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ABSTRACT OF THE THESIS

Learning a two-stage SVM/CRF sequence classifier

by

Guilherme Hoefel

Master of Science in Computer Science

University of California, San Diego, 2008

Professor Charles Elkan, Chair

Learning a sequence classifier means learning to predict a sequence of

output tags based on a set of input data items. For example, recognizing that a

handwritten word is “cat,” based on three images of handwritten letters and on

general knowledge of English letter combinations, is a sequence classification task.

This thesis describes a new two-stage approach to learning a sequence classifier that

is highly accurate, scalable, and easy to use in data mining applications. The two-

stage approach combines support vector machines (SVMs) and conditional random

fields (CRFs). It is highly accurate because it benefits from the maximum-margin

nature of SVMs and also from the ability of CRFs to model correlations between

neighboring output tags. It is scalable because the input to each SVM is a small

training set, and the input to the CRF has a small number of features, namely the

SVM outputs. It is easy to use because it combines existing published software in

a straightforward way. In detailed experiments on the task of recognizing hand-

written words, we show that the two-stage approach is more accurate, or faster

and more scalable, or both, than the leading other methods for learning sequence

classifiers, including max-margin Markov networks (M3Ns) and standard CRFs.

vii



I

Introduction

One of the most active and most successful directions of research in ma-

chine learning in the last seven years concerns methods for what is called structured

learning. Structured learning means learning to predict outputs that have internal

structure. This structure can be modeled, and, to achieve high predictive accuracy

it must be modeled. Learning to predict a sequence of output tags, given a sequence

of input data items, is an example of a structured learning problem. Specifically,

suppose the input is a sequence of images where each image is a bitmap of a hand-

written letter. A traditional supervised learning approach is to train a function

that can recognize the letter encoded by each image separately. In this traditional

approach, the trained classifier recognizes each letter in isolation, based only on

the information available in the corresponding image. In a structured learning

approach, given the sequence of images representing the letters in a word, a single

trained model recognizes all the letters of the word, using all the input images

and using knowledge learned about which letters tend to be adjacent in English.

For example, suppose the word to be recognized is “fern.” The handwritten third

and fourth letters may well be almost identical, so a traditional classifier might

recognize this word as “fenn” or “ferr” or “fenr”. A sequence classifier would use

probabilistic constraints between neighboring output letters to know that “fern”

is more likely than the alternatives, even though the alternatives are an equally

1
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good fit to the input data at the level of individual letters.

Research on structured learning has been highly successful, with sequence

classification as its most important and successful subfield. Indeed, the original

paper on conditional random fields (CRFs) has been cited over 1100 times since

it was published in 2001 [9]. However, technology transfer from basic research to

applications has been limited so far. Accelerating this technology transfer is the

goal of this thesis. We show that existing software that is high in quality and easy

to use, specifically the well-known SVM package named LIBSVM [3] and a new

CRF package named CRFSGD [1], can be used together to achieve high accuracy

and high speed on a sequence classification task that so far has been addressed only

using complex custom methods that are effectively out of reach for practitioners.

In other words, the goal of the work described here is to show how to

benefit from state-of-the-art methods in machine learning by combining them in

an uncomplicated way. Frank Lloyd Wright once wrote “‘think simple’ as my

old master used to say – meaning reduce the whole of its parts into the simplest

terms, getting back to first principles.” This thesis shows how to combine multi-

ple theoretical ideas in order to obtain one easy-to-use high-performance method.

Following the principle of reducing the whole of its parts into the simplest terms,

we reduce the problem of learning a sequence classifier into two subproblems.

The new learning framework is called a two-stage SVM/CRF method. It

simplifies ideas introduced previously under the name max-margin Markov net-

works (M3Ns). Essentially, we first use SVMs to learn to predict the labels of

individual input sequence data items. Then, we use a CRF to predict the se-

quence of all output labels, where the input to the CRF is the outputs of the

SVMs applied to the inputs. The two-stage method gains high accuracy from two

complementary strengths: margin-maximization approaches can be more accurate

than likelihood-maximization approaches as discriminative classifiers, and learning

correlations between neighboring output labels helps resolve ambiguities.

Because our goal is to present a method that practitioners can use easily
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in multiple other applications, our experiments use off-the-shelf software. As an

implementation of SVMs, we use the LIBSVM package [3]. As an implementation

of CRFs, we use the very recent CRFSGD package [1]. The latter software is espe-

cially interesting, and fast, because it solves the numerical optimization problem

at the core of CRFs by stochastic gradient descent, following but simplifying much

recent research [15].

In experiments we compare the two-stage method against three baseline

methods. The first two baselines treat the problem as unstructured; they are

standard logistic regression (LR) and SVMs [3]. The third baseline takes advantage

of the problem structure and does not use the margin-maximization idea; it is a

standard CRF classifier. In addition to the two-stage SVM/CRF approach, we

also investigate a similar two-stage LR/CRF method. Previous studies have shown

that different sets of feature-functions lead to widely varying accuracy for CRFs

[8]. Hence we investigate a range of alternative sets of feature-functions.



II

The Two-Stage SVM/CRF

Method

The M3N [14] method combines maximum-margin and output-correlation

constraints into a single quadratic programming optimization problem. In addi-

tion to the mathematical challenges of combining these two types of constraints,

this approach is extremely computationally intensive [14, 13, 10]. The two-stage

approach we suggest has the same intuitive rationale as the M3N method, but is

notably simpler mathematically and computationally.

In our approach, first SVMs are trained to predict the label of each input

sequence element; this is a standard multiclass supervised learning task. Second,

one CRF is trained to predict the output sequence of labels using as its input

the outputs from the previously trained SVMs. The intuition is that both learning

approaches are somewhat orthogonal in their advantages, so a combination of them

can yield superior results.

During SVM training, the goal is to learn each class based on each se-

quence element (i.e. data item or data point) and its label in the training set, by

maximizing the separation between data points with labels in the same class and

other data points. Many studies have shown that SVMs tend to obtain superior

results, compared to other classifiers, for predicting individual labels. This advan-

4
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tage of SVMs stems from their ability to use high-dimensional feature spaces via

kernels, and from theoretical guarantees on generalization ability [14]. However, an

important drawback is that it is typically hard to choose the settings for an SVM

(in particular, the best value for the soft-margin penalty C) that will yield obtain

optimum results. The most common way to choose settings is to use a validation

set that is independent from the training and testing sets.

