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Abstract

Visual perceptual learning through practice or training can significantly improve performance on 

visual tasks. Originally seen as a manifestation of plasticity in the primary visual cortex, 

perceptual learning is more readily understood as improvements in the function of brain networks 

that integrate processes including sensory representations, decision, attention, and reward and 

balance plasticity with system stability. This review considers the primary phenomena of 

perceptual learning, and theories of perceptual learning and its effect on signal and noise in visual 

processing and decision. Models, especially computational models, play a key role in behavioral 

and physiological evaluation of the mechanisms of perceptual learning, and for understanding, 

predicting, and optimizing human perceptual processes, learning, and performance. Performance 

improvements resulting from reweighting or readout of sensory inputs to decision provide a strong 

theoretical framework for interpreting perceptual learning and transfer that may prove useful in 

optimizing learning in real world applications.
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INTRODUCTION

Visual perceptual learning is the improvement in visual task performance with practice or 

training (Sagi 2011). It reflects learning and plasticity in the visual system and a network of 

other brain substrates of behavior. Substantial improvements in visual task performance can 

occur in adults whose cortical organization and function are developmentally mature, where 

the architecture of the visual system—absent major injury and reorganization—is relatively 

stable (Wandell & Smirnakis 2009). Although research has heavily focused on the 

development of perceptual expertise in adults (Lu et al. 2011), visual perceptual learning 

contributes to functional improvements during development (Atkinson et al. 1977, Gibson 

1969), can improve visual performance during aging (DeLoss et al. 2015), and plays an 

important function in visual rehabilitation (Lu et al. 2016). Finally, the state of the 
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perceptual system depends on experience, and cannot be fully understood without 

understanding its plasticity.

Human perceptual processes are a necessary gateway to experience and integral to planning 

and executing behavior. The visual system is a complex processing engine, with many areas 

and modules that coordinate a complex flow of perceptual information (Van Essen et al. 

1992). The visual system, like many sensory systems, seems to have evolved to support 

processing of the important stimulus cues in the environment (Geisler 2008). However, even 

after millions of years of evolution, it continues to improve through development and 

through experience. Human visual functions improve considerably during a developmental 

period starting in infancy. For normal adults, performance in many visual tasks may be far 

from optimal and can be improved with the right kind of training or practice (Lu et al. 2011).

Observations of perceptual learning date back to early in the study of perception. William 

James describes improvements in performance with practice in his chapter on discrimination 

and comparison, citing work by Volkmann and Fechner on improvements in two-point 

discrimination on skin from the mid-1800s (James 1890). Stratton studied the role of 

experience with prism distortions of visual input in the late 1800s (Stratton 1897). 

Perceptual learning and its role in visual development was studied by E. Gibson starting in 

the 1950s (Gibson 1969). There were many observations of expertise in naturalistic tasks 

such as wool sorting, wine tasting etc. More controlled laboratory studies of perceptual 

learning refocused in the late 1980s, and many features of perceptual learning, its specificity 

to stimuli and tasks, and its mechanisms have been discovered during the last nearly three 

decades.

OBSERVING PERCEPTUAL LEARNING

Learning in Perceptual Tasks

Perceptual learning has been documented in virtually all tasks and sensory modalities—

although performance in a few tasks is relatively unchanged by practice, perhaps because 

they are so common in everyday life. A number of reviews have considered this now-

extensive body of work, including (Adini et al. 2004, Ahissar & Hochstein 2004, Fahle & 

Poggio 2002, Fine & Jacobs 2002, Lu et al. 2011, Vogels 2010, Watanabe & Sasaki 2015).

Perceptual learning occurs for different kinds of tasks at different levels of visual analysis 

(figure 1). It improves detection or discrimination for single features such as orientation 

(Dosher & Lu 1998, Dosher & Lu 1999, Schoups et al. 1995, Vogels & Orban 1985), spatial 

frequency (Bennett & Westheimer 1991, Fiorentini & Berardi 1981), phase (Dosher et al. 

2010, Fiorentini & Berardi 1980), contrast (Adini et al. 2004, Dorais & Sagi 1997, Sowden 

et al. 2002), color (Casey & Sowden 2012, Özgen & Davies 2002, Thurston & Dobkins 

2007), acuity (Bennett & Westheimer 1991, Westheimer 2001), and hyper-acuity (Crist et al. 

1997, McKee & Westheimer 1978, Poggio et al. 1992). It improves pattern discrimination in 

tasks involving compound stimuli (Fiorentini & Berardi 1980, Fiorentini & Berardi 1981), 

textures (Ahissar & Hochstein 1993, Karni & Sagi 1991), depth (Fendick & Westheimer 

1983, Ramachandran & Braddick 1973), and motion (Ball & Sekuler 1982, Lu et al. 2006, 

Lu et al. 2005, Matthews & Welch 1997, Watanabe et al. 2002). And it improves 
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identification of objects and natural scenes such as faces and entities (Gauthier et al. 1998, 

Gold et al. 1999), shapes and objects (Kourtzi et al. 2005, Nazir & O’Regan 1990), and 

biological motion (Grossman et al. 2004, Jastorff et al. 2006). In many of these cases, the 

literature is extensive; we have often provided earlier references.

