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Abstract: We derive and analytically solve renormalization group (RG) equations of

gauge invariant non-local Wilson line operators which resum logarithms for event shape

observables τ at subleading power in the τ � 1 expansion. These equations involve a class

of universal jet and soft functions arising through operator mixing, which we call θ-jet

and θ-soft functions. An illustrative example involving these operators is introduced which

captures the generic features of subleading power resummation, allowing us to derive the

structure of the RG to all orders in αs, and provide field theory definitions of all ingredients.

As a simple application, we use this to obtain an analytic leading logarithmic result for

the subleading power resummed thrust spectrum for H → gg in pure glue QCD. This

resummation determines the nature of the double logarithmic series at subleading power,

which we find is still governed by the cusp anomalous dimension. We check our result by

performing an analytic calculation up to O(α3
s). Consistency of the subleading power RG

relates subleading power anomalous dimensions, constrains the form of the θ-soft and θ-jet

functions, and implies an exponentiation of higher order loop corrections in the subleading

power collinear limit. Our results provide a path for carrying out systematic resummation

at subleading power for collider observables.
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1 Introduction

Due to the complexity of interacting gauge theories in four dimensions, simplifying limits

such as the soft, collinear, or Regge limits play a central role. These limits are important

both phenomenologically, where they often capture dominant contributions to processes of

interest, as well as theoretically, where they place important constraints on the structure

of amplitudes and cross sections. While well understood at leading power, less is known

about the all orders perturbative structure of the subleading power corrections to these

limits. These subleading power corrections have recently been attracting a growing level
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of interest, see for example [1–31]. A subset of these analyses consider power corrections

to the threshold limit of Drell Yan and related processes, where there are no contributions

from power corrections due to real collinear radiation.

In this paper we will study the all orders structure of subleading power corrections to

both the soft and collinear limits. This requires corrections beyond the type that can be

studied from the threshold limit. Using soft collinear effective theory (SCET) [32–35], which

allows for a systematic power expansion using operator and Lagrangian based techniques,

we will show for the first time how subleading power logarithms can be resummed to all

orders in αs for an event shape, which for concreteness we take to be thrust, T = 1−τ [36],

with τ � 1 in the simplified example of pure glue QCD for the process H → gg mediated by

the effective operator HGaµνG
µνa obtained by integrating out the top quark. In particular,

we will show that at subleading power higher order corrections in αs exponentiate at

leading logarithmic (LL) accuracy into a single logarithmic term multiplying the same

type of Sudakov form factor [37] as at leading power. Our approach is general, allowing

other observables to be considered, and making clear what ingredients are needed to achieve

higher logarithmic accuracy, as well as higher orders in the power expansion.

The all orders cross section for the thrust observable can be expanded in powers of τ

(here τ is taken to be dimensionless), keeping all orders in αs at each power

dσ

dτ
=

dσ(0)

dτ
+

dσ(1)

dτ
+

dσ(2)

dτ
+

dσ(3)

dτ
+O(τ) . (1.1)

Here dσ(n)/dτ captures to all orders in αs terms that scale like τn/2−1, and for thrust the

odd powers dσ(2`+1)/dτ vanish. The leading power (LP) terms scale as 1/τ (including δ(τ))

modulo logarithms. Explicitly, we have

1

σ0

dσ(0)

dτ
=

∞∑
n=0

2n−1∑
m=−1

(
αs(µ)

4π

)n
c(0)
n,mLm(τ) , (1.2)

where Lm≥0(τ) = [θ(τ) logm(τ)/τ ]+ is a standard plus-function which integrates to zero

over the interval τ ∈ [0, 1], and L−1(τ) = δ(τ). Here the c
(0)
n,m coefficients include log(µ/Q)

dependence, where Q = mH is the mass of the Higgs boson setting the scale of the hard

scattering. All orders factorization theorems [38–41] can be proven at leading power for

a number of event shape like observables [35, 42–45]. For the particular case of thrust in

H → gg, we have [44–46]

1

σ0

dσ(0)

dτ
= H(0)(Q,µ)

∫
dsndsn̄dk δ̂τ J

(0)
g (sn, µ) J (0)

g (sn̄, µ) S(0)
g (k, µ) , (1.3)

where

δ̂τ = δ

(
τ − sn

Q2
− sn̄
Q2
− k

Q

)
, (1.4)

is the thrust measurement function. Here H(0)(Q,µ) is a hard function, J
(0)
g (s, µ) are gluon

jet functions, and S
(0)
g (k, µ) is the adjoint soft function, whose precise definitions will be
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given in eqs. (2.4) and (2.5) respectively. We normalize such that at lowest order H(0) is 1,

and the jet and soft functions are δ-functions. The jet and soft functions are gauge invariant

infrared finite matrix elements, which obey simple renormalization group (RG) evolution

equations that predict infinite towers of higher order logarithmically enhanced terms. The

number of logarithms that are predicted is dictated by the logarithmic accuracy, denoted

by NkLL. Explicitly, for the first few orders, a resummation at NkLL can be used to predict

all the terms c
(0)
n,m, satisfying

LL predicts : m = 2n− 1 , (1.5)

NLL predicts : m ≥ 2n− 2 ,

NNLL predicts : m ≥ 2n− 4 ,

N3LL predicts : m ≥ 2n− 6 ,

for any n. Technically, for these resummations this counting is applied for log(dσ(0)/dy)

where y is Fourier conjugate to τ .1 For thrust, these logarithms were first resummed to NLL

in [47, 48]. Factorization and renormalization has been used to resum large logarithmic

contributions to a number of e+e− event shapes at leading power at N3LL order [49–53].

Additional terms in eq. (1.1) are suppressed by powers of λ ∼
√
τ , with odd powers,

dσ(2`+1)/dτ vanishing, so that the series involves only integer powers of τ [7, 15, 29, 54].

These power suppressed terms do not involve distributions, and at power τ `−1 for ` ≥ 1

can be written as

1

σ0

dσ(2`)

dτ
=
∞∑
n=1

2n−1∑
m=0

(
αs(µ)

4π

)n
c(2`)
n,m τ

`−1 logm(τ) . (1.6)

The structure of the subleading power terms is much less well understood, despite con-

siderable effort. The first non-trivial power corrections are described by dσ(2)/dτ , i.e. at

O(λ2) ∼ O(τ), which we will refer to as next-to-leading power (NLP). The subleading power

terms at O(λ2) have recently been analytically computed in fixed order to O(α2
s log3) for

thrust [15, 21, 22] and N -jettiness [21, 22, 25] for the first time, and the next-to-leading loga-

rithms for N -jettiness atO(αs) have been examined in [55]. There has also been recent work

on calculations of power corrections for pT in Drell-Yan [24, 27], in the Regge limit [56, 57],

and for subleading power quark mass effects [58]. All these calculations have hinted at a

simple structure for the power corrections, motivating an all orders understanding.

In a series of papers, we have developed within SCET all the ingredients relevant

for the factorization and all orders description at O(λ2) for the case of dijet production

from a color singlet current. This includes the bases of hard scattering operators [29–

31], the factorization of the measurement function [29], and the factorization of ‘radiative’

contributions arising from subleading power Lagrangian insertions [59]. In this paper we

combine these ingredients, and carry out the resummation of the leading logarithmic (LL)

1The standard counting which defines the resummation orders in position space is given by identifying

the terms as log(dσ(0)/dy) '
∑
k(αs log)k log |LL +(αs log)k|NLL +(αs log)kαs|NNLL +(αs log)kα2

s|N3LL + . . ..

This means that the resummation yields terms beyond those indicated in eq. (1.5) when expanded at the

cross section level.
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contributions to all orders in αs for NLP corrections to thrust. In particular, this determines

all terms c
(2)
n,2n−1 for any n in eq. (1.6), giving all the terms in the series

1

σ0

dσ(2)

dτ
=
(αs

4π

)
c

(2)
1,1 log τ +

(αs
4π

)2
c

(2)
2,3 log3 τ +

(αs
4π

)3
c

(2)
3,5 log5 τ + · · · , (1.7)

=
(αs

4π

)
8CA log τ −

(αs
4π

)2
32C2

A log3 τ +
(αs

4π

)3
64C3

A log5 τ + . . . ,

where in the second line we have given the first few terms of the result that we will derive for

thrust in pure glue H → gg. Note that this series starts at αs log τ , which has interesting

consequences for the resummation. We will show that this necessitates the introduction

of new jet and soft functions which arise through mixing, and which we term θ-jet and θ-

soft functions. We will analytically solve the corresponding subleading power RG equation

involving the mixing, and including the running coupling. We consider for simplicity the

case of thrust in H → gg without fermions, i.e. in a pure SU(3) Yang-Mills theory without

matter. This will allow us to illustrate the conceptual complexities of renormalization at

the cross section level in the simplest possible setting with a smaller set of operators. The

addition of operators relevant for including fermions will be considered in future work.

An outline of this paper is as follows. In section 2 we show in the context of an

illustrative example how one can renormalize subleading power jet and soft functions. The

illustrative example allows for an understanding of the renormalization to all orders in αs,

and allows us to provide complete field theoretical definitions for all functions involved in

the RG flow. This involves a new class of jet and soft functions which arise at cross section

level through mixing, which we demonstrate is a generic feature at subleading power that

is needed to predict the series that starts at αs log τ . At O(λ2), this gives rise to a 2 × 2

mixing structure for the RG equations. We study in detail the consistency equations for

this type of RG evolution, allowing us to derive powerful and general constraints on the

structure of operators that can be mixed into at subleading powers. In section 3 we solve

the general form of the subleading power mixing equation, including the running coupling

as is relevant for subleading power resummation in QCD. In section 4 we apply this to

resum the leading logs at subleading power for thrust in pure glue H → gg, deriving the

structure of the Sudakov exponent for the subleading power corrections. In section 5 we

perform a fixed order check of our result. We explicitly calculate to O(α3
s) the O(λ2) leading

logarithms, confirming the result predicted by the RG. Furthemore, we interpret the fixed

order expansion in terms of information about the O(αns ) corrections to subleading power

splitting functions. We conclude in section 6.

2 Renormalization at subleading power

In this section we study the structure and completeness of jet and soft functions for renor-

malization group equations at subleading power. In section 2.1 we introduce a simple

illustrative example which can be studied to all orders from known factorization properties

at leading power, and from which many interesting lessons about the structure of sublead-

ing power resummation can be deduced. This example also appears explicitly for thrust in
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H → gg from contributions from subleading power kinematic corrections. In section 2.2,

we show that the renormalization of the subleading power jet and soft functions in our

illustrative example leads to mixing into jet and soft functions involving θ-functions of

the measurement operator, which we term θ-jet and θ-soft functions, and we derive the

structure of the RG to all orders in αs. In section 2.3 we study RG consistency in a setup

that is a generalization of our illustrative example in order to derive general constraints

at subleading power on the structure of anomalous dimensions and on the appearance of

θ-function operators.

2.1 An illustrative example at subleading power

Our illustrative example of a subleading power factorization is obtained by multiplying the

leading power factorization by τ and using

τ δ̂τ = τδ(τ − τn − τn̄ − τs) = (τn + τn̄ + τs)δ̂τ , (2.1)

which gives a subleading power cross section whose factorized structure follows immediately

from the leading power factorization of eq. (1.3):

1

σ0

dσ(2)

dτ
= H(0)(Q,µ)

∫
dsndsn̄dk

Q2
δ̂τ

[
snJ

(0)
g (sn, µ)

]
J (0)
g (sn̄, µ)S(0)

g (k, µ) (2.2)

+H(0)(Q,µ)

∫
dsndsn̄dk

Q2
δ̂τ J

(0)
g (sn, µ)

[
sn̄J

(0)
g (sn̄, µ)

]
S(0)
g (k, µ)

+H(0)(Q,µ)

∫
dsndsn̄dk

Q
δ̂τ J

(0)
g (sn, µ)J (0)

g (sn̄, µ)
[
kS(0)

g (k, µ)
]
.

This can be written in terms of subleading power jet and soft functions as

1

σ0

dσ(2)

dτ
= H(0)(Q,µ)

∫
dsndsn̄dk

Q2
δ̂τ J

(2)
g (sn, µ)J (0)

g (sn̄, µ)S(0)
g (k, µ) (2.3)

+H(0)(Q,µ)

∫
dsndsn̄dk

Q2
δ̂τ J

(0)
g (sn, µ)J (2)

g (sn̄, µ)S(0)
g (k, µ)

+H(0)(Q,µ)

∫
dsndsn̄dk

Q
δ̂τ J

(0)
g (sn, µ)J (0)

g (sn̄, µ)S(2)
g (k, µ) .

The superscripts indicate the power of the function, namely those with superscript (0)

are LP in the τ expansion, while those with superscript (2) are power suppressed by

λ2 ∼ τ . In this factorization, H(0)(Q,µ) is the leading power hard function, which is

process dependent, and will not play an important role in the current discussion. The

leading power jet function, which for H → gg is a gluon jet function, is defined as a matrix

element of collinear fields

J (0)
g (s, µ) =

(2π)3

(N2
c − 1)

〈
0
∣∣∣Ban⊥µ(0) δ(Q+ P̄)δ2(P⊥) δ

(
s

Q
− T̂

)
Bµan⊥(0)

∣∣∣0〉 , (2.4)

where Baµn⊥, is a gauge invariant gluon field (see eq. (4.17) for an explicit definition), and

the leading power adjoint soft function is given by

S(0)
g (k, µ) =

1

(N2
c − 1)

tr
〈
0
∣∣YTn̄ (0)Yn(0)δ(k − T̂ )YTn (0)Yn̄(0)

∣∣0〉 , (2.5)
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where Yn, Yn̄ are adjoint Wilson lines along the given lightlike directions. Explicitly,

Ybcn (x) = P exp

[
g

∫ ∞
0

ds n ·Aaus(x+ sn)fabc
]
. (2.6)

In both cases, T̂ is an operator that returns the value of T measured on a given state, where

the dimensionless thrust τ = T /Q. In general it can be written in terms of the energy

momentum tensor of the effective theory [60–65]. At tree level, J
(0)
g (s, µ) = δ(s) + O(αs)

and S
(0)
g (k, µ) = δ(k) +O(αs).

