
Communication-Avoiding Krylov Subspace Methods

By

Mark Hoemmen

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor James W. Demmel, chair
Professor Katherine A. Yelick

Professor Ming Gu

Spring 2010



i

Contents

Acknowledgments vi

Notation viii

List of terms x

Abstract 1

1 Introduction 1
1.1 Krylov subspace methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 What are Krylov methods? . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Kernels in Krylov methods . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Structures of Krylov methods . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Communication and performance . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.1 What is communication? . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2 Performance model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.3 Simplified parallel and sequential models . . . . . . . . . . . . . . . . 17
1.2.4 Communication is expensive . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.5 Avoiding communication . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Kernels in standard Krylov methods . . . . . . . . . . . . . . . . . . . . . . 25
1.3.1 Sparse matrix-vector products . . . . . . . . . . . . . . . . . . . . . . 25
1.3.2 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.3.3 AXPYs and dot products . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4 New communication-avoiding kernels . . . . . . . . . . . . . . . . . . . . . . 32
1.4.1 Matrix powers kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4.2 Tall Skinny QR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4.3 Block Gram-Schmidt . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5 Related work: s-step methods . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.6 Related work on avoiding communication . . . . . . . . . . . . . . . . . . . . 38

1.6.1 Arnoldi with Delayed Reorthogonalization . . . . . . . . . . . . . . . 39
1.6.2 Block Krylov methods . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.6.3 Chebyshev iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.6.4 Avoiding communication in multigrid . . . . . . . . . . . . . . . . . . 44
1.6.5 Asynchronous iterations . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



CONTENTS ii

1.7 Summary and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2 Computational kernels 51
2.1 Matrix powers kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.1.2 Model problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.1.3 Parallel Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.1.4 Asymptotic performance . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.1.5 Parallel algorithms for general sparse matrices . . . . . . . . . . . . . 58
2.1.6 Sequential algorithms for general sparse matrices . . . . . . . . . . . 62
2.1.7 Hybrid algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.1.8 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.1.9 Performance results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.1.10 Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.1.11 Related kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.1.12 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.2 Preconditioned matrix powers kernel . . . . . . . . . . . . . . . . . . . . . . 78
2.2.1 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.2.2 New kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.2.3 Exploiting sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.2.4 Exploiting low-rank off-diagonal blocks . . . . . . . . . . . . . . . . . 81
2.2.5 A simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.2.6 Problems and solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.2.7 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.3 Tall Skinny QR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.3.1 Motivation for TSQR . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.3.2 TSQR algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.3.3 Accuracy and stability . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.3.4 TSQR performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

2.4 Block Gram-Schmidt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.4.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2.4.3 Algorithmic skeletons . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2.4.4 Block CGS with TSQR . . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.4.5 Performance models . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.4.6 Accuracy in the unblocked case . . . . . . . . . . . . . . . . . . . . . 106
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Notation

Linear algebra

Throughout this work, we usually follow the “Householder convention”10 for notating linear
algebra:

• Greek letters indicate scalars,

• lowercase Roman letters indicate vectors (or scalar indices, especially if they are i, j,
or k), and

• uppercase Roman letters indicate matrices.

Sometimes, especially in Chapters 3 and 4, we extend this, so that uppercase Black letter
letters such as Q, R, or V (those are Q, R, and V , respectively, in the Black letter typeface)
indicate matrices which are constructed out of other matrices. For vectors and matrices, we
also use subscripts in the following ways.

• vk denotes a term in a sequence of vectors v0, v1, . . . , vk, vk+1, . . . . Generally all these
vectors have the same length. The subscript k does not denote element k of the vector;
for that we use the notation v(k), imitating the programming language Fortran.

• The notation vk(i) means element i of the vector vk, and the notation vk(i : j) (imitating
Fortran 90 and later versions of the programming language) means the vector of length
j − i+ 1 containing elements i through j (inclusive) of vk in sequence.

• Vk denotes a term in a sequence of matrices V0, V1, . . . , Vk, Vk+1, . . . . Generally these
all have the same number of rows. They may or may not have the same number of
columns.

• We again use the Fortran-like notation Vk(i, j) to denote the element in row i and
column j of the matrix Vk. If the matrix has no subscript, we may write Vij, which
means the same thing as V (i, j).

• The notation Vk(:, j) means column j of Vk, and Vk(i, :) means row i of Vk. If Vk is
m × n, 1 ≤ i1 ≤ i2 ≤ m, and 1 ≤ j1 ≤ j2 ≤ n, then Vk(i1 : i2, j1 : j2) denotes the
submatrix of Vk containing rows i1 to i2 (inclusive), and columns j1 to j2 (inclusive) of
Vk.

10Thus called because the English-speaking numerical linear algebra community standardized around slight
modifications of the notation of Householder [137].
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• We write 0m,n for an m × n matrix of zeros, and 0n for a length n column vector of
zeros.

• Imitating Wilkinson [239], we write ej for a column vector of some context-dependent
length n, consisting of zeros except for a one in entry j. Thus, the n×n identity matrix
I can be written as I = [e1, e2, . . . , en].

We formulate all of the Krylov methods described in this thesis to be correct either in
real or in complex arithmetic, using a single notation for both cases. We support this with
the following notation:

• For a scalar α, α denotes its complex conjugate if α is complex, else α = α if α is real.

• If a scalar α is complex, <(α) denotes its real part and =(α) its imaginary part. If α
is real, <(α) = α and =(α) = 0.

• For a column vector x of length n, x∗ denotes its transpose (x∗ = xT ) if x is real, and
its complex conjugate transpose (x∗ = xT ) if x is complex.

• Similarly, for an m× n matrix A, A∗ denotes its transpose (A∗ = AT ) if A is real, and

its complex conjugate transpose (A∗ = A
T

) if A is complex.

• For two vectors x and y of the same length n, we define their (Euclidean) inner product
as 〈x, y〉 = y∗x, whether the vectors are real or complex.

This notation can obscure the difference between complex Hermitian matrices (for which
A∗ = A always, but AT = A only if =(A) = 0) and real symmetric matrices (for which
AT = A). Any real symmetric matrix is also Hermitian, but some people object to calling
real matrices Hermitian. We avoid awkward expressions like “the symmetric resp. Hermi-
tian matrix A” by using the term “symmetric” to describe both real symmetric matrices,
and complex Hermitian matrices. We do so even though our algorithms and mathemati-
cal derivations assume complex arithmetic. Similarly, we say “symmetric positive definite”
(SPD) of both real symmetric positive definite matrices, and complex Hermitian positive
definite (HPD) matrices.

Given an n×n SPD (see above discussion about SPD vs. HPD) matrix M , the operation
〈x, y〉M = y∗Mx defines an inner product, which we call the M inner product. If M = I
(the n × n identity matrix), then the M inner product is the same as the usual Euclidean
inner product 〈x, y〉 = y∗x. We say analogously that two length n vectors x and y are M
orthogonal (x ⊥M y), when 〈x, y〉M = 0. This reduces to the usual (Euclidean) orthogonality,
x ⊥ y, when M = I.

Computer performance model

Section 1.2.2 describes our performance model for parallel computers and computer memory
hierarchies. In this model, we denote by P the number of processors in a parallel computer.
When modeling two levels of a memory hierarchy, “slow” and “fast” memory (e.g., main
memory and cache), we denote by W the capacity (in words) of the fast memory.
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List of terms

A-conjugate vectors Vectors which are orthogonal (“conjugate”) with respect to the A
inner product, for a symmetric positive definite (SPD, which see) n×n matrix A. The
length n vectors x and y are A conjugate when y∗Ax = 0. This is the origin of the
word “conjugate” in the “Method of Conjugate Gradients” (CG, which see).

ADR Arnoldi with Delayed Reorthogonalization, a Krylov subspace method by Hernandez
et al. [127] for solving nonsymmetric eigenvalue problems. It uses Classical Gram-
Schmidt orthogonalization (CGS, which see) to orthogonalize the Krylov basis vectors.
This differs from the standard version of Arnoldi iteration, which uses Modified Gram-
Schmidt orthogonalization (MGS, which see).

Arnoldi iteration A Krylov subspace method of Arnoldi [7] for solving nonsymmetric
eigenvalue problems; see also Bai et al. [15]. Described in Section 3.1.

Arnoldi(s, t) Same as CA-Arnoldi (Section 3.3), a communication-avoiding Krylov sub-
space method of ours for solving nonsymmetric eigenvalue problems.

AXPY Alpha X Plus Y, a computation y := αx + y, involving two dense length n vectors
x and y, and a scalar value α. The AXPY operation is included in the BLAS interface
(which see). Often, AXPY is called by the BLAS interface name specific to the data
types of the elements of x and y, such as SAXPY (“single-precision” real floating-
point data). Other names in use include DAXPY (double-precision real data), CAXPY
(single-precision complex data), or ZAXPY (double-precision complex data). In this
thesis, we use the generic term AXPY.

B2GS A Block Gram-Schmidt algorithm with reorthogonalization by Jalby and Philippe
[142], discussed in this thesis in Section 2.4.

Balancing A technique for improving the accuracy of solving nonsymmetric eigenvalue
problems, by scaling the rows and columns of the matrix. Discussed in Section 7.5.3
of this thesis.

BiCG The Method of Biconjugate Gradients of Fletcher [98], a Krylov subspace method for
solving nonsymmetric linear systems. Discussed in Section 6.2.

BiCGSTAB (the “Method of Biconjugate Gradients, Stabilized” of van der Vorst [225], a
Krylov subspace method for solving nonsymmetric linear systems.
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BLAS The Basic Linear Algebra Subprograms, an interface for dense linear algebra compu-
tations, such as dot products, vector sums, matrix-vector multiply, and matrix-matrix
multiply. See e.g., “AXPY,” “BLAS 1,” “BLAS 2”, and “BLAS 3.” References include
Lawson et al. [161] and Dongarra et al. [87, 86, 85, 84].

BLAS 1 The Basic Linear Algebra Subprograms (BLAS, which see) are organized into three
“levels”: BLAS 1, BLAS 2, and BLAS 3. The BLAS 1 consist of dense vector-vector
operations such as dot products and AXPYs (which see). The BLAS 2 consist of dense
matrix-vector operations such as matrix-vector products and triangular solves (with a
single right-hand side vector). The BLAS 3 consist of dense matrix-matrix operations
such as matrix-matrix products and triangular solves (with multiple right-hand side
vectors). BLAS 3 operations have a higher ratio of floating-point arithmetic operations
to memory operations than do BLAS 1 or BLAS 2 operations.

BLAS 2 Dense matrix-vector operations. See BLAS 1.

BLAS 3 Dense matrix-matrix operations. See BLAS 1.

BGS Block Gram-Schmidt, a class of algorithms related to Gram-Schmidt orthogonalization
(see entries “CGS” and “MGS”). BGS algorithms process blocks of consecutive vectors
at a time. This results in the algorithm spending more of its time in matrix-matrix
products, which have a higher efficiency on modern processors than vector-vector op-
erations (such as dot products and AXPYs (which see)).

Block CGS Block Classical Gram-Schmidt, a Block Gram-Schmidt algorithm (which see)
patterned from the standard Classical Gram-Schmidt orthogonalization method (which
see). Described in Section 2.4.

Block MGS Block Modified Gram-Schmidt, a Block Gram-Schmidt algorithm (which see)
patterned from the standard Modified Gram-Schmidt orthogonalization method (which
see). Described in Section 2.4.

CA-Arnoldi Our communication-avoiding version of Arnoldi iteration, a Krylov subspace
method for solving nonsymmetric eigenvalue problems. Described in Section 3.3.

CA-CG Our communication-avoiding version of the Method of Conjugate Gradients (CG,
which see), a Krylov subspace method for solving symmetric positive definite systems
of linear equations. Described in Sections 5.4 (not preconditioned) and 5.5 (precondi-
tioned).

CA-GMRES Our communication-avoiding version of GMRES (which see), a Krylov sub-
space method for solving nonsymmetric systems of linear equations. Described in
Section 3.4.

CA-Lanczos Our communication-avoiding version of Lanczos iteration, a Krylov subspace
method for solving symmetric eigenvalue problems. Described in Section 4.2.

CAQR Communication-Avoiding QR, an algorithm (or rather, a class of algorithms) for
computing the QR factorization of a dense matrix, described in Demmel et al. [74].
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CG The Method of Conjugate Gradients of Hestenes and Stiefel [130], a Krylov subspace
method for solving symmetric positive definite linear systems. Described in Section
5.1.

CGNE The Method of Conjugate Gradients on the Normal Equations, a Krylov subspace
method for solving linear least squares problems (see e.g., Saad [207]). It works by
using the Method of Conjugate Gradients (CG, which see) on the normal equations.

CG3 The three-term recurrence variant of the Method of Conjugate Gradients (CG, which
see), a Krylov subspace method for solving symmetric positive definite systems of linear
equations. We use CG3 as an intermediate algorithm in order to develop CA-CG (which
see). CG3 is described briefly in Section 5.4 and derived in detail in Appendix C.1.

CGS Depending on the context, this may mean either Classical Gram-Schmidt, an algo-
rithm for orthogonalizing a finite collection of linearly independent elements of a vector
space equipped with an inner product; or the Conjugate Gradient Squared algorithm of
Sonneveld [213], a Krylov subspace method for solving nonsymmetric linear systems.
Conjugate Gradient Squared is related to the Method of Biconjugate Gradients (BiCG)
(which see).

CholeskyQR An algorithm for computing the QR decomposition A = QR of an m × n
matrix A with m ≥ n. Described in e.g., Demmel et al. [74], where it is observed that
CholeskyQR in finite-precision arithmetic, unlike TSQR (which see), may produce a
Q whose columns are not at all orthogonal.

Clovertown The code name of a particular shared-memory parallel processor made by
Intel.

Computational intensity For a particular algorithm, the ratio of floating-point arithmetic
instructions to memory loads and stores.

CR The Method of Conjugate Residuals, a variant of the Method of Conjugate Gradients
(CG, which see).

GMRES(s, t) Same as CA-GMRES (Section 3.4).

Gram matrix Let V = [v1, v2, . . . , vp] be a collection of p length-n vectors (usually with
n� p), and let W = [w1, w2, . . . , wq] be a collection of q length-n vectors (usually with
n� q). The Gram matrix of V and W is W ∗V . It is used both for orthogonalization
(when W = V , in which case this algorithm is called “CholeskyQR,” which see) and for
biorthogonalization. The Gram matrix may be computed using a single matrix-matrix
multiply, which means that it requires less communication than (bi)orthogonalization
methods that work one column at a time.

CPU Central Processing Unit, also called processor. The “brain” of a computer, that carries
out the instructions in a program. These instructions include arithmetic or bitwise
operations, as well as instructions to fetch or store data from resp. to storage units or
input / output units.
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Doubly stochastic A matrix A is doubly stochastic if all the entries of A are nonnegative,
and each row and column of A sums to one.

DRAM Dynamic random access memory, a random-access memory technology commonly
used to implement the main memory of a processor. Often used as a synonym for
“main memory.”

Equilibration A technique for scaling the rows and columns of a matrix in order to make
the diagonal entries one in absolute value, and the off-diagonal entries smaller than
one in absolute value. Discussed in Section 7.5.3.

Fast memory for two levels of a memory hierarchy, “fast memory” is the level with lower
access latency but smaller capacity than “slow memory.”

FOM The Full Orthogonalization Method (described in Saad [207]), a Krylov subspace
method for solving nonsymmetric linear systems.

GMRES The Generalized Minimum Residual method of Saad and Schultz [208], a Krylov
subspace method for solving nonsymmetric linear systems.

Golub-Kahan-Lanczos method Also called Golub-Kahan-Lanczos bidiagonalization. A
Krylov subspace method of Golub and Kahan [112] for solving sparse nonsymmetric
singular value problems. For the matrix A, the method is mathematically equivalent
to using symmetric Lanczos iteration (which see) to solve the symmetric eigenvalue
problem (A∗A)x = λx. See also Bai et al. [15].

Householder QR An algorithm for computing the QR factorization of a matrix. It involves
processing the matrix column by column, computing an orthogonal transform called
a Householder reflector for each column. For a description of the algorithm, see e.g.,
Golub and Van Loan [113].

HPD Hermitian positive definite, said of a square matrix A which is both Hermitian (A =
A∗, i.e., A equals its complex conjugate transpose) and positive definite. See the “SPD”
entry.

HSS Hierarchically semiseparable, which refers either to a particular class of matrices, or a
particular way of storing matrices in this class. HSS matrices have a recursive struc-
ture which asymptotically reduces the number of floating-point operations required for
various linear algebra operations (such as factorizations, solving linear systems, and
matrix-vector multiplies).

ILU Incomplete LU factorization, an approximate LU factorization A ≈ LU of a sparse
nonsymmetric matrix A, that tries to keep the L and U factors as sparse as possible
(in order to reduce computational cost and memory usage). ILU is often used as a
preconditioner when solving a sparse linear system Ax = b using a Krylov subspace
method.
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KSM Krylov subspace method, a class of iterative algorithms for solving sparse linear sys-
tems and eigenvalue problems. KSM is a nonstandard abbreviation which we use to
save space.

LAPACK Linear Algebra PACKage, a software package written in a subset of Fortran 90,
that “provides routines for solving systems of simultaneous linear equations, least-
squares solutions of linear systems of equations, eigenvalue problems, and singular
value problems” [5].

Laplacian matrix The Laplacian matrix A of a graph (without self-loops or multiple edges)
is a (possibly sparse) matrix which has a nonzero entry Aij for every edge eij between
two vertices vi and vj in the graph. Aij is the degree of vi if i = j, Aij = −1 if i 6= j
and edge eij exists, and Aij = 0 otherwise.

Leja ordering A particular ordering on a set of complex numbers, which we describe in
detail in Section 7.3.2. It is useful for the Newton s-step basis.

LINPACK “a collection of Fortran subroutines that analyze and solve [dense] linear equa-
tions and linear least-squares problems” [83]. A predecessor of LAPACK (which see).
Also, the origin of the “LINPACK Benchmark,” used to assess the performance of
computer systems by solving a large square linear system Ax = b using Gaussian
elimination with partial pivoting.

LP-CA-CG The left-preconditioned variant of our communication-avoiding version of the
Method of Conjugate Gradients (CG, which see), a Krylov subspace method for solving
symmetric positive definite systems of linear equations. Described in Section 5.5.

LP-CG3 The left-preconditioned version of CG3 (which see), a Krylov subspace method for
solving symmetric positive definite systems of linear equations. Described in Section
5.5.

Lucky breakdown A breakdown condition in Krylov subspace methods, in which the
Krylov subspace has reached its maximum dimension given the matrix and starting
vector. It is “lucky” both because it is rare, and because it gives useful information
about the Krylov subspace.

MGS Modified Gram-Schmidt, an algorithm for orthogonalizing a finite collection of linearly
independent elements of a vector space equipped with an inner product.

M inner product For an n × n symmetric positive definite (SPD, which see) matrix M ,
the inner product on vectors of length n defined by 〈x, y〉M = y∗Mx. (Note that we
assume x and y are complex, which is why we reverse their order when writing their
inner product. See the SPD entry in this glossary.) If M is the identity matrix I, the
M inner product reduces to the usual Euclidean inner product 〈x, y〉 = y∗x.

MINRES The Minimum Residual algorithm of Paige and Saunders [186], a Krylov sub-
space method for solving symmetric indefinite linear systems.
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MPI Message Passing Interface, a specification of a interface for distributed-memory par-
allel programming.

Nehalem The code name of a particular shared-memory parallel processor made by Intel.

Nonsymmetric Lanczos iteration A Krylov subspace method of Lanczos [160] for solv-
ing nonsymmetric eigenvalue problems; see also Bai et al. [15]. Discussed in Section
6.1.

NUMA Nonuniform Memory Access, a design for a shared-memory parallel system, in
which different parts of memory have different latencies (and possibly also different
bandwidths) to different processors in the system. The opposite of NUMA is “UMA”
(Uniform Memory Access), a less frequently used acronym. The advantages of a NUMA
design are lower-latency access of a processor to its “local” memory, and usually also
higher bandwidth (since a single “local” memory need not serve as many processors).

OOC Out-of-core, said of a computer program which can operate on data sets larger than
can fit in main memory, by explicitly swapping subsets of the data between main
memory and a slower storage device of larger capacity (such as a hard disk). “Core” is
an anachronism referring to magnetic solenoid core memory technology, which became
popular in the early 1960s as a main memory store.

Orthomin A Krylov subspace method of Vinsome [231] for solving symmetric linear sys-
tems. For a discussion, see e.g., Greenbaum [119, pp. 33–38].

OSKI Optimized Sparse Kernel Interface, an interface and optimized implementation by
Vuduc et al. [236] of sparse matrix computations such as sparse matrix-vector multiply
(SpMV, which see) and sparse triangular solve (SpTS, which see), along with optimized
implementations of those computations for superscalar cache-based processors.

PDE Partial differential equation, a differential equation involving functions of multiple
variables. Examples include the heat equation, the wave equation, and Poisson’s equa-
tion. PDEs are often solved via discretization, which results in a finite system of linear
equations. Such linear systems are themselves often solved using Krylov subspace
methods, especially if the discretization results in a sparse matrix or a matrix with a
structure amenable to performing matrix-vector products inexpensively.

Power method A simple iteration for approximating the principal eigenvector and eigen-
value of a matrix A, by means of repeated sparse matrix-vector multiplications.

PRAM Parallel Random-Access Machine, an abstract model of a shared-memory parallel
computer with some number P processors. It assumes that synchronization requires
no time, that the processors do not contend for resources, and that each processor can
access any particular memory location in one cycle.

QMR The Quasi-Minimal Residual algorithm of Freund and Nachtigal [102], a Krylov
subspace method for solving nonsymmetric linear systems.
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RODDEC A QR factorization algorithm for parallel processors on a ring network, described
by Erhel [93] and discussed e.g., in Demmel et al. [74]. On a system with P processors,
RODDEC requires Θ(P ) messages, which is asymptotically greater than the lower
bound of Θ(logP ) messages. Our parallel QR factorization TSQR (“Tall Skinny QR,”
see Section 2.3) meets that lower bound.

RR-TSQR Our “Rank-Revealing Tall Skinny QR” factorization, described in Section 2.4.

RR-TSQR-BGS Our “Rank-Revealing Tall Skinny QR - based Block Gram-Schmidt” or-
thogonalization method, described in Section 2.4.

ScaLAPACK As described by Blackford et al. [32], “ScaLAPACK is a library of high-
performance linear algebra routines for distributed-memory message-passing MIMD
computers and networks of workstations supporting PVM and / or MPI. It is a contin-
uation of the LAPACK project, which designed and produced analogous software for
workstations, vector supercomputers, and shared-memory parallel computers. . . The
name ScaLAPACK is an acronym for Scalable Linear Algebra PACKage, or Scalable
LAPACK.”

Serious breakdown A particular breakdown condition in nonsymmetric Lanczos iteration
(which see) and BiCG (which see), discussed in various places in Chapter 6.

Slow memory For two levels of a memory hierarchy, “slow memory” is the level with higher
access latency but larger capacity than “fast memory.”

SPAI Sparse Approximate Inverse, a class of preconditioners which construct an approxi-
mate inverse B of a sparse matrix A, in which the sparsity pattern of B is constrained
in some way.

SPD Symmetric positive definite, said of a square matrix A. In this thesis, we use SPD to
describe both real symmetric positive definite matrices and complex Hermitian positive
definite matrices, but we assume complex arithmetic in our algorithms and mathemat-
ical derivations. Such notation is nonstandard, but we do so to avoid awkward “SPD
resp. HPD” constructions.

SpMV Sparse matrix-vector multiply, the product y := A · x, where x and y are dense
vectors and A is a sparse matrix.

SpMM Sparse matrix times multiple vectors, the product Y := A · X, where X and Y
are dense matrices and A is a sparse matrix. (See the “SpMV” entry.) Usually it is
assumed that X and Y have many more rows than columns.

SpTS Sparse triangular solve, the computation of the solution y of Ay = x, where A is a
sparse (upper or lower) triangular matrix, and x and y are dense vectors.

SpTM Sparse triangular solve with multiple vectors, the computation of the solution Y of
AY = X, where A is a sparse (upper or lower) triangular matrix, and X and Y are
dense matrices. (See the “SpTS” entry.) Usually it is assumed that X and Y have
many more rows than columns.
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SVD Singular Value Decomposition, a factorization A = UΣV of a general real or complex
matrix A. See e.g,. Golub and Van Loan [113] or Demmel [73].

Symmetric Lanczos iteration A Krylov subspace method of Lanczos [160] for solving
symmetric eigenvalue problems; see also Bai et al. [15]. Described in Section 4.1.

TFQMR The Transpose-Free QMR algorithm of Freund [101], a Krylov subspace method
for solving nonsymmetric linear systems.

TSP Traveling Salesperson Problem, a problem in combinatorial optimization, namely, to
find the shortest path between a set of vertices of a graph, that visits each vertex
exactly once. The Traveling Salesperson Problem is known to be NP-complete, which
in practice means that solving large TSP problems is computationally expensive (even
prohibitively so). We refer to the Traveling Salesperson Problem in Section 2.1.

TSQR Tall Skinny QR, an algorithm (or rather, a collection of related algorithms) for
computing the QR factorization of an m× n matrix A with m� n (so that the shape
of A is “tall and skinny”). See Section 2.3.

Two-sided Arnoldi iteration A Krylov subspace method of Ruhe [204] for solving non-
symmetric eigenvalue problems. This differs from standard Arnoldi iteration (which
see), which is a one-sided algorithm.

WATT A collection of real nonsymmetric sparse matrix test problems from petroleum engi-
neering applications. They belong to the Harwell-Boeing sparse matrix test suite (see
e.g., Boisvert et al. [34]).
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Abstract

Communication-Avoiding Krylov Subspace Methods

by

Mark Hoemmen

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor James W. Demmel, chair

The cost of an algorithm includes both arithmetic and communication. We use “com-
munication” in a general sense to mean data movement, either between levels of a memory
hierarchy (“sequential”) or between processors (“parallel”). Communication costs include
both bandwidth terms, which are proportional to the number of words sent, and latency
terms, which are proportional to the number of messages in which the data is sent. Commu-
nication costs are much higher than arithmetic costs, and the gap is increasing rapidly for
technological reasons. This suggests that for best performance, algorithms should minimize
communication, even if that may require some redundant arithmetic operations. We call
such algorithms “communication-avoiding.”

Krylov subspace methods (KSMs) are iterative algorithms for solving large, sparse lin-
ear systems and eigenvalue problems. Current KSMs rely on sparse matrix-vector multiply
(SpMV) and vector-vector operations (like dot products and vector sums). All of these oper-
ations are communication-bound. Furthermore, data dependencies between them mean that
only a small amount of that communication can be hidden. Many important scientific and
engineering computations spend much of their time in Krylov methods, so the performance
of many codes could be improved by introducing KSMs that communicate less.

Our goal is to take s steps of a KSM for the same communication cost as 1 step, which
would be optimal. We call the resulting KSMs “communication-avoiding Krylov methods.”
We can do this under certain assumptions on the matrix, and for certain KSMs, both in
theory (for many KSMs) and in practice (for some KSMs). Our algorithms are based on the
so-called “s-step” Krylov methods, which break up the data dependency between the sparse
matrix-vector multiply and the dot products in standard Krylov methods. This idea has
been around for a while, but in contrast to prior work (discussed in detail in Section 1.5),
this thesis makes the following contributions:

• We have fast kernels replacing SpMV, that can compute the results of s calls to SpMV
for the same communication cost as one call (Section 2.1).

• We have fast dense kernels as well, such as Tall Skinny QR (TSQR – Section 2.3) and
Block Gram-Schmidt (BGS – Section 2.4), which can do the work of Modified Gram-
Schmidt applied to s vectors for a factor of Θ(s2) fewer messages in parallel, and
a factor of Θ(s/W ) fewer words transferred between levels of the memory hierarchy
(where W is the fast memory capacity in words).
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• We have new communication-avoiding Block Gram-Schmidt algorithms for orthogo-
nalization in more general inner products (Section 2.5).

• We have new communication-avoiding versions of the following Krylov subspace meth-
ods for solving linear systems: the Generalized Minimum Residual method (GMRES –
Section 3.4), both unpreconditioned and preconditioned, and the Method of Conjugate
Gradients (CG), both unpreconditioned (Section 5.4) and left-preconditioned (Section
5.5).

• We have new communication-avoiding versions of the following Krylov subspace meth-
ods for solving eigenvalue problems, both standard (Ax = λx, for a nonsingular matrix
A) and “generalized” (Ax = λMx, for nonsingular matrices A and M): Arnoldi it-
eration (Section 3.3), and Lanczos iteration, both for Ax = λx (Section 4.2) and
Ax = λMx (Section 4.3).

• We propose techniques for developing communication-avoiding versions of nonsymmet-
ric Lanczos iteration (for solving nonsymmetric eigenvalue problems Ax = λx) and the
Method of Biconjugate Gradients (BiCG) for solving linear systems. See Chapter 6 for
details.

• We can combine more stable numerical formulations that use different bases of Krylov
subspaces with our techniques for avoiding communication. For a discussion of dif-
ferent bases, see Chapter 7. To see an example of how the choice of basis affects the
formulation of the Krylov method, see Section 3.2.2.

• We have faster numerical formulations. For example, in our communication-avoiding
version of GMRES, CA-GMRES (see Section 3.4), we can pick the restart length r
independently of the s-step basis length s. Experiments in Section 3.5.5 show that this
ability improves numerical stability. We show in Section 3.6.3 that it also improves per-
formance in practice, resulting in a 2.23× speedup in the CA-GMRES implementation
described below.

• We combine all of these numerical and performance techniques in a shared-memory par-
allel implementation of our communication-avoiding version of GMRES, CA-GMRES.
Compared to a similarly highly optimized version of standard GMRES, when both are
running in parallel on 8 cores of an Intel Clovertown (see Appendix A), CA-GMRES
achieves 4.3× speedups over standard GMRES on standard sparse test matrices (de-
scribed in Appendix B.5). When both are running in parallel on 8 cores of an Intel
Nehalem (see Appendix A), CA-GMRES achieves 4.1× speedups. See Section 3.6 for
performance results and Section 3.5 for corresponding numerical experiments. We first
reported performance results for this implementation on the Intel Clovertown platform
in Demmel et al. [78].

• We have incorporated preconditioning into our methods. Note that we have not yet
developed practical communication-avoiding preconditioners; this is future work. We
have accomplished the following:
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– We show (in Sections 2.2 and 4.3) what the s-step basis should compute in the
preconditioned case for many different types of Krylov methods and s-step bases.
We explain why this is hard in Section 4.3.

– We have identified two different structures that a preconditioner may have, in
order to achieve the desired optimal reduction of communication by a factor of s.
See Section 2.2 for details.

• We present a detailed survey of related work, including s-step KSMs (Section 1.5,
especially Table 1.1) and other techniques for reducing the amount of communication
in iterative methods (Section 1.6).
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Chapter 1

Introduction

The cost of an algorithm includes both arithmetic and communication. We use “commu-
nication” in a general sense to mean data movement, either between levels of a memory
hierarchy (“sequential”) or between multiple processors (“parallel”). Communication costs
are much higher than arithmetic costs, and the gap is increasing rapidly for technological rea-
sons. This suggests that for best performance, algorithms should minimize communication,
even if that may require some redundant arithmetic operations. We call such algorithms
“communication-avoiding.”

Krylov subspace methods (KSMs) are iterative algorithms for solving large, sparse linear
systems and eigenvalue problems. Current KSMs spend most of their time in communication-
bound computations, like sparse matrix-vector multiply (SpMV) and vector-vector opera-
tions (including dot products and vector sums). Furthermore, data dependencies between
these operations mean that only a small amount of that communication can be hidden.
Many important scientific and engineering computations spend much of their time in Krylov
methods, so the performance of many codes could be improved by introducing KSMs that
communicate less.

Our goal is to take s steps of a KSM for the same communication cost as 1 step, which
would be optimal. We call the resulting KSMs “communication-avoiding Krylov methods.”
We can do this under certain assumptions on the matrix, and and for certain KSMs, both
in theory (for many KSMs) and in practice (for some KSMs). This thesis explains how
we avoid communication in these Krylov methods, and how we maintain their accuracy in
finite-precision arithmetic.

This first chapter is organized as follows.

• Section 1.1 defines Krylov subspace methods. It shows their basic computational build-
ing blocks, called “kernels,” and the data dependencies between these kernels in many
types of Krylov methods.

• Section 1.2 explains in more detail what we mean by “communication.” It gives our
basic computer performance models, one for parallel computers and one for the mem-
ory hierarchy, which incorporate both the cost of arithmetic and communication. We
also justify our assertion that communication is expensive relative to arithmetic, by
examining historical and future trends in computer hardare. Finally, we explain what
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we mean by “avoiding communication,” to differentiate it from similar-sounding ex-
pressions such as “hiding communication.”

• Section 1.3 lists the computational kernels found in many different Krylov methods
in common use today. These kernels include sparse matrix-vector multiply (SpMV),
preconditioning, and vector-vector operations such as dot products and “AXPY” oper-
ations (weighted vector sums of the form y := y+αx, for vectors x and y and a scalar
α). We give arguments that all these kernels have communication-bound performance.

• Section 1.4 gives new communication-avoiding kernels, which perform the same work
as the above kernels, for a much lower communication cost. These kernels include the
matrix powers kernel, the Tall Skinny QR factorization (TSQR), and Block Gram-
Schmidt (BGS). We will explain algorithms and implementations of these kernels in
Chapter 2.

• Section 1.5 is a comprehensive survey of the so-called “s-step Krylov methods,” to
which our communication-avoiding Krylov methods are related. As far as we can tell,
this is the first such comprehensive survey of related work to be done for the s-step
methods.

• Section 1.6 discusses other iterative algorithms for solving linear systems and eigenvalue
problems, that have as their aim to communicate less. While these algorithms all have
value in the right context, we explain why we chose not to investigate them further in
this thesis.

• Finally, Section 1.7 summarizes our contributions, and the contents of the remaining
chapters of this thesis.

1.1 Krylov subspace methods

1.1.1 What are Krylov methods?

Krylov subspace methods (KSMs) are a large class of iterative algorithms that work on fi-
nite matrices and vectors in real and complex arithmetic.1 They have many applications,
which include solving linear systems, linear least squares problems, eigenvalue problems,
and singular value problems. In this work, we discuss the solution of linear systems Ax = b
and eigenvalue problems Ax = λx. We will present new “communication-avoiding” Krylov
methods that solve both these problems more efficiently than existing KSMs, both in per-
formance models and in actual implementations. Later in this introduction, we will explain
what “communication” means in the context of Krylov methods, and what it means for a
KSM to be “communication-avoiding.”

A number of books give an overview of KSMs. The “Templates for the Solution. . . ” pair
of books [22, 15] describe Krylov methods in the form of a decision tree for picking which
method to use. One book covers iterations for solving linear systems, and the other book

1Alexei Nikolaevich Krylov (1863–1945), a Russian Naval engineer and applied mathematician, developed
the class of methods which bear his name in a 1931 paper on solving eigenvalue problems [158].
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iterations for solving eigenvalue problems. Saad [207] gives overviews of KSMs for solving
Ax = b, and summarizes known results on their convergence properties in exact arithmetic.
Greenbaum [119] does both of these, and also summarizes known results on their convergence
properties in finite-precision arithmetic.

KSMs work by using one or more matrix-vector products in each iteration, to add vec-
tor(s) to a basis for one or more so-called “Krylov subspace(s)” with desirable properties.
A Krylov subspace with respect to a square n × n matrix A and a length n vector v is the
following subspace:

Kk(A, v) = span{v, Av,A2v, . . . , Ak−1v}, (1.1)

where k is a positive integer. KSMs use one or more of these Krylov subspaces. Each
iteration of a KSM is supposed to increase the dimension of these subspace(s). They are used
as expanding search space(s), from which the approximate solution xk (if solving Ax = b)
or the approximate eigenvalues and eigenvectors (if solving Ax = λx) are computed via
projection. For a classification of Krylov methods by the subspace(s) they construct and
how they project onto them, see e.g., Saad [207, Chapter 5].

Krylov methods for solving linear systems Ax = b may also be preconditioned. Pre-
conditioned KSMs solve a different linear system, but with the same solution, with the
goal of converging in a smaller number of iterations. Left preconditioning means solving
M−1Ax = M−1b instead of Ax = b. Here, M is a nonsingular matrix meant to be an ap-
proximation of A in some sense, constructed so that linear systems My = z are relatively
inexpensive to solve. Right preconditioning means solving AM−1y = b and Mx = y, instead
of Ax = b. Split preconditioning means solving M−1

L AM−1
R y = M−1

L b and MRx = y, instead
of Ax = b. In this case, ML and MR are nonsingular matrices whose product ML ·MR is
meant to be an approximation of A in some sense, such that linear systems MLz = w and
MRz = w are relatively inexpensive to solve. Explaining what makes a good preconditioner
is beyond the scope of this thesis. However, preconditioning will affect how we construct our
new iterative methods; see e.g., Section 4.3.

Krylov methods and SpMV

Krylov methods have the property that they only access the matrix A in order to perform
matrix-vector products with A (and possibly also with the transpose or conjugate transpose
of A). They do not change the entries of the matrix, unlike other linear algebra algorithms
such as LU or QR factorization. This makes KSMs especially useful in the following cases,
which may overlap somewhat:

1. The matrix A is available only as an operator which performs matrix-vector products
v 7→ A · v (and possibly also v 7→ A∗ · v).2

2Here and elsewhere in this work, A∗ means the transpose of A if A is real, and the conjugate transpose
of A if A is complex. We will use the notation of complex arithmetic; for instance, we will write A∗ = A

T

instead of AT and 〈x, y〉 = y∗ · x = yT · x instead of xT · y. However, we will use the language of real
arithmetic, for example, “the matrix A is symmetric” rather than “the matrix A is Hermitian.” We do the
latter in order to avoid awkward expressions such as “symmetric resp. Hermitian,” and because the conjugate
transpose of a real matrix or vector is just the ordinary transpose of that matrix resp. vector.
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2. The matrix A is stored using a data structure that admits much more efficient com-
putation of matrix-vector products than if A had been stored as an explicit n × n
matrix.

An example of the “operator only” case is if the n× n matrix A is not stored at all, rather
it is implemented as a routine which maps the discretization f of the forcing term of a
partial differential equation, to the solution A · f of the discretization of that equation.
The routine implicitly represents a linear, finite operator A, but the entries of A are not
stored. As we will explain in Sections 2.1 and 2.2, we cannot avoid communication in
the matrix-vector products part of Krylov methods without some access to the internal
representation of the matrix A. In the case of preconditioned KSMs, we cannot avoid
communication in the preconditioner application in general, without analogous access to
the internal representation of the preconditioner. However, some of our new KSMs will
still be able to avoid communication in the vector operations, even without access to the
representation of the matrix (and preconditioner).

The second case above, where A has a representation that makes matrix-vector products
efficient, includes many different data structures. By “efficient” we mean that A requires
much less storage than a dense n × n matrix would, and matrix-vector products with A
require many fewer arithmetic operations than ordinary dense matrix-vector products would.
One class of data structures in this category exploit the structure of sparse matrices, which
contain many more zero entries than nonzero entries. These sparse data structures store
only the nonzero entries, and their indices in the matrix. For an overview of different sparse
matrix storage formats, see e.g., Saad [207].

There are other matrix structures that make matrix-vector products efficient. They
do not exploit sparsity in the matrix, but rather other kinds of structure that enable effi-
cient representations. Matrices of these type include hierarchical matrices and hierarchically
semiseparable matrices. We discuss these further in Section 2.2, where we will use them as
a model for avoiding communication in preconditioned Krylov methods.

When A is an n × n sparse matrix and v is a length n vector, we call the operation
v 7→ A · v sparse matrix-vector multiply (SpMV). For an overview of how to implement
SpMV efficiently with different sparse matrix formats, see e.g., Vuduc [234]. We use the
term “SpMV” more generally throughout this work to refer to the v 7→ A · v operation,
when the operation is implemented to save both storage and computation over a dense
representation of A.

1.1.2 Kernels in Krylov methods

SpMV is an important, time-consuming part of all Krylov methods, but not the only such
part. We call these important, time-consuming parts of Krylov methods “kernels.” We will
identify kernels in commonly used Krylov methods in Section 1.1.3. The reason we do so
is to demonstrate that these kernels’ performance is communication bound, and that new
Krylov methods constructed out of new kernels can avoid much of this communication.

Before we identify kernels in commonly used Krylov methods, we need to clarify our use
of the word “kernel.” This word refers to several different concepts in mathematics and
computer science. In this thesis, unless we say otherwise, we do not use the word in any of
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the following senses:

• The kernel of an integral equation or a convolution. For example, κ is the kernel of
the integral equation

∫
Ω
κ(x, y)φ(y) dy = f(x).

• The null space of a linear operator: that is, the set of all inputs for which the output
is zero.

• The central component of a computer’s operating system: e.g., “the Linux kernel.”

• For a star-shaped polygon, the set of all points p inside the polygon, which can “see”
all boundary points of the polygon.

Rather, by a kernel we mean a building block of a numerical algorithm, that consumes a
significant part of the run time of that algorithm. For example, dense matrix-matrix multiply
is an important kernel in efficient implementations of dense LU factorization. (The software
package LAPACK [4]implements such an LU factorization as DGETRF, and it invokes dense
matrix-matrix multiply via the DGEMM interface specified by the BLAS 3 [85, 84] set of
interfaces.)

What constitutes a “kernel” depends on one’s point of view. For example, from the
perspective of LAPACK’s LU factorization routine DGETRF, the standard column-by-column
LU factorization routine DGETF2 is a kernel [4]. From the perspective of DGETF2, scaling a
dense vector and applying a rank-one update to a dense matrix are kernels. When solving
linear optimization problems, a higher-level LU factorization routine such as DGETRF may
itself be considered a kernel.

A kernel specifies only an interface, not an implementation. One defines a kernel in order
to expose particular features of the computation that can be exploited for greater compu-
tational efficiency. For example, dense matrix-matrix multiply of two n × n matrices has
the feature that there are Θ(n2) data to read, but Θ(n3) arithmetic computations.3 Imple-
mentations of the kernel are then free to exploit those features internally to achieve better
performance. Different implementations of the same kernel should produce the same results
in exact arithmetic, and nearly the same results in floating-point arithmetic. Sometimes
in this thesis, we use the same name both for a kernel, and for the algorithm(s) or imple-
mentation strategy/ies we use for that kernel. We do so merely to avoid defining terms
superfluously. The Tall Skinny QR (TSQR) factorization, which we present in Section 2.3, is
one example. “Tall and skinny” refer to the dimensions of the input matrix A of the QR fac-
torization: it should have many more rows than columns (if A is m×n, we require m� n).
Requiring that the input matrix have this property exposes potential optimizations, which
we describe in Section 2.3.

Two kernels other than SpMV that will come up often in the following sections are AXPY
and dot products. These are both kernels that take two vectors x and y of the same length
n as inputs. AXPY (“α times x plus y”) computes

y := y + α · x
3Not counting Strassen-like implementations.



CHAPTER 1. INTRODUCTION 6

where α is a scalar. We use AXPY to refer more generally to operations of the form

y := β · y + α · x,

where β is another scalar constant. The dot product kernel computes the dot product of two
vectors x and y of the same length n. The result is

∑n
i=1 yi · xi. Computing the two-norm

of a vector x, that is ‖x‖2, is an operation with similar computational characteristics, which
we consider as a variant of the dot product kernel. These two kernels are implemented, for
example, in the Level 1 BLAS (see e.g., Lawson et al. [161]).

1.1.3 Structures of Krylov methods

In this section, we categorize standard Krylov methods by their structures. We do so for
two reasons:

• to show that standard KSMs are composed of communication-bound kernels, whose
communication costs cannot be entirely hidden by overlapping them, and

• to summarize the different approaches we will take in turning standard Krylov methods
into communication-avoiding KSMs.

Describing the different categories of KSMs will help us determine both what our new
communication-avoiding kernels (see Section 1.4) must compute, and which communication-
avoiding kernels we may use in the KSM (see e.g., Section 4.3).

Data dependencies between kernels

In the previous Section 1.1.2, we mentioned four kernels that appear in commonly used
Krylov methods:

• SpMVs (sparse matrix-vector products of the form y := A · x or y := AT · x)

• Preconditioning (applying a preconditioner M or M−1 to a vector x, resulting in a
vector y)

• AXPYs (vector-vector operations of the form y := α · x+ y)

• Dot products (vector-vector operations of the form α := y∗ · x)

After we define clearly what we mean by communication in Section 1.2.1, we will show in
Section 1.3 that these kernels’ performance is almost always bound by the cost of communi-
cation. In this section, we will show that typical KSMs have a data dependency between the
kernels mentioned above. The data dependency thus hinders hiding the kernels’ communi-
cation costs by overlapping their execution. Thus, if the kernels are communication-bound,
so is the Krylov method, which is composed of the sequential execution of one kernel after
another.