Perceptual learning can powerfully affect performance, improving accuracy from near 

chance to more than 90% correct in many two-choice tasks (Ball & Sekuler 1982, Fiorentini 

& Berardi 1980, Poggio et al. 1992). For this reason, any characterization of visual functions 

based on testing will depend upon the level of expertise. Finally, training effects are 

sufficiently large that they can contribute to performance in practical domains. On the other 

hand, there are cases where perceptual learning does not alter performance (Sagi 2011); 

failure to improve often involves already practiced judgments such as training at fovea with 

prototypical features in easy viewing conditions (Lu & Dosher 2004), or when potentially 

conflicting judgments are intermixed or roved (Herzog et al. 2012, Yu et al. 2004).

Visual perceptual learning has been used to improve visual performance in visual conditions, 

including amblyopia (Levi & Li 2009, Li et al. 2013, Xi et al. 2014), myopia (Durrie & 

McMinn 2007, Yan et al. 2015), aging (DeLoss et al. 2015), presbyopia (Polat et al. 2012), 

low vision (Liu et al. 2007, Yu et al. 2010), cortical blindness (Huxlin et al. 2009, Kasten & 

Sabel 1995, Nelles et al. 2001), and rehabilitation after surgical interventions (Huber et al. 

2015, Kalia et al. 2014). It has also been applied in education (Kellman & Massey 2013, 

Merzenich et al. 1996, Strong et al. 2011) and training of visual expertise (Deveau et al. 

2014, Gauthier et al. 1998, Sowden et al. 2002).

Perceptual learning often involves thousands of trials of practice over days or weeks (Dosher 

& Lu 1998), although sometimes a few exposures of easy stimuli accelerate learning (Liu et 

al. 2012, Rubin et al. 1997), and in some domains initial learning occurs within a few dozens 

trials (Ramachandran & Braddick 1973). Some studies find that REM sleep was critical for 

perceptual learning in texture discrimination (Karni & Sagi 1991, Mednick et al. 2003). 

Training effects can persist for periods up to years (Karni & Sagi 1993). In sum, perceptual 

learning is a major phenomenon of adult plasticity with important theoretical and practical 

implications.

Specificity and Transfer

The specificity of visual perceptual learning (Karni & Sagi 1991) is one of its hallmark 

characteristics (figure 2). Specificity—in which learned improvements are lost when the 

stimuli or task is altered—has been reported for orientation, spatial frequency, motion 

direction, pattern, and even (significantly) location in the visual field (Ball & Sekuler 1982, 

Dosher & Lu 1999, Fahle & Edelman 1993, Fiorentini & Berardi 1980, Karni & Sagi 1991, 

Schoups et al. 1995). For example, training to detect a small patch of differently oriented 

lines in the lower right quadrant does not fully transfer to texture processing in other 

quadrants (Karni & Sagi 1991). The specificity of trained improvements to a portion of the 

visual field were considered especially salient, leading some to infer that perceptual learning 

reflects plasticity in early visual cortex, V1, which has small retinotopic receptive fields.

Dosher and Lu Page 3

Annu Rev Vis Sci. Author manuscript; available in PMC 2019 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



While the literature emphasized the specificity of visual perceptual learning, often it is a 

graded phenomenon with some specificity and some transfer of trained improvements to 

other stimuli, tasks, or locations (Dosher & Lu 2009). Generalization is more important in 

practical applications, such as the development of expertise or remediation, where benefits 

beyond the training conditions are valuable. We now know that the relative specificity versus 

transfer of training can depend on several factors, including the processing level of the 

trained task (Fine & Jacobs 2002), the task difficulty (Ahissar & Hochstein 1993, Liu 1999), 

precision of the transfer task (Jeter et al. 2009), the extent of training (Jeter et al. 2010), the 

state of adaptation induced by training (Censor et al. 2006), and the exact training and 

transfer procedure (Hung & Seitz 2014, Xiao et al. 2008). More demanding tasks tend to 

experience more specificity.