After multiplying by τ , the operator definitions for the subleading power jet and soft

functions appearing in eq. (2.2) are simply

J
(2)
g,δ (s, µ) =

(2π)3

(N2
c − 1)

〈
0
∣∣∣Bµan⊥(0) δ(Q+ P̄)δ2(P⊥) s δ

(
s

Q
− T̂

)
Bµan⊥,ω(0)

∣∣∣0〉 , (2.7)

S
(2)
g,δ (k, µ) =

1

(N2
c − 1)

tr〈0|YTn̄ (0)Yn(0) k δ(k − T̂ )YTn (0)Yn̄(0)|0〉 .

The subscript δ is meant to indicate that the measurement function that appears is the same

as the leading power measurement. The mass dimension of both functions in eq. (2.7) is

zero. Although this example may appear too trivial, it turns out to become quite interesting

when we consider the RG evolution of these subleading power jet and soft functions, which

we do next.

2.2 θ-jet and θ-soft functions and RG equations

The RG for the subleading power jet and soft functions in eq. (2.7) is easily deduced from

the RG evolution of the leading power jet and soft functions. The leading power jet and

soft functions satisfy the RG equations

µ
dS

(0)
g (k, µ)

dµ
=

∫
dk′ γSg (k − k′, µ)S(0)

g (k′, µ) , (2.8)

µ
dJ

(0)
g (s, µ)

dµ
=

∫
ds′γJg (s− s′, µ) J (0)

g (s′, µ) ,

where the form of the anomalous dimensions to all orders in αs is

γSg (k, µ) = 4Γgcusp[αs]
1

µ

[
µ θ(k)

k

]
+

+ γSg [αs] δ(k) , (2.9)

γJg (s, µ) = −2Γgcusp[αs]
1

µ2

[
µ2 θ(s)

s

]
+

+ γJg [αs] δ(s) ,

with Γgcusp[αs] the gluon cusp anomalous dimension [66, 67].

We can now derive the all orders result for the RG evolution of the subleading power

jet and soft functions. Multiplying the leading power soft function by k, we find for the

– 6 –
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soft function

µ
d

dµ
kS(0)

g (k, µ) =

∫
dk′
(
(k − k′) + k′

)
γSg (k − k′, µ)S(0)

g (k′, µ) , (2.10)

=

∫
dk′
(
(k − k′) + k′

){
4Γgcusp[αs]

1

µ

[
µ θ(k − k′)
k − k′

]
+

+ γSg [αs] δ(k − k′)
}
S(0)
g (k′, µ)

=

∫
dk′4Γgcusp[αs]θ(k − k′)S(0)

g (k′, µ) +

∫
dk′ γSg (k − k′, µ) k′S(0)

g (k′, µ) .

This implies

µ
d

dµ
S

(2)
g,δ (k, µ) = 4Γgcusp[αs] S

(2)
g,θ (k, µ) +

∫
dk′ γSg (k − k′, µ)S

(2)
g,δ (k′, µ) . (2.11)

Here we have defined the new power suppressed soft function

S
(2)
g,θ (k, µ) =

1

(N2
c − 1)

tr〈0|YTn̄ (0)Yn(0)θ(k − T̂ )YTn (0)Yn̄(0)|0〉 . (2.12)

We refer to this as a θ-soft function. Its tree level value is S
(2)
g,θ (k, µ) = θ(k) + O(αs).

This function receives its power suppression from its measurement function, θ(k − T̂ ). In

particular, θ(τ) ∼ O(τ0), while δ(τ) ∼ O(1/τ).

Performing an identical exercise for the jet function, we obtain

µ
d

dµ
J

(2)
g,δ (s, µ) = −2Γgcusp[αs] J

(2)
g,θ (s, µ) +

∫
ds′ γJg (s− s′, µ) J

(2)
g,δ (s′, µ) . (2.13)

Here we have defined the subleading power jet function

J
(2)
g,θ (s, µ) =

(2π)3

(N2
c − 1)

〈
0
∣∣∣Bµan⊥(0) δ(Q+ P̄)δ2(P⊥) θ

(
s

Q
− T̂

)
Bµan⊥,ω(0)

∣∣∣0〉 , (2.14)

which we will refer to as a θ-jet function. Its tree level value is J
(2)
g,θ (s, µ) = θ(s) +O(αs).

In [12] it was also found that additional subleading power jet functions whose tree level

values were θ-functions were required due to the non-closure of the RG evolution, and it

was conjectured that they took the form of eq. (2.14). Our illustrative example has allowed

us to derive the necessity of such operators in a straightforward manner, and prove that

here this new function suffices to all orders in αs. More general constraints on the functions

that can appear through mixing at subleading power will be derived from the consistency

of the RG equations in section 2.3.

Interestingly, we see that the evolution equation for the power suppressed jet and

soft functions are no longer homogeneous evolution equations. In particular, they mix

into the θ-jet and θ-soft functions. This clearly shows that a new class of subleading power

operators, namely the θ-jet and θ-soft operators, are required to renormalize consistently at

subleading power in SCET. These operators do not appear at amplitude level, but instead

arise from mixing at cross section level. It is clear that they have all the correct symmetry

– 7 –
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properties, as well as the correct power counting, and therefore it is not unexpected that

they can be generated by RG evolution.

The renormalization group evolution of the θ-function operators can also be derived

by integration of the leading power RG equation. Considering explicitly the soft function,

we have

µ
d

dµ
S

(2)
g,θ (k, µ) =

∫
dk′θ(k − k′)

∫
dk′′γSg (k′ − k′′, µ)S(0)

g (k′′, µ) (2.15)

=

∫
dk′γSg (k − k′, µ)

∫
dk′′θ(k′ − k′′)S(0)

g (k′′, µ)

=

∫
dk′γSg (k − k′, µ)S

(2)
g,θ (k′, µ) .

We therefore find that to all orders in αs, the RG for the θ-jet and θ-soft operators is

identical to that of the leading power jet and soft functions

µ
d

dµ
S

(2)
g,θ (k, µ) =

∫
dk′γSg (k − k′)S(2)

g,θ (k′, µ) , (2.16)

µ
d

dµ
J

(2)
g,θ (s, µ) =

∫
ds′γJg (s− s′)J (2)

g,θ (s′, µ) .

Together eqs. (2.11) and (2.13) combined with eq. (2.16) give a simple, closed 2× 2 matrix

RG structure for the subleading power jet and soft functions

µ
d

dµ

(
J

(2)
g,δ (s, µ)

J
(2)
g,θ (s, µ)

)
=

∫
ds′

(
γJg,δδ(s− s′) γJg,δθ δ(s− s′)

0 γJg,θθ(s− s′)

)(
J

(2)
g,δ (s′, µ)

J
(2)
g,θ (s′, µ)

)
, (2.17)

µ
d

dµ

(
S

(2)
g,δ (k, µ)

S
(2)
g,θ (k, µ)

)
=

∫
dk′

(
γSg,δδ(k − k′, µ) γSg,δθ δ(k − k′)

0 γSg,θθ(k − k′, µ)

)(
S

(2)
g,τδ(k

′, µ)

S
(2)
g,θ (k′, µ)

)
.

Fourier transforming to position space

J̃ (2)
x (y) =

∫
ds e−isy J (2)

x (s) , S̃(2)
x (z) =

∫
dk e−ikz S(2)

x (k) , (2.18)

(where here the mass dimensions are [y] = −2 and [z] = −1) these RG equations become

multiplicative

µ
d

dµ

(
J̃

(2)
g,δ (y, µ)

J̃
(2)
g,θ (y, µ)

)
=

(
γ̃Jg,δδ(y, µ) γJg,δθ[αs]

0 γ̃Jg,θθ(y, µ)

)(
J̃

(2)
g,δ (y, µ)

J̃
(2)
g,θ (y, µ)

)
, (2.19)

µ
d

dµ

(
S̃

(2)
g,δ (z, µ)

S̃
(2)
g,θ (z, µ)

)
=

(
γ̃Sg,δδ(z, µ) γSg,δθ[αs]

0 γ̃Sg,θθ(z, µ)

)(
S̃

(2)
g,δ (z, µ)

S̃
(2)
g,θ (z, µ)

)
.

For our illustrative example, the RG equations in eq. (2.17) or eq. (2.19) are valid to

all orders in αs, and we can identify that

γSg,δδ(k, µ) = γSg,θθ(k, µ) = γSg (k, µ) , (2.20)

γJg,δδ(s, µ) = γJg,θθ(s, µ) = γJg (s, µ) ,
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where γSg (k, µ) and γJg (s, µ) are the LP anomalous dimensions in eq. (2.9). They include

the cusp anomalous dimensions, and hence drive double logarithmic evolution. On the

other hand, in our illustrative example the off diagonal terms in eq. (2.17) are

γSg,δθ = 4Γgcusp[αs] , (2.21)

γJg,δθ = −2Γgcusp[αs] ,

which generate single logarithmic terms.

The particular relations for the anomalous dimensions of eqs. (2.20) and (2.21), and in

particular the fact that the mixing anomalous dimension is proportional to the cusp anoma-

lous dimension, is a feature of this specific illustrative example, and will not in general be

true. However, the general features of this example will be true at subleading power. In

particular, subleading power jet and soft functions will exhibit single logarithmic mixing

with θ-function operators, and diagonal anomalous dimensions corresponding to operator

self mixing will give rise to double logarithmic evolution. In section 2.3 we will discuss

more general constraints on the subleading power anomalous dimensions and the types of

functions which can arise through mixing, from RG consistency constraints in SCET.

From this example we have shown how subleading power jet and soft functions involving

θ-function measurement operators arise in a straightforward manner, we have derived their

field structure to all orders in αs, and we have shown that their RG closes in a 2 × 2

form. Before solving this subleading power RG equation, it is also useful to see how

this mixing appears from the perspective of a fixed order calculation for the subleading

power soft function. This will illustrate that this phenomenon of mixing is generic at

subleading power, due to the fact that subleading power corrections first contribute with a

real emission without virtual corrections, and is not simply a feature of the specific example

considered here.

At lowest order, the power suppressed soft function vanishes

S
(2)
g,δ (k, µ)

∣∣∣
O(α0

s)
= = kδ(k) = 0 . (2.22)

With a single emission, we have

S
(2)
g,δ (k, µ)

∣∣∣
O(αs)

= 2

= 4g2

(
µ2eγE

4π

)ε
CA

∫
dd`

(2π)d
1

`+`−
2πδ(`2)θ(`0)kδ(k −Qτ̂) , (2.23)

where the measurement function on a single particle state is given by

kδ(k −Qτ̂) = kδ
(
k − `+

)
θ(`− − `+) + kδ

(
k − `−

)
θ(`+ − `−)

= 2kδ
(
k − `+

)
θ(`− − `+) , (2.24)
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using the `+ ↔ `− symmetry of this particular integrand. Using the delta functions to

perform the integrals of the l⊥ and l+, we find

S
(2)
g,δ (k, µ) =

8αsCAk
−ε

Γ(1− ε)(4π)1−ε

(
µ2eγE

4π

)ε ∫ ∞
k

d`−

2π

1

(`−)1+ε
=

8αsCAe
εγE

Γ(1− ε)(4π)

(
µ2

k2

)ε
1

ε

= 8CA
αs(µ)

4π
θ(k)

(
1

ε
+ log

µ2

k2
+O(ε)

)
. (2.25)

Here we clearly see that an SCET UV divergence from `− →∞ appears at the first order

at which this power suppressed soft function is non-vanishing.

Although we are considering a specific subleading power example, these two calcula-

tions illustrate a general phenomenon at subleading power: subleading power jet and soft

functions vanish at lowest order since purely virtual corrections are leading power, scaling

like δ(τ), and they in general have a UV divergence in SCET at the first perturbative order

at which they appear. Without the knowledge of the θ-soft and θ-jet operators, this behav-

ior is confusing, since it is not clear what renormalizes this divergence. However, with an

understanding of the presence of these θ-function operators, we can now straightforwardly

interpret the fixed order calculation of the subleading power soft function in eq. (2.25) as

operator mixing, and immediately read off the anomalous dimension from the 1/ε pole in

the standard way. The operator S
(2)
g,θ is non-zero at tree level, and simply gives

S
(2)
g,θ (k, µ)

∣∣∣
O(α0

s)
= = θ(k) . (2.26)

The renormalization of this operator provides the needed counterterm, and from eq. (2.25)

we find

γSg,δθ = 16
αs
4π
CA = 4

αs
4π

Γg,0cusp , (2.27)

where Γg,0cusp = 4CA is the one-loop gluon cusp anomalous dimension. This result is in

agreement with our derivation from the known structure of the RG equations in eq. (2.11).

This example clearly resolves any confusion arising in the renormalization of the subleading

power operators, which with the addition of subleading power θ-jet and θ-soft functions

becomes a standard operator mixing problem.

2.3 Renormalization group consistency

Motivated by the structure of the RG equations in our illustrative example, we consider

a somewhat more general factorization theorem where the soft and jet sectors have an

analogous 2 × 2 mixing structure with some unknown functions that do not appear in

the matching, without working under the assumption that these functions take the form

of the θ-jet or θ-soft functions of the previous section. The fact that the cross section

is µ-independent implies RG consistency equations in SCET that yield relations between

the anomalous dimensions of hard, jet, and soft functions, and will allow us to prove on
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general grounds that the functions appearing through mixing at subleading power must

be integrals of the leading power functions in the factorization theorem. This shows that

the θ-jet or θ-soft functions appear much more generally than in our illustrative example.

It will also allow us to demonstrate that there will always be at least pairs of subleading

power θ-soft and θ-collinear functions.

We consider terms in a subleading power factorization theorem where the power cor-

rections occur in either a jet or soft function with the form

1

σ0

dσ(2)

dτ
= 2H1(Q,µ)

∫
dsndsn̄dk

Q2
δ̂τ J

(2)
δ (sn, µ)J (0)(sn̄, µ)S(0)(k, µ) (2.28)

+H2(Q,µ)

∫
dsndsn̄dk

Q
δ̂τ J

(0)(sn, µ)J (0)(sn̄, µ)S
(2)
δ (k, µ) ,

where we have used the n ↔ n̄ symmetry to write corrections to the two jet functions

into a single expression. Here H1 = 1 + O(αs) and H2 = 1 + O(αs) are taken to be

dimensionless hard functions. We will assume that these Hi do not mix, so µ d
dµHi(Q,µ) =

γHi(Q,µ)Hi(Q,µ). We will also assume that J
(2)
δ and S

(2)
δ start at O(αs), and obey 2× 2

mixing equations of the form in eq. (2.17) which has them mix with operators starting at

O(α0
s). Importantly, here we do not assume that J

(2)
δ and S

(2)
δ are related to the functions

defined in eq. (2.7). We also assume that the terms in eq. (2.28) close in the renormalization

group flow (at least up to some order in the NkLL expansion, though we will shortly focus on

LL order). From eq. (2.3) we see that the expression for the cross section in our illustrative

example satisfies all the above assumptions and is a special case of the assumed form. With

the above assumptions, our goal is to derive RG consistency equations by demanding the

RG invariance of this cross section, µd/dµ dσ(2)/dτ = 0.