Given a data point in the test set, the output of the trained SVMs is a

vector of scores. In the second stage of our approach, this vector is used as the

input attributes for a CRF classifier. Traditionally, a feature-function for a CRF

is based on one or more data points, and one label or two adjacent labels. Our

proposed new type of feature-function is based on a prediction vector of scores for

a data point, instead of directly on the attributes of the data point. Essentially,

the two-stage approach uses SVMs as a feature induction method, in order to allow

a CRF to learn a better overall classifier.

Let X be a set of input sequences and let Y be the corresponding set

of sequences of labels. The data (X, Y ) consist of samples (x̄i, ȳi) for i = 1, ..., n.

Each sample (x̄i, ȳi) consists of L(i) data points and their labels. That is

(x̄i, ȳi) = 〈(xi1, yi1), (xi2, yi2), ..., (xiL(i), yiL(i))〉. (II.1)

A label yij can belong to one of c different classes, and each input data

point xij can have p dimensions, where p is the number of pixels in the image

of one character for example. We assume that each dimension can have one of v

values.

Our experiments use an optical character recognition (OCR) dataset com-

piled by Kassel [7] and standardized by Taskar [14], who performed image segmen-

tation to separate the characters in each word, rasterization, and normalization of

each character. The process of rasterization involves translating an image repre-

sented in a vector graphic into its pixel based representation. Then normalization

entails shifting the mean and scaling its data points to have unit variance. Previ-
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ous papers do not mention any further data manipulation such as dimensionality

reduction. It is well known that dimensionality reduction can be important in

image processing; we investigate it in the Appendix A.



III

Multiclass Classifiers

For multiclass classification SVMs can be used in either one-against-all or

one-against-one fashion. With the one-against-all technique, each class is trained

separately against the union of all other classes. Applying the trained SVMs on a

test data point (xij, yij) yields a vector of prediction scores (g1, g2, ..., gc)ij, where c

is the number of classes. With the one-against-one technique, each class is trained

separately against each other class. Applying the trained SVMs to the test data

point yields a vector of prediction scores (g1, g2, ..., gb)ij where b = c(c − 1)/2.

In order to obtain such vector of prediction scores the multiclass classi-

fication SVM is conducted using three different types of kernels, linear, quadratic

and cubic, based on the formulation below:

k(xk,xl) = (
1

p
(xk · xl) + s)d

According to the LIBSVM [12] formulation, d is either 1, 2 or 3; xk and

xl are some xij; and p is the number of dimensions in xij. The constant s is the

coefficient that makes the kernel function inhomogeneous. After some empirical

tests, no further improvement was gained by varying the value of s indicating that

a homogeneous kernel is suitable for this experiment. Thus the value of s was set

to 0, which is the default for LIBSVMS.

Previous work [14] has indicated that the one-against-one approach yields

7
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slightly more accurate results for the OCR data. There are two additional advan-

tages of using this approach as part of the two-stage SVM/CRF method: it yields

faster SVM training, and it increases the bandwidth of information passed to the

CRF. Although one-against-one training is conducted c(c − 1)/2 times, each time

only the data points in two classes are involved. SVM training time is typically

superlinear in the number of training examples, so learning more classifiers each

with a smaller training set is a net win. This improvement in running time is

proportional to the number of alternative labels (c = 26 if labels are letters in

the alphabet), so it is considerable. The increase in communication bandwidth

between the SVMs and the CRF can potentially improve the accuracy achievable

by the CRF. However, the larger number of inputs for the CRF tends to increase

its training time.

When used for multiclass classification, logistic regression classifiers pro-

duce similar vectors of scores, which can also be used as inputs to a CRF in a sec-

ond stage. For LR training we use another off-the-shelf tool, the MATLABArsenal

package [16]. With logistic regression, each vector of scores is a non-normalized

vector of probabilities. With support vector machines, each vector is a collection of

scores with numerical values between −12.0 and 5.0. Notice that for other learn-

ing problems such collection of scores may contain a higher range of values. In

order to make the input for the CRF in the two-stage approach more generic, it

is possible to substitute the vector of score by its equivalent vector of probabili-

ties. The LIBSVM package offers this capability by turning on an optional feature.

Some preliminary experiments using the vector of probabilities from the LIBSVM

indicated no improvement on the final accuracy results.



IV

Conditional Random Fields

Given a dataset of input and output sequences (X,Y ), the training ob-

jective for a CRF model is to choose parameters W (also called weights) that

maximize the conditional log likelihood log P (Y |X; W ), which is

∑
(x̄i,ȳi)∈(X,Y )

log
exp

∑d
z=1 wzFz(x̄i, ȳi)∑

ȳ′ exp
∑d

z=1 wzFz(x̄i, ȳ′)
. (IV.1)

Here there are d different fixed feature-functions denoted Fz for z = 1, ..., d. There

is one trainable parameter wz for each Fz. Each feature-function Fz is actually a

sum over output sequence positions of a lower-level feature-function fz. That is,

each high-level feature-function Fz has the form

Fz(x̄i, ȳi) =
∑
j

fz(xij, yij−1, yij) (IV.2)

where j indexes the elements of ȳi.

Although the lower-level functions fz can in general be real-valued, all the

fz functions we use are binary, i.e. they have value 0 or 1. Each fz function can

depend on any or all of the input sequence, and/or on up to two adjacent labels

in the output sequence ȳi. The reason why only at most two adjacent output

labels can be used is that making predictions efficiently with a trained CRF model

depends on the Viterbi algorithm to compute

argmax
d∑

z=1

wzFz(x̄i, ȳi)

9
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and this algorithm cannot handle lower-level feature-functions that involve more

than two adjacent elements of ȳi.

We investigate multiple alternative CRF designs that differ in which

feature-functions they use. The alternative CRFs that we consider use various

combinations of the following six types of feature-function, which are all special

cases of the general form above.