Feedback and Reward

Feedback occurs when the learning environment provides information about the quality or 

value of behavior. The form of feedback can differ, and these differences can affect the 

magnitude and speed of perceptual learning. Training may use full feedback about the 

desired response on each trial, occur on a subset of trial, be misleading, or feedback may be 

unavailable (Dosher & Lu 2009). Almost all experimental investigations of perceptual 

learning involve two-alternative choices (e.g., left/right, same different) and trial-by-trial 

accuracy feedback. However, learning can occur with only block feedback (Herzog & Fahle 

1997, Shibata et al. 2009) or without any feedback if performance before training is high 

enough (Fahle & Edelman 1993, Herzog & Fahle 1997, Liu et al. 2010, McKee & 

Westheimer 1978, Petrov et al. 2006). If performance accuracy before training is low, 

observers may not learn without feedback (Liu et al. 2010, Rubin et al. 1997), or the rate of 

learning increases with feedback (Crist et al. 1997). Reverse or random feedback can prevent 

learning (Aberg & Herzog 2012, Herzog & Fahle 1997, Herzog & Fahle 1999), while 

exaggerated (positive) block feedback can change its rate (Shibata et al. 2009). In some 

unusual demonstrations, feedback in the absence of a stimulus can alter performance (Choi 

& Watanabe 2012, Shibata et al. 2012). In short, learning can occur in the absence of 

feedback in certain situations, yet feedback is important when the task is difficult and initial 

performance is poor. Trial-by-trial feedback is more effective than block feedback, and 

inaccurate feedback can disrupt learning.

Physical rewards can result in perceptual learning in the absence of verbal instructions (Seitz 

et al. 2009). Yet explicit rewards, and especially the systematic effects of the magnitude of 

rewards on perceptual learning, are just beginning to be investigated (Zhang et al. 2016). A 

model with the right learning rule has the potential to systematize and predict these varied 

effects of feedback and reward.

Selection by Task and Attention

Perceptual learning balances stability with plasticity in part through selectivity. Real world 

sensory stimulation is rich, containing many potential cues for guiding behavior. Yet 

generally only task relevant stimuli, features, or locations participate in learning (Ahissar & 

Hochstein 1993, Fahle & Morgan 1996, Shiu & Pashler 1992). However, task-irrelevant 
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learning sometimes occurs for extraneous stimuli appearing in temporal proximity to a 

training stimulus if they are subliminal (Gutnisky et al. 2009, Watanabe et al. 2002).

In addition to task-relevance, attention may select what is learned. Although there are claims 

that attention to a stimulus is required for learning (Ahissar & Hochstein 2004, Dolan et al. 

1997, Gilbert et al. 2001), only a few studies have explicitly manipulated attention and 

evaluated learning in attended and unattended conditions (Mukai et al. 2011, Xu et al. 2012). 

Conversely, the functional importance of attention in determining task performance can be 

reduced through extensive perceptual training (Dosher et al. 2010). Selection by task or by 

attention selectively reweights only those stimulus representations or attended features that 

are relevant to the trained task.

MODELS OF PERCEPTUAL LEARNING

Even the simplest task of detecting or discriminating a perceptual stimulus involves a 

network of processes or brain regions supporting sensory processing, decision, action 

selection, top-down task relevance, attention, and processing of rewards or feedback. Each 

of these sensory and cognitive processes may be engaged during natural behavioral episodes 

and in each experimental trial. Learning alters processing, generally to improve 

performance. Although early explanations focused on plasticity in the sensory cortices, 

perceptual learning must engage multiple processes, levels, and brain areas (Kourtzi 2010, 

Kourtzi et al. 2005).

Maintaining stability in the face of plasticity, the plasticity-stability dilemma, constrains how 

the system learns perceptual tasks (Dosher & Lu 2009). Plasticity of visual system is 

normally considered an advantage associated with performance improvements, yet must be 

balanced with maintaining stability in standard visual functions. Too much plasticity could 

result in catastrophic forgetting of one task or set of stimuli by training on another (French 

1999, Grossberg 1987), and an inability to optimize several tasks simultaneously.

Several conceptual frameworks for perceptual learning have been proposed, including the 

primary visual cortical plasticity theory (Karni & Sagi 1991), the reverse hierarchy theory 

(Ahissar & Hochstein 1993, Ahissar & Hochstein 2004), the reweighting model of 

perceptual learning (Dosher & Lu 1998), and the dual plasticity model (Watanabe & Sasaki 

2015). Representation enhancement theories of perceptual learning identify changes in early 

visual areas such as V1 as the substrate. Selective reweighting theories of perceptual 

learning promote stability by improving readout from sensory representations that remain 

largely unchanged (Dosher & Lu 1998, Mollon & Danilova 1996). Although task-dependent 

reweighting alters the inputs (representations) at later stages of processing, stable early 

sensory representations (e.g. V1) could contribute to maintaining performance in previously 

learned tasks. And, if sensory representations are altered, further reweighting would be 

necessary to optimize readout or decoding of the (new) neurosensory evidence (Dosher & 

Lu 2009). Recent theoretical overviews cite both forms of plasticity, along with attention and 

reward (Watanabe & Sasaki 2015).
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Models can play a powerful role in testing these theories of learning and plasticity and 

account for complex patterns in the empirical literature. A complete model includes modules 

for sensory representation, decision, and learning, and possibly attention, reward, and 

feedback. Another important component is noise, or variability, in the internal responses of 

the system. The accuracy of performance depends critically on extracting signal from the 

internal noise in the system responses. A computational model predicts behavioral 

performance by taking the stimuli as inputs and specifying the computations carried out in 

each module. It can be as abstract as a set of simple computations or it can mimic the 

architecture of brain areas and the behavior of neural populations.

