(dm − 1)ndm−2
s

)

+
dn

dns

K∑
k=1

Ck(bk − 1)nbk−2

(
n− g

∫
d3p

(2π)3
fp

)
= 0 ; (I.58)

here, the the second term vanishes from the definition of the baryon current, Eq. (2.78), while

demanding that the first term disappears as well yields, after integration, the gap equation,

m∗ = mN −
M∑
m=1

Gmn
dm−1
s , (I.59)

which is identical to the definition of the effective mass, Eq. (2.72).

Similarly, we calculate

dP

dn

∣∣∣∣
T,µB

=
dm∗

dn

[
ns +

dns
dm∗

M∑
m=1

Gm(dm − 1)ndm−1
s

]

+
K∑
k=1

Ck(bk − 1)nbk−2

(
n− g

∫
d3p

(2π)3
fp

)
= 0 , (I.60)
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where the vanishing of the first term can be easily established by taking the derivative of

the gap equation, Eq. (2.72) (or equivalently Eq. (I.59)), with respect to the effective mass

m∗, while the second term again disappears by Eq. (2.78).

Thus we show that the pressure is minimized by the auxiliary fields, ns and n, provided

that these auxiliary fields are defined self-consistently by Eqs. (2.72) and (2.78), respectively.
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APPENDIX J

Form of the energy density functional

We want to write down a generic energy density in which the interaction couples to the

mean-field vector and scalar currents (here we will consider only one vector and one scalar

term, which corresponds to K = 1 and M = 1 in the notation used in Section 2.3.2 and

onward, however, the derivation can be easily generalized). We know that in such cases the

energy of the quasiparticle takes the form

εp = εkin + A0 , (J.1)

where εkin is kinetic energy which also depends on the interaction,

εkin =

√(
p−A

)2
+m∗2 , (J.2)

and the interaction term is in general given by

Aµ = α(n)jµ , (J.3)

where α(n) an arbitrary function of the rest frame baryon density n and jµ is the baryon

4-current,

jµ =

∫
d3p̃

pµ − Aµ
εkin

fp , (J.4)

while the effective mass is given by

m∗ = m0 −B, (J.5)
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where B = B(ns) is some function of the scalar density ns. In general, the energy density

will then look like

E = g

∫
d3p

(2π)3
εp fp − g00ΓAλj

λ + ΛBns

= g

∫
d3p

(2π)3
εkin fp + A0j

0 − g00ΓAλj
λ + ΛBns , (J.6)

where Γ and Λ are constants in front of the counterterms Aλjλ and Bns, respectively. The

counterterms are necessary to avoid overcounting potential energy contributions from the

kinetic term, which sums quasiparticle energies at all possible momenta; intuitively, the

counterterms can be understood to “adjust” the energy density to the correct value (for an

elementary example, see the discussion following Eq. (2.36) in Chapter 2).

The quasiparticle energy is from the definition given by

εp ≡
δE
δfp

. (J.7)

Taking the functional differential of Eq. (J.6),

δE = g

∫
d3p

(2π)3

p−A
εkin

(
− δA

)
fp + g

∫
d3p

(2π)3

m∗

εkin
δm∗ fp +

∫
d3p

(2π)3
εkin δfp

+
(
δA0

)
j0 + A0

(
δj0
)
− Γ

(
δAλ

)
jλ − ΓAλ

(
δjλ
)

+ Λ
(
δB
)
ns + ΛB

(
δns
)

(J.8)

=
(
− δA

)
· j + ns

(
δm∗

)
+ g

∫
d3p

(2π)3
εkin δfp

+
(
δA0

)
j0 + A0 g

∫
d3p

(2π)3
δfp − Γ

(
δAλ

)
jλ − ΓAλ

(
δjλ
)

+ Λ
(
δB
)
ns + ΛB

(
δns
)
, (J.9)

we see that the quasiparticle energy will only take the form as in Eq. (J.1) if
(
− δA

)
· j +

(
δA0

)
j0 − Γ

(
δAλ

)
jλ − ΓAλ

(
δjλ
)

= 0

ns
(
δm∗

)
+ Λ

(
δB
)
ns + ΛB

(
δns
)

= 0

(J.10)

The first of the equations can be further rewritten as[
1− Γ

](
δAµ

)
jµ − ΓAλ

(
δjλ
)

= 0 . (J.11)
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We then calculate

δAµ =
(
δα(n)

)
jµ + α(n)

(
δjµ
)

(J.12)

=

(
dα(n)

dn
δn

)
jµ + α(n)

(
δjµ
)

(J.13)

=

(
dα(n)

dn

1

n
jµ
(
δjµ
))
jµ + α(n)

(
δjµ
)
, (J.14)

where we have used the fact that n =
(
jµj

µ
)1/2, so that Eq. (J.11) becomes

[
1− Γ

](
ρ
dα(n)

dn
jµ
(
δjµ
)

+ α(n)
(
δjµ
)
jµ

)
− ΓAµ

(
δjµ
)

= 0 , (J.15)

which further reduces to

[
1− Γ

](
ρ
dα(n)

dn
+ α(n)

)
− Γα(n) = 0 . (J.16)

This is a differential equation for α(n),

dα(n)

dn
=

2Γ− 1

1− Γ

α(n)

n
, (J.17)

and because Γ is a constant, it follows that we must have

α(n) = Ckn
β , (J.18)

where Ck is some constant and Γ is related to β through

Γ =
β + 1

β + 2
. (J.19)

Identifying β = bk − 2 leads to the same vector-current–dependent term as in Eq. (2.89) in

the case K = 1.

Using the fact that the effective mass is given by Eq. (J.5), from which we have δm∗ =

−δB where δB(ns) = (dB(ns)/dns)δns, the second of the conditions in Eq. (J.10) becomes

− ns
dB(ns)

dns

(
δns
)

+ Λ
dB(ns)

dns

(
δns
)
ns + ΛB(ns)

(
δns
)

= 0 , (J.20)
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which can be immediately rewritten as a differential equation for B(ns),

dB(ns)

dns
=

Λ

1− Λ

B(ns)

ns
. (J.21)

Because Λ is also a constant, here it also follows that

B(ns) = Gmn
γ
s , (J.22)

where Gm is some constant and Λ is related to γ through

Λ =
γ

γ + 1
. (J.23)

Identifying γ = dm − 1 leads to the same scalar-current–dependent term as in Eq. (2.89) in

the case M = 1.
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APPENDIX K

Parametrization equations

Here, we derive explicit forms of the parametrization equations, Eqs. (3.6-3.13), in the VSDF

model with an arbitrary number of vector and scalar interaction terms, K and M . For sim-

plicity, we consider only matter composed of protons and neutrons with degenerate masses,

and their antiparticles.

The parameters of the EOS are established based on the thermodynamic properties of

the system, that is for uniform nuclear matter in the rest frame. In particular, the energy

density in the VSDF model, Eq. (2.89), becomes

E(K,M)

∣∣ rest
frame

= g

∫
d3p

(2π)3
ε∗kin

(
fp + fp

)
+

K∑
k=1

Ck
bk
nbkB +

M∑
m=1

Gm
dm − 1

dm
ndms . (K.1)

In the following we will drop the subscript “rest frame” for clarity. In the limit T → 0, the

Fermi-Dirac distribution function for particles approaches the behavior of a Heaviside-theta

function, while the distribution for antiparticles becomes zero, so that at T = 0 we have

E (T=0)
(K,M) =

g

2π2

∫ pF

0

dp p2
√
p2 +m∗2 +

K∑
k=1

Ck
bk
nbkB +

M∑
m=1

Gm
dm − 1

dm
ndms . (K.2)

The integral in the above expression can be explicitly calculated,

g

2π2

∫ pF

0

dp p2
√
p2 +m∗2 =

g

16π2

[
2E∗F

3pF −m∗2E∗FpF −m∗4 ln

(
E∗F + pF
m∗

)]
; (K.3)

we note, however, that often the integral form is more convenient for calculations such as

shown below.

Similarly, the pressure in the VSDF model, Eq. (2.98), is easily generalized to the case

with antiparticles, and adopting the notation utilizing the effective chemical potential, Eq.
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(2.84), can be written as

P(K,M) = g

∫
d3p

(2π)3
T ln

[
1 + e−β

(√
p2+m∗2−µ∗

)]
+ g

∫
d3p

(2π)3
T ln

[
1 + e−β

(√
p2+m∗2+µ∗

)]
+

K∑
k=1

Ck

(
bk − 1

bk

)
nbkB −

M∑
m=1

Gm

(
dm − 1

dm

)
ndms . (K.4)

Here as well the expression simplifies in the T → 0 limit,

P
(T=0)
(K,M) =

g

2π2

∫ pF

0

dp
p4

3E∗
+

K∑
k=1

Ck

(
bk − 1

bk

)
nbkB −

M∑
m=1

Gm
dm − 1

dm
ndms , (K.5)

and the integral for the kinetic energy term can be calculated explicitly,

g

2π2

∫ pF

0

dp
p4

3E∗
=

g

16π2

[
2

3
E∗Fp

3
F −m∗2E∗FpF +m∗4 ln

(
E∗F + pF
m∗

)]
. (K.6)

K.1. The minimum of the energy per particle

The position of the minimum of the binding energy per particle, which is equivalent to the

minimum of the energy per particle (where we note that E/NB = E/nB), is determined by

the equation

d

dnB

(
E (T=0)

(K,M)

nB

)
= 0 , (K.7)

the solution to which gives the saturation density n0. At zero temperature, the energy

density is a function of number density nB only. However, due to the presence of many

terms with complicated nB-dependence, see Eq. (K.2), we have

E (T=0)
(K,M) = E (T=0)

(K,M)

(
pF (nB),m∗(ns), nB, ns(nB)

)
(K.8)

and it is convenient to rewrite the derivative using the chain rule,

d

dnB
=

∂

∂nB

∣∣∣∣
pF ,ns

+
dpF
dnB

∂

∂pF

∣∣∣∣
nB ,ns

+
dns
dnB

(
∂

∂ns

∣∣∣
m∗

+
dm∗

dns

∂

∂m∗

∣∣∣
ns

) ∣∣∣∣
nB ,pF

. (K.9)
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First, we can see that(
∂

∂ns

∣∣∣
m∗

+
dm∗

dns

∂

∂m∗

∣∣∣
ns

) ∣∣∣∣
nB ,pF

E (T=0)
(K,M)

=
M∑
m=1

Gm(dm − 1)ndm−1
s −

M∑
m=1

Gm(dm − 1)ndm−2
s

g

2π2

∫ pF

0

dp p2 m∗

ε∗kin
= 0 . (K.10)

Here we note that while the vanishing of the derivative of the energy density with respect to

the auxiliary field ns is reminiscent of the vanishing of the same derivative of the pressure,

where the latter is a consequence of the minimization of the thermodynamic potential with

respect to the auxiliary field (see Appendix I.5), in the case of the energy density this

derivative vanishes only at T = 0 due to the trivial form of the distribution function, and

should not be thought of as the minimization condition. Next, we calculate(
∂

∂nB

∣∣∣∣
pF ,ns

+
dpF
dnB

∂

∂pF

∣∣∣∣
nB ,ns

)
E (T=0)

(K,M) =
K∑
k=1

Ckn
bk−1
B +

dpF
dnB

g

2π2
p2
F

√
p2
F +m∗2

=
√
p2
F +m∗2 +

K∑
k=1

Ckn
bk−1
B , (K.11)

where we have used pF =
(

6π2nB
g

)1/3

(see Eq. (2.27) and below). Thus we have

dE (T=0)
(K,M)

dnB
= εF +

K∑
k=1

Ckn
bk−1
B , (K.12)

where εF is the kinetic energy at the Fermi surface, εF =
√
p2
F +m∗2.