Arnoldi iteration [7] for solving nonsymmetric eigenvalue problems is a good example
of a Krylov subspace method. It shows the SpMV, dot product, and AXPY kernels “at
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Algorithm 1 Arnoldi iteration
Input: n× n matrix A
Input: Length n starting vector v
Output: s+ 1 length-n unitary vectors Q = [Q, qs+1] = [q1, q2, . . . , qs+1] which form a basis

for Ks+1(A, r)
Output: A nonsingular s+ 1 by s upper Hessenberg matrix H such that AQ = QH

1: β := ‖v‖2, q1 := v/β
2: for j = 1 to s do
3: wj := Aqj
4: for i = 1 to j do . Use Modified Gram-Schmidt (MGS) to orthogonalize wj against

q1, . . . , qj
5: hij := 〈w, qi〉
6: wj := wj − hijqi
7: end for
8: hj+1,j := ‖wj‖2

9: if hj+1,j = 0 then
10: Exit, since the Krylov subspace has dimension j (“lucky breakdown”)
11: end if
12: qj+1 := wj/hj+1,j

13: end for

work.” We explain Arnoldi iteration in more detail in Section 3.1 and give the algorithm
there as Algorithm 18. Here, we give an outline of Arnoldi as Algorithm 1. This outline
neglects many important features of Krylov methods, such as preconditioning, or how the
approximate solution (when solving Ax = b) or approximate eigenvalues (when solving
Ax = λx) are computed at each step. However, as we will show, it illustrates the data
dependencies between the SpMV, dot product, and AXPY kernels. Not all KSMs have the
same structure as Arnoldi iteration, as we will show in this section. However, almost all
standard Krylov methods have analogous data dependencies between kernels.

In Arnoldi iteration (Algorithm 1), the vectors q1, q2, . . . , qk form a basis for the Krylov
subspace

Kk(A, r) = span{v, Av,A2v, . . . , Ak−1v},

as long as the Krylov subspace Kk(A, r) indeed has dimension at least k + 1. (The case
where it does not results in a breakdown condition, called “lucky” breakdown; see Line
10 of Algorithm 1. This breakdown is “lucky” both because it gives valuable information
about the matrix A, and because it is unlikely in practice unless the starting vector v
is special. We will discuss lucky breakdown more in the context of each KSM where it
matters in the algorithm.) Arnoldi iteration is for solving eigenvalue problems and thus is
generally not preconditioned,4 but other one-sided methods similar to Arnoldi for solving
linear systems (such as GMRES, see Saad and Schultz [208]) may be preconditioned. If there
is any preconditioning, it happens somewhere inside the loop, depending both on the type

4Except perhaps for balancing, which involves scaling the rows and columns of A in order to improve
accuracy when solving eigenvalues. Balancing need not affect the computations “inside” of the Krylov
method. For an explanation of balancing, see e.g., [15].
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of preconditioner (left, right, or split), and which iterative method is used.
The part of Arnoldi that best illustrates the data dependencies between kernels is the

computation of the “next” basis vector qj+1, from the “current” basis vectors q1, . . . , qj.
The basis vector qj+1 is computed via a vector recurrence

qj+1 = h−1
j+1,j

(
Awj −

j∑
i=1

hijqi

)
, (1.2)

where the hij coefficients come from dot products involving Awj or intermediate vector terms.
Different Krylov methods may compute different vector recurrences or compute them in a
different order. Algorithm 1 computes them using the order specified by Modified Gram-
Schmidt (MGS) orthogonalization. Some iterative methods may use the order specified by
Classical Gram-Schmidt (CGS) orthogonalization, or some other order entirely. Nevertheless,
each hij must be computed (via dot products) before its corresponding AXPY operation with
the qi vector can finish. This is true also for the analogous recurrences in other Krylov meth-
ods: there are AXPY operation(s) which cannot begin until the dot product operation(s)
have finished, and the next SpMV depends on the result of that last AXPY operation. This
data dependency limits how much communication cost can be hidden between these kernels
via overlapping.

Categories of Krylov methods

We make assertions throughout this section about “standard Krylov methods.” There are
many different Krylov methods, even too many for us to summarize them all in a reasonable
space. However, most of them fall into categories, with the methods in a particular category
sharing a common structure that lets us make assertions about the data dependencies be-
tween their kernels. Also, this common structure means that we can use the same approach
to develop communication-avoiding versions of the KSMs in the same category. This espe-
cially affects which kernels we may use in the communication-avoiding KSMs, for example
whether we may use a QR factorization to orthogonalize the Krylov basis vectors in the
method. It also affects the relative amount of time the KSM may spend in each kernel, and
thus the amount of effort we should spend optimizing that kernel.

We construct these categories of Krylov methods by presenting four different criteria by
which we classify commonly used KSMs. The criteria are:

1. “One-sided” vs. “two-sided”

2. Long recurrence vs. short recurrence

3. Mathematical structure (general, symmetric, positive definite, . . . ) of the matrix A

4. Mathematical structure (general, symmetric, positive definite, . . . ) of the precondi-
tioner

One could imagine constructing all possible combinations of these criteria. We have only
investigated the following four combinations. They seem to have the most effect on the
structure of our communication-avoiding Krylov methods.
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1. One-sided, long recurrence, general A, no or any preconditioner

2. One-sided, short recurrence, symmetric A, no preconditioner or symmetric split pre-
conditioner

3. Two-sided, long or short recurrence, general A, no preconditioner

Note that the above criteria have nothing to do with whether the algorithm solves linear
systems or eigenvalue problems. This distinction does not affect the basic performance
characteristics of the algorithm. It may affect performance secondarily: for example, when
solving eigenvalue problems, Krylov methods often require reorthogonalization, which may be
expensive. However, such distinctions generally cut across the criteria: algorithms for solving
eigenvalue problems in all three categories may require some form of reorthogonalization, for
instance. This is why we let ourselves group together algorithms for solving Ax = b and
Ax = λx within the same category.

One-sided vs. two-sided

The Krylov methods we consider in this thesis are either one-sided, or two-sided. One-sided
KSMs construct a basis of Krylov subspace(s) of the form span{v, Av,A2v, . . . }. The vector
is always on the right side of the matrix A in the matrix-vector products used to construct
the basis. Often the basis vectors of this subspace are constructed to be orthogonal, with
respect to some inner product. Examples of one-sided iterations include

• Arnoldi iteration (for solving nonsymmetric eigenvalue problems; see Section 3.1 and
Arnoldi [7]; see also [15])

• GMRES (the “Generalized Minimum Residual” method of Saad and Schultz [208] for
solving nonsymmetric linear systems; see Section 3.4)

• Symmetric Lanczos iteration (for solving symmetric eigenvalue problems; see Section
4.1 and Lanczos [160]; see also [15])

• CG (the “Method of Conjugate Gradients” of Hestenes and Stiefel [130] for solving
symmetric positive definite linear systems; see Section 5.1)

• MINRES (the “Minimum Residual” method of Paige and Saunders [186] for solving
symmetric indefinite linear systems)

Two-sided KSMs construct and use two different Krylov bases. One is for the “right-hand”
space span{v, Av, A2v, . . . }, and the other is for the “left-hand” space span{w, A∗w, (A∗)2w,
. . . }, where v and w are generally different vectors. “Right hand” means that the vector
is multiplied on the right-hand side of the matrix, and “left hand” means that the vector
is multiplied on the left-hand side of the matrix (or, the right-hand side of the transposed
matrix: A∗w = (w∗A)∗). Some two-sided algorithms compute both transposed matrix-vector
products y 7→ A∗ · y (or equivalently, y∗ 7→ y∗ · A) as well as non-transposed matrix-vector
products x 7→ A · x. These include
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• Nonsymmetric Lanczos (for solving nonsymmetric eigenvalue problems; see Section 6.1
and Lanczos [160]; see also [15])

• BiCG (the “Method of Biconjugate Gradients” of Fletcher [98] for solving nonsymmet-
ric linear systems; see Section 6.2)

• QMR (the “Quasi-Minimal Residual” method of Freund and Nachtigal [102] for solving
nonsymmetric linear systems)

• The so-called “Two-sided Arnoldi” iteration of Ruhe [204] (which differs from standard
Arnoldi, a one-sided algorithm) for solving nonsymmetric eigenvalue problems

Other two-sided algorithms construct the left-hand space implicitly, that is without comput-
ing transposed matrix-vector products. Examples include

• CGS (the “Conjugate Gradient Squared” method of Sonneveld [213], for solving non-
symmetric linear systems)

• BiCGSTAB (the “Method of Biconjugate Gradients, Stabilized” of van der Vorst [225],
for solving nonsymmetric linear systems)

• TFQMR (the “Transpose-Free QMR” method of Freund [101], for solving nonsymmet-
ric linear systems)

The one-sided or two-sided distinction matters because the communication-avoiding Krylov
methods we will construct in later chapters all work by computing several vectors of a Krylov
subspace “all at once,” using a kernel we call the “matrix powers kernel.” (See Sections 2.1
and 2.2 for details on this kernel.) “Sidedness” changes what the matrix powers kernel
must compute. In addition, some two-sided algorithms have breakdown conditions which
may interact in not-yet-understood ways with numerical stability issues relating to the basis
construction. Their additional complexity is why we elect not to study them in detail in this
thesis.

We did not mention preconditioning in the discussion above. Later in this thesis, we will
show that left-preconditioned one-sided Krylov methods which assume that the matrix A
is symmetric (such as CG), and two-sided Krylov methods, have a similar structure. For a
discussion of two-sided methods and of this similarity, see Chapter 6.

Long vs. short recurrence

As we mentioned above, Arnoldi iteration (Algorithm 1) computes the “next” Krylov sub-
space basis vector qj+1 at each iteration using the vector recurrence in Equation (1.2). Nearly
all one-sided Krylov methods use a vector recurrence of similar form. Two-sided KSMs also
use vector recurrences of analogous form. However, if we use the notation of Equation (1.2),
some Krylov methods set all but a few of the coefficients in the recurrence to zero, and do
not compute them or compute terms in the above sum that are multiplied by those zero
coefficients. We say that such KSMs have a short recurrence. For example, in symmetric
Lanczos, vj+1 depends only on Avj, vj, and vj+1. Other Krylov methods assume that any of
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the coefficients in Equation (1.2) may be nonzero, and compute them and their correspond-
ing vector terms explicitly. For example, Arnoldi iteration uses MGS orthogonalization to
orthogonalize Avj against v1, v2, . . . , vj explicitly. We say that such iterative methods have
a long recurrence.

This distinction matters for performance tuning, because it affects how much time a
KSM spends in each kernel. Long-recurrence methods, such as Arnoldi or GMRES, tend
to spend more time in inner products and AXPYs than in SpMV operations. This has
influenced previous work in communication-avoiding versions of long-recurrence methods
such as GMRES, for example, as we will discuss in Chapter 3. If the algorithm spends
most of its time in AXPYs and dot products, rather than in SpMV operations, then the
natural place to optimize the algorithm is by improving the AXPY and dot product kernels,
or replacing them with faster kernels.

The recurrence used to compute the next basis vector from the previous basis vectors
need not have anything to do with orthogonalization, but generally long recurrences are only
used when they orthogonalize. Also, both one-sided and two-sided KSMs may use either a
short recurrence or a long recurrence. (One example of a two-sided, long-recurrence Krylov
method is the “Two-sided Arnoldi” method of Ruhe [204].) For one-sided methods, a short
recurrence generally suggests that the method assumes something about the mathematical
structure (e.g., symmetry) of the matrix A. We discuss this next.

Mathematical structure of A

The third criterion for categorizing Krylov methods, is whether they assume something about
the mathematical structure of the matrix A, such as whether it is symmetric. Many KSMs
assume that the matrix A is symmetric. Such methods include CG, symmetric Lanczos, and
MINRES. There are specialized Krylov iterations for other mathematical structures, such as

complex symmetric (A = AT but A 6= A
T

) or skew-symmetric (A = −AT ). Other Krylov
algorithms make no such assumptions about the symmetry of A. Arnoldi iteration, GMRES,
and BiCG are three examples.

Symmetry assumptions generally relate to the use of a short recurrence. Assuming sym-
metry lets many KSMs maintain the orthogonality of their Krylov basis vectors without
orthogonalizing each basis vector explicitly against all previous basis vectors. That means
they can use a short recurrence. This is the difference between Arnoldi and symmetric
Lanczos: the latter assumes that the matrix A is symmetric. Otherwise, the two algorithms
compute the same thing in exact arithmetic.

Symmetry assumptions also affect the development of our new communication-avoiding
KSMs, especially when preconditioning is included. This is because the preconditioned
matrix may or may not be symmetric, even if both the preconditioner and the matrix A
are symmetric. This influences both how we replace the sparse matrix-vector products and
preconditioner applications with a communication-avoiding kernel, and how we make the
resulting basis vectors orthogonal. We discuss this issue further in Section 4.3.
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Mathematical structure of the preconditioner

Our fourth and final criterion for categorizing Krylov methods, is the mathematical structure
of the preconditioner. Preconditioning is a technique for accelerating convergence of a Krylov
method when solving Ax = b. It amounts to solving a different linear system (or set of linear
systems) with the same solution as the original problem Ax = b. A preconditioner is an
approximation M ≈ A of the matrix A. Preconditioning may be applied in three different
ways:

• Left preconditioning means the Krylov method solves M−1Ax = M−1b for x.

• Right preconditioning means the Krylov method solves AM−1y = b for y and Mx = y
for x.

• Split preconditioning means that a factorization MLMR = M of the preconditioner M
is available, and the Krylov method solves M−1

L Ay = M−1
L b for y and MRx = y for x.

The most important special case of split preconditioning in this thesis is symmetric split
preconditioning. This means that the preconditioner M is symmetric with a factorization
M = MLM

∗
L, for example the Cholesky decomposition.

Preconditioning changes the Krylov subspace(s) which are integral to the structure of
a Krylov method. It changes both how the basis vectors of those subspace(s) are com-
puted, and the relationship of the basis vectors to each other. For example, the Method of
Conjugate Gradients (CG), either without preconditioning or with symmetric split precon-
ditioning, computes residual vectors that are orthogonal to each other with respect to the
usual Euclidean inner product, in exact arithmetic. In left-preconditioned CG with sym-
metric positive definite preconditioner M , the residual vectors are orthogonal with respect
to the M inner product 〈x, y〉M = y∗Mx. This is not true for left-preconditioned GMRES,
for example: the Krylov basis vectors in GMRES are always Euclidean-orthogonal, in exact
arithmetic. This distinction is not only theoretical; it affects which kernels we may use in
the KSM. For instance, we may only use a QR factorization to orthogonalize a group of basis
vectors, if they are to be make Euclidean-orthogonal. A different kernel must be used if the
vectors are to be made orthogonal with respect to a different inner product. We will discuss
this issue in detail in Section 4.3. Preconditioning also changes how our communication-
avoiding methods compute the Krylov basis vectors; see Section 2.2 for details.

Categories of Krylov methods

We now use the above three criteria to identify three categories of Krylov methods, with
examples in parentheses after each category.

1. One-sided, long recurrence, general A, no or any preconditioner (Arnoldi, GMRES)

2. One-sided, short recurrence, symmetric A, no preconditioner or symmetric split pre-
conditioner (symmetric Lanczos, CG, MINRES)

3. Two-sided, long or short recurrence, general A, no preconditioner (nonsymmetric Lanc-
zos, BiCG, CGS, BiCGSTAB, QMR)
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We will discuss communication-avoiding versions of the first category of KSMs in Chapter
3. Chapters 4 and 5 will concern communication-avoiding versions of the second category
of methods. Finally, Chapter 6 will briefly discuss how one might go about developing
communication-avoiding versions of algorithms in the third category. We do not go into
detail for algorithms in the third category, for reasons mentioned in that chapter.

Exceptions

Some Krylov methods do not fit into one of the three categories mentioned above. Cheby-
shev iteration [171], which lacks inner products and only uses sparse matrix-vector products
and AXPY operations to construct successive basis vectors, is one example. Block Krylov
methods are another exception. They use more “exotic” kernels such as sparse matrix times
multiple vectors (SpMM) and possibly also rank-revealing decompositions for performing
deflation. We discuss both Chebyshev iteration and block Krylov methods, along with some
other exceptions, in Section 1.6. In this thesis, we will only investigate methods in one of
the above three categories.

1.2 Communication and performance

In this section, we explain what communication is, and why it is expensive relative to floating-
point arithmetic. This will justify why we develop communication-avoiding Krylov methods,
which communicate less than their corresponding standard Krylov methods, possibly by
performing redundant arithmetic.

In Section 1.2.1, we define communication, which includes both data movement between
processors working in parallel, and data movement between levels of the memory hierarchy.
We also describe the simple “latency-bandwidth” performance model used throughout this
work to predict the performance of computational kernels. In Section 1.2.4, we give evidence
that communication is expensive relative to arithmetic, and that this will likely continue to
be the case for years to come. Finally, in Section 1.2.5, we explain what it means for an
algorithm to be “communication-avoiding.”

The discussion of communication’s effect on performance in this section will help us
understand how kernels in standard Krylov methods are slow (Section 1.3). In Section 1.4,
we will introduce our new communication-avoiding kernels: the matrix powers kernel, Tall
Skinny QR (TSQR), and Block Gram-Schmidt orthogonalization (BGS). By constructing
our new Krylov methods out of these kernels, we will make these methods communication-
avoiding.

1.2.1 What is communication?

If we want to avoid communication, we first must understand what “communication” means.
In this work, we approximate the performance of computers by dividing running time into two
categories: arithmetic and communication. “Arithmetic” here means floating-point arith-
metic operations, like the addition, multiplication, or division of two floating-point numbers.
We define communication generally as data movement. This includes both data movement
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between levels of a memory hierarchy, which we call sequential communication, and data
movement between processors working in parallel, which we call parallel communication.
There are many other operations, such as integer and logical operations, synchronization,
and system calls that we do not explicily model, because the computations of interest are
dominated by floating-point arithmetic and communication.

Communication between parallel processors may take the following forms, among others:

• Messages between processors, in a distributed-memory system

• Cache coherency traffic, in a shared-memory system

• Data transfers between coprocessors linked by a bus, such as between a CPU (“Central
Processing Unit” or processor) and a GPU (“Graphics Processing Unit”)5

We include in the memory hierarchy all forms of storage connected to a processor, such as
a cache, main memory, a solid-state drive, a hard disk, or a tape archive. These may be
connected directly to the CPU or over a network interface. The main memory of modern
computers is generally made of DRAM (Dynamic random access memory), so we use DRAM
as a synonym for main memory. Data movement between levels of a memory hierarchy may
be either

• under automatic control, e.g.,

– between a (hardware-managed) cache and main memory, or

– between main memory and swap space on disk, as in a virtual memory system;

• or, under manual control, e.g.,

– between a local store (a small, fast, software-managed memory) and main memory,
or

– between main memory and disk (as in an “out-of-core” code that manages disk
space explicitly, in order to work with more data than can fit in main memory at
once).

If we are considering two levels within a memory hierarchy, we call them fast memory and
slow memory. Fast memory is the level with lower latency to the CPU, and generally smaller
capacity, than slow memory. “Fast” and “slow” are always relative to the two levels being
examined. For example, when considering cache and DRAM, cache is “fast” and DRAM is
“slow.” When considering DRAM and disk, however, DRAM is “fast” and disk is “slow.”

1.2.2 Performance model

In this work, we use a simple model we call the “latency-bandwidth model” to estimate
an algorithm’s run time. We will first state this model, and then justify it afterwards. In
our model, communication happens in messages. A message is a sequence of n words in
consecutive memory locations. We say “message” regardless of whether the implementation

5In recent years, GPUs have come to be used as coprocessors for tasks other than graphics computations.
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uses a shared-memory or distributed-memory programming model, or whether the data is
moving between processors or between slow and fast memory on a single processor. The
time required to send a message containing n words is

TimeMessage(n) = α + β · n,

where α is the latency (with units of seconds) and β is the inverse bandwidth (seconds per
word). The time required to perform n floating-point operations is

TimeFlops(n) = γ · n,

where γ is the inverse floating-point rate (also called the floating-point throughput), with
units of seconds per floating-point operation.

For parallel performance, we count run time along the critical path of the algorithm. For
the memory hierarchy, each level L has a finite capacity WL of words, which may be different
for each level. Only floating-point words (and their associated indices, if applicable for a
sparse matrix computation) are counted towards filling that capacity. Instruction words and
other metadata-describing data structures are not counted. We assume that floating-point
words and integer words are the same size, since for the computations of interest in this
thesis, they are within a small constant factor of the same size. The latency αL1,L2 and
inverse bandwidth βL1,L2 between two levels L1 and L2 of the memory hierarchy may be
different, depending on the levels being considered. Furthermore, we count floating-point
addition, multiplication, and division as having the same throughput γ.

We make the following simplifying assumptions about the memory hierarchy:

• Caches are fully associative: there can only be compulsory misses or capacity misses,
no conflict misses.

• If P processors share a cache of capacity W , we model this cache as P separate fully-
associative caches of capacity bW/P c each.

• There is no overlap of communication and arithmetic events, nor is there overlap of
different communication events.

We make the following simplifying assumptions about parallel computers and algorithms:

• There are P processors, and that number never changes during the computation.

• The P processors are identical: they have the same floating-point throughput γ, and
the same memory capacity W .

• Messages are only from one processor to one other processor. Collectives (such as
reductions) must be implemented using these “point-to-point” messages.

• The system is a fully connected network of processors. This means that the latency
and bandwidth of a message do not depend on which processors participate in the
message, and that processors which are not the sender or recipient of a message need
not spend time helping to process that message along its way.

• We do not limit the number of messages or number of words which can be “in flight”
simultaneously. (There is no “bisection bandwidth” in our model, for example.)
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Why latency and bandwidth?

Not all models of communication include both a latency term and a bandwidth term. For
example, the paper by Wulf and McKee that coined the term “memory wall” [246] only
considers memory bandwidth (“DRAM access time”) and cache capacity. We include both
because memory latency (in terms of accessing noncontiguous data from slow memory) does
matter for communication optimality, even for dense linear algebra algorithms. See e.g.,
Ballard et al. [21]. Most storage devices, including DRAM to hard disks, achieve their highest
data transfer throughput for contiguous data. Also, nearly all communication devices have
different costs for sending one very short message, and sending one long message. More
sophisticated parallel performance models, such as the LogGP model of Alexandrov et al.
[3], account for the higher bandwidth for long messages that some communication networks
have.

Why no overlap?

Many forms of communication allow the overlapping of data transfer operations and other
computation, or the overlapping of multiple data transfer operations with each other. For
example, a program may spawn off an additional thread to wait on a disk read operation,
and continue to do useful work in the original thread until the disk read has finished. Some
network interfaces have on-board processors that off-load much of the overhead of sending a
message from the CPU.

Overlapping is an important technique for improving performance, including kernels in
Krylov methods such as SpMV. However, Section 1.1.3 explains that the data dependencies
in standard Krylov methods preclude improving performance by more than a factor of 2×.
This is why we do not consider overlap in our model. Nevertheless, it is usually good for
performance. Indeed, it may help improve the performance of our communication-avoiding
Krylov methods, especially when combined with dataflow scheduling that cuts across kernels,
as we discuss briefly in Section 3.6.5.

What about cache associativity?

Our model of the memory hierarchy assumes that caches are fully associative. We assume
only that data must be brought into cache, and count that transfer cost. In cache terminol-
ogy, we only model compulsory misses (due to the data not yet being in cache), and capacity
misses (due to the cache having a finite capacity). We do this for several reasons:

• Standard Krylov methods have little temporal data locality, as we will show later in
this work, so compulsory misses are more important for describing their performance.

• Moving less data (“avoiding communication”) between slow and fast memory is gen-
erally always good for performance, regardless of cache associativity.

• Devising algorithms that exploit cache associativity is much harder than devising al-
gorithms that simply move less data.

• We want our algorithms to work for general memory hierarchies, rather than just for
cache and DRAM, so we use a general model rather than a cache-specific model.
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What about shared caches?

A further simplification we make is that caches are not shared among processors. We model a
cache of capacity W shared among P processors, as P non-shared caches of capacity bW/P c
each. This is because when we model the memory hierarchy, we are mainly interested in
memory traffic issues relating to capacity and compulsory misses. If multiple processors
share the same cache, that reduces the effective capacity of that cache.

In shared-memory systems, a shared cache may be used for low-latency communica-
tion between processors that share the cache, but we model this as parallel communication
rather than as memory hierarchy communication. That is, communication of two processors
through a shared cache is just “communication of two processors”; the cache is just the
mechanism.

1.2.3 Simplified parallel and sequential models

Most modern computers include both parallel processors, and a memory hierarchy. Our
kernel implementations exploit both in a hierarchical fashion, as we explain for example in
Chapter 2. We do not try to model both parallelism and the memory hierarchy, or try to
model more than two levels of the memory hierarchy at once. Rather, we only use two
models:

• “Parallel”: P ≥ 1 processors, no memory hierarchy.

• “Sequential”: One processor, two levels of memory hierarchy (fast and slow mem-
ory). Fast memory has capacity W floating-point words, with zero latency and infinite
bandwidth, and slow memory has infinite capacity, but positive latency α and finite
bandwidth 1/β.

These models may be nested arbitrarily to model different types of computers. Since our
communication-avoiding kernels (see Section 1.4 and Chapter 2) have a natural hierarchical
structure, we conjecture (but do not prove) that they are communication-optimal for many
different kinds of hardware, not just for the two models above.

1.2.4 Communication is expensive

We developed communication-avoiding algorithms because communication is much slower
than computation, and will continue to get slower relative to computation over time. This
includes both the latency and bandwidth costs of moving data between levels of the memory
hierarchy, and the costs of moving data between processors. The so-called “memory wall”
– the hard upper bound on single-processor performance, due to memory bandwidth being
slower than instruction throughput – is the most direct cause. Another wall – the “power
wall” – has caused CPU manufacturers to abandon sequential hardware performance im-
provements, in favor of parallel processing. All of the techniques computer architects used
to use to improve sequential performance now either dissipate too much power, or have
rapidly diminishing returns. More parallelism means more communication, which exacer-
bates the memory wall. Even radical developments in hardware technology may not break
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through either of these walls any time soon, which means that algorithms and software must
step in to continue performance improvements.

The memory wall

The memory wall refers to the large and exponentially increasing gap between main memory
throughput, and single-processor arithmetic throughput. Wulf and McKee [246] popularized
this term. They argued that even if all but a tiny fraction of code and data accesses hit in the
cache, the decrease of main memory bandwidth relative to instruction bandwidth over time
means that eventually the processor will be starved for data and / or instructions. Thus, for
any program that performs n arithmetic operations and other non-memory instructions, if
it requires within a constant factor of that number of main memory reads and / or writes, it
will eventually have memory-bound performance. This is true even if the cache has infinite
bandwidth. It is also true even if the entire code and data set fits in cache (i.e., there
are no capacity misses), as long as the code and data are not in cache when the program
begins. Sparse matrix computations are particularly vulnerable to the memory wall, because
they perform about as many memory reads and writes from slow memory as they perform
floating-point operations (see Section 1.3).

Another phrase sometimes used as a synonym for the memory wall is the von Neumann
bottleneck. Backus [11] coined this term in his 1977 ACM Turing Award lecture. Here,
“von Neumann” refers to von Neumann computer architectures, where code and data must
pass through the same (narrow) pipe between main memory and the CPU. Backus uses this
bottleneck to argue for functional programming, which has the potential to reduce memory
traffic (since fewer memory references have to pass between memory and the CPU). While
we do not argue for a style of programming in this thesis, our new Krylov methods have the
same goal: to reduce memory traffic to and from main memory. Backus also argues that
the von Neumann bottleneck is “intellectual” as well, since the requirements of imperative
programming constrain both architectures and software. Conventional performance models
that seek to minimize floating-point operations, regardless of the cost in data movement, also
form an intellectual bottleneck, which we hope the “communication-avoiding” paradigm will
overcome.

Latency Wulf and McKee explain the memory wall in terms of bandwidth, but the term is
often used in reference to memory latency. This is because DRAM, and many other storage
devices, only can be accessed at full bandwidth rate if the data being accessed is contiguous
or has a specific regular layout. Many programs do not access data in a sufficiently regular
way to ensure the bandwidth rate of access from memory, so they must pay latency costs to
access their data.

The most dramatic illustration of the memory wall is to compare DRAM latency with
floating-point instruction throughput over time.6 For example, Graham et al. [118] ob-

6Floating-point instruction throughput does differ from the latency of an individual floating-point instruc-
tion, since floating-point operations may be pipelined and / or the CPU may have multiple floating-point
units that can work in parallel on independent instructions. Nevertheless, we use instruction throughput
for the comparison with memory latency. We do this first, because memory latency is so much slower than
the latency of an individual floating-point instruction that the difference between instruction latency and
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serve that between 1988 and 2004, the floating-point rate of commodity microprocessors
improved by 59% yearly. However, DRAM latency (more specifically, DRAM row access
time) decreased by only 5.5%. In 1988, one floating-point operation took six times as long
as fetching one word from main memory, but in 2004, one memory fetch took as long as
over 100 floating-point operations. These trends continued after 2004, even as typical CPUs
changed from a single processing core, to multiple processing cores on a single die. For
example, in 2007, according to Kogge et al. [157, Figure 6.12], typical DRAM latency was
three orders of magnitude greater than typical CPU cycle time (which is the same order
of magnitude as floating-point instruction throughput). In contrast, in 1982, typical CPU
cycle time averaged slightly less than typical DRAM latency. (Post-2004 CPU cycle times
in Kogge et al. account for the effective CPU performance increase, given multiple cores on
the same die.)

The latency of other communication operations, such as hard disk fetches and sending
messages over a network, follow a similar trend as DRAM latency. For example, sending a
single, short message between processors over a network interface may take several microsec-
onds, a time in which a single node may be able to complete thousands of floating-point
operations [157]. The fastest solid-state storage drives have comparable latency, and the la-
tency of a single access to a hard disk is three orders of magnitude slower (1–10 ms, instead
of 1–10 µs). Hard disk access time cannot decrease much more than that, since it is mainly a
function of how fast the physical magnetic disk can spin. Disks cannot spin much faster than
they already do (up to 15,000 revolutions per minute for modern high-performance drives)
without physically deforming or otherwise becoming damaged.

Hardware architects often use increasingly deep memory hierarchies to try to evade the
memory wall, but this makes the performance of applications ever more sensitive to local-
ity. More specifically, it punishes applications dominated by memory operations, whether
the applications are latency-bound or bandwidth-bound. (We say “punishes” because deep
memory hierarchies may even increase memory latency if there is no temporal locality, due
to cache overhead.) We will show in Section 1.3 that most Krylov methods belong in this
category.

Bandwidth Memory bandwidth has also grown exponentially slower than arithmetic
throughput. For example, while floating-point performance improved by 59% between 1988
and 2004, DRAM memory bandwidth (more specifically, front-side bus bandwidth) increased
by only 23% between 1995 and 2004 [118]. The bandwidth of other storage devices, such
as disks, as well as the bandwidth of network interfaces, have also not tracked the rapid
increase in floating-point throughput. As we will discuss in Section 1.4, the memory hierarchy
performance of typical Krylov methods on a single node is generally bound by bandwidth.

There are ways to increase bandwidth of storage devices. Asanovic et al. [8] (see also [9])
observe that DRAM technology has untapped potential for bandwidth improvements, for
example, since DRAM storage cells themselves have much more potential parallelism than
the circuits by which they are accessed. Typical ways to improve the bandwidth of storage

throughput does not matter. Second, the CPU executes instructions besides floating-point arithmetic and
loads and stores, and these instructions are often pipelined with the floating-point arithmetic operations, so
the latency of the floating-point operations may very well be hidden by that of the other instructions.



CHAPTER 1. INTRODUCTION 20

devices include

• Interleaving data across multiple storage devices, which multiplies effective sequential
access bandwidth by the number of thusly linked devices. For DRAM these multiple
devices are called banks, and for hard disks this technique is called striping.

• For parallel processors accessing a shared level of the memory hierarchy, partitioning
that storage into separate devices or regions, each of which prioritizes service to a
disjoint subset of processors. This increases effective bandwidth (and /or decreases
effective latency) of a processor to its “local” subset of storage. For DRAM, this tech-
nique is called Non-Uniform Memory Access (NUMA), and for hard disks or analogous
storage devices, this amounts to a distributed file system.

However, these techniques often come at the cost of latency increases (see e.g., Kogge [157].
For example, interleaving data across multiple memory banks increases the overhead of
accessing a single word of data. NUMA technology essentially adds another level to the
memory hierarchy, since programmers have to reason about locality, and applications pay
higher latency and / or bandwidth costs to access nonlocal data. Furthermore, increasing
bandwidth of a storage device or network interface usually increases hardware complexity,
and therefore cost and energy consumption.

The power wall

The power wall refers to power dissipation being the major limiting factor of single-processor
CPU performance. See Asanovic et al. [9]. For decades until around 2004, sequential CPU
performance has increased at an exponential rate. Part of this was caused by an exponential
increase in CPU clock frequency each year, due to corresponding increases in transistor den-
sity and other advances in hardware. This clock frequency increase was aided by techniques
that let hardware designers reduce cycle time, by reducing the amount of work to be done
in each cycle. These techniques include

• RISC (the Reduced Instruction Set Computer, with its simplified instruction set), and

• pipelining (which broke up instructions into more, but shorter, steps, increasing in-
struction throughput at the expense of latency).

See e.g., Click [61]. Pipelining is also a simple example of instruction-level parallelism (ILP),
which entails finding instructions in sequential code that can be executed in parallel on a
single processor, and doing so using parallel hardware resources on that single processor.
(ILP is a way to make sequential code go faster on a single processor; (explicitly) parallel
code executes on multiple processors.) Pipelining and more advanced ILP techniques, such
as multiple instruction issue and out-of-order execution, also improved the performance of
sequential code.

Since around 2004, CPU clock frequency increases have slowed, stopped, or even reversed,
in some cases. This is because CPUs are using too much power, and therefore running too
hot. Power use (and thus, heat generation) of a CPU increases as the cube of its clock
frequency. CPUs have reached the limits of how much heat their physical package can
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dissipate, without using unreasonable cooling technologies that consume too much energy.
Energy use of the CPU itself is also a major limiting concern. That means sequential
performance no longer increases “automatically” every year: the power wall has been reached.
See e.g., Asanovic et al. In contrast, heat dissipation and energy use scale linearly in the
number of parallel processors, so increasing the number of processors is an attractive path
for hardware designers to improve performance.

Furthermore, the ability of CPUs to exploit ILP in sequential programs has reached a
plateau. See e.g., Asanovic et al. and Click. The main cause of this “ILP wall” is the memory
wall: programs spend too much time waiting for cache misses, for them to get benefits out of
ILP. Another cause is that instructions in sequential code often have data dependencies that
precludes them executing in parallel. A third cause is that CPU hardware for dynamically
detecting these data dependencies between instructions is complex and consumes both power
and area on the CPU die. In fact, its use of power and area resources scales as the square of
the number of instructions that can be executed in parallel. Some CPUs instead let compilers
and / or humans resolve instruction dependencies, but experience shows this to be hard to
exploit.

The power wall means that sequential performance will no longer increase exponentially
each year, as it had for decades. Instead, CPU manufacturers have shifted to relying on
parallel processors for continued performance increases. Specifically, they are exploiting
continued Moore’s Law exponential improvements in transistor density to fit multiple pro-
cessors (“cores”) on a single CPU die, resulting in “multicore” CPUs. Parallelism is a much
more energy- and power-efficient way to improve performance than increasing the clock
rate or adding ILP resources. Simpler processing cores, but more of them, are the most
energy-efficient approach to improving performance. See e.g., Asanovic et al. The result
is that performance can only continue to improve if programmers write explicitly parallel
software. Furthermore, the performance of individual processors will not increase rapidly,
but the number of processors will increase exponentially. This is true both for embedded
platforms and high-performance platforms: cell phones will have 1000-way parallelism, and
supercomputers will have 100, 000, 000-way parallelism (see Asanovic et al.).

This directly contradicts the conventional wisdom in parallel architecture, expressed for
example in Hockney’s “Principle of Minimal Parallelism”: the best performance comes from
using as few, but as fast, processors as possible [135, pp. 14–15]. This is because “No
communication is always faster than fast communication, however fast”: almost all parallel
processing requires communication between processors, and more processors means more
communication. The conventional wisdom would hold, if performance were the only metric
of interest, that is, if there were no power wall. The power wall means instead that we must
try to improve the performance of Krylov methods, which is already communication-bound,
while being forced to communicate more by ever-increasing numbers of slower processors.
The only way to do this is to avoid communication whenever possible, which is what our
algorithms do.

Physical arguments

One might argue that the aforementioned hardware trends are an artifact of particular
choices of technology. Kogge et al. [157] make an effective argument against this, at least for
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technologies that we can imagine developing over the next five or ten years. In fact, these
hardware trends could be said to express the following “law of nature”:

Arithmetic is cheap, bandwidth is money, latency is physics.

The phrase “latency is physics” refers to the fundamental physical limitations preventing
latency improvements. One of the most startling observations is that at current CPU clock
frequencies, it takes more than one clock cycle for electrical signals just to cross the CPU
die (see e.g., Click [61]). Even at the speed of light, information takes nearly a second
to cross from the east coast to the west coast of North America. That means, for ex-
ample, that it is very hard to improve the performance of real applications by connecting
geographically distributed supercomputers, even if dedicated communication links exist be-
tween them. Some storage media, such as hard disks, have mechanical limitations as well.
For example, a rotating storage medium spun too fast will deform beyond the ability of the
drive to read it. Current CD-ROMs are within only a small factor of this maximum speed.
Latency can be reduced to some extent by reducing or eliminating the software overhead
of each communication operation. For example, some high-performance network interfaces
have specialized “Direct Memory Access” (DMA) hardware that bypasses hardware bottle-
necks between processors and communication channels. Nevertheless, “physics” does pose a
current and fundamental lower bound to the latency of many communication operations.

The phrase “bandwidth is money” refers to the costs of improving bandwidth. These
costs may include actual money (for additional, more complex hardware), increased energy
consumption (which also adds to the electric bill), and increased latency. Increasing band-
width generally requires techniques like the following:

1. a “wider” data channel that can transfer more bits simultaneously,

2. interleaving accesses across multiple storage units (such as DRAM banks), or

3. techniques for overlapping multiple pending communication events, such as the ability
to handle a large number of pending memory accesses.

All of these involve more hardware, whether it be wires, channels, banks, disks, or logic and
storage. That means more energy spent, more power to dissipate, more complexity, and
therefore more cost (see e.g., [118, pp. 107–8]). It may also mean more latency for accessing
noncontiguous data or small amounts of data, for example if multiple interleaved storage
units must be accessed in order to find a single datum.

Finally, “arithmetic is cheap” refers to the relative increase in peak floating-point arith-
metic performance, relative to how fast data can be moved to those floating-point units.
Since processors can perform floating-point operations much faster than they can be sup-
plied with floating-point numbers on which to operate, processors can afford to “waste”
arithmetic operations, for example by redundant computation that replaces data movement.
This justifies our use of redundant arithmetic operations, for example in the matrix powers
kernel (see Sections 2.1 and 2.2), in order to avoid data movement.
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1.2.5 Avoiding communication

What does avoiding communication mean?

In Section 1.2.1, we explained that the term “communication” refer to all data movement,
either between processors or between levels of the memory hierarchy. We also demonstrated
that both in terms of time to complete a single operation and in terms of throughput,
communication is much slower than arithmetic and will likely continue to get slower, on
almost all computers of interest in the present and for the next few years. This suggests
that software must change in order to get some benefit out of that fast arithmetic hardware.
“Software” here includes both

• system libraries, such as implementations of the MPI distributed-memory parallel com-
munication library (see e.g., [183]), and

• algorithms, whose implementations may invoke those system libraries in order to per-
form communication.

Optimizing system libraries is a good way to improve the performance of already deployed
software. For example, “smart” MPI implementations should not access the internode net-
work interface when communicating between parallel processes on the same shared-memory
node. However, many applications’ performance would be communication-bound even if the
system libraries were optimally implemented. This suggests that new algorithms are needed,
which communicate less than existing algorithms whenever possible, even if achieving this
requires more arithmetic operations than alternative formulations. We call algorithms that
meet these goals communication-avoiding algorithms. Additionally, if we can prove that the
algorithms attain lower bounds on communication over a class of such algorithms, then we
call them communication optimal.

The term “communication avoiding,” while seeming awkward, is descriptive. Here is a
list of terms we rejected as being inaccurate:

• We do not call these algorithms “low latency” or “high bandwidth,” because latency
and bandwidth are properties of the hardware or system, not of the algorithm.

• We do not say “latency hiding,” because in the literature, that refers to another set of
techniques involving overlapping independent operations, in order to accomplish useful
work while waiting for one or more operations to complete. This includes overlapping
communication with computation (see e.g. [247]). Usually this is not an algorithmic
improvement, but an implementation improvement. These techniques are useful, but
as we will show in Section 1.3, overlapping communication with computation can at
best improve the performance of Krylov methods by a constant factor.

• We do not say “latency free” or “bandwidth free,” because that would imply that no
communication takes place. Any nontrivial computation involves some kind of data
movement, and data cannot travel faster than the speed of light in a vacuum.

Here is a summary of the characteristics of a communication-avoiding algorithm:

• Relative to other algorithms that perform the same task, it should communicate less.
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• Ideally, it should communicate asymptotically less, as a function of the data size and
hardware parameters (such as cache size or number of processors).

• The algorithm may achieve this goal by performing extra or redundant computation,
if necessary.

Example communication-avoiding algorithm

One example of a communication-avoiding algorithm is CholeskyQR, due to Stathopoulos
and Wu [215]. While CholeskyQR is not our algorithm, we cite it because it both avoids
communication, yet is simple to explain. CholeskyQR computes the “thin” QR factorization
V = QR of an m × n dense matrix V , where m ≥ n. (“Thin” here and elsewhere means
that in the factorization, Q is m× n and R is n× n.) Generally we assume that m� n, in
which case we call V “tall and skinny.” We discuss CholeskyQR along with communication-
avoiding QR factorization algorithms that we develop in Demmel et al. [74]. There, we show
that if the matrix V is laid out as a column of M row blocks (with bm/Mc ≥ n):

V =


V1

V2

. . .
VM

 ,

and if each row block Vj is stored contiguously in memory, then CholeskyQR is communi-
cation optimal in terms of the number of words transferred between levels of the memory
hierarchy. Obviously the lower bound on communication is that the algorithm read every
word of V once, and write every word of Q and R once. CholeskyQR only needs to read each
entry of V twice from slow memory into fast memory, and write the corresponding entries
of Q and R once from fast memory into slow memory. That makes CholeskyQR asymptot-
ically optimal. (We consider here only the sequential version of CholeskyQR; the parallel
version is also communication-optimal.) In contrast, the BLAS 3 version of Householder QR
implemented in LAPACK, DGEQRF, requires a factor of Θ(mn/W ) more words transferred
between fast and slow memory, where W is the number of floating-point words that can fit
in fast memory. For details, see Demmel et al. [74, Table 4].

We show an outline of (sequential) CholeskyQR as Algorithm 2. Intuitively, it com-
municates less than algorithms such as Householder QR or Modified Gram-Schmidt or-
thogonalization, because it works on blocks that are as “square” as possible, rather than
column-by-column. See Sections 2.3 and 2.4, as well as Demmel et al. [74] and Ballard et al.
[21], for details.

CholeskyQR is not the most accurate communication-optimal version of the “thin” QR
factorization. In fact, it can produce a Q factor which is not at all orthogonal, as we
discuss in Demmel et al. [74]. Our TSQR factorization presented in that same work always
produces a Q factor as orthogonal as that produced by Householder QR, yet it communicates
asymptotically no more than CholeskyQR. (We will discuss TSQR further in Section 2.3.)
We only use CholeskyQR as an example of a communication-avoiding algorithm.



CHAPTER 1. INTRODUCTION 25

Algorithm 2 Sequential CholeskyQR

Input: m×n matrix V , divided into M contiguous row blocks V1, . . . , Vj, with bm/Mc ≥ n
Output: Thin QR factorization V = QR, where Q is m×n with the same row block layout

as V , and R is n× n
1: Let C be an n× n matrix of zeros
2: for j = 1 to M do
3: C := C + V ∗j · Vj
4: end for
5: Compute the Cholesky factorization R∗R = C
6: for j = 1 to M do
7: Qj := Vj ·R−1

8: end for

1.3 Kernels in standard Krylov methods

In Sections 1.1.2 and 1.1.3, we identified the three time-consuming kernels in standard Krylov
subspace methods: SpMV, AXPY, and dot products. Preconditioning, if it is part of the
method, is a fourth such kernel. In this section, we will briefly summarize existing work,
some by us and some by others, showing that the performance of all these kernels is generally
dominated by communication costs. This will justify the new kernels we will introduce in
Section 1.4 and explain in detail in Chapter 2.

We begin in Section 1.3.1 by showing that the performance of SpMV is communication-
bound. In Section 1.3.2, we briefly summarize the performance of various preconditioners,
most of which are either communication-bound or spend a significant part of their run time
in communication. Finally, in Section 1.3.3, we show that the performance of AXPYs and
dot products is communication-bound.

1.3.1 Sparse matrix-vector products

Sequential sparse matrix-vector products

It is well known that memory operations dominate the cost of sequential SpMV. Computing
y := y + A · x for sparse n× n A and dense vectors x and y amounts to a sum

yi := yi +
∑

1≤j≤n:Aij 6=0

Aijxj.