For the analysis of RG consistency it is most convenient to Fourier transform τ to

position space, so that eq. (2.28) becomes

1

σ0

dσ(2)

dy
≡
∫
dτ e−iτy

1

σ0

dσ(2)

dτ
(2.29)

=
2

Q2
H1(Q,µ)J̃

(2)
δ

(
y

Q2
, µ

)
J̃ (0)

(
y

Q2
, µ

)
S̃(0)

(
y

Q
, µ

)
+

1

Q
H2(Q,µ)J̃ (0)

(
y

Q2
, µ

)
J̃ (0)

(
y

Q2
, µ

)
S̃

(2)
δ

(
y

Q
, µ

)
.

Here y is dimensionless and the Fourier transforms of jet and soft functions are defined as in

eq. (2.18). Differentiating each of the terms in eq. (2.29) and using eq. (2.8) and the analog

of eq. (2.19) gives terms involving anomalous dimensions times the same functions back

again, plus the terms involving mixing into additional functions. For notational convenience

we will refer to these as θ-jet and θ-soft functions, although we will not assume that they

take the functional form of the illustrative example result in eqs. (2.12) and (2.14). We

therefore arrive at the following consistency equation (here for brevity we suppress the µ
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arguments in all functions and anomalous dimensions),

0 = µ
d

dµ

[
dσ(2)

dy

]
(2.30)

=
2

Q2

[
γH1(Q) + γ̃Jδδ

(
y

Q2

)
+ γ̃J(0)

(
y

Q2

)
+ γ̃S(0)

(
y

Q

)]
×H1(Q)J̃

(2)
δ

(
y

Q2

)
J̃ (0)

(
y

Q2

)
S̃(0)

(
y

Q

)
+

2

Q2
γJδθ[αs]H1(Q)J̃

(2)
θ

(
y

Q2

)
J̃ (0)

(
y

Q2

)
S̃(0)

(
y

Q

)
+

1

Q

[
γH2(Q) + 2γ̃J(0)

(
y

Q2

)
+ γ̃Sδδ

(
y

Q

)]
H2(Q)J̃ (0)

(
y

Q2

)
J̃ (0)

(
y

Q2

)
S̃

(2)
δ

(
y

Q

)
+

1

Q
γSδθ[αs]H2(Q)J̃ (0)

(
y

Q2

)
J̃ (0)

(
y

Q2

)
S̃

(2)
θ

(
y

Q

)
.

Using the relation between anomalous dimensions that follows from the leading power con-

sistency relation, γH(0)(Q)+2γ̃J(0)(y/Q2)+γ̃S(0)(y/Q) = 0, dividing by
[
J̃ (0)

( y
Q2

)]2
S̃(0)

( y
Q

)
,

and multiplying by iy simplifies this result to

0 = 2H1(Q)

[
γH1(Q)− γH(0)(Q) + γ̃Jδδ

(
y

Q2

)
− γ̃J(0)

(
y

Q2

)][ iy
Q2 J̃

(2)
δ

( y
Q2

)
J̃ (0)

( y
Q2

) ]

+H2(Q)

[
γH2(Q)− γH(0)(Q) + γSδδ

(
y

Q

)
− γ̃S(0)

(
y

Q

)][ iy
Q S̃

(2)
δ

( y
Q

)
S̃(0)

( y
Q

) ]

+ 2H1(Q) γJδθ[αs]

[ iy
Q2 J̃

(2)
θ

( y
Q2

)
J̃ (0)

( y
Q2

) ]+H2(Q) γSδθ[αs]

[
iy
Q S̃

(2)
θ

( y
Q

)
S̃(0)

( y
Q

) ] . (2.31)

This consistency equation is quite non-trivial since it involves separate functions of each of

Q, y/Q2, and y/Q. Specializing to LL order we include only the logarithmic terms from the

anomalous dimensions in the first two lines, and only the O(αs) terms for the anomalous

dimensions in the last line. This gives

0 =

[ iy
Q2 J̃

(2)
δ

( y
Q2 , µ

)
αs(µ)

4π J̃ (0)
( y
Q2 , µ

)]LL
α2
s(µ)

(4π)2

{
2
(
Γ0
H1
− Γ0

H(0)

)
log

µ2

Q2
+ 2
(
ΓJ0
δδ − Γ0

J(0)

)
log

iyµ2

Q2

}

+

[
H2(Q,µ)

H1(Q,µ)

]LL
[

iy
Q S̃

(2)
δ

( y
Q , µ

)
αs(µ)

4π S̃(0)
( y
Q , µ

)]LL
α2
s(µ)

(4π)2

×
{(

Γ0
H2
− Γ0

H(0)

)
log

µ2

Q2
+
(
ΓS0
δδ − Γ0

S(0)

)
log

iyµ

Q

}

+

[ iy
Q2 J̃

(2)
θ

( y
Q2 , µ

)
J̃ (0)

( y
Q2 , µ

) ]LL

2
αs(µ)

4π
γJ0
δθ +

[
H2(Q,µ)

H1(Q,µ)

]LL
[
iy
Q S̃

(2)
θ

( y
Q , µ

)
S̃(0)

( y
Q , µ

) ]LL
αs(µ)

4π
γS0
δθ ,

(2.32)
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where we have restored the µ arguments. The 0 superscripts on the anomalous dimensions

here indicate that these are the lowest order term in these anomalous dimensions (which

are simple numbers). In the first two lines we have included a 1/αs(µ) since J̃
(2)
δ and S̃

(2)
δ

themselves start at O(αs). This way all terms in square brackets in eq. (2.32) start at

O(α0
s). Since µ is arbitrary, all ratios of hard, jet, and soft functions in square brackets in

eq. (2.32) can each be thought of as a LL series,
[
· · ·
]LL

=
∑∞

k=0 ak[αs(µ) log2(X)]k, where

X = µ2/Q2, X = yµ2/Q2, or X = yµ/Q for ratios of hard, jet, or soft functions respectively

(or the analogs with running coupling effects which does not change the arguments below).

The coefficients ak in these series are numbers that depend on powers of the corresponding

anomalous dimensions for the objects in that square bracket.

To see what eq. (2.32) implies, first consider the ratio of jet functions in the first line. In

the case of our illustrative example from section 2.1 we have J̃
(2)
δ /J (0) ∝ d/d(y/Q2) log J̃ (0),

so it is safe to assume that this ratio of jet functions is a non-trivial function of y/Q2. The

first line of eq. (2.32) can then not cancel against the terms in the second line since they

have different functional dependence on y and µ/Q. Nor can it cancel against the terms on

the third line, since they start at different orders in αs. This implies that the curly bracket

on the first line of eq. (2.32) vanishes. Due to the presence of two independent types of

logarithms in this bracket this immediately implies relations between the cusp anomalous

dimension coefficients for these functions at LL order:

Γ0
H1

= ΓH(0) , ΓJ0
δδ = ΓJ(0) . (2.33)

For the same reason the curly bracket on the second line of eq. (2.32) must also vanish,

which then implies the following LL anomalous dimension relations:

Γ0
H2

= ΓH(0) , ΓS0
δδ = ΓS(0) . (2.34)

Together these imply that Γ0
H1

= Γ0
H2

, which gives [H2(Q,µ)/H1(Q,µ)]LL = 1.

In eq. (2.32) this then leaves only the LL mixing terms, where the remaining constraint

now takes the form

0 =

[ iy
Q2 J̃

(2)
θ

( y
Q2 , µ

)
J̃ (0)

( y
Q2 , µ

) ]LL

2 γJ0
δθ +

[
iy
Q S̃

(2)
θ

( y
Q , µ

)
S̃(0)

( y
Q , µ

) ]LL

γS0
δθ . (2.35)

In our illustrative example the two square brackets here are both equal to 1. The RG

consistency implies that this is actually a much more general result, true for any operators

satisfying the assumptions set out at the beginning of this section. In particular, since the

two square brackets have different functional dependence, y/Q2 and y/Q respectively, they

must both be independent of these variables. This gives:2[ iy
Q2 J̃

(2)
θ

( y
Q2 , µ

)
J̃ (0)

( y
Q2 , µ

) ]LL

= 1 ,

[
iy
Q S̃

(2)
θ

( y
Q , µ

)
S̃(0)

( y
Q , µ

) ]LL

= 1 . (2.36)

2More generally the r.h.s. of the results in eq. (2.36) could be constants, but we choose to normalize J̃
(2)
θ

and S̃
(2)
θ so these constants are both 1.
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This then leaves a simple relation between the mixing anomalous dimensions

2γJ0
δθ + γS0

δθ = 0 , (2.37)

which we also found in our illustrative example. In momentum space eq. (2.36) implies that

J
(2)
θ (s, µ)LL =

∫ s

0
ds′ J (0)(s′, µ)LL , S

(2)
θ (k, µ)LL =

∫ k

0
dk′ S(0)(k′, µ)LL . (2.38)

While true in our illustrative example, viewed as a more general constraint this result is

quite interesting. For more general operators defining J
(2)
δ and S

(2)
δ it might not be a priori

clear (without performing higher order loop and gluon emission calculations) how to define

the operators giving the J
(2)
θ and S

(2)
θ that one mixes into. The RG consistency result in

eq. (2.38) implies that the required J
(2)
θ and S

(2)
θ functions agree with those defined from

the cumulative of the leading power operators, at least at LL order. The RG consistency

results in eqs. (2.33) and (2.34) furthermore imply that the LL cusp anomalous dimensions

of J
(2)
δ and S

(2)
δ are the same as those for the jet and soft functions at leading power. Note

that although γJθθ or γSθθ do not appear explicitly in the RG consistency equation, they are

present in the LL expressions for J̃
(2)
θ and S̃

(2)
θ and hence are constrained by eq. (2.36).

This example also illustrates another important point. There must always be (at least)

a pair of functions at subleading power whose renormalization group evolution is tied by

consistency. This is also clear from the fact that when evaluated at their natural scales,

the subleading power J
(2)
δ and S

(2)
δ functions are 0 + O(αs), and not δ(τ) + O(αs) as at

leading power. Thus if one chooses to run all functions to the canonical scale of either of the

subleading power functions, this function will simply not contribute at LL accuracy. To see

this explicitly, we can use the evolution equations to run all functions in the position space

factorization theorem from their canonical scales µ2
H ∼ Q2, µ2

J ∼ Q2/iy, or µ2
S ∼ Q2/(iy)2

to a common scale µ2. This gives

1

σ0

dσ(2)

dy
=

2

Q2
H1(Q,µH)UH1(Q,µH , µ)U

(0)
J

(
y

Q2
, µJ , µ

)
J̃ (0)

(
y

Q2
, µJ

)
U

(0)
S

(
y

Q
, µS , µ

)
×S̃(0)

(
y

Q
, µS

)[
UJδδ

(
y

Q2
, µJ , µ

)
J̃

(2)
δ

(
y

Q2
, µJ

)
+ UJδθ

(
y

Q2
, µJ , µ

)
J̃

(2)
θ

(
y

Q2
, µJ

)]
+

1

Q
H2(Q,µ)UH2(Q,µH , µ)

[
U

(0)
J

(
y

Q2
, µJ , µ

)
J̃ (0)

(
y

Q2
, µJ

)]2

(2.39)

×
[
USδδ

(
y

Q
, µS , µ

)
S̃

(2)
δ

(
y

Q
, µS

)
+ USδθ

(
y

Q
, µS , µ

)
S̃

(2)
θ

(
y

Q
, µS

)]
.

Here the UH , US and UJ factors are evolution kernels for the various hard, jet, and soft

functions. For our analysis of H → gg in pure glue QCD their explicit form will be given

later in the text. At LL order we can then use that

J̃
(2)
δ (y/Q2, µJ) = 0 +O(αs) , S̃

(2)
δ (y/Q, µS) = 0 +O(αs) , (2.40)
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which implies that the terms with the UJδδ and USδδ kernels are not needed at this order.

We can also simplify the LL result by using S̃(0) = 1 and J̃ (0) = 1 (we allow here a non-

trivial overall numeric factor from H1 and H2 at tree level). The LL resummed result then

simplifies to

1

σ0

dσ(2) LL

dy
=

2H1

Q2
UH1(Q,µH , µ)U

(0)
J

(
y

Q2
, µJ , µ

)
U

(0)
S

(
y

Q
, µS , µ

)
× UJδθ

(
y

Q2
, µJ , µ

)
J̃

(2)
θ

(
y

Q2
, µJ

)
+
H2

Q
UH2(Q,µH , µ)

[
U

(0)
J

(
y

Q2
, µJ , µ

)]2

USδθ

(
y

Q
, µS , µ

)
S̃

(2)
θ

(
y

Q
, µS

)
.

(2.41)

Finally we can use the RG consistency freedom that says the same result is ob-

tained no matter what value we pick for µ. For example, taking µ = µJ we have

UJδθ(y/Q
2, µJ , µJ) = 0 which removes the first term, and U

(0)
J (y/Q2, µJ , µJ) = 1 which

simplifies the second, leaving

1

σ0

dσ(2) LL

dy
=
H2

Q
UH2(Q,µH , µJ)USδθ

(
y

Q
, µS , µJ

)
S̃

(2)
θ

(
y

Q
, µS

)
. (2.42)

In this form the LL resummed result is obtained completely from the subleading power

soft function. If instead we had chosen µ = µS , then USδθ(y/Q, µS , µS) = 0 would have

removed the second term in eq. (2.41), and the result would have been expressed entirely

from the first term that involves the subleading power jet functions, which can be simplified

using U
(0)
S (y/Q, µS , µS) = 1. This equivalence between different resummed formula is an

expression of the LL consistency result in eq. (2.37) at the level of the cross section. We will

use eq. (2.42) to simplify the resummation for thrust at next-to-leading power in section 4.