The Learning Rule

Learning rules, core to neural network theories of learning, have also been central to models 

of perceptual learning. In artificial neural networks, the learning rules change the weights 

from input units representing the stimuli to decision or response units. Network learning 

theories distinguish purely supervised, purely unsupervised, and hybrid or semi-supervised 

learning (Barlow 1989, Jordan & Rumelhart 1992, Reed & Marks 1998). Supervised 

learning requires a teaching signal that specifies full information about the desired 

responses, while unsupervised learning does not. In semi-supervised learning, full 

information may be provided on a subset of cases or about accuracy but not the nature of the 

error. In hybrid learning, the rule may be modified by feedback, attention, or reward.

Empirical findings on feedback can inform learning rules in models. That perceptual 

learning can occur in the absence of feedback, yet can sometimes benefit from or require 

feedback implies a hybrid of supervised and unsupervised learning (Dosher & Lu 2009, 

Herzog & Fahle 1998). One plausible rule is augmented Hebbian reweighting (Petrov et al. 

2005, Petrov et al. 2006), which combined unsupervised Hebbian learning with guidance 

from feedback and bias. Other models, motivated by physiological concepts of reward and 

reward prediction error, use reweighting through reinforcement learning, a form of weak 

supervised learning (Law & Gold 2009).

Computational Models of Perceptual Learning

Essentially all current computational models of perceptual learning are reweighting models. 

They specify a task domain, including stimuli and desired responses, the network 

architecture, the decision, and how learning rules change the weights between 

representations and decision. Computational models have been developed for hyperacuity 

(Herzog & Fahle 1998, Huang et al. 2012, Poggio et al. 1992, Sotiropoulos et al. 2011, 

Weiss et al. 1993, Zhaoping et al. 2003), orientation discrimination (Petrov et al. 2005, 

Petrov et al. 2006, Teich & Qian 2003), tilt (Jacobs 2009), motion direction discrimination 

(Law & Gold 2009, Vaina et al. 1995), and contrast discrimination (Adini et al. 2004) tasks.

For example, the early hyper basis function (HBF) network model learned a hyperacuity task 

in which observers judged lines as offset either top-line left or right (Poggio et al. 1992). Its 

feed forward architecture included a stimulus input layer, a representation layer for 

localization, and a single-unit output layer (left/right). Modeling studies (Weiss et al. 1993) 

identified self-supervised learning rules and added internal noise to match predictions to 
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behavioral data. A related model learned global motion direction judgments from input 

motion vectors for individual dot motions using integrated motion direction templates in an 

intermediate layer to generate left/right decisions (Vaina et al. 1995). In all these 

computational models, learning alters the decoding of the activity in a stable stimulus input 

layer, possibly through an intermediate representation layer, to the output decision layer. 

They use unsupervised, or self-supervised, learning rules to account for learning without 

feedback or reward, and may incorporate supervision to account for feedback (Herzog & 

Fahle 1999). The input representations are highly simplified. And in general they were tested 

against simple empirical data such as a learning curve or pattern of specificity (Weiss et al. 

1993).

The augmented Hebbian reweighting model (AHRM) (Petrov et al. 2005, Petrov et al. 2006) 

is a full model of perceptual learning. It uses a sensory representation module that mimics 

the spatial-frequency and orientation tuned responses of early visual cortices like V1, 

including nonlinearities (Carandini et al. 1997) and internal noise, compatible with observer 

models of signal and noise in perception (see SIGNAL AND NOISE, below). An output or 

decision unit weights evidence from activations in the sensory representation to make a 

decision. Another input corrects for bias in recent responses and a teaching signal augments 

unsupervised Hebbian learning when trial-by-trial feedback is available (see figure 3). 

Learning occurs through reweighting, changing the weights on stimulus evidence to make a 

decision. This yields an improved weight structure for the task after training or practice. 

Parameters specifying the sensory representations, such as orientation or spatial frequency 

bandwidths, are set a priori from physiology; nonlinearities are estimated once and then held 

constant. Internal noise and learning rate parameters are varied to fit model simulated data to 

the behavioral data. The model takes stimulus images as inputs to a decision, and learns on 

each trial, reprising experiments exactly.

The AHRM accounts for many perceptual learning phenomena, including improvements in 

contrast threshold in multiple levels of external noise (visual ‘snow’) with training (Lu et al. 

2010), more efficient pretraining with low than high external noise conditions (Lu et al. 