Different sparse matrix data structures implement and order this sum in different ways.
However, all of those nonzero entries Aij must be read from main memory. Each Aij is only
needed once, so there is no reuse of the nonzero entries of A. Thus, if the nonzero entries
of A do not fit in cache, then they can be accessed at no faster rate than main memory
bandwidth. More importantly, only two floating-point operations (a multiply and an add)
are performed for each Aij entry read from memory. Thus the computational intensity – the
ratio of floating-point operations to memory operations – is no greater than two. It is in fact
less than two, because sparse matrices also store the indices of their nonzero entries, and
those indices must be read from memory in order to know which entries of x and y to load
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and store. Furthermore, typical sparse matrix data structures require indirect loads and / or
stores for SpMV. Indirect accesses often interfere with compiler and hardware optimizations,
so that the memory operations may not even run at full main memory bandwidth. These
issues are discussed e.g., in Vuduc et al. [236] and Williams et al. [240]. Authors such as these
have found experimentally that typical sequential SpMV implementations generally achieve
no more than 10% of machine peak floating-point rate on commodity microprocessors. In
the best case, memory bandwidth usually does not suffice to keep all the floating-point units
busy, so performance is generally bounded above by peak memory bandwidth.

SpMV differs markedly from dense matrix-matrix operations like dense matrix-matrix
multiplication or dense LU factorization (as in the LINPACK benchmark, for which see
Dongarra [82]). For dense matrix-matrix operations, the number of floating-point operations
(Θ(n3) for n× n matrices) is asymptotically larger than the amount of data (Θ(n2)). Irony
et al. [141] show that the number of words transferred between fast and slow memory in an
n×n sequential matrix-matrix multiply is Ω(n3/

√
W ), where W is the fast memory capacity

in words. The usual tiled algorithm achieves this lower bound. Ballard et al. [21] extend
this lower bound on communication to factorizations of an n× n matrix, such as Cholesky,
LU, QR, LDLT , dense eigenvalue decompositions, and dense singular value decompositions.
They also cite other works giving algorithms that achieve these lower bounds, including
our “Communication-Avoiding QR” (CAQR) algorithm [74]. Since these dense matrix-
matrix operations involve Θ(n3) floating-point arithmetic operations, they may therefore
be computed at the full speed of the arithmetic hardware, as long as the fast memory is
sufficiently large. This is true no matter how large the matrix is. Such is not true for SpMV.

Some optimizations can improve the computational intensity of SpMV for certain classes
of matrices. For example, replacing individual nonzero entries of A with small dense blocks
– a technique called register blocking – can achieve a small constant factor of reuse of matrix
entries, and also reduces the number of indices needing to be read from slow memory. For
details, see e.g., Vuduc et al. [234, 236] and Williams et al. [240]. For a small class of
nonsquare matrices, a technique called cache blocking may increase reuse in the source vector.
See Nishtala et al. [178] for details. Nevertheless, none of these optimizations can make the
performance of sequential SpMV comparable with the performance of dense matrix-matrix
operations.

Parallel sparse matrix-vector products

It is much harder to characterize the performance of parallel SpMV, because it depends
on many more factors than sequential SpMV. Typical sequential SpMV performance de-
pends mainly on memory bandwidth, as mentioned above. In the parallel case, performance
depends on

• how the matrix and vectors are divided among the processors,

• whether a processor’s component of the matrix fits in its cache,

• and the structure of the matrix.

There are many ways to split up the matrix and vectors among P processors. The conven-
tional way for a square matrix A, is to
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1. partition the dense destination vector y (in y := y + A · x) into blocks of contiguous
elements y1, y2, . . . , yP ,

2. partition the dense source vector x similarly into blocks of contiguous elements x1, x2,
. . . , xP ,

3. partition the sparse matrix A into corresponding sparse submatrices AIJ with 1 ≤
I, J ≤ P ,

4. associate xI , yI , and AI,J (for 1 ≤ J ≤ P ) with processor I.

(“Associate” here conveys a sense of memory locality, whatever that may mean in terms of
hardware and software.) This results in a “1-D” block row decomposition of y := y + A · x:

y1

y2
...
yP

 :=


y1

y2
...
yP

+


A11 A12 . . . A1P

A21 A22
. . . A2P

...
. . . . . .

...
AP1 AP2 . . . APP

 ·

x1

x2
...
xP

 .

Processor I computes its block yI via the sum

yI := yI +
P∑
J=1

AIJxJ .

Each AIJ block is a sparse matrix which processor I can access directly. If that block contains
no nonzero entries, processor I need not compute that term in the sum. Furthermore, if
I 6= J , processor I has to fetch entries of xJ from processor J . In fact, one entry of xJ
must be fetched from processor J for every column of AIJ containing a nonzero entry. This
fetching involves communication: in the distributed-memory programming model, it entails
sending and receiving messages, and in the shared-memory programming model, it entails
memory traffic from a region of memory belonging to a different processor. In the case of
NUMA hardware, that memory region may not have affinity to processor I, so processor I
will pay a latency and possibly also a bandwidth penalty in order to access it.

In this simple “1-D” decomposition of the matrix and vectors, the number of messages
that processor J must send is related to the number of nonzero AIJ blocks with I 6= J –
that is, the number of nonzero off-diagonal blocks AIJ in block row I. Also, the number of
words of xJ that processor J must send is related to the number of nonzero columns in those
off-diagonal blocks.

We may explain this relationship in a simplified way by speaking of the surface-to-volume
ratio between partitions. “Volume” here does not imply three dimensions necessarily, and
“surface” does not imply two dimensions; rather, “surface” indicates the boundary between
two partitions. Suppose that the graph structure of the sparse matrix comes from an irregular
mesh resulting from the triangulation of a 2-D region (see Figure 1.1). Each vertex in the
graph is connected to its nearest neighbors. Partitioning the mesh into three sets of vertices
(Figure 1.1b) corresponds to partitioning the sparse matrix into three block rows (Figure
1.2). The number of words that must be communicated from Processor 1 (which owns
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(a) Undirected graph resulting from a trian-
gulation of 15 points in the plane. Each line
segment between points represents an edge.
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(b) The same undirected graph as in Figure 1.1a, parti-
tioned into three subdomains (1, 2, and 3). The dashed
lines indicate the boundaries between subdomains.

Figure 1.1: Illustration of partitioning an undirected graph.

Subdomain 1) to Processor 2 (which owns Subdomain 2) is the number of edges in the graph
connecting Processor 1 to Processor 2. What “flows” along those edges are the source vector
values xj at the vertices along the boundary. Clearly, at least one message must pass between
Processors 1 and 2. However, Processors 1 and 3 need not communicate, since there are no
edges crossing between their subdomains; their subdomains do not “touch” (see Figure 1.1b).

The exact relationship between the nonzero structure of A and the communication vol-
ume, when using this 1-D block row decomposition, is explained in detail by Çatalyürek and
Aykanat [47]. The authors explain that the model of the previous paragraph is imperfect.
In particular, it is only good at describing sparse matrices coming from triangulations of
meshes, with nearest-neighbor interactions only; it is not so good at describing more general
sparse matrices. However, it illustrates the connection between the sparse matrix structure
and the communication volume.

There are many more ways to divide up the matrix and vectors among processors than
the simple “1-D” layout presented above. Vastenhouw and Bisseling [230], for example,
describe 1-D, 2-D, and even more general block layouts both for square A and nonsquare A.
However, this example conveys the following general truths about parallel SpMV. First, only
very specific matrix structures require no interprocessor communication. (In the case of the
above simple 1-D block layout, only a block diagonal matrix A, with AIJ = 0 when I 6= J ,
would result in no communication between processors.) Communication is the common case.
Second, the nonzero structure of A and the distribution of A, x, and y among the processors
strongly affect

• how many messages one processor must send to different processors,

• the volume of data it must send, and
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• how much arithmetic each processor has to do.

Third, both the communication and arithmetic workload may be different for different pro-
cessors, depending again both on the nonzero structure of A, and on the distribution of A,
x, and y among the processors.

Graph or hypergraph partitioners are an essential technology for reducing both the num-
ber of messages and the total communication volume between processors in parallel SpMV,
as well as for load balancing. This is because optimizing any of these things entails com-
puting a K-way partitioning of a graph or hypergraph related to the structure of the sparse
matrix, where K is related to the number of processors (for example, K = P when com-
puting a 1-D block row decomposition). See e.g., Çatalyürek and Aykanat [47], Vastenhouw
and Bisseling, Bisseling and Meesen [30], and Wolf et al. [242]. As we will see in Section
2.1, our communication-avoiding sparse matrix kernel (Section 2.1) starts with an analogous
partitioning step, but further reduces communication in ways that we will describe later.

The above simple 1-D partitioning shows that an important part of parallel SpMV is se-
quential SpMV. It is hard to characterize the proportion of time that parallel SpMV spends
in sequential SpMV, relative to how much time it spends in communication between pro-
cessors, because there are many different kinds of parallel processors and sparse matrices.
Nevertheless, the common experience is that even if both the computational and communica-
tion load are balanced evenly among the processors, the cost of communication is enough, in
distributed-memory computations at least, to justify the expense of a complicated reordering
scheme that reduces communication volume and / or the number of messages. See e.g., Wolf
et al. [242]. This suggests that interprocessor communication is an important part of parallel
SpMV, and that avoiding that communication could improve performance significantly.

1.3.2 Preconditioning

Preconditioning is a large field, and there are many different types of preconditioners. We
do not try to characterize the performance of all known preconditioners here, or even try to
give a survey of previous work doing such characterizations. Rather, in this thesis, we will
only address a few classes of preconditioners, which we hope are somewhat characteristic of
the performance of common preconditioners. We also focus mainly on the types of precon-
ditioners for which it it possible to avoid communication. In addition, we do not consider
the cost of constructing the preconditioner from the original problem; that is generally a
one-time cost, whereas applying the preconditioner is done at every iteration of a standard
Krylov method.7

The most obvious preconditioner is itself a sparse matrix, applied using SpMV. For exam-
ple, computing a sparse approximate inverse preconditioner (SPAI – see e.g., Chow [52, 53])
produces a sparse matrix, and the preconditioner is applied using SpMV. We have already
mentioned how the performance of SpMV is dominated by communication. In Section 2.2,
we will show how to avoid communication in a Krylov method for both SpMV with the

7For example, for a sparse incomplete Cholesky preconditioner for the matrix A, computing the incomplete
factorization A ≈ L ·L∗ is the construction part, whereas the preconditioner is applied by computing sparse
triangular solves with L and L∗.
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matrix A, and the preconditioner step, if the preconditioner is a sparse matrix with a similar
structure as A.

Another popular class of preconditioners involve sparse matrices, but applied via sparse
triangular solve (SpTS), rather than SpMV. These include sparse incomplete factorizations,
such as Incomplete Cholesky or Incomplete LU. The sparse triangular factors produced by
sparse incomplete factorizations are applied via SpTS. Applying a support-graph precondi-
tioner (see e.g., Gremban and Miller [121] and Bern et al. [27]) involves a direct solve of
a sparse linear system, whose structure means that the direct solve behaves much like a
sparse triangular solve in terms of performance. We do not discuss in this thesis how to
avoid communication in SpTS. While we do not have the space here to model the perfor-
mance of SpTS in detail, it should be clear that both sequential and parallel SpTS have
communication-bound performance. In particular, parallel SpTS involves more data de-
pendencies between processors than SpMV, so it is fair to say that it requires even more
communication (in general) than SpMV.

One class of preconditioners for which we do show how to avoid communication later
in this thesis, are matrix preconditioners with a hierarchical matrix structure (see Börm
et al. [36]) or a (hierarchically) semiseparable structure (see e.g., Chandrasekaran et al.
[49]). In the ideal case, these structures let one compute an n × n matrix-vector product
with such a matrix in O(n log n) operations, with O(n log n) memory requirements. This
means also that the sequential performance of these sparse matrix-vector products is at
best bandwidth-bound, since there are about as many words to read from slow memory as
there are floating-point arithmetic operations to perform. These matrix structures have in
common that they can be arranged into block rows, with the off-diagonal part of each row
being representable as a low-rank outer product. As we will discuss in Section 2.2, we can
exploit this low-rank outer product structure in order to avoid communication, as long as
both the matrix and the preconditioner have similar representations.

1.3.3 AXPYs and dot products

AXPYs and dot products are also communication-bound operations. In the sequential case,
the bandwidth cost of reading (and writing, for AXPYs) the vectors dominates the operation,
if the vectors do not fit in cache and / or do not start in cache. In the parallel case, AXPYs
require no data movement between processors, but may require synchronization to ensure
that the vector operation is completed before using the results of the AXPY. Parallel dot
products require a combination of sequential dot products and a scalar reduction over the
processors. The scalar reduction is a latency-bound operation, so this latency cost competes
with the bandwidth cost of the sequential dot products.

AXPY and dot products in Krylov methods are often used to orthogonalize a set of
vectors. We speak more about this topic in Sections 2.3 and 2.4, where we present new
communication-avoiding kernels for orthogonalization of a set of vectors.
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1.4 New communication-avoiding kernels

In this section, we summarize our new communication-avoiding kernels. The new Krylov
methods presented in this thesis will avoid communication, because they are built out of
these new kernels, rather than out of the slower kernels (Section 1.3) used in standard
Krylov methods.

1.4.1 Matrix powers kernel

Our first communication-avoiding kernel is called the matrix powers kernel. We first pre-
sented it in Demmel et al. [76], with subsequent performance optimizations in [77] and [78].
The matrix powers kernel takes a sparse matrix A and a dense vector v, and computes s
vectors Av, A2v, . . . , Asv (or vectors similar to those, as we explain in Section 2.1). For
a large class of sparse matrices, the matrix powers kernel can compute these vectors for
optimally minimal communication. (Specifically, the graph of the sparse matrix A must be
partitionable so that the partitions each have a small surface-to-volume ratio. This is true
of many types of sparse matrices, including discretizations of partial differential equations
on low-dimensional domains.)

In the sequential case, “minimal” means that both the matrix A and the vectors v, Av,
. . . , Asv need to be moved between fast and slow memory only 1 + o(1) times. A straight-
forward implementation of this kernel using s invocations of sequential SpMV would require
reading the sparse matrix A from slow memory s times. In the parallel case, “minimal”
means that the required number of messages per processor can be reduced by a factor of
Θ(s), so that the number of messages for the matrix powers kernel is the same as 1 + o(1)
invocations of parallel SpMV. Our work cited above show significant speedups of our matrix
powers kernel algorithms over the straightforward approach of s invocations of SpMV, both
in performance models and in implementations for various hardware platforms. Since many
standard Krylov subspace methods spend most of their runtime in SpMV, replacing SpMV
operations with the matrix powers kernel has the potential for large speedups. We have
observed speedups in practice for our communication-avoiding KSMs [78], due both to the
matrix powers kernel and to the two kernels that follow (Sections 1.4.2 and 1.4.3).

This thesis merely summarizes our work on the matrix powers kernel in Demmel et al.
[76, 77, 78]. We summarize the matrix powers kernel in more detail in Sections 2.1 (the
unpreconditioned case) and 2.2 (the preconditioned case).

1.4.2 Tall Skinny QR

Our second communication-avoiding kernel is called Tall Skinny QR (TSQR). We first pre-
sented it in Demmel et al. [74], and subsequently in [78] developed an optimized parallel
shared-memory implementation and integrated it with our Communication-Avoiding GM-
RES algorithm (Section 3.4) to achieve significant speedups on practical matrices.

TSQR is a QR factorization which can be used to orthogonalize groups of vectors. “Tall
skinny” refers to the input of the algorithm: a dense m × n matrix A with m � n. TSQR
differs from the Householder QR factorization (the usual method for tall skinny matrices,
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implemented in the LAPACK software package [4]) and Modified Gram-Schmidt orthogo-
nalization in that the latter algorithms process the matrix column by column, but TSQR
processes the matrix by row blocks. In fact, TSQR works by performing a reduction opera-
tion over blocks of the matrix, in which the reduction operator is a smaller QR factorization.
Parallel TSQR with P processors requires Θ(logP ) messages, which is a factor Θ(n) fewer
than Householder QR. In the sequential case with a fast memory of size W , TSQR reads and
writes the minimum number of floating-point words (2mn), a factor Θ(mn/W ) fewer than
standard Householder QR. It performs the minimum number Θ(mn/W ) of block transfers,
a factor of Θ(n) fewer than Householder QR.

The CholeskyQR algorithm we described in Section 1.2.5 communicates no more than
TSQR, in both the parallel and sequential cases. However, CholeskyQR in finite-precision
arithmetic can produce a Q factor that is not at all orthogonal (see Demmel et al. [74]). In
contrast, TSQR is just as accurate as Householder QR: it produces a Q factor of A that is
orthogonal to machine precision, regardless of the input matrix.

We developed TSQR specifically for our Krylov methods, as a replacement for Gram-
Schmidt or Householder QR in the orthogonalization step. The idea of computing a QR
factorization via a reduction over blocks is not entirely novel; for details on related work, see
Demmel et al. [74]. Nevertheless, our work [74] generalizes previous TSQR-like factoriza-
tions by showing how to map the algorithm to different architectures. It includes a careful
communication analysis, and proves that both the sequential and parallel versions of TSQR
are communication-optimal, and communicate asymptotically less than existing correspond-
ing algorithms in LAPACK and ScaLAPACK. It also includes new sequential and parallel
QR factorizations for general dense matrices, which we call Communication-Avoiding QR
(CAQR), which use TSQR as the panel factorization. We prove that parallel and sequential
CAQR are also communication-optimal, and communicate asymptotically less than existing
corresponding algorithms in LAPACK and ScaLAPACK. Furthermore, in [78], our paral-
lel shared-memory implementation of TSQR significantly outperforms the existing parallel
shared-memory QR factorization in LAPACK.

In this thesis, we only summarize results on TSQR that we have shown in our previous
work [74] and [78]. We summarize TSQR in more detail in Section 2.3.

1.4.3 Block Gram-Schmidt

Our third communication-avoiding kernel is called Block Gram-Schmidt (BGS). We first
presented it in Demmel et al. [78]. The idea of BGS is to improve the performance of
standard (Modified or Classical) Gram-Schmidt, by operating on blocks of columns, instead
of column by column. This results in the algorithm spending most of its time in faster dense
matrix-matrix operations, rather than slower vector-vector or matrix-vector operations. BGS
is not a new idea, and we present related work in Section 2.4. However, combining BGS with
the TSQR algorithm above is a new idea, which we do in Demmel et al. [78]. In Section 2.4,
we include a new discussion of reorthogonalization not in that work, in which we summarize
related work and propose a new reorthogonalization scheme that combines BGS and TSQR.
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1.5 Related work: s-step methods

Our communication-avoiding Krylov algorithms are based on the so-called “s-step” Krylov
methods. These break up the data dependency between the sparse matrix-vector multiply
and the dot products in standard Krylov methods such as CG and GMRES. The methods
do so by first computing the next s vectors in the Krylov subspace basis, then using a combi-
nation of scalar recurrences, dot products, and AXPY operations to recover the coefficients
from s iterations of the standard Krylov algorithm on which the s-step method is based.
Our communication-avoiding methods improve on previous s-step methods in the following
ways:

• They avoid communication in both the sparse matrix and the dense vector operations,
for general sparse matrices. Our methods do so by using the communication-avoiding
kernels summarized in Section 1.4 and discussed in more detail in Chapter 2.

• Unlike previous authors’ approaches, we improve numerical stability in the s-step basis
computation, without spending additional communication or hindering optimizations
in that computation.

• We have figured out the required form of the s-step basis for all types of Krylov
methods and s-step bases, also with various forms of preconditioning. Previous work
only expressed the form of the preconditioned s-step basis for the monomial basis.
Our innovation improves stability and allows us to develop the left-preconditioned
communication-avoiding CG algorithm (LP-CA-CG, see Section 5.5).

• Our s-step version of GMRES, which we call CA-GMRES, is free to choose s smaller
than the restart length r = s · t. Previous s-step versions of GMRES were not. This
has the potential to improve numerical stability, convergence, and performance. See
Section 3.4 for details.

• Our parallel shared-memory CA-GMRES implementation achieves speedups of 4.3×
on 8 cores of an Intel Clovertown processor, and speedups of 4.1× on 8 cores of an
Intel Nehalem processor. See Section 3.5 for details.

Van Rosendale [227] first developed an s-step version of CG (though he did not call it this)
as a theoretical algorithm with much more potential parallelism (in the PRAM model [100])
than standard CG. Chronopoulos and Gear [56] first coined the term “s-step method” to refer
to their own variant of CG. These authors understood that breaking the data dependency
between SpMV and vector operations exposes potential optimizations when computing the
s-step basis (the next s basis vectors of the Krylov subspace). However, they did not change
how the s-step basis was computed; they used only the “straightforward” approach of s
standard SpMV operations, and hoped that a vectorizing and parallelizing compiler could
extract further optimizations from their code.

The s-step CG of Chronopoulos and Gear had serious numerical stability problems,
especially as s increased. In fact, s > 5 was enough to cause convergence failures, in the
matrices they tested. This was not merely a side effect of details in their algorithm; it was
also true for Van Rosendale’s algorithm, as Leland [165] discovered in his implementation.
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Later authors interested in s-step versions of GMRES would discover that the source of
instability was the use of the monomial basis v, Av, A2v, . . . , Asv, which rapidly becomes
numerically rank deficient in finite-precision arithmetic. We will discuss this work below.

Meanwhile, Walker [237] developed a new version of GMRES that also uses the s-step
technique.8 However, Walker is motivated by numerical stability concerns, not by perfor-
mance. The standard version of GMRES [208] uses Modified Gram-Schmidt (MGS) to
orthogonalize the Krylov basis vectors. At the time, the gradual loss of orthogonality in
MGS was considered a potential source of inaccuracy when using GMRES to solve linear
systems. Walker instead used Householder QR to orthogonalize the basis vectors. (Now
it is known that despite the loss of orthogonality due to MGS, MGS-based GMRES is no
less accurate than Walker’s GMRES based on Householder QR. See Paige et al. [185] for a
proof.) Using Householder QR to orthogonalize a collection of vectors requires having all the
vectors available at once, unlike MGS, which can orthogonalize each successive basis vector
as soon as it is computed from the sparse matrix-vector product in GMRES. Thus, Walker
adopted the s-step approach entirely out of numerical stability concerns. He computed the
s-step basis in the same straightforward way (s invocations of SpMV) that previous authors
did in s-step CG. It seems also that Walker did not know of the work of Van Rosendale or
Chronopoulos and Gear, as he did not cite it.

The characteristic feature of Walker’s “Householder GMRES” is that the restart length
equals the s-step basis length. This differs from the s-step CG algorithms of Van Rosendale
and Chronopoulos and Gear, which do not need to restart at all. Later s-step GMRES
algorithms, such as those by Joubert and Carey [143, 144], Bai et al. [18], and de Sturler and
van der Vorst [72], all have this limitation. Our CA-GMRES algorithm does not have this
limitation; we are free to choose the restart length arbitrarily larger than the s-step basis
length. See Chapter 3 for details.

Walker also later realized that his use of the monomial basis was causing numerical
instability. Hindmarsh and Walker [134] corrected this partially by scaling each vector in
the monomial basis by its norm. This prevented overflow or underflow if ‖A‖ is much larger
resp. smaller than one, but did not entirely solve the numerical stability problems. Later
s-step GMRES authors attacked the stability problem by using a different basis other than
the monomial basis. For example, Joubert and Carey [143, 144] used a basis of Chebyshev
polynomials of the first kind, and Bai et al. [18] a basis of Newton polynomials. The latter
authors avoid the overflow / underflow problems observed by Hindmarsh and Walker, by
using the same technique: they scale each s-step basis vector in turn by its norm as it is
computed. Doing so reintroduces the same data dependency between SpMV and vector
operations that Van Rosendale and Chronopoulos and Gear had sought to remove, and thus
hinders communication-avoiding optimizations. In Section 7.5, we present a novel approach
involving equilibration or balancing of the matrix A. It avoids underflow or overflow, helps
with numerical stability in practice, and requires only a one-time computation per matrix for
the cost of a few SpMV operations. In Section 3.5, we show experiments that demonstrate
the value of this approach for improving numerical stability.

8Walker’s 1985 work cited a 1983 technical report by Saad and Schultz introducing the GMRES algorithm;
the latter report later developed into the 1986 paper [208].
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The s-step GMRES authors mentioned above differed from Walker, in that improving the
performance of GMRES was their main motivation. Bai et al. suggested that performance
optimizations in s-step GMRES should focus on the QR factorization, since GMRES often
spends most of its time in the vector operations, rather than in SpMV. Erhel [93] takes
up this challenge by applying a new parallel QR factorization, RODDEC, that optimizes
communication on a ring network of parallel processors. RODDEC requires a number of
messages proportional to the number of processors P , so it does not minimize the number
of messages for a general network of processors. Joubert and Carey [144] use an algorithm
we call CholeskyQR to orthogonalize the basis vectors in their s-step GMRES algorithm.
As we discuss in Section 2.3, CholeskyQR may be implemented in a way that minimizes
communication requirements both between processors and between levels of the memory
hierarchy. Joubert and Carey were only motivated by parallel considerations. Also, the
authors developed what we call a “matrix powers kernel” (see Section 2.1) in order to reduce
the number of messages when computing the s-step basis. Their version of the kernel only
works for 2-D regular meshes; ours works for general sparse matrices, both in theory and
in practice. Furthermore, Joubert and Carey’s version of the matrix powers kernel only
minimizes the number of messages in parallel; ours minimizes the number of messages in
parallel, and the number of words transferred between levels of the memory hierarchy. See
Section 2.1 for details.

Toledo [221] also optimizes the computation of the s-step basis, in his s-step CG algo-
rithm. Unlike Joubert and Carey, he is concerned not with parallel optimizations, but with
reducing the number of words transferred between levels of the memory hierarchy. His s-
step basis generation algorithm works for general sparse matrices, even for those with more
complicated structures than our matrix powers kernel efficiently supports (see Section 2.1).
However, he only implements and benchmarks the algorithm for tridiagonal matrices. Our
matrix powers kernel implementation works and achieves speedups over the straightforward
approach (of s invocations of SpMV) for general sparse matrices.

Preconditioning was perhaps the Achilles’ heel of previous work in s-step Krylov methods.
We are the first, as far as we know, to explain why this was so difficult, especially for s-step
bases other than the monomial basis. We do so in Section 4.3. Previous work either restricts
itself to polynomial preconditioning (see e.g., Leland [165]), to block diagonal preconditioners
that require no communication between parallel processors, or to split preconditioning that
preserves any symmetry in the matrix A (see e.g., Chronopoulos and Gear [55]). None of
these authors show how the s-step basis changes when preconditioning is introduced, nor do
they show how to avoid communication in the preconditioner application (other than to use
block diagonal preconditioners).

We do show in Section 4.3 how the s-step basis changes when preconditioning is intro-
duced. We also draw an analogy between this approach and two-sided Krylov methods like
nonsymmetric Lanczos and BiCG, which helps us suggest an approach in Chapter 6 for devel-
oping the latter. In addition, we present in Section 2.2 two preconditioning approaches that
avoid communication in a way either compatible with or analogous to our matrix powers ker-
nel. However, we leave the development of effective communication-avoiding preconditioners
for future work.

Table 1.1 gives a concise summary of the prior work we found in which one or more s-
step Krylov subspace methods were developed. The table indicates not only the algorithms
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Citation(s) Algorithms Basis Precond Akx? TSQR?
[99] Steepest descent monomial none N N
[227] CG monomial polynomial N N
[165] CG monomial polynomial N N
[238] GMRES monomial none N N
[56] CG monomial none N N
[55] CG monomial polynomial, N N

local (1)
[57] Orthomin,GMRES monomial none N N
[54] MINRES (2) monomial none N N
[150] Symm. Lanczos monomial none N N
[151] Arnoldi monomial none N N
[70] GMRES Chebyshev none N N
[143, 144] GMRES Chebyshev none Y (3) N
[152] Nonsymm. Lanczos monomial none N N
[18] GMRES Newton none N N
[93] GMRES Newton none N N (4)
[72] GMRES Chebyshev general N N
[221] CG monomial, polynomial Y (5) N

recycled
[59] GCR,Orthomin monomial none N N
[58] Orthodir monomial none N N

Table 1.1: “Citation(s)”: citations of prior work on s-step Krylov subspace methods. “Al-
gorithms”: the type(s) of Krylov subspace methods which those author(s) developed. For
example, van Rosendale [227] developed an s-step variant of CG, so we list “CG” in its “Al-
gorithms” field. “Basis”: the type(s) of s-step bases used (not just suggested) in the paper:
either monomial, Newton, Chebyshev, or “recycled” (reusing the coefficients that orthogo-
nalized the last set of s-step basis vectors). “Precond”: the type(s) of preconditioners used
in the paper. If “Akx?” is Y, it means that the paper includes an communication-avoiding
matrix powers kernel (see Section 2.1). This does not include just exposing the kernel and
hoping an optimizing compiler will make it go faster. If “TSQR?” is Y, it means that the
paper includes an optimized Tall Skinny QR factorization (see Section 2.3). We mean by
this a QR factorization as stable as Householder QR, which uses a single reduction to factor
the matrix. For footnotes (e.g., “(1)”), see text.
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developed in each work, but also the s-step basis type(s), the forms of preconditioning (if any)
used, and whether the authors present or use a form of optimized matrix powers kernel (see
Sections 2.1 and 2.2) or TSQR (see Section 2.3). (Some of the iterative methods shown in
the table, such as Orthomin and Orthodir, are not so commonly used anymore. Greenbaum
[119, Section 2.4] suggests some reasons why; the conventional versions of these algorithms
converge more slowly than GMRES, require more storage, or both.) The table includes
footnotes, which we explain here:

1. “Local” preconditioning refers to a block diagonal preconditioner, that is, which is
local to each subdomain (and thus requires no parallel communication).

2. Actually the paper includes s-step versions of MINRES, CR (conjugate residual), GCR
(generalized conjugate residual), and Orthomin(k).

3. Matrix powers kernel only for 2-D regular meshes, not for general sparse matrices.

4. The paper does include a more efficient parallel QR decomposition (called RODDEC)
for ring communication networks. However, unlike TSQR, it does not minimize latency
in the fully general parallel case.

5. Toledo gives a “matrix powers kernel”-like sequential algorithm, based on “blocking
covers,” for minimizing memory traffic between fast and slow memory. The algorithm
covers general sparse matrices and even more general constructs. However, Toledo
does not give a general implementation; the implementation for which he presents
benchmarks is for tridiagonal matrices.

1.6 Related work on avoiding communication

In this section, we discuss related work which avoids communication in Krylov methods,
in different ways than the methods discussed in this thesis. We summarize the advantages
and disadvantages of each technique, and explain why we chose s-step methods over that
approach as the basis for our algorithms. We begin with the most conservative of the
methods, and conclude with the most aggressive. “Conservative” here suggests one or both
of the following:

• Rearrangements of existing methods, with the same convergence behavior in exact
arithmetic

• Little algorithmic or implementation effort, beyond that of existing implementations

“Aggressive” here suggests one or both of the following:

• Significant algorithmic or implementation effort

• Based on existing methods, but converge differently than they do, even in exact arith-
metic



CHAPTER 1. INTRODUCTION 39

Section 1.6.1 begins with algorithms that replace the Modified Gram-Schmidt (MGS) orthog-
onalization method in the standard version of Arnoldi iteration with other orthogonalization
methods that require fewer synchronization points. Section 1.6.2 describes the block Krylov
methods, which use a different approach than our Krylov methods to avoid communication in
the sparse matrix-vector products. In Section 1.6.3, we discuss Chebyshev iteration, which
communicate less per iteration than other Krylov methods because they require no inner
products. In Section 1.6.4, we present some existing approaches to avoiding communication
in multigrid. Finally, Section 1.6.5 summarizes asynchronous iterations. These relax the syn-
chronization constraints of existing block relaxation iterations, resulting in nondeterministic
intermediate results in exact arithmetic, but eventual convergence under certain conditions.

1.6.1 Arnoldi with Delayed Reorthogonalization

Hernandez et al. [127] propose new rearrangements of Arnoldi iteration that use Classical
Gram-Schmidt (CGS) instead of Modified Gram-Schmidt (MGS) to orthogonalize the cur-
rent basis vector against all the previous basis vectors. In standard Arnoldi (Algorithm 18
in Section 3.1), iteration j of the algorithm first computes a vector wj := Aqj, and then
uses MGS orthogonalization to orthogonalize wj against all the previous basis vectors q1, q2,
. . . , qk. The MGS orthogonalization step requires j dot products and AXPY operations in
iteration j. In parallel, each of those dot products requires a global synchronization between
processors. In contrast, replacing MGS orthogonalization with CGS orthogonalization can
be done with two dense matrix-vector products. In parallel, this requires only two global
synchronizations. (The number of floating-point operations is no different and the amount
of data movement between levels of the memory hierarchy is not asymptotically different.)
Since CGS is less accurate than MGS in finite-precision arithmetic, the authors do reorthog-
onalization at every iteration, even though this entails redundant computation and may
also involve extra communication (as compared with standard Arnoldi without reorthogo-
nalization). The most aggressive algorithm Hernandez et al. present, “Arnoldi with Delayed
Reorthogonalization” (ADR), avoids any extra synchronization points due to reorthogonal-
ization. It does so by mixing together the work of the current, previous, and next iterations,
in a way analogous to software pipelining.

ADR requires fewer synchronization points in parallel for the vector operations than
standard Arnoldi iteration. Some number s iterations of either algorithm add s basis vectors
to the Krylov subspace, but s iterations of ADR require only 2s synchronization points for
the vector operations, whereas s iterations of standard Arnoldi require s2/2 + Θ(s) synchro-
nization points for the vector operations. However, our communication-avoiding version of
Arnoldi, CA-Arnoldi (see Chapter 3), requires only a constant number of synchronization
points in parallel for s iterations. ADR only uses BLAS 2 - type operations (dense matrix-
vector products) when orthogonalizing the basis vectors, but CA-Arnoldi uses BLAS 3 -
type operations (dense matrix-matrix products) when orthogonalizing the basis vectors. As
we show in Sections 2.3 and 2.4, this means that CA-Arnoldi requires less data movement
between levels of the memory hierarchy than ADR (or standard Arnoldi). Furthermore, CA-
Arnoldi avoids communication in the sparse matrix operations as well, which ADR does not.
In fact, CA-Arnoldi performs the same work as s iterations of ADR (or standard Arnoldi),
but the sparse matrix operations communicate only as much as a single sparse matrix-vector
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product.
ADR may also be less accurate than either standard Arnoldi or our CA-Arnoldi. The

ADR update formula sacrifices some of the value of the reorthogonalization, because it
imposes assumptions about the orthogonality of the Arnoldi basis vectors that standard
Arnoldi does not impose. While some number s iterations of ADR is equivalent to s iterations
of standard Arnoldi in exact arithmetic (not considering the software pipelining), the update
formula can affect the quality of the algorithm in finite-precision arithmetic. This is because
iterative eigensolvers are sensitive to the quality of the orthogonalization. CA-Arnoldi uses
a QR factorization as accurate as Householder QR (see Section 2.3) to orthogonalize the
Krylov basis vectors, so it should produce basis vectors at least as orthogonal as standard
Arnoldi and possibly better.

Hernandez et al. implemented several Arnoldi variants, including ADR, in parallel on
three different platforms:

• A cluster of 55 dual-processor 2.8 GHz Pentium Xeon nodes, using only one processor
per node, with an SCI interconnect configured as a 2-D torus

• An IBM SP RS/6000 system with 380 nodes and 16 processors per node

• An IBM JS20 cluster of 2406 dual processor nodes with 2.2 GHz PowerPC 970FX
processors at 2.2 GHz with Myrinet interconnect, using only one processor per node

In the resulting implementation, for many (but not all) of the matrices tested by the authors,
each iteration of ADR usually takes less time than each iteration of standard Arnoldi. Thus,
if one counts only the time to execute a certain number of iterations, ADR often runs faster
than standard Arnoldi. However, the approximate eigenvalues computed by ADR fail to
converge in some cases where standard Arnoldi’s approximate eigenvalues converge. The
authors test their algorithms by computing the 10 largest eigenvalues (at a tolerance of
10−7, restarting after every 50 iterations) of every matrix from the Harwell-Boeing and NEP
collections (a total of 210 matrices). ADR fails for 40 of those matrices. Unfortunately the
authors show convergence as a histogram over the set of matrices. This makes no sense
statistically, since the order of the matrices is arbitrary and the set of matrices is also more
or less arbitrary. It also obscures valuable information about the types of matrices on which
ADR fails.

Our experiments with communication-avoiding Arnoldi confirm the value of focusing on
orthogonalization as Arnoldi’s most expensive kernel, which is what Hernandez et al. do.
Our CA-Arnoldi algorithm requires less communication than ADR in both in the sparse
matrix operations and the vector operations, however.

1.6.2 Block Krylov methods

Block Krylov methods are related to standard Krylov subspace methods. The latter work
with one or more Krylov subspaces, such as

Kk(A, v) = span{v, Av, . . . , Ak−1v},



CHAPTER 1. INTRODUCTION 41

where v is a single vector. In contrast, block methods work with one or more “block Krylov
subspaces,” such as

BlockKrylov(A,B, k) = span{B,AB, . . . , Ak−1B},

where B is a dense matrix whose columns are a collection of (linearly independent) vectors.
(The number of columns of B is generally much smaller than the number of rows.) Com-
puting such subspaces involves a different kernel, SpMM, which multiplies a sparse matrix
A, with multiple dense vectors arranged in a dense matrix B. The straightforward way of
implementing SpMM would invoke SpMV once for each column of B, so that the matrix A
must be read s times if B has s columns. However, the SpMM kernel can be implemented in
a communication-avoiding way, so that the matrix A is read only once, for all columns of B.
This so-called multivector optimization is described by Vuduc [234], among others. Block
Krylov methods differ in exact arithmetic from their analogous non-block methods.

Block methods originated as modifications of Lanczos iteration for finding eigenvalues of
large sparse symmetric matrices [63, 222, 115]. There, they reduce the number of iterations
required to resolve a cluster of nearby eigenvalues. One typically must choose the number of
dense vectors in the resulting SpMM kernel according to the expected number of eigenvalues
in the cluster (see e.g., [15] for details), rather than according to performance considerations.
For some applications, block methods are necessary for computing all the desired eigenvalues
to the desired accuracy; they are not (just) a performance optimization.

There are also block Krylov algorithms for solving systems of linear equations with mul-
tiple right-hand sides. O’Leary first extended the block sparse eigenvalue solvers above to a
CG-like iteration for this case [181], and others later extended and popularized the technique
(see e.g. [174, 19]). O’Leary’s motivation was to solve sparse linear systems with multiple
right-hand sides efficiently. Ordinary Krylov methods can only solve for one right-hand side
at a time; the iterations must be repeated for each right-hand side. However, block methods
can solve for all the right-hand sides “at once.” It is not guaranteed that this will require
fewer iterations than if one were to solve for each right-hand side in sequence. However, if the
block method does require fewer iterations, then it should perform better. This is because
the cost of reading the sparse matrix in the sparse matrix-vector product often dominates
the cost of an iterative method (especially for short-recurrence methods like CG), so the
additional dense vectors in the SpMM kernel may come “for free.”

Block Krylov methods were originally formulated for multiple right-hand sides. This
is an important case but by no means all-inclusive. For example, a structural engineering
problem may involve only one right-hand side: the load, which is fixed and part of the design
requirements of the structure. Block Krylov methods have been extended to handle the single
right-hand side case; see e.g., Baker [19]. Baker does this by fixing a restart length (e.g. 30
iterations before restart), and using an error term from one restart sequence to augment the
right-hand side for the next restart sequence. Each restart sequence augments the right-hand
side by one additional vector. This technique prevents stagnation of the convergence rate by
preserving basis information from previous restart sequences. This means that the number of
right-hand sides requires s− 1 restart cycles to reach s vectors. Baker ensures that there are
always s right-hand sides by filling in those which have not yet been computed with additional
random (but linearly independent) vectors. The relationship between these random vectors
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and the convergence rate is unclear. Alternately, one could omit the random vectors and
just increase the number of dense vectors in SpMM by one with each restart cycle, but this
would entail a high start-up cost before the multivector optimization can take full effect.
If the preconditioner is effective enough, the multivector optimization may never take full
effect. Baker also omits the deflation step, which the algorithm requires for correctness in
certain corner cases but did not seem to affect convergence for the problems tested. Deflation
may require an expensive rank-revealing decomposition. In all cases, it is hard to estimate a
priori how the convergence rate will improve with the number of artificially-added right-hand
sides, so the extra computation may not pay off. Wasted redundant computation consumes
execution time, and also space in memory (to store the additional vectors in each block that
are not contributing sufficiently to improving the convergence rate). It may also consume
more energy, though determining whether this is the case is future work.

In contrast, our communication-avoiding iterative methods are mathematically equivalent
to the ordinary Krylov iterations from which they were derived, and have similar convergence
behavior in practice. That makes it easier to predict the performance benefit of the redundant
computation which they perform. Our algorithms also run at full optimization after at most
s or 2s steps of a standard iteration (to get eigenvalue estimates for basis construction – see
Chapter 7 for details).

The multivector optimization for SpMM does have significant advantages over our matrix
powers optimizations described in Section 2.1 and 2.2.

• The multivector optimization improves performance for any sparse matrix structure,
by amortizing the cost of reading each entry of the sparse matrix. The matrix powers
optimizations work best when the sparse matrix can be partitioned effectively into
partitions with a low surface-to-volume ratio. However, such matrices include (but are
not restricted to) finite-element and finite-difference discretizations of low-dimensional
domains, which is an important class of problems.

• The multivector optimization in itself (not counting the convergence of the block
Krylov method) involves no redundant computation over the straightforward way of
implementing SpMM. The matrix powers kernel generally does require redundant com-
putation over the straightforward approach (of invoking SpMV s times on a single
vector v). In contrast, the matrix powers kernel may require redundant computation.

• The multivector optimization generally requires less data reorganization than the ma-
trix powers kernel. The latter requires significant preprocessing to extract and possibly
replicate boundary layers between subdomains. In contrast, SpMM performs better
when the source and destination blocks are stored in row order (see e.g., [234, 19]),
which requires little preprocessing of the data.

We consider block Krylov methods an independent approach to that of the algorithms in
our thesis. In fact, one could consider combining s-step methods with block Krylov methods.
We have not done so in this thesis, because it would require developing new algorithms
and demonstrating their numerical stability and efficiency. We do not yet understand how
the s-step basis construction would interact with block methods and the possible need for
deflation. Also, the matrix powers kernel would need to be modified to handle multiple source
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and destination vectors, and performance tuning would need to be done on the resulting
implementation. We leave all of this for future work.

Another area in which our communication-avoiding kernels could be useful is in the
deflation part of block Krylov methods. Many block methods require a rank-revealing de-
composition to ensure that all the vectors in a block are linearly independent. One such
decomposition used in practice is QR with column pivoting, which requires a lot of com-
munication and data movement. The TSQR kernel could be used as the first step in a
rank-revealing QR factorization, as suggested by da Cunha et al. [66] and as we explain in
Section 2.4.8. Investigating this is future work, but probably not as hard a task as that
described in the previous paragraph.

1.6.3 Chebyshev iteration

Chebyshev iteration (see e.g., [22]) is a Krylov subspace method widely considered to re-
quire less communication, as it computes no inner products. It only performs one sparse
matrix-vector product, some vector AXPY operations, and (possibly also) one precondi-
tioner application per iteration. Chebyshev iteration is an iterative method but not an
s-step method. It is not to be confused with the Chebyshev s-step basis presented in Section
7.3.3, even though both exploit the properties of Chebyshev polynomials to achieve their
aims.

Chebyshev iteration does not compute inner products because it computes the coefficients
it needs from a bounding ellipse of the spectrum of the matrix A (or the preconditioned
matrix, if a preconditioner is used). The bounding ellipse must be known in advance and
the bounds must be fairly tight, otherwise the iteration may fail to converge. This creates
an apparent chicken-and-egg problem, as the eigenvalues of a sparse matrix are generally
not known in advance, and the typical way to compute them is via a Krylov subspace
method. Manteuffel [171] developed an adaptive algorithm which estimates a bounding
ellipse from eigenvalue approximations computed via a few steps of the power method, and
Ashby [10] implemented this algorithm. Elman, Saad, and Saylor [91] use Arnoldi (in its
GMRES form) to compute those eigenvalue approximations, in a hybrid algorithm that
alternates between slower but more effective GMRES, and faster but less effective Chebyshev
iteration. (Chebyshev iteration’s residuals cannot converge more rapidly than the GMRES
residuals, due to the latter’s minimum residual property.) Calvetti, Golub, and Reichel [44]
instead compute modified moments from inner products of residual vectors coming from the
Chebyshev iteration itself. In all cases, just a few steps often suffice to compute a sufficiently
accurate bounding ellipse so that Chebyshev iteration converges well.

