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Deming Suna,*

aDoheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at 
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Abstract

Regulatory effects of γδ T-cells on immune responses have been studied for years. We have 

investigated the regulatory effect of γδ T-cells on Th1 and Th17 autoimmune responses, and have 

studied molecular and cellular mechanisms by which γδ T-cells enhance or inhibit immune 

responses, exploiting a well-characterized murine model of experimental autoimmune uveitis 

(EAU). Our results show that (1) aberrant γδ T-cell activation is an important pathogenic event in 

EAU; (2) γδ T-cells have a unique regulatory effect on Th17 autoimmune responses, which is 

shaped by the activation status of γδ T-cells; and (3) γδ-mediated immunoregulation is closely 

linked with the extracellular adenosine metabolism. Reciprocal interactions between γδ T-cells 

and extracellular adenosine partially determine the development of EAU.
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I. INNATE IMMUNITY IN AUTOIMMUNE DEVELOPMENT

Recent studies have shown that an effective immune response requires a coordinated 

interaction between innate and adaptive immunity.1–6 A rapid innate immune response not 

only fills the gap in immunologic defense before a fully effective adaptive response is 

generated; it also determines the pattern and intensity of the subsequent adaptive responses.
5–7
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γδ T-cells as cellular elements of innate immunity constitute less than 1% of the total 

lymphocytes in the periphery, but during infection or inflammation their numbers rapidly 

and dramatically expand within a few days.8 In mice induced for experimental autoimmune 

uveitis (EAU), a large portion (> 60%) of peripheral γδ T-cells became activated in early 

preclinical phases of the disease (one week before its clinical appearance) and subsequently 

became a strong driving force of induced mouse EAU.9–11

Adenosine and its derivatives modulate many physiological processes, including innate and 

adaptive immunity. Extracellular adenosine levels are low in healthy individuals,12 but 

increase 100- to 1000-fold during tissue injury and inflammation.13 Adenosine reduces 

inflammation and tissue injury14–17 by acting on four different types of adenosine receptor 

(AR): A1R, A2AR, A2BR, and A3R.13,14 Adenosine is profoundly anti-inflammatory,14–19 

whereas both ATP and ADP are highly proinflammatory.20–25 Intracellular concentrations of 

ATP are typically 104-fold higher than extracellular concentrations.26 Under physiological 

conditions, extracellular ATP (eATP) concentration is kept in the nanomolar range (1–100 

nM). During tissue damage, such as ischemia, eATP levels can be elevated by thousands-

fold.27,28 Studies have shown that elevated amounts of eATP trigger immune responses and 

function as a danger signal that activates the immune system.22–25 Therefore, eATP is 

considered proinflammatory— not only by stimulating innate immune responses, but also by 

favoring effector T-cell activation. Our results have demonstrated that regulation of γδ T-

cells in adaptive autoimmunity is associated with adenosine. Hence, a better understanding 

of the cellular and molecular mechanisms of the interactions between innate and adaptive 

immunity should allow us to manipulate the specific adaptive immune response more 

effectively; a rational therapeutic approach needs to take into account the balance between 

the two types of immune response.

II. REGULATORY EFFECT OF γδ T-CELLS IN AUTOIMMUNE DISEASES

The regulatory effect of γδ T-cells on immune responses has long been acknowledged. 

Studies have shown that γδ T-cells can either upregulate29–32 or downregulate 33–35 an 

immune response. This functional diversity was once attributed to different γδ T-cell subsets 

expressing distinct T-cell receptors (TCRs).36–40 Studies also demonstrated that the 

regulatory activity of γδ T-cells could be shaped by exposure to Toll ligands41 or 

mycobacteria.42 Clinical approaches have been developed to use γδ T-cells as a potential 

therapeutic modality for cancers43 and infections3,4; however, limited knowledge of their 

regulatory mechanisms hampers an effective therapeutic application. Our studies using an 

established EAU model have repeatedly shown that the regulatory ability of γδ T-cells is 

determined by their activation status and is more effective toward Th17-type than Th1-type 

immune responses.10,11,44–10,45 Hence, modulation of γδ T-cell activation status 

significantly affects immune responses.

