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Abstract

The advent of high-throughput technologies and the concurrent advances in information sciences have led to an explosion
in size and complexity of the data sets collected in biological sciences. The biggest challenge today is to assimilate this
wealth of information into a conceptual framework that will help us decipher biological functions. A large and complex
collection of data, usually called a data cloud, naturally embeds multi-scale characteristics and features, generically termed
geometry. Understanding this geometry is the foundation for extracting knowledge from data. We have developed a new
methodology, called data cloud geometry-tree (DCG-tree), to resolve this challenge. This new procedure has two main
features that are keys to its success. Firstly, it derives from the empirical similarity measurements a hierarchy of clustering
configurations that captures the geometric structure of the data. This hierarchy is then transformed into an ultrametric
space, which is then represented via an ultrametric tree or a Parisi matrix. Secondly, it has a built-in mechanism for self-
correcting clustering membership across different tree levels. We have compared the trees generated with this new
algorithm to equivalent trees derived with the standard Hierarchical Clustering method on simulated as well as real data
clouds from fMRI brain connectivity studies, cancer genomics, giraffe social networks, and Lewis Carroll’s Doublets network.
In each of these cases, we have shown that the DCG trees are more robust and less sensitive to measurement errors, and
that they provide a better quantification of the multi-scale geometric structures of the data. As such, DCG-tree is an effective
tool for analyzing complex biological data sets.
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Introduction

Advances in Information Technology have led to an exponen-

tial increase in the amount of data that scientists collect, to the

extent that they are now in dire need of new methodologies to

summarize and visualize the corresponding large datasets

efficiently and rapidly. This is partly the reason that the studies

of complex networks, and in particular the identification of

community structures within these networks have become a

primary focus of research in many fields [1,2]. Interestingly, this

surge in network research in social, biological, physical and

mathematical sciences and numerous other fields has also brought

a significant surge in the popularity of the hierarchical clustering

(HC) algorithm, which was originally proposed more than half a

century ago [3–5]. The main reasons for the popularity of HC

methods are that they are seemingly easy to set up, their

computing requirements are usually small, and they provide visual

information on data at low costs. As it has become common

practice now, a HC tree is constructed on the basis of a choice of a

empirical relational measure, either similarity or distance, among

object nodes constituting a data cloud of interest, and an ad hoc

choice of module, such as complete, single linkage or many others,

for prescribing ‘‘distances’’ among sets of nodes [5]. This tree is

then conveniently perceived as being able to reveal multi-scale

structural information on the data cloud, such as which nodes and

which sets of nodes are close to each other. Such a convenient

visual apparatus is seemingly bestowed with a ‘‘local-to-global’’

capability. It is not unusual for some scientists to report achieving

the ideal ultimate goal of partitioning object nodes into optimally

homogeneous clusters in a multi-scale fashion with the HC

technique.

Are all these achievements assigned to the HC algorithm ‘‘too

good to be true’’? After being widely used in many scientific areas,

indeed confusing questions and doubts in the validity of HC

methods have been raised [6,7]. Despite many such confusions

and doubts so far there has been neither satisfactory justifications

nor sustainable repudiations for the HC algorithm reported in

literature. Nowadays a practitioner is more likely led to place

doubts about an incoherent hierarchical clustering tree on his/her

own choice of empirical relational measure for the data than on

the HC algorithm itself.

Let us start with a review of Hierarchical clustering as it is the

method of choice for partitioning data into subsets that share

similarities. Starting with an empirical distance or similarity
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measure d , HC proceeds by first merging the two most similar

data points. All subsequent steps require a distance between

groups of data points. This was solved elegantly by Lance and

Williams [8,9], who proposed a recurrence formula to compute

the updated inter cluster distance values that result from the

mergers which occur at each level of the procedure. The

recurrence formula gives the distance D(k,ij) between a data

point k and a cluster (i,j) as a function of the empirical distances

d(i,j), d(i,k) and d(j,k):

D(k,ij)~aid(i,k)zajd(j,k)zbd(i,j)zlDd(i,k){d(j,k)D

where a, b, and c are parameters which define the linkage process.

An interesting property of this recurrence relation is that it

usually induces a monotonic hierarchy (i.e. the values in the

distance matrix increase monotonically during the agglomerative

hierarchical clustering), with the exception of the centroid and

median linkage methods [10]. Johnson [5] had shown that an

algorithm that produces a monotonic hierarchy also induces a

distance metric known as the ultrametric, i.e. that satisfies:

d(i,j)ƒmaxfd(i,k),d(k,j)g

for all triplets (i,j,k), where i, j, and k refer to any subsets of the

data points. This inequality is clearly stronger that the triangular

inequality of a general metric; it has been argued that it should be

preserved to capture the true structure of the data set [11].

While most hierarchical clustering algorithms are designed to

preserve an ultrametric, they are unfortunately very sensitive to

the quality of the empirical distance measure used to compare

individual data points. If this empirical distance satisfies the

ultrametric inequality, also called strong triangular inequality, HC

is expected to perform well. However, it is doubtful that real life

data set and distance measure satisfy the ultrametric property

exactly. Even if a margin of errors is allowed for each comparison,

it was shown that ultrametric hierarchical clustering techniques

are not robust with respect to the actual underlying cluster

structure in the presence of noise in the empirical distance measure

[12].