Feature-functions of the first type have the form

Fz,1(x̄i, ȳi) =
∑
j

fz,1(xij, yij). (IV.3)

There are c · v · p functions of this type, because there are c possible values for yij,

v attributes of xij, and p possible values for each attribute.

Feature-functions of the second type have the form

Fz,2(x̄i, ȳi) =
∑
j

fz,2(xij, yij−1, yij). (IV.4)

The number of functions of this type is c2vp.

When dealing with the OCR dataset, previous work suggests that using

features that depend only on output labels is beneficial. In particular, the best

results of [8, Section 3, Table 2] are obtained using Fz,1 features in addition to

features that use just a single label, and just two adjacent labels. We represent

these feature types as follows:

Fz,3(x̄i, ȳi) =
∑
j

fz,3(yij) (IV.5)

and

Fz,4(x̄i, ȳi) =
∑
j

fz,4(yij−1, yij). (IV.6)

There are c features of the former type, and c2 of the latter type.

Our contribution is to introduce features for the two-stage approach that

depend on the data point xij only indirectly, through prediction scores gz(xij)

assigned by SVM classifiers. We formalize this idea as follows:

Fz,5(x̄i, ȳi) =
∑
j

fz,5(gz(xij), yij) (IV.7)
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and

Fz,6(x̄i, ȳi) =
∑
j

fz,6(gz(xij), yij−1, yij) (IV.8)

where gz(xij) is one element of the score vector produced by the multiclass SVM

classifier applied to xij.

Real-valued SVM scores are discretized, in order to allow the fz,5 and fz,6

feature-functions to be binary. Specifically, only the most significant digit is taken

into account. Given a real-valued score gz(xij), the integer value that is used as

input to the feature-function is

g′z(xij) = dgz(xij)e. (IV.9)

Each different integer value, for each of the binary SVM classifiers, then gives rise

to a different binary feature-function. When logistic regression is used instead of

SVMs, scores are probabilities between 0 and 1, so we use

g′z(xij) = d10 · gz(xij)e

instead.

As is customary with CRFs, we in fact maximize a regularized version of

the conditional log likelihood, that is

J(X, Y ) = log P (Y |X; W ) + log P (W ) (IV.10)

where log P (W ) = −‖W‖2
2σ2 . Often the regularization parameter σ is set using a

validation dataset, but in our experiments it is fixed at σ = 1.

The objective function is maximized by gradient descent. The gradient

(∂/∂wz,l)J(X, Y ) is

∑
(x̄,ȳ)∈(X,Y )

Fz,l(x̄, ȳ) −
∑
ȳ′

p(ȳ′|x̄; wz,l)Fz,l(x̄, ȳ′) − 2wz,l

σ
(IV.11)

for l ∈ {1, 2, 3, 4, 5, 6}. The gradient, for each weight and for each training example

(x̄, ȳ), is essentially the difference between the feature-function value for (x̄, ȳ) and

the average value of the feature-function averaging over each ȳ′ with probability
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given by the current model p(ȳ′|x̄; w). The CRF software we use, called CRFSGD,

does stochastic gradient descent [1]. Our experiments confirm that this approach

achieves the same accuracy as a sophisticated quasi-Newton method (CRF++

using L-BFGS, [11]) but is about 10 times faster.



V

Performance Criteria

Our hypothesis is that the two-stage combined SVM/CRF method just

described performs as well as more mathematically and computationally complex

methods, in particular the M3N method. In previous papers, Taskar et al. and

Perez-Cruz et al. measure accuracy as the average error per character, but Nguyen

et al. and Keerthi et al. measure accuracy as the average over words of the average

error per character in each word. In this thesis, we report both measurements, since

this is the only way to establish a direct correspondence with previous results. As

expected, both definitions of accuracy yield very similar results.

The first definition is

AccPerChar =
1

N

∑
(i,j)

I(ŷij = yij) (V.1)

where N is the total number of characters in the test set, yij is the true value of

the jth character of the ith word in the test set, and ŷij is the predicted value of

this character. The second definition is

AccPerWord =
1

M

M∑
i=1

[
1

L(i)

L(i)∑
j=1

I(ŷij = yij)] (V.2)

where M is the total number of words and L(i) is the total number of characters

in the ith word.

Usually it appears that the accuracy for AccPerChar is slightly higher

(less than a percentage point) than the AccPerWord.

13
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Experiments

The specific dataset used for experiments here is a subset containing 6876

words from the OCR dataset of [7]. This subset was compiled by Ben Taskar, and

is precisely the same dataset used previously [14, 10, 8, 12]. Each character image

in the dataset is of size of 8 · 16 = 128 pixels and is labeled with one of 26 letters.

Each pixel has value 0 or 1.

In previous work, Taskar et al. used an unusual 10-fold cross-validation

technique where they divided the data into training sets of about 610 words and

test sets of about 5500 words. This approach is unusual because in each fold, a

small set is used for training versus a large set for testing. In standard cross-

validation, in each fold a large set is used for training and a small set for testing.

Nguyen et al. applied a similar nonstandard technique, but they used about 600

words for training, about 5400 words for testing, about 100 words for validation.

The precise cardinalities of the subsets used in this previous work is not known.

It seems that the reason previous authors used small training sets is time

limitations for training. It has been reported [10, Section 4] that the M3N method

needed to be halted after 10 iterations of the optimization algorithm for a single

fold. The two-stage approach proposed here is much faster. Therefore traditional

10-fold cross-validation can be used, as done also by Perez-Cruz et al. This is

desirable because standard cross-validation gives a better idea of the ultimate

14



15

accuracy that can be achieved by different methods, since it is based on larger

training sets.



VII

Methods Compared

For the standard unstructured classifiers, logistic regression and SVMs,

each input data point is separate and is one array of pixels. Both methods are

trained in a one-against-one fashion for solving the multi-class problem, which is

the same as done previously by Taskar [14, Section 3]. For logistic regression the

regularization constant is set to 1. For soft-margin SVMs, three different kernels

are tried: linear, quadratic and cubic.