3 Solution to the subleading power RG mixing equation

Having illustrated that the renormalization of subleading power jet and soft functions

generically involves mixing with θ-jet and θ-soft operators, in this section we solve a gen-

eral form of the subleading power RG equations involving mixing, including the running

coupling αs(µ). This solution will be sufficient for all cases required in this paper, and we

believe that it will be of general utility for subleading power resummation.

We consider a function, F , which obeys an RG equation of the form of eq. (2.17). To

remove the convolution structure, we work in Fourier (or Laplace) space, with a variable y

conjugate to a momentum variable k of dimension p. Defining

F̃ (y) =

∫
dk e−iky F (k), (3.1)

the RG equation for F̃ is then multiplicative

µ
d

dµ

(
F̃

(2)
δ (y, µ)

F̃
(2)
θ (y, µ)

)
=

(
γ̃11(y, µ) γ12[αs]

0 γ̃22(y, µ)

)(
F̃

(2)
δ (y, µ)

F̃
(2)
θ (y, µ)

)
. (3.2)
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Here, to simplify notation, we have defined

γ̃11(y, µ) = Γ11[αs] log
(
ieγE (y − i0)µp

)
+ γ11[αs] , (3.3)

γ̃22(y, µ) = Γ22[αs] log
(
ieγE (y − i0)µp

)
+ γ22[αs] .

To shorten the equations, we will not explicitly write the branch cut prescription in the

following. The off-diagonal mixing term, γ12[αs], does not contain logarithms.

3.1 General solution

We will solve the subleading power mixing equation without the constraint that γ̃11 = γ̃22,

as occurred in the example of section 2.2. We do this both because we believe that this

solution will be relevant for the renormalization of more general functions at subleading

power, as well as to illustrate how the standard leading power Sudakov exponential arises

as a special limit when γ̃11 = γ̃22, but not more generally.

We can write the all orders solution to the differential equation of eq. (3.2) as

F̃
(2)
δ (y, µ) = Uδδ(y, µ, µ0) F̃

(2)
δ (y, µ0) + Uδθ(y, µ, µ0) F̃

(2)
θ (y, µ0) , (3.4)

with

Uδδ(y, µ, µ0) = exp

[ ∫ µ

µ0

dµ′

µ′
γ̃11(y, µ′)

]
, Uδθ(y, µ, µ0) = Uδδ(y, µ, µ0)X(y, µ, µ0) , (3.5)

where X satisfies

µ
d

dµ
X(y, µ, µ0) = e

−
∫ µ
µ0

dµ′
µ′ γ̃11(y,µ′)

γ12[αs(µ)] e
∫ µ
µ0

dµ′
µ′ γ̃22(y,µ′)

, (3.6)

and the boundary condition X(y, µ0, µ0) = 0. Solving for X, we have

X(y, µ, µ0) =

∫ µ

µ0

dµ
′′

µ′′
e
−

∫ µ′′
µ0

dµ′
µ′ γ̃11(y,µ′)

γ12[αs(µ
′′)] e

∫ µ′′
µ0

dµ′
µ′ γ̃22(y,µ′)

(3.7)

=

∫ µ

µ0

dµ
′′

µ′′
γ12[αs(µ

′′)] exp

(
−
∫ µ′′

µ0

dµ′

µ′
[γ̃11(y, µ′)− γ̃22(y, µ′)]

)
.

We can derive a closed analytic form for X order by order in the anomalous dimensions,

including the running coupling. For the remainder of this section we consider the solution

at LL order, where the anomalous dimensions take the form

γ̃ii(y, µ) = Γ0
ii

αs(µ)

4π
log

(
µp

µpy

)
, γ12[αs] = γ0

12

αs(µ)

4π
, (3.8)

where Γ0
11, Γ0

22, γ0
12 are numbers, and we have defined the mass dimension 1 variable µy by

1

µpy
≡ eγE i(y − i0) . (3.9)

Note that at LL order we need only the logarithmic term for the diagonal anomalous

dimensions γ̃11(y, µ) and γ̃22(y, µ). The non-logarithmic term is needed for the off-diagonal
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term γ12[αs] because of the fact that the boundary terms in eq. (3.4) start at different

orders, F̃
(2)
δ (y, µ0) ∼ O(αs) and F̃

(2)
θ (y, µ0) ∼ O(α0

s).

To include the effects of running coupling, we use the standard approach of switching

to an integration in αs instead of µ through the change of variables

dµ

µ
=

dαs
β[αs]

. (3.10)

At LL-order, we can use the LL β function which gives

dµ

µ
= −2π

β0

dαs
α2
s

, β0 =
11

3
CA −

4

3
TFnf , (3.11)

We also rewrite the logarithm appearing in the anomalous dimension as

log

(
µ

µy

)
= −2π

β0

∫ αs(µ)

αs(µy)

dα′s
(α′s)

2
=

2π

β0

(
1

αs(µ)
− 1

αs(µy)

)
=

2π

β0αs(µy)

(
αs(µy)

αs(µ)
− 1

)
.

(3.12)

We then have

Uδδ(y, µ, µ0) = exp

{
Γ0

11

∫ µ

µ0

dµ′

µ′

(
αs(µ

′)

4π

)
log

(
µ
′p

µpy

)}
(3.13)

= exp

[
pπΓ0

11

β2
0αs(µ0)

(
1

r
− 1 + log r

)](
µpy
µp0

)Γ0
11

2β0
log(r)

,

where

r ≡ αs(µ)

αs(µ0)
, (3.14)

and at this order we take the boundary conditions

F̃
(2)
δ (y, µ0) = 0 , F̃

(2)
θ (y, µ0) =

1

i(y − i0)
. (3.15)

Recall that 1/i(y − i0) is the Fourier transform of θ(k). Thus at LL the solution becomes

F̃
(2)LL
δ (y, µ) = Uδθ(y, µ, µ0)

1

i(y − i0)
, (3.16)

with the evolution kernel given by

ULL
δθ (y, µ, µ0) = exp

[
pπΓ0

11

β2
0αs(µ0)

(
1

r
− 1 + log r

)](
µpy
µp0

)Γ0
11

2β0
log(r)

XLL(y, µ, µ0) . (3.17)

Using eqs. (3.11) and (3.12) we can compute X(y, µ, µ0) in terms of the running coupling as

X(y, µ, µ0) = − γ
0
12

2β0

∫ αs(µ)

αs(µ0)

dα′s
α′s

exp

{
pπ

β2
0

(
Γ0

11− Γ0
22

)∫ α′s

αs(µ0)

dα′′s
α′′s

(
1

α′′s
− 1

αs(µy)

)}

= − γ
0
12

2β0

∫ αs(µ)

αs(µ0)

dα′s
α′s

exp

{
pπ

β2
0

(
Γ0

11− Γ0
22

) [ 1

αs(µ0)
− 1

α′s
− 1

αs(µy)
log

α′s
αs(µ0)

]}
= − γ

0
12

2β0

∫ φ(µ0)

φ(µ)

dφ′

φ′
exp

{
φ(µ0)− φ′ − φ(µy) log

φ(µ0)

φ′

}
, (3.18)
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where in the last line we used the definition

φ(µ) ≡ pπ(Γ0
11 − Γ0

22)

β2
0 αs(µ)

. (3.19)

The final integral gives the LL solution

XLL(y, µ, µ0) = − γ
0
12

2β0
eφ(µ0)

[
r−φ(µy)E

(
1− φ(µy), φ(µ)

)
− E

(
1− φ(µy), φ(µ0)

)]
, (3.20)

where E(n, z) is the exponential integral function

E(n, z) =

∫ ∞
1

dt

tn
e−zt . (3.21)

Plugging these results into eq. (3.4) we obtain the general solution to the subleading RG

at LL order in terms of the results in eqs. (3.13) and (3.20):

F̃
(2)
δ (y, µ)LL = ULL

δδ (y, µ, µ0)XLL(y, µ, µ0)
1

i(y − i0)
. (3.22)

For illustration we can take the limit without the running coupling, set µ0 = µy, and

assume3 Γ0
11 > Γ0

22 which gives

ULLδθ (y, µ, µy)
∣∣∣
αs(µ)=αs

= γ0
12

αs
8π

√
π

∆Γ
Erf

[√
∆Γ log

µ

µy

]
exp

[
pΓ0

11

αs
8π

log2 µ

µy

]
, (3.23)

where ∆Γ ≡
(
αs
8π

)
p
(
Γ0

11 − Γ0
22

)
and Erf is the error function, Erf(x) = (2/

√
π)
∫ x

0 e
−t2dt

which expanded around x = 0 reads Erf(x) = 2x/
√
π− 2x3/(3

√
π) +O(x5). The kernel in

eq. (3.23) is easily interpreted as the standard Sudakov factor with fixed coupling multiplied

by the error function arising from the integral over the difference of Sudakov exponentials

in eq. (3.7). The solutions in eqs. (3.17) and (3.23) emphasize that there is a closed form

solution in terms of elementary functions, and that in the most general case we will not

necessarily get a simple Sudakov exponential at subleading power. We also emphasize that

in all the LL results γ0
12 appears only as an overall factor.

3.2 Solution with equal diagonal entries

To gain further insight into the form of the LL solution to the subleading power RG it is

instructive to restrict our attention to the case Γ0
11 = Γ0

22 which is the relevant one for the

subleading soft and jet functions considered in section 2. With Γ0
11 = Γ0

22, we have φ = 0

so that X simplifies to

XLL(y, µ, µ0)
∣∣
Γ0

11=Γ0
22

= − γ
0
12

2β0

∫ αs(µ)

αs(µ0)

dα′s
α′s

= − γ
0
12

2β0
log r , (3.24)

3Note that we made no assumption on the signs of the Γ0
11 and Γ0

22 which can be negative. If Γ0
11 < Γ0

22,

the result involves an imaginary error function (Erfi) instead of the error function (Erf).
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where r was defined in eq. (3.14) and the evolution kernel simplifies to

ULL
δθ (y, µ, µ0)

∣∣
Γ0

11=Γ0
22

= − γ
0
12

2β0
log r exp

[
pπΓ0

11

β2
0αs(µ0)

(
1

r
− 1 + log r

)](
µpy
µp0

)Γ0
11

2β0
log(r)

.

(3.25)

Therefore with Γ0
11 = Γ0

22 we recover a simple Sudakov evolution at LL. For this case the

final expression for the LL resummed function in position space is

F̃
(2)LL
δ (y, µ) = − γ

0
12

2β0
log r exp

[
pπΓ0

11

β2
0αs(µ0)

(
1

r
− 1 + log r

)](
µpy
µp0

)Γ0
11

2β0
log(r)

1

i(y − i0)
.

(3.26)

To obtain the expression for F
(2)LL
δ (k, µ) we transform eq. (3.26) back to momentum

space which gives

F
(2)LL
δ (k, µ) = ULL

δθ (k, µ, µ0) θ(k) , (3.27)

where the evolution kernel is obtained with the simple replacement µpy → k,

ULL
δθ (k, µ, µ0) = − γ

0
12

2β0
log r exp

[
pπΓ0

11

β2
0αs(µ0)

(
1

r
− 1 + log r

)](
k

µp0

)Γ0
11

2β0
log(r)

. (3.28)

Further details about why this simple replacement suffices at LL are given in appendix A.

For concreteness, let us now consider the case where the subleading function F
(2)
δ (k, µ)

is the subleading power soft function of eq. (2.7). The soft function depends on a momentum

variable of dimension p = 1 and from eqs. (2.20) and (2.21) we have that for S
(2)
g,δ (k, µ) the

anomalous dimensions are4

γ̃11(k, µ) = γ̃22(k, µ) = γSg (k, µ) =⇒ Γ0
11 = Γ0

22 = −4Γg,0cusp = −16CA , (3.29)

γ12[αs] = 4Γgcusp[αs] =⇒ γ0
12 = 4Γg,0cusp = 16CA .

Using these results in eq. (3.28) we obtain

S
(2)LL
g,δ (k, µ) = −θ(k)

2Γg,0cusp

β0
log r exp

[
− 4πΓg,0cusp

β2
0αs(µ0)

(
1

r
− 1 + log r

)](
k

µ0

)−2Γ
g,0
cusp
β0

log(r)

.

(3.30)

4The minus sign for Γ0
11 comes from the fact that Laplace transforming eq. (2.9) we have

1

µ

[
µ θ(k)

k

]
+

→ − log(yeγEµ) ,

therefore giving

−4Γg,0cusp︸ ︷︷ ︸
Γ0
11

αs
4π

log(yeγEµ) .
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We can resum logarithms in the subleading power soft function by running from the canon-

ical scale of the soft function µ0 = µS = Qτ , to an arbitrary scale µ. Hence,

S
(2)LL
g,δ (Qτ, µ) = − θ(τ)

2Γg,0cusp

β0
log

(
αs(µ)

αs(Qτ)

)
(3.31)

× exp

[
− 4πΓg,0cusp

β2
0αs(Qτ)

(
αs(Qτ)

αs(µ)
− 1 + log

αs(µ)

αs(Qτ)

)]
.

If we ignore the running of the coupling, this simplifies to

S
(2)LL
g,δ (Qτ, µ)

∣∣∣
αs(µ)=αs

= θ(τ)4Γg,0cusp

(
αs
4π

)
log

(
µ

Qτ

)
exp

[
−2Γg,0cusp

(
αs
4π

)
log2

(
µ

Qτ

)]
,

(3.32)

where the physical interpretation is quite clear. Expanding this structure perturbatively

in αs, we have

S
(2)
g,δ (Qτ, µ)

∣∣∣
αs(µ)=αs

= θ(τ)

[(
αs
4π

)
γ0

12 log

(
µ

Qτ

)
+

1

2

(
αs
4π

)2

γ0
12Γ0

11 log3

(
µ

Qτ

)
+ · · ·

]
.

(3.33)

We see that the first single logarithm is generated by the mixing into the θ-function op-

erators, and then this is dressed by a double logarithmic Sudakov that is driven by the

diagonal entries in the mixing matrix, namely the cusp anomalous dimensions. This shows

again how the single log appearing in the fixed order expansion is generated through RG

evolution, namely through operator mixing. Therefore, as desired, all large logarithms are

generated through RG evolution, and they are resummed to all orders by solving the sub-

leading power RG equation with mixing. We also see that the operator mixing is absolutely

crucial, since the entire LL result comes from the mixing which starts the evolution.