Let us note that the above result can be obtained in a much easier way: at T = 0, the

first law of thermodynamics dE = Tds+ µBdnB reduces to dE = µBdnB, so that

dE (T=0)
(K,M)

dnB
= µB = εF , (K.13)

where by εF we denote the quasiparticle energy at the Fermi surface.

Altogether, in the VSDF model Eq. (K.7) can be explicitly written as

1

nB

(
εF −

E (T=0)
(K,M)

nB

)
= 0 . (K.14)
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This agrees with the Hugenholtz-van-Hove theorem [226], which states that εF = (E0/N) +

(P/n), where E0 is the system’s ground state energy, and from which it follows that for

systems at equilibrium (where pressure P = 0) the Fermi energy and the energy per particle

in the system, E/N = E/nB, are equal. The fact that P vanishes at equilibrium an be easily

seen for systems at zero temperature, as at T = 0 the pressure is given by

P = n2
B

d
(
E
nB

)
dnB

, (K.15)

which is automatically zero if Eq. (K.7) holds, that is if the system is in equilibrium.

K.2. Spinodal region boundary at T = 0

The boundaries of the spinodal region at T = 0 are given by the extremal points of the

pressure, given by

dP
(T=0)
(K,M)

dnB
= 0 . (K.16)

Similarly as in the case of energy density considered in the previous section, pressure has a

complicated dependence on baryon density nB, see Eq. (K.5), and so it is convenient to use

the chain rule,

d

dnB

∣∣∣∣
T

=
∂

∂nB

∣∣∣∣
T,pF ,ns

+
dpF
dnB

∂

∂pF

∣∣∣∣
T,nB ,ns

+
dns
dnB

∂

∂ns

∣∣∣∣
T,nB ,pF

. (K.17)

We note that while the last term in the equations above disappears in minimization of the

thermodynamic potential when T and µB are held fixed, in this case it is finite. We calculate

∂P
(T=0)
(K,M)

∂nB

∣∣∣∣
pF ,ns

=
K∑
k=1

Ck(bk − 1)nbk−1
B , (K.18)

dpF
dnB

∂P
(T=0)
(K,M)

∂pF

∣∣∣∣
nB ,ns

=
p2
F

3E∗F
, (K.19)

dns
dnB

∂P
(T=0)
(K,M)

∂ns

∣∣∣∣
nB ,pF

=
dns
dnB

[
g

16π2

dm∗

dns

(
8p3

Fm
∗

3E∗F

)
− ns

dm∗

dns
−

M∑
m=1

Gm(dm − 1)ndm−1
s

]
,(K.20)
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where we note that the last equation requires a considerable amount of algebra, including

using the expression for the scalar density at T = 0,

ns =
g

4π2

[
m∗E∗FpF −m∗3 ln

(
E∗F + pF
m∗

)]
. (K.21)

By the gap equation, Eq. (2.94), we have

−ns
dm∗

dns
=

M∑
m=1

Gm(dm − 1)ndm−1
s , (K.22)

so that Eq. (K.20) can be rewritten as

dns
dnB

∂P
(T=0)
(K,M)

∂ns

∣∣∣∣
nB ,pF

=
g

16π2

(
8p3

Fm
∗

3E∗F

)
dm∗

dnB
=
pFm

∗

3E∗F

dm∗

dpF
. (K.23)

The gap equation can be further used to calculate

∂m∗

∂pF
= −

M∑
m=1

Gm(dm − 1)ndm−2
s

∂ns
∂pF

= −G ∂ns
∂pF

, (K.24)

where we have introduced a short-hand notation for the sum over interaction terms,

G =
M∑
m=1

Gm(dm − 1)ndm−2
s . (K.25)

Using Eq. (K.21), we further have

dns
dpF

=
g

4π2

{
2m∗p2

F

E∗F

+

[
E∗FpF +

m∗2pF
E∗F

− 3m∗2 ln

(
E∗F + pF
m∗

)
− m∗4

E∗F (E∗F + pF )
+m∗2

]
dm∗

dpF

}
. (K.26)

With

m∗4 =
(
m∗2

)2

=
(
E∗F

2 − p2
F

)2

=
(

(E∗F − pF )(E∗F + pF )
)2

(K.27)

the term in the square bracket can be rewritten as[
. . .
]

= E∗FpF +
2m∗2pF
E∗F

− 3m∗2 ln

(
E∗F + pF
m∗

)
, (K.28)
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and inserting Eq. (K.26) back into Eq. (K.24) finally yields

dm∗

dpF
= −

2m∗p2F
E∗F

4π2/gG +
[
E∗FpF + 2m∗2pF

E∗F
− 3m∗2 ln

(
E∗F+pF
m∗

)] , (K.29)

where G is given by Eq. (K.25).

Altogether we then have

dP
(T=0)
(K,M)

dnB
=

p2
F

3E∗F
+

K∑
k=1

Ck(bk − 1)nbk−1
B +

pFm
∗

3E∗F

dm∗

dpF
, (K.30)

where dm∗

dpF
is given by Eq. (K.29).

K.3. Incompressibility

Classically, compressibility is defined as

β ≡ − 1

V

(
∂P

∂V

)−1

=
1

V

(
n2
B

NB

∂P

∂nB

)−1

, (K.31)

so that the incompressibility is

β−1 = V
n2
B

NB

∂P

∂nB
= nB

∂P

∂nB
. (K.32)

In nuclear physics, however, it is customary to use the following expression for incompress-

ibility,

β−1 → K = 9
∂P

∂nB
. (K.33)

Formally, the incompressibility of nuclear matter at zero temperature and saturation

density, nB = n0, is defined as

K0 ≡
(
p2
F

d2

dp2
F

(
E (T=0)

(K,M)

nB

))
nB=n0

. (K.34)
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By expressing the derivative with respect to the Fermi momentum pF in terms of the deriva-

tive with respect to the baryon density, d/dpF = 3nB/pFd/dnB, and using the fact that at

nB = n0 we have dE (T=0)
(K,M)/nB/dnB = 0, we can rewrite the above equation to obtain

K0 =

(
9n2

B

[
d2

dn2
B

(
E (T=0)

(K,M)

nB

)])
nB=n0

. (K.35)

Furthermore, again using the fact that n0 is the saturation density, this can be rewritten as

K0 =

(
9nB

d2E (T=0)
(K,M)

dn2
B

)
nB=n0

. (K.36)

Noting that the pressure at T = 0 is given by Eq. (K.15), we can at the same time calculate

dP

dnB
=

∣∣∣∣
nB=n0

(
n2
B

d2

dn2
B

( E
nB

))
nB=n0

, (K.37)

from which, by comparison with Eq. (K.35), it follows immediately that

K0 = 9

(
dP

dnB

)
nB=n0

, (K.38)

in agreement with Eq. (K.33).

To calculate the incompressibility, we will use Eq. (K.36). We know the first derivative

of energy density from (K.12). Using the chain rule we can write

d

dnB
=

∂

∂nB

∣∣∣∣
pF ,m∗

+
dpF
dnB

∂

∂pF

∣∣∣∣
nB ,m∗

+
dpF
dnB

dm∗

dpF

∂

∂m∗

∣∣∣∣
nB ,pF

, (K.39)

from which we get

d

dnB

(
dE (T=0)

(K,M)

dnB

)
=

pF
3nB

[
pF
E∗F

+
∂m∗

∂pF

m∗

E∗F

]
+

K∑
k=1

Ck(bk − 1)nbk−2
B , (K.40)

leading to

K0

∣∣∣∣
nB=n0

=

[
9nB

(
p2
F

3nBE∗F
+

K∑
k=1

Ck(bk − 1)nbk−2
B +

pFm
∗

3nBE∗F

dm∗

dpF

)]
nB=n0

, (K.41)

where dm∗

dpF
is given by (K.29).

We note that using Eq. (K.38) leads to the same result, as is clear from Eq. (K.30).
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K.4. The critical point

To apply the conditions for identifying the location of the critical point at (nc, Tc),(
dP

dnB

)
T

(nc, Tc) = 0 , (K.42)(
d2P

dn2
B

)
T

(nc, Tc) = 0 . (K.43)

one needs to know the first and second derivative of the pressure with respect to baryon

number density.

Here we note that the resulting formulas are relatively complicated. In view of this, it

may be more convenient to utilize numerical derivatives in solving Eqs. (K.42) and (K.43).

Nevertheless, obtaining analytical formulas is possible, and in particular they work very well

in the case of the VDF model, where scalar type interactions are neglected (M = 0). To

illustrate the calculation, below we compute the first derivative of the pressure in the VSDF

model. The formula for the VDF model is easily obtained by taking M = 0. The second

and third derivatives of the pressure in the VDF model are provided in Appendix O.

K.4.1 First derivative of the pressure

We want to calculate
(
dP(K,M)/dnB

) ∣∣
T
. It’s clear from Eq. (K.4) that the pressure is a

function of

P(K,M) = P(K,M)

(
T,m∗

(
ns(T, nB)

)
, µ∗(T, nB), nB, ns(T, nB)

)
. (K.44)

We will keep T constant, so that the derivative with respect to nB can be written as

d

dnB
=

∂

∂nB

∣∣∣∣
T,µ∗,ns

+
dµ∗

dnB

∂

∂µ∗

∣∣∣∣
T,nB ,ns

+
dns
dnB

∂

∂ns

∣∣∣∣
T,nB ,µ∗

. (K.45)

Note here that the effective mass is an explicit function of ns, m∗ = m∗(ns), and that we

take µ∗, as opposed to µB, as our chosen variable; an important thing to bear in mind is

that one needs to be consistent about this decision.
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We have

∂P

∂nB

∣∣∣∣
T,µ∗,ns

=
K∑
k=1

Ck(bk − 1)nbk−1
B (K.46)

and

dµ∗

dnB

∂P

∂µ∗

∣∣∣∣
T,nB ,ns

=

(
dnB
dµ∗

)−1

nB , (K.47)

where the latter equation follows directly from Eq. (K.4). The last derivative term stemming

from Eq. (K.45) disappears because the scalar field minimizes the thermodynamic potential

(see Appendix I.5, which can be easily generalized to the case with antiparticles, considered

here), so that altogether

dP

dnB

∣∣∣∣
T

= nB

(
dnB
dµ∗

)−1

+
K∑
k=1

Ck(bk − 1)nbk−1
B . (K.48)

We introduce the following vector-density– and scalar-density–like integrals over powers

of the distribution function,

Ba = g

∫
d3p

(2π)3
fap , (K.49)

Ba = g

∫
d3p

(2π)3
fap , (K.50)

Sa = g

∫
d3p

(2π)3

m∗

E∗
fap , (K.51)

Sa = g

∫
d3p

(2π)3

m∗

E∗
fap . (K.52)

Using these, we calculate the following derivative,

d
(
Bk ± Bk

)
dµ∗

= βk

[(
Bk − Bk+1

)
∓
(
Bk − Bk+1

)
− dm∗

dµ∗

((
Sk − Sk+1

)
±
(
Sk − Sk+1

))]
. (K.53)