Noise however is not the only inherent problem of hierarchical

clustering. The clustering structure obtained with HC is usually

very complex with very many levels. Different choices of the

ultrametric, such as complete linkage (i.e. pairwise maximum) or

single linkage (i.e. pairwise minimum) often result in different

hierarchies. As such, the ultrametric embedded in HC poorly

reflects the geometry of the data cloud. Note that this ultrametric is

imposed by the method, and not derived from the data. The

DCG-tree procedure described in this paper is designed to

alleviate this difficulty by letting the empirical distance measure

and the data define the ultrametric.

The main argument we make in this paper is that a good

partitioning of data into clusters can only be achieved if we have a

good understanding of the data geometry and topology [13].

Many clustering techniques have been developed to reach this

understanding. Most of those techniques can be formulated as a

discrete optimization problem, in which case they involve two

distinct steps, namely (i) the definition of some suitable cost

function, and (ii), the computation of a partitioning of the data

which minimizes this cost function. The number of potentially

suitable cost function for clustering is arbitrarily large [14]; in fact,

clustering techniques can be classified based on the similarity of

their cost functions [15]. Once the cost function is defined, in

principle any optimization technique can be used to solve for the

optimal partitioning of the data. In practice however, exhaustive

approaches are deemed intractable because of the dimensionally of

the problems at hand. Many heuristic techniques have therefore

been developed (for review, see Puzicha, Hofmann and Buhmann

[16]. Among those, it is worth mentioning simulated annealing

techniques based on Gibbs sampling [17], deterministic annealing

[18,19], and mean field annealing [20]. These three types of

method have in common that they rely on a ‘‘temperature’’

parameter. This parameter can be optimized during the simula-

tion to improve convergence: in the simulated annealing protocol

for example, the temperature is gradually lowered, mimicking

annealing process in metallurgy. It also provides the algorithm

with the possibility to monitor phase transitions (i.e. cluster splits)

in order to obtain a meaningful tree topology (see for example

Rose [21]).

Transforming the clustering problem into an optimization

problem is however not a necessity. We have recently proposed an

alternate approach that is inspired from statistical physics, in par

with the deterministic annealing and mean field annealing

methods mentioned above, that makes use of a temperature

parameter to monitor transitions, but that does not explicitly

consider a cost function [22]. The main idea of this method is to

embed the data geometry into a ferromagnetic potential

landscape; its implementation is then based on two key observa-

tions. Firstly, it is observed that the empirical distance measure d
imposes a weighted graph onto the collection of data points

(renamed ‘‘nodes’’ in this context). By equating the weight on an

edge with a ferromagnetic potential, this weighted graph is seen as

equivalent to a potential landscape, typically characterized by

many wells with various depths. Secondly, it is possible to explore

this landscape and therefore define its geometry by using the

popular dynamic Monte Carlo approach. A random walk as a

function of ‘‘time’’ will identify the many wells of the potential, as

well as the probability of jumping from one well to another. An

additional advantage of using dynamic Monte Carlo is that it

provides a different dimension to explore the geometry of the

landscape, characterized with its temperature parameter T . At a

high temperature T , a Markovian walk on the energy landscape

will transition from any node to most of the other nodes with more

or less equal probabilities. At a low temperature however, the

Markov chain tends to get trapped in potential wells for various

periods of time depending on the sizes of the well before it can

escape. These two observations led to the following two-device

algorithm, named Data Cloud Geometry or DCG, for deriving the

underlying multi-scale geometry of a data cloud [22]. At a given

temperature T , a regulated random walk on the equivalent

ferromagnetic landscape as a function of ‘‘time’’ detects informa-

tion about the number of clusters and the corresponding cluster

membership of individual data points. By repeating this procedure

at different temperature, the algorithm derives the geometric

hierarchy of the data cloud. DCG is similar in spirit to the

granular model, which achieve clustering by a sequence of phase

transitions on a paramagnetic potential landscape [23,24]. Its

implementation however is simpler and more effective computa-

tionally. It has been applied to analyze fMRI data [25], as well as

to study binary networks [26].

The DCG procedure originally proposed by Fushing and

McAssey [22] is designed to extract unknown geometric informa-

tion from a data cloud. In this paper we extend this concept and

propose to summarize the information collected by DCG in the

form of an ultrametric topological space, which is equivalent to a

hierarchical tree, the DCG-tree that can also be represented with a

Parisi matrix. We validate this approach on simulated and real

data for different fields of applications with the corresponding HC-

Robust Clustering of Biological Data Points
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trees. We use these results to illustrate some of the key features of

the method, including its robustness with respect to measurement

errors, its ability to work on non convex data, and its self-

correcting mechanisms. We discuss these results in comparison

with similar results obtained with hierarchical clustering. We

conclude with a discussion on further developments.