III. TH1 AND TH17 PATHOGENIC RESPONSES IN THE PATHOGENESIS OF 

EAU

Over the past three decades, circumstantial evidence has supported the notion that a major 

subset of pathogenic T-cells in autoimmune diseases produces IFN-γ and IL-2 and belongs 
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to the Th1 CD4 T-cell family.46–53 Recent studies have shown, however, that Th17 cells, 

which characteristically produce interleukin (IL-) –17A, IL-17F, IL-21, and IL-22, are 

another major subset of pathogenic T-cells. The finding that Th17 autoreactive T-cells are an 

important pathogenic T-cell subset in autoimmune diseases54–56 raised the question of 

whether they differ from the previously characterized Th1 autoreactive T-cells in 

pathogenesis57–61 and regulation.62,63 On the other hand, studies from transgenic animals 

have demonstrated that animals can keep autoaggression in check, even in the face of huge 

numbers of self-reactive cells,64,65 suggesting that the damaging effect of autoreactive T-

cells must be balanced by a counter-reactive regulatory mechanism. Indeed, an aberrant 

immune response is frequently associated with regulatory cell dysfunction or an imbalance 

between regulatory and effector T-cells.66,67 Therefore, extensive studies have investigated 

how a healthy regulatory cell function is produced and maintained, what causes the 

imbalance between regulatory and effector T-cells during disease, and what treatment can 

restore normal functioning. T-cells expressing Foxp3 have been well characterized as major 

regulatory cells for Th1 responses, but their effectiveness in Th17 autoimmune responses has 

been questioned.62,63 Recent findings by our lab9,10,68,69 and others1,41,70,71 demonstrated 

that γδ T-cells have a strong regulatory effect on various, including autoimmune, diseases. 

Some questions arise: (1) Does γδ T-cell regulation of a given immune response differ from 

that of its regulation by αβ T-cells? (2) What are the key factors that determine the 

regulatory effect of γδ T-cells? And (3) What is the cellular and molecular basis of 

regulation by γδ T-cells in Th1 and Th17 autoreactive responses?

IV. ACTIVATION STATUS DETERMINES THE ENHANCING ACTIVITY OF γδ 

T-CELLS

One effective way to determine the regulatory effect of γδ T-cells is to compare immune 

responses between wild-type (WT) C57BL/6 (B6) and genetically compatible TCR-δ–/– 

mice, which heritably lack the ability to develop γδ T-cells. Comparison of Th1 and Th17 

autoimmune responses in immunized mice, including TCR-δ–/– mice injected with an 

effective dose of γδ T-cells, allowed us to define the role of γδ T-cells in the regulation of 

immune responses. About a week after immunization, approximately 60% of the γδ T-cells 

found in the periphery of EAU-prone B6 mice expressed CD69 and CD44, whereas γδ T-

cells of nonimmunized B6 mice rarely did so. Highly enriched γδ T-cells exert widely 

different effects on autoreactive αβ T-cells in EAU, depending on their activation status. 

Whereas nonactivated γδ T-cells (isolated from naïve B6 mice) had little effect on the 

activation of IRBP-specific αβ T-cells in vitro and in vivo, activated γδ T-cells (isolated 

from immunized or naïve B6 mice that had been stimulated with antiCD3 antibodies for two 

days) promoted generation of uveitogenic T-cells and exacerbated EAU development.10,11,72 

Similarly, TCR-δ–/– mice injected with activated γδ T-cells generated an approximately 

fourfold higher percentage of IL-17+ IRBP-specific αβ T-cells by comparison with mice that 

received no injection or those injected with resting γδ T-cells. Notably, when adoptively 

transferred to naïve recipients, IRBP-specific T-cells from mice injected with activated γδ T-

cells, but not from those injected with resting γδ T-cells, induced more severe EAU.
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V. MOLECULAR MECHANISM BY WHICH γδ T-CELLS REGULATE TH17 

CELLS

To determine whether the enhancing functions of γδ T-cells are associated with the 

expression of specific surface molecules, and to determine the underlying mechanism by 

which γδ cells switch their regulatory function, we examined a series of molecules that are 

differentially expressed on activated versus nonactivated γδ T-cells. We were able to show 

that, in addition to expressing increased amounts of T-cell activation markers such as CD69, 