In particular, we have nB = B1 − B1, so that

dnB
dµ∗

= β

[((
B1 − B2

)
+
(
B1 − B2

))
− dm∗

dµ∗

((
S1 − S2

)
−
(
S1 − S2

))]
. (K.54)

250



Next, we can always rewrite

dm∗

dµ∗
=
dns
dµ∗

dm∗

dns
= −dns

dµ∗

M∑
m=1

Gm(dm − 1)ndm−2
s = −G dns

dµ∗
, (K.55)

where G is given by Eq. (K.25). In general, we can calculate

d
(
Sk ± Sk

)
dµ∗

=
dm∗

dµ∗

[
g

∫
d3p

(2π)3

p2

ε∗kin
3

(
fkp ± fkp

)
(K.56)

− βk g

∫
d3p

(2π)3

m∗2

ε∗kin
2

((
fkp ∓ fkp

)
−
(
fk+1
p ∓ fk+1

p

))]
(K.57)

+ βk

[(
Sk − Sk+1

)
±
(
Sk − Sk+1

)]
. (K.58)

In particular, the scalar density ns = S1 + S1, so that

dns
dµ∗

=
dm∗

dµ∗

[
g

∫
d3p

(2π)3

p2

ε∗kin
3

(
fp + fp

)
(K.59)

− β g

∫
d3p

(2π)3

m∗2

ε∗kin
2

((
fp − fp

)
−
(
f 2
p − f 2

p

))]
(K.60)

+ βk

[(
S1 − S2

)
+
(
S1 − S2

)]
. (K.61)

Together, Eqs. (K.55) and (K.61) yield

dm∗

dµ∗
=

−Gβk
[(
S1 − S2

)
+
(
S1 − S2

)]

1 + Gg
∫

d3p
(2π)3

[
p2

ε∗kin
3

(
fp + fp

)
− β m∗2

ε∗kin
2

((
fp − fp

)
−
(
f 2
p − f 2

p

))] . (K.62)

Putting all of these terms together, the first derivative of the pressure with respect to nB is

dP

dnB

∣∣∣∣
T

=
TnB((

B1 − B2

)
+
(
B1 − B2

))
− dm∗

dµ∗

((
S1 − S2

)
−
(
S1 − S2

))
+

K∑
k=1

Ck(bk − 1)nbk−1
B , (K.63)

where dm∗/dµ∗ is given by Eq. (K.62).
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APPENDIX L

VDF model parameter sets

Here we provide parameters corresponding to the VDF EOSs reproducing sets of the QGP-

like phase transition characteristics
(
T

(Q)
c , n

(Q)
c , ηL, ηR

)
, listed in Table 3.1. It is important to

note that the values of the coefficients of the interaction terms, {C1, C2, C3, C4}, depend on a

chosen system of units. Here, we adopt a convention used in many Skyrme-like parametriza-

tions, in which the single-particle potential is written in the form

U =
N∑
i=1

C̃i

(
nB
n0

)bi−1

, (L.1)

where n0 is the saturation density, so that C̃i must have a dimension of energy. Naturally,

C̃i and Ci are related by

Ci =
C̃i

nbi−1
0

. (L.2)

In Table L.1, we list coefficients {C̃1, C̃2, C̃3, C̃4} in units of MeV. Note that in particular,

the sum of all coefficients yields the (rest frame) value of the single-particle potential at

nB = n0,
∑N

i=1 C̃i = −52.484 MeV.
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Table L.1: Parameter sets corresponding to the VDF EOSs reproducing sets of the QGP-like

phase transition characteristics
(
T

(Q)
c , n

(Q)
c , ηL, ηR

)
, listed in Table 3.1.

set b1 b2 b3 b4

C̃1 [MeV] C̃2 [MeV] C̃3 [MeV] C̃4 [MeV]

I 1.7614679 3.8453863 4.4772660 6.7707861

-8.315987e+01 6.144706e+01 -3.108395e+01 3.127069e-01

II 1.8033077 3.0693813 7.9232548 10.7986978

-9.204350e+01 3.968766e+01 -1.306487e-01 2.434034e-03

III 1.8042024 3.0631798 6.6860893 20.7276154

-9.224000e+01 3.986263e+01 -1.066766e-01 2.160279e-11

IV 1.7681391 3.5293515 5.4352787 6.3809823

-8.450948e+01 3.843139e+01 -7.958557e+00 1.552593e+00

V 1.8007135 3.0931706 6.6396492 8.1076981

-9.142377e+01 3.925851e+01 -3.439980e-01 2.520940e-02

VI 1.7989835 3.1098389 6.3017683 8.0937872

-9.101665e+01 3.899891e+01 -4.856681e-01 1.935808e-02
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APPENDIX M

Symmetric spinodal regions

The spinodal region is the range of baryon number densities between two local extrema of

pressure, a maximum at ηL and a minimum at ηR, with ηL < ηR. A curve exhibiting two

extrema will most naturally have an inflection point approximately in between them. We

can see this by considering the following polynomial:

f(x) = ax3 + bx2 + cx+ d , (M.1)

which is a “minimal” polynomial needed to produce two local extrema. The condition for an

extremum at some point x0 is

df

dx

∣∣∣∣
x=x0

= 3ax2 + 2bx+ c

∣∣∣∣
x=x0

= 0 . (M.2)

We can solve this equation to yield the positions of the extrema xL and xR,

xL =
−b−

√
b2 − 3ac

3a
, (M.3)

xR =
−b+

√
b2 − 3ac

3a
. (M.4)

The position of the inflection point is established through the condition

d2f

dx2

∣∣∣∣
x=xinfl

= 6ax+ 2b

∣∣∣∣
x=xinfl

= 0 , (M.5)

from which we get

xinfl = − b

3a
. (M.6)
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It is immediately apparent that

xinfl =
xL + xR

2
, (M.7)

placing the inflection point exactly in the middle between the two extrema. This result

is only exact for a third-order polynomial, and will be changed if the polynomial includes

additional terms with which one is able to manipulate the behavior of the curve between the

extrema.

We will now argue that in a model with vector-type interactions only, the inflection point

of the pressure curve at zero temperature,

d2P (T = 0)

dn2
B

∣∣∣∣
nB=ninfl

= 0 , (M.8)

will coincide with the location of the critical point on the nB axis. Let us first write the

pressure as a sum of an ideal gas term and an interaction term,

P = Pideal + Pint . (M.9)

In particular, at T = 0 the ideal part of the pressure is given by the ideal Fermi gas,

Pideal(T = 0) = PFG
0 . Because the Fermi gas at zero temperature depends on the baryon

density as PFG
0 ∝ n

4/3
B , for large densities we can safely assume that

d2PFG
0

dn2
B

=
4

9
n
−2/3
B ≈ 0 . (M.10)

It then follows that at the inflection point we must have

d2Pint

dn2
B

∣∣∣∣
nB=ninfl

≈ 0 . (M.11)

At the same time, the condition for the position of the critical point at some location (Tc, nc)

leads to

d2Pint

dn2
B

∣∣∣∣
nB=nc

= −d
2Pideal

dn2
B

∣∣∣∣nB=nc
T=Tc

. (M.12)
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For large enough temperatures, the ideal Fermi gas is well approximated by the ideal Boltz-

mann gas, and we can write the ideal part of the pressure as

Pideal ≈ TnB . (M.13)

As a result, Eq. (M.12) becomes

d2Pint

dn2
B

∣∣∣∣
nB=nc

= 0 , (M.14)

which immediately confirms that in this case, the location of the critical density nc coincides

with the location of the inflection point ninfl of the pressure at zero temperature. Moreover,

going beyond the approximation used in Eq. (M.10), we see that at zero temperature the

pressure at nB = nc will have a very small and positive curvature, which means that the

critical density is somewhat larger than the inflection point density, nc & ninfl.

The VDF model largely reproduces the behavior described above. First, due to the

fact that the pressure fits in the VDF model are “minima” fits reproducing (among other

constraints) two local extrema, a maximum at ηL and a minimum at ηR, the inflection point

of the pressure lies roughly in the middle between ηL and ηR. Second, due to the thermal

part of the pressure being just like that of an ideal gas, the location of the critical point nc

and the location of the inflection point of the pressure at zero temperature ninfl are related

by nc = ninfl + δn, where δn is a small positive correction. This explains why in the VDF

model the critical baryon number density nc lies roughly in the middle of the spinodal region

(ηL, ηR).
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APPENDIX N

The speed of sound

The isentropic speed of sound is defined as the following total derivative

c2
σ ≡

(
dP

dE

)
S/N

, (N.1)

where σ ≡ S/N , S is the entropy, and N is the number of particles, so that σ is the entropy

per particle. The isothermal speed of sound is defined as

c2
T ≡

(
dP

dE

)
T

, (N.2)

In practice, carrying out either of these derivatives depends strongly on the primary variables

in terms of which the variations in pressure, energy density, and entropy per particle can be

obtained.

In general, the total differential of the pressure can be given in terms of its two primary

variables A and B,

dP (A,B) =

(
dP

dA

)
B

dA+

(
dP

dB

)
A

dB . (N.3)

In order to calculate the speed of sound as defined in Eq. (N.1) or (N.2), we instead need to

have

dP
(
E , Y

)
=

(
dP

dE

)
Y

dE +

(
dP

dY

)
E
dY , (N.4)

where Y = {(S/N), T}. The above equation has the obvious advantage that we can explicitly

set dY to zero.
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The following is based on the assumption that since A and B are the primary variables

in which the pressure is given (either as an analytic formula or as a table in A and B), we

know what the derivatives (dP/dA)B and (dP/dB)A are. Therefore, we only need to find

expressions for dA and dB in terms of dE and dY , as this will allow us to compute
(
dP
dE

)
Y

and
(
dP
dY

)
E . To this end we express the total differentials of E and C in terms of A and B,

dE =

(
dE
dA

)
B

dA+

(
dE
dB

)
A

dB , (N.5)

dY =

(
dY

dA

)
B

dA+

(
dY

dB

)
A

dB . (N.6)

We can solve the above equations for the differentials dA and dB in terms of dE and dY ,

dA =

[
dE −

(
dE
dB

)
A(

dY
dB

)
A

dY

][(
dE
dA

)
B

−
(
dY
dA

)
B(

dY
dB

)
A

(
dE
dB

)
A

]−1

, (N.7)

dB =

[(
dE
dA

)
B(

dY
dB

)
A

dY −
(
dY
dA

)
B(

dY
dB

)
A

dE
][(

dE
dA

)
B

−
(
dY
dA

)
B(

dY
dB

)
A

(
dE
dB

)
A

]−1

, (N.8)

Because the derivatives in Eqs. (N.1) and (N.2) are taken at constant Y , we can set dY = 0,

which allows us to write

dA
∣∣∣
dY=0

=

(
dY
dB

)
A[(

dE
dA

)
B

(
dY
dB

)
A
−
(
dY
dA

)
B

(
dE
dB

)
A

]dE , (N.9)

dB
∣∣∣
dY=0

= −
(
dY
dA

)
B[(

dE
dA

)
B

(
dY
dB

)
A
−
(
dY
dA

)
B

(
dE
dB

)
A

]dE . (N.10)