2010), the importance of feedback in learning tasks with low but not high initial 

performance (Liu et al. 2010), how to improve learning by including high-accuracy training 

trails (Liu et al. 2012, Petrov et al. 2005), and how false feedback induces response biases 

(Liu et al. 2014).

Other similar models use representation modules coded for orientation (Sotiropoulos et al. 

2011), location (Huang et al. 2012) or motion (Lu et al. 2010). The original AHRM spatial-

frequency/orientation module combined with an adaptive precision pooling decision module 

was used for perceptual learning in tilt judgments (Jacobs 2009). A model developed for 

monkey behavior learns by reweighting evidence from a motion representation using a 

reinforcement-learning rule (Law & Gold 2009).

Modeling Specificity and Transfer

Reweighting models have also been used to explain specificity and transfer in perceptual 

learning. They predict transfer if the learned weight structure of the training task and the 

(semi-) optimal weight structure for the transfer task are compatible, and predict specificity 
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otherwise (Dosher & Lu 2009). A few studies have modeled transfer within a single retinal 

location: The HBF model predicted performance for stimuli differing in line spacing or 

length (Weiss et al. 1993). A related orientation basis function model simulated specificity 

and transfer for different hyperacuity tasks (Sotiropoulos et al. 2011). Specificity and 

transfer to other stimuli at the same location was predicted by the compatibility of weight 

structures for the AHRM (Petrov et al. 2005).

Specificity to retinal location implies dependence on local retinotopic neural representations 

and raises the question—how can learning be transferred to a separate set of local neural 

representations? The integrated reweighting theory (IRT) uses a hierarchical multi-location 

architecture consisting of location-specific representations and a location-invariant 

representation (Dosher et al. 2013) to predict transfer over retinal locations. It (figure 4) 

explains why the same stimuli and task in a new location shows partial transfer, while the 

same task in the same location with new stimuli shows nearly full specificity. Learned 

weights for the location-invariant representations are valid when the same stimuli and task 

occur in other retinal locations. Training in the same location is specific if the stimuli or task 

are switched because the optimal weight structures compete. This framework also accounts 

for why different tasks can be sometimes be trained in different locations (Liu et al. 2014) 

and how related tasks in different locations interact. A modified version of the IRT also 

predicts transfer of training to new locations in a double-training experiment that practiced 

two different tasks in two locations (Talluri et al. 2015), a transfer phenomenon attributed by 

some to higher order inference (Xiao et al. 2008).

Future Model Development

Current computational models are necessarily simplified, yet have the potential to be 

elaborated in many ways. Different stimuli and tasks may require new stimulus 

representation modules, new forms of classification or decision, and/or more complex 

system architectures. Top-down attention could amplify activity in sensory representations; 

reward may require modified learning rules; and feedback between or reweighting within 

representation modules may be required to account for new phenomena. The impact of 

correlated and uncorrelated noise in population networks (Bejjanki et al. 2011) could be 

modeled. As the physiological substrates for perception and visual perceptual learning in 

different tasks are discovered, computational models may increasingly mimic these 

processes. Still, existing reweighting models, despite their spare and simplified form, have 

provided a strong basis for systematizing and understanding many phenomena in visual 

perceptual learning and visual expertise

SIGNAL AND NOISE

Performance Improvements and Improved Signal and Noise

The human brain devotes specialized brain regions to the processing of visual stimuli and 

visual decisions (Ungerleider et al. 1998). Analysis by visual cortex is complex, likened to 

powerful deep learning network models (Yamins et al. 2014). Visual functions and behavior 

are not, however, perfect. Accurate performance is limited by the signal to noise ratio in the 
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evidence leading to behavior (Lu & Dosher 2008). Perceptual learning, then, improves the 

signal to noise ratio in perceptual processing (Dosher & Lu 1998).

Each act of visual detection, discrimination, or identification is limited by the ability to 

extract the appropriate signal and by intrinsic noise in the system and extrinsic noise in the 

stimuli. Internal or intrinsic noise is the stochastic variability in the neural responses to a 

stimulus arising at every stage of processing, while extrinsic noise is variability in the 

stimuli. The signal to noise ratio determines the accuracy and response time of an 

identification or choice behavior. In neural encoding, a driving stimulus leads to a noisy 

pattern of firing across populations of neurons that must be decoded. Limiting noise should 

be an explicit factor in models, whether they are signal detection models of behavior (Green 

& Swets 1966), computational models of perceptual learning (Dosher et al. 2013), or 

descriptive or computational models of neural responses (Goris et al. 2014). When 

perceptual learning improves the signal to noise ratio, this could occur through 

improvements in the extraction of the signal or reduction of noise, or both. Behavioral and 

neural methods can be used to analyze changes in signal and noise, and can help to identify 

the mechanisms of visual perceptual learning and can guide the development of models of 

perceptual learning. These mechanisms are considered next.