Methods

Overview of the DCG-tree procedure
Starting from a set of data points and an empirical measure d

that defines the similarity between these data points, our overall

goal is to derive a multi-scale partitioning of these data that

illustrates their topology. To address this challenge, we build upon

our previous method, Data Cloud Geometry, which gather cluster

membership information at different scales, and propose a new

algorithmic method that construct an ultrametric topological space

from this information, and represent it using either a hierarchical

tree or a Parisi matrix. The complete procedure, which we refer to

as DCG-tree, includes four main steps, namely:

1) Generate the potential landscape that represents the graph

on the data points weighted with the empirical similarity

measure,

2) Explore the potential landscape at different temperatures

using a Dynamic Monte Carlo procedure to derive its

geometry,

3) Build the ultrametric space from the information collected

from these multiple Markovian walks,

4) Visualize this ultrametric space using a hierarchical tree or a

Parisi matrix.

These five steps are described below. We note that the first two

steps have been presented in details in the paper by Hsieh and

McAssey [22]; they are outlined here briefly.

Step 1: Building a potential landscape that mimics the
geometry of a data cloud

Consider a n|n matrix W~½wij �, an observed empirical

relational matrix of normalized similarity measures on a dataset

with n data points, or nodes. W could be a matrix of an absolute

value of correlation or simply a transformed distance matrix ½dij �
through the transformation wij~e{dij with dij being the corre-

sponding empirical distance between the nodes i and j. This

matrix W can be represented as a weighted graph fN,eg with n

nodes N~fN1,N2,:::,Nng and all possible
n(n{1)

2
edges

E~feij Di,j~1,2,::::,ng having corresponding weight wij .

Given a temperature T , a temperature-regulated potential field

ST~W 1=T is endorsed on fN,eg. This potential field places

potential w
1=T
ij ~e{dij=T on link eij , instead of on node i or j. This

temperature-regulated potential field can be characterized by the

following ratio centered at node i: for any j=j’,

w
1=T
ij

w
1=T
ij’

~fwij

wij’
g1=T

~e{
dij{dij’

T :

When dij{dij’v0, then a very small value of T would create a

potential well separating links eij and eij’. That is, if dijv min
j’=j

dij’,

then link eij becomes a potential well. This dyad (i,j) is termed a

two-node motif. Similarly motifs of multiple nodes are formed via

this idea of potential well.

The definition of the ratio above points to the underlying

mechanism that ensures the robustness of DCG-tree. Specifically,

when T is relatively not too small, the differences dij{dij’s become

less sensitive to T , even in the presence of perturbations (or noise).

Hence the configuration of the potential wells pertaining to T is

typically steady. As T is being raised to a slightly higher value, all

potential wells in ST become shallower with a base containing

more links, that is, by coupling several motifs into a small cluster.

This is the mechanistic dynamics in which a configuration of small

clusters is revealed on ST .

As T becomes larger, there are fewer potential wells being

formed in ST via merging several small clusters. Hence the

merging dynamics occurring along the evolution of clustering

configurations defines a natural distance among clusters. This

indicates that the evolution of potential field fSTg as a function of

temperature indeed contains the multi-scale geometric informa-

tion embedded within W .

Step 2: A re-engineered MCMC method to explore the
geometry of the potential landscape

We need to locate on a potential field ST all potential wells and

identify their bases’ constituents links. This is not an easy task as

there hardly exists any visual geometric coordinates for links, and

nodes have possibly high dimensional representations. To solve

this task, we make use of the characteristics of exceedingly difficult

phenomenons when sampling from the Boltzmann distribution via

Markov Chain Monte Carlo (MCMC) or dynamic Monte Carlo

algorithm at low temperature (see also the Curie-Weiss model

[27]). We re-engineer the dynamics of MCMC in order to

effectively explore the entire potential field ST .

A Markovian transition probability matrix is calculated as

MT~D{1
T ST where the degree matrix D is defined as the diago-

nal matrix of row-sums DT~diagf
PN

j~1

w
1=T
1j , � � �

PN

j~1

w
1=T
ij , � � �g.

Theoretically an equilibrium trajectory of such a MCMC

algorithm based on MT would converge to its statio-

nary probability pT~(p1(T),p2(T),::::,pn(T)) on N with

pi(T)~
Pn

j~1

w
1=T
ij =

Pn

i~1

Pn

j~1

w
1=T
ij and i~1,:::,n. The convergence

rate of this MCMC trajectory to pT is critically depending on the

landscape of the potential field ST . For very large T , ST is relatively

flat with nearly no or only very shallow potential wells present. In

this situation the convergence is very fast and there is only one

cluster for all n nodes. In contrast, when T is small, potential wells

become deeper and the number of wells becomes large on ST .

Hence a MCMC trajectory would likely be trapped within a well for

a long time before escaping from it. In this case the convergence rate

would be very slow and the mixing time could be extremely large for

a MCMC trajectory to cover the whole potential field ST .

We note however that we are primarily interested in the

composition of potential wells and their base information, and not

in pT . We re-engineer the MCMC algorithm such that it can

effectively and exhaustively explore each of every potential well

present on ST and at the same time extract the base information as

motifs or cluster memberships. Here we very briefly review the two

key algorithmic devices used in the re-engineered MCMC

algorithm, which then called a regulated random walk.