Changing the soft-margin penalty parameter C typically yields signifi-

cantly different results for different kernels [2]. In our experiments C is set to be

150, 250, and 450, for the linear, quadratic, and cubic kernels respectively. Other

training parameters are set to the defaults from LIBSVM. Notice that the CGM

experiments also use LIBSVM [12]. Perez-Cruz et al. pick C to be 5, and use a

radial basis function kernel.

Standard CRF classifiers are trained using two different sets of feature-

functions. The first set consists of the Fz,1 and Fz,2 features. Following Keerthi

et al., the second set consists of the Fz,1, Fz,3 and Fz,4 feature-functions. In the

first set there are 128 · 2 · 26 = 6656 Fz,1 functions and 128 · 2 · 26 · 26 = 173056

Fz,2 functions. In the second set there are 26 Fz,3 functions and 26 · 26 = 676 Fz,4

functions in addition to the Fz,1 functions.

Two-stage SVM/CRF classifiers are trained using three different sets of

16
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feature-functions. The first set includes Fz,5 and Fz,6 feature-functions, and thus

corresponds to Taskar’s M3N approach. The second set contains Fz,3, Fz,4 and

Fz,5 feature-functions, so it is analogous to the set of CRF feature-functions that

performs best in recent experiments [8]. Finally, the third set combines the original

CRF feature-functions Fz,1 and Fz,2 with the novel Fz,5 and Fz,6 feature-functions.

After discretization, each SVM score is one of at most 17 unique values. Given the

one-against-one approach, each score vector has length (26 · 25)/2 = 325. Thus,

there are at most 325·17·26 = 143, 650 Fz,5 functions, and at most 325·17·26·26 =

3, 734, 900 Fz,6 functions. The CRFSGD software only keeps features that occur

more than three times in the training set, so these feature set cardinalities are

upper bounds on the number of features actually used.



VIII

Accuracy Results

Tables VIII.1 and VIII.2 show results using nonstandard cross-validation,

that is with a small 10% training set in each fold, while Tables VIII.3 and VIII.4

show results using standard cross-validation, with a large 90% training set in each

fold. Results are presented as mean accuracy plus/minus standard deviation over

ten folds. Rows in italics are results taken from previous papers. If a method from

a previous paper does not appear in a table, it is because the previous paper did

not report the corresponding performance metric, or did not use the corresponding

type of cross-validation. Standard deviations are given where available. Results

from Taskar appear with two places of accuracy only since these are obtained from

a figure in that paper.

The first unstructured baseline, the logistic regression classifier, performs

better than previously reported. The improvement may be due to the fact that

we use the one-against-one approach. In results not shown, when running logistic

regression in one-against-all fashion, our results are the same as previously found

by Taskar.

The SVM classifiers based on LIBSVM produce interesting results com-

pared to previous experiments. They yield slightly better accuracy than has been

reported by Taskar et al., Nguyen et al., and Perez-Cruz et al. The differences

may be due to the challenge of setting the soft-margin penalty parameter ade-

18
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quately. In Taskar’s work, a multiclass kernel-vector machine [4] is used for the

linear, quadratic and polynomial kernels. The results from that method closely

match the performance obtained here using LIBSVM.

Nguyen et al. use two types of SVM, called SV M struct [5] and SV Mmulticlass,

which are both based on the SV M light quadratic optimizer [6]. Notice that Nguyen

et al. only show results for SVMs with linear kernels, which perform worse than

SVMs with polynomial kernels in this domain. SV M struct performs better than

SV Mmulticlass in their experiments; its accuracy is close to the accuracy we can

obtain using polynomial kernels. Perez-Cruz et al. use the same LIBSVM package

that we do; their results using a radial basis function kernel are similar to ours

using a linear kernel. Clearly, so far polynomial kernels are the best known for this

domain.

Our first baseline method for structured learning, a CRF classifier with

feature types Fz,1,2, performs better than Taskar et al.’s CRF by around 3 percent-

age points, and much better than Nguyen et al.’s CRF, beating it by 10 percentage

points. This big difference in accuracy is likely due to differences choosing features

for the CRF. The CRFSGD software lets us efficiently use a large number of

feature-functions, which is known to be beneficial for the success of this type of

classifier.

Our second CRF baseline uses the feature-functions suggested by Keerthi

et al., namely the types Fz,1,3,4. These are token-dependent first-order and token-

independent first-order and second-order according to their nomenclature. The

results in this case are similar to previous findings.

Last but not least, the results for the novel two-stage approach are very

promising. Overall this approach does better than logistic regression, SVM, and

CRF methods separately, and offers accuracy similar to that of the more complex

M3N and CGM methods. Using feature-functions that are token-dependent (Fz,5,6

or Fz,1,2,5,6) seems to be important in obtaining a good two-stage classifier.

The accuracy of the two-stage LR/CRF method is better than that of
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either method alone. Although both methods are based on maximizing the con-

ditional log-likelihood of a linear model, supplying the logistic regression vector

of probability estimates to the CRF appears to enhance its ability to solve the

problem. Presumably the vector of scores makes explicit information that is only

implicit in the original data.

The performance of the two-stage SVM/CRF method is good. Its accu-

racy is comparable to that of the M3N method when using features based on the

vector of scores and on adjacent labels (Fz,5,6) for the quadratic and cubic kernels.

For the linear kernel using the same features as above, the two-stage method ap-

pears to outperform what it was previously presented for the M3N. This may stem

from the fact that single quadratic models with linear kernels is not able overcome

the non-linearity of the data where a two-stage model might. In addition, the

two-stage SVM/CRF also performs as well as the CGM method with cliques of

size 2, which is the fair comparison.

The CGM method with cliques of size 3 obtains the best overall results.

This make sense because there is definitely useful information in triples of letters

over and above the information in pairs of letters. For example, while “st” and

“th” are both common letter pairs in English, the triplet “sth” is rare.