CD44, and CD25, activated γδ T-cells express greatly increased levels of the adenosine A2A 

receptor (A2AR), which confers on them a greatly increased ability to bind adenosine when 

compared to other immune cell types such as αβ T-cells and dendritic cells (DCs).45,73 

Interestingly, ligation of A2AR-enhanced γδ T-cell activation, whereas it inhibited 

activation of αβ T-cells.73,74 Thus, expression of increased amounts of A2AR enables 

activated γδ T-cells to bind adenosine more effectively and thereby attenuate adenosine’s 

suppressive effect on αβ T-cells. Moreover, compared to resting cells, activated γδ T-cells 

express significantly lower levels of CD73,45,73 an enzyme involved in the generation of 

extracellular adenosine.18,75–78 Decreased expression of CD73 results in reduced generation 

of adenosine at the inflammatory site. Since both A2AR and CD73 molecules are crucially 

involved in metabolism, function, and the regulatory effect of extracellular ATP and 

adenosine,12,13,18 we wondered whether the altered expression of adenosine-related 

functional molecules accounts for the altered regulatory function of activated γδ T-cells.
45,73,74,79

VI. ROLE OF ADENOSINE IN γδ ACTIVATION AND REGULATION

ATP is dephosphorylated to ADP, AMP, and, ultimately, adenosine.12,80 CD39 and CD73 

are two well-characterized ectoenzymes involved in the conversion of ATP to adenosine.
75,76 The ecto-5-nucleotide enzyme CD73 is pivotal in the conversion of immunostimulatory 

ATP into immunosuppressive adenosine by conversion of eATP to adenosine.75,76 Studies 

have shown that T-cells expressing higher levels of CD39 and CD73 suppress inflammatory 

responses through the production of adenosine.16,17 Note that various immune cells are rich 

sources of extracellular adenosine, including B-cells,81 neutrophils,82 mast-cells,15 

endothelial cells,82,83 and T-cells.13 Adenosine affects the functions of many cell types, 

including T-cells,77,84 macrophages/DCs,16,84,85 NK cells,86 neutrophils,87 platelets,88 and 

regulatory T-cells (Tregs).16,17,89 Since adenosine affects Treg functions,17,89–91 we wished 

to determine whether it also affects the regulatory function of γδ T-cells. Moreover, even 

though γδ T-cells are a major cell element in inflamed organs and tissues,92–94 the 

connection between adenosine and γδ T-cells has remained largely unknown.

γδ T-cells can be activated via multiple pathways, such as cytokines and TLR ligands,95–98 

even in the absence of γδ TCR ligation. We were able to show that purified γδ T-cells can 

be activated by a number of proinflammatory cytokines, and that a mixture of IL-1, IL-7, 

and IL-23 has a strong stimulatory effect.11 Although adenosine does not directly stimulate 

γδ T-cell activation, it significantly enhances activation induced by the cytokine mixture, an 

effect that can be blocked by the A2AR antagonist.73 This activation of γδ T-cells leads to 
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augmented Th17 responses,10,11,45 and the net effect of adenosine in Th17 responses is 

enhancing whereas its effect on Th1 response is mainly suppressive.16,45,99–103 The fact that 

adenosine inhibits Th1 autoreactive T-cell response but enhances γδ T-cell and Th17 

autoreactive T-cell response reveals that this molecule plays an important role in switching 

and balancing between Th1 and the Th17 responses in autoimmune pathogenesis.73,74,79

VII. γδ T-CELLS ACTIVELY PARTICIPATE IN THE CONVERSION OF 

EXTRACELLULAR ATP TO ADENOSINE

Our studies demonstrated that adenosine-mediated immunoregulation and γδ T-cell–

mediated immunoregulation are intimately linked in EAU pathogenesis. In addition to the 

fact that adenosine affects the activation of αβ and γδ T-cells, γδ T-cells strongly influence 

extracellular ATP metabolism and adenosine generation73,79 as well as adenosine function.
45,73,74,79 As we reported previously,104 CD73+ γδ T-cells are much more potent in 

converting AMP to adenosine compared to other CD73+ immune cells, including Foxp3+ αβ 
T-cells when tested in the pathogenesis of mouse EAU.45,73