Inserting the above expressions into Eq. (N.3) immediately allows us to take the derivative

of the pressure with respect to the energy density with Y kept constant, that is

c2
Y =

(
dP
dA

)
B

(
dY
dB

)
A
−
(
dP
dB

)
A

(
dY
dA

)
B(

dE
dA

)
B

(
dY
dB

)
A
−
(
dE
dB

)
A

(
dY
dA

)
B

. (N.11)

By identifying Y = {(S/N), T}, explicit expressions for Eqs. (N.1) and (N.2) can be obtained,

where it is useful to remember that we have

dP = T ds+ n dµ , (N.12)

dE = T ds+ µ dn , (N.13)

d(S/N) = d(s/n) =
1

n
ds− s

n2
dn . (N.14)
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N.1. The isentropic speed of sound c2
σ given pressure as a

function of T and µ

In this case we set A = T , B = µ, and Y = (S/N), and we can immediately calculate(
dP

dT

)
µ

= s and
(
dP

dµ

)
T

= n , (N.15)

as well as (
dE
dT

)
µ

= T

(
ds

dT

)
µ

+ µ

(
dn

dT

)
µ

, (N.16)(
dE
dµ

)
T

= T

(
ds

dµ

)
T

+ µ

(
dn

dµ

)
T

, (N.17)(
dY

dT

)
µ

=

(
d(S/N)

dT

)
µ

=
1

n

(
ds

dT

)
µ

− s

n2

(
dn

dT

)
µ

, (N.18)(
dY

dµ

)
T

=

(
d(S/N)

dµ

)
T

=
1

n

(
ds

dµ

)
T

− s

n2

(
dn

dµ

)
T

. (N.19)

Inserting all od these into Eq. (N.11) yields

c2
σ =

sn
(
ds
dµ

)
T
− s2

(
dn
dµ

)
T
− n2

(
ds
dT

)
µ

+ sn
(
dn
dT

)
µ

(sT + µn)
[(

ds
dµ

)
T

(
dn
dT

)
µ
−
(
ds
dT

)
µ

(
dn
dµ

)
T

] . (N.20)

We note that from Gibbs relation we have

sT + µn = E + P , (N.21)

while from Maxwell’s relations (
ds

dµ

)
T

=

(
dn

dµ

)
T

. (N.22)
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N.2. The isentropic speed of sound c2
σ given pressure as a

function of T and n

In this case we set A = T , B = n, and Y = (S/N). We assume that both(
dP

dT

)
n

and
(
dP

dn

)
T

(N.23)

are known; for example they may be obtained by means of taking numerical derivatives

based on a table of the values of P at different points (T, n). We also have(
dE
dT

)
n

= T

(
ds

dT

)
n

, (N.24)(
dE
dn

)
T

= T

(
ds

dn

)
T

+ µ , (N.25)(
dY

dT

)
n

=

(
d(S/N)

dT

)
n

=
1

n

(
ds

dT

)
n

, (N.26)(
dY

dn

)
T

=

(
d(S/N)

dn

)
T

=
1

n

(
ds

dn

)
T

− s

n2
. (N.27)

Inserting all od these into Eq. (N.11) yields

c2
σ =

s
(
dP
dT

)
n

+ n
(
dP
dn

)
T

(
ds
dT

)
n
− n

(
dP
dT

)
n

(
ds
dn

)
T(

sT + µn
) (

ds
dT

)
n

. (N.28)

N.3. The isothermal speed of sound c2
T given pressure as

a function of T and µ

In this case we set A = T , B = µ, and Y = T . We reuse Eqs. (N.15-N.17), while for the

other two derivatives we get trivial results(
dY

dT

)
µ

=

(
dT

dT

)
µ

= 1 , (N.29)(
dY

dµ

)
T

=

(
dT

dµ

)
T

= 0 . (N.30)
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Thus

c2
T =

n

T
(
ds
dµ

)
T

+ µ
(
dn
dµ

)
T

. (N.31)

N.4. The isothermal speed of sound c2
T given pressure as

a function of T and n

In this case we set A = T , B = n, and Y = T . We reuse Eqs. (N.24-N.25) , while for the

other two derivatives we again get trivial results(
dY

dT

)
n

=

(
dT

dT

)
n

= 1 , (N.32)(
dY

dn

)
T

=

(
dT

dn

)
T

= 0 . (N.33)

Therefore

c2
T =

(
dP
dn

)
T

T
(
ds
dn

)
T

+ µ
. (N.34)

N.5. Showing the equivalency of formulas

The equivalence of the two formulas for the isentropic speed of sound squared, Eqs. (N.20)

and (N.28), as well as of the two formulas for the isothermal speed of sound squared, Eqs.

(N.31) and (N.34), can be easily shown. It is convenient to start from Eq. (N.28). Using the

same strategy as that leading to Eqs. (N.7) and (N.8), but adapted a change of variables
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according to (T, n)→ (T, µ), we arrive at(
dP

dn

)
T

=
n(
dn
dµ

)
T

, (N.35)

(
dP

dT

)
n

= s− n
(
dn
dT

)
µ(

∂n
∂µ

)
T

, (N.36)

(
ds

dn

)
T

=

(
ds
dµ

)
T(

∂n
∂µ

)
T

, (N.37)

(
ds

dT

)
n

=

(
ds

dT

)
µ

−
(
ds

dµ

)
T

(
dn
dT

)
µ(

dn
dµ

)
T

. (N.38)

The above formulas, inserted into Eq. (N.28), after some algebra yield Eq. (N.20). The same

allows to transform Eq. (N.34) into Eq. (N.31).

N.6. Behavior in the µ→ 0 and T → 0 limits

N.6.1 The limit of µ→ 0

Let us consider the µ → 0 limit of the isentropic speed of sound, which also implies

n → 0. Using Eq. (N.28) as well as Eqs. (N.36) and (N.38) together with the fact that

limµ→0 (dn/dT )µ = 0, we immediately get

lim
µ→0

c2
σ =

s

T
(
ds
dT

)
µ

. (N.39)

This can be rewritten by realizing that the specific heat at constant volume is defined as

CV =

(
dE

dT

)
V,N

= T

(
dS

dT

)
n

, (N.40)

where E is the total energy of the system. Because at the same time

S = V

(
dP

dT

)
µ

, (N.41)
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we can rewrite Eq. (N.40) as

CV = TV
d

dT

∣∣∣∣
n

(
dP

dT

)
µ

= TV
d

dT

∣∣∣∣
µ

(
dP

dT

)
n

= TV
d

dT

∣∣∣∣
µ

[
s+ n

(
dµ

dT

)
n

]
. (N.42)

In the limit n→ 0 the second term in the square bracket drops out, so that we get

cv =
CV
V

= T

(
ds

dT

)
µ

. (N.43)

We will obtain

lim
µ→0

c2
σ =

s

cV
(N.44)

as long as (d/dT )µ = (d/dT )n. This indeed is the case in the limit µ→ 0, which can be seen

as follows.

Let us consider quite generally the derivative(
dA(T, µB)

dC(T, µB)

)
nB

, (N.45)

where A and C are any functions of T and µB. We can always write it out in the following

way,

(
dA(T, µB)

dC(T, µB)

)
nB

=

(dAdT )µB dT +
(
dA
dµB

)
T
dµB(

dC
dT

)
µB
dT +

(
dC
dµB

)
T
dµB


nB

. (N.46)

We can also write

dnB =

(
dnB
dT

)
µB

dT +

(
dnB
dµB

)
T

dµB . (N.47)

If we demand that dnB = 0, then we can solve for dT ,

dT = −

(
dnB
dµB

)
T(

dnB
dT

)
µB

dµB . (N.48)

Inserting the above into Eq. (N.46) results in

(
dA(T, µB)

dC(T, µB)

)
nB

=

(
dA
dµB

)
T

(
dnB
dT

)
µB
−
(
dA
dT

)
µB

(
dnB
dµB

)
T(

dC
dµB

)
T

(
dnB
dT

)
µB
−
(
dC
dT

)
µB

(
dnB
dµB

)
T

. (N.49)
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We can now take the limit µB → 0. Remembering that for a gas with antiparticles

(dnB/dT )µ=0 = 0, we arrive at

lim
µB→0

(
dA(T, µB)

dC(T, µB)

)
nB

= lim
µB→0

(
dA
dT

)
µB(

dC
dT

)
µB

= lim
µB→0

(
dA

dC

)
µB

=

(
dA

dC

)
µB=0

. (N.50)

Thus the µ→ 0 limit of the isentropic speed of sound c2
σ is indeed given by Eq. (N.44).

N.6.2 The limit of T → 0

In the limit T → 0 we also have s→ 0, and using Eq. (N.20) we immediately get

lim
T→0

c2
σ =

n

µ
(
dn
dµ

)
T

. (N.51)

Similarly, using Eq. (N.34) it is immediately clear that

lim
T→0

c2
T =

(
dP
dn

)
T

µ
= lim

T→0
c2
σ . (N.52)

That is, the isothermal and isetropic speed of sound are identical at T = 0.

Additionally, let us note that in the limit T → 0, for a non-interacting gas we have

µB = µF = εF =
√
p2
F +m2, as well as n = gp3

F/6π
2, so that

dn

dµB
=
dpF
dεF

dn

dpF
=
gεFpF

2π2
(N.53)

and

c2
σ

∣∣∣
T=0

=
1

3

p2
F

ε2F
. (N.54)

In the nonrelativistic limit we have εF ≈ m and thus

c2
σ

∣∣∣
T=0

non-rel
=

1

3

p2
F

m2
. (N.55)

Conversely, in the ultrarelativistic limit the speed of sound of a non-interacting Fermi gas

becomes

c2
σ

∣∣∣
T=0

ultra-rel
=

1

3
, (N.56)

which is consistent with the conformal limit.
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APPENDIX O

Pressure derivatives in the VDF model

The pressure in the VDF model, Eq. (3.4), can be divided into a Fermi-gas–like term and

the interaction term,

P(K) = PFG + Pint . (O.1)

In the presence of antiparticles, the first term in the above equation is given by

PFG = P
(particles)
FG + P

(antiparticles)
FG

= g

∫
d3p

(2π)3
T ln

[
1 + e−β

(
εkin−µ∗

)]
+ g

∫
d3p

(2π)3
T ln

[
1 + e−β

(
εkin+µ∗

)]
, (O.2)

while the second term is simply

Pint =
K∑
k=1

Ck

(
bk − 1

bk

)
nbkB , (O.3)

where nB is the net baryon number density. With the distribution functions for baryons and

antibaryons given by

fp =
1

eβ
(
εkin−µ∗

)
+ 1

and fp =
1

eβ
(
εkin+µ∗

)
+ 1

, (O.4)

respectively, we can define the following density-like integrals over powers of the distribution

functions,

Ba = g

∫
d3p

(2π)3
fap and Ba = g

∫
d3p

(2π)3
fap . (O.5)

In particular, the net baryon density, entering explicitly in the second term in Eq. (O.1), is

given by

nB ≡ B1 − B1 . (O.6)
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In calculating djP(K)/dn
j
B, the derivatives of the interaction part of the pressure Pint are

straightforward, leading to

dP(K)

dnB
=
dPFG

dnB
+

K∑
k=1

Ck
(
bk − 1

)
nbk−1
B , (O.7)

d2P(K)

dn2
B

=
d2PFG

dn2
B

+
K∑
k=1

Ck
(
bk − 1

)2
nbk−2
B , (O.8)

d3P(K)

dn3
B

=
d3PFG

dn3
B

+
K∑
k=1

Ck
(
bk − 1

)2(
bk − 2

)
nbk−3
B . (O.9)

Below, we derive expressions for the derivatives of the Fermi-gas–like part of the pressure

djPFG/dn
j
B.