One key algorithmic device is to remove a node after it has been

visited for a fixed number of times and modify the transition

matrix for the remaining nodes accordingly. Setting the threshold

for the number of permitted visits to a given node to be large will

Robust Clustering of Biological Data Points
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result in the Markov chain exploring thoroughly the potential well

this node belongs to. But a long visiting time period on every single

potential well will add up to a large total computing cost for the

whole exploration of the potential landscape. Here it is also

understood that one single MCMC exploration does not provide

enough creditable geometric information about the landscape at

one temperature. Many MCMC explorations on the same

landscape at various temperatures have to be performed in order

to accumulate and then form reasonably accurate geometric

pattern information. Therefore we need to choose the visiting

threshold in a way of balancing between a given finite computing

budget and a total amount of information content.

The second device is to record the profile of node-removal

recurrence time, i.e. the number of successive MCMC steps

between two node removals, as the regulated random walk

explores ST . This profile gives rise to a spike of recurrence time

whenever a regulated random walk enters a new potential well.

Hence nodes removed between two spikes are very likely sharing

the same base of a potential well. That is, each regulated random

walk trajectory and its profile reveal the membership information

for each potential well, either as motifs or clusters. We record this

membership information as a n|n binary matrix with 1 for two

nodes sharing a potential well, and 0 otherwise. As we perform an

ensemble of such regulated random walks, we generate a collection

of n|n binary potential well sharing matrices, from which we

derive a cluster-sharing probability matrix P(T).
Such a cluster-sharing probability matrix P(T) is indeed a

summarizing statistic for information on the number of potential

wells and their constituting members embedded in the potential

field ST . We compute its eigenvalues and set the number of

significantly non-zero ones to be the number of potential wells, say

O(T). With this information on the number of potential wells,

several popular algorithms, such as K-means or spectral clustering,

become applicable by using 1{Pij(T) as a distance between the

ith and jth nodes to extract the constituting base members

information. This is the procedure we use for finding the motifs or

clusters configuration on a potential field ST given a temperature

T .

It is worth mentioning that, to a large extent, the transitivity of

cluster membership is built in into this concept of cluster-sharing

probability. The cluster-sharing probability matrix becomes a

foundation for our DCG algorithm.

Step 3: Building an ultrametric space from the cluster-
sahring probability matrices

We address the issue of finding which, and how many Ts are

needed for computing multi-scale information patterns on the data

cloud. In fact we hardly have a priori knowledge on how many

focal scales pertain to any given real-world data set or even a

simulated one. Hence we apply the algorithmic computations

discussed in the previous section on a wide range of T values. The

main expectation in our procedure is that at very large T there is

only one cluster that includes all nodes. This cluster is very likely a

conglomerate. That is, the formation of such a single cluster must

come from merging several clusters at a proper temperature

according to the potential field perspective. This expectation is

carried through as we go further down the merging process.

As T varies from a very small value to very large value, as

pointed out in [22], the process of cluster-sharing probability

matrix fP(T)DTw0g typically evolves through a sequence of

phase transitions. We empirically identify such a phase transition

sequence by plotting the number of significantly non-zero

eigenvalues O(T) with respect to T . An illustration of such a

plot is given in Fig. 1A.

Let us denote the sequence of critical temperatures in increasing

order fT1,::::::,TKg with T1 giving rise to a collection of many

small motifs and TK giving rise to one single cluster for all nodes.

The data-driven temperatures in the sequence fT1,T2,::TKg are

taken as heights of energy barriers of a ground state to specify an

ultrametric upon the data cloud through the following algorithm.

[Ultrametric algorithm on data cloud geometry:] Let U~½uij �
denote the n|n matrix of pairwise ultrametric of the n nodes. This

matrix is computed as follows:

A1: For each pair (i,j) of nodes, we extract its cluster-sharing

status sequence as:

Dij~fdij(1),::,dij(k),:,dij(K)g

corresponding to the temperature sequence fT1,T2,::TKg, that is,

if nodes i and j belong to the same motif or cluster of the clustering

configuration at temperature Tk, then dij(k)~1, otherwise

dij(k)~0, with i,j~1,:::,n and k~1,:::K ;

A2: For each (i,j) pair, set uij~minfTk D P
K

k
dij(k)w0g.

In [A2], the increasing sequence of temperatures fT1,T2,::TKg
is taken as the free energy barriers separating the potential wells. It

is a built-in self-correcting mechanism. We note that in [A1], the

cluster-sharing status sequence Dij vector may have more than one

switch from 0-to-1. When this is the case, the ultrametric between

the nodes i and j is taken to be the temperature value at which the

last 0-to-1 switch occurs, which means that previous identifications

are revised for robustness and coherence reasons. This construc-

tion can be easily shown to generate an ultrametric topological

space.

Step 4: Representations of the ultrametric topological
space

The ultrametric space can easily be represented as a clustering

tree with a hierarchy of K levels. This tree is named the DCG-tree.