Chebyshev iteration’s performance advantage is its lack of inner products, but in terms
of convergence this is its disadvantage. Inner products enable orthogonalization, whether
implicit (as in symmetric Lanczos) or explicit (as in GMRES). Orthogonalization in Krylov
methods often results in favorable minimization properties of some measure of the error at
each iteration. The inner products in a Krylov method also help approximate the eigenvalues
of the matrix, and convergence of an eigenvalue approximation in Krylov methods is often
associated with superlinear convergence when solving linear systems (see e.g., [226] in the
case of GMRES, and in general [22]). Furthermore, Chebyshev iteration may diverge if
the elliptical bound of the eigenvalues is not accurate or if an ellipse is not a good fit to
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the spectrum of the matrix. The hybrid approaches mentioned in the previous paragraph
cannot help with the latter problem.

One option for Chebyshev iteration, which as far as we can tell previous authors have not
considered, is to use the matrix powers kernel to implement the algorithm. This requires no
modification to the matrix powers kernel, as it is already designed to work with polynomials
that satisfy a three-term recurrence (see Section 2.1). This “s-step Chebyshev iteration”
could be combined with the hybrid approaches of previous authors, in particular with the
hybrid Chebyshev / GMRES algorithm of Elman, Saad, and Saylor [91]. Replacing GMRES
with our CA-GMRES algorithm (Section 3.4) would allow the resulting implementation to
exploit the same matrix powers kernel for accelerating both the Chebyshev iteration and
GMRES phases of the computation. We leave this “hybrid s-step Chebyshev iteration”
suggestion for future work.

1.6.4 Avoiding communication in multigrid

Multigrid (see e.g., Briggs et al. [37]) is a popular approach for solving or preconditioning
linear systems. Multigrid methods are most commonly applied to the discretizations of
certain partial differential equations, but can be applied to some other problems as well.
These algorithms can solve certain n× n linear systems in O(n) time, which is theoretically
optimal. Nevertheless, multigrid performance is usually dominated by communication: both
memory traffic and messages in parallel. Some authors have developed new techniques to
reduce memory traffic in multigrid. In this section, we will present two such techniques:
one that avoids memory traffic for repeated smoother applications, and another that avoids
memory traffic for multiple applications of an entire multigrid cycle.

Techniques like the matrix powers kernel we summarize in Section 2.1 can be used to avoid
data movement for many operations that “look like” sparse matrix-vector multiplication.
The smoother application phase of multigrid can be optimized in this way, depending on
the properties of the matrix and the particular smoother. Douglas et al. [88] propose this
for geometric multigrid, where the smoother is a relaxation operation on a regular grid.
Strout [218] extends this to unstructured grids. However, the central idea of multigrid is
that smoothing quickly dampens only the high-frequency components of the error, beyond
which coarsening is needed to address lower-frequency components. That means we can
expect diminishing returns for repeated smoother applications. In practice, more than two
or three repetitions may not improve convergence. This limits the possible speedups when
using the strategy of Douglas et al. and Strout, even though significant speedups are still
possible.

A more aggressive approach involves reducing the memory traffic required by an entire
multigrid cycle, when applying it multiple times to the same vector. Toledo, in his PhD
thesis [221], developed a rearrangement of multigrid that avoids communication in this way.
However, the benefit scales only as the fifth root of the cache size. Furthermore, the im-
plementation that would be required would be very complicated and might have significant
overhead. (Toledo only implemented these techniques for a regular 1-D mesh.)
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1.6.5 Asynchronous iterations

Asynchronous iterations (also called chaotic iterations), are a class of iterative methods that
relax parallel synchronization constraints that follow from data dependencies in existing
iterative methods. This results in new iterative methods that may converge differently in
exact arithmetic, but it avoids the global communication required by synchronization. It also
may allow the iteration to make progress even if some messages between processors arrive
irregularly or not at all, under certain conditions. Chazan and Miranker [50] first developed
asynchronous versions of relaxation methods, and Baudet [23] continued the development
of theory and implemented asynchronous versions of Jacobi and Gauss-Seidel on a new
shared-memory parallel computer. Bru et al. [39] combine relaxation and matrix splitting
techniques to form new asynchronous methods. Later work (see e.g., [79, 248]) focuses mainly
on convergence studies and proofs. For a survey, including algorithms for solving both linear
(nonsingular and singular) and nonlinear equations, see e.g., Frommer and Szyld [105]. Bahi
et al. [13] have an extensive bibliography, and promote the technique for grid computing,
where message latencies may be irregular.

The simplest example of an asynchronous method is performing Gauss-Seidel iteration in
which each processor is responsible for updating its own block of solution vector entries, but
relaxing the requirement in ordinary Gauss-Seidel that all processors have finished updating
their components of the solution before continuing to the next iteration. (For shared-memory
programming, this means that the asynchronous version of Gauss-Seidel deliberately intro-
duces a race condition.) The effect is that different processors may have different “views” of
neighboring processors’ components of the solution. Different processors see those compo-
nents’ values as they would be at different iterations. Under some conditions (for example,
that at least some messages “get through” – see [248]), it is possible to prove that the algo-
rithms will nevertheless always converge for a certain class of matrices. These proofs work
by analyzing the method as a fixed-point iteration. As long as the matrix satisfies certain
properties and as long as the processors do not lag one another by too many iterations, the
iteration is a contraction and thus will eventually converge to the correct solution. More
complicated asynchronous iterations involve relaxations like block Jacobi, domain decompo-
sitions like additive Schwarz, or combinations of relaxation and matrix splitting techniques.

Asynchronous iterations suffer perhaps from the lack of an accurate name. Authors devel-
oping such algorithms use either “asynchronous” or “chaotic” to describe them. One might
also use the term “nondeterministic,” as the results of each “iteration” are nondeterministic
in exact arithmetic. However, all three of these words have overloaded meanings.

• “Asynchronous” may also be used to describe algorithms or implementations that
schedule computations dynamically and without global synchronization points, yet
produce deterministic results in exact arithmetic. In many cases, dynamic schedul-
ing can help keep processors busy when data dependencies in a statically scheduled
implementation would leave them idle. Under this definition, an implementation of
CG or GMRES with dynamically scheduled parallel SpMV and dot products would be
called “asynchronous.” In contrast, asynchronous iterations (as described above) may
not produce deterministic results in exact arithmetic. Many authors, such as Frommer
and Szyld [105], seem to confuse dynamic scheduling (where the output is deterministic
in exact arithmetic, even if the task graph is not), with nondeterminism.
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• “Chaotic” masks the intent of asynchronous iterations: they are intentionally not
chaotic, because their steady-state behavior is predictable (they eventually converge).
In mathematics, a chaotic process is deterministic, but highly sensitive to initial con-
ditions, so that its future state is impossible or very difficult to predict. That is the
opposite of asynchronous iterations, which are implemented assuming nondeterminism,
but converge to a predictable result (in exact arithmetic) nevertheless.

• “Nondeterministic” does describe the behavior of asynchronous iterations in exact
arithmetic. However, in floating-point arithmetic, even the result of summing a list
of n numbers may be nondeterministic, if the order of summands is not guaranteed.
This is usually the case in parallel implementations. For example, summing a list of
n floating-point numbers may produce different bitwise results on different numbers
of processors, because the shape of the tree used for the reduction affects the order
of summands. Even if the number of processors is fixed, many libraries of parallel
primitives, or parallel compilers, do not guarantee bitwise determinism. Guaranteeing
it generally requires an extreme performance penalty.

We have chosen to call this class of algorithms “asynchronous” as the least confusing word
used by authors studying this area.

Asynchronous iterations may be the only workable approach to parallelism under certain
conditions of unreliable or irregular-latency communication. However, we chose not to pursue
this approach for the following reasons.

1. Dynamic or even just more intelligent static task scheduling may be able to avoid many
global synchronizations without needing to resort to nondeterminism in the iteration
itself.

2. Making progress in an iterative method usually requires some communication (unless
the problem decouples, which is a structure that is easy to recognize). Relaxing the
order of updates does not relax the requirement that information passes between sub-
domains.9 Our communication-avoiding approach passes that information in a more
efficient way, without changing the algorithm’s output in exact arithmetic.

3. Asynchronous methods tend to be based on slow relaxation-type iterations, like Jacobi
or Gauss-Seidel or simple domain decomposition. This could be because proving that
they converge with asynchronous updates requires resorting to a fixed-point iteration
model, and this is too general of a model for describing good ways to solve linear
systems. Finite linear algebra has a rich structure of orthogonality and subspaces,
which most Krylov subspace algorithms exploit to their benefit. This could be why
few recent authors in this area risk comparing the convergence of asynchronous methods
with their synchronous counterparts.

9One can illustrate this dramatically by solving the 1-D Poisson equation with homogeneous Dirichlet
boundary conditions and with a forcing term that is zero everywhere but of large magnitude at a point in the
center of the domain. If the equation is solved with second-order central differences on a domain of n equally
spaced points, the resulting matrix A will be tridiagonal. Thus, a nonpreconditioned iterative method with
a zero initial guess that performs sparse matrix-vector products with A will require at least n/2 + o(n) of
those sparse matrix-vector products to produce an approximate solution with (correctly) nonzero elements
near the boundary.
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4. Nondeterminism is not the same as randomness. Biases in the way the computer hard-
ware or software resolve race conditions could affect convergence of the asynchronous
iterations. Introducing randomness to defeat these biases would add complexity to the
algorithm. It may also entail slowing down some messages, which defeats the goal of
improving performance under variable message arrival times.

The most important reason why we chose not to pursue asynchronous methods further
is that they are perhaps ahead of their time. Computer scientists develop abstractions
to help them reason about performance and correctness, and build algorithms atop those
abstractions. If the abstractions deviate slightly from reality, they deploy hardware (such
as error-correcting memory) or software (such as message-passing libraries that resend lost
messages) to make reality conform to the abstractions. However, when the abstractions
deviate severely from reality, computer scientists must form new abstractions, and develop
new classes of algorithms to conform. In the past, one such abstraction was that floating-
point operation counts were good indicators of the performance of linear algebra codes, and
communication was free.10 Communication-avoiding algorithms came about because this
abstraction deviated too severely from reality, in the context of Krylov subspace methods,
to be useful for predicting performance. Another such abstraction, in the context of parallel
computing, is that messages always arrive and that message latencies do not vary much.
Today’s typical parallel machines have hardware and software support for this abstraction.
Maintaining this abstraction for future parallel machines may be impossible. First, the large
number of processors for the desired exascale machines will increase mean time to failure
rates enough to make it likely that individual messages may not get through, or may be
delayed or not sent at all (for example if a node crashes during a computational phase and
must be restarted). Second, the shrinking feature sizes on a single CPU die may introduce
the same problem on the smaller scale of a single node of a cluster. Thus, unreliability at
multiple scales of parallelism may ultimately force the abandonment of the abstraction of
determinism. However, parallel computers have not reached this point yet, and it is not
clear when they will. We have chosen for now to focus on reducing communication in a
non-chaotic way.

1.6.6 Summary

In Section 1.6.1, we described “Arnoldi with Delayed Reorthogonalization” (ADR), which
is a rearrangement of standard Arnoldi iteration for solving sparse nonsymmetric eigenvalue
problems. ADR has fewer synchronization points, but the resulting Arnoldi basis vectors
appear to lose orthogonality more quickly in finite-precision arithmetic than in standard
Arnoldi. Our CA-Arnoldi algorithm (Section 3.3) achieves the same performance goal of
reducing the number of synchronization points in Arnoldi, yet it produces Arnoldi basis
vectors that should lose their orthogonality in finite-precision arithmetic much more slowly
than the basis vectors in ADR. More experimentation is required, however, to see what the
performance differences are.

10The PRAM model of parallel performance [100] is one such abstraction, which assumes that all processors
share a large pool of memory and can access any entry in it infinitely fast.
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In Section 1.6.2, we discussed block Krylov methods for solving linear systems and eigen-
value problems. These methods avoid communication using the SpMM (sparse matrix times
multiple dense vectors) kernel. However, they converge differently than their correspond-
ing non-block methods in exact arithmetic. We have chosen the s-step approach to avoiding
communication, but consider block Krylov methods an equally valuable direction of research.
Future work may involve combining the two techniques.

In Section 1.6.3, we mentioned Chebyshev iteration, which communicates less per it-
eration than other Krylov methods because it requires no inner products or other global
reductions. The convergence of Chebyshev iteration is generally not competitive with that
of other Krylov methods. However, as a smoothing step in multigrid, optimizing Chebyshev
iteration using the matrix powers kernel (Section 2.1) may be useful.

Next, in Section 1.6.4, we considered techniques for avoiding communication in multigrid.
The theoretical benefits of these techniques appear small; for example, they can reduce the
number of words transferred between levels of the memory hierarchy by at best a factor of the
fifth root of the fast memory size. We have not found parallel versions of these algorithms.
Also, they may be challenging to implement.

Finally, in Section 1.6.5, we described asynchronous iterations, which relax synchroniza-
tion constraints of existing block relaxation methods (like block Jacobi) in order to avoid
synchronization overhead and permit continuing the method if messages from remote pro-
cessors are lost or delayed. We consider these methods more valuable for the latter reason of
improving robustness, than for improving performance. As hardware evolves and likely be-
comes less reliable, such algorithmic approaches to robustness may become more important.
We do not investigate these methods further in this thesis.

1.7 Summary and contributions

The rest of this thesis is organized as follows.

• Chapter 2 gives algorithms and implementations for our new communication-avoiding
kernels: the matrix powers kernel, TSQR, and BGS.

• Chapter 3 explains our communication-avoiding versions of Arnoldi iteration and GM-
RES for solving nonsymmetric eigenvalue problems resp. linear systems (with and
without preconditioning). It also shows the results of numerical and performance ex-
periments for our Communication-Avoiding GMRES implementation.

• Chapter 4 gives our communication-avoiding versions of (symmetric) Lanczos itera-
tion, both for standard symmetric eigenvalue problems Ax = λx and for generalized
symmetric eigenvalue problems Ax = λMx (where A and M are both symmetric).

• Chapter 5 shows our communication-avoiding versions of the Method of Conjugate
Gradients (CG) for solving symmetric positive definite linear systems, with and without
preconditioning.

• Chapter 6 suggests an approach for developing communication-avoiding versions of
nonsymmetric Lanczos iteration (for solving nonsymmetric eigenvalue problems Ax =
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λx) and the Method of Biconjugate Gradients (BiCG) for solving nonsymmetric linear
systems.

• Chapter 7 explains in detail the numerical stability aspects of the matrix powers kernel,
such as the choice of s-step basis, what it means for that basis to be “well conditioned,”
and how scale the matrix A in order to avoid underflow or overflow in the basis vectors.

• Appendix A shows the experimental platforms on which we ran performance experi-
ments.

• Appendix B gives details on the test problems used in our numerical and performance
experiments.

• Appendix C shows mathematical derivations that are too long and / or tedious to
belong in the main text.

• Finally, Appendix D explains some mathematical terms in detail, that are used briefly
in this thesis but are tangential to the main argument where they appear.

This thesis makes the following contributions. Our algorithms are based on the so-called
“s-step” Krylov methods, which break up the data dependency between the sparse matrix-
vector multiply and the dot products in standard Krylov methods. This idea has been
around for a while, but in contrast to prior work (discussed in detail in Section 1.5), we can
do the following:

• We have fast kernels replacing SpMV, that can compute the results of s calls to SpMV
for the same communication cost as one call (Section 2.1).

• We have fast dense kernels as well, such as Tall Skinny QR (TSQR – Section 2.3) and
Block Gram-Schmidt (BGS – Section 2.4), which can do the work of Modified Gram-
Schmidt applied to s vectors for a factor of Θ(s2) fewer messages in parallel, and
a factor of Θ(s/W ) fewer words transferred between levels of the memory hierarchy
(where W is the fast memory capacity in words).

• We have new communication-avoiding Block Gram-Schmidt algorithms for orthogo-
nalization in more general inner products (Section 2.5).

• We have new communication-avoiding versions of the following Krylov subspace meth-
ods for solving linear systems: the Generalized Minimum Residual method (GMRES –
Section 3.4), both unpreconditioned and preconditioned, and the Method of Conjugate
Gradients (CG), both unpreconditioned (Section 5.4) and left-preconditioned (Section
5.5).

• We have new communication-avoiding versions of the following Krylov subspace meth-
ods for solving eigenvalue problems, both standard (Ax = λx, for a nonsingular matrix
A) and “generalized” (Ax = λMx, for nonsingular matrices A and M): Arnoldi it-
eration (Section 3.3), and Lanczos iteration, both for Ax = λx (Section 4.2) and
Ax = λMx (Section 4.3).
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• We propose techniques for developing communication-avoiding versions of nonsymmet-
ric Lanczos iteration (for solving nonsymmetric eigenvalue problems Ax = λx) and the
Method of Biconjugate Gradients (BiCG) for solving linear systems. See Chapter 6 for
details.

• We can combine more stable numerical formulations, that use different bases of Krylov
subspaces, with our techniques for avoiding communication. For a discussion of dif-
ferent bases, see Chapter 7. To see an example of how the choice of basis affects the
formulation of the Krylov method, see Section 3.2.2.

• We have faster numerical formulations. For example, in our communication-avoiding
version of GMRES, CA-GMRES (see Section 3.4), we can pick the restart length r
independently of the s-step basis length s. Experiments in Section 3.5.5 show that this
ability improves numerical stability. We show in Section 3.6.3 that it also improves per-
formance in practice, resulting in a 2.23× speedup in the CA-GMRES implementation
described below.

• We combine all of these numerical and performance techniques in a shared-memory par-
allel implementation of our communication-avoiding version of GMRES, CA-GMRES.
Compared to a similarly highly optimized version of standard GMRES, when both are
running in parallel on 8 cores of an Intel Clovertown (see Appendix A), CA-GMRES
achieves 4.3× speedups over standard GMRES on standard sparse test matrices (de-
scribed in Appendix B.5). When both are running in parallel on 8 cores of an Intel
Nehalem (see Appendix A), CA-GMRES achieves 4.1× speedups. See Section 3.6 for
performance results and Section 3.5 for corresponding numerical experiments. We first
reported performance results for this implementation on the Intel Clovertown platform
in Demmel et al. [78].

• Incorporation of preconditioning. Note that we have not yet developed practical
communication-avoiding preconditioners; this is future work. We have accomplished
the following:

– We show (in Sections 2.2 and 4.3) what the s-step basis should compute in the
preconditioned case for many different types of Krylov methods and s-step bases.
We explain why this is hard in Section 4.3.

– We have identified two different structures that a preconditioner may have, in
order to achieve the desired optimal reduction of communication by a factor of s.
See Section 2.2 for details.

• We present a detailed survey of related work, including s-step KSMs (Section 1.5,
especially Table 1.1) and other techniques for reducing the amount of communication
in iterative methods (Section 1.6).
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Chapter 2

Computational kernels

In this chapter, we present several communication-avoiding computational kernels. These
will be used to construct the communication-avoiding Krylov subspace methods described in
later chapters of this thesis. Just as standard Krylov subspace methods inherit their perfor-
mance characteristics from the SpMV, preconditioning, and vector-vector operation kernels
out of which they are built, our Krylov methods inherit their performance characteristics
from the kernels described in this chapter. Not every Krylov algorithm we develop in this
thesis will use all the kernels in this chapter, but all of the kernels will be used by some
algorithm developed here.

We begin with Section 2.1, in which we describe the matrix powers kernel. This kernel
does the same work as several SpMV operations, for about the same communication cost as a
single SpMV. It achieves significant modeled and measured performance improvements over
SpMV, for a large class of sparse matrices and computer hardware. Section 2.2 shows how
the matrix powers kernel changes when we add preconditioning. The lack of preconditioning
was a major deficiency in the “s-step” Krylov methods on which our communication-avoiding
Krylov methods are based. In Section 2.2, we show the form that the matrix powers kernel
must take, for left preconditioning and split preconditioning, and for general s-step Krylov
bases. We also show two different structures which a preconditioner can have, in order to
avoid communication in the matrix powers kernel.

In Sections 2.3 and 2.4, we discuss the two kernels which we use to orthogonalize the
basis vectors in our communication-avoiding versions of Arnoldi (Section 3.3) and GMRES
(Section 3.4). The first kernel (Section 2.3) is Tall Skinny QR (TSQR). TSQR computes
the QR factorization of a tall skinny matrix as accurately as Householder QR, but with
asymptotically less communication. In fact, it attains the lower bound of communication
in parallel and between levels of the memory hierarchy, for all QR factorizations. Our se-
quential and parallel implementations of TSQR attain significant speedups over competing
QR factorizations. The second kernel is Block Gram-Schmidt (BGS) (Section 2.4), which
is a class of algorithms that are blocked versions of standard Gram-Schmidt orthogonaliza-
tion. BGS itself is not new, but our novel combination of BGS and TSQR helps us get
good performance in our implementation of Communication-Avoiding GMRES (see Section
3.4), without sacrificing accuracy. We also develop a new BGS with reorthogonalization
algorithm that communicates less than previous Block Gram-Schmidt reorthogonalization
schemes. Finally, Section 2.5 presents a version of Block Gram-Schmidt for more general
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inner products.

2.1 Matrix powers kernel

In this section, we describe the matrix powers kernel. This kernel replaces the sparse matrix-
vector products in standard iterative methods. A single invocation of the matrix powers
kernel computes the same vectors as s invocations of sparse matrix-vector multiply (SpMV).
However, it requires a factor of Θ(s) fewer messages in parallel and a factor of Θ(s) fewer
reads of the sparse matrix from slow memory. In doing so, it requires no more than a constant
factor more arithmetic operations than s invocations of SpMV.

We define the matrix powers kernel in Section 2.1.1. In Section 2.1.2, we present model
problems to evaluate the performance of various algorithms for the kernel. Section 2.1.3
informally describes three parallel matrix powers kernel algorithms – PA0, PA1, and PA2
– and gives performance models for these on the model problems. Section 2.1.4 discusses
the asymptotic behavior of these models, in the large-latency and small-latency cases. Next,
Section 2.1.5 shows how PA0, PA1, and PA2 work for general sparse matrices. Section
2.1.6 shows four sequential algorithms for the matrix powers kernel – SA0, SA1, SA2, and
SA3. Next, Section 2.1.7 illustrates two hybrid algorithms that combine a parallel and a
sequential algorithm hierarchically. Section 2.1.8 describes low-level optimizations for our
shared-memory parallel implementation of the matrix powers kernel. In Section 2.1.9, we
summarize both performance models and benchmark results for those optimized implemen-
tations.

The remaining sections discuss related work. Section 2.1.10 shows some variations on the
matrix powers kernel. These variations differ from the kernel as we define it, either in that
they require the sparse matrix to have a specific structure, or that they compute different
vector outputs. In Section 2.1.11, we give an overview of other sparse matrix kernels that
avoid communication. Finally, in Section 2.1.12, we summarize related work for the matrix
powers kernel itself.

Most of the content in this section was originally presented in three joint papers by
Demmel et al. [76, 77, 78]. Much of the work, including all the implementations of the
matrix powers kernel, was done by our coauthor Marghoob Mohiyuddin. We have changed
the notation slightly to coordinate better with the algorithms elsewhere in this thesis.

2.1.1 Introduction

The matrix powers kernel takes an n× n sparse matrix A, a dense vector v of length n, and
a three-term recurrence

pk+1(z) = akzpk(z)− bkpk(z)− ckpk−1(z), for k = 1, . . . , s, with ak 6= 0 (2.1)

for a set of polynomials p0(z), p1(z), . . . , ps(z) where pj(z) has degree j. The kernel computes
vectors v1, v2, . . . , vs+1 given by vj = pj−1(A)v. The resulting vectors

V = [v1, v2, . . . , vs+1] = [p0(A)v, p1(A)v, . . . , ps(A)v] (2.2)
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form a basis for the Krylov subspace

Ks(A, v) = span{v, Av,A2v, . . . , Asv}.

We usually assume p0(z) = 1, so that v1 = v. In that case, we write

V́ = [V́ , vs+1] = [v2, v3, . . . , vs, vs+1].

(The acute accent here, as elsewhere in this thesis, suggests “shift one to the right.”) The
simplest polynomials used in the recurrence (2.1) are monomials pj(z) = zj, in which case
ak = 1 and bk = ck = 0 for all k. See Chapter 7 for other choices of polynomials. We
require no more than three terms in the recurrence in order to keep the amount of data
in fast memory small, and also for simplicity. Chapter 7 discusses the possibility of longer
recurrences.

Note that the above is a slight modification to the kernel defined in Demmel et al. [76, 77],
which computed only the monomial basis V́ = [Av, A2v, . . . , Asv]. It also differs from the
kernel defined in [78], namely the Newton basis

V́ = [(A− θ1I)v, (A− θ2I)(A− θ1I)v, . . . , (A− θsI) · · · (A− θ1I)v].

From an implementation perspective, the three kernels differ only slightly from each other.
We refer to all of them by the same name.

Algorithm 3 Straightforward matrix powers kernel implementation

Input: n× n sparse matrix A and length n vector v1

Input: Recurrence coefficients ak, bk, ck (k = 1, 2, . . . , s)
Output: Vectors v2, . . . , vs+1 satisfying vk+1 = akAvk − bkvk − ckvk−1 for k = 1, 2, . . . , s,

where v0 = 0
1: v0 = 0
2: for k = 1 to s do
3: vk+1 = ak(Avk)− bkvk − ckvk−1 . One SpMV and two AXPYs
4: end for

Algorithm 3 depicts the straightforward way to compute the vectors in Equation (2.2).
It requires s sparse matrix-vector multiplications (SpMVs), one after another. SpMV is a
memory-bound kernel, and the approach of Algorithm 3 fails to exploit potential reuse of
the matrix A. Usually the SpMV operations dominate the performance of the kernel. In a
sequential computation, s SpMV invocations require reading the entire matrix s times from
slow memory. In parallel, they require Ω(s) messages (if the matrix is not block diagonal).
Our algorithms can compute the same vectors sequentially with only 1 + o(1) read of the
sparse matrix A, and in parallel with only O(1) messages. This is optimal in both cases.
Our algorithms can do this if the matrix A has a reasonable and common sparsity structure,
to be discussed in more detail in the following sections.

2.1.2 Model problems

The algorithms of this section work for general sparse matrices, but the case of regular d-
dimensional meshes with (2b + 1)d-point stencils illustrates potential performance gains for
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a representative class of matrices. By a regular mesh, we mean a simply connected domain
in Rd (for d = 1, 2, 3, . . . ), with evenly spaced vertices at the grid points. Their connectivity
is described by the stencil, which shows for each point in the mesh, how it is connected
to its neighbors. For example, on a 2-D mesh, a 5-point stencil means that each point is
connected to its east, south, west, and north immediate neighbors. On a 3-D mesh, a 7-point
stencil means that each point is connected to its east, south, west, north, top, and bottom
immediate neighbors. We assume here that grid points on the boundary of the domain are
connected only to neighbors that are in the domain, but still following the pattern of the
stencil. In the cases of the 5-point and 7-point stencils, we say that the stencil radius is b = 1,
since each point is only connected to its nearest neighbors. We generalize this to b > 1 in
the model problems that follow, so that for example, a (2b + 1)d-point stencil reaches out b
grid points in each of the cardinal directions (which includes “up” and “down” in 3-D).

Stencils on regular d-dimensional meshes often arise in the finite-difference discretization
of partial differential equations. Here, they serve as a model problem with similar connec-
tivity as more complex discretizations (e.g., from the method of finite elements) on possibly
unstructured meshes (where the points are not regularly placed and spaced in the domain).
While stencils on regular meshes are often stored in a special format that exploits their regu-
lar structure to save storage, we assume here that they are stored in a general sparse matrix
format. This allows our model problems to represent the performance of our matrix powers
kernel algorithms on general sparse matrices. See Section 2.1.10 for discussion of special
cases of the matrix powers kernel that can exploit the storage-saving format of stencils on
regular meshes.

We call the surface of a mesh the number of points on the partition boundary. For a 2-D
square mesh with n points on each side corresponding to a 5-point stencil, partitioned into
P squares of equal dimensions, the surface is 4n/

√
P . For a 3-D cubic mesh with n points on

each side corresponding to a 7-point stencil, partitioned into P cubes of equal dimensions, the
surface is 6n2/P 2/3. The volume of a mesh is the total number of points in each processor’s
partition, namely n2/P and n3/P in the 2-D resp. 3-D cases. The surface-to-volume ratio
of a mesh is therefore 4

√
P/n in the 2-D case and 6P 1/3/n in the 3-D case. (We assume

all the above roots (like P 1/3) and fractions (like n/P 1/2) are integers, for simplicity.) The
surface-to-volume ratio of a partition of a general sparse matrix is defined analogously. All
our algorithms work best when the surface-to-volume ratio is small, as is the case for meshes
with large n and sufficiently smaller P .

2.1.3 Parallel Algorithms

In this section, we describe three parallel algorithms for computing the matrix powers kernel:
PA0, PA1, and PA2. PA0 is the straightforward approach using s SpMVs, whereas PA1
and PA2 avoid communication by rearranging the computation and performing redundant
floating-point operations. We present the algorithms informally here, and only for the model
problems described in Section 2.1.2. Section 2.1.5 will show PA0, PA1, and PA2 formally
for general sparse matrices.

The straightforward parallel matrix powers kernel algorithm, which we call “PA0,” con-
sists of s applications of the usual parallel SpMV algorithm. Step k of PA0 computes
vk = pk−1(A)v using the three-term recurrence (Equation (2.1)). This requires (except for
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k = 1) one sparse matrix-vector multiply and anywhere from 0 to 2 AXPY operations (de-
pending on whether or not the coefficients bk+1 and ck+1 are zero). This works by each
processor receiving messages with the necessary remotely stored entries of vk (and possibly
also vk−1), and then computing its local components of vk+1. PA0 does not attempt to avoid
communication; we present it as a point of comparison.

In our first parallel algorithm, PA1, each processor first computes all elements of V́ =
[v2, . . . , vs+1] that can be computed without communication. Simultaneously, it begins send-
ing all the components of v1 needed by the neighboring processors to compute their remain-
ing components of [v2, . . . , vs+1]. When all local computations have finished, each processor
blocks until the remote components of v1 arrive, and then finishes computing its portion of
[v2, . . . , vs+1]. This algorithm maximizes the potential overlap of computation and com-
munication, but performs more redundant work than necessary because some entries of V́
near processor boundaries are computed by both processors. As a result, we developed PA2,
which uses a similar communication pattern but minimizes redundant work.

In our second parallel approach, PA2, each processor computes the “least redundant”
set of local values of V́ needed by the neighboring processors. This saves the neighbors
some redundant computation. Then the processor sends these values to its neighbors, and
simultaneously computes the remaining locally computable values. When all the locally
computable values are complete, each processor blocks until the remote entries of V́ arrive,
and completes the work. This minimizes redundant work, but permits slightly less overlap
of computation and communication.

We estimate the cost of our parallel algorithms by measuring five quantities:

1. Number of arithmetic operations per processor

2. Number of floating-point numbers communicated per processor (a bandwidth term)

3. Number of messages sent per processor (a latency term)

4. Total memory required per processor for the matrix

5. Total memory required per processor for the vectors

Informally, it is clear that both PA1 and P2 minimize communication to within a constant
factor. We ignore cancellation in the powers of the sparse matrix or in the three-term
recurrence (Equation (2.1)), so that the complexity only depends on the sparsity pattern of
A. For simplicity of notation we assume all the nonzero entries of A and v1 are positive.
Then, the set D of processors owning entries of v on which block row i of V́ depends is just
the set of processors owning those vj+1 for which block row i of A+A2+· · ·+Ak has a nonzero
j-th column. In both algorithms PA1 and PA2, the processor owning row block i receives
exactly one message from each processor in D, which minimizes latency. Furthermore, PA1
only sends those entries of v in each message on which the answer depends, which minimizes
the bandwidth cost. PA2 sends the same amount of data, although different values, so as to
minimize redundant computation.
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Example: 1-D mesh

We now illustrate the difference between PA0, PA1, and PA2, using the example of a 1-D
mesh with stencil radius b = 1, that is, a tridiagonal sparse matrix. In PA0, the computa-
tional cost is 2s messages, 2s words sent, and 5sn/P flops (3 multiplies and 2 additions per
vector component computed). The memory required per processor is 3n/P matrix entries
and (s + 1)n/P + 2 vector entries (for the local components of V and for the values on
neighboring processors).

Figure 2.1a shows the operation of PA1 with s = 8. Each row of circles represents the
entries of Ajv, for j = 0 to j = 8. (It suffices to consider only the monomial basis.) A subset
of 30 components of each vector is shown, owned by 2 processors, one to the left of the
vertical green line, and one to the right. (There are further components and processors not
shown.) The diagonal and vertical lines show the dependencies: the three lines below each
circle (component i of Ajv) connect to the circles on which its value depends (components
i − 1, i and i + 1 of Aj−1v). In the figure, the local dependencies of the left processor
are all the circles that can be computed without communicating with the right processor.
The remaining circles without attached lines to the left of the vertical green line require
information from the right processor before they can to be computed.

Figure 2.1b shows how to compute these remaining circles using PA1. The dependencies
are again shown by diagonal and vertical lines below each circle, but now dependencies
on data formally owned by the right processor are shown in red. All these values in turn
depend on the s = 8 leftmost value of v owned by the right processor, shown as black circles
containing red asterisks in the bottom row. By sending these values from the right processor
to the left processor, the left processor can compute all the circles whose dependencies are
shown in Figure 2.1b. The black circles indicate computations ideally done only by the left
processor, and the red circles show redundant computations, i.e., those also performed by
the right processor.

We assume that s < n/P , so that only data from neighboring processors is needed, rather
than more distant processors. Indeed, we expect that s� n/P in practice, which will mean
that the number of extra flops (not to mention extra memory) will be negligible. We continue
to make this assumption later without repeating it, and use it to simplify some expressions
in Table 2.1.

Figure 2.1c illustrates PA2. We note that the blue circles owned by the right processor
and attached to blue lines can be computed locally by the right processor. The 8 circles
containing red asterisks can then be sent to the left processor to compute the remaining
circles connected to black and/or red lines. This saves the redundant work represented by
the blue circles, but leaves the redundant work to compute the red circles, about half the
redundant work of PA1. PA2 takes roughly 2.5s2 more flops than PA0, which is half as many
extra flops as PA1.

Parallel complexity of PA0, PA1, and PA2 on regular meshes

PA1 and PA2 can be extended to higher dimensions and different mesh bandwidths (and
sparse matrices in general). There, the pictures of which regions are communicated and
which are computed redundantly become more complicated, higher-dimensional polyhedra,
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(c) Remote dependencies in PA2.

Figure 2.1: Dependencies in the PA1 and PA2 algorithms for computing the matrix powers
kernel V́ = [v2, . . . , vs+1] for a tridiagonal sparse matrix A.
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but the essential algorithms remain the same. Table 2.1 summarizes all of the resulting costs
for 1-D, 2-D, and 3-D meshes. In that table, “Mess” is the number of messages sent per
processor, “Words” is the total size of these messages, “Flops” is the number of floating
point operations, “MMem” is the amount of memory needed per processor for the matrix
entries, and “VMem” is the amount of memory needed per processor for the vector entries.
Lower order terms are sometimes omitted for clarity. For more detailed parallel performance
models, and evaluations of those models on existing and projected future machines, see
Demmel et al. [76, 77].

2.1.4 Asymptotic performance

An asymptotic performance model for the parallel algorithms suggests that when the latency
α is large, the speedup is close to s, as we expect (see e.g., Demmel et al. [76]). When the
latency α is not so large, the best we could hope for is that s can be chosen so that the
new running time is fast independent of α. The model shows that this is the case under two
reasonable conditions:

1. The time it takes to send the entire local contents of a processor is dominated by
bandwidth, not latency, and

2. The time to do O(N1/d) flops on each of the N elements stored on a processor exceeds
α.

For the sequential algorithm SA2, if latency is small enough, then the asymptotic perfor-
mance model suggests the following:

1. The best speedup is bounded by 2 + (words/row), where words/row is the number of
8-byte words per row of the matrix A–this includes the index entries too.

2. The optimal speedup is strongly dependent on the β/tf ratio. For the specific case of
stencils, the optimal speedup is expected to be close to the upper bound in the previous
item when β/tf is large.

2.1.5 Parallel algorithms for general sparse matrices

In this section, we present versions for general sparse matrices of the previously mentioned
parallel matrix powers kernel algorithms, PA0 (the straightforward approach), PA1 (which
minimizes the number of messages), and PA2 (which reduces the amount of redundant
computation, but has less potential overlap of communication and computation than PA1).
We begin by defining graph-theoretic notation for describing the general algorithms. This
notation will also apply, unless otherwise specified, to the general sequential algorithms that
we will describe in Section 2.1.6.

Graph-theoretic notation

Suppose that A is an n × n sparse matrix. It is natural to associate a directed graph with
A, with one vertex for every row / column, and an edge from vertex i to vertex j if Aij 6= 0.
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When computing y := A · x (the SpMV operation), this means that the value of yi depends
on the value of xj. In this section, we will omit “the value of,” and say, for example, that yi
depends on xj.

Communication-avoiding implementations of the matrix powers kernel require identifying
dependencies across multiple sparse matrix-vector multiplications, for example the set of all
j such that for z = Akx, zi depends on xj. To do so, we build a graph G = G(A) expressing

such dependencies. Let x
(i)
j be the j-th component of x(i) = Ai · x(0). We associate a vertex

of G with each x
(i)
j for i = 0, . . . , s and j = 1, . . . , n, using the same notation x

(i)
j to name

the vertex of G as the element of x(i). We associate an edge from x
(i+1)
j to x

(i)
m when Ajm 6= 0,

and call this graph of n(s+1) vertices G. (We will not need to construct all of G in practice,
but using G makes it easy to describe our algorithms.) We say that i is the level of vertex

x
(i)
j .

Each vertex will also have an affinity q. For the parallel algorithms, q corresponds to
the processor number (q = 1, 2, . . . , P ) to which x

(i)
j has locality. For example, in the

distributed-memory case, if x
(i)
j has affinity q, then x

(i)
j is stored on processor q. In the

shared-memory case, “locality” might refer instead to memory affinity, where processor q
can access x

(i)
j with lower latency and / or higher bandwidth than other processors can.

For the sequential algorithms, q will correspond to the number of the block of contiguously-
stored entries which can be loaded from slow memory into fast memory with a single read
operation. See Section 2.1.6 for details. In this section, our notation will refer to the parallel
case. We assume all vertices x

(0)
j , x

(1)
j , . . . , x

(s)
j have the same affinity, depending only on

j. We let Gq denote the subset of vertices of G with affinity q, G(i) to mean the subset of

vertices of G with level i, and G
(i)
q to mean the subset with affinity q and level i.

Let S be any subset of vertices of G. We let R(S) denote the set of vertices reachable
by directed paths starting at vertices in S (so S ⊂ R(S)). We need R(S) to identify
dependencies of sets of vertices on other vertices. We let R(S,m) denote vertices reachable

by paths of length at most m starting at vertices in S. We write Rq(S), R(i)(S) and R
(i)
q (S)

as before to mean the subsets of R(S) with affinity q, level i, and both affinity q and level i,
respectively.

Next we need to identify each processor’s set of locally computable components, that pro-
cessor q can compute given only the values in G

(0)
q . We denote the set of locally computable

components by Lq, where
Lq ≡ {x ∈ Gq : R(x) ⊂ Gq}. (2.3)

As before L
(i)
q will denote the vertices in Lq at level i.

Finally, for the PA2 algorithm which we will present below (Algorithm 6), we need to
identify the minimal subset Bq,r of vertex values of G that processor r needs to send processor
q so that processor q can finish computing all its vertices Gq. We say that x ∈ Bq,r if and
only if x ∈ Lr, and there is a path from some y ∈ Gq to x such that x is the first vertex of
the path in Lr.
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Parallel algorithms

Given all this notation, we can finally state versions of PA0 (Algorithm 4), PA1 (Algorithm
5), and PA2 (Algorithm 6) for general sparse matrices and partitions among processors.
We state the algorithms assuming a distributed-memory programming model. We assume
when describing the algorithms that the “send” and “receive” operations can execute asyn-
chronously, allowing overlap of each communication event with both computation and other
communication events. In a shared-memory model, the “send,” “receive,” and “wait for
receive” operations would be handled automatically, without programmer intervention, by
the shared-memory hardware. Otherwise, the shared-memory and distributed-memory al-
gorithms are the same.

Algorithm 4 PA0 algorithm (code for processor q)

for i = 1 to s do
for all processors r 6= q do

Send all x
(i−1)
j in R

(i−1)
q (G

(i)
r ) to processor r

end for
for all processors r 6= q do

Receive all x
(i−1)
j in R

(i−1)
r (G

(i)
q ) from processor r

end for
Compute all x

(i)
j in L

(i)
q

Wait for above receives to finish
Compute remaining x

(i)
j in G

(i)
q \ L(i)

q

end for

Algorithm 5 PA1 algorithm (code for processor q)

for all processors r 6= q do
Send all x

(0)
j in R

(0)
q (Gr) to processor r

end for
for all processors r 6= q do

Receive all x
(0)
j in R

(0)
r (Gq) from proc. r

end for
for i = 1 to s do

Compute all x
(i)
j in Lq . Black vertices connected by lines in Figure 2.1a

end for
Wait for above receives to finish
for i = 1 to s do

Compute remaining x
(i)
j in R(Gq) \ Lq . Black and red vertices connected by lines in

Figure 2.1b
end for

We illustrate the algorithm PA1 on the matrix A whose graph is in Figure 2.2a. This
sparse matrix corresponds to a linear finite-element discretization on a 2-D unstructured
mesh. The vertices of the graph in Figure 2.2a represent rows / columns of A, and the edges
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Algorithm 6 PA2 algorithm (Code for processor q)

for i = 1 to s do . Phase I
Compute x

(i)
j in ∪r 6=q(R(Gr) ∩ Lq) . Blue circled vertices in Figure 2.1c

end for
for all processors r 6= q do

Send x
(i)
j in Br,q to processor r . Blue circled vertices with red interiors in Figure 2.1c

end for
for all processors r 6= q do

Receive x
(i)
j in Br,q from processor r . Blue circled vertices with red interiors in

Figure 2.1c
end for
for i = 1 to s do . Phase II

Compute x
(i)
j in Lq \ ∪r 6=q(R(Gr) ∩ Lq) . Locally computable vertices of right

processor, minus blue circled vertices in Figure 2.1c
end for
Wait for above receives to finish
for i = 1 to s do . Phase III

Compute remaining x
(i)
j in R(Gq) \ Lq \ ∪r 6=q(R(Gq) ∩ Lr) . Black circled vertices in

Figure 2.1c that are connected by lines
end for

represent nonzeros. For simplicity, we use a symmetric matrix (corresponding to undirected
edges), even though PA0, PA1, and PA2 all work for nonsymmetric sparse matrices. The
dotted orange lines in Figure 2.2a separate vertices owned by different processors. We let q
denote the processor owning the 9 gray vertices in the center of the figure. In other words, the
gray vertices comprise the set G

(0)
q . For all the neighboring processors r 6= q, the red vertices

form the set R
(0)
r (Gq) for s = 1, the red and green vertices together comprise R

(0)
r (Gq) for

s = 2, and the red, green and blue vertices together form R
(0)
r (Gq) for s = 3.

Figures 2.2b and 2.2c illustrate algorithm PA2 on the same sparse matrix as we used
for PA1 in the previous paragraph, for the case s = 3. The “phases” of the PA2 algorithm
are explained in Algorithm 6. In Figure 2.2b, the red vertices form the set B

(0)
q,r (i.e., the

members of Bq,r at level 0), and in Figure 2.2c the green vertices comprise B
(1)
q,r (the members

of Bq,r at level 1).

2.1.6 Sequential algorithms for general sparse matrices

In this section, we describe four sequential algorithms for the matrix powers kernel:

• SA0 (the straightforward approach)

• SA1 (avoids memory traffic for the sparse matrix, but not for the vectors; requires no
redundant computation)

• SA2 (avoids memory traffic for both the sparse matrix and the vectors; “explicit”
algorithm, in contrast to SA3)
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(a) PA1 example: The red en-
tries of x(0) are the ones needed
when s = 1, the green entries are
the additional ones needed when
s = 2, and the blue entries are
the additional ones needed when
s = 3.

(b) PA2 example (s = 3): En-
tries of x(0) which need to be
fetched are colored red.

(c) PA2 example (s = 3): En-
tries of x(1) which need to be
fetched are colored green.

Figure 2.2: Illustration of PA1 and PA2 data dependencies on part of a graph of a sparse
matrix A, corresponding to a linear finite element discretization on a 2-D unstructured mesh.
The dotted lines define the different blocks, each of which has affinity to a different processor.
The example is shown from the perspective of the processor q holding the central block.

• SA3 (“implicit” algorithm, for when fast memory is a cache; avoids memory traffic for
both the sparse matrix and the vectors)

These algorithms reuse notation that we developed in the last section for the parallel al-
gorithms PA0, PA1, and PA2. In fact, SA1 and SA2 both “emulate” PA1 (Algorithm 5
in Section 2.1.5). By “emulate,” we mean that the matrix (and vectors, except for SA1)
are partitioned into P blocks, as in the parallel algorithms, but only one processor executes
those blocks in a particular order. When computing a block q, different blocks may need
to be loaded redundantly, in order to fetch elements needed for computing q. The order in
which the blocks are loaded can be optimized to reduce the number of messages (a latency
term). The problem of choosing the optimal ordering of blocks can be posed as a Traveling
Salesperson Problem (TSP), as we discuss in Demmel et al. discuss [76].