Moreover, γδ T-cells express different amounts of CD73 during the different stages of EAU.
45 Changes in the expressed level of CD73 are correlated with the “switch” of pro- to anti-

inflammatory activities of γδ T-cells in the regulation of Th17 autoimmune responses,45 and 

low CD73 expression on γδ T-cells favors their enhancing effect on Th17 autoimmune 

responses.45 These results suggest the possibility of modulating Th17 autoimmune 

responses by manipulating CD73 expression on γδ T-cells.

VIII. ROLE OF CD73 IN γδ T-CELLS’ REGULATORY FUNCTION

CD39 and CD73 in combination degrade ATP, ADP, and AMP to adenosine and have been 

viewed as “immunological switches” that shift ATP-driven proinflammatory immune cell 

activity toward an anti-inflammatory state mediated by adenosine.76 Reduced CD73 

expression decreases the conversion of AMP to adenosine, thus contributing to immune 

activation,105 whereas cells that express higher levels of CD39 and CD73 may act to 

suppress inflammatory responses through the production of adenosine.16,17

Alteration of the CD39/CD73 machinery can disrupt the complex mechanisms underlying 

immune tolerance to self-antigens, driven mainly by Tregs, thus contributing to the 

development of several autoimmune diseases.106 It has been reported that CD39 is expressed 

on human and murine Tregs but that CD73 is found on the surface of murine Tregs only.
90,107 Increased ATP-metabolizing activity appears to be critical for Treg 

immunosuppressive activity.108

IX. ROLE OF EXTRACELLULAR ATP/ADENOSINE METABOLISM AND 

ADENOSINE-MEDIATED IMMUNOREGULATION IN γδ REGULATION

We previously reported that CD73+ αβ T-cells possess limited ability to convert AMP to 

adenosine as compared to CD73+ γδ T-cells,73 suggesting that the latter are the preeminent 

adenosine-converting cells among CD73+ immune cells.45,73 Moreover, γδ T-cells express 

Liang et al. Page 5

Crit Rev Immunol. Author manuscript; available in PMC 2019 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



different amounts of CD73 during the different stages of EAU, and the enhancing activity of 

γδ T-cells correlate with decreased expression of CD73. γδ T-cells express different 

amounts of CD73 when activated by different pathways, enabling them to either enhance or 

inhibit an adaptive immune response.45,73 Thus, activation of γδ T-cells alters not only 

adenosine-mediated immunoregulation but also adenosine metabolism. Our studies on 

isolated γδ T-cells from CD73+/+ (WT-B6) and CD73–/– mice showed that failure to express 

CD73 greatly reduces both the enhancing and suppressive activities of γδ T-cells45,73; low 

CD73 expression on γδ T-cells correlates with enhanced Th17 response–promoting activity; 

and CD73 expressed on γδ T-cells is more functionally active than that expressed on αβ T-

cells. Thus, ATP/adenosine metabolism plays a significant role in the interconversion of the 

enhancing and suppressive effects of γδ T-cells, and CD73 expressed by γδ T-cells is 

important in this process. These results demonstrate that the mechanisms involved in the 

proinflammatory effect of activated γδ T-cells in Th17-mediated autoimmune responses 

include both binding of adenosine by activated γδ T-cells and decreased CD73 expression 

on activated γδ T-cells. Further studies on the role of adenosine in inflammation and 

immune responses should result in improved immunotherapies based on adenosine and γδ 
T-cells.