This DCG-tree structure has an equivalent matrix representa-

tion, which we refer to as the Parisi matrix here. To construct this

n|n matrix, we arrange its row and column according to the

leaves and branches of the DCG-tree. The arrangement is done in

such a way that members of each ultrametric ball (i.e. sets of nodes

that belong to the same group or cluster) are placed one-by-one on

undivided sections along the column and row axes. The

ultrametric balls are arranged according to the branching orders,

that is, their merging ordering, from the bottom layer toward the

top tree layer. Each (i,j) entry of this matrix records the highest

energy barrier separating the i and j nodes, that is, the ultrametric

distance between the two nodes with respect to fT1,T2,::TKg.
With such an arrangement on the rows and columns, the matrix

visually reveals the block-constant structures. We note that the

entry recording can take a variety of measures, such as the

probability of jumping over an ultrametric distance as used in [28].

Results

The construction of an ultrametric based DCG-tree as

described above differs significantly from the classical construction

of a hierarchical clustering (HC) tree. We first illustrate this process

on a simple example, as a proof-of-concept. We then analyze the

differences between DCG-trees and HC trees on two specifically

designed toy problems as well as on three well characterized real

data sets. These analyses are designed to provide some answers to

the question of why HC trees can be confusing, and how our DCG

method can alleviate the corresponding problems.

Robust Clustering of Biological Data Points
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An illustrative example
We illustrate the DCG-tree construction based on a real fMRI

example. The empirical relational measurement is a wavelet

correlation matrix between 106 brain regions of interest (ROIs)

from an autistic participant in a neuroscience study [29].

Specifically this correlation matrix contains the pairwise correla-

tion measurements among the 106 dimensional time series derived

from the fMRI recording. The DCG-tree is seen as a multiscale

summary of extracted functional connectivity patterns among the

106 ROIs. Such brain connectivity patterns can serve as a base for

deriving supervised learning tests for diagnosis of autism spectrum

disorder [25]. Fig. 1A indicates the existence of 6(~K) scales, and

the 6 clustering configurations are revealed from the Parisi matrix

(Fig. 1B) and DCG-tree (Fig. 1C). In the supplemental material,

we provide in Figs. S1A and S1B a comparison between this

DCG-tree and the HC-trees generated from the same fMRI data.

Comparing DCG- and HC-tree constructions on
simulated data sets

The HC-tree always starts from coupling the dyad with the

smallest distance. This starting point is sensitive to any measure-

ment errors, that is, different starting dyad could lead to

significantly different tree structures. Two extremes of such

structures are related to the choice between two different modules,

complete and single linkage, used to conglomerate the clusters as

the HC algorithm proceeds.

Five Dots Example. Let us consider a simple scenario with

five node-centers, A, B, C, D and E, on a straight line with

successive distances 1, 1, 1.99 and 2.01. Upon each center on the

straight line, 20 independent dots drawn from a normal

distribution with standard deviation 0:15 are generated twice

(Fig. 2A and 2B). This five-center configuration is specifically

designed to represent the ‘‘true’’ data structure, with fA,B,Cg as

one single branch (Fig. 2GH).

When the complete module is chosen, there are two equally

likely HC-trees that can be generated, depending on the

fluctuations in the positions of the five nodes. One tree structure

(Fig. 2C) is derived as follows: fA,Bg is the starting cluster dyad,

then cluster C is pushed to couple with cluster D in the second

level. Finally, on the third level, the two cluster dyads fA,Bg and

fC,Dg are coupled. The second HC-tree structure (Fig. 2D) is

derived as follows: fB,Cg is the starting cluster dyad, cluster A is

then coupled with fB,Cg in the second level and finally the cluster

dyad fD,Eg is formed on the third level. The same simulation

scenario, but with single linkage, also results into two main tree

structures (Fig. 2EF). All four HC-tree structures contains artificial

intra- and inter-cluster features compared to the true one. In sharp

contrast, the DCG-tree method correctly identifies the true

structural triad fA,B,Cg as one single branch. This tree is

constructed via the series of critical temperatures

f1=10,1=3,1=2,1g (Fig. 2GH).

Two-moon Data Example. Next we turn to a more

sophisticated scenario of a data cloud that includes 2000 nodes

representing two conformations of the moon, one gibbous and one

crescent, with 1000 nodes per conformation.

The DCG tree constructed from this data shows three major

levels, with 2, 6, and 8 clusters, respectively, and three cluster

configurations (Fig. 3ABC, Fig. S2 A). In parallel, we constructed a

Figure 1. Illustrative DCG-tree based on fMRI data. (A) Plot of the number of clusters vs. temperature, T ; (B) The DCG-Parisi matrix in level
numbers of the DCG-tree hierarchy; (C) the DCG-tree.
doi:10.1371/journal.pone.0056259.g001
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HC tree from the same data and extracted three different levels

from this tree with 2, 6, and 8 clusters (Fig. 3DEF, Fig. S2 B). The

three levels of DCG-clustering configurations reveal that each

cluster exclusively belongs to one of the two moons; in addition, we

clearly observe some self-correction as the algorithm moves from

the 8 cluster level to the 6 cluster level. In sharp contrast, many

clusters extracted by the HC procedure contain both nodes from

the gibbous moon and nodes from the crescent moon. This

erroneous behavior of HC is especially evident at the 2-cluster

level.

Comparing DCG- and HC-tree constructions on real data
sets

We illustrate several contrasting differences between the DCG

and HC trees based on three real data sets. We note that in these

cases, the actual geometry of the data is not known; our discussion

is therefore more qualitative than quantitative.