Here are the four sequential algorithms for the matrix powers kernel. In SA0, also called
the “straightforward sequential approach,” we assume that the matrix does not fit in fast
memory but the vectors do. This algorithm will keep all the components of the s-step basis
vectors in fast memory, and read all the entries of A from slow to fast memory to compute
each basis vector, thereby reading the sparse matrix A s times in all.

In SA1, we assume that the matrix does not fit in fast memory but the vectors do. SA1
emulates PA1 by partitioning the sparse matrix A into P block rows, and looping from i = 1
to i = P , reading from slow memory those parts of the matrix needed to perform the same
computations performed by processor i in PA1, and updating the appropriate components
of the basis vectors in fast memory. Since all components of the vectors are in fast memory,
no redundant computation is necessary. We choose P as small as possible, to minimize the
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number of slow memory accesses (a latency term). We do not show performance results for
SA1, since SA2 and SA3 require less memory traffic and therefore should perform better
than SA1, unless the sparse matrix has a large number of nonzeros per row.

In SA2, we assume that neither the sparse matrix nor the vectors fit in memory. SA2
will still emulate PA1 by looping from i = 1 to i = P , but read from slow memory not just
parts of the sparse matrix A but also those parts of the vectors needed to perform the same
computations performed by processor i in PA1, and finally write back to slow memory the
corresponding components of the basis vectors. Depending on the structure of A, redundant
computation may or may not be necessary. We again choose P as small as possible. This
algorithm is also called “explicit cache blocking,” in contrast to the algorithm that follows.

SA3 is also called “implicit cache blocking.” This algorithm improves upon SA2 by only
computing entries of the basis vectors which have not already been computed. Thus, there
is no redundant computation in SA3, unlike in SA2, which may possibly involve redundant
computation. Note that in contrast to SA2, which makes explicit copies of the boundary
entries on other blocks, the implicit algorithm maintains no such copies. It relies instead on
the cache to deliver whatever remote data is necessary automatically. That means SA3 is
only feasible to implement when fast memory is a cache, that is, when the programmer does
not have to direct data transfers between slow and fast memory explicitly. Otherwise, SA2
is preferred.

SA3 performs no extra arithmetic operations. This has the potential advantage when
the basis length s is sufficiently large, to result in significantly fewer flops than SA2. It may
provide provide speedups over the straightforward algorithm SA0, even when SA2 does not.
However, this improvement comes at the cost of bookkeeping to keep track of what entries
need to be computed when looking at a given level of block q, i.e., the computation schedule.
The computation schedule also includes the order in which the blocks are traversed, thus
making SA3 more sensitive to the block ordering when compared to SA2.

An interesting problem that occurs in both SA2 and SA3 relates to the ordering of
elements of the starting vector x(0). When elements of x(0) are needed from slow memory,
they might not be contiguously placed. Thus, entries of the vector x(0) and the matrix A
may be reordered to minimize latency. This can be posed as another Traveling Salesperson
Problem, as we describe in Demmel et al. [76, Section 3.5]. This is a different TSP than the
block ordering problem mentioned above: here the inputs to the TSP are the entries of the
blocks (and thus the individual rows and columns of the sparse matrix A), rather than the
blocks themselves. We leave the incorporation of solutions of these TSPs as future work.

2.1.7 Hybrid algorithms

The parallel and sequential matrix powers kernel algorithms above may be nested. This
results in a hybrid algorithm with a hierarchical organization. (TSQR can also be nested
in this way, as we will see in Section 2.3.) For example, our shared-memory parallel matrix
powers kernel implementation, for which we show performance results in Section 3.6, uses the
parallel algorithm PA1 on the top level (i.e., for multiple cores), and either SA2 or SA3 at the
lower level (i.e., to reduce the volume of data movement between the core and DRAM). Thus,
the matrix is “thread-blocked” first for the parallel algorithm, and then “cache-blocked”
within each thread. We call the combination of PA1 and SA2 the “explicitly cache-blocked
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parallel algorithm,” or “PA1 / SA2” for short, and we call the combination of PA1 and SA3
the “implicitly cache-blocked parallel algorithm,” or “PA1 / SA3.”

For our hybrid algorithms, we define additional notation. We now define the affinity of a
vertex as a pair (q, b), instead of just a single index. In the pair (q, b), q denotes the thread
number, and b the cache block number on thread q. Given this definition, Vq means the set
of vertices on thread q, and Vq,b means the set of vertices in cache block b on thread q. For
thread q, we let bq denote the number of cache blocks having affinity to that thread.

We show PA1 / SA2 and PA1 / SA3 as Algorithms 7 resp. 8. One way to look at PA1
/ SA2 is that it emulates PA1 with b blocks on p processors (b ≥ p). For both algorithms,
we distribute the cache blocks to different threads in a balanced manner. For PA1 / SA3,
we note that it performs redundant arithmetic when compared to the implicit sequential
algorithm SA3. These extra arithmetic operations are due to parallelization. Therefore, the
computation schedule for the sequential part of PA1 / SA3 must also account for computing
the redundant “ghost” entries.

Algorithm 7 PA1 / SA2: (code for processor q)

1: for m = 1 to bq do . bq: number of cache blocks for thread q

2: Fetch entries in R(Vq,m, k)(0) − V (0)
q,m to ghost zone

3: for i = 1 to s do
4: Compute all x

(i)
j ∈ R(Vq,m, k)(i)

5: end for
6: end for

Algorithm 8 PA1 / SA3 (code for processor q)

1: C = ϕ . C = set of computed entries
2: Fetch entries in R(V

(0)
q , k)− V (0)

q to ghost zone
3: for m = 1 to bq do
4: for i = 1 to k do
5: Compute all x

(i)
j ∈ R(Vq,m, k)(i) \ C

6: C ← C ∪R(Vq,m, k)(i)

7: end for
8: end for

One reason we describe both the explicit and implicit algorithms is because there is no
clear winner among the two. The choice depends on the nonzero pattern of the matrix.
The explicit algorithm has a memory access pattern which does not go beyond the current
block after the data has been fetched in to the ghost zones and also admits the use of
the cache bypass optimization. Because of the explicit copy of the entries on neighboring
cache blocks, contiguous blocks of data are computed at each level. However, the number
of redundant flops for the explicit algorithm can increase dramatically for matrices whose
powers grow quickly in density, resulting in no performance gains. The implicit algorithm,
on the other hand, only has redundant flops due to parallelization. Since the number of
threads is typically small, the number of redundant flops is expected to grow slowly for
the implicit algorithm. However, the memory accesses for the implicit algorithm can span
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multiple cache blocks, making it more sensitive to the ordering in which the cache blocks are
computed and stored. Furthermore, the implicit algorithm has a higher overhead, resulting
in performance degradation if the kernel is memory bound. In general, if the matrix density
grows slowly with successive powers of the sparse matrix A, then the explicit algorithm is
better. Otherwise, the implicit algorithm is expected to win.

2.1.8 Optimizations

Given that the matrix A is sparse, a straightforward implementation of the matrix powers
kernel may perform poorly. This is especially true since SpMV is memory bandwidth limited
(see Williams et al. [240]). Although our sequential algorithms maximize cache reuse, the
matrix powers kernel can still be memory bound for small basis lengths s. Thus, performance
tuning is crucial for getting good performance for the matrix powers kernel.

Some of the optimizations we use are borrowed from a highly optimized SpMV imple-
mentation (Williams et al. [240]). This also serves as the baseline for our performance com-
parisons. We implement the optimizations of Williams et al. for sparse matrix computations
and storage. These include, among others,

• eliminating branches from inner loops, to keep the instruction pipeline as full as pos-
sible,

• invocation of special hardware instructions for parallel arithmetic and data movement
of 2 or 4 adjacent floating-point values,1 by means of compiler-specific directives (“in-
trinsics”)

• register tiling, and

• using shorter integer data types (than the standard 32-bit integers in C and Fortran)
for indices in the cache blocks. This still produces correct code, if the dimensions and
numbers of entries in the cache blocks are small enough.

Since writing the computational kernels with all possible combinations of these optimiza-
tions is too tedious and time consuming, we use code generators in the same manner as
Williams et al. do. Given the difficulty of deciding the right optimizations and parameters
by human analysis, our implementation has an autotuning phase, where it attempts to min-
imize runtime by searching over many possible combinations of data structures and tuning
parameters. These data structures and parameters are described below.

Partitioning strategy

We use a recursive algorithm which first creates thread partitions and then recursively creates
cache blocks for each thread partition. The recursion stops when the current partition is
small enough to fit in the thread cache. For creating the partitions at each recursion level,
we use one of two strategies:

1These elementwise parallel operations with a small number of adjacent values are commonly called
“SIMD” (single instruction multiple data) instructions.
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• invoking the graph partitioning library Metis (version 4.0 – see Karypis and Kumar
[148]), or

• subpartitioning the current partition into contiguous blocks of rows, with equal work
in each subpartition.

There are many different graph partitioning algorithms and implementations besides Metis.
We chose this library because we are familiar with it, not necessarily because it is optimal
for performance. We leave trying other partitioning strategies and their implementations to
future work.

When Metis is used, the matrix and the vectors need to be permuted to make each thread
block and cache block contiguous. Using Metis can result in less communication between
blocks, and fewer (redundant) arithmetic operations per block. However, these benefits due
to permuting the matrix can be offset by a more irregular memory access pattern. This
is particularly true for the implicit algorithm, where memory accesses can be spread over
multiple cache blocks. Thus, the decision of whether or not to use Metis is made during
the autotuning phase, by timing the matrix powers kernel using both partitioning strategies.
The version of Metis we used requires that nonsymmetric matrices be symmetrized before
computing the reordering. We did so by giving the matrix A + A∗ to Metis. This does not
affect the matrix powers kernel; it only affects the computation of the reordering itself.

Inner sequential algorithm

Since the choice of whether to use the explicit (SA2) or the implicit (SA3) implementation
underneath PA1 (in the hybrid algorithm) depends on the matrix nonzero pattern, we make
the decision by timing during the autotuning phase.

Register tile size

Register tiling a sparse matrix can avoid memory traffic by reducing the number of indices to
read from slow memory (Williams et al. [240]). It can also improve instruction throughput
(Vuduc [234]). Williams et al. point out that since SpMV is typically memory bound on
modern multicore platforms, heuristics which try to minimize memory footprint of the matrix
are sufficient when tuning SpMV alone. Thus, for ordinary SpMV, for sufficiently large sparse
matrices, an elaborate and time-intensive automatic tuning step is often unnecessary.

In contrast, the matrix powers kernel aims to have the arithmetic intensity increase with
the basis length s, so that the kernel eventually becomes compute bound. This is often the
case. Furthermore, the use of register tiles may result in redundant arithmetic operations
(due to explicitly stored zeros in the register tiles, that were not there in the original sparse
matrix). If the matrix powers kernel is already compute bound, these extra arithmetic
operations may actually reduce performance. Therefore, we autotune to decide whether a
larger register tile should be used or not. Note that for PA1 / SA3 (Algorithm 8), the register
blocks must be square, because we need to look at the quotient graph to figure out whether
a register tile has already been computed.
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Cache bypass optimization for PA1 / SA2

For the case of the PA1 / SA2 algorithm, we note that although we compute extra entries
in the ghost zones, they do not need to be written back to slow memory. Furthermore,
we do not need to keep all the s + 1 basis vectors in a given cache block in cache. We
only need to keep the vectors that participate in the three-term recurrence (one term for
the monomial basis, two terms for the Newton basis, and three terms for the Chebyshev
and modified Newton bases – see Section 7 for details): in the worst case, three vectors.
For our implementation, we restricted ourselves to the Newton basis, which only requires
two vectors: one at the current level being computed, and one and the level below needed
to be in cache. Thus, we compute by cycling over two buffers, which are always in cache.
One buffer is used to compute the current level, and the other holds the previous level.
Once the current level has been computed, we copy the buffer to the vector in slow memory
by bypassing the cache, using special compiler directives to do so. This optimization is
particularly useful in reducing memory traffic on write-allocate architectures, like the Intel
Clovertown architecture for which we show performance results in Section 3.6.

Algorithm 9 PA1 / SA2 with cache bypass (code for processor q)

1: Preallocate two vector buffers z0 and z1 with size max
bq
m=1 |R(Vq,m, k)(1)| each, to store

any R(Vq,m, k)(i) (1 ≤ i ≤ k) . This can be generalized to three buffers for the
modified Newton or Chebyshev bases (see Chapter 7).

2: for m = 1 to bq do

3: Fetch entries in R(Vq,m, k)(0) \ V (0)
q,m to ghost zone

4: Compute all rows in R(Vq,m, k)(1) using R(Vq,m, k)(0) and store in z0

5: Copy from z0 (in cache) to x
(1)
q,m (in slow memory), using cache bypass

6: for i = 2 to s do
7: Compute all rows in R(Vq,m, k)(1) using zi mod 2 and store in z(i+1) mod 2

8: Copy z(i+1) mod 2 (in cache) to x
(i)
q,m (in slow memory), using cache bypass

9: end for
10: end for

Without cache bypass, due to write-allocate behavior, each output vector will contribute
twice the bandwidth: Once for allocating cachelines when being written, and once again
when evicted from cache while computing the next cache block. Furthermore, since all the
rows in V

(i)
q,m for level i on cache block m of thread q are stored contiguously, this copy to slow

memory contiguous and therefore inexpensive. We show the version of PA1 / SA2 with the
cache bypass optimization as Algorithm 9. Note that this optimization cannot be applied
to PA1 / SA3, because the memory access pattern in the latter algorithm can span multiple
blocks.

Stanza encoding

This is a memory optimization to minimize the bookkeeping overhead for PA1 / SA3 (Al-
gorithm 8). Note that we need to iterate through the computation sequence for each level
on each block. If most of the computed entries are contiguously placed, we can store the
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computation sequence as a sequence of contiguous blocks or stanzas. Each contiguous block
is encoded by its starting and ending entries. Since we stream through the computation se-
quence, this optimization can improve performance by reducing the volume of slow memory
traffic. We also try to use integers of shorter length than the usual 32 bits for storing the
stanzas when possible, to reduce the overhead further.

Software prefetching

Software prefetching can be particularly useful for a memory-bound kernel like SpMV. How-
ever, the prefetch distance and strategy can depend both on the algorithm (implicit and
explicit algorithms have different data structures, and therefore different software prefetch
strategies) and the sparse matrix. Thus, the right software prefetch distances are chosen
during the autotuning phase. Since software prefetching is a streaming optimization, it was
found to be useful only for s = 1, where there is no reuse of the matrix entries. Thus,
we do not use it in the matrix powers kernel, only in the tuned SpMV implementation for
comparison.

2.1.9 Performance results

In this section, we describe the performance results of our shared-memory parallel matrix
powers kernel implementation on the Intel Clovertown platform described in Appendix 3.6,
for a set of sparse matrices described in Appendix B.5. We show the data only for this plat-
form and not for the Nehalem platform (also described in Appendix 3.6) to avoid confusion
when illustrating points about matrix powers kernel performance. We consider two cases:
the Newton basis, and the monomial basis (which is a special case of the Newton basis where
all the shifts are zero). Our baseline is the highly optimized shared-memory parallel SpMV
implementation of Williams et al. [240], which is equivalent to the s = 1 case in the matrix
powers kernel.

For calculating speedup in this section, the time taken for the matrix powers kernel is
normalized by dividing by s and compared with the time taken for a single SpMV, i.e., the
straightforward algorithm. Thus, the speedup as a function of s for a particular matrix is
defined as

Speedup(s) =
Timematrix powers kernel

s · TimeSpMV

. (2.4)

Platform Summary

The machine for which we show performance results in this section is an 8-core 2.33 GHz
Intel Clovertown processor, described in more detail in Appendix A. The peak double-
precision floating-point performance of this processor is 75 Gflop/s. However, because of the
overheads associated with sparse matrix storage, peak the performance of an in-cache SpMV
computation (for a dense matrix in compressed sparse row format) is only 10 Gflop/s. Note
that this in-cache performance number incurs no memory bandwidth cost, since all the data
fits in cache. Thus, 10 Gflop/s is an upper bound on the raw flop rate achievable (including
redundant computation) when the register tile size is 1×1. However, this upper bound only
applies to the monomial basis case. For the Newton basis, we must scale the upper bound
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Figure 2.3: Performance of the matrix powers kernel on Intel Clovertown. The yellow bars
indicate the best performance over all possible s. Each bar is annotated with some of the
parameters for the best performance: whether implicit or explicit (’I’ resp. ’E’ on top of
the bar), the corresponding value of s (in the middle, shown as ’k’ on the plot) and the
speedup with respect to the straightforward implementation, which is the highly optimized
SpMV code. “λ = 0” indicates the monomial-basis kernel, whereas “λ 6= 0” indicates the
Newton-basis kernel. The “upper bound” indicates the performance predicted by scaling the
straightforward implementation’s performance by the change in arithmetic intensity.

for each matrix in proportion to the increase in arithmetic intensity due to register tiling.
The upper bound for a matrix with n rows and nnz nonzeros is

Performance(n, nnz) = 10 ·
(

1 +
n

nnz

)
Gflop/s. (2.5)

Performance Results

Figure 2.3 shows the performance of the matrix powers kernel for different sparse matri-
ces on the Intel Clovertown platform. As expected, the speedups for the three matrices
corresponding to regular meshes – 1d3pt, 1d5pt, and 2d9pt – are quite good due to the
regularity of memory accesses, even though their SpMV performances are among the low-
est. We note that the performance of the Newton-basis kernel was better than that for the
monomial-basis kernel, simply because of the increase in arithmetic intensity. This difference
is marginal when the average number of nonzeros per row of the matrix is large, e.g., the
pwtk matrix, but is significant when it is small, e.g., the 1d3pt matrix.

Note that SpMV performance and the best performance across the different matrices is
quite different. Therefore, even though 1d5pt had the second lowest SpMV performance, it
was able to achieve the best performance. In fact, cfd, which had the best SpMV perfor-
mance, gains the least from our implementation. We also note that although we get more
than 2× speedups for some of the matrices, we are still far below the upper bound of 10
Gflop/s on this platform. As a special case, we note that the optimal performance of 1d5pt
corresponds to a 2×2 register tile, which has an upper bound of 16 Gflop/s. Figure 2.3 also
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shows the upper bound on performance corresponding to the optimal basis length s. This
upper bound was calculated by scaling the performance of the straightforward implementa-
tion, by the factor of increase in arithmetic intensity of the optimized matrix powers kernel
over the straightforward implementation. That is, if the optimized matrix powers kernel
has arithmetic intensity ιOptimized and the straightforward implementation has arithmetic
intensity ιStraightforward, then the upper bound is

ιOptimized

ιStraightforward

· PerformanceStraightforward. (2.6)

Note that the upper bound of 10 Gflop/s on the raw floating-point arithmetic performance
was not reached for any of the matrices, i.e., the upper bound of Equation (2.6) was always
lower than 10 Gflop/s on this platform.

We observe that the performance is within 75% of peak for the matrices corresponding to
regular meshes. However, for the rest of the matrices the gap between the upper bound and
the measured can be quite large – sometimes as much as 60%. For some of the matrices like
marcat and mc2depi, part of this difference comes from the reduced instruction throughput
due to the explicit copy for the cache bypass optimization. Since the number of nonzeros
per row for these matrices is small, the cost of copying is significant. It is also interesting
to note that the implicit algorithm provided the best speedups for most of the matrices. In
fact, the explicit algorithm failed to obtain any speedups at all for matrices like bmw and
xenon, as the increase in redundant flops was significant.

As we stated earlier, our implementation has an autotuning phase where it searches for
the cache blocking scheme and other parameters that minimize the matrix powers kernel’s
runtime. Figure 2.4 illustrates why we need to autotune. We show performance on the
Clovertown platform for three of the matrices: cant, mc2depi, and pwtk. We can see that
the use of Metis to partition, which resulted in the rows of the matrix and the vectors be-
ing reordered, did not always improve performance. For example, for mc2depi reordering
improved performance for the explicit algorithm, whereas it decreased performance for the
implicit algorithm. In fact, for the cant matrix, reordering resulted in a significant perfor-
mance penalty. We also note that the implicit algorithm provided good speedups for cant

and pwtk, whereas the explicit algorithm was actually worse off for s > 1. The fact that the
density of cant and pwtk grew quickly with s is also demonstrated by their relatively small
optimal s = 4. In contrast, performance of mc2depi improved for a larger range of s.

2.1.10 Variations

The matrix powers kernel has several variations. We distinguish them by the representation
of the sparse matrix, and on whether all the vectors in the Krylov basis, or just the last
vector, are needed. We describe both categories of variations in the sections below.

Explicit / implicit structure / values

Sparse matrices are called “sparse” because they have many more zero entries than nonzero
entries. The different ways of storing sparse matrices exploit this fact in different ways. We
can classify the storage representations of sparse matrices into four categories, based on how
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Figure 2.4: Variation of performance as a function of the basis length s (shown as k in the
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indicate whether the cache-blocking was explicit (SA2) resp. implicit (SA3). “Reordered”
indicates that Metis was used to partition the rows of the matrix and the vectors. The
missing points for some of the s values correspond to when the number of redundant flops
was so large that no performance gains were possible, so those cases were not timed at all.
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Figure 2.5: Four different types of sparse matrix representations, shown on a Cartesian plane.

they store the nonzero values and their positions in the matrix. These are illustrated by
Figure 2.5. The Figure refers both to the structure of a sparse matrix, that is locations
of its nonzero entries, and to the values of those nonzero entries. Either of these may be
stored explicitly, that is in a general data structure which can be accessed without further
assumptions on the matrix, or implicitly, that is not in a data structure, but in a way which
must be computed based on assumptions not part of the data structure.

To clarify the distinction between implicit and explicit storage of structure or values,
Figure 2.5 gives an example of each of the four categories. Two examples refer to a a
stencil, which is a regular, repeating geometric arrangement of edges between neighboring
vertices in a regular mesh (a graph whose vertices correspond to grid points in a subset
of Cartesian space with a simple topology). Stencils form a special kind of sparse matrix,
whose structure depends only on the regular stencil pattern and the positions of the vertices.
Thus, it is not necessary to store the sparse matrix structure corresponding to a stencil
explicitly. Stencils may have “constant coefficients,” which means that the nonzero values
in the matrix corresponding to the stencil edges do not depend on the stencil’s position, or
“variable coefficients,” which means that the nonzero values may change depending on the
stencil’s position. Constant coefficients need not be explicitly stored, which is why Figure
2.5 calls them “implicit” in that case. A Laplacian matrix of a graph (without self-loops or
multiple edges) is a (possibly sparse) matrix which has a nonzero entry Aij for every edge eij
between two vertices vi and vj in the graph. Aij is the degree of vi if i = j, Aij = −1 if i 6= j
and edge eij exists, and Aij = 0 otherwise. A Laplacian matrix’s structure may correspond
to a general graph, whose structure must be stored explicitly. However, the values of the
nonzero entries in a Laplacian matrix only depend on the graph structure, so the values need
not be stored explicitly. Finally, a “general sparse matrix” needs to have both its structure
and values stored explicitly, since no assumptions on either are stated.

The matrix powers kernel algorithms and implementations described in Sections 2.1.5,
2.1.6, and 2.1.7 operate on “general sparse matrices,” that is, on sparse matrices whose struc-
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ture and nonzero values are both stored explicitly. The algorithms themselves are perfectly
valid for the other three ways to represent sparse matrices. When discussing related work
in Section 2.1.12, we explain the origins of the matrix powers kernel in compiler optimiza-
tions for stencil computations, either for constant or variable coefficients. Some previous
work discussed in that section avoids memory hierarchy traffic for general sparse matrices.
Our algorithms do so also, and also combine this with avoiding communication between
processors in parallel.

As far as we know, no previous work has addressed the case of avoiding communication
for sparse matrices like Laplacian graphs (with implicitly stored values and explicitly stored
structure). We do not address such sparse matrices in this thesis. It is interesting to note,
though, that Laplacian graphs of a sparse matrix’s graph structure are sometimes used in
partitioning the sparse matrix (see e.g., Pothen et al. [198]), yet partitioning is an essential
step in the matrix powers kernel preprocessing phase. This is an interesting chicken-and-egg
problem which we only state here and do not attempt to solve.

Last vector or all vectors

Our matrix powers kernel computes all the basis vectors of a particular Krylov subspace.
Given A and v, it computes s+1 vectors p0(A)v, p1(A)v, p2(A)v, . . . , ps(A)v. One variation
on this is just to compute the last vector ps(A)v. Some applications only need this last vector.
For example, in algebraic multigrid, applying a smoother s times amounts to computing
ps(Ã)v for a particular polynomial ps(z), where Ã is related to the original matrix in the
linear system Ax = b to solve. (See e.g., Briggs et al. [37] for an explanation of the smoothing
step in algebraic multigrid.) The power method (see e.g., Bai et al. [15]) for estimating the
largest singular value of a matrix A and its corresponding eigenvector amounts to a similar
computation: only the last vector is needed for computing the eigenvalue and eigenvector
approximation.

Some previous work that we mention in Section 2.1.12 addresses this “last-vector-only”
variation of the matrix powers kernel, either for matrices that come from stencils (see above),
or for general sparse matrices (see e.g., Strout et al. [218]). Our matrix powers kernel could
be used for this application, but it is designed and optimized for the case in which all the
basis vectors are needed.

2.1.11 Related kernels

The matrix powers kernel is one of many kernels intended to exploit reuse of sparse matrix
entries in sparse matrix, dense vector products. For example, the tuned library of sparse
matrix routines OSKI [236, 235] offers three different kernels:

1. x 7→ ATAx

2. x 7→ (Ax,ATAx)

3. (x, y) 7→ (Ax,ATy)

where A is a general sparse matrix and x and y are dense vectors of appropriate dimen-
sions. All three of these kernels have applications. For example, Kernel 1 may be used to
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solve the normal equations via CG (the CGNE method, see e.g., Saad [207]), Kernel 2 for
Golub-Kahan-Lanczos bidiagonalization for solving sparse singular value problems (Golub
and Kahan [112], see also Bai et al. [15]), and Kernel 3 for nonsymmetric Lanczos [160] and
BiCG [98]. (In some cases, the original algorithm must be rearranged slightly to permit use
of the optimized kernel.) Vuduc [234] shows how to exploit reuse in the matrix A in these
kernels. Their optimizations are complementary to our matrix powers kernel optimizations.

The preprocessing phase of the matrix powers kernel requires partitioning the graph of
the sparse matrix into “subdomains,” and for each subdomain, finding all nodes which are
at distances 1, 2, . . . , s from the boundary nodes of the subdomain. This amounts to
determining the graphs of A2, A3, . . . , As. One could consider this an approximation of the
transitive closure of the graph of A, which is the same as the graph of A∞. Naturally it is
impossible to compute the transitive closure of a general graph just by reading its entries
once, because there exist graphs with O(n) edges whose transitive closures have Θ(n2) edges.
(The graph of a tridiagonal matrix is one example.) Those Θ(n2) entries must be read in
order to be computed. However, there is a randomized O(nnz) algorithm for estimating the
number of edges in the transitive closure of a graph with nnz edges [62]. That algorithm
is very different from the matrix powers kernel preprocessing step, but it might be useful
for estimating the amount of memory to allocate. Penner and Prasanna [192, 193] present
a cache-friendly version of the Floyd-Warshall all-pairs shortest path algorithm, but that
algorithm is intended for dense graphs and requires θ(n3) comparison operations for a graph
with n nodes.

2.1.12 Related work

Precursors of the matrix powers kernel

The matrix powers kernel optimizations summarized in this section generalize known tech-
niques for improving the performance of applying the same stencil repeatedly to a regular
discrete domain, or multiplying a vector repeatedly by the same sparse matrix. These tech-
niques are called tiling or blocking. They involve decomposing the d-dimensional domain
into d-dimensional subdomains, and rearranging the order of operations on the domain in
order to exploit the parallelism and/or temporal locality implicit in those subdomains. The
different order of operations does not change the result in exact arithmetic, although it may
affect rounding error in important ways.

Tiling research falls into three general categories. The first encompasses performance-
oriented implementations and implementation suggestions, as well as practical performance
models thereof. See, for example, [194, 191, 140, 241, 203, 173, 212, 243, 88, 218, 81, 244,
234, 147, 146]. Many of these techniques have been independently rediscovered several
times. The second category consists of theoretical algorithms and asymptotic performance
analyses. These are based on sequential or parallel processing models which account for
the memory hierarchy and/or inter-processor communication costs. Works that specifically
discuss stencils or more general sparse matrices include [136], [164], and [221]. Works which
may be more generally applicable include [6, 28, 29]. The third category contains suggested
applications that call for repeated application of the same stencil (resp. sparse matrix) to a
domain (resp. vector). These include papers on s-step Krylov methods, such as [227, 206,
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56, 70, 18], as well as papers on repeated smoother applications in multigrid, such as [218].
Tiling was possibly inspired by two existing techniques. The first, domain decomposi-

tions for solving partial differential equations (PDEs), originated in an 1870 paper by H. A.
Schwarz [209]. Typical domain decompositions work directly with the continuous PDE. They
iterate between invoking an arbitrary PDE solver on each of the subdomains, and correcting
for the subdomain boundary conditions. Unlike tiling, domain decompositions change the
solution method (even in exact arithmetic) as well as the order of computations. The second
inspiration may be out-of-core (OOC) stencil codes,2 which date back to the early days of
electronic computing [145, 194]. Small-capacity primary memories and the lack of a virtual
memory system on early computers necessitated operating only on small subsets of a domain
at a time.

Tiling of stencil codes became popular for performance as a result of two developments
in computer hardware: increasingly deep memory hierarchies, and multiple independent
processors [140]. Existing techniques for reorganizing stencil codes on vector supercomputers
divided up a d-dimensional domain into hyperplanes of dimension d− 1. The resulting long
streams of data suited the vector architectures of the time, which were typically cacheless
and relied on a careful balance between memory bandwidth and floating-point rate in order
to achieve maximum performance. In contrast, cache-based architectures usually lack the
memory bandwidth necessary to occupy their floating-point units. Achieving near-peak
floating-point performance thus requires exploiting locality. Furthermore, iterating over a
domain by hyperplanes failed to take advantage of the potential temporal locality of many
stencil codes. Tiling decreases the number of connections between subdomains, which reduces
the number of cache misses, and decouples data dependencies that hinder extraction of non-
vector parallelism.

The idea of using redundant computation to avoid communication or slow memory ac-
cesses in stencil codes may be as old as OOC stencil codes themselves. Leiserson et al. cite
a reference from 1963 [164, 194], and Hong and Kung analyze a typical strategy on a 2-D
grid [136]. (We codify this strategy in our PA1 algorithm.) Nevertheless, many tilings do
not involve redundant computation. For example, Douglas et al. describe a parallel tiling
algorithm that works on the interiors of the tiles in parallel, and then finishes the boundaries
sequentially [88]. Many sequential tilings do not require redundant computations [146]; our
SA1 algorithm does not.

However, at least in the parallel case, tilings with redundant computation have the advan-
tage of requiring only a single round of messages, if the stencil is applied several times. The
latency penalty is thus independent of the number of applications of the operator, though
depending on the mesh or matrix structure, the total number of words communicated may
increase somewhat. (For example, for a regular square 2-D mesh, the total number of words
sent and received increases by a lower-order term; see e.g., Demmel et al. [76].) Further-
more, Strout et al. point out that the sequential fill-in of boundary regions suggested by
Douglas et al. suffers from poor locality [218]. Most importantly, redundant computation
to save messages is becoming more and more acceptable, given the divergence in hardware
improvements between latency, bandwidth, and floating-point rate.

Application of stencil tiling to more general sparse matrices seems natural, as many types

2For some of these codes, “core” is an anachronism, since they predate the widespread use of core memory.
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of sparse matrices express the same kind of local connections and domain topology as stencils.
However, typical tiling approaches for stencils rely on static code transformations, based
on analysis of loop bounds. Sparse matrix-vector multiplication usually requires indirect
memory references in order to express the structure of the matrix, and loop bounds are
dependent on this structure. Thus, implementations usually require runtime analysis of
the sparse matrix structure, using a graph partitioner to decompose the domain implied by
the matrix. This was perhaps somewhat alien to the researchers pursuing a compiler-based
approach to tuning stencil codes. Furthermore, graph partitioning has a nontrivial runtime
cost, and finding an optimal one is an NP-complete problem which must be approximated
in practice. Theoretical algorithms for the out-of-core sequential case already existed (see
e.g., [164]), but Douglas et al. were apparently the first to attempt an implementation of
parallel tiling of a general sparse matrix, in the context of repeated applications of a multigrid
smoother [88]. This was extended by Strout et al. into a sequential cache optimization which
is most like our SA1 algorithm.

Our work differs from existing approaches in many ways. First, we developed our methods
in tandem with an algorithmic justification: communication-avoiding (also called s-step)
Krylov subspace methods. Toledo had suggested an s-step variant of conjugate gradient
iteration, based on a generalization of PA1, but he did not supply an implementation for
matrices more general than tridiagonal matrices [221]. We have a full implementation of PA1
for general sparse matrices, and have demonstrated significant performance increases on a
wide variety of platforms. Douglas et al. and Strout developed their matrix powers kernel
for classical iterations like Gauss-Seidel [88, 218]. However, these iterations’ most common
use in modern linear solvers are as multigrid smoothers. The payoff of applying a smoother
s times in a row decreases rapidly with s; this is, in fact, the main inspiration for multigrid.
Douglas et al. acknowledge that usually 1 ≤ s ≤ 5 [88]. In contrast, communication-avoiding
Krylov subspace methods are potentially much more scalable in s. Saad also suggested
applying something like a matrix powers kernel to polynomial preconditioning, but here
again, increasing the degree of the polynomial preconditioner tends to have a decreasing
payoff, in terms of the number of CG iterations required for convergence [206].

We have also expanded the space of possible algorithms by including PA2, SA2, SA3,
and hybrid algorithms. PA2 requires less redundant computation than PA1, at the cost of
less opportunity for overlapping communication and computation. SA2 extends SA1 for the
case in which the vectors (as well as the matrix) do not fit entirely in fast memory. SA3 is
a variation of SA2 that works well for some classes of sparse matrices, thus offering another
tuning parameter (choice of algorithm) for the matrix powers kernel. As far as we can tell,
all of these are novel, as well as their hierarchical compositions to form hybrid algorithms.
Furthermore, our use of the TSP to optimize the ordering of blocks and of entries within a
block in the sequential algorithms is also novel.

Furthermore, our performance models use latency, bandwidth, and floating-point rates
from actual or predicted machines. Where possible, these rates were measured rather than
peak rates. The models show that our techniques can be useful in a wide variety of situations.
These include single-processor out-of-core, distributed-memory parallel, and shared-memory
parallel. The latter case is especially relevant considering the advent of multi- and manycore
shared-memory parallel processors, and predictions that Moore’s Law performance increases
will now be expressed in “number of processors per chip.” Finally, the models demonstrate
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that applying our algorithms may often be just as good or better for performance than
improving the communication hardware while using the naive algorithm. This opens the
door to parallel configurations previously thought impractical for Krylov methods due to
high latency, such as internet-based grid computing or wireless devices.

SpMV communication bounds

Bender et al. [26] develop lower and upper bounds for the number of messages between two
levels of the memory hierarchy, for a single SpMV operation y := A · x. They do so for two
different memory hierarchy models: the disk access machine model, which resembles our
sequential model except that block transfers between fast and slow memory always have the
same number of words B, and the cache-oblivious model, which assumes the same two-level
model but without specifying the fast memory capacity or block transfer size. They assume
that the sparse matrix A is stored as (i, j, Aij) triples, possibly in some index-sorted order.
Otherwise, they assume nothing about the structure of the sparse matrix. Since the authors
are only concerned about a single SpMV operation in isolation, their communication lower
bounds do not apply to our matrix powers kernel.

2.2 Preconditioned matrix powers kernel

The matrix powers kernel summarized in the previous section computes [p0(A)v, p1(A)v,
. . . , ps(A)v] for a sparse matrix A, a vector v, and a set of polynomials p0(z), . . . , ps(z)
with certain properties. The vectors produced form a basis for a Krylov subspace span{v,
Av, A2v, . . . , Asv} in exact arithmetic, assuming that the Krylov subspace has dimension
at least s + 1. This kernel is useful for implementing unpreconditioned iterative methods
for solving Ax = λx and Ax = b. In practice, though, solving Ax = b efficiently with
a Krylov method often calls for preconditioning. Including a preconditioner changes the
required matrix powers kernel, in a way that depends on the iterative method and the form
of preconditioning. In this section, we will show the new kernels required, and also present
two different approaches to their efficient implementation.

2.2.1 Preconditioning

Preconditioning transforms the linear system Ax = b into another one, with the goal of
reducing the number of iterations required for a Krylov method to attain the desired accuracy.
(See e.g., [22, 119, 207].) The form of the resulting linear system depends on the type of
preconditioner. If M is some nonsingular operator of the same dimensions as A, then left
preconditioning changes the system to M−1Ax = M−1b, and right preconditioning changes
the system to AM−1x = M−1b. The intuition in either case is that if M−1A ≈ I in some sense
(see the next paragraph), then the iterative method converges quickly.3 Similarly, if M can be
factored as M = M1M2, then split preconditioning changes the system to M−1

1 AM−1
2 (M2x) =

M−1
1 b. (Here, the expression M2x is interpreted as “Solve M−1

1 AM−1
2 y = M−1

1 b using the

3According to convention, M is the preconditioner, and “Solve Mu = v for u” is how one applies the
preconditioner. This is the standard notation even if we have an explicit representation for M−1.
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iterative method, and then solve M2x = y.”) If A and M are self-adjoint and M1 = M∗
2

(as in, for example, an incomplete Cholesky decomposition), then M−1
1 AM−1

2 is also self-
adjoint. We define the preconditioned matrix for a left preconditioner as M−1A, for a right
preconditioner as AM−1, and for a split preconditioner as M−1

1 AM−1
2 . In all cases, in this

section we denote the preconditioned matrix by Ã. Context will indicate whether this means
left, right, or split preconditioning.

Behind the statement M−1A ≈ I lies an entire field of study, which we cannot hope to
summarize here. We can only mention certain properties, in order to justify our analysis and
conjectures. Often, developing an effective preconditioner requires domain-specific knowl-
edge, either of the physical system which A represents, or of the continuous mathematical
problem which the discrete operator A approximates. There is no “general preconditioner”
that almost always works well.

One class of preconditioners tries to make the condition number of the preconditioned
matrix much smaller than the condition number of A, as a function of some parameter
(such as the number of nodes in the discretization) that determines the size of A. The
motivation for this approach is that reducing the condition number reduces the worst-case
number of iterations required by many preconditioned Krylov methods to achieve a fixed
accuracy. Many preconditioners can be proven to reduce the condition number for a certain
class of discretizations. The most successful preconditioner of this type is multigrid (when
used as a preconditioner for an iterative method, rather than as a direct solver). For some
discretizations, multigrid preconditioning can make the condition number a constant relative
to the problem size, which means the problem size can grow without significantly increasing
the number of iterations. However, not many problems have such preconditioners. We talk
about other authors’ techniques for reducing communication in multigrid in Section 1.6.4.

Another approach to preconditioning seeks to imitate or approximate the inverse of A,
while constraining the sparsity structure of the preconditioner in order to save memory
and computation. For example, incomplete factorizations (such as incomplete LU (ILU)
or incomplete Cholesky) perform a sparse factorization, but restrict fill-in of the sparse
factors. Sparse approximate inverse (SPAI) preconditioners try to minimize the normwise
difference between the preconditioned matrix and the identity, while constraining the sparsity
structure of the approximate inverse. This is important because the exact inverse of the
discrete operator A may be dense, even if A itself is sparse. This is a property shared by
many discretizations of continuous problems. We will mention SPAI preconditioners again
in Section 2.2.3.

Another class of preconditioners approximates the inverse of a continuous integral equa-
tion, in order to approximate or precondition the discretization of that integral equation.
Hierarchical matrices are a good example (see e.g., [36, 125, 35]). As mentioned above, the
exact inverse of the discrete operator A may be dense, even if A itself is sparse. Furthermore,
many integral equation discretizations produce a dense matrix A. However, that matrix has
a structure which can be exploited, either to produce an approximate factorization or a
preconditioner. We will mention this structure again in Section 2.2.4.
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2.2.2 New kernels

Preconditioning changes the linear system, thus changing the Krylov subspace(s) which the
iterative method builds. Therefore, preconditioning calls for new matrix powers kernels.
Different types of iterative methods require different kernels. These differ from the kernel
presented in Demmel et al. [76, Section 7], because there we only consider the monomial
basis. For example, for our CA-GMRES algorithm (see Section 3.4.3), the required kernel is

V = [p0(Ã)v, p1(Ã)v, . . . , ps(Ã)v]. (2.7)

For our preconditioned symmetric Lanczos (Section 4.3) and preconditioned CA-CG algo-
rithms (Sections 5.4 and 5.5) that require A to be self-adjoint, the kernel(s) required depend
on whether left, right, or split preconditioning is used. For a split self-adjoint preconditioner
with M1 = M∗

2 , the kernel is the same as in Equation (2.7); only the preconditioned matrix
Ã is different:

V = [p0(Ã)v, p1(Ã)v, . . . , ps(Ã)v]. (2.8)

(We do not consider the case where A is self-adjoint but M1 6= M∗
2 .) For left preconditioning,

two kernels are needed: one for the left-side basis

V = [p0(M−1A)v, p1(M−1A)v, . . . , ps(M
−1A)v], (2.9)

and one for the right-side basis

W = [p0(AM−1)w, p1(AM−1)w, . . . , ps(AM
−1)w], (2.10)

where the starting vectors v and w satisfy Mv = w. For right preconditioning, the kernels
needed are analogous. We explain the reason for this in detail in Section 4.3.1.

A straightforward implementation of each of the kernels (2.8), (2.9), and (2.10) would
involve s sparse matrix-vector products with the matrix A, and s preconditioner solves (or
2s, in the case of the split preconditioner). In this section, we will show how to compute
the left-preconditioned kernel with much less communication, if the preconditioner and the
sparse matrix satisfy certain structural properties. In particular, we can compute each
kernel in parallel for only 1 + o(1) times more messages than a single SpMV with A and
a single preconditioner solve. We can also compute the left-preconditioned kernel for only
1 + o(1) times more words transferred between levels of the memory hierarchy than a single
SpMV with A and a single preconditioner solve. (The right-preconditioned kernel uses an
analogous technique, so we do not describe it here.) We will describe two different approaches
to implementing the left-preconditioned kernel: in Section 2.2.3, an approach that exploits
sparsity of the preconditioned matrix, and in Section 2.2.4, an approach that exploits low-
rank off-diagonal blocks in a partitioning of the sparse matrix and preconditioner, for the
left- or right-preconditioned kernels.

2.2.3 Exploiting sparsity

Our first approach to accelerating the preconditioned kernel exploits sparsity in the matrix
and preconditioner. More specifically, for left or right preconditioning, it exploits sparsity
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in M−1A and AM−1. For split preconditioning, it exploits sparsity in the preconditioned
matrix. This approach in this section should work best for the simplest preconditioners, such
as diagonal or block diagonal preconditioners with small blocks. It may also work for more
complicated preconditioners that can be constrained to have the same or nearly the same
sparsity pattern as the matrix A, such as sparse approximate inverse preconditioners.

All the techniques described in Section 2.1 can be applied in order to compute the pre-
conditioned kernel, if we know the sparsity structure of the preconditioned matrices involved.
For example, for the split-preconditioned kernel (Equation (2.8)), the sparsity structure of
M−1

1 AM−1
2 would be needed. For the two left-preconditioned kernels, the techniques of

Section 2.1 would be applied separately to both the matrices M−1A (for kernel (2.9)) and
AM−1 (for kernel (2.10)). This is particularly easy when M−1 is (block) diagonal. Note
that we may apply the techniques of Section 2.1 to the preconditioned case without needing
to compute matrix products like M−1A explicitly; we need only know the sparsity pattern,
which gives the communication pattern via the connections between subdomains.

Some sparse approximate inverse preconditioners have a structure which could work
naturally with the preconditioned matrix powers kernel. For example, Chow’s ParaSails
preconditioner [53] constraints the sparsity pattern to that of a small power Ak of the sparse
matrix A to precondition. The (unpreconditioned) matrix powers kernel computes the struc-
ture of powers of the matrix A anyway, more or less, so one could imagine combining the
two structural preprocessing steps to save time. Of course an important part of Chow’s
preconditioner is the “filtering” step, which removes small nonzeros from the structure of
the preconditioner in order to save computation and bandwidth costs, so such a combined
structural computation would require significant work in order to be useful. We only propose
this as a topic for future investigation.

2.2.4 Exploiting low-rank off-diagonal blocks

Many good preconditioners are in fact dense, even if they are cheap to apply. Again using
tridiagonals as a motivating example, consider M as a tridiagonal matrix. Even though
tridiagonal systems may be solved in linear time, M−1 is dense in general, making our
techniques presented so far inapplicable. However, the inverse of a tridiagonal has another
important property: any submatrix strictly above or strictly below the diagonal has rank 1.
This off-diagonal low-rank property is shared by many good preconditioners, and we may
exploit it to avoid communication too.