Mechanisms: Psychophysics

Discovering how perceptual learning changes the signal and noise processing in the 

perceptual system from behavioral evidence requires a model of the observer and systematic 

psychophysical experiments. Observer models inspired by properties of the visual system 

systematize the behavior of observers in different testing circumstances by characterizing 

signal and noise processing in perception. These models initially characterized the observer 

as a single-channel linear system with an additive noise source (linear amplifier model) 

(Pelli 1981); they have since been successively elaborated to account for data and now 

include multiple noise sources, nonlinearity and gain control (perceptual template model (Lu 

& Dosher 2008), or incorporate multiple sensory channels each limited by noise (Dosher & 

Lu 1998, Hou et al. 2014). These observer models of the sensory representations and 

decision can be used to characterize changes due to perceptual learning, and could be further 

elaborated to include learning rules and other factors.

External noise paradigms can be used to specify observer models, sometimes augmented 

with double-pass paradigms (Lu & Dosher 1998, Saarinen & Levi 1995). To estimate 

nonlinearities and other parameters that predict the observer’s performance in all signal and 

external noise conditions, detection or discrimination thresholds are measured at three or 

more performance levels, e.g., 65%, 75% and 85% correct in several conditions with 

different levels of external noise added to the signal stimulus (Lu & Dosher 1999). Double 

pass paradigms, repeating the identical stimuli, including the exact target and external noise 

sample, can add constraints on observer models and parameters, especially in the ratio of 

internal to external noise (Burgess & Colborne 1988). These experiments are also used to 

measure how perceptual learning changes signal and noise processes to improve behavioral 

performance by specifying which components of the observer model have been changed 

during learning.
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The perceptual template model (PTM) has been the most widely used observer model in 

perceptual learning (figure 5). The model includes a perceptual template (channel) that 

extracts evidence, nonlinearity in transduction, internal noises, and a decision stage to 

predict behavior. Three mechanisms can improve performance: improved filtering or 

external noise exclusion by tuning the template; enhancement of the target stimulus or 

equivalently reduction in internal additive noise; or change in nonlinearity/reduction in 

internal multiplicative noise (Dosher & Lu 1999). Each learning mechanisms has a signature 

pattern of changes in empirical thresholds at different levels of external noise and accuracy 

(see figure 3). Mechanisms are inferred by comparing threshold versus external noise 

contrast (TvC) functions early and late in learning and estimating how learning changes the 

model parameters for that task, i.e., template quality, amount of internal noise. The model 

and estimated parameters together can then predict the behavior for many different stimuli, 

and with simple elaborations, for tasks of different precision (Dosher & Lu 1999, Lu & 

Dosher 2008).

Perceptual learning has now been studied using TvC curves in several tasks. In most cases, 

perceptual learning simultaneously improved external noise exclusion—by improving the 

perceptual template—and reduced internal additive noise (Dosher & Lu 1999, Gold et al. 

1999). The magnitudes of the two improvements can be decoupled. Sometimes, pure 

patterns of improved template (Lu & Dosher 2004) or internal additive noise reduction 

(Dosher & Lu 2006) occur. Changes in nonlinearity and/or internal multiplicative noise have 

not been observed. The different mix of mechanisms of perceptual learning revealed by TvC 

experiments is consistent with reweighting models of learning (see below) (Bejjanki et al. 

2011, Dosher & Lu 1998, Lu et al. 2010).

Mechanisms: Physiology

Physiological substrates and mechanisms of perceptual learning are investigated by 

measuring the amplitude, tuning curves, absolute variability, variability relative to the mean 

response (fano-factor), and topography of neural response in visual areas (i.e., V1, V4, MT, 

LIP, etc.) before and after perceptual training—or by fMRI brain imaging. Neural responses 

can be measured either while actively performing the task, which engages task-induced 

strategy and attention and top-down modification of neural responses, or under various 

passive fixation controls or anesthesia (in monkey), which reflect more persistent plasticity 

of neural responses (Schoups et al. 2001). Population neural response models can estimate 

the magnitude of behavioral improvement that could be accounted for by changes in neural 

responses in a given brain area (Ghose et al. 2002, Raiguel et al. 2006, Schoups et al. 2001, 

Yang & Maunsell 2004).