X. ACTIVATED γδ T-CELLS ENHANCE IMMUNE RESPONSES BY 

EXPRESSION OF HIGH LEVELS OF A2AR

Extracellular adenosine, acting via A2AR, is an important negative regulator of T-cell 

development and function.14,16,17,77 The importance of A2AR in mediating 

immunoregulation has been demonstrated in A2AR-deficient (A2AR–/–) mice, whose 

inability to control inflammation leads to fatal tissue destruction.14,109 Adenosine generated 

in injured tissue is destroyed by enzymes, mainly adenosine deaminase (ADA). Serum 

adenosine levels are significantly increased in ADA−/− mice, whereas levels of downstream 

products of ADA-mediated adenosine conversion, such as hypoxanthine, are significantly 

reduced.110 Mice genetically deficient in ADA display altered inflammation.14,109 Immune 

dysfunction, including autoimmune and allergic diseases, has been frequently observed in 

humans and rodents with ADA dysfunction.111,112

Many immune cell types have been studied in an effort to determine which is most affected 

by adenosine; these include T-cells,77,84,113–115 macrophages/DCs,16,116,117 NK cells,86 

neutrophils,87,118 platelets,88 and Tregs.16,17,89 To determine whether A2AR is instrumental 

in the regulatory function of γδ T-cells, we isolated γδ T-cells from A2AR–/– (A2AR–/– γδ) 

and B6 mice (A2AR+/+ γδ), and compared their enhancing and inhibiting function. We were 

able to show that A2AR–/– γδ T-cells lose their Th17-enhancing activity; likewise, A2AR+/+ 

γδ T-cells lose their Th17-enhancing activity after treatment with an A2AR antagonist, 

suggesting that expression of increased amounts of A2AR allows γδ T-cells to bind 

adenosine and thereby attenuate its suppressive effect.

Comparisons between activated and nonactivated γδ T-cells showed that activated γδ T-cells 

expressed greatly increased levels of A2AR in addition to increased amounts of T-cell 

activation markers such as CD69, CD44, and CD25.73 Importantly, using a binding assay, 
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we were able to show that activated γδ T-cells bind far more adenosine than other immune 

cells.73 Increased expression of adenosine A2AR allows γδ T-cells to competitively bind 

adenosine in inflamed tissue, thus preventing its suppressive effect on αβ T-cells. A strong 

binding of adenosine by activated γδ T-cells represents more than a “sink”; for example, it 

enhances γδ activation and the expression of A2AR increases γδ activation,73 rendering 

them more competitive in adenosine binding. Since activated γδ T-cells have a strong ability 

to enhance Th17 response, their binding of adenosine may also weaken the suppressive 

effect of adenosine on αβ T-cells, leading to enhanced immune response.45,73 Our finding, 

that the effect of A2AR agonist on γδ T-cells is stimulatory rather than inhibitory, seems 

opposite to others’ findings concerning A2AR agonists on other immune cells,3,6,9–11 which 

is attributed to the high levels of A2AR in γδ T-cells. Expression of increased amounts of 

A2AR likely allows γδ T-cells to bind adenosine and thereby attenuate its suppressive 

effect.

XI. CONCLUDING REMARKS

The orchestration and modulation of inflammatory response in injured tissues by a number 

of regulatory mechanisms is quite sophisticated. Our studies showed that γδ T-cells have a 

strong regulatory effect on autoimmune responses, particularly Th17 types. Whereas the 

regulatory effect of γδ T-cells and that of extracellular ATP/adenosine metabolism in 

immune responses are well known, their intimate connection has yet to be completely 

elucidated and the cellular and molecular basis of this type of regulation has remained 

mostly unclear. We have made progress by demonstrating that γδ-mediated and adenosine-

mediated immunoregulation are intimately linked. The outcome of studies such as ours 

should improve current available therapies, including those based on adenosine and γδ T-

cell.

The studies summarized here are mostly derived from observations in a EAU mouse model, 

in which a dominant Vγ4+ γδ T-cell response is noted,44,68 whereas in this experimental 

model Vγ1+ γδ T-cells remain mostly nonactivated.44 Given that Vγ1+ γδ T-cells are 

dominantly activated in many infectious disease models,119–124 and the dominant responses 

of γδ T-cell subsets expressing distinct TCR segments remain unclarified, further studies 

should determine whether all γδ T-cell subsets work essentially in the same way.
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ABBREVIATIONS:

ADA adenosine deaminase

A2AR adenosine A2A receptor

AR adenosine receptor

EAU experimental autoimmune uveitis
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eATP extracellular ATP

IRBP interphotoreceptor retinoid-binding protein
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