2.2.5 A simple example

In this section, we use a simple example to illustrate how matrices with low-rank off-diagonal
blocks can be used to avoid communication in a parallel version of the matrix powers kernel.
We do not consider the sequential version in this example, although it may be developed
analogously. Also in this example, we neglect the preconditioner and assume that we want to
compute a simple monomial basis x, Ax, A2x, . . . , Asx with the n×n matrix A. Demmel et
al. [76] explain how to extend this example to the left-preconditioned matrix powers kernel,
for the case of the monomial basis.
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We assume that the matrix A has the following structure. It is divided into row blocks
of n/2 rows each among two different processors, Processor 0 and Processor 1. The diagonal
blocks A00 and A11 are general sparse matrices, and the off-diagonal blocks A01 and A10 are
rank r matrices, as shown in Equation (2.11):

A =

(
A00 A01

A10 A11

)
=

(
A00 u1 · v∗1
u0 · v∗0 A11

)
(2.11)

This structure can be used to represent many kinds of matrices, both sparse and dense. For
example, if A is a tridiagonal matrix, then the rank r of the off-diagonal blocks is 1, the
vectors u0 and v1 are nonzero multiples of the first column of the identity (e1), and the
vectors u1 and v0 are nonzero multiples of column n/2 of the identity (en/2).

Sparse matrix-vector multiply

Suppose that we want to compute the SpMV operation y := A · x in parallel using both
Processors 0 and 1. Just like the matrix A, we divide up x and y into commensurate row
blocks x0, x1, y0, and y1, in which Processor 0 only has access to x0 and y0, and Processor
1 only has access to x1 and y1. Equation (2.12) shows the resulting SpMV formula:(

y0

y1

)
:=

(
A00 u1 · v∗1
u0 · v∗0 A11

)
·
(
x0

x1

)
. (2.12)

It turns out that Processor 0 only needs access to A00, v0, and u1, whereas Processor 1 only
needs access to A11, v1, and u0. We compute y := A · x as follows:

1. Processor 0 computes the r×1 vector χ
(0)
0 := v∗0x0, and meanwhile Processor 1 computes

the r × 1 vector χ
(0)
1 := v∗1x1.

2. Processor 0 sends χ
(0)
0 to Processor 1, and meanwhile Processor 1 sends χ

(0)
1 to Processor

0.

3. Processor 0 computes y0 := A00x0 + u1χ
(0)
1 , and meanwhile, Processor 1 computes

y1 := A11x1 + u0χ
(0)
0 .

In the above SpMV procedure, the n/2 by r matrix v0 acts an an operator x0 7→ v∗0x0

that “restricts” the vector x0 to be expressed in terms of the right singular vectors of A01.
Similarly, v1 “restricts” x1 to the right singular vectors of A10. We may therefore call v0 and
v1 restriction operators. Analogously, we may think of u1 and u0 as interpolation operators,
which project the “restricted” data onto the left singular vectors of A01 resp. A10. We
chose these names for a reason: this matrix representation resembles one level of a simple
multigrid-like procedure, in that data from the fine grid is restricted to the coarse grid,
and then interpolated back as an additive correction to the fine grid. Of course, the above
SpMV procedure lacks many of the elements of multigrid. In particular, the analogous
smoothing operation on the “fine grid” would amount to adding in the results of SpMV
or SpTS operations with A (or related matrices). This would complicate the above simple
SpMV procedure, especially for the matrix powers kernel operation that we explain next. We
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will not pursue this analogy further in this thesis, but it may offer a clue towards developing
a “communication-avoiding” version of multigrid.4

Matrix powers kernel

The “straightforward” approach to computing the matrix powers kernel would involve s
invocations of the above SpMV procedure. Each invocation requires each processor to send
and receive one message of r words each. Thus, the straightforward approach requires each
processor to send and receive r · s messages. It turns out, though, that we can compute the
matrix powers kernel with A in the above representation, with each processor only needing
to send and receive one message of r · s words each. We will demonstrate this for the simple
case of s = 2, computing the monomial basis x, Ax, A2x.

First, we define χ
(k)
0 = v∗0(Ak00x0) and χ

(k)
1 = v∗1(Ak00x1) for k = 0, 1, . . . , s − 1. (Here,

we only use s = 2 and therefore k = 0, 1, but we introduce the notation to illustrate the
generalization to arbitrary s.) Using the same algebra as in Equation (2.12), we find that

A2x =

A00

(
A00x0 + u1χ

(0)
1

)
+ u1

(
(v∗1u0)χ

(0)
0 + χ

(1)
1

)
A11

(
A11x1 + u0χ

(0)
0

)
+ u0

(
(v∗0u1)χ

(0)
1 + χ

(1)
0

) . (2.13)

We may write this as a procedure:

1. Processor 0 computes χ
(k)
0 = v∗0(Ak00x0) for k = 0, 1. Meanwhile, Processor 1 computes

χ
(k)
1 = v∗1(Ak11x1) for k = 0, 1.

2. Processor 0 sends χ
(k)
0 for k = 0, 1, bundled into a single message of 2r words, to

Processor 1. Meanwhile, Processor 1 sends χ
(k)
1 for k = 0, 1, bundled into a single

message of 2r words, to Processor 0.

3. Processor 0 computes y0 := A00

(
A00x0 + u1χ

(0)
1

)
+u1

(
(v∗1u0)χ

(0)
0 + χ

(1)
1

)
. Meanwhile,

Processor 1 computes y1 := A11

(
A11x1 + u0χ

(0)
0

)
+

u0

(
(v∗0u1)χ

(0)
1 + χ

(1)
0

)
.

This only shows this matrix powers kernel for s = 2, but by labeling x
(k)
p = (Akx)p for

p = 0, 1 and k = 0, 1, . . . , s, it is easy to generalize the third line of the above procedure into
a recursion for arbitrary s:

1. Processor 0 computes χ
(k)
0 = v∗0(Ak00x0) for k = 0, 1, . . . , s− 1. Meanwhile, Processor 1

computes χ
(k)
1 = v∗1(Ak11x1) for k = 0, 1, . . . , s− 1.

2. Processor 0 sends χ
(k)
0 for k = 0, 1, . . . , s−1, bundled into a single message of rs words,

to Processor 1. Meanwhile, Processor 1 sends χ
(k)
1 for k = 0, 1, . . . , s− 1, bundled into

a single message of rs words, to Processor 0.

4This idea was developed in summer 2006 during discussions with Dr. Panayot Vassilevski of Lawrence
Livermore National Laboratory, Dr. Xiaoye Li of Lawrence Berkeley National Laboratory, Prof. Ming Gu of
the University of California Berkeley Mathematics Department, and Prof. Xianlin Xia of Purdue University’s
Mathematics Department (who was Prof. Gu’s student at the time).
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3. Processor 0 computes x
(k)
0 := A00x

(k−1)
0 + u1

(
(v∗1u0)χ

(k−1)
0 + χ

(k)
1

)
, for k = 1, 2, . . . , s.

Meanwhile, Processor 1 computes x
(k)
1 := A11x

(k−1)
1 + u0

(
(v∗0u1)χ

(k−1)
1 + χ

(k)
0

)
, for k =

1, 2, . . . , s.

The result is the same: each processor only sends one message of rs words, as opposed to
the straightforward approach, where each processor sends s messages of r words each.

2.2.6 Problems and solutions

The above simple example only illustrates the low-rank off-diagonal blocks representation of
A for 2 processors. Generalizing it to larger numbers of processors requires special care, in
order to avoid too much communication. Furthermore, representing the off-diagonal blocks
as dense results in more local computation. We will discuss these issues and their solutions
below.

Too many messages?

The above simple example only shows the computation for P = 2 processors. Generalizing it
to larger numbers of processors requires care to avoid too much communication. For example,
the straightforward generalization of Equation (2.11) from a 2×2 block matrix into a P ×P
matrix of blocks AIJ (with 0 ≤ I, J ≤ P − 1) would represent each of the AIJ blocks (for
I 6= J) as a dense rank-r outer product, whether or not AIJ is zero in the sparse matrix
representation of A. As we observed in Section 1.3.1 when discussing parallel SpMV with
ordinary sparse matrices, each AIJ represented as a nonzero block entails communication
from Processor J to Processor I. If all the AIJ are considered as nonzero blocks in the
communication step, then every processor must send a message to every other processor.
This would make the number of messages, even in the matrix powers kernel procedure
described above, proportional to P 2. This is unacceptable, but thankfully it is unnecessary.
For example, if P = 2 and A is block diagonal, then there is no need to compute and send
the χ

(k)
0 and χ

(k)
1 terms, since they are zero. Just as with standard sparse matrices, each

processor I should only communicate with its “neighbors,” that is, with processors J such
that AIJ is actually nonzero (not just represented in a nonzero way). This is not hard to do.

Too much arithmetic?

A more serious potential problem in the above matrix powers kernel, is that it seems to
assume that the outer product representations of the off-diagonal blocks AIJ are dense, even
if they are quite sparse. For example, for P = 2 processors and a tridiagonal matrix A,
there should only be one nonzero entry in each of A01 and A10, but the representation of
Equation (2.11) requires n words of storage per processor for each of those blocks. This does
not increase the number of messages or the volume of communication, but it does increase
the amount of local storage and arithmetic.

We will illustrate this for the example of A being tridiagonal, for a general number of
processors P and a general matrix powers kernel length s. If we represent A as an ordinary
sparse matrix and invoke SpMV s times, each processor must perform 5sn/P + o(sn/P )
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floating-point operations. Suppose instead that we represent A in the P × P block format,
such that for any particular processor I, that only AI,I−1 (for I > 0), AII , and AI,I+1 (for
I < P − 1) are represented as nonzero rank r outer products. In this case of a tridiagonal
matrix A, the rank r of those outer products is 1. Processor I must compute the following
quantities:

• AkIIxI for k = 0, 1, . . . , s, at a cost of 5sn/P + o(sn/P ) flops (since AII is tridiagonal
and n/P by n/P ).

• χ(k)
I = v∗I (A

k
IIxI) for k = 0, 1, . . . , s, at a cost of 2(s+ 1)n/P + o(sn/P ) flops (since we

have already counted computing AkIIxI).

• x(k)
I := AIIx

(k−1)
I + uI−1χ

(k−1)
I−1 + uI+1χ

(k−1)
I+1 , for k = 1, 2, . . . , s. The operation here

requires a total of 2sn/P + o(sn/P ) flops.

The total is 9sn/P + o(sn/P ) flops, which is almost twice as many as when representing
A as a standard sparse matrix and performing s SpMV operations (the “straightforward
sparse matrix” approach). The problem comes from the second and third steps, since vI and
uI are dense n/P by r matrices. If they were represented in a sparse form, the amount of
computation would be 5sn/P flops per processor, just as in the straightforward sparse matrix
approach. Note that sparsity only matters for the computation, not the communication:
there is likely little benefit from representing the r × 1 χ

(k)
I vectors sparsely, as they should

have no zero entries (not counting possible cancellation) if the rank r was chosen correctly.
The way to fix this problem is, therefore, to represent the restriction and interpolation

operators vI resp. uI as sparse n/P by r matrices, when performing arithmetic operations
with them. Doing so is obvious when A can be represented efficiently as a standard sparse
matrix, but not every matrix A that has a natural low-rank off-diagonal blocks representation
is naturally sparse. The whole motivation for structures with low-rank off-diagonal blocks –
such as semiseparable matrices, hierarchical matrices (see Börm et al. [36] and Hackbusch
[125]), and hierarchically semiseparable (HSS) matrices (see e.g., Chandrasekaran et al. [48])
– is to be able to represent dense n×n matrices with O(n log n) data, so that matrix-vector
multiplication requires only O(n log n) operations. These structures can be used to represent
matrices which are not at all sparse, such as the inverse of a tridiagonal matrix.

If we cannot accept the resulting additional computational requirements of the matrix
powers kernel, we have to approximate the dense restriction and interpolation operators by
sparse matrices. This relates to the problem of computing a sparse solution to a dense under-
determined linear system of equations. See e.g., Bruckstein et al. [40]. Further investigations
along these lines are future work for us; we do not propose any solutions in this thesis.

2.2.7 Related work

In Section 2.1.12, we mentioned how kernels similar to the nonpreconditioned matrix powers
kernel appear in computations on regular meshes. Prior work describes how to optimize
such kernels via tiling techniques. As far as we know, however, there is no prior work on
such optimizations for computations resembling the preconditioned matrix powers kernel.
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Authors who developed s-step Krylov methods (a direct precursor to our communication-
avoiding KSMs) recognized the need for preconditioning. However, they did not show what
basis vectors the KSM should compute, given a preconditioner and a basis other than the
monomial basis. Some authors, such as Van Rosendale [227], Chronopoulos and Gear [55],
and Toledo [221] suggested using either block diagonal parallel preconditioners that require
no communication between processors, or polynomial preconditioners. The latter commute
with the matrix A, thus avoiding the problems we discuss in Section 4.3. We show the correct
form of the matrix kernel for an arbitrary left or split preconditioner, for many classes of
Krylov methods. (Of course, we do not show how to avoid communication for arbitrary
preconditioners, only for those that fit into one of two patterns.)

Previous authors developing s-step methods did not suggest how to avoid communication
when preconditioning. Saad [206], though not discussing s-step KSMs, did suggest applying
something like a matrix powers kernel to polynomial preconditioning, when the matrix has
the form of a stencil on a regular mesh. However, polynomial preconditioning tends to
have a decreasing payoff with the degree of the polynomial, in terms of the number of CG
iterations required for convergence [206]. We are the first, as far as we can tell, to identify
two sets of nontrivial preconditioners – left or right preconditioners with nearly the same
sparsity structure as the matrix A, and left or right preconditioners with a low-rank off-
diagonal blocks structure – for which we can avoid communication in the preconditioned
matrix powers kernel.

2.3 Tall Skinny QR

In this section, we present Tall Skinny QR (TSQR), a communication-avoiding QR factor-
ization for dense matrices with many more rows than columns. This section summarizes
parts of Demmel et al. ([74] and [78]). In parallel, for an n × s matrix with n � s, TSQR
requires only O(logP ) messages on P processors. This is a factor of Θ(s) fewer messages
than Householder QR or Modified Gram-Schmidt, and attains the lower bound for a matrix
whose data is distributed among P processors. Sequentially, TSQR only reads and writes
the matrix once, which saves a factor of Θ(s) words transferred between levels of the memory
hierarchy over Householder QR or Modified Gram-Schmidt, and attains the lower bound on
communication. In both cases, TSQR has significantly lower latency costs in the parallel
case, and significantly lower latency and bandwidth costs in the sequential case, than exist-
ing algorithms in LAPACK and ScaLAPACK. TSQR is also numerically stable in the same
senses as in LAPACK and ScaLAPACK, both theoretically and in practice.

We have implemented parallel TSQR, sequential TSQR, and a hybrid version of TSQR
(with both parallel and sequential optimizations, described in Demmel et al. [78]) on several
machines, with significant speedups:

• 6.7× on 16 processors of a Pentium III cluster, for a 100, 000× 200 matrix

• 4× on 32 processors of a BlueGene/L, for a 1, 000, 000× 50 matrix

• 8× on 8 threads of a single node of an Intel Clovertown processor (8 cores, 2 sockets,
4 cores per socket) for a 10, 000, 000 × 10 matrix, compared with LAPACK’s QR
factorization DGEQRF (see [78] for details)
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Some of this speedup for the cases is enabled by TSQR being able to use a much better local
QR decomposition than ScaLAPACK’s QR factorization routine PDGEQRF can use, such
as the recursive variant by Elmroth and Gustavson (see [92]. We have also implemented
sequential TSQR on a laptop for matrices that do not fit in DRAM, so that slow memory is
disk. This requires a special implementation in order to run at all, since virtual memory does
not accommodate matrices of the sizes we tried. By extrapolating runtime from matrices
that do fit in DRAM, we can say that our out-of-DRAM implementation was as little as 2×
slower than the predicted runtime as though DRAM were infinite.

We begin our discussion of TSQR with Section 2.3.1, where we explain our motivations
for developing a communication-avoiding QR factorization of tall skinny matrices. In Section
2.3.2, we explain how the algorithm works in the parallel and sequential cases, and how it
can be easily adapted to different computer architectures. In Section 2.3.3, we compare
the numerical stability of TSQR to that of other QR factorization methods for tall skinny
matrices. Finally, in Section 2.3.4, we show performance results from our parallel shared-
memory implementation of TSQR.

2.3.1 Motivation for TSQR

Communication-avoiding Krylov methods

Our main motivation for developing a communication-avoiding QR factorization of tall
skinny matrices was for orthogonalizing Krylov subspace basis vectors, in our communication-
avoiding versions of Arnoldi (Section 3.3), GMRES (Section 3.4), and Lanczos (Section 4.2).
We combine TSQR with Block Gram-Schmidt (BGS – Section 2.4), both for orthogonaliza-
tion, and for reorthogonalization if necessary. We show how to do reorthogonalization in an
accurate and communication-avoiding way, using TSQR and BGS, in Sections 2.4.6, 2.4.7,
and 2.4.8. See especially Algorithm 14 in the latter section.

Block Krylov methods

TSQR has other applications as well. Block Krylov methods are one example, which we
discuss in more detail in Section 1.6.2. These methods include algorithms for solving linear
systems Ax = B with multiple right-hand sides (such as variants of GMRES, QMR, or
CG [232, 104, 182]), as well as block iterative eigensolvers (for a summary of such meth-
ods, see [14, 162]). Many of these methods have widely used implementations, on which a
large community of scientists and engineers depends for their computational tasks. Exam-
ples include TRLAN (Thick Restart Lanczos), BLZPACK (Block Lanczos), Anasazi (various
block methods), and PRIMME (block Jacobi-Davidson methods) [245, 172, 154, 12, 20, 214].
Eigenvalue computation is particularly sensitive to the accuracy of the orthogonalization; two
recent papers suggest that large-scale eigenvalue applications require a stable QR factoriza-
tion [131, 155].

Panel factorization in general QR

Householder QR decompositions of tall and skinny matrices also comprise the panel factor-
ization step for typical QR factorizations of matrices in a more general, two-dimensional
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layout. This includes the current parallel QR factorization routine PDGEQRF in ScaLAPACK,
as well as ScaLAPACK’s experimental PFDGEQRF parallel routine for factoring matrices that
do not fit in memory. Both algorithms use a standard column-based Householder QR for
the panel factorizations, but in the parallel case this is a latency bottleneck, and in the out-
of-DRAM case it is a bandwidth bottleneck. Replacing the existing panel factorization with
TSQR reduces this cost by a factor equal to the number of columns in a panel, thus removing
the bottleneck. We present the resulting general QR factorization as the Communication-
Avoiding QR (CAQR) algorithm in Demmel et al. [74], where we show that it attains lower
bounds on communication in both the parallel and sequential cases. We do not discuss
CAQR further in this thesis, though the combination of TSQR and BGS has performance
similar to CAQR.

2.3.2 TSQR algorithms

In this section, we illustrate the insight behind TSQR, and use it to explain variants of
TSQR that avoid communication in different circumstances. TSQR uses a reduction-like
operation to compute the QR factorization of an m×n matrix A, stored in a 1-D block row
layout.5 The shape of the reduction tree may be chosen to avoid communication for different
computer architectures. For example, TSQR on a binary tree minimizes the number of
messages in parallel, and TSQR on a linear tree minimizes memory traffic in the sequential
case. We illustrate both with diagrams and simple examples. Finally, we show two examples
of more complicated reduction trees. We implemented one of these (sequential nested within
parallel), which as we describe in Demmel et al. [78] achieved significant speedups over
alternative parallel QR factorizations on two different 8-core Intel processors.

Parallel TSQR on a binary tree

The basic idea of using a reduction on a binary tree to compute a tall skinny QR factorization
has been rediscovered multiple times. See e.g., e.g., Pothen and Raghavan [197] and da Cunha
et al. [66]. (TSQR was also suggested by Golub et al. [114], but they did not reduce the
number of messages from n logP to logP .) Here, we repeat the basic insight in order to show
its generalization to a whole space of algorithms, which is one of our novel contributions.
Suppose that we want to factor the m × n matrix A, with m � n, on a parallel computer
with P = 4 processors. First, we decompose A into four m/4× n block rows:

A =


A0

A1

A2

A3

 ,

5The ScaLAPACK Users’ Guide has a good explanation of 1-D and 2-D block and block cyclic layouts of
dense matrices [32]. In particular, refer to the section entitled “Details of Example Program #1.”
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Figure 2.6: Execution of the parallel TSQR factorization on a binary tree of four processors.
The gray boxes indicate where local QR factorizations take place. The Q and R factors each
have two subscripts: the first is the sequence number within that stage, and the second is
the stage number.

such that processor q “owns” block Aq. Then, we independently compute the QR factoriza-
tion of each block row on each processor, any fast and accurate sequential QR factorization:

A0

A1

A2

A3

 =


Q00R00

Q10R10

Q20R20

Q30R30

 .

This is “stage 0” of the computation, hence the second subscript 0 of the Q and R factors.
The first subscript indicates the block index at that stage. (Abstractly, we use the Fortran
convention that the first index changes “more frequently” than the second index.) Stage 0
operates on the P = 4 leaves of the tree. We can write this decomposition instead as a block
diagonal orthogonal matrix times a column of blocks:

A =


Q00R00

Q10R10

Q20R20

Q30R30

 =


Q00

Q10

Q20

Q30

 ·

R00

R10

R20

R30

 ,

although we do not have to store it this way. After this stage 0, there are P = 4 of the R
factors. We group them into successive pairs Ri,0 and Ri+1,0, and do the QR factorizations
of grouped pairs in parallel:

R00

R10

R20

R30

 =


(
R00

R10

)
(
R20

R30

)
 =

(
Q01R01

Q11R11

)
.

As before, we can rewrite the last term as a block diagonal orthogonal matrix times a column
of blocks: (

Q01R01

Q11R11

)
=

(
Q01

Q11

)
·
(
R01

R11

)
.
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This is stage 1, as the second subscript of the Q and R factors indicates. We iteratively
perform stages until there is only one R factor left, which is the root of the tree:(

R01

R11

)
= Q02R02.

Equation (2.14) shows the whole factorization:

A =


A0

A1

A2

A3

 =


Q00

Q10

Q20

Q30

 · ( Q01

Q11

)
·Q02 ·R02, (2.14)

in which the product of the first three matrices has orthogonal columns, since each of these
three matrices does. Note the binary tree structure in the nested pairs of R factors.

Figure 2.6 illustrates the binary tree on which the above factorization executes. Gray
boxes highlight where local QR factorizations take place. By “local,” we refer to a factoriza-
tion performed by any one processor at one node of the tree; it may involve one or more than
one block row. If we were to compute all the above Q factors explicitly as square matrices,
each of the Qi0 would be m/P × m/P , and Qij for j > 0 would be 2n × 2n. The final R
factor would be upper triangular and m × n, with m − n rows of zeros. In a “thin QR”
factorization, in which the final Q factor has the same dimensions as A, the final R factor
would be upper triangular and n× n. In practice, we prefer to store all the local Q factors
implicitly until the factorization is complete. In that case, the implicit representation of Qi0

fits in an m/P ×n lower triangular matrix, and the implicit representation of Qij (for j > 0)
fits in an n× n lower triangular matrix (due to optimizations that we discuss in Demmel et
al. [74]).

Note that the maximum per-processor memory requirement is max{mn/P, n2 + O(n)},
since any one processor need only factor two n × n upper triangular matrices at once, or a
single m/P × n matrix.

Sequential TSQR on a flat tree

Sequential TSQR uses a similar factorization process, but with a “flat tree” (a linear chain).
It may also handle the leaf nodes of the tree slightly differently, as we will show below. Again,
the basic idea is not new; see e.g., [42, 43, 123, 159, 199, 200]. (Some authors (e.g., [42, 159,
199]) refer to sequential TSQR as “tiled QR.” We use the phrase “sequential TSQR” because
both our parallel and sequential algorithms could be said to use tiles.) In particular, Gunter
and van de Geijn develop a parallel out-of-DRAM QR factorization algorithm that uses a
flat tree for the panel factorizations [123]. Buttari et al. suggest using a QR factorization
of this type to improve performance of parallel QR on commodity multicore processors [42].
Quintana-Orti et al. develop two variations on block QR factorization algorithms, and use
them with a dynamic task scheduling system to parallelize the QR factorization on shared-
memory machines [199].

Kurzak and Dongarra use similar algorithms, but with static task scheduling, to paral-
lelize the QR factorization on Cell processors [159]. (There, the parallelization happens only
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Figure 2.7: Execution of the sequential TSQR factorization on a flat tree with four sub-
matrices. The gray boxes indicate where local QR factorizations take place The Q and R
factors each have two subscripts: the first is the sequence number for that stage, and the
second is the stage number.

in the trailing matrix updates, not in the panel factorization. Recent work by these authors
has shown that this does not expose sufficient parallelism, so that parallel TSQR is required
for the panel factorization.)

We will show that the basic idea of sequential TSQR fits into the same general frame-
work as the parallel QR decomposition illustrated above, and also how this generalization
expands the tuning space of QR factorization algorithms. In addition, we will develop de-
tailed performance models of sequential TSQR and the current sequential QR factorization
implemented in LAPACK.

We start with the same block row decomposition as with parallel TSQR above:

A =


A0

A1

A2

A3


but begin with a QR factorization of A0, rather than of all the block rows:

A0

A1

A2

A3

 =


Q00R00

A1

A2

A3

 .

This is “stage 0” of the computation, hence the second subscript 0 of the Q and R factor.
We retain the first subscript for generality, though in this example it is always zero. We can
write this decomposition instead as a block diagonal matrix times a column of blocks:

Q00R00

A1

A2

A3

 =


Q00

I
I

I

 ·

R00

A1

A2

A3

 .
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We then combine R00 and A1 using a QR factorization:
R00

A1

A2

A3

 =


R00

A1

A2

A3

 =

Q01R01

A2

A3


This can be rewritten as a block diagonal matrix times a column of blocks:Q01R01

A2

A3

 =

 Q01

I
I

 ·
R01

A2

A3

 .

We continue this process until we run out of Ai factors. The resulting factorization has the
following structure:

A0

A1

A2

A3

 =


Q00

I
I

I

·
 Q01

I
I

·
 I

Q02

I

·
 I

I
Q03

R30. (2.15)

Here, the Ai blocks are m/P ×n. If we were to compute all the above Q factors explicitly as
square matrices, then Q00 would be m/P ×m/P and Q0j for j > 0 would be 2m/P ×2m/P .
The above I factors would be m/P ×m/P . The final R factor, as in the parallel case, would
be upper triangular and m× n, with m− n rows of zeros. In a “thin QR” factorization, in
which the final Q factor has the same dimensions as A, the final R factor would be upper
triangular and n×n. In practice, we prefer to store all the local Q factors implicitly until the
factorization is complete. In that case, the implicit representation of Q00 fits in an m/P ×n
lower triangular matrix, and the implicit representation of Q0j (for j > 0) fits in an m/P ×n
lower triangular matrix as well (due to optimizations that we discuss in Demmel et al. [74]).

Figure 2.7 illustrates the flat tree on which the above factorization executes. Gray boxes
highlight where “local” QR factorizations take place.

The sequential algorithm differs from the parallel one in that it does not factor the
individual blocks of the input matrix A, excepting A0. This is because in the sequential
case, the input matrix has not yet been loaded into working memory. In the fully parallel
case, each block of A resides in some processor’s working memory. It then pays to factor all
the blocks before combining them, as this reduces the volume of communication (only the
triangular R factors need to be exchanged) and reduces the amount of arithmetic performed
at the next level of the tree. In contrast, the sequential algorithm never writes out the
intermediate R factors, so it does not need to convert the individual Ai into upper triangular
factors. Factoring each Ai separately would require writing out an additional Q factor for
each block of A. It would also add another level to the tree, corresponding to the first block
A0.

Note that the maximum per-processor memory requirement is mn/P + n2/2 + O(n),
since only an m/P × n block and an n × n upper triangular block reside in fast memory
at one time. We could save some fast memory by factoring each Ai block separately before
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combining it with the next block’s R factor, as long as each block’s Q and R factors are
written back to slow memory before the next block is loaded. One would then only need to
fit no more than two n× n upper triangular factors in fast memory at once. However, this
would result in more writes, as each R factor (except the last) would need to be written to
slow memory and read back into fact memory, rather than just left in fast memory for the
next step.

In both the parallel and sequential algorithms, a vector or matrix is multiplied by Q or
QT by using the implicit representation of the Q factor, as shown in Equation (2.14) for the
parallel case, and Equation (2.15) for the sequential case. This is analogous to using the
Householder vectors computed by Householder QR as an implicit representation of the Q
factor.

TSQR on general trees

The above two algorithms are extreme points in a large set of possible QR factorization
methods, parametrized by the tree structure. Our version of TSQR is novel because it works
on any tree. In general, the optimal tree may depend on both the architecture and the
matrix dimensions. This is because TSQR is a reduction (as we discuss in detail in Demmel
et al. [74]). Trees of types other than binary often result in better reduction performance,
depending on the architecture (see e.g., [177]). Throughout this paper, we discuss two
examples – the binary tree and the flat tree – as easy extremes for illustration. We will show
that the binary tree minimizes the number of stages and messages in the parallel case, and
that the flat tree minimizes the number and volume of input matrix reads and writes in the
sequential case. We show in Demmel et al. [74] how to perform TSQR on any tree. Methods
for finding the best tree in the case of TSQR are future work. Nevertheless, we can identify
two regimes in which a “nonstandard” tree could improve performance significantly: parallel
memory-limited CPUs, and large distributed-memory supercomputers.

The advent of desktop and even laptop multicore processors suggests a revival of parallel
out-of-DRAM algorithms, for solving cluster-sized problems while saving power and avoiding
the hassle of debugging on a cluster. TSQR could execute efficiently on a parallel memory-
limited device if a sequential flat tree were used to bring blocks into memory, and a parallel
tree (with a structure that reflects the multicore memory hierarchy) were used to factor the
blocks. Figure 2.8 shows an example with 16 blocks executing on four processors, in which
the factorizations are pipelined for maximum utilization of the processors. The algorithm
itself needs no modification, since the tree structure itself encodes the pipelining. This is, we
believe, a novel extension of the parallel out-of-core QR factorization of Gunter et al. [123].

TSQR’s choice of tree shape can also be optimized for modern supercomputers. A tree
with different branching factors at different levels could naturally accommodate the hetero-
geneous communication network of a cluster of multicores. The subtrees at the lowest level
may have the same branching factor as the number of cores per node (or per socket, for a
multisocket shared-memory architecture).

Note that the maximum per-processor memory requirement of all TSQR variations is
bounded above by

qn(n+ 1)

2
+
mn

P
,
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Figure 2.8: Execution of a hybrid parallel / out-of-core TSQR factorization. The matrix
has 16 blocks, and four processors can execute local QR factorizations simultaneously. The
gray boxes indicate where local QR factorizations take place. We number the blocks of the
input matrix A in hexadecimal to save space (which means that the subscript letter A is the
number 1010, but the non-subscript letter A is a matrix block). The Q and R factors each
have two subscripts: the first is the sequence number for that stage, and the second is the
stage number.
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in which q is the maximum branching factor in the tree.

2.3.3 Accuracy and stability

In Demmel et al. [74], we model the performance of various QR factorization algorithms for
tall and skinny matrices on a block row layout. Our models there show that CholeskyQR (see
Section 2.5) should have better performance than all the other methods. However, numerical
accuracy is also an important consideration for many users. For example, in CholeskyQR,
the loss of orthogonality of the computed Q factor depends quadratically on the condition
number of the input matrix (see Table 2.2). This is because computing the Gram matrix
ATA squares the condition number of A. One can avoid this stability loss by computing and
storing ATA in doubled precision. However, this doubles the communication volume. It also
increases the cost of arithmetic operations by a hardware-dependent factor.

Algorithm ‖I −QTQ‖2 bound Assumption on κ(A) Reference(s)
Householder QR O(ε) None [113]
TSQR O(ε) None [113]
CGS2 O(ε) O(εκ(A)) < 1 [1, 149]
MGS O(εκ(A)) None [31]
CholeskyQR O(εκ(A)2) None [215]
CGS O(εκ(A)n−1) None [149, 210]

Table 2.2: Upper bounds on deviation from orthogonality of the Q factor from various QR
algorithms. Machine precision is ε. “Assumption on κ(A)” refers to any constraints which
κ(A) must satisfy in order for the accuracy bound in the previous column to hold (for
example, that the matrix must be numerically full rank).

Unlike CholeskyQR or the two variants of Gram-Schmidt orthogonalization presented
in Table 2.2, Householder QR is unconditionally stable. That is, the computed Q factors
are always orthogonal to machine precision, regardless of the properties of the input matrix
[113]. This also holds for TSQR, because the algorithm is composed entirely of no more
than P Householder QR factorizations, in which P is the number of input blocks. Each
of these factorizations is itself unconditionally stable. In contrast, the orthogonality of the
Q factor computed by CGS, MGS, or CholeskyQR depends on the condition number of
the input matrix. Reorthogonalization in MGS and CGS can make the computed Q factor
orthogonal to machine precision, but only if the input matrix A is numerically full rank, i.e.,
if O(εκ(A)) < 1. Reorthogonalization also doubles the cost of the algorithm.

However, sometimes some loss of accuracy can be tolerated, either to improve perfor-
mance, or for the algorithm to have a desirable property. For example, in some cases the
input vectors are sufficiently well-conditioned to allow using CholeskyQR, and the accuracy
of the orthogonalization is not so important. Another example is GMRES. Its backward
stability was proven first for Householder QR orthogonalization, and only later for modified
Gram-Schmidt orthogonalization [120]. Users traditionally prefer the latter formulation,
mainly because the Householder QR version requires about twice as many floating-point
operations (as the Q matrix must be computed explicitly). Another reason is that most
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GMRES descriptions make the vectors available for orthogonalization one at a time, rather
than all at once, as Householder QR would require (see e.g., [237]). Thus, it must use a
version of Gram-Schmidt orthogonalization. Our CA-GMRES algorithm (Section 3.4) or-
thogonalizes groups of s basis vectors at a time, which is why it can use TSQR instead.

We care about stability for two reasons. First, an important application of TSQR is
the orthogonalization of basis vectors in Krylov methods. When using Krylov methods to
compute eigenvalues of large, ill-conditioned matrices, the whole solver can fail to converge
or have a considerably slower convergence when the orthogonality of the Ritz vectors is poor
[131, 155]. Second, in Demmel et al. [74], we develop CAQR, which uses TSQR as the panel
factorization for computing the QR decomposition of matrices of general shape. Basing
CAQR on TSQR, rather than say CholeskyQR, means that CAQR is just as accurate as
HouseholderQR.

Table 2.2 summarizes known upper bounds on the deviation from orthogonality ‖I −
QTQ‖2 of the computed Q factor, as a function of the machine precision ε and the input
matrix’s two-norm condition number κ(A), for various QR factorization algorithms. Except
for CGS, all these bounds are sharp. Smoktunowicz et al. demonstrate a matrix satisfying
O(εκ(A)2) < 1 for which ‖I − QTQ‖2 is not O(εκ(A)2), but as far as we know, no matrix
has yet been found for which the ‖I −QTQ‖2 is O(εκ(A)n−1) bound is sharp [210].

In the table, “CGS2” refers to classical Gram-Schmidt with one reorthogonalization pass.
A single reorthogonalization pass suffices to make the Q factor orthogonal to machine pre-
cision, as long as the input matrix is numerically full rank, i.e., if O(εκ(A)) < 1. This is
the source of Kahan’s maxim, “Twice is enough” [188]: the accuracy reaches its theoretical
best after one reorthogonalization pass (see also [1]), and further reorthogonalizations do not
improve orthogonality. However, TSQR needs only half as many messages to do just as well
as CGS2. In terms of communication, TSQR’s stability comes for free.

2.3.4 TSQR performance

Our communication-avoiding Krylov methods CA-Arnoldi, CA-GMRES, and CA-Lanczos
(Sections 3.3, 3.4, resp. 4.2) require a fast but accurate method for orthogonalizing a group
of s + 1 Krylov basis vectors. The standard versions of these Krylov methods use Modified
Gram-Schmidt (MGS) to orthogonalize their basis vectors,6 but this requires asymptotically
more messages and synchronization in parallel, and asymptotically more data traffic between
levels of the memory hierarchy, than TSQR. GMRES and Arnoldi can benefit especially from
a faster orthogonalization method, since the full orthogonalization used by these methods
often dominates the cost of the method, for restart lengths used in practice. Furthermore,
the data dependencies in standard GMRES, Arnoldi, and Lanczos force these algorithms to
use orthogonalization methods based on vector-vector or matrix-vector operations, rather
than the matrix-matrix operations used by TSQR.

We implemented a parallel shared-memory version of TSQR, as part of a CA-GMRES
solver. We first described this solver in Demmel et al. [78], and we report performance
results for the whole solver in Section 3.6 of this thesis. In this section, we report perfor-

6As we discuss in Chapter 4, the Lanczos recurrence is a truncated version of the Arnoldi recurrence,
which itself is a particular form of MGS.
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mance results just for that TSQR implementation. TSQR achieved speedups of up to 3.3×
over MGS, and up to 2.7× over LAPACK’s QR factorization DGEQRF, on the suite of test
problems, for the same number (8) of processors. TSQR costs here include both computing
the factorization and forming the explicit Q factor, which means that TSQR must read the
vectors to orthogonalize twice; nevertheless, TSQR is still always faster than MGS for CA-
GMRES. In addition, TSQR works naturally with the blocked output of the matrix powers
kernel (see Section 2.1) in CA-GMRES (see Section 3.4 for the algorithm, and Section 3.6
for performance results). LAPACK’s or ScaLAPACK’s QR factorizations would require an
additional unpacking step before they could use such data.

Hybrid algorithm

The TSQR factorization described in this section is a hybrid of the sequential and parallel
TSQR algorithms described in Section 2.3.2. It begins with an m × n dense matrix with
m � n, divided into blocks of rows. In our case, each block consists of those components
of a cache block from the matrix powers kernel that do not overlap with another cache
block. TSQR distributes the blocks so the P processors get disjoint sets of blocks. (The
implementation lets each processor initialize its own blocks. In the case of NUMA hardware,
this associates that block to a page of memory local to that processor, if the operating
system observes the “first touch” memory affinity assignment policy.) Then, each processor
performs sequential TSQR on its set of blocks in a sequence of steps, one per block. Each
intermediate step requires combining a small n×n R factor from the previous step with the
current block, by factoring the two matrices “stacked” on top of each other. We improve the
performance of this factorization by a factor of about two by performing it in place, rather
than copying the R factor and the current cache block into a working block and running
LAPACK’s standard QR factorization on it. The sequential TSQR algorithms running on
the P processors require no synchronization, because the cores operate on disjoint sets of
data. Once all P processors are done with their sets of blocks, P small R factors are left.
The processors first synchronize, and then one processor stacks these into a single nP × n
matrix and invokes LAPACK’s QR factorization on it. As this matrix is small for P and n
of interest, parallelizing this step is not worth the synchronization overhead. The result of
this whole process is a single n× n R factor, and a Q factor which is implicitly represented
as a collection of orthogonal operators. Assembling the Q factor in explicit form uses almost
the same algorithm, but in reverse order.

Implementation details

TSQR invokes an ordinary Householder QR factorization at least once per processor (the
factor that processor’s first cache block), and then once more to combine the processors’ R
factors. Ordinarily, TSQR could use any QR implementation. However, CA-Arnoldi, CA-
GMRES, and CA-Lanczos (Sections 3.3, 3.4, resp. 4.2) all require that the R factor produced
by the QR factorization has a nonnegative real diagonal. LAPACK has only satisfied this
requirement since version 3.2 (see Demmel et al. [75]). Most hardware vendors’ LAPACK
libraries (such as Intel’s MKL 10.1) have not yet incorporated this update. Thus, we had
to use a source build of LAPACK 3.2, but were free to use any BLAS implementation. (We



CHAPTER 2. COMPUTATIONAL KERNELS 98

B
es

t

G
M

R
E

S

B
es

t

G
M

R
E

S

B
es

t

G
M

R
E

S

B
es

t

G
M

R
E

S

B
es

t

G
M

R
E

S

B
es

t

G
M

R
E

S

B
es

t

G
M

R
E

S

B
es

t

G
M

R
E

S

B
es

t

G
M

R
E

S

B
es

t

G
M

R
E

S

B
es

t

G
M

R
E

S0.1

1

10

100
Ti

m
e

(s
)

k = 31, t = 2

3.3×
2.7×

3.4×
2.7× k = 9, t = 5

3×
1.5×

3×
1.5×

k = 3, t = 13

1.1×
1× 1.3×

1×
k = 4, t = 10

1.4×
1× 1.6×

1×

k = 3, t = 13

1.1×
1× 1.2×

1×

k = 3, t = 13

1.1×
1× 1.3×

1×
k = 5, t = 8

1.4×
1× 1.6×

1× k = 3, t = 13

1.1×
1× 1.2×

1×

k = 12, t = 4

2.9×
1.7×

2.9×
1.7× k = 14, t = 3

2.7×
1.9×

2.7×
1.9×

k = 3, t = 13

1.1×
1× 1.1×

1×

1d 5-pt 2d 9-pt bmw cant cfd gearbox pwtk shipsec marcat mc2depi xenon

MGS
LAPACK QR
Best

Figure 2.9: TSQR performance and GMRES modeled performance. Each bar is annotated
with two speedup numbers: the one colored blue is w.r.t. MGS and the one colored black
is w.r.t. LAPACK QR. ‘Best’ indicates the lowest time taken among LAPACK QR and
TSQR—TSQR is the best when the black colored speedup numbers are more than 1.

also benchmarked LAPACK’s QR factorization DGEQRF with the version of LAPACK in
the MKL, but that did not exploit parallelism any more effectively than when we used a
source build of LAPACK 3.2 with the MKL, so we did not use it.) For the in-place local
QR factorization routine, we chose not to implement the BLAS 3 optimizations described in
Demmel et al. [74] and inspired by the recursive QR factorizations of Elmroth and Gustavson
[92], as we expected the expected number of columns to be too small to justify the additional
floating-point operations entailed by these optimizations.

We implemented TSQR using the POSIX Threads (Pthreads) API with a SPMD-style
algorithm. We used Pthreads rather than OpenMP in order to avoid harmful interactions
between our parallelism and the OpenMP parallelism found in many BLAS implementations
(such as Intel’s MKL and Goto’s BLAS). The computational routines were written in Fortran
2003, and drivers were written in C. The TSQR factorization and applying TSQR’s Q factor
to a matrix each only require two barriers, and for the problem sizes of interest, the barrier
overhead did not contribute significantly to the runtime. Therefore, we used the Pthread
barriers implementation, although it is known to be slow (see Nishtala and Yelick [179]).

Experiments

We compared the performance of TSQR against other QR factorizations, as they would
be used in practice in CA-GMRES on the test matrices. We compared parallel TSQR
against the following QR factorization methods: LAPACK’s QR factorization DGEQRF as
found in LAPACK 3.2, and MGS in both column-oriented (BLAS 1) and row-oriented (BLAS
2) forms. For the parallel implementations, we experimented to find the best number of
processors. For TSQR, we also experimented to find the best total number of blocks. We
not only benchmarked the factorization routines (DGEQRF in the case of LAPACK), but also
the routines for assembling the explicit Q factor (DORMQR in the case of LAPACK), as that
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is invoked in the CA-GMRES algorithm. We measured both the relative forward error
‖QR−A‖1/‖A‖1 and the orthogonality ‖QTQ− I‖1/‖A‖1, and found both to be within 100
of machine epsilon for all methods tested.

For our experiments, we built our benchmark with gfortran (version 4.3) and Goto’s BLAS
(version 1.26) [116]. Although this version of the BLAS uses OpenMP internally, we disabled
this when calling the BLAS from TSQR, to avoid harmful interactions between the two levels
of parallelism. We allowed the other factorization methods to use multiple threads in the
BLAS, but using more than one thread resulted in no performance improvements. Thus, we
only reported performance of the other orthogonalization methods on one processor.

Figure 2.9 gives the performance results. For each test matrix, we show the actual
runtime of the orthogonalization process alone in the left bar (“TSQR”), and the modeled
runtime of all of CA-GMRES on the right bar (“GMRES”). Above each bar, we show the
optimal number of steps k in the matrix powers kernel for that matrix, as well as the number
of outer iterations t chosen to make the total number of iterations before restart about 40.
Each color in the bar represents the relative amount of time taken by that algorithm: red for
TSQR, green for LAPACK QR, and yellow for MGS. The runtimes are on a log plot. Also
above each bar, we show two speedup factors: on top, the TSQR speedup (if bigger than
one) over LAPACK QR, and below that the speedup of the best algorithm (either LAPACK
or TSQR) over MGS.

TSQR demonstrated speedups of up to 2.7× faster than LAPACK QR and up to 3.3×
faster than MGS for large matrices, in particular when the matrix powers kernel output
does not fit in cache. TSQR was designed to communicate the minimum amount between
cache and main memory. However, for smaller problems, methods like MGS that perform
fewer floating-point operations and have less setup overhead tend to perform better. This is
entirely expected. In fact, CA-GMRES can use any QR factorization method that produces
an R factor with a positive diagonal – which all the factorizations tested here support.