For completeness, we present also the result for the subleading jet function after LL

evolution. The anomalous dimensions are derived in eqs. (2.20) and (2.21) and are related

to the soft function ones via RG consistency.

γ̃11(k, µ) = γ̃22(k, µ) = γJg (k, µ) =⇒ Γ0
11 = Γ0

22 = 2Γg,0cusp = 8CA ,

γ12[αs] = −1

2
γS0
δθ =⇒ γ0

12 = −2Γg,0cusp = −8CA . (3.34)

The canonical scales for J
(2)
g,δ (s, µ) are given by

s = µ2
J = µ2

0 = Q2τ =⇒ p = 2 . (3.35)

Therefore, we find

J
(2)
g,δ (Q2τ, µ) = θ(τ)

Γg,0cusp

β0
log

(
αs(µ)

αs(Q
√
τ)

)
(3.36)

× exp

[
4πΓg,0cusp

β2
0αs(Q

√
τ)

(
αs(Q

√
τ)

αs(µ)
− 1 + log

αs(µ)

αs(Q
√
τ)

)]
.

Therefore, as with the case of the soft function, our analytic solution of the subleading

power mixing equation resums the logarithms at subleading power.
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4 Leading logarithmic resummation at next-to-leading power

In this section we will apply the formalism for the resummation of subleading power jet

and soft functions developed in the previous sections to resum the leading logarithms for

thrust in pure glue H → gg. This is a standard example used to study gluon jets. We have

chosen to restrict ourselves to the case of pure glue to demonstrate in the simplest setting

the resummation of subleading power logarithms for a physical process and to highlight

the role of the θ-jet and θ-soft operators and operator mixing. The inclusion of fermion

operators and the extension to other processes is interesting, and will be considered in

future work.

The complete structure of power corrections for dijet event shapes in SCET has been

described in detail in the literature, where all relevant ingredients have been studied. In

the effective theory, there are three sources of power corrections5

• Subleading power hard scattering operators [28–31, 68]

• Subleading power expansion of measurement operators and kinematics [15, 21, 29]

• Subleading power Lagrangian insertions [1–5, 59, 69]

It was shown in [59] that there are no radiative contributions for pure glue H → gg at

NLP at LL order. Therefore we need only consider the first two categories, namely hard

scattering operators, and kinematic and measurement expansions, to derive the leading

logarithms. We therefore write the cross section as

1

σ0

dσ
(2)
LL

dτ
=

1

σ0

dσ
(2)
kin,LL

dτ
+

1

σ0

dσ
(2)
hard,LL

dτ
, (4.1)

where we have put the subscript ‘LL‘ to emphasize that we will only give LL expressions

for the factorization of the components, and will not include operators that first contribute

at higher logarithmic order. In the next two sections we will explicitly work out the

factorization and resummation for these two contributions. In both cases the resummation

reduces to the mixing equation solved in section 3, allowing us to immediately derive the

resummed result for thrust at subleading power.

It is important to emphasize before continuing that the exact split between the terms

in eq. (4.1) depends on the choice of momentum routing used to setup the factorization,

although the final result for the factorization does not. For example, terms involving

ultrasoft derivatives in T -products or hard scattering operators can in certain cases be

eliminated from the hard term through a choice of momentum routing, and will then

appear as kinematic corrections. However, subleading power corrections from operators

with additional ultrasoft fields are unambiguously in the hard component. We will define

a convenient split in section 4.1.

5The decomposition into these different classes of power corrections depends on the particular organiza-

tion of the effective theory being used, but the final result does not.
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4.1 Kinematic and observable corrections

We begin by considering corrections from the expansion of the phase space (kinematics) and

the thrust observable definition. These were also considered in the fixed order calculations

of [21, 25], but here we will show how they can be treated to all orders as is required for

factorization and resummation. In [29] it was shown through explicit calculation that the

contributions from the thrust measurement function in our formalism do not contribute at

LL order. We therefore only need to consider corrections to the phase space here.

4.1.1 Factorization

At subleading power, in addition to considering the expansion of the matrix elements which

enter into the cross section, one must also consider power corrections arising from kinematic

constraints on the phase space which can be neglected at leading power. To understand

this issue we begin by writing the N particle phase space

σ = LH

∫ N∏
i=1

d̄dpiC(pi)(2π)4δ4

(
q −

∑
pi

)
|M|2 . (4.2)

Here q2 = Q2 is the momentum of the scattering, d̄dp = ddp/(2π)d, C(p) = 2πδ(p2)θ(p0)

is the on-shell particle constraint, and LH is the leptonic tensor. We now consider a

final state consisting of n-collinear particles with total sector label mometum n̄ · kn, n̄-

collinear particles with total sector label mometum n·kn̄, and soft particles with total sector

momentum ks. Since n · ks ∼ n̄ · ks ∼ λ2, at leading power, we can expand the momentum

conserving delta function, and the incoming momentum q fixes the large momentum of the

collinear sector, namely

δ

(
n · q −

∑
n · pi

)
δ

(
n̄ · q −

∑
n̄ · pi

)
= δ(n · q − n · kn̄) δ(n̄ · q − n̄ · kn) . (4.3)

However, when working at subleading powers, we need to consider the power corrections

to this formula, which we refer to as kinematic corrections. These can be organized in a

number of different ways. Here we describe a way which seems particularly convenient for

the process we are considering.

In SCET, exact momentum conservation for both label and residual components is

implemented in all diagrams. Residual momenta must then be routed in the diagram,

and unlike at leading power, their effects on the kinematics must be kept to the required

power. This routing can be chosen arbitrarily, as long as it is done consistently for all

contributions.6 As an example, consider the routing of the residual momentum from the

soft sector. The most naive routing is shown in figure 1(a). Here we imagine that the soft

sector has a total momentum ks. This momentum must be extracted from the collinear

sectors. The residual n · ks ∼ λ2 and n̄ · ks ∼ λ2 must be kept in the calculations of the

collinear sector when working at O(λ2), complicating the calculations by requiring us to

include ∂us acting on collinear lines. Here we can still neglect the residual perp momentum

6In particular, as mentioned above, this routing determines whether some contributions enter as kine-

matic or hard power corrections in the decomposition of eq. (4.1).
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(a) (b)

Figure 1. Two different routings for the soft momentum. In a) the additional soft momentum

is routed into the collinear sectors. In b) the additional momentum is routed in through the hard

scattering vertex, simplifying the large momentum routed into the collinear sectors.

of the soft sector, since this enters first as k2
⊥ ∼ λ4, which is beyond the order to which

we work.

A more convenient routing is shown in figure 1(b). Here, we instead route q + ks into

the hard scattering vertex. The collinear sectors then have exactly n · q and n̄ · q as their

large momentum contributions, and all kinematics in the final state is exact. All kinematic

corrections for this routing can be obtained by expanding the phase space factor in the

leptonic tensor, which takes the form

1

(Q+ ks)4
=

1

Q4
− 2

n · ks
Q5

− 2
n̄ · ks
Q5

+O(τ2) . (4.4)

We therefore introduce the measurement functions

n · k̂s =
∑
i∈S

n · kis , n̄ · k̂s =
∑
i∈S

n̄ · kis , (4.5)

where the sum is over all soft particles. To LL accuracy we can make the replacement

n · k̂s → n · k̂sθ(n̄ · k̂s − n · k̂s) and n̄ · k̂s → n̄ · k̂sθ(n · k̂s − n̄ · k̂s), since after multiplying

the eikonal integrand 1/(l+l−) by l+ (or l−), the divergence responsible for the anomalous

dimension comes only from the region of phase space where l− (or l+) is unconstrained by

the measurement. These kinematic corrections therefore combine to give the full thrust

measurement function

n · k̂sθ(n̄ · k̂s − n · k̂s) + n̄ · k̂sθ(n · k̂s − n̄ · k̂s) = Qτ̂s. (4.6)

The n · kn and n̄ · kn̄ residual momentum of each of the two collinear sectors can also be

routed into the current in the exact same manner, leading to power correction given by

Qτ̂n and Qτ̂n̄ respectively.

We therefore find that the kinematic corrections arising from the phase space expansion

give exactly the power suppressed jet and soft functions considered in section 2, namely

J
(2)
g,δ (s, µ) =

(2π)3

(N2
c − 1)

〈0|Bµan⊥(0) δ(Q+ P̄)δ2(P⊥) s δ

(
s

Q
− T̂

)
Bµan⊥(0)|0〉 , (4.7)

S
(2)
g,δ (k, µ) =

1

(N2
c − 1)

tr〈0|YTn̄ (0)Yn(0)k δ(k − T̂ )YTn (0)Yn̄(0)|0〉 .
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Indeed, this is one of the reasons why these particular subleading power jet and soft func-

tions were used as an example in section 2.

We can now write down an all orders factorization for the full contribution from kine-

matic corrections to the cross section at O(τ)

dσ
(2)
kin,LL

dτ
= nkin

∫
dsndsn̄dk

Q2
δ̂τH

(0)(Q,µ)J
(2)
g,δ (sn, µ)J (0)

g (sn̄, µ)S(0)
g (k, µ) (4.8)

+ nkin

∫
dsndsn̄dk

Q2
δ̂τH

(0)(Q,µ)J (0)
g (sn, µ)J

(2)
g,δ (sn̄, µ)S(0)

g (k, µ)

+ nkin

∫
dsndsn̄dk

Q
δ̂τH

(0)(Q,µ)J (0)
g (sn, µ)J (0)

g (sn̄, µ)S
(2)
g,δ (k, µ) .

The factorization for the kinematic corrections is therefore exactly the form considered in

eq. (2.3). We have explicitly put the subscript LL, to emphasize that beyond LL there

would be additional contributions. Here the integer constant

nkin = −2 , (4.9)

is a normalization factor, effectively the number of times this contribution enters, which

is obtained from eq. (4.4). We have extracted it as a constant so as to be able to clearly

track it, and distinguish it from other integer factors that will appear.

4.1.2 Resummation

Since the kinematic contributions give exactly the illustrative example considered in sec-

tion 2, we can immediately perform the resummation of logarithms for this contribution

using the solution to the mixing RG equation given in section 3. For concreteness, we

can run both the soft and hard functions to the jet scale, µJ = Q
√
τ from their natu-

ral scales, µH = Q and µS = Qτ . At leading log order we can set H(0)(Q,Q) = 1 and

S
(2)
g,θ (Qτ,Qτ) = θ(τ). We therefore have

1

σ0

dσ
(2)
kin,LL

dτ
= −2UH(Q,Q

√
τ)USg,δθ(Qτ,Q

√
τ) θ(τ) , (4.10)

Here the hard evolution kernel is that of the leading power hard function.

UH(Q,Q
√
τ) = exp

{
− 4πΓg,0cusp

β2
0αs(Q)

[
αs(Q)

αs(Q
√
τ)
− 1 + log

(
αs(Q

√
τ)

αs(Q)

)]}
. (4.11)

where Γg,0cusp = 4CA is the one-loop gluon cusp anomalous dimension. The resummed soft

function is given by the combination

S
(2)
g,δ (Qτ, µ = Q

√
τ) = USg,δθ(Qτ,Q

√
τ)S

(2)
g,θ (Qτ, µ0 = Qτ) , (4.12)

and by taking the result of eq. (3.31) with µ = Q
√
τ , we have that the evolution kernel for

the soft function at LL reads

US LL
g,δθ (Qτ,Q

√
τ) = − 2Γg,0cusp

β0
log

(
αs(Q

√
τ)

αs(Qτ)

)
(4.13)

× exp

{
− 4πΓg,0cusp

β2
0αs(Qτ)

[
αs(Qτ)

αs(Q
√
τ)
− 1 + log

(
αs(Q

√
τ)

αs(Qτ)

)]}
.
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Plugging these expressions for the evolution kernels into eq. (4.10), we find that the re-

summed result for the kinematic contributions is given by

1

σ0

dσ
(2)
kin,LL

dτ
= θ(τ)

4Γg,0cusp

β0
log

(
αs(Q

√
τ)

αs(Qτ)

)
exp

{
−4πΓg,0cusp

β2
0

[
2

αs(Q
√
τ)
− 1

αs(Qτ)

− 1

αs(Q)
+

1

αs(Qτ)
log

(
αs(Q

√
τ)

αs(Qτ)

)
+

1

αs(Q)
log

(
αs(Q

√
τ)

αs(Q)

)]}
. (4.14)

Simplifying to the case of a fixed coupling and plugging in Γg,0cusp = 4CA, the kinematic

contribution at leading log reads

1

σ0

dσ
(2)
kin,LL

dτ
=
(αs

4π

)
16CAθ(τ) log(τ)e−

αs
4π

Γg,0cusp log2(τ) . (4.15)

This is a remarkably simple result, involving double logarithmic asymptotics governed by

the cusp anomalous dimension. However, this is not surprising since these corrections arise

from a multiplication of the leading power result by τ .

4.2 Hard scattering operators

The second class of contributions that are required for the LL description at NLP arise from

corrections to the scattering amplitudes themselves, which in this case are described by

subleading power hard scattering operators in the EFT. A complete basis of hard scattering

operators at O(λ2) for H → gg was derived in [30].

At subleading powers, it becomes important to work in terms of gauge invariant fields,

even at the ultrasoft scale. Leading power interactions between soft and collinear particles

in the effective theory can be decoupled to all orders using the BPS field redefinition [43],

which for the gluon operator reads

Baµn⊥ → Y
ab
n B

bµ
n⊥ . (4.16)

This factorizes the Hilbert space into separate soft and collinear sectors. After performing

the BPS field redefinition, operators in the effective theory can be written in terms of gauge

invariant soft and collinear gluon fields

gBaµus(i) =

[
1

ini · ∂us
niνiG

bνµ
us Ybani

]
, gBAµni⊥ =

[
1

P̄
n̄iνiG

Bνµ⊥
ni WBA

ni

]
, (4.17)

where Y and W are adjoint soft and collinear Wilson lines (see eq. (2.6)). Due to the

presence of the Wilson lines, these gauge invariant fields have Feynman rules at every

order in αs. An identical construction exists for collinear and soft fermions, although they

will not be needed here since we focus on pure Yang-Mills theory.