Tables VIII.3 and VIII.4 show that using traditional cross-validation, with

a large training set in each fold, leads to significantly improved accuracy. With

this setup, all methods do 5 to 10 percentage points better than with a smaller

training set.
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Table VIII.1 Small training sets: average accuracy per character.
Method Accuracy
Taskar’s LR .71
LR .7589 ± .0028
Taskar’s SVM (linear) .71
Taskar’s SVM (quadr.) .80
Taskar’s SVM (cubic) .81
CGM (Graph1) .7290 ± .0009
SVM (linear) .7334 ± .0049
SVM (quadr.) .8257 ± .0034
SVM (cubic) .8204 ± .0029
Taskar’s CRF .76
CRF Fz,1,2 .7926 ± .0042
CRF Fz,1,3,4 .7945 ± .0080
LR/CRF Fz,3,4,5 .8136 ± .0022
LR/CRF Fz,5,6 .8512 ± .0032
LR/CRF Fz,1,2,5,6 .8559 ± .0026
Taskar’s M3N (linear) .80
SVM/CRF (linear) Fz,3,4,5 .8116 ± .0022
SVM/CRF (linear) Fz,5,6 .8592 ± .0037
SVM/CRF (linear) Fz,1,2,5,6 .8659 ± .0039
Taskar’s M3N (quadr.) .87
CGM (Graph2) .8750 ± .0011
SVM/CRF (quadr.) Fz,3,4,5 .8214 ± .0032
SVM/CRF (quadr.) Fz,5,6 .8825 ± .0025
SVM/CRF (quadr.) Fz,1,2,5,6 .8819 ± .0061
Taskar’s M3N (cubic) .87
SVM/CRF (cubic) Fz,3,4,5 .8088 ± .0022
SVM/CRF (cubic) Fz,5,6 .8685 ± .0025
SVM/CRF (cubic) Fz,1,2,5,6 .8757 ± .0024
CGM (Graph3) .9420 ± .0005
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Table VIII.2 Small training sets: average accuracy per character per word.
Method Accuracy
LR .7594 ± .0032
Nguyen’s SVM (linear) .7146
Nguyen’s SV M struct (linear) .7884
Keerthi’s SV M struct (linear) .8076
SVM (linear) .7341 ± .0050
SVM (quadr.) .8263 ± .0039
SVM (cubic) .8210 ± .0033
Nguyen’s CRF .6770
Keerthi’s CRF .8003
CRF Fz,1,2 .7924 ± .0062
CRF Fz,1,3,4 .7930 ± .0093
LR/CRF Fz,3,4,5 .8139 ± .0031
LR/CRF Fz,5,6 .8519 ± .0042
LR/CRF Fz,1,2,5,6 .8557 ± .0035
Nguyen’s M3N .7492
SVM/CRF (linear) Fz,3,4,5 .8107 ± .0030
SVM/CRF (linear) Fz,5,6 .8589 ± .0044
SVM/CRF (linear) Fz,1,2,5,6 .8660 ± .0046
SVM/CRF (quadr.) Fz,3,4,5 .8205 ± .0035
SVM/CRF (quadr.) Fz,5,6 .8810 ± .0019
SVM/CRF (quadr.) Fz,1,2,5,6 .8808 ± .0051
SVM/CRF (cubic) Fz,3,4,5 .8073 ± .0046
SVM/CRF (cubic) Fz,5,6 .8677 ± .0027
SVM/CRF (cubic) Fz,1,2,5,6 .8737 ± .0024
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Table VIII.3 Large training sets: average accuracy per character.
Method Accuracy
LR (linear) .8182 ± .0041
CGM (Graph1) .8740 ± .0009
SVM (linear) .8135 ± .0014
SVM (quadr.) .9003 ± .0040
SVM (cubic) .9051 ± .0039
CRF Fz,1,2 .8379 ± .0051
CRF Fz,1,3,4 .8562 ± .0089
LR/CRF Fz,3,4,5 .9037 ± .0037
LR/CRF Fz,5,6 .9264 ± .0066
LR/CRF Fz,1,2,5,6 .9214 ± .0062
SVM/CRF (linear) Fz,3,4,5 .8962 ± .0042
SVM/CRF (linear) Fz,5,6 .9114 ± .0038
SVM/CRF (linear) Fz,1,2,5,6 .9082 ± .0056
CGM (Graph2) .9690 ± .0003
SVM/CRF (quadr.) Fz,3,4,5 .9270 ± .0048
SVM/CRF (quadr.) Fz,5,6 .9500 ± .0038
SVM/CRF (quadr.) Fz,1,2,5,6 .9450 ± .0032
SVM/CRF (cubic) Fz,3,4,5 .9237 ± .0063
SVM/CRF (cubic) Fz,5,6 .9468 ± .0042
SVM/CRF (cubic) Fz,1,2,5,6 .9424 ± .0051
CGM (Graph3) .9730 ± .0004
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Table VIII.4 Large training sets: average accuracy per character per word.
Method Accuracy
LR .8194 ± .0042
SVM (linear) .8118 ± .0016
SVM (quadr.) .9018 ± .0038
SVM (cubic) .9066 ± .0044
CRF Fz,1,2 .8372 ± .0054
CRF Fz,1,3,4 .8586 ± .0086
LR/CRF Fz,3,4,5 .9019 ± .0029
LR/CRF Fz,5,6 .9209 ± .0069
LR/CRF Fz,1,2,5,6 .9190 ± .0087
SVM/CRF (linear) Fz,3,4,5 .8924 ± .0057
SVM/CRF (linear) Fz,5,6 .9066 ± .0042
SVM/CRF (linear) Fz,1,2,5,6 .9034 ± .0073
SVM/CRF (quadr.) Fz,3,4,5 .9205 ± ,0037
SVM/CRF (quadr.) Fz,5,6 .9485 ± .0037
SVM/CRF (quadr.) Fz,1,2,5,6 .9435 ± .0069
SVM/CRF (cubic) Fz,3,4,5 .9229 ± .0050
SVM/CRF (cubic) Fz,5,6 .9463 ± .0015
SVM/CRF (cubic) Fz,1,2,5,6 .9416 ± .0060



IX

Timing Results

Previous studies do not mention the time required to conduct experi-

ments. Table IX.1 shows the number of seconds needed to run one fold of cross-

validation for each of our methods, with small and with big training sets. It also

shows the ratio between the big and the small training set. The entries in the

table for LR/CRF and SVM/CRF are the time needed by the CRF stage for these

approaches. Thus, the total time for the SVM/CRF two-stage approach is the

sum of the SVM and SVM/CRF entries. The computers used for Table 5 are quite

standard and inexpensive (Redhat Linux EL4, dual P4 3.2GHz, single CPU used,

2GB memory).