We take PFG to be a function of temperature T and effective chemical potential µ∗, PFG =

PFG(T, µ∗) (we note that this choice is arbitrary and one can likewise use PFG = PFG(T, µB)

or PFG = PFG(T, nB), although we do find that dealing with PFG = PFG(T, µ∗) is the most

straightforward). In this case we can write

dPFG

dnB
=

(
∂

∂nB
+
dµ∗

dnB

∂

∂µ∗

)
PFG . (O.10)

There is no explicit dependence on nB in PFG = PFG(T, µ∗), so that the first term is zero.

First, we calculate

∂PFG
∂µ∗

= g

∫
d3p

(2π)3
T

βe−β
(
εkinetic−µ∗

)
1 + e−β

(
εkinetic−µ∗

) − g ∫ d3p

(2π)3
T

βe−β
(
εkinetic+µ

∗
)

1 + e−β
(
εkinetic+µ∗

)
= g

∫
d3p

(2π)3
fp − g

∫
d3p

(2π)3
fp = B1 − B1 = nB , (O.11)

which is what we should expect. Then we want to calculate

dµ∗

dnB
=

(
dnB
dµ∗

)−1

=

(
d

dµ∗
(
B1 − B1

))−1

. (O.12)
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Let us see that in general

d

dµ∗

(
Bk ± Bk

)
=

d

dµ∗

g ∫ d3p

(2π)3

1[
eβ
(
εkin−µ∗

)
+ 1
]k ± g ∫ d3p

(2π)3

1[
eβ
(
εkin+µ∗

)
+ 1
]k


= βk

g ∫ d3p

(2π)3

eβ
(
εkin−µ∗

)
[
eβ
(
εkin−µ∗

)
+ 1
]k+1

∓ g
∫

d3p

(2π)3

eβ
(
εkin+µ∗

)
[
eβ
(
εkin+µ∗

)
+ 1
]k+1


= βk

[
g

∫
d3p

(2π)3

(
fkp − fk+1

p

)
∓ g

∫
d3p

(2π)3

(
fkp − fk+1

p

)]
= βk

[(
Bk − Bk+1

)
∓
(
Bk − Bk+1

)]
, (O.13)

where in going from the second to the third line we used the fact that the numerators can

be rewritten according to x = x + 1 − 1. In particular, we can use Eq. (O.13) to evaluate

Eq. (O.12),

dµ∗

dnB
=

T[(
B1 + B1

)
−
(
B2 + B2

)] , (O.14)

and thus we obtain

dPFG
dnB

=
TnB[(

B1 + B1

)
−
(
B2 + B2

)] . (O.15)

Using Eq. (O.15), we further calculate

d2PFG

dn2
B

=
T(

B1 + B1

)
−
(
B2 + B2

)
1− nB

d
dnB

[(
B1 + B1

)
−
(
B2 + B2

)][(
B1 + B1

)
−
(
B2 + B2

)]
 . (O.16)

Eq. (O.13) allows us to compute that in general

d
(
Bk ± Bk

)
dnB

=

(
d
(
B1 − B1

)
dµ∗

)−1
d
(
Bk ± Bk

)
dµ∗

= k

[(
Bk − Bk+1

)
∓
(
Bk − Bk+1

)][(
B1 + B1

)
−
(
B2 + B2

)] (O.17)

so that we have

d

dnB

[(
B1 + B1

)
−
(
B2 + B2

)]
=

(
B1 − B1

)
− 3
(
B2 − B2

)
+ 2
(
B3 − B3

)[(
B1 + B1

)
−
(
B2 + B2

)] , (O.18)
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with which Eq. (O.16) becomes

d2PFG

dn2
B

=
T(

B1 + B1

)
−
(
B2 + B2

)(1− nB
(
B1 − B1

)
− 3
(
B2 − B2

)
+ 2
(
B3 − B3

)[(
B1 + B1

)
−
(
B2 + B2

)]2

)
. (O.19)

Using the same approach, we can likewise calculate

d3PFG

dn3
B

= −2T

(
B1 − B1

)
− 3
(
B2 − B2

)
+ 2
(
B3 − B3

)[(
B1 + B1

)
−
(
B2 + B2

)]3

+ 3TnB

[(
B1 − B1

)
− 3
(
B2 − B2

)
+ 2
(
B3 − B3

)]2

[(
B1 + B1

)
−
(
B2 + B2

)]5

− TnB

(
B1 + B1

)
− 7
(
B2 + B2

)
+ 12

(
B3 + B3

)
− 6
(
B4 + B4

)[(
B1 + B1

)
−
(
B2 + B2

)]4 . (O.20)
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APPENDIX P

Cumulants in terms of derivatives of the chemical

potential

In calculation of the cumulants, it may be more convenient to consider the derivatives of the

chemical potential instead of the derivatives of the pressure. In particular, while the latter

are easier to interpret based on the expected behavior of the EOS, the former lead to simpler

expressions. Here we provide formulas for the first six cumulants,

κ1 = V nB , (P.1)

κ2 = V T

[
1(

dµB
dnB

)
T

]
, (P.2)

κ3 = V T 2

[
−

(
d2µB
dn2
B

)
T(

dµB
dnB

)3

]
, (P.3)

κ4 = V T 3

[
3

(
d2µB
dn2
B

)2

T(
dµB
dnB

)5

T

− 1(
dµB
dnB

)4

T

(
d3µB
dn3

B

)
T

]
, (P.4)

κ5 = V T 4

[
− 15

(
d2µB
dn2
B

)3

T(
dµB
dnB

)7

T

+ 10

(
d2µB
dn2
B

)
T

(
d3µB
dn3
B

)
T(

dµB
dnB

)6

T

−

(
d4µB
dn4
B

)
T(

dµB
dnB

)5

T

]
, (P.5)

κ6 = V T 5

[
105

(
d2µB
dn2
B

)4

T(
dµB
dnB

)9

T

− 105

(
d2µB
dn2
B

)2

T

(
d3µB
dn3
B

)
T(

dµB
dnB

)8

T

+ 10

(
d3µB
dn3
B

)2

T(
dµB
dnB

)7

T

+ 15

(
d2µB
dn2
B

)
T

(
d4µB
dn4
B

)
T(

dµB
dnB

)7

T

−

(
d5µB
dn5
B

)
T(

∂µB
∂nB

)6

]
. (P.6)
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In the VDF model the derivatives of the chemical potential are given by

djµB

dnjB
=
djµ∗

dnjB
+
∑
i

Ci

j∏
k=1

(
bi − j

)
nbi−1−j
B , (P.7)

and the consecutive derivatives of the effective chemical potential µ∗ can be calculated using

Eqs. (O.14) and (O.17) from Appendix O.
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APPENDIX Q

Basics of the kinetic theory

In this appendix, Sections Q.1 and Q.2 are based on Ref. [227], Section Q.3 is based on Refs.

[228, 229], Section Q.4 is based on Ref. [229], and Section Q.5 is based on Refs. [229, 230].

Q.1. Phase space

We consider a system of a large numberN of particles, described by positions qi and momenta

pi, i = 1, ..., N , which are in a given configuration (q1, . . . , qN ,p1, . . . ,pN); for simplicity of

notation we denote q = (q1, . . . , qN) and p = (p1, . . . ,pN), so that a particular configuration

of the system can be written as (q,p). The considered system is characterized by a given

thermodynamic property X; in particular, X may be a collection of properties, e.g., for a

system characterized by given values of temperature and density we have X = (T, n). We say

that the system is in a macrostate characterized by X, and the corresponding configuration

(q,p) is called a microstate of the system. Even though the macrostate of the system is a

product of a specific microstate, there is a large number of distinct microstates that also lead

to the same macrostate characterized by X. Moreover, while the macrostate of the system

may remain unchanged, the system in consideration is dynamic and over time it will explore

the available microstates (here “available” may for example mean “microstates with the same

energy”, etc.). This can be conveniently visualized using the concept of the phase space Γ,

which is a 6N -dimensional space of all possible positions and momenta of particles in the

system. Within Γ, there is a subset space ΓX corresponding to the macrostate X. The
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thermodynamic postulate of equal a priori probabilities states that any microstate (q,p)

consistent with a given macrostate X has an equal probability. If X is an equilibrium state,

the system will over time move along a trajectory in phase space contained within ΓX , and

given a sufficiently long time, it will explore all possible microstates associated with X.

Q.2. Statistical ensemble

For any thermodynamic quantity X, taking S samples (measurements) of X allows one to

compute the average of X,

〈X〉 =
1

S

S∑
s=1

Xs . (Q.1)

If the measurements are consecutive in time, as is often the case for macroscopic thermody-

namic properties, the above equation may be also written as

〈X〉 =
1

S

S∑
s=1

X(ts) , (Q.2)

where ts are moments in time when the measurement is made; in particular, in the limit of

infinitesimal time intervals between the measurements we have

〈X〉 =
1

T

∫ t0+T

t0

dt X(t) . (Q.3)

At different instances of the measurement, the system is found in different microstates in the

phase space, leading to particular values ofX(ts) at the moments of measurement t1, t2, ..., tS.

Note that this measurement of the states of the system over time is equivalent to consid-

ering S snapshots of the system with particular values of
(
q(ts),p(ts)

)
, corresponding to

a particular value of X(ts) = X
(
q(ts),p(ts)

)
. This in turn is equivalent to considering S

copies of the system characterized by particular configurations in phase space
(
qs,ps

)
and

the corresponding values of X
(
qs,ps

)
.