The subleading power operators that contribute to the LL cross section involve either

an insertion of the Bn⊥, or Bus operators. The relevant operators, along with their tree level

matching coefficients which are required for LL resummation, are given in table 1. The

leading power operator is also given for convenience. An important simplification which
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Operator Tree Level Matching Coefficient

O(0)
B = C(0)δabBa⊥n̄,ω2

· Bb⊥n̄,ω1
H C(0) = −2ω1ω2 .

O(2)
PB1 = C

(2)
PB1if

abcBan⊥,ω1
·
[
P⊥Bbn̄⊥,ω2

·
]
Bcn̄⊥,ω3

H C
(2)
PB1 = −

(
1
2

)
4g
(

2 + ω3
ω2

+ ω2
ω3

)
O(2)
PB2 = C

(2)
PB2if

abc
[
P⊥ · Ban̄⊥,ω3

]
Bbn⊥,ω1

· Bc⊥n̄,ω2
H C

(2)
PB2 = 4g

(
2 + ω3

ω2
+ ω2

ω3

)
O(2)
B(us(n)) = C

(2)
Bn̄(us)

(
ifabd

(
YTn Yn̄

)dc)(Ban⊥,ω1
· Bbn̄⊥,ω2

n̄ · gBcus(n)

)
C

(2)
Bn̄(us) = −2ω2

O(2)
B(us(n̄)) = C

(2)
Bn(us)

(
ifabd

(
YTn̄ Yn

)dc)(Ban⊥,ω1
· Bbn̄⊥,ω2

n · gBcus(n̄)

)
C

(2)
Bn(us) = −2ω1

Table 1. Hard scattering operators that contribute to the LL cross section to O(λ2), along with

their tree level matching coefficients. These operators and matching coefficients were derived in [30].

occurs for the soft operators is that their Wilson coefficients are fixed by reparametrization

invariance (RPI) [18]. In particular, we have the all orders relation

C
(2)
Bn̄(us) = −∂C

(0)

∂ω1
, (4.18)

and similarly for n↔ n̄. As we will see, this will provide a significant simplification, since

it fixes the anomalous dimensions of these soft operators. This relationship can be viewed

as a manifestation of the Low-Burnett-Kroll theorem [70, 71], where the connection with

our SCET based approach has been explained in detail in [18].

The operators which contribute to the fixed order leading logarithms were identified

in the calculation of [25] as those which contribute a logarithm at the lowest order in

perturbation theory. The leading logarithms to all orders are then obtained by the renor-

malization of these contributions, which dresses them with an all orders resummation of

double logarithms. To prove that this is indeed the case, we can assume that there exists

a jet or soft function that first contributes at some higher order, for concreteness α2
s, and

that this contribution is leading logarithmic, and hence contributes as α2
s log3(τ). With our

understanding of the renormalization of subleading jet and soft functions, we know that

this implies that this function must be renormalized by a subleading power θ-function type

operator, since it can’t be a self renormalization. Taking µd/dµ, the anomalous dimension

of such a LL mixing contribution would have to be of the form γ ∼ log2(µ/µ0). However,

it is know that anomalous dimensions in SCET can be at most linear in logarithms, which

is required by RG consistency. This argument was first presented in [72] in the context of

leading power RG consistency. Since this argument relies only on the additive properties

of the logarithm, it applies also here. This implies that the operators appearing in table 1

are sufficient to derive the LL resummation.

4.2.1 Factorization

With an understanding of the operators that contribute, it is now straightforward to write

down a factorization for their contributions, which is sufficient for the LL resummation.

Detailed accounts of the factorization of matrix elements at subleading power have been
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given in [6, 7, 15, 59, 73]. Since the focus of this paper is on the LL resummation through

the mixing with the θ-jet and θ-soft operators, here we simply present the final result for

the factorization. Since there are only a small number of operators that appear due to our

restriction to a pure glue final state we find a simple LL factorization formula

1

σ0

dσ
(2)
hard,LL

dτ
= nhard

∫
dsndsn̄dk

Q
δ̂τHn·B(Q,µ)S

(2)
n̄Bus(k, µ)J (0)

g (sn, µ) J (0)
g (sn̄, µ) (4.19)

+ nhard

∫
dsndsn̄dk

Q2
δ̂τ

∫
dω HBP(ω,Q, µ)S(0)

g (k, µ)J
(2)
BP(sn̄, ω, µ)J (0)

g (sn, µ) .

Here

nhard = 2 , (4.20)

is a combinatorial factor from the equality of S
(2)
n̄Bus and S

(2)
nBus in the first line, and from

correcting both jet functions and taking the symmetric combination in the second. This

factorization involves a power suppressed soft function

S
(2)
n̄Bus(k, µ) =

ifabd

N2
c − 1

tr〈0|(YTn (0)Yn̄(0))dcn̄ · gBcus(n)(0)δ(k − T̂ )(Yn(0)YTn̄ (0))ab|0〉 , (4.21)

which arises from the insertion of the Bus field into the standard leading power soft function.

Here we have absorbed the g from the matching coefficient into the soft function. As with

the previous subleading power soft functions we have defined in eqs. (2.7) and (2.12), this

subleading power soft function has mass dimension zero. This factorization also involves a

subleading power jet function

J (2)
BP (s, ω, µ) =

(2π)3

(N2
c − 1)

Q2

ω(Q− ω)
(4.22)

× 〈0|[B⊥n̄,ω(0)[gB⊥n̄(0) · P†⊥]δ(Q+ P̄)δ2(P⊥) δ

(
s

Q
− T̂

)
B⊥n̄(0)|0〉 ,

which arises from the hard scattering operators involving an additional B⊥ field, and P⊥
operator. We have again absorbed the g from the matching coefficient into the definition

of the jet function, and as with the subleading power jet functions of eqs. (2.7) and (2.14)

we have defined this jet function to have mass dimension 0. This jet function involves a

convolution in an additional label variable, which is the label momentum of one of the B⊥
fields. However, at LL this does not play a role in its renormalization.

4.2.2 Resummation

Using the factorized expression for the hard scattering operators, we can resum their con-

tribution to the cross section to LL accuracy. To simplify the LL analysis as much as

possible, we can exploit consistency relations in the RG equations. As mentioned in sec-

tion 2.3, since the subleading power jet and soft functions start as O(αs), we can always

choose to eliminate one of them. In the present case, it is convenient to choose to run to

the jet scale, where

J
(2)
BP(s, ω, µ) = 0 +O(αs) . (4.23)

With this choice, we do not need to consider the power suppressed jet functions.
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We do, however, have to consider the renormalization of the subleading power soft

functions, and the hard function Hn̄·B. However, as described in section 4.2, the anomalous

dimension of this hard function is fixed by RPI due to the relation of eq. (4.18). This can

be seen by differentiating the RG equation for the leading power Wilson coefficient, whose

all orders structure is

µ
d

dµ
C(0)(ω1, ω2, µ) = γC(ω1, ω2, µ)C(0)(ω1, ω2, µ) . (4.24)

Taking the derivative with respect to ω1, and switching the order of differentiation, we find

µ
d

dµ

[
∂

∂ω1
C(0)(ω1, ω2, µ)

]
=

∂

∂ω1
[γC(ω1, ω2, µ)]C(0)(ω1, ω2, µ) (4.25)

+ γC(ω1, ω2, µ)
∂

∂ω1
C(0)(ω1, ω2, µ) .

The all orders form of the anomalous dimension for the leading power matching coefficient

is given by

γC(ω1, ω2, µ) = Γgcusp[αs(µ)] log

(
−ω1ω2

µ2

)
+ γC [αs(µ)] , (4.26)

where the second term γC [αs(µ)] is the non-cusp anomalous dimension, which contains no

logarithms, and drives the single logarithmic evolution. The leading double logarithmic

evolution is governed by the cusp component. The differentiation in the first component

removes the double log component, and therefore we have that to LL accuracy

µ
d

dµ

[
∂

∂ω1
C(0)(ω1, ω2, µ)

]
= γC(ω1, ω2, µ)

[
∂

∂ω1
C(0)(ω1, ω2, µ)

]
. (4.27)

This shows that the LL RG evolution for the subleading power hard scattering operators

involving a Bus is identical to that for the leading power hard function, and in particular,

is driven by the cusp anomalous dimension.

Finally, the self mixing anomalous dimension of the subleading power soft function is

also fixed by RG consistency. In particular, the jet functions appearing in the factorization

of eq. (4.19) are the leading power jet functions, and their anomalous dimensions are given

in eq. (2.9). Combining this with the known anomalous dimension for the hard function, it

implies by RG consistency relations of section 2.3 that the self mixing anomalous dimension

of the subleading power soft function is equal to that of the leading power soft function

to LL.

We therefore only need to compute the mixing anomalous dimensions into the θ func-

tion operators for the soft functions involving the Bus operators. Computing the one loop

matrix element of the power suppressed soft function, we find

S
(2)
n̄Bus(k, µ)

∣∣∣
O(αs)

= + (4.28)

= g2

(
µ2eγE

4π

)ε
CA

∫
ddl

(2π)d

(
2

l+
+

2

l−

)
2πδ(l2)θ(l0)kδ(k −Qτ̂)

= 4CA
αs(µ)

4π
θ(k)

(
1

ε
+ log

(
µ2

k2

)
+O(ε)

)
.
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As with the illustrative example of eq. (2), we see that this soft function mixes with a

θ-function operator. The RG consistency relations of section 2.3 imply that the all orders

structure of the function being mixed into is that of the adjoint soft function θ-function

operator of eq. (2.12). We note that this is a highly non-trivial statement, which would be

difficult to prove in perturbation theory, but is dictated by the RG consistency equations

of the EFT. We therefore find a 2 × 2 mixing structure

µ
d

dµ

(
Sn̄Bus(k, µ)

Sg,θ(k, µ)

)
=

∫
dk′

(
γSn̄·Bus(k − k

′, µ) γn̄·Busθ δ(k − k′)
0 γSg,θθ(k − k′, µ)

)(
Sn̄Bus(k

′, µ)

Sg,θ(k
′, µ)

)
,

(4.29)

where to LL accuracy,

γSn̄·Bus(k, µ) = 4Γg0cusp

αs(µ)

4π

1

µ

[
µ θ(k)

k

]
+

, (4.30)

γn̄·Busθ = 8CA
αs(µ)

4π
.

This therefore determines all the anomalous dimensions that are required for LL resum-

mation at NLP. Since the RG equation takes exactly the form already solved in section 3,

we can immediately use those results to perform the resummation.

Just as for the kinematic contribution, here we run all the functions to the jet scale,

µ2
J = Q2τ . At their natural scales, µH = Q and µS = Qτ , the hard and the soft function

are respectively7 Hn̄·B(Q,Q) = 1 and S
(2)
g,θ (Qτ,Qτ) = θ(τ). Using nhard = 2 from eq. (4.20),

the hard scattering operator contribution is

1

σ0

dσ
(2)
hard,LL

dτ
= 2UHn̄·B(Q,Q

√
τ)USn̄Bus(Qτ,Q

√
τ) θ(τ) . (4.31)

As was shown above, the hard evolution kernel UHn̄·B(Q,Q
√
τ) is identical to that for the

leading power operator, which is quoted in eq. (4.11). The soft function takes an identical

form to that given in eq. (3.27), but with k = µ0 = Qτ and the anomalous dimensions

from eq. (4.30). Hence, we get

S
(2)LL
g,δ (Qτ,Q

√
τ) = −θ(τ)

8CA
β0

log(r) exp

[
− 4πΓg,0cusp

β2
0αs(Qτ)

(
1

r
− 1 + log(r)

)]
, (4.32)

where here we have

r =
αs(Q

√
τ)

αs(Qτ)
. (4.33)

7Hn̄·B is related to the Wilson coefficient C
(2)

Bn̄(us) of the hard scattering operator. From table 1 we

see that at LP we have |C(0)(Q,Q)|2 = 4Q4, and these factors are contained in the normalization factor

σ0. At subleading power this factor is coming from the interference of O
(2)

Bn̄(us) with O(0), which gives

C
(2)

Bn̄(us)(Q,Q)C(0)(Q,Q) = 4Q3. In eq. (4.19) one can see the extra 1/Q in the prefactor of the factorization

theorem which is precisely the ratio of the tree level subleading Wilson coefficient by the LP one. Thus our

Hn̄·B(Q,Q) is normalized so that it is dimensionless and equal to 1 at tree level.
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Figure 2. Plots of the LP and NLP fixed order and resummed predictions for thrust in pure glue

H → gg, with and without running coupling. In a) we show dσ/dτ and in b) we show τdσ/dτ .

Resummation at LP cures a 1/τ divergence, while resummation at NLP overturns a much weaker

logarithmic divergence, leading to a broader shoulder.

Combining these pieces together, we have

1

σ0

dσ
(2)
hard,LL

dτ
= −θ(τ)

2Γg,0cusp

β0
log

(
αs(Q

√
τ)

αs(Qτ)

)
exp

{
−4πΓg,0cusp

β2
0

[
2

αs(Q
√
τ)
− 1

αs(Qτ)

− 1

αs(Q)
+

1

αs(Qτ)
log

(
αs(Q

√
τ)

αs(Qτ)

)
+

1

αs(Q)
log

(
αs(Q

√
τ)

αs(Q)

)]}
. (4.34)

As with the kinematic contribution to the cross section, we find that the contribution from

hard scattering operators resums at LL accuracy into a Sudakov exponential governed by

the cusp anomalous dimension.

It is important to emphasize that the simplicity of this result is largely due to the

restriction to LL. At LL accuracy the anomalous dimensions do not involve additional

convolution variables in the subleading power jet and soft functions, and are purely mul-

tiplicative in these variables. This significantly simplifies the structure, with the primary

ingredient to achieve renormalization and resummation being the mixing with the θ-jet

and θ-soft functions. Beyond LL, the θ-jet and θ-soft will continue to play an important

role, but the convolution structure will become more complicated.