Functional MRI Data. We extend our analysis of the fMRI

data example discussed previously. We use nine anatomic brain

regions as a reference partitioning on the 106 ROIs [30]. We

construct the DCG-tree and the HC-tree (Fig. 4AB). The DCG-

tree is color encoded at the level of 6 clusters and the same color

coding is mapped onto the HC-tree (Fig. 4B). Clearly, many

clusters from the DCG-tree are being scattered in the HC-tree.

Assuming that the fMRI data actually capture the characteristics

of the anatomic brain regions, we quantified the DCG and HC

clusterings against the reference anatomic partitioning using the

Rand Index. The DCG-clustering is found to match the anatomic

regions well, with a Rand Index of 0:77, compared to 0:67 for the

HC clustering.

Cancer Gene Expression Data. Microarray experiments

represent a big hope for the diagnosis of cancers as they are

expected to enable the measurements of molecular signatures of

cancer cells. The main idea is to derive a correspondence between

expression patterns of genes and cancer type. To reach this goal,

many studies have been published in which gene expression data

have been collected from cell lines of patients with known cancer

pathologies. Clustering is then performed on these data, with the

aim of finding groups of expression patterns that can serve as

signatures of the cancer types. Here we re-analyze one such

dataset from [31]. This study includes data on 203 patients, out of

which 186 were affected by four types of lung cancer, adenocar-

cinoma (AD, 127 patients), squamous cell lung carcinomas (SQ, 21

patients), pulmonary carcinoids (COID, 20 patients), and small cell

lung carcinomas (SCLC, 6 patients), and 17 healthy patients with

normal lungs (NL). The original study included expression data for

3,312 genes [31]; out of those 1543 were selected as being the most

informative [32]. We note that in this data set, the AD patients

represent a very large majority, likely containing many subtypes.

Figure 2. Five Dots Example: HC-tree vs DCG-tree. (A) and (B): Two sets of simulated data under the same setting with five dots as the centers;
(C) and (D): HC-trees with complete linkage for data in (A) and (B), respectively; (E) and (F): HC-trees with single linkage for data in (A) and (B),
respectively; (G) and (H): DCG-trees for data in (A) and (B), respectively.
doi:10.1371/journal.pone.0056259.g002
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This heterogeneity may have adverse effects on the clustering

procedure as it could blur the geometric structure of the data. To

alleviate this problem, we first removed the AD patients, and

constructed DCG- and HC-trees based on the four remaining

categories (Fig. 5A and 5B, respectively). These trees then served

as seeds to generate the full trees with the AD patients included

(Fig. 6A and 6B for the DCG and HC trees, respectively).

Our primary focus is on the three categories NL, COID and

SQ, as the smallest category, SCLC contains only 6 patients. We

note that the DCG procedure is robust, i.e. the distances between

these three categories observed in the small tree and maintained as

we move to the larger tree containing all the data points (figures 5A

and 6A). On the other hand, the HC procedure does not preserve

the geometry of the clusters as more data are included (see

figures 5B and 6B). Finally, we note that the DCG-clustering is

found to match the known partitions of the full cancer data set

well, with a Rand Index of 0:71, compared to 0:60 for the HC

clustering.

Animal behavior: Giraffe social networks. Third, we

analyze two network datasets showing the spatial patterns and

social relationships observed in a population of female giraffe in Ol

Pejeta Conservancy, Kenya. The biological question is: to what

degree do social and spatial network structures correspond with

each other? To address this issue, two DCG-trees are indepen-

dently constructed for the social and spatial networks. The

corresponding heatmaps reveal consistent patterns across social

and spatial clustering configurations (Fig. S3 A, C). The spatial

and social DCG-trees show not only rather similar hierarchical

structures, but also high degrees of correspondence in their

clustering configurations, which is visualized via color coding

denoting individuals grouped in the same cluster of the social

DGC-tree (Fig. 7 A). In contrast, the two HC-trees constructed for

the same networks manifest rather different geometries: the spatial

one reveals many isolated clustering branches that are inconsistent

with the heatmap representation (Fig. S3 D), while the social one

shows a structure that is drastically incoherent with the social

DCG-tree color coding (Fig. 7 B, Fig. S3 B). See more structural

comparisons in the Fig. S4.

The three largest clusters identified in the social DCG-tree

correspond to three communities of female giraffes, which occupy

somewhat geographically distinct areas of the Conservancy. The

eastern red community is spatially and socially separated from the

other two by a river. The DCG-tree captures this motif in that the

light blue and green communities are closer to each other than to

Figure 3. Comparing HC-tree and DCG-tree. (A–C) DCG tree cuts of the two moon data into 2, 6 and 8 clusters, respectively. (D–F) HC tree cuts
of the same two moon data into 2, 6 and 8 clusters respectively.
doi:10.1371/journal.pone.0056259.g003

Figure 4. Clustering trees for the 106 ROIs correlation matrix based on fMRI data [30]. (A) DCG-tree with coloring based on six-cluster
cutoff; (B) HC-tree, colored according to the six clusters of the DCG-tree.
doi:10.1371/journal.pone.0056259.g004
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the eastern community, both when the analysis was performed

with the social data and the spatial data. However, the HC-tree

fails to capture this structural aspect of the data. Further, the social

HC-tree groups sub-clusters within the eastern community are as

equally distant from each other as from clusters across the river.