Also we were able to verify that, for the experiments using the large

training set, CRF training based on the simple stochastic gradient descent (SGD-

CRF) is around 10 times faster than the training based on a quasi-Newton method

(CRF++ package [19] using L-BFGS). Surprisingly, for the small training set, the

run time of both CRF methods were almost the same.

As expected, logistic regression training is fastest, while SVM training is

slowest. Given that the larger training set is 9 times bigger, a ratio of running

times of 9 or less can be considered reasonable. The observed ratio is reasonable

for all methods, except for SVM training with a linear kernel, and the CRF using

features dependent on the labels only.
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Table IX.1 Time in seconds for one fold of training and testing and their ratio.
Method Small Large Ratio
LR (linear) 195 403 2.06
SVM (linear) 1540 62524 40.60
SVM (quadr.) 3184 9520 2.98
SVM (cubic) 2780 13770 4.95
CRF Fz,1,2 447 2308 5.16
CRF Fz,1,3,4 123 2352 19.12
LR/CRF Fz,3,4,5 272 623 2.29
LR/CRF Fz,5,6 1296 6591 5.08
LR/CRF Fz,1,2,5,6 1802 9318 5.17
SVM/CRF (linear) Fz,3,4,5 267 692 2.59
SVM/CRF (linear) Fz,5,6 1352 7550 5.58
SVM/CRF (linear) Fz,1,2,5,6 1313 10319 7.85
SVM/CRF (quadr.) Fz,3,4,5 335 592 1.76
SVM/CRF (quadr.) Fz,5,6 1267 6375 5.03
SVM/CRF (quadr.) Fz,1,2,5,6 2155 9064 5.20
SVM/CRF (cubic) Fz,3,4,5 259 651 2.51
SVM/CRF (cubic) Fz,5,6 1228 6279 5.11
SVM/CRF (cubic) Fz,1,2,5,6 1718 8930 5.19

It is an unfortunate drawback of SVMs that training time often increases

more than linearly as the number of training examples increases. This phenomenon

is observed here for SVM training with the linear kernel. In future work, we plan

to use one of the more recent linear kernel SVM implementations that tend to be

much faster because they use stochastic gradient descent. A ratio larger than 9

times is also seen for the CRF case that uses features Fz,1,3,4. This stems from

the unusual fast run time for the small training set of the CRF for this scenario.

Such fast performance does not seem to propagate to the bigger training set as

the run time for both CRFs (Fz,1,2 and Fz,1,3,4) differ only by 50 seconds. Without

further studying this case and the usage of stochastic gradient descent, it is difficult

to indicate why CRF does not scale well. One possible theory is the differences

between the search space when using a small and a big training set in terms of

size. The SGDCRF removes feature functions that occur less than 3 times, which

could considerably change the number of constraints to be optimized in the CRF
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problem ultimately affecting its running time.



X

Conclusion

Structured learning is a new research area in machine learning whose

methods have not yet seen wide usage in data mining or knowledge discovery.

Within the field of structured learning, the most studied task has been how to

learn a classifier that maps a sequence of inputs into a sequence of output labels.

Above, we have described a practical new approach to training a sequence classifier.

Our experiments show that the proposed method achieves high accuracy, and is

faster and more scalable than competitors.

The proposed method combines support vector machines and conditional

random fields in a two-stage approach. It achieves high accuracy because of the

maximum-margin nature of SVMs, and because CRFs can model correlations be-

tween neighboring output labels. It achieves scalability because the input to each

SVM is a small subset of the entire training data, and this subset uses a limited

number of features, namely the outputs of the SVMs trained in the first stage.

We report the results of detailed experiments on the task of recognizing

handwritten words.1 These results show that the two-stage SVM/CRF method

1Our results provide a lot of detail concerning just one dataset, rather than being less detailed
but involving multiple datasets. The reason for this choice is partly that a previous comparison
paper in this area [10] has been controversial, and in fact is misleading. The results of this
particular previous paper show CRFs and the M3N method performing much worse than in the
experience of other researchers. The reason for some of the poor results in [10] was uncovered by
[8]. Now, we have performed careful and systematic experiments whose results, reported here,
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yields greater accuracy than its component individual methods, which are the cur-

rent practical state of the art. The two-stage method matches closely the accuracy

achievable with the M3N and CGM methods, which are more complex mathemat-

ically and computationally. For practical purposes, what is most important is that

the good SVM/CRF results are obtained using robust off-the-shelf software. This

fact means that the proposed SVM/CRF combination is usable immediately by

other researchers and practitioners in their application areas.

supersede those of [10], and will resolve the controversy, we hope.
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Appendix A

Dimensionality Reduction

An important data preprocessing technique for image recognition is di-

mensionality reduction. It has the goal of representing the original dataset in fewer

dimensions while maintaining its original characteristics. The two-stage classifier

covered previously in this thesis presents a new set of attributes to be used by

conditional random field classifiers based on vectors of scores predicted by support

vector machines.

This appendix investigates applying dimensionality reduction to the orig-

inal data. Two techniques are used in this appendix: principal component analysis

and linear discriminant analysis. The former aims to uncover similarities while the

latter aims to uncover discrepancies of the data points.

A.A Principal Component Analysis

The principal component analysis (PCA) method attempts to identify the

components of the data points, that is which characteristics contribute most to its

variance. The result of such decomposition are the eigenvectors and eigenvalues

obtained through optimal linear transformations in order maintain a subspace of

the original data that has the maximum variance. In this case, the magnitude

of an eigenvalue corresponds to the correlation of an eigenvector to the original
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dataset. Such eigenvectors are called the principal components. When multiplying

the original data points by the transpose of the principal components a new data

set is created with the number of dimensions equal to the number of eigenvectors

used in the multiplication.

Given the training set X,

X = U · S · V ′.