4.3 Resummed result for thrust in H → gg at next-to-leading power

Having resummed the two different contributions to the cross section in eq. (4.1), we can

now give a resummed result for thrust in pure glue H → gg. Adding together the different

contributions, each of which is dressed by the same Sudakov exponential, we find

1

σ0

dσ
(2)
LL

dτ
=

1

σ0

dσ
(2)
kin,LL

dτ
+

1

σ0

dσ
(2)
hard,LL

dτ

= θ(τ)
8CA
β0

log

(
αs(Q

√
τ)

αs(Qτ)

)
exp

{
−4πΓg,0cusp

β2
0

[
2

αs(Q
√
τ)
− 1

αs(Qτ)
− 1

αs(Q)

+
1

αs(Qτ)
log

(
αs(Q

√
τ)

αs(Qτ)

)
+

1

αs(Q)
log

(
αs(Q

√
τ)

αs(Q)

)]}
. (4.35)
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With a fixed coupling, eq. (4.35) simplifies to

1

σ0

dσ
(2)
LL

dτ

∣∣∣∣
αs(µ)=αs

=
(αs

4π

)
8CAθ(τ) log(τ)e−4CA

αs
4π

log2(τ) . (4.36)

This shows the exponentiation of the subleading power logarithms into a Sudakov form

factor governed by the cusp anomalous dimension, and is one of the main results of this

paper. We note that this result is simply −τ multiplying the LP result with LL resum-

mation. This simplicity is in part related to the fact that we have chosen a simple event

shape example, and is not expected to hold in general at LL, nor beyond LL. In section 5

we will check this result to O(α3
s) by expanding known results for the amplitudes [74–76],

and find complete agreement.

This resummation tames the (integrable) singularity in the subleading power cross

section as τ → 0. A plot of the LL NLP resummed cross section is shown in figure 2, along

with the NLP fixed order results, and the LP results. Results with and without running

coupling are shown. We use αs(mZ) = 0.118 for the running coupling αs(µ), and when

we freeze the coupling, we use αs = αs(mH) = 0.113. The NLP results are multiplied by

a factor of 10 in figure 2 a) and a factor of 5 in figure 2 b) to make them visible. Due to

the fact that the NLP result is not enhanced by a factor of 1/τ it leads to a much broader

result, peaked at large values of τ . This has interesting consequences for the effect of the

running coupling. In particular, at subleading power the running coupling has a much

smaller effect, since the distribution is more suppressed at smaller values of τ . At higher

powers, resummation is not required for the cross section to go to zero as τ → 0, since the

corrections behave as τn logm(τ), with n > 0. Nevertheless, RG equations are still useful

for predicting higher order terms in the perturbative expansion.

5 Subleading power collinear limit and fixed order check

In this section we check our resummed result for thrust to O(α3
s) by explicitly calculating

the power corrections to this order. This is achieved by exploiting a relation between the

LL result and the subleading power collinear limit of the involved amplitudes. We also

discuss flipping around this logic, and using the resummed results to constrain corrections

in the collinear limit at nth-loop order. In particular, for H → ggg we will show that the

same loop corrections dress terms that appear at leading and next-to-leading order in the

power expansion.

The N -loop fixed order result at NLP can be written as [21, 25]

1

σ0

dσ(2,N)

dτ
=
∑
κ

2N−1∑
i=0

cκ,i
εi

(
µ2N

Q2Nτm(κ)

)ε
+ . . . , (5.1)

where the dots involve terms that are first relevant beyond LL order. Our superscript

(j,N) notation denotes the subleading power at order j and loop order N . Here the sum

over κ is over different possible combinations of soft, collinear, or hard particles entering
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the N -loop result, and the power m(κ) appearing in eq. (5.1) depends on this combination.

For example, a single emission at NLP can be either soft, or collinear, and we have

soft: κ = s , m(κ) = 2 , (5.2)

collinear: κ = c , m(κ) = 1 .

For a more detailed discussion see [21, 25]. By demanding cancellation of poles in 1/ε, as

is required for an infrared and collinear safe observable, one can derive relations between

contributions involving different numbers of hard, collinear and soft particles, which were

used in [21, 25] to simplify the NNLO fixed order calculation of the NLP leading logarithms.

In particular, in [21, 25], it was shown that the complete result for the leading logarithms for

thrust can be written at any order purely in terms of the N -loop hard-collinear coefficient

describing a single collinear splitting

1

σ0

dσ(2,N)

dτ
= chc,2N−1 log2N−1 τ + · · · . (5.3)

Here the dots denote subleading logarithms. More precisely, here chc,2N−1 is the result

for the leading 1/ε divergence (as in eq. (5.1)) with N − 1 hard loops correcting a single

collinear splitting. One class of diagram that contributes is

,

but there will also be hard loop corrections to the amplitudes on both sides of the cut. This

relation will allow us to check our result obtained from renormalization group evolution to

O(α3
s) by expanding known results for H → ggg at two loops [76]. In addition, it will also

allow us to use our result for the all orders logarithms in thrust derived from RG evolution

to understand the subleading power collinear limit at higher orders.

5.1 General structure

Before presenting our result for the expanded amplitude squared in the collinear limit, we

begin by reviewing the known IR structure of amplitudes, which we will use to organize

our result. The IR structure of amplitudes is summarized by the dipole formula [77] and

its generalization [78–81], which provides a prediction for all the IR 1/ε poles of scattering

amplitudes at n loops (recall that we use αs/(4π) as the loop expansion parameter). Here

we only need the full QCD amplitude for H → three partons at n-loops

M (n) = M
(n)
dipole +M

(n)
R . (5.4)

Here M
(n)
dipole contains all 1/ε poles, while the remainder part M

(n)
R is finite but still carries

functional dependence on the kinematics that can become singular in certain limits (it
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is typically called the finite term but we will not use this naming scheme here). When

integrating over these regions of phase space, M
(n)
R must be known to all orders in ε, and

does contribute to the LL result. More explicitly, at one-loop, we have

M (1) = I(1)(ε)M (0) +M
(1)
R . (5.5)

Here I(1)(ε) is an operator in color space that can be predicted from the infrared structure

of the scattering process. Using the color-charge operator notation, I(1)(ε) can be written

as [77]

I(1)(ε) =
αs
4π

e−εγE

Γ(1− ε)
∑
i

1

T2
i

(
T2
i

1

ε2
+ γi

1

ε

)∑
j 6=i

Ti ·Tj

(
µ2e−iπ

2pi · pj

)ε
, (5.6)

where Ti is the color-charge operator of massless parton i, γi is the associated quark/gluon

anomalous dimension, and we assume all QCD partons are outgoing for simplicity. In

this paper, we have focused only on deriving a leading logarithmic result for thrust at

subleading power. One obvious source of leading logarithmic contributions comes from

the leading divergent terms in the amplitudes [21, 25], which exponentiate trivially. For

H → g(p1)g(p2)g(p3) in pure glue QCD, we have

Mdipole,LL = exp

[
−αs

4π

CA
ε2

((
− µ

2

s12

)ε
+

(
− µ

2

s13

)ε
+

(
− µ

2

s23

)ε)]
M (0) , (5.7)

where sij = (pi + pj)
2. The subscript LL denotes that only terms contributing to thrust at

LL are kept. Note that eq. (5.7) contains not only divergent terms, but also finite terms

through the expansion of ε. After squaring the amplitudes and integrating over the phase

space, the leading divergences at O(αn+1
s ) become αn+1

s /ε2n+1 at NLP, and give rise to

leading logarithms for the thrust cross section. In general, the remainder part MR are not

known to exhibit an iterative structure to all orders.

Typically, LL resummation at LP is carried out either by using the coherent branching

formalism [82–84] which makes use of strongly ordered real radiation, or by computing

anomalous dimensions from virtual ultraviolet divergences to hard, jet, and soft functions in

SCET. However, by consistency this LL resummation also provides interesting information

about higher order virtual loop corrections to a single collinear splitting. In the next section

we discuss this at both LP and NLP. Further details for the leading power case can be found

in appendix B. For this analysis both the dipole and remainder terms contribute. Although

the remainder terms do not have explicit poles in ε, they do not necessarily vanish in the

soft or colllinear limits, and in particular contain logarithms in these limits. We will use

our all orders understanding of the leading logarithms for thrust derived in section 4 to

show that the remainder terms also exhibit interesting exponentiation patterns.

5.2 Subleading power collinear splitting

To perform the expansion of the squared amplitudes in the collinear limits, we use the

results of [76]. These are in a particularly convenient form for our purposes, namely they

are already expressed in a decomposition into the dipole and remainder terms.
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For H → g(p1)g(p2)g(p3), the collinear power expansion at amplitude level is controlled

by s = P 2 = (p1 + p2)2, the invariant mass of a pair of gluons. At tree level, the leading

power result is given by

|M (0,0)|2 = 2λ̃2 (1− z + z2)2

z(1− z)

Q2

s
, (5.8)

where λ̃2 = 128Ncλ
2π2, λ is the effective coupling of dimension 5 Higgs-gluon-gluon opera-

tor, and z is the longitudinal momentum fraction of p1 with respective to P in the collinear

limit. The next-to-leading power collinear expansion is

|M (2,0)|2 = 2λ̃2 1 + 2z − 3z2 + 2z3 − z4

z(1− z)
. (5.9)

Here we have used a double superscript notation where the first superscript indicates the

power in s/Q2, and the second indicates the order in αs. Eq. (5.9) contains end-point

singularity in the momentum fraction, which is regularized by the d dimension phase space

measure. For the purpose of extracting the leading logarithms, it is only necessary to

consider the z → 0 or z → 1 limit. In the current case the two limits are identical, and

we find

|M (2,0)|2LL = λ̃2 2

z(1− z)
, (5.10)

where we use subscript LL to denote that only the end-point singular term in z is retained.

We can use these to define the tree level LP and NLP splitting functions, valid at LL level

P
(0,0)
gg,LL =

Q2

s

2

z(1− z)
, P

(2,0)
gg,LL =

2

z(1− z)
. (5.11)

Here we see the explicit suppression in s/Q2 of the NLP result. We then have

|M (0,0)|2LL = λ̃2P
(0,0)
gg,LL , |M (2,0)|2LL = λ̃2P

(2,0)
gg,LL . (5.12)

Using eq. (5.7) it is trivial to give the all loop result for squared amplitude for the

terms predicted by dipole formula. We find

|M |2dipole,LP,LL = λ̃2P
(0,0)
gg,LL exp (Fdipole) , |M |2dipole,NLP,LL = λ̃2P

(2,0)
gg,LL exp (Fdipole) ,

(5.13)

where

Fdipole =
αsµ

2ε

4π

(−2CA)

ε2
(
[(1− z)Q2]−ε + s−ε + [zQ2]−ε

)
. (5.14)

Interestingly, the form of the dipole term guarantees that its leading logarithmic loop

corrections are independent of the power expansion. The power expansion arises only in

the expansion of the tree level amplitude squared.

Much more interesting are the remainder terms of the amplitude, whose all order form

is not predicted. We can begin by looking at their form at one-loop. By inspecting the
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higher order in ε terms in the remainder term of the amplitude, we can write down an

all-order-in-ε expression for the leading transcendental piece of the remainder terms (i.e.

the piece required to give the LL for thrust). We find

2Re
[
M (0)∗M

(1)
R

]∣∣∣
LP,LL

= −2CAλ̃
2P

(0,0)
gg,LL

× αs µ
2ε

4π

[(
[Q2]−ε

ε2
− [z(1− z)Q2]−ε

ε2

)
−
(

[s]−ε

ε2
− [z(1− z)s]−ε

ε2

)]
. (5.15)

The structure of this leading transcendental component of the remainder term is quite

interesting. Expanding it, we see that both the 1/ε2 and 1/ε poles cancel, giving a finite

result[(
[Q2]−ε

ε2
− [z(1− z)Q2]−ε

ε2

)
−
(

[s]−ε

ε2
− [z(1− z)s]−ε

ε2

)]
=

[Q2]−ε

2

(
− log2

(
s

Q2

)
− log2(z(1− z)) + log2

(
s(1− z)z

Q2

)
+O(ε)

)
. (5.16)

However, we see that this term secretly contains leading poles in 1/ε when written in the

form of eq. (5.1) and therefore will contribute to the LL result at LP. The reason is that

when integrating over the momentum fraction z using d dimension phase space measure,

there is a mismatch in the exponent of z between different terms. Since this is a non-

traditional way to obtain the leading logarithms for the thrust distribution, we provide

a more detailed explanation in appendix B. For the NLP terms, we find the exact same

structure, with only a different prefactor

2Re
[
M (0)∗M

(1)
R

]∣∣∣
NLP,LL

= −2CAλ̃
2P

(2,0)
gg,LL

× αs µ
2ε

4π

[(
[Q2]−ε

ε2
− [z(1− z)Q2]−ε

ε2

)
−
(

[s]−ε

ε2
− [z(1− z)s]−ε

ε2

)]
. (5.17)

Interestingly, as was the case for the dipole terms, we again see that the transcendental

structure is the same at LP and NLP, and it just multiplies the tree level splitting function.

Going to two loops, quite interestingly, we find that the remainder term is

2Re
[
M (0)∗M

(2)
R

]
+M

(1)∗
R M

(1)
R

∣∣∣
LP,LL

= 2C2
Aλ̃

2P
(0,0)
gg,LL

× α2
s µ

4ε

(4π)2

[(
[Q2]−ε

ε2
− [z(1− z)Q2]−ε

ε2

)
−
(

[s]−ε

ε2
− [z(1− z)s]−ε

ε2

)]2

. (5.18)

Note that only the O
(
ε0
)

terms in eq. (5.18) are explicitly verified using the two-loop

amplitudes. To verify to higher order in ε, one needs to know the two-loop amplitudes also

to higher order in ε, which are currently not available in the literature. However, since

this contribution is related to the hard-collinear contribution in the effective theory, the

renormalizability of the effective theory guarantees that the all loop result can be obtained

by RG evolution of the lowest order result. To LL, the power expansion in the amplitudes

acts only on the kinematic factors giving rise to the lowest order splitting functions in
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eq. (5.11), but not on the transcendental function. This therefore fixes the all order in ε

form of eq. (5.18). Compared with eq. (5.15), we have the relation

2Re
[
M (0)∗M

(2)
R

]
+M

(1)∗
R M

(1)
R

∣∣∣
LP,LL

|M (0,0)|2LL

=
1

2!

2Re
[
M (0)∗M

(1)
R

]∣∣∣
LP,LL

|M (0,0)|2LL


2

, (5.19)

that is, the remainder term also exponentiates. Similarly, for the NLP piece, we have

2Re
[
M (0)∗M

(2)
R

]
+M

(1)∗
R M

(1)
R

∣∣∣
NLP,LL

|M (2,0)|2LL

=
1

2!