With both the social and spatial data, the HC-tree also fails to

group sub-clusters within the green community as part of the same

larger cluster.

Linguistics: Lewis Carroll’s Doublets network. There is

a popular English word game called ‘‘Doublets’’, which was first

introduced by the English author Charles Lutwidge Dodgson

(under the pseudonym Lewis Carroll), the author of ‘‘Alice’s

Adventures in Wonderland (1865)’’. A network of Doublets can be

constructed based on this game. The nodes of this network are set

to all English words and a link is created between two nodes if the

corresponding words share the same letters, except one (for

example, DIVE<DIRE<WIRE<WIPE). Obviously, two words

are connected if they have the same length. The whole network is

therefore divided into non-connected sub-networks. There are

three major connected sub-networks for 7-letter words. Here we

consider the smallest one which contains 393 nodes. In order to

apply the two clustering algorithms considered here on this sub-

network of words, we need a proper measurement distance for all

pairs of node. There are many ways to define such a distance

measure, as illustrated in one of our previous studies [26]. A very

natural measure between two nodes i and j is to consider the sum

of edge betweenness along a shortest path linking i and j, where

the ‘‘betweenness’’ of an edge ekl is defined as the number of

shortest paths between pairs of nodes that run along ekl . With this

definition of a distance, the 7-letter sub-network considered here is

transformed into a complete weighted graph.

The DCG-tree of the 7-letter Doublets network, as shown in

Fig. 8A, consists of two layers of community structures: one 8-

community (with 2 outliers) at a lower temperature and one 3-

community at a higher temperature. The composition of these

communities usually reveals distinct English word structures with

respect to linguistic constraints of phonological rules or even

redundancy. It is clear from the computed DCG-tree that its

bottom layer contains a dominant community. This community

acts like a large magnetic hub that absorbs nearby small

communities successively as temperature increases. In contrast,

HC clustering does not reveal the presence of this large

community, as shown in Fig. 8B.

Discussion

We have developed a new algorithm that constructs an

ultrametric space on a data cloud from the knowledge of an

empirical distance measure on the data, and derive an ultrametric

tree on this space. This algorithm is based on our previous work on

data cloud geometry [22]. Briefly, this algorithm proceeds as

follows. The empirical relational measure is transformed into a

temperature-regulated potential defined on the links between the

nodes. Based on this potential, we extract at very low temperature

a collection of motifs, which become building blocks for growing

clusters via data-driven merging dynamics as temperature is being

raised slowly. A series of phase transitions on this merging

dynamics is identified at a series of critical temperatures. These

steps are the basis of the DCG procedure described in our previous

work [22]. These temperatures are then taken as energy barrier

heights to define an ultrametric topology onto the data cloud as it

is a system on a ground state. This topology provides measurable

and natural distances between clusters. These are the novelties

introduced in this paper.

From an information theoretical perspective, the goal of

partitioning object nodes into optimally homogeneous clusters is

closely related to Kolmogorov’s algorithmic sufficiency [33]. On

each level of the tree hierarchy, the presence of a cluster indicates

that its members uniformly share a typicality. It is known that a

perfect partitioning can only be achieved if the properties of the

data points are fully captured by a relational measure. It is

unfortunately also known that this kind of measure is not likely to

be available in real cases. We note that our cluster-sharing

probability provides a means for approximating such a typicality,

and that the DCG-tree is one step closer to reaching an optimal

partitioning of data.

The importance of generating an ultrametric topological

structure is related to issues of how to perform randomization or

bootstrapping on an observed data cloud. These are pressing issues

Figure 6. Clustering Trees for the complete lung cancer data
set [31], including the dominant AD group (in red). (A) HC-tree;
(B) DCG-tree. The color code: red for AD; yellow for NL; pink for COID;
green for SCLC; blue for SQ (see text for the definitions of the different
groups).
doi:10.1371/journal.pone.0056259.g006

Figure 5. Clustering Trees for the lung cancer data set [31]
without the AD group. (A) HC-tree; (B) DCG-tree. The color code is:
yellow for NL; pink for COID; green for SCLC; blue for SQ (see text for
the definitions of the different groups).
doi:10.1371/journal.pone.0056259.g005
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in biological and many other scientific researches [34,35]. Ideally

any randomization or bootstrapping procedure is meant to

generate a surrogate data cloud that is resembling the observed

one. An ultrametric tree can serve as the skeleton that has to be

maintained in order to sustain the resemblance. That is, the

randomization or bootstrapping procedure is applied subject to the

constraint of maintaining this skeleton. One effective way of

fulfilling this constraint is to work within block-boundaries of Parisi

matrix. We are currently working on implementing these ideas.

The two simple toy problems highlight two significant issues

with the HC procedure: (i) it is very sensitive to measurement

errors and their consequences on distance information and

triangular inequalities, and (ii) it is likely to yield artificial intra-

and inter-cluster structural information. These two ‘‘features’’ can

significantly affect the applicability of the HC method on real

world problems. Firstly, it is difficult to be confident in its ability to

find motifs that can then be used as building blocks for larger

clusters. Secondly, the problems highlighted on this simple test

case with a small number of nodes are likely to propagate for much

larger data clouds.