This equation is a singular value decomposition [17] where U is m by n, S is n

by n and V is n by n. In this case, m is the total number of sample points in X

and n is the number of eigenvalues represented by the diagonal of S, which is the

rank of X. After centering each column of X, the columns in V are X’s principal

components [18].

Finally, the new data is obtained through the dot product Pnew = P · V

where P is any dataset (e.g. the original training and/or testing set). In this case,

Pnew has dimensions m by l, such that 1 ≤ l ≤ n and only the top l eigenvectors

are maintained.

A.B Linear Discriminant Analysis

Linear discriminant analysis (LDA) attempts to identify attributes which

best separate two or more classes of data points. This approach finds the subspace

dimensions that contain all the variance between different classes of data points.

Analogously to PCA, the results of such decomposition can also be represented

in terms of eigenvectors, the vectors of weights, and eigenvalues that indicate

the maximum separation between classes. The dot product of the eigenvectors

obtained with the linear discriminant analysis and the original data points produces

new data points within a reduced dimension space.

Given the training set X, the goal is to maximize the separation
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J(W) =
W′ΣbW

W′ΣaW

for some learnable weight matrix W. In this formula, Σb represents the sample

covariance between the means of different classes of data points. This can be

formulated as Σb = 1
c

∑c
k=1(µk − µ)(µk − µ)′ where there are at most c types of

data points, µ is the total mean and µk is the mean of each class k. The Σa

represents the covariance within each type of data points [18]. In this formulation,

it is assumed that every class has the same covariance. This formulation gives the

largest separation between the means of different types while giving the smallest

variance within each type of data points. In this scenario the columns in W [18]

represent the eigenvectors corresponding to the variability between classes. Also,

Σb · Σ−1
a will be the corresponding eigenvalue for its separation.

Similarly to the principal component analysis, the new set of attributes

based on the linear discriminant analysis is Pnew = W′ ·P for any dataset P . Again

by obtaining W from the training dataset X, P may represent the entire dataset

(train and test sets). In both dimensionality reduction methods, the magnitude of

an eigenvalue corresponds to the significance of the corresponding eigenvector for

representing or discriminating the original data points. It is generally understood

that when the data points contain a high number of dimensions, picking the eigen-

vectors with the highest eigenvalues can be enough for representing the original

data.

A.C New Data Dimensions

As shown above, these dimensionality reduction techniques can create two

new types of attributes to represent the original data points: one that exposes sim-

ilarities within a class, and the other that exposes the variability between classes.

Such techniques can be very useful to expose orthogonal characteristics of the

original data points. More importantly, when dealing with high dimensional data
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points, it is possible to preserve the information about them in a considerably

lower space.

In this experiment, we are dealing with a low dimensional space. The

motivation behind using dimensionality reduction is to enhance certain aspects of

the underlying data points. Such enhancements can be used as new attributes to

the classifiers of this experiment. Especially, the new set of attributes based on

PCA and LDA can be used in combination with or in exchange of X for learning

the handwritten word characters.

For principal component analysis, the singular value decomposition ap-

proach is based on Matlab’s SVD function. For the linear discriminant analysis

an off-the-shelf package called UIUC ml [20] is used. In order to pick the right

number of dimensions to be used from PCA and LDA a quantitative experiment

is conducted. This entails varying the number of eigenvectors for a set of classi-

fication experiments and choosing the number of eigenvectors that yields highest

accuracy.

For this thesis 12 eigenvectors are used for the PCA and 25 are used for

the LDA procedures. The intuition is that 12 PCA eigenvectors is 10 percent of

the original data size with 128 dimensions and holds high accuracy given the few

dimensions. Furthermore, the 25 LDA eigenvectors is the total number produced

by the LDA decomposition for this data, which equals to the total number of

classes (26) minus one. It seems reasonable to speculate that in an ideal scenario

each eigenvector would represent a single class.

A.D Results

Tables A.1 and A.2 show results using nonstandard cross-validation, that

is with a small (10%) training set in each fold, while Tables A.3 and A.4 show

results using standard cross-validation, with a large (90%) training set in each fold.

These tables represent the cases where the original data points X are replaced by
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Table A.1 Dimensionality reduction and small training sets: average accuracy per

character.
Method PCA LDA
LR .6747±.0070 .7370±.0033
SVM (linear) .6879±.0066 .7302±.0024
SVM (quadr.) .7647±.0044 .7796±.0021
SVM (cubic) .7655±.0038 .7786±.0034
CRF Fz,1,2 .6595±.0063 .6881±.0082
CRF Fz,1,3,4 .7183±.0072 .7493±.0052
LR/CRF Fz,3,4,5 .7711±.0039 .7899±.0023
LR/CRF Fz,5,6 .8041±.0055 .8472±.0055
LR/CRF Fz,1,2,5,6 .8068±.0056 .8396±.0025
SVM/CRF (linear) Fz,3,4,5 .7753±.0031 .7789±.0057
SVM/CRF (linear) Fz,5,6 .7530±.0083 .7886±.0042
SVM/CRF (linear) Fz,1,2,5,6 .8085±.0046 .8300±.0039
SVM/CRF (quadr.) Fz,3,4,5 .7951±.0053 .8035±.0031
SVM/CRF (quadr.) Fz,5,6 .8391±.0044 .8089±.0022
SVM/CRF (quadr.) Fz,1,2,5,6 .8403±.0061 .8585±.0021
SVM/CRF (cubic) Fz,3,4,5 .7809±.0042 .7999±.0027
SVM/CRF (cubic) Fz,5,6 .8410±.0056 .8576±.0029
SVM/CRF (cubic) Fz,1,2,5,6 .8472±.0055 .8578±.0038

the new PCA and LDA based data. Notice that we considered using a combination

of the PCA and the LDA data as well, but such data points did not yield better

results than the best performer between PCA and LDA.

When using the features based on dimensionality reduction, the accuracy

results obtained are not impressive. It consistently under performs previous results

where the pixel information is used for both training sets. In addition, the PCA

approach consistently under performs the LDA approach. Such results are some-

what expected as the original data contains the most information about the dataset

while the lower number of dimensions for dimensionality reduction data comes at

the cost of less information. With regard to the dimensionality reduction tech-

niques, the LDA has the ability to learn the differences between the classes which

is widely acceptable to be important when learning image recognition classifiers.