2Re
[
M (0)∗M

(1)
R

]∣∣∣
NLP,LL

|M (2,0)|2LL


2

. (5.20)

Here we observe exponentiation of the remainder term at LP and NLP, and furthermore,

we again see that the transcendental structure at both LP and NLP is identical.

With the expanded result for the squared amplitude, we can simply integrate it over

the collinear phase space to obtain the result for thrust. We find

1

σ0

dσ(2)

dτ
=
(αs

4π

)
8CA log τ −

(αs
4π

)2
32C2

A log3 τ +
(αs

4π

)3
64C3

A log5 τ +O(α4
s) . (5.21)

This agrees with the result derived from the RG in eq. (4.35), and provides an explicit

check at O(α3
s) of the result from the RG. The terms to O(α2

s) were also computed in [25]

using this technique. The O(α3
s) term has not previously appeared in the literature.

We can now use the higher order terms predicted by the RG to study the collinear

limit at higher loop orders. In particular, since we have derived using the RG that the

leading logarithms for thrust exponentiate into a Sudakov, given in eq. (4.35), the all-loop

expansion of the amplitudes in the collinear limit must agree with this exponentiation.

We have already shown that at least to two loops, the leading logarithmic contribution

of the remainder terms exponentiate. Combined with the exponentiation of the dipole

terms, we conjecture that to all orders, amplitudes in the collinear limit through to NLP

exponentiate, namely

[M∗M ]|LP,LL = λ̃2P
(0,0)
gg,LLe

Fdipole+FR , [M∗M ]|NLP,LL = λ̃2P
(2,0)
gg,LLe

Fdipole+FR , (5.22)

where

FR =
αsµ

2ε

4π
(−2CA)

[(
[Q2]−ε

ε2
− [z(1− z)Q2]−ε

ε2

)
−
(

[s]−ε

ε2
− [z(1− z)s]−ε

ε2

)]
. (5.23)

In particular, this result reproduces the leading logarithms in thrust obtained through RG

evolution to all loop order in eq. (4.35). Note that this is an amplitude level statement, and

while we have explicitly checked it to two loops, and when integrated over z it agrees with

our result obtained from the RG for thrust, which provides a strong check, we phrase it

only as a conjecture, since it is possible z dependent terms that do not give rise to leading

logarithms for the thrust observable could be present. This seems to imply an interesting

iterative structure for the remainder terms of the amplitude, which is relevant for leading

– 36 –



J
H
E
P
0
8
(
2
0
1
8
)
0
1
3

logarithmic resummation, and goes beyond the dipole formula. This would be interesting

to investigate further, and we hope that the study of subleading power limits will lead to

a further understanding.

Here we have only considered the case of H → ggg, but it is important to understand

the universality of the above subleading power splitting functions, and in particular of their

loop corrections, even at a given logarithmic accuracy. The universality of subleading power

collinear factorization has been studied at tree level in [85], but it would be interesting to

try to extend it to all loop order using the techniques in this paper. A perhaps related

question is the definition of an infrared finite remainder function in planar N = 4 SYM,

where a clever definition of exponentiated terms can lead to a better behaved remainder

function [86].

6 Conclusions

In this paper we have, for the first time, resummed to all orders in αs subleading power

logarithms for the thrust observable to LL accuracy for pure glue H → gg. We have shown

that the subleading power logarithms exponentiate to all orders into a Sudakov exponential

controlled by the cusp anomalous dimension multiplying a logarithm, see eq. (4.35). Re-

summation is achieved by RG evolution of gauge invariant non-local Wilson line operators

and its accuracy is systematically improvable.

The renormalization of subleading power jet and soft functions requires the introduc-

tion of a new class of universal soft and collinear functions, which we termed θ-jet and

θ-soft functions. These functions, which involve θ-functions of the measurement, appear

through operator mixing, and we argued that they will play a general role in renormal-

ization and resummation at subleading powers. We introduced a simple example which

allowed us to understand the structure of these functions to all orders in αs, as well as to

derive their renormalization group evolution, which we proved closes into a 2 × 2 mixing

equation. We analytically solved this subleading power RG mixing equation, including the

effects of running coupling.

We checked our result derived from RG evolution to O(α3
s) by direct calculation of

the power corrections. Using consistency relations from the cancellation of IR poles, the

leading logarithms can be derived entirely from the collinear limit, allowing us to use our

all orders result derived from the RG equations to understand higher order loop corrections

to the subleading power collinear limit. We showed explicitly that to two-loops all leading

transcendental pieces in the collinear and subleading power collinear limit exponentiate.

We conjectured that this exponentiation holds to all loop order, and showed that this

results in agreement with the results for the thrust observable derived from RG evolution.

This seems to indicate an interesting structure for the IR finite terms in the subleading

power collinear limits, beyond what is predicted by the dipole formula, and it would be

interesting to investigate this further.

Since this represents the first all orders resummation of NLP logarithms for an event

shape, there are many interesting directions in which it can be extended. In particular,

it will be important to extend our results to higher logarithmic accuracy to understand
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what universal structures persist. The simplicity of the leading logarithmic structure to all

powers suggests the possibility of a simple structure. It will also be interesting to study

subleading power corrections for other observables, such as qT or in the threshold limit,

as well as to extend the calculation to the N -jet case, for example for the N -jettiness

observable [87]. The renormalization of amplitude level hard scattering operators for the

N -jet case was recently considered [28], which provides an important ingredient in this

direction. Our work provides a path for the systematic resummation of subleading power

logarithms for event shapes, and we hope that this will lead to an improved understanding

of the all orders structure of the subleading power soft and collinear limits.
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A Solution to subleading power RG mixing equation in momentum space

In section 3 we have shown that in the leading log approximation, and in the case when

Γ
(0)
11 = Γ

(0)
22 , the solution to the subleading power RG mixing equation in position space is

eq. (3.26). Here we provide additional details on the transformation of this result back to

momentum space. In position space the logarithms for the boundary condition are mini-

mized by the choice µ0 = µy. For thrust at subleading power there are no distributions,

and the logarithms have a simple correspondence between position and momentum space

without subtleties. This is analogous to the situation between position space and cumu-

lative thrust at leading power. To derive an exact relation for the Fourier transform we

note that ∫
dy

2π
eiky (iy)−1−ε =

θ(k)kε

Γ(1 + ε)
, (A.1)

where branch cuts are defined by y = y−i0. Defining e−εγE/Γ(1+ε) =
∑∞

k=0 ek ε
k, we have

e0 = 1, e1 = 0, e2 = −ζ2/2, e3 = ζ3/2, etc. Expanding eq. (A.1) in ε leads to the identity

we need to connect the subleading power logarithms in position and momentum space,∫
dy

2π
eiky

logn(iyeγEµp)

i(y − i0)
= (−1)n

n∑
j=0

n!

j!
en−j logj

(
k

µp

)
θ(k) . (A.2)

Keeping only the LL term on the r.h.s. gives the simple correspondence

logn(iyeγEµp)/(iy)→ (−1)n logn(k/µp) θ(k). To see how this works in an explicit example,
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we can rewrite the resummed position space result in eq. (3.26) as

F̃
(2)LL
δ (y, µ) = ŨF,LL

δθ (y, µ, µ0)F̃
(2)
θ (y, µ0) = A

(eγE iyµp0)
ω

i(y − i0)
(A.3)

=
A

i(y − i0)
eω log(eγE iyµp0) = A

∞∑
n=0

1

n!
ωn

logn (eγE iyµp0)

i(y − i0)
,

where A ≡ −γ
(0)
12

2β0
log r exp

[
pπΓ

(0)
11

β2
0αs(µ0)

(
1
r − 1 + log r

)]
and ω ≡ −Γ

(0)
11

2β0
log(r) are dimensionless

y independent expressions, where here r = αs(µ)/αs(µ0). Using eq. (A.2) we have

F
(2)LL
δ (k, µ) =

∫
dy

2π
eikyF̃

(2)LL
δ (y, µ) = A

∞∑
n=0

1

n!
ωn
∫

dy

2π
eiky

logn (eγE iyµp0)

i(y − i0)

= A
∞∑
n=0

n∑
j=0

ωn(−1)n
en−j
j!

logj
(
k

µp0

)
θ(k) . (A.4)

Here all the terms with j < n are subleading logs, therefore at LL order we can keep just

the j = n term to give

F
(2)LL
δ (k, µ) = A

∞∑
n=0

(−ω)n

n!
e0 logn(k)θ(k) = Ae−ω log(k)θ(k) (A.5)

= −θ(k)
γ

(0)
12

2β0
log r exp

[
pπΓ

(0)
11

β2
0αs(µ0)

(
1

r
− 1 + log r

)](
k

µp0

)Γ
(0)
11

2β0
log(r)

≡ θ(k)ULL
δθ (k, µ, µ0) .

Note that this is simply obtained from the starting result in eq. (A.3) by taking iyeγE → 1/k

everywhere, except for in the explicit prefactor 1/(y − i0) → θ(k). eq. (A.5) is the LL

solution to the subleading RG mixing equation in momentum space which was quoted in

the main text in eq. (3.28).

B Leading logarithms for thrust from collinear limits of amplitudes

In this appendix we explain how to obtain the LP LL series for thrust using only the

information from collinear limits of scattering amplitudes. The NLP case, which is the

focus of this paper, is similar. However, here we present the LP case in detail since this

approach to obtaining the LL series is not traditional. The key idea is that the infrared

scale dependence should cancel out in a physical cross section. Just as in the NLP analysis

leading to eq. (5.3), consistency at LP implies that the LL term can be obtained from loop

corrections to the amplitude for a single collinear emission encoded in coefficients d
(0)
hc,2N ,

1

σ0

dσ(0,N)

dτ
= d

(0)
hc,2N

log2N−1 τ

τ
+ · · · . (B.1)

We will work this out explicitly for the first two loop orders below.
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Here, as in the text, we take thrust for Higgs decay in pure glue QCD as an example.

We write the NLO cumulant at LP as

R(0,1)(τ) =
1

σ0

∫ τ

0
dτ ′

dσ(0,1)

dτ ′

=
αs
4π

CA
ε2

(
ch

(
µ2

Q2

)ε
+ cc

(
µ2

τQ2

)ε
+ cs

(
µ2

τ2Q2

)ε)
+O

(
1

ε

)
, (B.2)

where we have separated the contribution between hard virtual corrections ch, collinear

corrections cc, and soft corrections cs. For a physical cross section both the divergent

terms and the LL µ dependence should cancel. In particular, they should cancel between

the 1/ε2 terms in eq. (B.2). There is no cancellation between the expansion of the 1/ε2

terms and the O(1/ε) terms. That’s why we don’t need to write down the O(1/ε) terms

explicitly, at least for LL. It then follows that

ch = −1

2
cc , cs = −1

2
cc . (B.3)

Substituting the relation in eq. (B.3) into eq. (B.2), we find

R(0,1)(τ) = −1

2

αs
4π

CAcc log2 τ + subleading logs . (B.4)

That is, the leading logarithm at NLO is uniquely determined by the contribution from

the hard collinear splitting. Specifically, at NLO for thrust, the collinear corrections to the

cumulant can be written as

R
(0,1)
c,LL (τ) = 2

αsµ
2ε

4π

∫ τQ2

0

ds

Q2

∫ 1

0
dz
eεγE [sz(1− z)]−ε

Γ(1− ε)
CAP

(0,0)
gg,LL

=
αs
4π

8CA
ε2

(
µ2

τQ2

)ε
+O

(
1

ε

)
, (B.5)

where P
(0,0)
gg,LL is introduced in eq. (5.11). Therefore cc = 8, and R(0,1)(τ) = −αs

π CA log2 τ +

subleading logs.

At NNLO, there are several combinations of different modes, but the idea is similar.

We write the cumulant as

R(0,2)(τ) =
(αs

4π

)2 C2
A

ε4

(
chh

(
µ4

Q4

)ε
+ chc

(
µ4

τQ4

)ε
+ (ccc + chs)

(
µ4

τ2Q4

)ε
+ccs

(
µ4

τ3Q4

)ε
+ css

(
µ4

τ4Q4

)ε)
+O

(
1

ε3

)
, (B.6)

Here chh denotes hard modes contributions from pure virtual diagrams, chc denotes real-

virtual contributions with virtual hard mode and real collinear mode, ccc denotes both

real-virtual or double real contributions with virtual or real collinear modes, chs denotes

real-virtual contributions with virtual hard mode and real soft mode, and finally css denotes

real-virtual or double real contributions with virtual or real soft modes. Demanding that

all the poles and µ dependence from expanding the 1/ε4 terms cancel, we find

chc = −4chh , ccc + chs = 6chh , ccs = −4chh , css = chh . (B.7)
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We then find

R(0,2)(τ) = −
(αs

4π

)2 C2
A

4
chc log4 τ + subleading logs . (B.8)

Specifically, the real-virtual collinear corrections to the cumulant is given by

R
(0,2)
RV c,LL(τ) = 2

αsµ
2ε

4π

∫ τQ2

0

ds

Q2

∫ 1

0
dz
eεγE [sz(1− z)]−ε

Γ(1− ε)
CAP

(0,0)
gg,LL (Fdipole + FR) , (B.9)

where we have separated the corrections into the dipole term and the remainder term, see

eq. (5.14) and (5.23). The dipole term gives

R
(0,2)
RV c,dipole,LL(τ) =

(αs
4π

)2
[
−

24C2
A

ε4

(
µ4

τQ4

)ε
−

8C2
A

ε4

(
µ4

τ2Q4

)ε]
+O

(
1

ε3

)
. (B.10)

And the remainder term gives

R
(0,2)
RV c,R,LL(τ) =

(αs
4π

)2
[
−

8C2
A

ε4

(
µ4

τQ4

)ε
+

4C2
A

ε4

(
µ4

τ2Q4

)ε]
+O

(
1

ε3

)
. (B.11)

Adding the dipole and remainder terms, we find that the hard-collinear coefficient is chc =

−32, and the NNLO cumulant is

R(0,2)(τ) =
(αs

4π

)2
8C2

A log4 τ + subleading logs . (B.12)

This is the correct leading logarithm for thrust. We see explicitly that both the dipole term

and the remainder term contribute to thrust at LL. The analysis above can be straightfor-

wardly carried out to all orders in αs.
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