2.4 Block Gram-Schmidt

In this section, we introduce block Gram-Schmidt (BGS) algorithms. These are variants
of existing Gram-Schmidt orthogonalization methods that work on blocks of columns at a
time, instead of one column at a time as standard Gram-Schmidt methods do. If the number
of columns in each block is s, BGS algorithms require a factor of Θ(s) fewer messages in
parallel than their analogous nonblocked versions, and also requires a factor of Θ(s) fewer
words transferred between slow and fast memory. The reason we discuss BGS in this thesis
is that we will use these algorithms to avoid communication in our CA-Arnoldi and CA-
GMRES Krylov subspace methods that we present in Chapter 3.

We begin our discussion of BGS by justifying blocked versions of Gram-Schmidt in Section
2.4.1, introducing notation in Section 2.4.2, and then describing two different approaches to
BGS algorithms in Section 2.4.3. We call these two approaches “skeletons,” because they
leave important details unspecified, like how to orthogonalize individual vectors within the
current block of vectors, and how to perform reorthogonalization if at all. The first skeleton
we call “Block CGS,” because it is analogous to Classical Gram-Schmidt (CGS). The other,
which we call “Block MGS,” is analogous to Modified Gram-Schmidt (MGS). After that,
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we fill in the skeletons in Section 2.4.4 by describing Block CGS with TSQR, which is
the orthogonalization scheme we use in our CA-GMRES algorithm. This scheme does not
include reorthogonalization, because reorthogonalization is not necessary when solving linear
systems with GMRES. We then include performance models and a discussion of data layout
in Section 2.4.5.

The material that follows Section 2.4.5 includes discussion of numerical accuracy and
reorthogonalization. In Section 2.4.6, we discuss the accuracy of unblocked versions of
Gram-Schmidt in floating-point arithmetic. Previous authors observed that näıve reorthog-
onalization in the blocked case can destroy orthogonality of the resulting vectors; we explain
this failure case in Section 2.4.7. We also summarize a recent approach that addresses this
problem correctly but slowly, in that it recovers using standard nonblocked Gram-Schmidt
reorthogonalization. In Section 2.4.8, we overcome this problem without sacrificing perfor-
mance, with a novel BGS algorithm with reorthogonalization (“RR-TSQR-BGS”) that uses
a new rank-revealing version of TSQR (“RR-TSQR,” see Section 2.3).

Blocked versions of Gram-Schmidt are not new; see e.g., [142, 229, 216]. However, com-
bining them with TSQR (Section 2.3) is a new idea as far as we know. Furthermore, our
algorithms differ from previous work in that we use TSQR, rather than ordinary MGS or
CGS, to orthogonalize the current block of vectors internally.

2.4.1 Introduction

Orthogonalizing a vector against an orthogonal basis in order to add the vector to the
basis is an important kernel in most Krylov subspace methods. Some iterative methods,
such as Arnoldi and GMRES, explicitly orthogonalize each new basis vector against all the
previous basis vectors. Others, such as symmetric Lanczos and CG, use short recurrences
that produce basis vectors that are orthogonal in exact arithmetic. Even so, in many cases
the basis vectors produced by such recurrences lose their orthogonality in finite-precision
arithmetic. This is often unacceptable when solving eigenvalue problems, in which case
explicit reorthogonalization is required.

Many Krylov subspace methods use a form of the modified Gram-Schmidt (MGS) or-
thogonalization procedure. The usual implementations of Arnoldi iteration and GMRES
use MGS. Symmetric Lanczos uses MGS implicitly; the symmetry of the matrix A means
that most of the dot products in MGS are zero in exact arithmetic, and the algorithm is
structured to exploit these zeros.

We showed in Demmel et al. [74] that MGS communicates asymptotically more than
the lower bound, both in parallel and between levels of the memory hierarchy. This is a
problem for iterative methods such as Arnoldi and GMRES, that may spend a large fraction
of their time orthogonalizing basis vectors. For other Krylov iterations, reducing the cost of
reorthogonalization may also improve performance, or even make reorthogonalization feasible
when it was not before. Whatever progress we make replacing SpMV with the matrix powers
kernel, we also have to address the (re)orthogonalization phase in order to make our methods
truly communication-avoiding.
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2.4.2 Notation

The block Gram-Schmidt algorithms we discuss in this section share the following notation.
This notation may differ slightly from that used in the iterative methods in this thesis,
such as when we describe CA-Arnoldi in Section 3.3. We use a simpler notation here that
conveys the algorithms, and later introduce more specific notation as needed in the context
of particular iterative methods.

We begin with a finite collection of length n vectors V = [v1, v2, . . . , vm], where m ≤ n.
In our applications, m� n. We then group these vectors into blocks V = [V1, V2, . . . , VM ]
with M ≤ m. There is no particular requirement that the blocks all have the same number
of columns; in fact, Vanderstraeten [229] chooses the number of columns in each block
dynamically, to improve numerical stability. Our iterative methods will have the option to
exploit this fact, but we present them as if the number of columns in each block is the same
(except perhaps for the first block, but we will neglect that difference in this section).

All the variants of Gram-Schmidt presented in this section have the goal of producing a
set of vectors Q = [q1, q2, . . . , qm] such that for 1 ≤ j ≤ m, if the vectors V = [v1, . . . , vj]
are linearly independent, then the vectors q1, . . . , qj form a unitary basis for span{v1, . . . ,
vj}. The method should also be able to detect for a particular j, if vj ∈ span{v1, . . . , vj−1}.
In that case, the method should stop. If the m input vectors are linearly independent, the
final result should be a “thin” QR factorization V = QR where Q = [q1, . . . , qm] and R is an
m ×m upper triangular matrix with positive real diagonal entries. The columns of Q are
grouped into blocks Q = [Q1, Q2, . . . , QM ], using the same grouping as V = [V1, V2, . . . ,
VM ]. We write the corresponding blocks of R as Rjk, where in exact arithmetic, Rjk = Q∗jVk.

2.4.3 Algorithmic skeletons

We discuss two approaches to block Gram-Schmidt algorithms in this section. We call the
two approaches “skeletons,” because they leave important details unspecified, like how to
orthogonalize individual vectors within the current block of vectors, and how to perform re-
orthogonalization if at all. The latter are like “muscles,” in that they are are implementation
choices to be filled in. Those choices affect both numerical stability and performance.

Algorithm 10 Block CGS skeleton

Input: V = [V1, V2, . . . , VM ], where V is n×m. Each Vk is n×mk, with
∑M

k=1mk = m.
Output: Q = [Q1, . . . , QM ], where R (Q) = R (V ) and R ([Q1, . . . , Qk]) = R ([V1, . . . , Vk])

for k = 1, . . . ,M . Each Qk has mk columns.
Output: R: m × m upper triangular matrix, laid out in blocks so that Rij is mi × mj.

V = QR is the thin QR factorization of V .
1: for k = 1 to M do
2: R1:k−1,k := [Q1, . . . , Qk−1]∗Vk
3: Yk := Vk − [Q1, . . . , Qk−1]R1:k−1,k

4: Orthogonalize Yk internally (if possible – see below for explanation), producing a
(thin) QR factorization QkRkk = Yk

5: end for
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Algorithm 11 Block MGS skeleton

Input: V = [V1, V2, . . . , VM ], where V is n×m. Each Vk is n×mk, with
∑M

k=1mk = m.
Output: Q = [Q1, . . . , QM ], where R (Q) = R (V ) and R ([Q1, . . . , Qk]) = R ([V1, . . . , Vk])

for k = 1, . . . ,M . Each Qk has mk columns.
Output: R: m × m upper triangular matrix, laid out in blocks so that Rij is mi × mj.

V = QR is the thin QR factorization of V .
1: for k = 1 to M do
2: V

(1)
k := Vk

3: for j = 1 to k − 1 do
4: Rjk := Q∗jV

(j)
k

5: V
(j+1)
k := V

(j)
k −QjRjk

6: end for
7: Yk := V

(k)
k

8: Orthogonalize Y internally (if possible – see below for explanation), producing a
(thin) QR factorization QkRkk = Yk

9: end for

The first skeleton we call “Block Classical Gram-Schmidt” (Block CGS), and the second
we call “Block Modified Gram-Schmidt” (Block MGS). The Block CGS skeleton is shown
as Algorithm 10, and the Block MGS skeleton is shown as Algorithm 10. All the operations
in both of these, except the final “orthogonalize the block internally” step, are performed
using dense matrix-matrix multiplications. For example, the computation Rij := Q∗jVk in
Block MGS (Algorithm 11) is a matrix-matrix multiplication, in which one expects Qj and
Vk to be “tall and skinny” (to have many more rows than columns). This expectation
influences implementation details, like data layout. For example, in order to achieve the
minimum number of block transfers between levels of the memory hierarchy, in which each
block transfer is allowed to consist only of contiguous data, a specific data layout may be
required. We discuss this further in Section 2.4.5.

The block parts of block Gram-Schmidt algorithms only perform matrix-matrix multipli-
cations, in order to improve performance. The most “interesting” thing that could happen
in the block phase, from a numerical analysis perspective, is a reorthogonalization pass. In
contrast, most of the interest focuses on the “orthogonalize the current block column in-
ternally” operation. This could be called the unblocked case, by analogy with other dense
one-sided factorizations in LAPACK, which have a main BLAS 3 algorithm that works on
block columns (such as DGETRF for LU factorization), and a BLAS 2 algorithm that factors
each block column (such as DGETF2 for LU factorization). The choice of algorithm for the
unblocked case has a large effect on numerical stability, which we will discuss in Sections
2.4.6 and 2.4.7. It also affects performance, which we will discuss in Section 2.4.5. This is
true especially if the number of blocks M is small, which is typically the case for our iterative
methods. The “if possible” mentioned for the unblocked case in Algorithms 10 and 10 refers
to the possibility of breakdown, which we will discuss along with the loss of orthogonality in
Section 2.4.6.
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2.4.4 Block CGS with TSQR

In this section, we present Block CGS with TSQR as Algorithm 12. This is the algorithm we
use in CA-GMRES in Chapter 3. Block CGS with TSQR does not include reorthogonaliza-
tion. Since the standard version of GMRES (that uses nonblocked MGS orthogonalization)
does not require reorthogonalization when solving linear systems (see Paige et al. [185]), we
expect that it is required even less in CA-GMRES, where the use of TSQR improves orthog-
onality of the block columns. If reorthogonalization is necessary, it should not be applied
näıvely to Block CGS with TSQR, as we explain in Section 2.4.7. While we only present
Block CGS with TSQR here, it is not hard to derive Block MGS with TSQR analogously.

Algorithm 12 Block CGS with TSQR

Input: V = [V1, V2, . . . , VM ], where V is n×m. Each Vk is n×mk, with
∑M

k=1mk = m.
Output: Q = [Q1, . . . , QM ], where R (Q) = R (V ) and R ([Q1, . . . , Qk]) = R ([V1, . . . , Vk])

for k = 1, . . . ,M . Each Qk has mk columns.
Output: R: m × m upper triangular matrix, laid out in blocks so that Rij is mi × mj.

V = QR is the thin QR factorization of V .
1: for k = 1 to M do
2: R1:k−1,k := [Q1, . . . , Qk−1]∗Vk
3: Yk := Vk − [Q1, . . . , Qk−1]R1:k−1,k

4: Compute the thin QR factorization Yk = QkRkk via TSQR
5: end for

2.4.5 Performance models

In this section, we present simple performance models for Block CGS (Algorithm 10) and
Block MGS (Algorithm 11). These neglect the unblocked case. We present performance
models for the “tall skinny” unblocked case in Demmel et al. [74]. Our models use the
“latency-bandwidth” parallel and sequential hardware models described in Section 1.2.2 of
this thesis.

Developing the performance models requires discussion of data layout. As we mentioned
in Section 1.2.2, our sequential hardware model assumes that data movement between levels
of the memory hierarchy requires that the data be stored contiguously in memory. The whole
point of developing and analyzing BGS is for our CA-Arnoldi (Section 3.3) CA-GMRES
(Section 3.4) algorithms. These Krylov methods use BGS with TSQR (Algorithm 12) to
orthogonalize their Krylov basis vectors. In order to avoid copying data between layouts
(which would add both bandwidth and latency costs), CA-Arnoldi and CA-GMRES require
the following block layout for the Vk and Qk blocks. Each Vk dimension n ×mk is laid out
in N blocks of rows, with the same number of rows n/N in each block (if possible):

Vk =


V1k

V2k
...

VNk
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Thus, each block Vjk is N/mk by mk. The corresponding orthogonalized block column Qk

should have the same block layout as Vk. The consequence of using TSQR is that three
row blocks will be accessed at once. For best performance, those blocks should all fit in
fast memory. Thus, in order to make the BGS row block dimensions consistent with TSQR,
we size the row blocks so that up to three may reside in fast memory at once. TSQR also
requires that each block have at least as many rows as it has columns. Thus, W ≥ 3 maxkm

2
k

is required. If N is the number of row blocks in a block column, then we need 3nmaxkmk/N
words in fast memory to hold three row blocks, and thus 3nmaxkmk/N ≤ W is required.
Fewer row blocks means lower latency costs, so the best number of row blocks is the maximum
given that constraint:

N = max

{
3nmaxkmk

W
, 1

}
.

The second term in the max is if W is large enough to hold three entire block columns, in
which case the block columns do not need to be divided into row blocks. We neglect this
case for now. The result is that the best number of row blocks Nbest in sequential BGS is
given by

Nbest =
3nmaxkmk

W
. (2.16)

For Block MGS, it is obvious that N = 3nmaxkmk/W is optimal or nearly so, since
sequential Block MGS works on two blocks (Vik and Qij) in fast memory at any one time. For
Block CGS, this is not obvious, since the matrix-matrix multiplications involve several blocks
[Q1, . . . , Qk−1 at once. Perhaps some other layout might result in optimal communication.
However, for Block CGS we require the same layout as for Block MGS. We do so because
TSQR (and the matrix powers kernel, in CA-Arnoldi and CA-GMRES) requires that layout.
Copying data between different layouts to optimize each of Block CGS and TSQR separately
might make each faster separately, but make the total run time slower. It would also make
the implementation more complicated, so we do not do it.

Performance models

We develop parallel and sequential performance models for Block CGS and Block MGS
below. As we observe in [74] and [78], there are many different implementation strategies
for TSQR (and thus for BGS), depending on the arrangement of processors and the memory
hierarchies available. In [78], we present and implement one possible arrangement, which
for a single-node shared-memory parallel computer minimizes the number of data transfers
between each processor’s private cache and DRAM. It also ensures that each processor only
accesses row blocks of the Vk and Qj block columns that reside on DRAM pages to which it
has (NUMA) affinity, and maximizes parallelism. In this section, rather than try to model
that arrangement, we assume two simplified hardware models. One is a sequential processor
with two levels of memory hierarchy and a fast memory of capacity W floating-point words,
and the second parallel model is a collection of P processors (in which we do not consider
memory hierarchies). For details on the performance models used in this thesis, see Section
1.2.2. These performance models do not account for reorthogonalization, which we discuss
starting in Section 2.4.6.
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Algorithm # flops # messages # words

Block CGS 2nm2 6nm2

Ws
3nm2

s

Block MGS 2nm2 6nm2

Ws
3nm2

s

Standard MGS 2nm2 3nm
2

+ n2m2

2W−m(m+1)
2nm2

2W−m(m+1)

Table 2.3: Highest-order terms in the sequential performance models for Block CGS, Block
MGS, and standard MGS. W is the fast memory capacity in words.

Algorithm # flops # messages # words

Block CGS 2nm2

P
+ m2

2
logP m

s
logP m2

2
logP

Block MGS 2nm2

P
+ m2

2
logP m2

s2
logP m2

2
logP

Standard MGS 2nm2

P
2m logP m2

2
logP

Table 2.4: Highest-order terms in the parallel performance models for Block CGS, Block
MGS, and standard MGS. P is the number of processors.

In the models below, we assume for simplicity that the block widths mk of the blocks V1,
V2, . . . , VM are all the same: mk = s for k = 1, 2, . . . ,M . We also assume the number of rows
n/N in each block is the same. In the parallel model, N = P (the number of processors).

Sequential model

The above argument about BGS needing the same row block dimensions as TSQR means
that Block MGS and Block CGS have the same sequential performance model. They merely
perform the computations in a different order. Thus, it suffices to analyze Block MGS. We do
so now. Table 2.3 shows the resulting performance models. The standard MGS performance
model in the table comes from Demmel et al. [74]. We skip the derivation here, since it is
not hard to do. The total number of floating-point operations is 2nm2, the number of words
transferred from slow memory to fast memory and back is 6nsM(M −1) = 3nm2/s, and the
total number of messages is 4N = 6nm2/(Ws).

Parallel model

In the sequential model above, the data layout requirements meant that Block CGS and
Block MGS had the same performance model, since the row blocks in both algorithms must
have the same layout and dimensions. In the parallel model below, Block CGS and Block
MGS will differ, since messages between processors need not be contiguous in the memory
of one processor.

We begin with Block MGS. As in the analysis above, the fundamental operations of Block
MGS are Rjk := Q∗jVk and Vk := Vk − QjRij. The first of these, Rjk := Q∗jVk, is a parallel
matrix-matrix multiply, and would be invoked in the following way:

1: Each processor i (i = 1, . . . , P ) computes the s× s matrix R
(i)
jk := Q∗ijVik in parallel

2: In logP messages, using a binary reduction tree, compute
∑P

i=1R
(i)
jk

The first step R
(i)
jk := Q∗ijVik is an n/P by s times s by n/P matrix-matrix multiply, requiring
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2ns2/P floating-point operations. The second step requires s2 logP floating-point operations
(along the critical path), logP messages, and s2 logP total words transferred. Both of these
steps are executed M(M − 1)/2 times.

The second operation, Vk := Vk −QjRij, would proceed as follows:
1: Each processor i (i = 1, . . . , P ) computes the n/P × s matrix Vik := Vij − QijRjk in

parallel
This involves no communication (not counting any synchronization at the end). The Vij :=
Vij − QijRij operation is an n/P by s times s × s matrix-matrix multiply and an n/P × s
matrix sum, costing a total of 2ns2/P + O(ns/P ) floating-point operations. This step is
executed M(M − 1)/2 times.

The total number of floating-point operations for Block MGS is therefore 2nm2/P +
(m2/2) logP , the total number of words sent and received is (m2/2) logP , and the total
number of messages is (m2/s2) logP .

The Block CGS analysis is analogous, so we skip it. Parallel Block CGS requires the
same number of floating-point operations and total words sent and received as Block MGS,
but Block CGS requires only (m/s) logP messages.

2.4.6 Accuracy in the unblocked case

From this point on in our presentation of BGS, we leave the discussion of performance and
focus on accuracy in finite-precision arithmetic and reorthogonalization. All of the Gram-
Schmidt algorithms discussed in this thesis are equivalent in exact arithmetic, as long as none
of the input vectors are linearly dependent. However, the accuracy of the algorithms differ
in finite-precision arithmetic. In this section, we first explain what we mean by accuracy.
We then briefly summarize known results about nonblocked variants of Gram-Schmidt and
other orthogonalization methods. In later sections, we will explain how block Gram-Schmidt
differs. In particular, a simple example in Section 2.4.7 shows how a näıve version of BGS
can produce vectors that are not at all orthogonal.

The “unblocked case” refers to the operation that makes Vk internally orthogonal, after
it has been made orthogonal to previous groups of orthogonal basis vectors Q1, . . . , Qk−1.
This amounts to a QR factorization of a tall and skinny matrix. Our technical report
[74] refers to many different choices for this operation: Classical Gram-Schmidt (CGS),
Modified Gram-Schmidt (MGS) in either column-oriented (BLAS 1) or row-oriented (BLAS
2) forms, CholeskyQR, Householder QR, or TSQR. The report gives performance models and
summarizes the expected loss of orthogonality for each, assuming no reorthogonalization. In
this section, we discuss both reorthogonalization, and tests that show whether it is necessary.

The previous usual approach for the unblocked case is the column-oriented form of MGS,
which may or may not include reorthogonalization. This compares to the blocked LU and
QR matrix factorizations in LAPACK and ScaLAPACK, for which the unblocked case uses
the analogous textbook column-by-column version of the factorization. In [74], we show that
using TSQR for the unblocked case, rather than the column-by-column algorithms, reduces
the amount of communication asymptotically, without sacrificing numerical stability. This
does not apply solely to QR; in [122], for example, our collaborators Grigori et al. present
an analogous algorithm for LU factorization [122].
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What does accuracy mean?

Stewart [216] gives a concise summary and bibliography of numerical stability concerns
when performing unblocked and blocked Gram-Schmidt orthogonalization in finite-precision
arithmetic. If we think of Gram-Schmidt as computing the QR factorization V = QR, where
V is a matrix whose columns are the input vectors to orthogonalize, then there are at least
two ways of defining the accuracy of the orthogonalization:

• The residual error ‖V −Q ·R‖2

• Orthogonality of the columns of Q

Stewart explains that almost all orthogonalization methods of interest guarantee a small
residual error under certain conditions (such as V being of full numerical rank). However,
fewer algorithms are able to guarantee that the vectors they produce are orthogonal to
machine precision. One measure for the loss of orthogonality is the following norm:

Orthogonality(Q) = ‖I −Q∗Q‖2. (2.17)

In exact arithmetic, for all Gram-Schmidt schemes, the above is zero as long as the input
vectors are linearly independent. In finite-precision computations, however, this norm many
grow larger and larger, at least until the supposedly orthogonal vectors become linearly
dependent. Schemes for improving the stability of orthogonalization schemes thus focus on
bounding the loss of orthogonality. Note that Equation (2.17) is feasible to compute in
the usual case of interest, where Q has many more rows than columns (so that the matrix
I −Q∗Q has small dimensions).

Accuracy in unblocked Gram-Schmidt

In Demmel et al. [74, Table 11], we summarized the accuracy of various orthogonalization
schemes. The analysis quotes works by Smoktunowicz et al. [210] and Giraud et al. [111],
among others (which those works in turn cite). The various orthogonalization schemes
we summarized in [74] include Householder QR, TSQR, unblocked MGS and CGS (with
and without reorthogonalization), and an algorithm we called “CholeskyQR” (which entails
computing the Cholesky factorization V ∗V = LL∗ and computing Q := V L−∗). We repeat
the summary in this section as Table 2.5. Note that Householder QR and TSQR produce
Q factors that are unconditionally orthogonal, that is, that are orthogonal whether or not
the matrix V is numerically full rank. We do not make that distinction in Table 2.5 here,
because in an s-step Krylov method, the s-step basis should always be numerically full rank.
Otherwise orthogonalizing the basis may produce vectors not in the desired Krylov subspace.

Reorthogonalization criteria

In (nonblocked) CGS and MGS, reorthogonalization is not always necessary. One may choose
to do it anyway, to be safe and also to avoid the expense or trouble of checking; this is called
full reorthogonalization. To avoid unnecessary reorthogonalization, one may perform selective
reorthogonalization. There, one tests each vector before and after orthogonalizing it against
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Algorithm ‖I −QTQ‖2 upper bound Reference(s)
Householder QR O(ε) [113]
TSQR O(ε) [74]
CGS2 or MGS2 O(ε) [1, 149]
MGS O(εκ(A)) [31]
CholeskyQR O(εκ(A)2) [215]
CGS O(εκ(A)m−1) [149, 210]

Table 2.5: Upper bounds on deviation from orthogonality of the Q factor from various
QR factorization algorithms of the n × m matrix V (with n ≥ m). Machine precision is
ε. CGS2 means CGS with one full reorthogonalization pass and MGS2 means MGS with
one full reorthogonalization pass. CholeskyQR means computing the Cholesky factorization
V ∗V = LL∗ and computing Q := V L−∗.

the previously orthogonalized vectors. If the test fails, one reorthogonalizes it against all the
previously orthogonalized vectors. A typical criterion involves comparing the norm of the
vector before and after the orthogonalization pass; if it drops by more than a certain factor
K (say, K = 1/10), then the result may be mostly noise and thus reorthogonalization is
required. For a review and evaluation of various reorthogonalization criteria, see Giraud et
al. [110]. There are also reorthogonalization tests specific to Krylov subspace methods like
symmetric Lanczos; Bai et al. [15] give an overview.

We do not evaluate the effectiveness (in terms of accuracy of the orthogonalization)
of different reorthogonalization criteria in this thesis. However, the criterion matters to us
because they way it is computed may affect performance. For example, many criteria require
the norm of each vector before the first orthogonalization pass. Computing this is not already
part of most orthogonalization schemes (except for Householder QR, which does not require
reorthogonalization), so it may require additional messages in parallel. We will discuss this
further below, where we c

What about “Twice is Enough”?

One reorthogonalization pass is a standard approach in unblocked orthogonalization meth-
ods. It is based on the “Twice is Enough” observation by Kahan (cited in Parlett [188,
Section 6.9]). This says that when orthogonalizing a basis of a Krylov subspace, if the
current vector vk is orthogonalized twice to produce qk, only two possibilities remain:

• qk is orthogonal to q1, . . . , qk−1, or

• an invariant subspace has been reached, so that vk ∈ span{q1, . . . , qk−1}. This is the
“lucky breakdown” case that we describe later.

The latter can be detected if the norm of vk drops significantly as a result of reorthogonal-
ization (but before normalization). Note that “Twice is Enough” applies only in the context
of Krylov subspace methods, where linear dependence of the vectors has a useful diagnostic
meaning. For a general collection of vectors, some of which may be zero or otherwise depen-
dent on the other vectors, other techniques are required to ensure that the computed vectors
are orthogonal (see e.g., Stewart [216]).
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2.4.7 Näıve block reorthogonalization may fail

It turns out that in block versions of Gram-Schmidt, the block operations in either the Block
CGS or Block MGS forms matter little for accuracy of the resulting vectors. For instance,
Stewart [216] explains that simply performing Block CGS twice, as follows:

1: R1:k−1,k := [Q1, . . . , Qk−1]∗Vk
2: Yk := Vk − [Q1, . . . , Qk−1]R1:k−1,k

3: R′1:k−1,k := [Q1, . . . , Qk−1]∗Yk
4: Zk := Yk − [Q1, . . . , Qk−1]R′1:k−1,k

5: R1:k−1,k := R1:k−1,k +R′1:k−1,k

can cover for inaccuracies in the orthogonality of the previously orthogonalized blocks Q1,
. . . , Qk−1. What affects accuracy more is how we handle the unblocked case – that is, how
we orthogonalize the result Zk of the above process.

The obvious thing to do with Zk is to orthogonalize it with (nonblocked) MGS, and then
repeat the MGS step if necessary. Jalby and Philippe [142], in their analysis of blocked
algorithms, present two variants of Block MGS. They differ only in their handling of the
unblocked case. The first variant, which they call “Block Gram-Schmidt” (BGS), just uses
MGS on Vk, after a round of block orthogonalizations. In the worst case, the loss of orthog-
onality in this variant could be as bad as (unblocked) CGS. Thus, the authors propose the
B2GS algorithm, in which the current block Vk gets one MGS reorthogonalization pass.

Stewart [216] points out a way that Jalby and Philippe’s B2GS algorithm can fail. Imag-
ine that as a result of the block orthogonalization phase, the columns of Vk are made or-
thogonal to machine precision against the columns of Q1, . . . , Qk−1. Suppose then that we
apply unblocked MGS to the columns of Vk. If the norm of a column of Vk decreases signif-
icantly during this process, then the corresponding column may no longer be orthogonal to
the columns of [Q1, . . . , Qk−1]. Reorthogonalizing the resulting Qk internally, even if done in
exact arithmetic, could then result in a Qk which is not orthogonal to [Q1, . . . , Qk−1]. Also,
reapplying the block reorthogonalization of the resulting Qk against Q1, . . . , Qk−1 could mess
up the “correct” columns of Qk by mixing them with the “bad” column(s). For a simple
example, see Appendix C.2.

Stewart proposes a fix to the above problem, which we paraphrase in our terms as Algo-
rithm 13. We refer the interested reader to Stewart’s recent paper [216].

Dynamically sized blocks

Vanderstraeten [229], citing Jalby and Philippe, also recognizes that BGS can be unsta-
ble. Rather than reorthogonalization, he takes a different approach: he chooses the size
of each block dynamically, to bound an estimate of the condition number of that block.
We cannot easily use this approach in our iterative methods, because there, the number
of columns in a block is determined by the matrix powers kernel (Section 2.1) before that
block is orthogonalized. We would have to split up the block into subblocks. Furthermore,
Vanderstraeten’s condition number estimator requires column norms, which would require
more communication than we want to spend.
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Algorithm 13 Block Gram-Schmidt with reorthogonalization (Stewart [216])

Input: V = [V1, V2, . . . , VM ], where V is n×m. Each Vk is n×mk, with
∑M

k=1mk = m.
Output: Q = [Q1, . . . , QM ], where R (Q) = R (V ) and R ([Q1, . . . , Qk]) = R ([V1, . . . , Vk])

for k = 1, . . . ,M . Each Qk has rk columns with 0 ≤ rk ≤ mk.
1: for k = 1 to M do
2: Apply one pass of block orthogonalization (in either Block CGS or Block MGS form)

to Vk, resulting in Yk.
3: Apply one pass of CGS with reorthogonalization to Yk, resulting in Zk.
4: if the norm of each column of Zk is no smaller than half the norm of the corresponding

column of Yk then
5: The orthogonalization of Vk is acceptable.
6: else
7: Apply one pass of block orthogonalization (in either Block CGS or Block MGS

form) to Zk, resulting in Wk.
8: Perform CGS with reorthogonalization to each column of Wk in turn.
9: if the norm of any column of Wk drops by more than half as a result then

10: Declare an “orthogonalization fault.”
11: Perform CGS with reorthogonalization against all the columns of Q1, . . . , Qk−1

as well as all the previously orthogonalized columns of Wk. The result is
Qk.

12: end if
13: end if
14: end for

2.4.8 Rank-revealing TSQR and BGS

The example in Section 2.4.7 shows that even if a block Yk given by

Yk := (I − [Q1, . . . , Qk−1][Q1, . . . , Qk−1]∗)Vk

has been made orthogonal to machine precision against all the previously orthogonalized
blocks Q1, . . . , Qk−1, any orthogonalization procedure on the columns of the block Yk, no
matter how accurate, may magnify tiny error terms from the block orthogonalization phase.
This may negate the effect of the block orthogonalization, so that if Yk = QkRkk is the
thin QR factorization of Yk, the columns of Qk may no longer be orthogonal (to machine
precision) to R ([Q1, . . . , Qk−1]).

The example above also suggests a solution. Since the problem comes from Yk having
nearly linearly dependent columns, a rank-revealing factorization may be used to detect
and remove such columns. Da Cunha et al. [66] observed that one can construct a rank-
revealing factorization algorithm for tall skinny matrices, using any fast and accurate QR
factorization algorithm (such as the one they propose, which as we discuss in Demmel et al.
[74] is a precursor to our TSQR). One first computes the thin QR factorization using the fast
and accurate algorithm, and then applies any suitable rank-revealing decomposition to the
resulting small R factor. We call “RR-TSQR” the resulting rank-revealing decomposition,
when the fast QR factorization algorithm used in TSQR.
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RR-TSQR begins by computing the thin QR factorization of Yk using TSQR. (This
works because, as we mentioned in [74], TSQR produces a Q factor which is internally
orthogonal to machine precision, even if the input matrix is rank deficient. This is the
unconditional orthogonality property that TSQR shares with Householder QR.) Then, we
use a rank-revealing decomposition on the much smaller R factor that results. Since the
R factor is small, factoring it requires little or no communication (compared to computing
the QR factorization of Yk). Finally, since R is small and triangular, it is inexpensive to
estimate its condition number using a 1-norm condition number estimator, such as DTRCON

in LAPACK [4]. If R is sufficiently well-conditioned, no further work is required, since Yk
must also be well-conditioned. Otherwise, the columns of Yk must be nearly dependent, so
we can use any suitable rank-revealing factorization on R (such as the SVD, or QR with
column pivoting) to identify and remove the redundant columns of Yk.

We now describe in detail how to use RR-TSQR to construct a robust version of Block
Gram-Schmidt. Suppose that the current n×mk block of columns is Vk. First, we compute
the norm of each column of Vk, using a single reduction operation. Then, we orthogonalize
Vk against the previous blocks Q1, . . . , Qk−1, resulting in Yk. This may be done either
in “Block MGS” form, or “Block CGS” form, as we discussed in Section 2.4.4. After this
step, we need to check whether or not block reorthogonalization is necessary. There are two
different ways to do this, depending on how often we expect block reorthogonalization to be
needed:

1. If we expect to need frequent reorthogonalization, we may compute the column norms
of Yk in the same way as we computed the column norms of Vk, using a single reduction
operation.

2. If we do not expect to reorthogonalize often, we may perform two tasks in one by
computing the QR factorization (via TSQR) Yk = QYk

RYk
. Since TSQR computes the

columns of QYk
orthogonal to machine precision, the 2-norm of column j of RYk

gives
(to within machine precision) the 2-norm of column j of Yk: that is, for j = 1, 2, . . . ,mk,
‖Yk(:, j)‖2 = ‖RYk

(:, 1 : j)‖2.

For those columns of Yk for which reorthogonalization is necessary (e.g., because their
column norms drop too much – see Section 2.4.6 for a brief discussion of reorthogonalization
schemes) we perform a second block orthogonalization pass. We only need to reorthogo-
nalize those columns, and restricting the reorthogonalization to those columns will save us
both bandwidth and flops (though not messages). However, there is no harm done in re-
orthogonalizing all the columns of Yk. We omit this optimization from our explanation for
simplicity’s sake. We call the result of this second orthogonalization pass Zk.

If we did not need to perform reorthogonalization, we already have the thin QR fac-
torization Yk = QYk

RYk
, and we set Zk := Yk, QZk

:= QYk
, and RZk

:= RYk
. Otherwise,

we compute the thin QR factorization Zk = QZk
RZk

via TSQR. (If reorthogonalization is
sufficiently infrequent, the occasional redundant TSQR will avoid the computation of the
norms of all columns of Yk for each k.)

We then use LAPACK’s DTRCON condition number estimator to estimate the condition
number of the upper triangular matrix RZk

. If it is not sufficiently well-conditioned, then
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we must perform the rank-revealing part of RR-TSQR. Let

RZk
= UkΣkWk = Uk

(
Σ

(1)
k 0

0 Σ
(2)
k

)(
W

(1)
k

W
(2)
k

)
. (2.18)

be the SVD decomposition of RZk
. In Equation (2.18), W

(1)
k is rk×mk, W

(2)
k is rk×mk, and

Σk is mk ×mk. Furthermore, the positive diagonal matrix Σ
(1)
k is rk × rk, the nonnegative

diagonal matrix Σ
(1)
k is mk − rk by mk − rk, the smallest element of Σ

(1)
k is larger than the

largest element of Σ
(2)
k , and the largest element of Σ

(2)
k is smaller than some prespecified

tolerance ε. Thus, we are justified in calling rk the numerical rank of the matrix V ′k , relative
to some predetermined tolerance ε.

If rk = mk, we do not need the results of the SVD decomposition. In that case, we may
take

Qk := QZk
, and

Rkk := RZk
,

and continue with the next block Vk+1. Otherwise, we must use the results of the SVD. Let
Q̃k = QZk

Uk. This n×mk matrix is also orthogonal, since QZk
and Uk both are orthogonal.

Partition Q̃k by columns as Q̃k = [Q̃
(1)
k , Q̃

(2)
k ], where Q̃

(1)
k is n× rk. Now, we can write

Zk =
(
Q̃

(1)
k Σ

(1)
k W

(1)
k , Q̃

(2)
k Σ

(2)
k W

(2)
k

)
.

Since each column of the block Q̃
(2)
k Σ

(2)
k W

(2)
k is smaller than the given tolerance in norm,

we may set this block to zero without affecting the numerical rank of Zk. This discards the
“noise” terms. If we further compute the QR factorization Σ

(1)
k W

(1)
k = W̃kR̃k (where W̃k is

the rk × rk Q factor, and R̃k is the rk × rk upper triangular R factor), we may finish the
process:

Qk = Q̃
(1)
k W̃k, and

Rkk = R̃k.
(2.19)

Note that after the elimination of the “noise” terms, the resulting Q factor Qk only
has rk columns, not mk columns. If we apply this inductively to all block columns of
V = [V1, V2, . . . , VM ], each orthogonalized block Qj has only rj columns, and the final result
Q = [Q1, Q2, . . . , QM ] has only

∑
j rj columns. This also means that in order for the final

results
Q = [Q1, . . . , QM ], and

R =


R11 R12 . . . R1M

0 R22 . . . R2M
...

. . . . . .
...

RMM

 (2.20)

to form a QR decomposition of
V = [V1, . . . , VM ],

each Vk with numerical rank less than mk should be replaced with Qk, and the corresponding
Rkj blocks in R (with 1 ≤ j ≤ k − 1) should be replaced with zeros (as Qk is orthogonal to
Q1, . . . , Qk−1).
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Algorithm 14 shows the resulting RR-TSQR – based block Gram-Schmidt procedure,
which we call “RR-TSQR-BGS.” We show the block orthogonalization passes in Block CGS
form for conciseness, though they may also be done in Block MGS form. We are justified
in calling RR-TSQR-BGS “communication-avoiding,” as the algorithm is more or less the
same as CAQR in Demmel et al. [74].

RR-TSQR-BGS and future work

We leave the testing and implementation of RR-TSQR-BGS (Algorithm 14) to future work.
This is justified in part by this thesis’ emphasis on solving linear systems, rather than solv-
ing eigenvalue problems. Reorthogonalization is unnecessary in finite-precision arithmetic
when solving Ax = b with standard GMRES (see Paige et al. [185]), for example, but
it is an important part of the Arnoldi and Lanczos iterations. We include the algorithm
here because we plan to do more experiments with our communication-avoiding versions of
Arnoldi and Lanczos in the future, whereupon we will likely need a communication-avoiding
reorthogonalization procedure like Algorithm 14.

2.5 Block orthogonalization in the M inner product

In this section, we present the M -CholBGS algorithm for orthogonalization in an inner prod-
uct 〈u, v〉 ≡ v∗Mu defined by an SPD matrix M . This is a combination of two algorithms:

M-BGS A variant of Block Gram-Schmidt.

M-CholeskyQR A factorization analogous to QR, based on first computing a block inner
product of two bases and then performing a Cholesky decomposition. This is used to
orthogonalize each block column internally, after the M -BGS step.

The resulting M -CholBGS algorithm communicates no more than BGS with TSQR (Algo-
rithm 12 in Section 2.4.4) up to a constant factor, though it is not necessarily as accurate.

As far as we know, M -CholBGS is a novel algorithm. Thomas [220] presents a version of
Block Gram-Schmidt for the M inner product. The M -BGS part of his algorithm is the same
as ours, but instead of using M -CholeskyQR to factor each block column after the BGS step,
he uses a variant of Modified Gram-Schmidt called “PGSM” (Product Gram-Schmidt in the
M -norm). PGSM assumes that a Cholesky factorization M = B∗B of the SPD matrix M is
available. This is not always feasible to compute when M is large and sparse, or when it is
only available as an operator M−1. Furthermore, PGSM has performance similar to Modified
Gram-Schmidt, since it orthogonalizes one column at a time. M -CholeskyQR communicates
a factor Θ(s) less both in parallel (number of messages) and sequentially (number of words
transferred between slow and fast memory) than MGS.

The main reason we developed M -CholBGS is to simplify left-preconditioned CA-Lanczos
(Algorithm 29 in Section 4.3.4), which requires orthogonalizing Krylov basis vectors in the M
inner product. There, we are solving the generalized eigenvalue problem Ax = λMx, where
A and M are SPD, and M is only available as the operator M−1. We did not have time
to incorporate M -CholBGS into left-preconditioned CA-Lanczos, but we record it here as a
novel algorithm for future use. M -CholBGS can also be modified in order to biorthogonalize
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two sets of vectors, for example in communication-avoiding versions of nonsymmetric Lanczos
(see Chapter 6) or communication-avoiding versions of the “Two-Sided Arnoldi” algorithm
of Ruhe [204] for solving nonsymmetric eigenvalue problems.

2.5.1 Review: CholeskyQR

In this section, we review the CholeskyQR algorithm, for computing the QR factorization
V = QR of an m× n dense matrix V , where m ≥ n. Generally we assume that m� n, i.e.,
that V is “tall and skinny.” We first mentioned CholeskyQR in this thesis in Section 1.2.5,
as an example of a communication-avoiding algorithm. It is discussed by Stathopoulos and
Wu [215] as a preprocessing step for efficiently computing the SVD of a tall skinny matrix,
although CholeskyQR comes from the far older idea of using the normal equations to solve
linear least squares problems. We show it here as Algorithm 15.

In Demmel et al. [74], we discuss CholeskyQR along with other communication-avoiding
QR factorization algorithms that we develop. There, we show that CholeskyQR requires
the minimum amount of communication, both in parallel and sequentially. The parallel
algorithm requires only logP messages, and the sequential algorithm only reads and writes
the data 1 + o(1) times. This is the same as TSQR, and as we mentioned in Section 2.3,
is asymptotically less than the parallel version of Householder QR (PDGEQRF) implemented
in ScaLAPACK, and the sequential version of Householder QR (DGEQRF) implemented in
LAPACK. For details, see Demmel et al. [74, Table 4].

Line 1 of Algorithm 15 refers to the “Gram7 matrix” of the columns of V . In general, the
Gram matrix of a collection of vectors v1, v2, . . . in an inner product space is the symmetric
matrix of inner products of those vectors: Gij ≡ 〈vj, vi〉. In Algorithm 15, the inner product
used is the standard Euclidean inner product, but this need not be the case, as we will see
in the M -CholeskyQR algorithm in the next section.

CholeskyQR is not the most accurate communication-optimal version of the “thin” QR
factorization. In fact, it can produce a Q factor which is not at all orthogonal, as we
discuss in Demmel et al. [74]. In contrast, TSQR always produces a Q factor as orthogonal
as that produced by Householder QR, even if the matrix V is not numerically full rank.
TSQR also communicates asymptotically no more than CholeskyQR. The reason why we
discuss CholeskyQR is because TSQR only can orthogonalize vectors with respect to the
usual Euclidean inner product. CholeskyQR may be adapted to orthogonalize vectors with
respect to a more general inner product. We show below how to adapt CholeskyQR in this
way.

2.5.2 M-CholeskyQR

The “more general inner product” relevant to this thesis is an inner product defined by an
SPD matrix M : the M inner product 〈u, v〉M = v∗Mu. For example, suppose that we are
solving the SPD eigenvalue problem Ax = λx with symmetric Lanczos (Algorithm 24 in
Section 4.1). In Lanczos, the Krylov basis vectors qk are orthonormal in exact arithmetic

7Jørgen Pedersen Gram (1850–1916), a Danish actuary and mathematician, worked on many theoretical
and applied problems. He (re)invented the Gram-Schmidt process when solving least-squares problems [180].



CHAPTER 2. COMPUTATIONAL KERNELS 115

with respect to the Euclidean inner product. Thus, in exact arithmetic, 〈qi, qj〉 = 1 if i = j
and is zero if i 6= j. Now suppose that we are solving the generalized eigenvalue problem
Ax = λMx with the same SPD matrix A, and with the SPD matrix M . As mentioned
in Section 4.3, we may think of this as solving the “preconditioned” eigenvalue problem
M−1Ax = λx with left preconditioner M . Then, in left-preconditioned Lanczos (Algorithm
26 in Section 4.3.1), the preconditioned basis vectors qk are orthonormal in exact arithmetic
with respect to the M inner product. We say then that they are M-orthogonal : 〈qi, qj〉M = 1
(in exact arithmetic) if i = j and is zero if i 6= j.

As we mentioned above, TSQR cannot be used to M -orthogonalize vectors. Rather,
we do this using Algorithm 16, which we call “M -CholeskyQR.” Line 1 computes a Gram
matrix with respect to the M inner product.