The difficulties to extract a robust tree with HC are attached to

the concept of distances: the HC procedure relies on an empirical

distance measure to detect similarities between nodes in the data;

this distance measure is somewhat subjective and very sensitive to

measurement errors, as highlighted with the five dot example

described above. In addition, the HC procedure needs a distance

measure between clusters of nodes. For this, it relies on modules

(such as single and complete linkages). These modules are sensitive

to measurement errors; in addition, they are also very sensitive to

the geometry of the intermediate clusters generated in the merging

process. Finally it is important to note that the HC-tree building

procedure is deterministic, without any built-in mechanisms for

revising previous levels of decision making. A single early mistake

can therefore have far reaching effects. Among such effects, we list

the creation of many isolated clusters, as observed in Fig. S5A on a

real data set. A HC-tree built with the single linkage module is also

likely to reveal extreme structural features that grow by including

one node at a time, finally resulting in one single branch tree (Fig.

S1B and Fig. S5B). This confusing growth pattern seems to be very

common, especially when nodes are spread out spatially. This

leads to the multi-scale structure information being totally blurred.

We have observed that in comparison, DCG trees are more

robust, less sensitive to measurement errors, and provide

information on the intrinsic scales embedded within the data

cloud under study. We believe that the success of the DCG

method is a consequence of two built-in mechanisms. Firstly, the

DCG method is designed to replace the empirical distance

measure with an effective ultrametric distance that reflects the

underlying structure of the data. This is achieved through the

characterization of the field potential built on the links in the data

(see the description of the DCG method above). This ultrametric is

much less sensitive to measurement errors. Secondly, the DCG-

Figure 8. An example from linguistic. Panel (A) shows the DCG-tree
of the smallest Doublets sub-network of 7-letter words, that contain
393 nodes (see text for details). Panel (B) shows the corresponding HC-
tree, with the leaves colored according to the DCG-tree clustering; six
clusters, labeled (1{6), are present when the HC-tree is cut at the level
of the dashed line; in panel (C), the network is shown with color
markings based on the eight clusters obtained from DCG-tree; finally, in
panel (D) the network is shown with colors based on the six clusters
labeled in the HC-tree given in panel (D); the color scheme is: 1-yellow,
2-light purple, 3-white, 4-light grey, 5-dark grey, and 6-black.
doi:10.1371/journal.pone.0056259.g008

Figure 7. Heatmaps of giraffe social association data. (A) Re-ordered by social data DCG-tree (top axis) and spatial data DCG-tree (left axis); (B)
Re-ordered by social data HC-tree (top axis) and spatial data HC-tree (left axis).
doi:10.1371/journal.pone.0056259.g007
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tree constructed via procedure [A1] and [A2], has a built-in

mechanism to revise previous clustering decisions.

We note that the DCG procedure comes with a high

computational cost compared to HC. Let us provide a rough

estimate of the computing complexity of DCG. The action of

removing nodes one-by-one in the re-engineered MCMC

procedure makes the computing cost grow quadratically with

respect to the number of nodes n for one single exploration. That

is, a single exploration with V denoting the threshold on the

number of permitted visits incurs a computing cost of order

O(V|n2). Suppose that we want to build an ensemble of R
exploration runs at each temperature; the computing complexity

for these R runs is then of order of O(R|V|n2). If we decide to

make a sequence of K temperatures for the whole geometric

information, then the total computing cost for the entire MCMC

explorations on fN,eg is of order O(K|R|V|n2). V , N and K
are not independent of n: they have to be adjusted to slowly grow

as n increases. Assuming that at the minimum, this growth is

logarithmic, a rough estimate of the computational complexity of

our algorithm is therefore of order of O(n2(ln n)3). This needs the

compared to the complexity of the HC procedure, which is O(n2)).
We are currently working on faster implementations of DCG to

alleviate this problem.

Supporting Information

Figure S1 HC trees of fMRI data. (A) HC tree with complete

linkage; (B) HC tree with single linkage.

(EPS)

Figure S2 Clustering Trees for Two-moon Data. (A)

DCG Tree; (B) HC Tree with complete linkage.

(EPS)

Figure S3 Heatmaps of social association and spatial
75% association female adult giraffe data. (A) Heatmap of

social data based on social DCG tree; (B) Heatmap of social data

based on social HC tree; (C) Heatmap of spatial 75% data based

on spatial DCG tree; (D) Heatmap of spatial 75% data based on

spatial HC tree.

(EPS)

Figure S4 Heatmaps of social association female adult
giraffe data. (A) Heatmap of social data based on social DCG

tree (top) and spatial DCG tree (left), colored by spatial DCG tree

cut; (B) Heatmap of social data based on social HC tree (top) and

spatial HC tree (left), colored by spatial DCG tree cut; (C) Same as

(A), displayed as in contrast to (D); (D)Heatmap of social data

based on social HC tree (top) and spatial HC tree (left), colored by

spatial HC tree cut.

(EPS)

Figure S5 HC tree of giraffe social association data. (A)

Complete linkage; (B) Single linkage.

(EPS)
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