In fact, rather than calculating averages of observables over time, in general it is more

convenient to consider a hypothetical collection of copies of the system corresponding to dif-
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ferent phase space configurations, called a statistical ensemble. The members of the ensemble

(that is, hypothetical copies of the system) reflect the possible phase space configurations

that the system may explore. One can then define the probability density f(q,p) for a

member of the ensemble to occupy the volume element dq dp in the phase space, normalized

such that the number of ensemble systems found within dq dp is given by

f(q,p) dq dp . (Q.4)

(We note that the particular normalization used isn’t very important as it ultimately drops

out of any expressions of interest, and therefore one can choose a normalization which is

most convenient for a given discussion; an alternative normalization to the one used here

could prioritize that f(q,p) is a properly defined probability, i.e. that
∫
dq dp f(q,p) = 1

holds.) The ensemble average of an observable X(q,p) is then naturally given by

〈X〉 =

∫
dq dp X(q,p) f(q,p)∫

dq dp f(q,p)
. (Q.5)

Q.3. The Liouville theorem

Let us now consider a small region of phase space around the phase space point (q,p), whose

boundaries extend from q to q + ∆q and from p to p + ∆p and whose volume is given by

∆V = ∆q∆p. This region contains a number of ensemble members N = N(∆V ), which is

given by Eq. (Q.4). Consequently, by definition, the probability density associated with this

subset of the ensemble members can be written as

f(∆V ) =
N

∆V
. (Q.6)

Each of the N ensemble members considered here is characterized by a particular set of

coordinates and momenta (q,p), and is in fact a snapshot, taken at some time t, of a

dynamical system whose positions and momenta are evolving in time. The question that

can arise here is: if we were to consider the same N ensemble members at some later time

t+ dt, what would be the associated probability?
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From the setup of the problem the number of considered ensemble membersN is constant,

therefore any change in the associated probability can only come from the change in the phase

space volume ∆V occupied by these ensemble members, see Eq. (Q.6). We then consider

d∆V

dt
=
d
(
∆q∆p

)
dt

=
d∆q

dt
∆p+ ∆q

d∆p

dt

=
d
[(
q + ∆q

)
− q
]

dt
∆p+ ∆q

d
[(
p+ ∆p

)
− p

]
dt

=

[
d
(
q + ∆q

)
dt

− dq

dt

]
∆p+ ∆q

[
d
(
p+ ∆p

)
dt

− dp

dt

]
. (Q.7)

Because ∆q is small, we can approximate

d
(
q + ∆q

)
dt

≈ dq

dt
+ ∆q

d

dq

dq

dt
(Q.8)

and similarly for the second term in Eq. (Q.7) involving p (here we note that we’re using a

somewhat abstract notation, as the derivatives with respect to the variables q = (q1, . . . , qN)

and p = (p1, . . . ,pN) are really sums over derivatives with respect to individual particle

positions qi and momenta pi; introduction of such more explicit notation is trivial and we

omit it here for clarity). These approximations will become exact in the limit ∆q → 0,∆p→
0, leading to

d∆V

dt
= ∆q∆p

(
d

dq

dq

dt
+

d

dp

dp

dt

)
. (Q.9)

The equations of motion, dq/dt and dp/dt, are given by the Hamilton equations, yielding

d∆V

dt
= ∆q∆p

(
d

dq

dH

dp
− d

dp

dH

dq

)
= 0 , (Q.10)

where in the second equality we used the fact that the Hamiltonian is a well-behaved function

satisfying (d2H/dqdp) = (d2H/dpdq). Thus we have shown that the volume of the phase

space associated with the chosen subset of the statistical ensemble does not change in time,

and from this it immediately follows that the associated probability density doesn’t change

as well,

df(∆V )

dt
= 0 . (Q.11)
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This, in fact, is the Liouville theorem, usually written more explicitly as

df(t, q,p)

dt
=
∂f

∂t
+
dq

dt

∂f

∂q
+
dp

dt

∂f

∂p
= 0 , (Q.12)

or, using the Poisson bracket, as

df(t, q,p)

dt
=
∂f

∂t
+
{
f,H

}
= 0 , (Q.13)

and it simply states that the probability density associated with a given volume element of

the phase space does not change in time.

That the Liouville theorem is satisfied is extremely important to some of the most basic

thermodynamic assumptions. Let us take for example the assumption of equal a priori

probabilities, which states that all microstates (q,p) corresponding to a chosen macrostate

X have an equal probability density. The Liouville theorem ensures that if this statement

is initially true, then it will also remain true with time evolution. More generally, any

state characterized by a given initial probability density will over time evolve through states

characterized by the same probability density.

Let us see what the Liouville theorem implies for the time evolution of observable aver-

ages,

d〈O〉
dt

= N d

dt

∫
dqdp O(q,p) f(t, q,p)

= N
∫
dqdp O(q,p)

∂f(t, q,p)

∂t
, (Q.14)

where N is a normalization factor. Eq. (Q.12) together with Hamilton’s equations allows

one to write this as

d〈O〉
dt

= −N
∫
dqdp O(q,p)

(
∂H

∂p

∂f(t, q,p)

∂q
− ∂H

∂q

∂f(t, q,p)

∂p

)
, (Q.15)

which can be further rewritten using integration by parts,

d〈O〉
dt

= N
∫
dqdp

(
∂O(q,p)

∂q

∂H

∂p
− ∂O(q,p)

∂p

∂H

∂q

)
f(t, q,p) , (Q.16)
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where some of the terms disappear by the same arguments as used in Eq. (Q.10). Using the

definition of the Poisson bracket we arrive at

d〈O〉
dt

= N
∫
dqdp

{
O(q,p), H

}
f(t, q,p) = 〈

{
O(q,p), H

}
〉 . (Q.17)

Interestingly, the Liouville theorem implies that it is impossible for any closed system,

initialized away from equilibrium, to come to an equilibrium. This follows from the discus-

sion above: If initially the system occupies a region of phase space represented by a given

microstate (q,p) which is characterized by a particular probability density f(t,x,p) and

corresponds to some non-equilibrium macrostate X, then even after arbitrarily long evolu-

tion in the phase space the system will be still described by the same probability density

f and therefore it will correspond to the same macrostate X; that is, the system will only

explore the subspace ΓX of the full phase space.

Naturally, everyday experience tells us that in general systems do equilibrate. First, this

is because one can never prepare a truly isolated system. Second, the Liouville theorem rests

on the assumption that the considered region of the phase space is infinitesimally small, see

Eq. (Q.8). Any small but finite region of the phase space can be considered to consist of

many even smaller regions. While these regions will initially follow very similar evolutions

(and so the associated occupied volumes of the phase space will be initially adjacent), over

time their phase space trajectories will spread out. This is true for any region of the phase

space, so that after some time any small but finite region of phase space will contain states

that originate from many different points in the phase space. Each of these microstates

maintains the same probability density as at the initial time, but the probability density

associated with a region spanned by any finite values of ∆x and ∆p will be an average

of the many probability densities from different contributing microstates. Ultimately, the

system comes to an equilibrium when the probability densities become sufficiently mixed,

and the probability density associated with any finite phase space volume element becomes

a uniform average. Most importantly, the Liouville theorem only considers the effects due

to the drift of particles in the phase space (note that the left-hand side of Eq. (Q.12) is
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in fact a hydrodynamic derivative, and the Liouville theorem states that the phase space

density behaves like an incompressible fluid), and in particular it does not take into account

the effects of particle collisions and particle transformations such as decays or resonance

formation. An isolated system in which particle collisions and particle-number–changing

processes take place will, over time, come to an equilibrium.

Q.4. The BBGKY hierarchy

The phase space distribution function f(t, q,p) contains detailed information about the

system. Note that using an unabbreviated notation, the phase space distribution function

for N particles can be explicitly written as

f(t, q,p) = fN
(
t, q1,p1, q2,p2, . . . , qN ,pN

)
. (Q.18)

This means that fN gives the probability that at time t particle 1 has position q1 and mo-

mentum p1, particle 2 has position q2 and momentum p2, and so on. For most applications,

however, we are not interested in such detailed knowledge. For example, calculating the pres-

sure of the gas only requires knowing whether any particle can be found at a given position q′

with a momentum of p′. This information is contained in a one-particle distribution function

f1(t, q′,p′), which can be obtained from the N -particle distribution function through

f1(t, q′,p′) =

∫
dq1dp1

∫
dq2dp2 · · ·

∫
dqNdpN fN

(
t, q1,p1, q2,p2, . . . , qN ,pN

)
×
(

N∑
i=1

δ3
(
q′ − qi

)
δ3
(
p′ − pi

))
. (Q.19)

By assuming that the distribution function fN is symmetric with respect to permuting the

particles, the above equation becomes

f1(t, q′,p′) = N

∫ N∏
i=2

dqidpi fN
(
t, q1 = q′,p1 = p′, q2,p2, . . . , qN ,pN

)
. (Q.20)
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Similarly, a two-particle distribution is given by

f1(t, q′,p′, q′′,p′′) = N(N − 1)

∫ N∏
i=3

dqidpi

× fN
(
t, q1 = q′,p1 = p′, q2 = q′′,p2 = p′′, . . . , qN ,pN

)
, (Q.21)

and in general the s-particle distribution is defined by

fs(t, q1,p1, . . . , qs,ps) =
N !

(N − s)!

∫ N∏
i=s+1

dqidpi fN(t, q,p) . (Q.22)

The evolution equation for the s-particle distribution fs can be derived within an ap-

proach named after the works of Nikolay Bogolyubov, Max Born, Herbert Green, John

Kirkwood, and Jacques Yvon, and often called the Bogoliubov-Born-Green-Kirkwood-Yvon

(BBGKY) hierarchy for reasons that will become apparent. Consider a system of N particles

whose Hamiltonian contains terms related to the kinetic energy T , the external potential U ,

and the two-body interaction V ,

H(q,p) =
N∑
i=1

T (pi) +
N∑
i=1

U(qi) +
1

2

N∑
i=1

N∑
j=1

V (qi − qj) . (Q.23)

(Note that in principle one should further include terms corresponding to three-body inter-

actions, four-body interactions, and so on; in practice, these terms can be often neglected,

which is an excellent approximation, e.g., in the case of dilute gases.) The strategy to com-

pute the s-particle distribution function is to divide the Hamiltonian H(q,p), Eq. (Q.23),

into a part related to the s particles in question, a part related to the remaining N − s

particles, and an interaction term between the two groups of particles,

H = Hs +HN−s +H ′ , (Q.24)
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with

Hs =
s∑
i=1

T (pi) +
s∑
i=1

U(qi) +
1

2

s∑
i=1

s∑
j=1

V (qi − qj) , (Q.25)

HN−s =
N∑

i=s+1

T (pi) +
N∑

i=s+1

U(qi) +
1

2

N∑
i=s+1

N∑
j=s+1

V (qi − qj) , (Q.26)

H ′ =
s∑
i=1

N∑
j=s+1

V (qi − qj) . (Q.27)

Using Eqs. (Q.13) and (Q.22) we can then write the time evolution of the s-body distribution

function as

∂fs
∂t

=
N !

(N − s)!

∫ N∏
i=s+1

dqidpi
∂fN
∂t

= − N !

(N − s)!

∫ N∏
i=s+1

dqidpi

[{
fN , Hs

}
+
{
fN , HN−s

}
+
{
fN , H

′}] . (Q.28)

Note that the first of the Poisson brackets is explicitly given by{
fN , Hs

}
=

N∑
a=1

(
∂fN
∂qa
· ∂Hs

∂pa
− ∂fN
∂pa
· ∂Hs

∂qa

)
=

s∑
a=1

(
∂fN
∂qa
· ∂Hs

∂pa
− ∂fN
∂pa
· ∂Hs

∂qa

)
, (Q.29)

so that the integrations and differentiations present in the first term in Eq. (Q.28) are

performed over different sets of variables, allowing us to exchange their order and arrive at

−
{

N !

(N − s)!

∫ N∏
i=s+1

dqidpifN , Hs

}
= −

{
fs, Hs

}
. (Q.30)

The second term in Eq. (Q.28) vanishes, which can be seen by writing the integrand explicitly

using Eq. (Q.26),∫ N∏
i=s+1

dqidpi

N∑
a=s+1

[
∂fN
∂qa
· ∂T (pa)

∂pa
− ∂fN
∂pa
·
(
∂U(qa)

∂qa
+

1

2

N∑
j=s+1

∂V (qs − qj)
∂qa

)]
, (Q.31)

and performing integration by parts with respect to qa in the first term and with respect to

pa in the second term in the square bracket. Finally, because H ′ = H ′(q), the third term in

Eq. (Q.28) is explicitly

− N !

(N − s)!

∫ N∏
i=s+1

dqidpi

[( s∑
a=1

∂fN
∂pa

+
N∑

a=s+1

∂fN
∂pa

)
·

N∑
j=s+1

∂V (qa − qj)
∂qa

]
, (Q.32)
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where the sum over all particles has been divided into two parts. The second term disappears

through integration by parts, and because the derivatives over qa are the same for each term

in the sum over j, Eq. (Q.32) is equal to

−(N − s) N !