The substrates of perceptual learning are more complex than the early claims of plasticity in 

V1 (Karni & Sagi 1991). Under passive recording, subtle changes in V1 tuning curves can 

occur in neurons tuned near a trained orientation (Schoups et al. 2001), while others (Ghose 

et al. 2002) find essentially no change in V1 or V2 neurons. Even when changes in the slope 

of the tuning functions in V1 or V2 occur, they are estimated to account for perhaps only 

1/10th of the observed behavioral threshold reduction. Perceptual learning increased the 

response and narrowed the tuning in a small subset of V4 neurons tuned near the trained 
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orientations under passive viewing (Raiguel et al. 2006, Yang & Maunsell 2004), but these 

changes still fell an order of magnitude short of accounting for behavioral improvements. In 

contrast, changes in V4 neuron responses measured while actively performing the task, 

decoded by separate optimal Bayes classifiers before and after training, came closer to 

explaining behavior (Adab & Vogels 2011). And, improved V1 responses during active 

contour detection following training reflect feedback from V4 and higher areas later in the 

response interval (Gilbert & Li 2012). Correspondingly, learning altered responses in LIP, 

but not in earlier MT during a dot-motion direction task (Law & Gold 2008). In other tasks, 

higher-order areas receiving visual inputs are part of the learning circuits observed during 

object identification, including IT (Kobatake et al. 1998, Logothetis et al. 1995), lateral PFC 

(Rainer & Miller 2000), and decision circuitry (Kourtzi 2010). In addition, perceptual 

learning can change the brain areas used in a task: Training fine depth judgments inoculated 

coarse depth judgments from MT deactivation by injection (Chowdhury & DeAngelis 2008). 

Because the brain is an interconnected network, changes observed in one cortical area need 

not be the only or even the primary locus of learned plasticity (Wandell & Smirnakis 2009).

Finally, training may affect other neural properties, such as reducing the correlations 

between neurons to yield more independence across neural responses. Such a reduction was 

found between pairs of dorsal MST neurons in a fine motion task (Gu et al. 2011). One 

computational study (Bejjanki et al. 2011) confirmed that reweighting neuronal responses 

from one brain area to the next (e.g., LGN to V1) could account for the TvC improvements 

observed in Dosher and Lu (1998). Reweighting reduced correlations between neurons at the 

later area, while only slightly changing the amplitude or tuning of individual neurons. This 

study suggests that the amplitude and tuning of individual neurons is less informative than 

the pattern and correlation of neuronal population responses measured in simultaneous 

recordings. It also found that TvC functions estimated from neuronal responses could be a 

robust measure of the relevant population properties.

Broader networks engaged during perceptual learning have been evaluated using fMRI in 

humans (Furmanski et al. 2004, Jehee et al. 2012, Kahnt et al. 2011, Kourtzi 2010, Kuai et 

al. 2013, Schwartz et al. 2002, Shibata et al. 2012, Zhang & Kourtzi 2010). Training-related 

changes in primary sensory areas sometimes occur; but there are almost always also changes 

in many other areas. Multi-voxel pattern classifiers tuned to decode the voxel activity before 

and after perceptual learning is one method for connecting brain activity to behavior. While 

a number of design factors and the role of top-down attention and decision complicate 

interpretation in the current literature, imaging could ultimately identify the brain networks, 

from sensory areas to decision, attention, and expectation, involved in learning and 

performing different perceptual tasks.

OPTIMIZATION

Investigations of perceptual learning have contributed to scientific theories of the perceptual 

system and its plasticity. Another goal is to maximize the magnitude of perceptual learning 

and transfer through development of optimized training protocols. A training protocol 

includes selection of the training stimuli, the task(s) used to train, the number and sequence 

of practice trials, the use of feedback, or reward, etc. Identifying the best training methods is 
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a problem that can be formulated in terms of mathematical optimization (Lu et al. 2016). 

First, an objective function must specify the goals and grade the outcome; this might include 

several factors such as the magnitude and efficiency of learning and the desired transfer 

characteristics, and their relative importance. Next, a generative model predicts the 

outcome(s) for all protocols within the domain of possible training manipulations. A search 

algorithm identifies the one or several candidate protocols to maximize the objective 

function. Optimizing training by intuition and experimentation is prohibitive. A robust 

computational model can be uniquely valuable in optimization—replacing expensive and 

time consuming empirical exploration with simulation. Empirical testing may still be 

required to estimate parameters of the generative model and potentially to improve the 

model itself. And experimental tests must ultimately validate the best training protocol.

SUMMARY, CHALLENGES, AND FUTURE DIRECTIONS

Since the earliest research in psychology and neuroscience, perceptual learning has been 

recognized for its important role in perception and performance. Since its resurgence in the 

late 1980s when it was recognized as a key demonstration of visual plasticity in adults, it has 

become an important topic of study in the visual sciences. We extract four principles of 

perceptual learning from this extensive literature:

• Perceptual learning occurs within a complex set of brain networks and may occur 

at multiple levels.

• Learned plasticity must be balanced by stability in order to optimize the behavior 

over many tasks and environmental contexts.

• Reweighting evidence from one level to another of representation or within 

levels is a major and perhaps the major form of perceptual learning.

• Perceptual learning improves the signal to noise ratio limiting human 

performance either by enhancing signal or reducing noise.