Thus it seems reasonable it can yield more information than PCA for classifying
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Table A.2 Dimensionality reduction and small training sets: average accuracy per

character per word.
Method PCA LDA
LR .6728±.0078 .7370±.0033
SVM (linear) .6865±.0074 .7303±.0029
SVM (quadr.) .7644±.0042 .7796±.0024
SVM (cubic) .7646±.0035 .7772±.0037
CRF Fz,1,2 .6592±.0065 .6885±.0082
CRF Fz,1,3,4 .7155±.0077 .7371±.0058
LR/CRF Fz,3,4,5 .7676±.0045 .7890±.0021
LR/CRF Fz,5,6 .8031±.0070 .8452±.0060
LR/CRF Fz,1,2,5,6 .8032±.0071 .8400±.0030
SVM/CRF (linear) Fz,3,4,5 .7723±.0037 .7888±.0045
SVM/CRF (linear) Fz,5,6 .7501±.0088 .7869±.0034
SVM/CRF (linear) Fz,1,2,5,6 .8064±.0053 .8296±.0023
SVM/CRF (quadr.) Fz,3,4,5 .7928±.0050 .8031±.0026
SVM/CRF (quadr.) Fz,5,6 .8375±.0063 .8077±.0021
SVM/CRF (quadr.) Fz,1,2,5,6 .8384±.0068 .8578±.0028
SVM/CRF (cubic) Fz,3,4,5 .7790±.0039 .7991±.0029
SVM/CRF (cubic) Fz,5,6 .8376±.034 .8559±.0027
SVM/CRF (cubic) Fz,1,2,5,6 .8452±.0060 .8561±.0028
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Table A.3 Dimensionality reduction and large training sets: average accuracy per

character.
Method PCA LDA
LR .6943±.0102 .7986±.0056
SVM (linear) .7034±.0093 .8032±.0049
SVM (quadr.) .8290±.0060 .8631±.0045
SVM (cubic) .8462±.0038 .8710±.0046
CRF Fz,1,2 .7546±.0072 .7976±.0072
CRF Fz,1,3,4 .7654±.0042 .8092±.0081
LR/CRF Fz,3,4,5 .8851±.0039 .8558±.0078
LR/CRF Fz,5,6 .8633±.0038 .9114±.0034
LR/CRF Fz,1,2,5,6 .8649±.0057 .9130±.0045
SVM/CRF (linear) Fz,3,4,5 .8332±.0103 .8824±.0058
SVM/CRF (linear) Fz,5,6 .8889±.0036 .8772±.0054
SVM/CRF (linear) Fz,1,2,5,6 .8134±.0075 .8754±.0072
SVM/CRF (quadr.) Fz,3,4,5 .8934±4.0069 .9128±.0031
SVM/CRF (quadr.) Fz,5,6 .9153±.0034 .9160±.0043
SVM/CRF (quadr.) Fz,1,2,5,6 .8941±.0047 .9130±.0045
SVM/CRF (cubic) Fz,3,4,5 .8919±.0048 .9108±.0040
SVM/CRF (cubic) Fz,5,6 .8939±.0047 .9132±.0050
SVM/CRF (cubic) Fz,1,2,5,6 .8938±.0045 .9138±.0038
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Table A.4 Dimensionality reduction and large training sets: average accuracy per

character per word.
Method PCA LDA
LR .6933±.0113 .7995±.0062
SVM (linear) .7024±.0108 .8036±.0022
SVM (quadr.) .8288±.0058 .8640±.0054
SVM (cubic) .8471±.0040 .8717±.0055
CRF Fz,1,2 .7524±.0078 .7950±.0098
CRF Fz,1,3,4 .7619±.0058 .8050±.0109
LR/CRF Fz,3,4,5 .8845±.0045 .8525±.0071
LR/CRF Fz,5,6 .8580±.0036 .9097±.0053
LR/CRF Fz,1,2,5,6 .8592±.0076 .9118±.0048
SVM/CRF (linear) Fz,3,4,5 .8287±.0123 .8791±.0061
SVM/CRF (linear) Fz,5,6 .8876±.0046 .8758±.0030
SVM/CRF (linear) Fz,1,2,5,6 .8117±.0085 .8749±.0072
SVM/CRF (quadr.) Fz,3,4,5 .8898±.0080 .9112±.0037
SVM/CRF (quadr.) Fz,5,6 .9141±.0047 .9142±.0060
SVM/CRF (quadr.) Fz,1,2,5,6 .8921±.0050 .9118±.0048
SVM/CRF (cubic) Fz,3,4,5 .8896±.0054 .9093±.0040
SVM/CRF (cubic) Fz,5,6 .8919±.0051 .9120±.0052
SVM/CRF (cubic) Fz,1,2,5,6 .8917±.0050 .9128±.0042
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different types data points. Also, by increasing the amount of dimensions used for

the PCA did not seem to improve the overall results of the experiment as it still

underrepresented the data when compared to the LDA results.

Given the small and the big training sets, the accuracy from the PCA

experiments is consistently worse by 3 to 12 percent than the original experiments.

For the LDA experiments, it is consistently worse by 5 to 0 percent. The experi-

ments whose accuracy diverge the most from the original ones are the ones based

on stand alone CRFs. One explanation is that CRFs need a lot of features and

dimensionality reduction based approaches tend to constrain this capability. The

experiments whose accuracy converge the most with the original ones are the ones

based on the SVM/CRF. One explanation is that the dimensionality reduction is

only constraining the SVM step and not the CRF. Although the SVM with linear

kernel is not an overall high performer classifier, the accuracy obtained using the

LDA data for the small training set is identical to the results using the original

data for the same experiment.

Finally these results help us understand the importance of dimension-

ality reduction techniques. Although the overall performance was lower than in

the original experiments, for higher dimensional datasets such approach may be

very important in making the problem computationally feasible. In addition there

are more variations of dimensionality reduction techniques that may yield better

results, as they may increase the amount of features used by the CRF. However

such techniques are not straightforward, and may require a brute force approach

for picking the right features that goes beyond this thesis.