(N − s)!

∫ N∏
i=s+1

dqidpi

s∑
a=1

∂fN
∂pa
· ∂V (qa − qs+1)

∂qa

= − N !(
N − (s+ 1)

)
!

s∑
a=1

∫
dqs+1dps+1

∂V (qa − qs+1)

∂qa
· ∂

∂pa

∫ N∏
i=s+2

dqidpi fN

= −
s∑

a=1

∫
dqs+1dps+1

∂V (qa − qs+1)

∂qa
· ∂fs+1

∂pa
, (Q.33)

where in the last equality we have used Eq. (Q.22). Altogether, Eq. (Q.28) becomes

∂fs
∂t

+
{
fs, Hs

}
=

s∑
a=1

∫
dqs+1dps+1

∂V (qa − qs+1)

∂qa
· ∂fs+1

∂pa
. (Q.34)

It is easy to see that if there are no interactions between the particles described by the

s-particle distribution function, then we arrive at the Liouville theorem, Eq. (Q.13), for fs.

If, on the other hand, the interactions with the other N − s particles are non-zero, then the

change of fs in time is equal to the right-hand side of Eq. (Q.34), often called the collision

term or collision integral because of the fact that it sums over possible interactions (collisions)

of particles from the group of s particles with particles from the group of N − s particles,

weighted by the probability fs+1 of finding a particle from the N −s group. This results in a

sequence, or hierarchy, of equations, where df1/dt depends on f2, df2/dt depends on f3, and

so on, which is the origin of the name “BBGKY hierarchy of equations”.

As it is, the BBGKY hierarchy, Eq. (Q.34), retains all the information originally con-

tained within the N -body distribution function fN , and solving for the consecutive s-body

distribution functions fs using Eq. (Q.34) is as complicated as solving for the original N -

body distribution function fN . However, in contrast to the Liouville equation specifying fN ,

the BBGKY hierarchy can be systematically truncated, leading to solvable problems.
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Q.5. The Boltzmann equation

A detailed discussion of the derivation of the Boltzmann equation from the BBGKY hierarchy

in the dilute regime can be found in Ref. [229]; here we briefly present the main steps.

We focus on the first two equations in the BBGKY hierarchy, obtained by setting s = 1

and s = 2 in Eq. (Q.34). Using Eq. (Q.25) and assuming that the potential is symmetric,

V (q1−q2) = V (q2−q1) (from which it follows that ∂V (q1 − q2)/∂q1 = −∂V (q2 − q1)/∂q2),

we arrive at

∂f1

∂t
+
∂T (p1)

∂p1

· ∂f1

∂q1

− ∂U(q1)

∂q1

· ∂f1

∂p1

=

∫
d3q2d

3p2
∂V (q1 − q2)

∂q1

· ∂f2

∂p1

(Q.35)

and

∂f2

∂t
+

[
∂T (p1)

∂p1

· ∂f2

∂q1

+
∂T (p2)

∂p2

· ∂f2

∂q2

]
−
[
∂U(q1)

∂q1

· ∂f2

∂p1

+
∂U(q2)

∂q2

· ∂f2

∂p2

]
− ∂V (q1 − q2)

∂q1

·
[
∂f2

∂p1

− ∂f2

∂p2

]
=

∫
d3q3d

3p3

[
∂V (q1 − q3)

∂q1

· ∂

∂p1

+
∂V (q2 − q3)

∂q2

· ∂

∂p2

]
f3 . (Q.36)

All terms acting on fs in above equations have dimensions of inverse time, and their magni-

tude can be estimated by dimensional analysis. We can define the timescale τU associated

with terms of the form

∂U(q)

∂q
· ∂
∂p
∝ 1

τU
∝ v

L
, (Q.37)

where v is the typical particle velocity and L is the length scale over which the external

potential U varies. Likewise, we can define the timescale τV associated with terms involving

the particle-particle interactions (collisions),

∂V

∂q
· ∂
∂p
∝ 1

τV
∝ v

d
, (Q.38)

where d is the effective range of the scattering potential. Finally, we note that while a

scattering term only occurs on the right-hand side of Eq. (Q.35), in case of Eq. (Q.36) there
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are scattering terms both on the left- and right-hand side of the equation. The relative

magnitude of these terms will be proportional to the ratio f3/f2. Over small volumes ∆V ≈
d3 corresponding to the effective range of the potential d, f2 is proportional to the number

of particle pairs in ∆V , while f3 is proportional to the number of particle triplets, therefore

f3/f2 ∝ n, where n is the number density of particles. Consequently, the time scale τI

associated with the collision integral on the right-hand side of Eq. (Q.35) is given by∫
d3q3d

3p3
∂V

∂q
· ∂
∂p

f3

f2

∝ 1

τI
∝ nd3

τV
∝ nvd2 . (Q.39)

From the above equation one can see that τI is in fact the mean free time, that is a typical

period between subsequent collisions of the same particle; in agreement with the basic intu-

ition, the mean free time is inversely proportional to particle density, the particle’s velocity,

and the effective “cross section area” of the particle given by the square of interaction range

d.

For dilute systems, the average number of particles in the volume associated with the

scattering range is very small, nd3 � 1. Therefore the scattering term on the right-hand side

of Eq. (Q.35) will be negligible as compared to the scattering term on the left-hand side of

the same equation, and it is reasonable to truncate the BBGKY hierarchy at s = 2 by setting

the right-hand side of Eq. (Q.35) to zero. Furthermore, typically the time scale associated

with scattering τV is much shorter than the time scale associated with the variation of the

external potential τU , which allows one to neglect terms proportional to 1/τU in Eq. (Q.35).

Finally, additionally assuming that ∂f/∂t� 1 yields[
∂T (p1)

∂p1

· ∂f2

∂q1

+
∂T (p2)

∂p2

· ∂f2

∂q2

]
− ∂V (q1 − q2)

∂q1

·
[
∂f2

∂p1

− ∂f2

∂p2

]
= 0 . (Q.40)

The derivatives with respect to ∂/∂q1 and ∂/∂q2 can be expressed in terms of the center-of-

mass and relative coordinate, Q = (q1+q2)/2 and q = (q2−q1)/2, as we have dq1 = dQ+dq

and dq2 = dQ− dq. The two-body distribution function f2 is expected to vary slowly along

the Q direction and appreciably over the q direction (this can be understood based on

the fact that the average position of two particles Q is governed by the long-range part of
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the interaction, while their relative position q is governed by the short range part of the

interaction), so that ∂/∂q1 ≈ −∂/∂q2 ≈ ∂/∂q, and we can rewrite Eq. (Q.40) as[
∂T (p1)

∂p1

− ∂T (p2)

∂p2

]
· ∂f2

∂q
=
∂V (q1 − q2)

∂q1

·
[
∂f2

∂p1

− ∂f2

∂p2

]
. (Q.41)

We can use the above relation on the right-hand side of Eq. (Q.35), where we can perform the

substitution ∂f2/∂p1 → ∂f2/∂p1− ∂f2/∂p2 because ∂f2/∂p1 is a complete derivative which

integrates to zero. Additionally, we use the fact that for a relativistic system ∂T (p)/∂p =

p/E = v, and in this way we arrive at

∂f1

∂t
+
p1

E1

· ∂f1

∂q1

− ∂U(q1)

∂q1

· ∂f1

∂p1

=

∫
d3qd3p2

(
v1 − v2

)
· ∂f2(t, q1,p1, q,p2)

∂q
. (Q.42)

On the right-hand side of the above equation we have a derivative of f2 with respect to q

along the direction of th relative motion p = p2 − p1, and it is convenient to express q in a

new basis in which one axis, denoted with a, is parallel to p = p2 − p1, while the remaining

two coordinates form a plane perpendicular to p,

q → a+ b and d3q → da d2b ; (Q.43)

we note that b is an impact parameter vector, which in particular is zero for a head-on

collision where q1 − q2 is parallel to p1 − p2. We can then attempt to integrate Eq. (Q.42)

over the a coordinate. As this integral is performed, we go from negative relative distances,

starting from some lower boundary value a−, through a zero relative distance which is where

the collision takes place, and then through positive relative distances up to some upper

boundary value a+ (on a side note, |a+ − a−| can be taken to be small because f2 changes

appreciably only over distances comparable with the collision range d). In this way, we

“observe” the system from some time before the collision to some time after the collision.

Importantly, the momenta of the individual particles are changed throughout the collision

even though the total momentum is conserved,

p1 + p2 = p′1 + p′2 . (Q.44)
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Therefore the integral of Eq. (Q.42) over the a coordinate can be written as

df1

dt
=

∫
d2bd3p2

∣∣v1 − v2

∣∣[f2(t, q1,p
′
1, b, a+,p

′
2)− f2(t, q1,p1, b, a−,p2)

]
, (Q.45)

where |v1 − v2| is the relative speed. As the next step, we change the integration variable

from the impact parameter vector to the solid angle Ω,

df1

dt
=

∫
dΩd3p2

∣∣∣∣ dσdΩ

∣∣∣∣ ∣∣v1 − v2

∣∣[f2(t, q1,p
′
1, b, a+,p

′
2)− f2(t, q1,p1, b, a−,p2)

]
, (Q.46)

where the Jacobian of the transformation |dσ/dΩ| has a dimension of area and is known as

the differential cross section. Finally, we use the assumption of molecular chaos, according

to which the two-body distribution function is given by a product of one-body distribution

functions,

f2(t, q1,p1, b, a±,p2) = f1(t, q1,p1)f1(t, q1,p2) , (Q.47)

and which means that, except for the moment in which the collision take place, the particles

are assumed to be uncorrelated. This allows us to arrive at the Boltzmann equation,

∂f1

∂t
+
p1

E1

· ∂f1

∂q1

− ∂U(q1)

∂q1

· ∂f1

∂p1

=

∫
dΩd3p2

∣∣∣∣ dσdΩ

∣∣∣∣ ∣∣v1 − v2

∣∣[f1(t, q1,p
′
1)f1(t, q1,p

′
2)− f1(t, q1,p1)f1(t, q1,p2)

]
, (Q.48)

which is an integrodifferential equation for the evolution of the one-body distribution f1.