There are many exciting areas for future research. One is to characterize the interaction 

between perceptual learning and lifespan development. Perceptual learning may have 

powerful influences on visual function during early childhood (Atkinson et al. 1977), and 

could aid in maintaining function during normal aging (DeLoss et al. 2015). Both domains 

are only beginning to be mined, perhaps due to ethical considerations and the potential for 

unintended consequences, especially in early development.

The development of more sophisticated methods of measuring learning and transfer is 

another area for future research. The act of measuring visual functions can change the state 

of the system, analogous to the observer effect in physics. For example, transfer/specificity 

measures often compare post-training performance to pre-training baselines, yet measuring 

pre-training baselines causes learning that must be estimated. The magnitude and speed of 

learned improvements depend upon the mixture of stimuli used while measuring snapshots 

of performance. Developing better performance measures and understanding the pros and 

cons of different procedures and how to model them would benefit future applications.
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Computational models have already played a powerful role in systematizing a broad range of 

empirical phenomena and generated new and testable predictions that can guide future basic 

and translational research in perceptual learning. The convergence between models at the 

level of learning architectures and learning networks with brain architecture and with 

cellular physiology could extend our understanding of perception and performance and 

underlying brain substrates. Multi-modal models that relate computations to behavior on one 

hand, and measures of brain activity on the other may reveal new principles of learning and 

plasticity and an improved ability to interpret brain function. Models can also play a key role 

in optimizing training protocols.

Research in perceptual learning has an increasingly recognized potential for important 

translation into systems for training expertise or improving remediation and recovery. One of 

the key challenges is how to improve generalizability of training that otherwise may show 

undesirable specificity. One recent direction goes beyond simplified laboratory tasks to more 

complex and realistic tasks and training systems. There have been widespread claims that 

video games and other digital training apps can enhance learning and generalization, and 

improve broad visual functions (Green & Bavelier 2015). The roles of reward, pacing, and 

task variation in these games and apps all deserve investigation that could improve not just 

translation but reveal new insights in basic science of vision. Finally, as a practical matter, 

translation to the clinical, enrichment, or entertainment marketplaces requires a more 

sophisticated understanding of the regulatory environment, a refined approach to 

optimization, and a move towards testing that achieves the standards of clinical trials (Lu et 

al. 2016).
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Figure 1. 
Visual perceptual learning improves task performance measured in different ways: 

improving percent correct discrimination (a), contrast thresholds (b), or feature difference 

threshold differences (c) (hypothetical data and generating exponential learning curves). (d) 

Difference thresholds (arcsec) from a line offset hyperacuity task for vertical, horizontal, and 

oblique layouts (data from McKee & Westheimer, 1981), fitted exponential learning curves 

added. Reproduced with permission from B. Dosher and Z.L. Lu.

Dosher and Lu Page 20

Annu Rev Vis Sci. Author manuscript; available in PMC 2019 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Learning in a training task can express varying benefits for a transfer task. (a) Hypothetical 

learning curves showing full specificity, partial specificity, and full transfer; (b) 

corresponding patterns in bar graphs that often summarize these results; and (c) data from an 

experiment training texture detection in different quadrants of the visual field that shows 

significant specificity to retinal location and partial transfer (data from Karni & Sagi, 1999, 

figure 1). (a)-(c) reproduced with permission from B. Dosher and Z.L. Lu. (d) with 

permission from XXXX
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Figure 3. 
A reweighting framework for visual perceptual learning takes images as input, processes 

them in task-relevant representations, makes decisions based on the weighted sum of the 

relevant normalized noisy representation activations, and learns by changing the weights 

through unsupervised and supervised learning algorithms. As in the observer models, 

performance depends on normalization and internal noise. Reproduced with permission from 

B. Dosher and Z.L. Lu.
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Figure 4. 
A framework for predicting transfers across and interactions between learning in multiple 

retinal locations based on a hierarchical architecture of sensory representations including 

relatively location invariant representations. Perceptual learning in one retinal location trains 

weights between both location-specific and location-invariant representations and decision. 

Transfer reflects compatibility of optimized weight structures, while specificity reflects 

independence or incompatibility of optimized weight structures for the training and transfer 

tasks. Reproduced with permission from B. Dosher and Z.L. Lu.
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Figure 5. 
Perceptual template model (PTM) of the observer and signature changes in contrast 

threshold versus external noise contrast (TvC) functions for three mechanisms of perceptual 

learning. The observer model includes (from left to right) a template tuned to the target 

stimulus, point nonlinearity, multiplicative noise, additive noise, and a decision template. 

Three mechanisms of perceptual learning correspond to stimulus enhancement (or internal 

additive noise reduction), external noise exclusion (filtering), and changes in multiplicative 

internal noise or nonlinearity)—or mixtures of these. Modified from Dosher & Lu (1999), 

figure 3). Reproduced with permission from B. Dosher and Z.L. Lu.
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