Although various parts of the above derivation sketch have characteristics of a deux ex

machina, the form of Eq. (Q.48) can be also argued on phenomenological grounds. The

terms on the left-hand side are connected to a motion of a single particle in the external

potential U . The collision term on the right-hand side describes the change in the probability

to find a particle of momentum p1 at q1 that can happen due to a collision with another

particle of momentum p2, in result of which both particles acquire new momenta p′1 and

p′2. This probability is proportional to the cross section for the scattering |dσ/dΩ|
∣∣, the flux

of incident particles
∣∣v1 − v2

∣∣, the probability of finding the particles at a position q with

momenta p1 and p2, and the probability of the final states with momenta p′1 and p′2.
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For describing relativistic heavy-ion collisions, it is useful to write Eq. (Q.48) in a mani-

festly covariant way,

pµ
∂f

∂xµ
+m

∂
(
Kµf

)
∂pµ

=

∫
d3p2

E2

d3p′1
E ′1

d3p′2
E ′2

W
(
p′1,p

′
2 ← p,p2

)(
f ′1f

′
2 − ff2

)
(Q.49)

where Kµ is a four-force vector and W
(
p′1,p

′
2 ← p,p2

)
is a Lorentz invariant cross section

for scattering of particles with momenta p, p2 into particles of momenta p′1, p′2. Here, it

is useful to adopt an interpretation of the expression
(
f ′1f

′
2 − ff2

)
in which the first term

corresponds to particles scattering into the considered volume element (gain term), while the

second term corresponds to particles scattering out of the considered volume element (loss

term). Importantly, Boltzmann equation can also include quantum effects, which was first

studied by Edwin Uehling and George Uhlenbeck [231], leading to

pµ
∂f

∂xµ
+m

∂
(
Kµf

)
∂pµ

=

∫
d3p2

E2

d3p′1
E ′1

d3p′2
E ′2

× W
(
p′1,p

′
2 ← p,p2

)(
f ′1f

′
2

(
1− af

)(
1− af2

)
− ff2

(
1− af ′1

)(
1− af ′2

))
, (Q.50)

where a = 1 for fermions and a = −1 for bosons. The additional terms in the big round

bracket can be easily understood: for example, in the case of fermions, a particle in a state 2’

can only scatter into a state 2 if that state is unoccupied, the probability of which is given by

1− f2. The above equation is known as the Boltzmann-Uehling-Uhlenbeck (BUU) equation.

So far we have only dealt with the Boltzmann equation for one particle species. To

describe heavy-ion collisions one needs to include hundreds of hadron species which can

collide with each other, decay, and form resonances. This means that the system is described

by hundreds (as many as particle species) of coupled Boltzmann equations. This extremely

complex system can be solved by means of Monte-Carlo simulations, where the particles are

propagated using the equations of motion entering the left-hand side of Eq. (Q.50) and the

collision integral on the right-hand side is realized by explicitly simulating collisions, decays,

and resonance formation. For more details see Chapter 4.
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APPENDIX R

Pair distribution function and the second-order cumulant

The procedure to compute the radial distribution function gi(r), given by Eq. (5.1), can be

generalized to the case of a continuous system described by a particle density distribution

n(r′),

gi(r,∆r) =

∫
dr′

(
n(r′)− 1 δ(ri − r′)

)
× θ

(
r + ∆r − |ri − r′|

)
θ
(
|ri − r′| − (r −∆r)

)
, (R.1)

where care must be taken to subtract the self-contribution from the reference particle. Sim-

ilarly, the pair distribution function g̃(r), Eq. (5.2), can be rewritten as

g̃(r,∆r) =
N
2

∫
dr′
∫
dr′′ n(r′)

(
n(r′′)− δ(r′ − r′′)

)
× θ

(
r + ∆r − |r′ − r′′|

)
θ
(
|r′ − r′′| − (r −∆r)

)
=
N
2

∫
dr′
∫
dr′′ n(r′)n(r′′) θ

(
r + ∆r − |r′ − r′′|

)
θ
(
|r′ − r′′| − (r −∆r)

)
− N

2

∫
dr′ n(r′) θ

(
∆r − r

)
. (R.2)

We note that the second term is only non-zero when r < ∆r, which is correct given that the

self-contribution only needs to be subtracted if we consider the pair distribution function

within a distance ∆r around the reference particles.

It is possible to establish a connection between the pair distribution function and the

second-order cumulant κ2. For this, we consider the pair distribution function g̃(r) at dis-

tances close to the reference particle, that is we put r = 0, by means of which Eq. (R.2)
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becomes

g̃(0,∆r) =
N
2

[ ∫
dr′
∫
dr′′ n(r′)n(r′′) θ

(
∆r − |r′ − r′′|

)
−
∫
dr′ n(r′)

]
. (R.3)

Let us assume that ∆r is small and that within the distance ∆r from r′ the density is smooth

enough for n(r′′) ≈ n(r′) to hold, in which case

g̃(0,∆r) =
N
2

[ ∫
dr′

[
n(r′)

]2 ∫
dr′′ θ

(
∆r − |r′ − r′′|

)
−
∫
dr′ n(r′)

]
=
N
2

[
V∆

∫
dr′

[
n(r′)

]2 − ∫ dr′ n(r′)

]
, (R.4)

where V∆ = (4/3)πr3
∆. Furthermore, let us divide the volume of the system V into cubes of

volume V∆, Ncubes = V/V∆, and assume that we can safely discretize the remaining integrals

in Eq. (R.4) according to
∫
dr′ f(r′)→∑Ncubes

i=1 V∆f(ri), where ri points to the center of each

cube. With this and taking the number of particles in the i-th cube to be Ni(ri) ≡ V∆n(ri),

Eq. (R.4) becomes

g̃(0,∆r) ≈ N 1

2

[
Ncubes∑
i=1

[
N(ri)

]2 − Ncubes∑
i=1

N(ri)

]
. (R.5)

Since the normalization can be freely chosen given that ρ̃(0,∆r) should be compared to a

reference distribution for an ideal gas ρ̃0(0,∆r), in particular we can take N = 2/Ncubes, so

that finally

g̃(0,∆r) =
1

Ncubes

[
Ncubes∑
i=1

[
N(ri)

]2 − Ncubes∑
i=1

N(ri)

]
, (R.6)

where Ncubes is determined by ∆r.

It is clear from Eq. (R.6) that the radial distribution function of all distinct particle pairs

at distances close to the reference particles is

g̃(0,∆r) = M2 −M1 = F2 = 〈N(N − 1)〉 , (R.7)

whereMi and Fi are moments and factorial moments of the distribution, respectively. More-

over, assuming that the pair distribution function for uncorrelated pairs g̃0(0,∆r) is described
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by the Poisson distribution, for which 〈N〉 = λ and 〈N2〉 = λ2 + λ (where λ is the mean),

we have

g̃0(0,∆r) = 〈N〉2 . (R.8)

Let us consider the deviation of the behavior of the pair distribution function g̃(0,∆r)

from the ideal case of g̃0(0,∆r), which can be conveniently done by considering the measure

R =
g̃ (0,∆r)

g̃0(0,∆r)
− 1 . (R.9)

Using Eqs. (R.7) and (R.8) we can immediately rewrite this as

R =
〈N2〉 − 〈N〉 − 〈N〉2

〈N〉2 =
κ2 − κ1

κ2
1

. (R.10)

In particular, provided that κ1 > 0, we immediately obtain that R is bigger (smaller) than

0 if and only if the second-order cumulant ratio κ2/κ1 is bigger (smaller) than 1, which can

be alternatively expressed as in Eqs. (5.11) and (5.12).

We would like to stress that the above relations hold for an arbitrary distribution of

particles, without any assumptions on the underlying physics, provided that the correspond-

ing uncorrelated system can be described by the Poisson distribution. In any such system

the sign of [g̃(r,∆r)/g̃0(r,∆r)] − 1 at r → 0 is the same as the sign of (κ2/κ) − 1. In

particular, it follows that g̃(r,∆r)/g̃0(r,∆r) < 1 for systems where a repulsive interaction

dominates at short distances (leading to a distribution more uniform than that of an ideal

gas), while g̃(r,∆r)/g̃0(r,∆r) > 1 for systems where an attractive interaction dominates at

short distances (which leads to a distribution that is less uniform than that of an ideal gas).
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APPENDIX S

A posteriori application of the parallel ensembles

method
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Figure S.1: A posteriori construction of the parallel ensembles mode for a system undergoing

nuclear spinodal fragmentation (for details see Section 5.2.1). The upper row corresponds

to the initialization time, while the lower row corresponds to t = 100 fm/c. The left-most

boxes in both rows show the full ensemble event, in which test particles have been divided

into NT = 4 groups, marked with different colors. The remaining boxes in both rows show

the state of each of the parallel ensembles obtained by dividing the original full ensemble

event into NT = 4 separate events. It is evident that the parallel ensemble systems mirror

the evolution of the full ensemble.

The version of SMASH that we used did not have the option to run in a parallel ensembles

mode (this option has been recently added to SMASH [199] and is currently being tested).
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However, for simulations with all collision and decay channels turned off (such as we study

in Chapter 5), the concept of parallel ensembles can be safely employed a posteriori, that is

at the analysis stage. Specifically, in each event we divide the NTNB test particles obtained

from a full ensemble SMASH simulation (where NB is the baryon number evolved in the

simulation and NT is the number of test particles per particle) into NT separate groups; this

process is shown in Fig. S.1 for NT = 4. We then treat these groups as separate events.

Each of these a posteriori constructed events is governed by PNB(Ni) (see Section 5.1.2.3).

We stress that for a SMASH simulation run in the full ensemble mode with Nev events and

NT test particles per particle, the corresponding calculation in the parallel ensembles mode

will be characterized by NTNev events with NT = 1 test particles per particle.
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APPENDIX T

The isothermal speed of sound at µ = 0

We want to compute the µ = 0 limit of Eq. (6.8), repeated here for convenience,

c2
T =

(
µ

T

κ2

κ1

+

(
d lnκ1

d lnT

)
µ

)−1

. (T.1)

We will use the fact that at µ = 0 we have by symmetry, for all values of the temperature

T , κ1 = 0 and κ3 = 0, from which it follows that (dκ1/dT )µ=0 = 0. We will also use the

l’Hospital rule, according to which the x → x0 limit of the ratio of two functions f(x) and

g(x) such that either limx→x0 f(x) = limx→x0 g(x) = 0 or limx→x0 f(x) = limx→x0 g(x) = ∞
is given by

lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
, (T.2)

provided that g′(x) 6= 0 ∀ x 6= x0 and the limit limx→x0
f ′(x)
g′(x)

exists. We denote the evoking

of the l’Hospital rule with a subscript “LH”.

For the first term in Eq. (T.1), assuming that κ2 6= 0 (which is equivalent to assuming

that there are finite fluctuations in the system), we have

1

T
lim
µ→0

µκ2

κ1

=

∣∣∣∣
LH

1

T
lim
µ→0

(
d(µκ2)
dµ

)
T(

dκ1
dµ

)
T

=
κ2

T
lim
µ→0

κ2 + µκ3
T

κ2
T

= 1 . (T.3)

Then we deal with the second term,

lim
µ→0

T

κ1

(
dκ1

dT

)
µ

=

∣∣∣∣
LH

lim
µ→0

T(
dκ1
dµ

)
T

d

dµ

∣∣∣∣
T

(
dκ1

dT

)
µ

= lim
µ→0

T(
dκ1
dµ

)
T

d

dT

∣∣∣∣
µ

(
dκ1

dµ

)
T

= lim
µ→0

T
κ2
T

d

dT

∣∣∣∣
µ

(κ2

T

)
= lim

µ→0

(
d ln

(
κ2
T

)
d lnT

)
µ

. (T.4)
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Here the limit can be now taken simply by taking the value at µ = 0,(
d ln

(
κ2
T

)
d lnT

)
µ=0

=
T 2

κ2

∣∣
µ=0

[
1

T

(
dκ2

dT

)
µ=0

−
κ2

∣∣
µ=0

T 2

]
=

T

κ2

∣∣
µ=0

(
dκ2

dT

)
µ=0

− 1 . (T.5)

Altogether,

lim
µ→0

c2
T =

(
T

κ2

∣∣
µ=0

(
dκ2

dT

)
µ=0

)−1

=

(
d lnκ2

d lnT

)−1

µ=0

. (T.6)
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