2.5.3 M-CholBGS

M -CholeskyQR (Algorithm 16) is good for M -orthogonalizing a single block V . However,
in many of the algorithms in this thesis, such as left-preconditioned CA-Lanczos, we want
to M -orthogonalize a current block column Vk against previously M -orthogonalized block
columns Q0, . . . , Qk−1. Here is an example. Suppose that we have an n× sk−1 dense matrix
Qk−1 with n� sk−1, whose columns are orthonormal with respect to the M inner product:
Q∗MQ = I. Suppose also that we have an n × sk matrix Vk such that [Qk−1, Vk] has full
rank and n � sk−1 + sk. Let Wk be an n × sk matrix satisfying Vk = M−1Wk. We call
the columns of V “preconditioned basis vectors” and the columns of W “unpreconditioned
basis vectors.” Our task is to produce an n×sk matrix Qk whose columns are M -orthogonal
among themselves and M -orthogonal to the columns of Qk−1, so that

[Qk−1, Qk]
∗M [Qk−1, Qk] = I. (2.21)

However, we do not have access to M here. We have instead an n× sk−1 matrix Zk−1 such
that Zk−1 = MQk−1: the columns of Zk−1 are preconditioned, and the columns of Qk−1 are
unpreconditioned. Similarly, Zk = MQk. Thus, we may rewrite Equation (2.21) as

[Zk−1, Zk]
∗[Qk−1, Qk] = I. (2.22)

We begin solving this problem by computing the Gram matrix Gk of the columns of
[Qk−1, Vk]:

Gk ≡
(

I G∗k,k−1

Gk,k−1 Gkk

)
=

(
Q∗k−1

V ∗k

)(
Zk−1 Wk

)
=

(
I Q∗k−1Wk

(Q∗K−1Wk)
∗ V ∗kWk

)
. (2.23)

In this case, we know that the Gram matrix is SPD, since the columns of [Qk−1, Vk] are
linearly independent. Thus, we may compute the Cholesky factorization of Gk:

Gk = LkL
∗
k =

(
I 0

Lk,k−1 Lkk

)(
I L∗k,k−1

0 L∗kk

)
, (2.24)

. In Equation (2.24), Lk,k−1 = Gk,k−1 and Lkk is the Cholesky factor of the Schur complement
Gkk −Gk,k−1G

∗
k,k−1. Furthermore,

L−∗k =

(
I −L−∗kkL∗k,k−1

0 L∗kk

)
. (2.25)



CHAPTER 2. COMPUTATIONAL KERNELS 116

The sk−1 +sk by sk−1 +sk upper triangular matrix L−∗k corresponds to the R factor computed
by M -CholeskyQR (Algorithm 15). The corresponding “Q” factor is [Qk−1, Qk], where

Qk =
(
Vk −Qk−1L

∗
k,k−1

)
L−∗kk . (2.26)

This is the result of multiplying [Qk−1, Vk] on the right by L−∗k . Since L−1
k GkL

−∗
k = I,

[Qk−1, Qk] is M -orthogonal.
We call the resulting Algorithm 17 “M -CholBGS,” because it combines M -CholeskyQR

with an update that, like Block Gram-Schmidt, spends most of its time in BLAS 3 opera-
tions like matrix-matrix multiply and triangular solve with multiple vectors. We show the
algorithm here in an “update” form, where we only need to M -orthogonalize the current
block column Vk. However, though it can be easily adapted into a form like that the Block
Gram-Schmidt algorithms in Section 2.4, where an entire collection of block columns must
be M -orthogonalized. The performance model for M -CholBGS in that case is the same as
that of the corresponding algorithms of Section 2.4, up to constant factors.
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Algorithm 14 RR-TSQR-BGS

Input: V = [V1, V2, . . . , VM ], where V is n×m. Each Vk is n×mk, with
∑M

k=1mk = m.
Output: Q = [Q1, . . . , QM ], where R (Q) = R (V ) and R ([Q1, . . . , Qk]) = R ([V1, . . . , Vk])

for k = 1, . . . ,M . Each Qk has rk columns with 0 ≤ rk ≤ mk.
Output: R:

∑
j rj ×

∑
j rj upper triangular matrix, with a block layout given by Equation

(2.20). V = QR is the thin QR factorization of V , if for each k where rk < mk, we
replace Vk (which has mk columns) with Qk (which has rk columns).

1: for k = 1 to M do
2: Using a single reduction, compute 2-norm of each column of Vk, for example via

Normsk :=
√∑n

i=1 (Vk(i, :))
2

3: Rk,1:k−1 := [Q1, . . . , Qk]
∗Vk

4: Yk := Vk − [Q1, . . . , Qk]Rk,1:k−1 . First block orthogonalization pass
5: Compute TSQR factorization Yk = QYk

RYk

6: if for all j = 1, . . . ,mk, Yk(:, j) does not need reorthogonalization then
7: Zk := Yk, QZk

:= QYk
, RZk

:= RYk

8: else
9: R′k,1:k−1 := [Q1, . . . , Qk]

∗Yk
10: Zk := Yk − [Q1, . . . , Qk]R

′
k,1:k−1 . Block reorthogonalization

11: Rk,1:k−1 := Rk,1:k−1 +R′k,1:k−1

12: Compute TSQR factorization Zk = QZk
RZk

13: end if
14: Compute SVD of RZk

(Equation (2.18)), and the numerical rank rk of RZk

15: if rk = mk then
16: Qk := QZk

, Rkk := RZk

17: else
18: Compute Qk and Rkk via Equation (2.19) . Qk has rk columns and Rkk is rk× rk
19: for j = 1 to k − 1 do
20: Replace Rk,j with the rj × rk zero matrix
21: end for
22: Replace Vk with Qk

23: end if
24: end for

Algorithm 15 CholeskyQR

Input: m× n matrix V with m� n
Output: QR factorization V = QR, where Q is m× n and R is n× n

1: G := V ∗V . The “Gram matrix”
2: Compute the Cholesky factorization R∗R = G
3: Q := V R−1
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Algorithm 16 M -CholeskyQR

Input: The SPD matrix M defines an inner product
Input: n× s matrix V with full column rank
Input: n× s matrix W satisfying W = MV
Output: n × s matrix Q with R (V ) = R (Q) and Q∗MQ = I (the columns are M -

orthogonal)
Output: s× s nonsingular upper triangular matrix R such that V = QR

1: Compute G := V ∗W . The “Gram matrix”
2: Compute s× s Cholesky factorization R∗R = G
3: Compute Q := V R−1

Algorithm 17 M -CholBGS

Input: The SPD matrix M defines an inner product
Input: n× sk−1 matrix Qk−1 with n� sk−1 and Q∗k−1MQk−1 = I
Input: n× sk matrix Vk with n� sk−1 + sk, such that [Qk−1, Vk] has full column rank
Input: n× sk matrix Wk with Wk = MVk
Output: n × sk matrix Qk such that R (Qk−1) ⊕ R (Qk) = R (Qk−1) ⊕ R (Vk) and

[Qk−1, Qk]
∗M [Qk−1, Qk] = I

Output: sk× sk nonsingular upper triangular matrix Rkk and sk−1× sk matrix Rk−1,k such

that [Qk−1, Qk]

(
I Rk−1,k

0 Rkk

)
= [Qk−1, Vk]

1: Compute Gk−1,k := Q∗k−1Wk and Gkk := V ∗kWk

2: Compute sk × sk Cholesky factorization R∗kkRkk = Gkk −G∗k−1,kGk−1,k

3: Compute Qk := (Vk −Qk−1Gk−1,k)R
−1
kk

4: Compute Rk−1,k := −R−1
kkGk−1,k
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Chapter 3

Communication-avoiding Arnoldi and
GMRES

In this chapter, we develop communication-avoiding versions of Krylov subspace methods re-
lated to Arnoldi iteration (see Arnoldi [7] and Bai et al. [15]). Such methods include Arnoldi
iteration itself for solving nonsymmetric eigenvalue problems, as well as GMRES, the “Gener-
alized Minimum Residual” method of Saad and Schultz [208] for solving nonsymmetric linear
systems. Our communication-avoiding algorithms, CA-Arnoldi and CA-GMRES, communi-
cate a factor of Θ(s) fewer messages in parallel than their corresponding standard Krylov
methods. They also read the sparse matrix and vectors a factor of Θ(s) fewer times, where s
is the s-step basis length (see Chapter 7). They do so by means of communication-avoiding
implementations of the kernels presented in Chapter 2: the matrix powers kernel (Sections
2.1 and 2.2), TSQR (Section 2.3), and BGS (Section 2.4). Our parallel shared-memory im-
plementation of CA-GMRES achieves speedups of up to 4.3× over standard GMRES on an
8-core Intel Clovertown processor, and up to 4.1× on an 8-core Intel Nehalem processor.

CA-Arnoldi and CA-GMRES were inspired by previous work in s-step Krylov methods.
However, they are the first to avoid communication both in the sparse matrix and the dense
vector operators. They also offer improved numerical stability, due to

• better choices of s-step basis (see Section 7.3),

• the use of balancing or equilibration (as appropriate) to avoid bad scaling of the s-step
basis vectors (see Section 7.5),

• the ability to choose the basis length s independently of the restart length (see Section
3.3), and

• the use of an more accurate orthogonalization method for the Krylov basis vectors (see
Section 3.3), which is important when solving eigenvalue problems.

Furthermore, we are the first to show how to avoid communication when preconditioning
(for CA-GMRES) and when solving generalized eigenvalue problems (for CA-Arnoldi).

We begin this chapter in Section 3.1 with a summary of standard Arnoldi iteration.
The sections that follow introduce communication-avoiding versions of Arnoldi. First, we
summarize the standard version of Arnoldi in Section 3.1. In Section 3.2, we show the
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Arnoldi(s) algorithm, which can complete s steps of a single restart cycle with the same
communication requirements as a single iteration of standard Arnoldi. Then, in Section 3.3,
we present the CA-Arnoldi or “Arnoldi(s, t)” algorithm. It has similar performance benefits
as Arnoldi(s), but does not need to restart after every s steps. In Section 3.4, we use CA-
Arnoldi as a model to develop a communication-avoiding version of GMRES, which we call
CA-GMRES. Finally, Sections 3.5 and 3.6 show numerical resp. performance experiments
with CA-GMRES.

3.1 Arnoldi iteration

In this section, we summarize Arnoldi’s iteration for solving sparse nonsymmetric eigenvalue
problems [7, 15]. This summary will serve our development of communication-avoiding
versions of Arnoldi iteration in Sections 3.2 and 3.3. We begin with Arnoldi because it
offers a good “template” for the data dependencies between kernels in many different Krylov
subspace methods, as we discussed in Section 1.1.3. Arnoldi closely resembles other KSMs
for solving linear systems, such as the Generalized Minimum Residual (GMRES) method
of Saad and Schultz [208] and the Full Orthogonalization Method (FOM) (see [207]). It
also serves as an “inner loop” for more complex algorithms more commonly used in practice
to solve eigenvalue problems, such as Implicitly Restarted Arnoldi (see e.g., Lehoucq et
al. [163]). Furthermore, a whole class of iterative methods for symmetric1 matrices, that
include (symmetric) Lanczos iteration [160], the Method of Conjugate Gradients (CG) of
Hestenes and Stiefel [130], and the Minimum Residual (MINRES) algorithm of Paige and
Saunders [186], can be derived from Arnoldi iteration by assuming that the matrix A is
symmetric. (We will discuss these classes of algorithms in Chapters 4 and 5.) The generality
of Arnoldi iteration thus makes it a good template for deriving communication-avoiding
Krylov subspace methods.

This section does not address algorithms such as nonsymmetric Lanczos iteration [160]
or its relatives, which include the Method of Biconjugate Gradients (BiCG) of Fletcher
[98], Conjugate Gradient Squared (CGS) of Sonneveld [213], the “Method of Biconjugate
Gradients, Stabilized” (BiCGSTAB) of van der Vorst [225], or the Quasi-Minimal Residual
(QMR) method of Freund and Nachtigal [102]. Their underlying iteration differs enough
from Arnoldi’s method that we cannot apply the approach described in this section directly.

3.1.1 Notation

We introduce some notation in this section to help us compare the usual version of Arnoldi
iteration with our communication-avoiding versions. Arnoldi begins with an n×n matrix A
and an n× 1 vector v. If we run it for s steps and it does not break down, it constructs an
s+ 1 by s nonsingular upper Hessenberg matrix H such that

AQ = QH, (3.1)

1Here and elsewhere in this thesis, we label as “symmetric” both real symmetric matrices and complex
Hermitian matrices. We write the algorithms assuming that all quantities are complex, for example, using A∗

to indicate the adjoint of A. However, we use language suggesting real arithmetic (such as “symmetric” and
“orthonormal”) rather than language suggesting complex arithmetic (such as “Hermitian” and “unitary”).
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in which Q is an n by s+ 1 orthonormal matrix

Q = [Q, qs+1] = [q1, . . . , qs, qs+1]

(with q1 = v/‖v‖2) whose columns comprise a basis of the Krylov subspace

Ks+1(A, v) = span{v,Av,A2v, . . . , Asv}.

We do not indicate s when we write Q or H, because s is usually understood from context.
We write hij = H(i, j), and we write H for the principal s× s submatrix of H, so that

H =

(
H

0, . . . , 0, hs+1,s

)
.

Depending on the context, an underline under a letter representing matrix means either “add
one more column to the right side” (e.g., Q) or “add one more row to the bottom” (e.g., H)
of the matrix.

Algorithm 18 Arnoldi iteration

Input: n× n matrix A, and length n starting vector v
Output: Orthonormal n by s + 1 matrix Q = [Q, qs+1] whose columns are a basis for the

Krylov subspace Ks+1(A, r), and a nonsingular s + 1 by s upper Hessenberg matrix H
such that AQ = QH

1: β := ‖v‖2, q1 := v/β
2: for j = 1 to s do
3: wj := Aqj
4: for i = 1 to j do . Use MGS to orthogonalize wj against q1, . . . , qj
5: hij := 〈w, qi〉
6: wj := wj − hijqi
7: end for
8: hj+1,j := ‖wj‖2

9: if hj+1,j = 0 then
10: Exit due to lucky breakdown
11: end if
12: qj+1 := wj/hj+1,j

13: end for

Algorithm 18 shows the usual formulation of Arnoldi iteration. It uses Modified Gram-
Schmidt (MGS) to orthogonalize successive basis vectors. There are other forms of Arnoldi
iteration, which use other orthogonalization methods. We discussed Arnoldi with Delayed
Reorthogonalization (ADR) in Section 1.6.1, which uses Classical Gram-Schmidt (CGS) to
reduce the number of synchronization points in a parallel implementation. We will discuss
other forms of Arnoldi when we present the Arnoldi(s) algorithm in Section 3.2. However,
MGS-based Arnoldi (Algorithm 18) is most often employed in practice, either by itself (usu-
ally with restarting – see Section 3.1.2) or as the inner loop of a method like Implicitly
Restarted Arnoldi.
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The key operations of Arnoldi iteration are the computation of the upper Hessenberg ma-
trix H and the orthonormal basis vectors q1, . . . , qs+1. (We use the letter “q,” rather than
the customary “v,” because q suggests orthonormality by reminding one of the QR factoriza-
tion.) The upper Hessenberg matrix H is the projection of the matrix A onto the subspace
span{q1, . . . , qs}. Various operations on H yield information for solving linear systems or
eigenvalue problems involving A. For example, the Arnoldi method finds approximations for
the eigenvalues of A using the eigenvalues of H (the Ritz values). GMRES solves Ax = b ap-
proximately by starting with an initial guess x0, performing Algorithm 18 with r = b−Ax0,
and then solving the least squares problem miny ‖Hy− βe1‖2 to obtain coefficients y for the
approximate solution xs in terms of the basis vectors q1, . . . , qs. FOM gets coefficients y for
the approximate solution by solving the linear system Hy = βe1.

Line 10 of Algorithm 18 refers to the possibility of Arnoldi breaking down. In exact
arithmetic, Arnoldi only breaks down when the smallest j has been reached such that a
degree j − 1 polynomial pj−1 exists with pj−1(A)v = 0. The Krylov subspace basis cannot
be made any larger, given the starting vector v. This is called a lucky breakdown for two
reasons: when solving eigenvalue problems, the set of eigenvalues of H equals the set of
eigenvalues of A, and when solving linear systems, the current approximate solution equals
the exact solution. Lucky breakdowns are rarely encountered in practice, and so we do not
consider them here.

3.1.2 Restarting

The Arnoldi process requires storing all the basis vectors and doing a full orthogonalization
at each step. If s iterations are performed, then memory requirements scale as a multiple of
s, and the computational expense scales quadratically with s. Letting s grow until the algo-
rithm converges to the desired accuracy may therefore be impossible (insufficient memory)
or impractical (too much computation). As a result, the Arnoldi process may be restarted
by forgetting H and all basis vectors except qs+1, making the last (or best, where “best”
means the residual vector with the smallest norm) residual vector the new starting vector,
and beginning the iteration over again. That would entail enclosing Algorithm 18 in an outer
loop, a simple step which we do not show. We say then that the restart length is s, and that
Algorithm 18 represents one restart cycle.

Restarting bounds the memory requirements by a multiple of s. However, it causes
a loss of information stored in the discarded basis vectors and H matrix. This loss can
adversely affect how fast the iteration converges, if the Arnoldi process is used to solve a
linear system or an eigenvalue problem. Picking the right restart length involves a tradeoff
between convergence rate and computational cost, and is constrained by memory capacity.

There are a number of techniques for retaining and exploiting some of this information
after a restart; see e.g., [163, 71, 176]. These techniques all use several iterations of the
standard Arnoldi process as an inner loop. As a result, we do not consider these techniques
here, though speeding up the Arnoldi process can make them faster as well.
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3.1.3 Avoiding communication in Arnoldi

In the sections that follow, we develop communication-avoiding versions of Arnoldi iteration.
We begin in Section 3.2 by showing how to rearrange Arnoldi so as to complete s steps of a
single restart cycle with the same communication requirements as a single step of Algorithm
18. We call the resulting algorithm Arnoldi(s). The basic idea is to use the matrix powers
kernel (Section 2.1) to generate s basis vectors, and then orthogonalize them all at once
using TSQR (Section 2.3). Then, in Section 3.3, we present the CA-Arnoldi or “Arnoldi(s,
t)” algorithm, which has similar performance benefits, but does not need to restart after
every s steps. CA-Arnoldi uses the matrix powers kernel to avoid communication in the
sparse matrix operations, and a combination of TSQR and Block Gram-Schmidt (Section
2.4) to avoid communication in the dense vector operations. Finally, in Section 3.4, we use
CA-Arnoldi as a model to develop a communication-avoiding version of GMRES, which we
call CA-GMRES.

3.2 Arnoldi(s)

3.2.1 Ansatz

Walker [238] developed a version of GMRES which we consider a precursor to the Arnoldi(s)
algorithm. The usual implementation of Arnoldi (Algorithm 18) generates the unitary basis
vectors one at a time and the upper Hessenberg matrix one column at a time, using modified
Gram-Schmidt orthogonalization. Walker wanted to use Householder QR instead to orthog-
onalize the basis vectors, since Householder QR produces more orthogonal vectors than MGS
in finite-precision arithmetic (see Section 2.3.3).2 However, Householder QR requires that
all the vectors to orthogonalize be available at once. Algorithm 18 only generates one basis
vector at a time, and cannot generate another until the current one has been orthogonalized
against all the previous basis vectors. Walker dealt with this by first generating s+1 vectors
which form a basis for the Krylov subspace, and then computing their QR factorization.
From the resulting R factor and knowledge about the basis, he could reconstruct the upper
Hessenberg matrix H, and use that to solve the least squares problem underlying GMRES.
This performed the work of s steps of GMRES. Then, he restarted GMRES and repeated
the process until convergence. Walker did not use a matrix powers kernel to compute the
basis vectors, nor did he have a communication-avoiding QR factorization. Bai et al. [18]
based their Newton-basis GMRES on Walker’s Householder GMRES, improving numerical
stability by using a different s-step basis (see Chapter 7).

We summarize Walker’s algorithm in our own, more general notation. Given a starting
vector v, the algorithm first computes the vectors v1 = v, v2 = Av, v3 = A2v, . . . , vs+1 = Asv.
We write

V = [V, vs+1] = [v1, . . . , vs, vs+1].

These vectors form a basis for the Krylov subspace Ks+1(A, r). More specifically, for k =

2This turns out to matter more for Arnoldi than for GMRES. The loss of orthogonality in finite-precision
arithmetic due to using MGS does not adversely affect the accuracy of solving linear systems with GMRES
(see Greenbaum et al. [120]). However, at the time of Walker’s work this was not known.
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1, . . . , s+ 1,
R (V (:, 1 : k)) = span{v, Av,A2v, . . . , Ak−1v}.

We call this particular basis the monomial basis, by analogy with polynomial interpolation.
(The analogy will be clarified in Chapter 7.) In matrix notation, the s + 1 by s change of
basis matrix

B = [e2, e3, . . . , es+1] (3.2)

satisfies
AV = V B. (3.3)

Note the similarity between Equation (3.3) and the Arnoldi relation (Equation (3.1)); we
will use this below to derive the Arnoldi(s) algorithm. We denote by B the s× s principal
submatrix of B, so that

B =

(
B

0, . . . , 0, B(s+ 1, s)

)
.

Let us assume for now that the QR factorization of V produces the same unitary vectors
as would the usual Arnoldi process. We will address this issue in Section 3.2.4. We write the
QR factorization of V : QR = V and QR = V . Here, we use the “thin” QR factorization in
which R is s+ 1 by s+ 1 and R is the s× s principal submatrix of R. Then, we can use R
and Equation (3.3) to reconstruct the Arnoldi relation (Equation (3.1)):

AQ = QH,

AQR = QRR−1HR,

AV = V R−1HR.

This means that if AV = V B for some s+ 1 by s matrix B, we have

H = RBR−1. (3.4)

(For an analogous derivation in the case of Lanczos iteration, see the beginning of Meurant
[175].) Naturally one can exploit the structures of B, R, and R−1 in order to simplify this
expression. We will do this in Section 3.2.3.

3.2.2 A different basis

Many authors have observed that the monomial basis v, Av, A2v, . . . , Asv becomes increas-
ingly ill-conditioned in practice as s increases (see e.g., Chronopoulos and Gear [56], in the
context of their s-step CG algorithm). In fact, the condition number of the matrix V whose
columns are this basis grows exponentially in s (see Gautschi [109]). This is apparent be-
cause repeatedly applying a matrix to a vector is called the “power method,” and under the
right conditions it converges to the principal eigenvector of the matrix. Converging vectors
obviously become more and more linearly dependent. This disadvantage of the monomial
basis is also apparent by analogy with polynomial interpolation, where one generally avoids
computations with the monomial basis. For a detailed discussion of these issues, see Chapter
7 (in particular Section 7.4).
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Other authors recommend changing Walker’s “Householder GMRES” to use a basis other
than the monomial one. This gives us a different change of basis matrix B than the one
shown in Equation (3.2). However, it still satisfies Equation (3.3), so that the derivation of
the previous section and the formula H = RBR−1 (Equation (3.4)) still hold. De Sturler
[70] suggested a GMRES algorithm using Chebyshev polynomials as the basis. We dis-
cuss the advantages of Chebyshev polynomials in Section 7.3.3. Chebyshev polynomials are
computed using a three-term recurrence, so the cost of computing the basis would still be
dominated by the matrix operations. Joubert and Carey [143, 144] used a Chebyshev ba-
sis in their implementation of GMRES. The authors use a kind of “matrix powers kernel”
which is a special case of ours (see Section 2.1) for regular 2-D meshes. Joubert and Carey’s
algorithm avoids communication in the orthogonalization phase by using an algorithm we
call “CholeskyQR” (see Section 2.5). Joubert and Carey recognize that the Cholesky factor-
ization in CholeskyQR may break down due to ill conditioning, so they compute a singular
value decomposition of the Gram matrix instead of Cholesky. This does not break down
in case the Gram matrix is numerically singular. They suggest switching to the standard
version of GMRES if V has low numerical rank over several restart cycles and the algorithm
therefore fails to make sufficient progress. The Chebyshev basis requires estimates of the
field of values of the matrix, which they obtain from the Hessenberg matrix from previous
restart cycles, in the same way that the Arnoldi eigenvalue solver would.

Our work in this chapter extends Joubert and Carey’s algorithm in many respects. First,
the authors do not address preconditioning in their GMRES algorithm, nor do they in their
matrix powers kernel. We have done so in both cases. Also, our Arnoldi and GMRES
algorithms use an accurate as well as communication-avoiding QR factorization. TSQR is
unconditionally stable, which means that the iterative methods will always make progress
as long as the computed basis is numerically full rank. Joubert and Carey use CholeskyQR,
which requires factoring a matrix whose condition number is the square of the condition
number of the basis. Finally, our iterative methods, unlike theirs, do not need to restart
after each invocation of the matrix powers kernel. This increases the convergence rate, as
well as the likelihood of success on very difficult problems.

Other authors used different bases to create similar versions of GMRES. Bai et al. created
a Newton basis variant of GMRES, in which the basis was named by analogy with the basis
used in Newton interpolation of polynomials.

v1 = v

v2 = (A− λ1I)v

v3 = (A− λ2I)(A− λ1I)v

...

vs+1 =
s∏
i=1

(A− λiI)v

Here the λi are shifts chosen to improve the condition number of the resulting basis. (See
Section 7.3.2 for details on the Newton basis and a justification of its use.) Bai et al.
compute the shifts from eigenvalue information gathered from previous restart cycles. The
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change-of-basis matrix B for the Newton basis is

B =



λ1

1 λ2

. . . . . .

λs−1

1 λs
1


. (3.5)

The Newton basis is slightly cheaper to compute than the Chebyshev basis, since it requires
operating on only two vectors in fast memory at once, rather than three. Also, the Newton
basis’ condition number may be less sensitive to the quality of the eigenvalue estimates used
to construct it. As a result, we use the Newton basis in our numerical experiments.

Bai et al. recognized that using a QR factorization other than modified Gram-Schmidt
could improve the performance of the Arnoldi process, but they did not come up with new
QR or matrix powers kernels. Erhel [93] used the same Newton-basis GMRES algorithm
of Bai and his collaborators, but her implementation uses a new parallel QR factorization,
called RODDEC, that communicates minimally for P parallel processors on a ring network.
It requires Θ(P ) messages, which is asymptotically more than TSQR requires (for parallel
processors on a more general network).

3.2.3 The Arnoldi(s) algorithm

Algorithm 19 shows our Arnoldi(s) algorithm. It restarts after every s steps. In Line 6 of the
algorithm, we can exploit the structure of B and R in order to reduce the cost of computing
H. If we break down R into

R =

(
R z

0s,s ρ

)
where R is s× s, z is s× 1, and ρ is a scalar, and break down B into

B =

(
B

0, . . . , 0, b

)
where B is s× s and b = B(s+ 1, s), then

H = RBR−1 =

(
R z

0s,s ρ

)(
B

0, . . . , 0, b

)
R−1

=

(
RBR−1 + b · zeTs R−1

ρb · eTs R−1

)
.

If we further let ρ̃ = R(s, s), then eTs R
−1 = ρ̃−1 and therefore

H =

(
RBR−1 + ρ̃−1b · zeTs

ρ̃−1ρb · eTs

)
≡
(

H
0, . . . , 0, h

)
. (3.6)

This formula can be used to compute H in Line 6 of Algorithm 19.
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Algorithm 19 Arnoldi(s)

Input: n× n matrix A and length n starting vector v
Output: An orthonormal n by s + 1 matrix Q = [Q, qs+1] whose columns are a basis for

the Krylov subspace Ks+1(A, r), and a nonsingular s+ 1 by s upper Hessenberg matrix
H such that AQ = QH

1: β := ‖v‖2, q1 := v/β
2: while we want to restart do
3: Fix the s+ 1 by s basis matrix B
4: Compute V via matrix powers kernel
5: Compute the QR factorization V = QR via TSQR
6: H := RBR−1 (Equation (3.6))
7: if we want to restart then
8: Set v := qs+1 (the last column of Q) and β := 1
9: Optionally change B based on eigenvalue approximations gathered from H

10: end if
11: end while

3.2.4 Unitary scaling of the basis vectors

In Section 3.2.1, our development of the Arnoldi(s) algorithm depended on the QR factor-
ization producing the same orthogonalized vectors (in exact arithmetic) as modified Gram-
Schmidt in the standard Arnoldi process. Another way to say this is that the QR factorization
should produce an R factor with nonnegative real diagonal entries. We show in Demmel et
al. [75] how to modify the usual Householder QR factorization in a numerically stable way so
that it produces an R factor with nonnegative real diagonal entries. The resulting sequential
QR factorization can then be used as the local QR factorization in our TSQR algorithm, so
that TSQR also produces an R factor with nonnegative diagonal entries.

Suppose, however, that we are forced to use a QR factorization which may produce an R
factor with negative diagonal entries. We will show now that this has no effect on the approx-
imate eigenvalues and eigenvectors computed by Arnoldi(s). However, if we use Arnoldi(s)
instead like GMRES to solve linear systems, a little more computation and communication
is necessary to compute the right approximate solution.

Suppose that the relation produced by the MGS Arnoldi process, applied to the starting
vector v, is

AQ̂ = Q̂Ĥ,

in which
Q̂ = [Q̂, q̂s+1] = [q̂1, . . . , q̂s, q̂s+1]

is the n by s + 1 matrix whose columns are an orthogonal basis for the Krylov subspace
span{v,Av,A2v, . . . , Asv}. Now suppose instead that we construct

V = [V, vs+1] = [v1, v2, . . . , vs, vs+1]

with vk = Ak−1v, and compute the QR factorization V = QR. The unitary matrices Q̂
and Q may differ by a unitary scaling, because any unitary scaling of a set of orthonormal
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vectors results in a set of orthonormal vectors with the same span. The particular unitary
scaling depends on the orthogonalization method. This is true in exact arithmetic as well as
in finite-precision arithmetic; the phenomenon has nothing to do with rounding error. We
write the resulting unitary scaling as

Θ =

(
Θ 0s,1

01,s θs+1

)
= diag(θ1, θ2, . . . , θs, θs+1),

with |θj| = 1 for all j, where Q̂ = QΘ. In that case we have a different QR factorization:

Q̂R̂ = QΘΘ−1R.

(Note that
Θ−1 = Θ∗ = diag

(
θ1, . . . , θs+1

)
,

since Θ is unitary.) This also means that the Ĥ resulting from the standard Arnoldi process
may be different from H = RBR−1. In particular, we have:

Ĥ = Q̂
∗
AQ̂ = Θ∗QAQsΘ = Θ∗HΘ, (3.7)

in which Θ is the s× s principal submatrix of Θ. Note that Ĥ = Θ∗HΘ, which means that
Ĥ and H have the same eigenvalues. This means that eigenvalue solvers based on Arnoldi(s)
need not compute any of the θi in order to find the eigenvalues. This is especially helpful if
we wish to use Ritz values to improve the condition number of the basis V in future restart
cycles. Also, we will show in Section 3.4 that our version of GMRES based on Arnoldi(s)
computes the same answer in exact arithmetic as standard GMRES, as long as θ1 = 1. That
is, either the QR factorization used by Arnoldi(s) must not change the direction of the first
column, or θ1 = 〈v, q1〉 must be computed via an inner product. The latter requires an
additional communication step. Thus, it is advantageous to use a QR factorization that
produces an R factor with nonnegative real diagonal entries.

3.2.5 Properties of basis conversion matrix

We now deduce that the structure of the change of basis matrix B must always be upper
Hessenberg. For all the bases of interest, it is either tridiagonal or bidiagonal, so this ar-
gument is practically unnecessary. However, it is theoretically interesting to see how the
Arnoldi(s) algorithm constrains the order of operations in the matrix powers kernel.

Using an analogous derivation to that from which Equation (3.4) came, we have

R−1 =

(
R−1 −ρ−1R−1z
01,s ρ−1

)
,

and therefore
B = R−1HR

=

(
R−1 −ρ−1R−1z
01,s ρ−1

)(
H

0, . . . , 0, h

)
R

=

(
R−1HR− ρ−1ρ̃h ·R−1zeTs

ρ−1ρ̃h · eTs

)
,
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in which ρ̃ = R(s, s).
The term ρ−1ρ̃h · eTs in the last line of the above expression is the last row of the matrix

B. We see that all elements except the last of that row are zero. Furthermore, R−1HR
is structurally upper Hessenberg, and ρ−1ρ̃hR−1zeTs is an s × s matrix which is zero in all
columns except the rightmost. Therefore, the matrix B must be upper Hessenberg, with
B(s+ 1, s) = ρ−1ρ̃h.

Note that in the above, we neglect the row and column scalings represented by Θ that
differentiate the upper Hessenberg matrix H computed by Arnoldi(s) from the upper Hes-
senberg matrix Ĥ computed by standard MGS Arnoldi iteration. We do this for simplicity,
as the scalings do not affect the structure of B.

The requirement that B be upper Hessenberg restricts the method used to construct the
basis matrix V . In particular, each basis vector vi+1 is some linear combination of Aiv1 and
v1, . . . , vi:

vi+1 ∈ span{v1, . . . , vi} ⊕ span{Aiv1}.
Applying induction, we see that

vi ∈ span{v1, Av1, A
2v1, . . . , A

i−1v1}

for i ∈ {1, 2, . . . , s+ 1}. This seems reasonable for a matrix powers kernel: each new vector
in the basis is generated in turn from the previous basis vectors and the product of A and
the current basis vectors. All the bases we consider in this work follow this pattern.

3.3 CA-Arnoldi or “Arnoldi(s, t)”

In this section, we we develop the Communication-Avoiding Arnoldi (CA-Arnoldi) algorithm.
We also call it “Arnoldi(s, t)” to distinguish it from Arnoldi(s) (Algorithm 19 of Section
3.2). Arnoldi(s) must restart after each time it generates and orthogonalizes s basis vectors.
In contrast, the s-step basis length s in CA-Arnoldi can be shorter than the restart length.
The restart length is s · t, where t refers to the number of “outer iterations” (times that
the matrix powers kernel is invoked and its output vectors are made orthogonal to previous
vectors and among themselves). Thus, Arnoldi(s) is the same as Arnoldi(s, t = 1).

We demonstrate in our numerical and performance experiments with CA-GMRES in
Section 3.5 that being able to choose s shorter than the restart length has at least two
advantages:

• s-step methods are not numerically stable if s is too large, but if the restart length r
is too short, the Krylov method may converge slowly or not at all (“stagnation”). In
that case, CA-Arnoldi can use a known stable value of s, while still choosing a restart
length r = s · t for which Arnoldi is known to converge sufficiently fast.

• The best value of s for performance may be much shorter than typical restart lengths.
We show in Section 3.5 for CA-GMRES that s = 5 may give the best performance,
among all possible integer s ≥ 2 with s · t = 60.

Most previous s-step Arnoldi or GMRES algorithms had the same limitation as Arnoldi(s).
This includes Walker’s Householder GMRES [238] and the Newton-basis GMRES algorithm
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of Bai et al. [16, 18]. The s-step Arnoldi method of Kim and Chronopoulos [153] did not
have this limitation: it could choose s shorter than the restart length r. Our CA-Arnoldi
improves on their work in the following ways.

• CA-Arnoldi can use any s-step basis (see Chapter 7 for definitions and examples),
which improves numerical stability. Kim and Chronopoulos’ algorithm can only use
the monomial basis.

• While Kim and Chronopoulos recognize the value of improving locality and avoiding
memory traffic, and point out that their algorithm exposes the potential for increased
locality, their s-step Arnoldi does not asymptotically reduce the amount of memory
traffic. The authors present no communication-avoiding matrix powers kernel algo-
rithms, and they use a column-by-column orthogonalization procedure for the Arnoldi
basis vectors, rather than TSQR (Section 2.3) and Block Gram-Schmidt (Section 2.4).

• The Krylov basis vectors in Kim and Chronopoulos’ algorithm are only made orthog-
onal in a block sense: blocks Vi and Vj of s vectors each satisfy V ∗j Vi = 0 when i 6= j,
but do not necessarily satisfy V ∗i Vi = Is×s. CA-Arnoldi also makes the columns of each
block orthogonal, using a numerically stable combination of TSQR (Section 2.3) and
BGS (Section 2.4). This also makes it easier for CA-Arnoldi to perform reorthogonal-
ization, as is often done when solving eigenvalue problems.

Like Arnoldi(s), CA-Arnoldi communicates a factor of s less than standard Arnoldi with the
same restart length r = s · t. CA-Arnoldi requires the same storage as standard Arnoldi.
It may require a lower-order term more floating-point arithmetic operations than standard
Arnoldi, but this is due only to the matrix powers kernel (see Section 2.1 for details).

In this section, we will derive CA-Arnoldi (also called Arnoldi(s, t)) step-by-step from
Arnoldi(st). Each step clarifies how we save arithmetic operations over a näıve implementa-
tion. We begin in Section 3.3.1 by outlining the derivation approach. Section 3.3.2 introduces
notation. In Section 3.3.3, we show that each outer iteration of CA-Arnoldi amounts to up-
dating a QR factorization of a tall skinny matrix, by adding s more columns to its right side.
We avoid communication when computing this update by using Block Gram-Schmidt (see
Section 2.4). Section 3.3.4 shows how we use the results of that QR factorization update to
perform a similar update of the Arnoldi upper Hessenberg matrix. Section 3.3.5 combines
the previous sections’ derivations in order to describe the CA-Arnoldi algorithm (shown
as Algorithm 22). Finally, we suggest applications of CA-Arnoldi for solving generalized
eigenvalue problems in Section 3.3.6.

3.3.1 Ansatz

In this section, we show how one begins deriving CA-Arnoldi. We introduce notation here
which we will define formally only later. Suppose that we perform s steps of Arnoldi, either
standard Arnoldi or the s-step variant, using the n× n matrix A and the starting vector q1.
Assuming that the iteration does not break down, this results in an n by s + 1 matrix of
basis vectors Q

0
, with

Q
0

= [Q0, qs+1] = [q1, q2, . . . , qs, qs+1] .
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Its columns are an orthogonal basis for the Krylov subspace span{q1, Aq1, . . . , Asq1}. Arnoldi
also produces an s+ 1 by s nonsingular upper Hessenberg matrix H0, with

H0 =

(
H0

h0e
T
s

)
.

The upper Hessenberg matrix H0 satisfies

AQ0 = Q
0
H0 = Q0H0 + h0 · qs+1e

T
s . (3.8)

In Section 3.2, we showed how to compute Q
0

and H0 using Arnoldi(s) instead of standard
Arnoldi. We assume, as in the previous section, that the QR factorization used in Arnoldi(s)
preserves the unitary scaling of the starting vector. However we choose to compute Q

0
and

H0, Equation (3.8) still holds in exact arithmetic.3

If this were Arnoldi(s), we would have to restart now. Instead, we take the last basis
vector qs+1, and make it the input of the matrix powers kernel. We set vs+1 := qs+1, and the
matrix powers kernel produces an n by s+ 1 matrix of basis vectors V 1 with

V 1 = [qs+1 = vs+1, vs+2, . . . , v2s+1].

We write
V1 = [vs+1, vs+2, . . . , v2s],

V 1 = [V1, v2s+1],

V́1 = [vs+2, . . . , v2s],

V́ 1 = [V́1, v2s+1].

The underline (as before) indicates “one more at the end,” and the acute accent (pointing
up and to the right) indicates “one less at the beginning.” The vector omitted “at the
beginning” is qs+1, which is already orthogonal to the previous basis vectors; we neither
need nor want to change it anymore. The columns of V́ 1 have not yet been orthogonalized
against the columns of Q

0
.

We set
Q0 = Q0,

Q0 = Q
0
.

Orthogonalizing the columns of V́ 1 against the previous basis vectors (here the columns of
Q0) is equivalent to updating a QR factorization by adding the s columns of V́ 1 to the right

of Q0. This results in an efficiently computed QR factorization of [Q0, V́ 1]:

[Q0, V́ 1] = [Q0, Q́1
] ·
(
Is+1,s+1 Ŕ0,1

0 Ŕ1

)
. (3.9)

We perform this update in two steps. First, we use a block Gram-Schmidt operation to
orthogonalize the columns of V́ 1 against the columns of Q0:

3In practice, we may want to begin a run of CA-Arnoldi with s iterations of standard Arnoldi first in
order to compute Ritz values, which are used in successive outer iterations to compute a good basis. This is
why we allow the first outer iteration to be computed either by standard Arnoldi or by Arnoldi(s).



CHAPTER 3. COMMUNICATION-AVOIDING ARNOLDI AND GMRES 132

• Ŕ0,1 := Q∗0V́ 1

• V́
′
1 := V́ 1 −Q0 · Ŕ0,1

Then, we compute the QR factorization of V́
′
1, which makes the new basis vectors mutually

orthogonal as well as orthogonal to the previous basis vectors:

V́
′
1 = Q́

1
Ŕ1.

Now that we have the desired QR factorization update and a new set of s orthogonalized
Arnoldi basis vectors, we can update the upper Hessenberg matrix as well. Just as in
Arnoldi(s), the basis vectors V 1 satisfy AV1 = V 1B1 for the nonsingular upper Hessenberg
(at least) matrix B1, which is defined by the choice of basis. That means

A[Q0, V1] = [Q0, V 1]B1, (3.10)

where the 2s+ 1 by 2s matrix B1 satisfies

B1 =

(
H0 0s,s

h0e1e
T
s B1

)
=

(
B1

b1e
T
2s

)
. (3.11)

Combining Equation (3.10) with the QR factorization update (Equation (3.9)) and the def-
inition of B1 (Equation (3.11)), we get

A[Q0, Q1]

(
I R0,1

0 R1

)
= [Q0, V 1]

(
I R0,1

0 R1

)(
H0 0s,s

h0e1e
T
s B1

)
, (3.12)

where
R0,1 = Q∗0V1 = [e1,Q

∗
0V́1],

R0,1 = Q∗0V 1 = [e1,Q
∗
0V́ 1],

and R1 and R1 are the R factors in the QR factorization of V1 resp. V 1. (Similarly, R1(1, 1) =
R1(1, 1) = 1.) This is just a rearrangement of the updated R factor in Equation (3.9) and
involves no additional computation. We set H0 := H0 and H0 := H0 also.

Equation (3.12) lets us recover the 2s+ 1 by 2s upper Hessenberg matrix H1 which is the
same as would be computed by 2s steps of standard Arnoldi iteration. We have

A[Q0, Q1] = [Q0, Q1
]H1

and therefore

H1 =

(
I R0,1

0 R1

)(
H0 0s,s

h0e1e
T
s B1

)(
I R0,1

0 R1

)−1

. (3.13)

We will show later how to simplify the formula for H1 in Equation (3.13), so that H1 can be
computed as an update, without needing to change H0 part of the matrix.

Applying the update technique in this section t − 1 times results in a total of t “outer
iterations” of CA-Arnoldi. The Arnoldi relation that results is

AQt−1 = Qt−1Ht−1 + ht−1qst+1e
T
st

= Qt−1Ht−1,
(3.14)
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where the outputs of CA-Arnoldi are the n by st + 1 matrix of basis vectors Qt−1, and the
st+ 1 by st upper Hessenberg matrix Ht−1. Here,

Qt−1 = [Q0, . . . , Qt−1],

Qt−1 = [Q1, . . . , Qt−2, Qt−1
] = [Qt−1, qst+1],

and

Ht−1 =


H0 H0,1 . . . H0,t−1

h0e1e
T
s H1

. . . H1,t−1

h1e1e
T
s

. . .
...

. . . Ht−1

ht−1e
T
s

 =

(
Ht−1

ht−1e
T
st

)
.

In the above, each Hi,j is a general s × s matrix, Hk is s × s upper Hessenberg, and hk =
Hk(s + 1, s). We will explain our notation in more detail in Section 3.3.2, and sketch out
the algorithm in the subsections that follow.

3.3.2 Notation

In this subsection, we explain the notation used in our Arnoldi(s, t) algorithm. The admit-
tedly complicated notation helps clarify the structure of the algorithm.

CA-Arnoldi has three levels of notation. For more outer levels, we use taller and more
elaborate typefaces. For example, vsk+j (lowercase, Roman typeface) is a single basis vector
in outer iteration k, Vk (uppercase, Roman) an n × s matrix whose columns are s basis
vectors in a group for outer iteration k, and Qk (uppercase, Black letter) a collection of
s(k + 1) groups of orthogonal basis vectors at outer iteration k. For example,

Vk = [vsk+1, vsk+2, . . . , vsk+s]

is an n×s matrix whose columns are s basis vectors in the kth such group. At the outermost
level, the subscripts refer to the current outer iteration. For example,

Qk = [Q0, Q1, . . . , Qk−1]

is an n × s(k + 1) matrix comprised of k groups of basis vectors, each group containing s
basis vectors.

3.3.3 QR factorization update

The CA-Arnoldi algorithm follows directly from the QR factorization update outlined in
Section 3.3.1. The update produces the same results (in exact arithmetic) as would a full
QR factorization of all the basis vectors, but saves work. The update also preserves the
directions of previous basis vectors, which a full QR factorization might not do.

There are many choices for computing the QR factorization update. First of all, in outer
iteration k we may choose to work with V́ k (the overlapping approach) or with V k (the
nonoverlapping approach). In either case, we may represent the previously orthogonalized
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basis vectors explicitly (as columns of a matrix), or implicitly (using the TSQR representation
of the Q factor as a tree of small Q factors). Also, we may choose to perform the block Gram-
Schmidt operation either in a classical Gram-Schmidt or modified Gram-Schmidt way. Each
of these three choices may affect performance, and the type of block Gram-Schmidt used
may also affect the orthogonality of the computed basis vectors in finite-precision arithmetic.
We discuss the effects of all three choices on performance and accuracy in this section.

The QR update task

Suppose we have performed k − 1 outer iterations of CA-Arnoldi. This produces sk + 1
orthonormal resp. unitary basis vectors q1, . . . , qsk, qsk+1. These vectors form the first sk+1
columns of Qk−1, which can be considered the Q factor of a QR factorization with the identity
as the R factor. For now, we gloss over the representation of Qk−1. Outer iteration k of
CA-Arnoldi then sets vsk+1 := qsk+1 and produces s more basis vectors vsk+2, . . . , vs(k+1)+1

using the matrix powers kernel. We write

V́k = [vsk+2, . . . , vs(k+1)],

V́ k = [V́k, vs(k+1)+1],

Vk = [vsk+1, V́k],

V k = [vsk+1, V́ k].

Our goal is to orthogonalize the new basis vectors vsk+2, vsk+3, . . . , vs(k+1)+1 against the
previous basis vectors q1, q2, . . . , qsk+1. We can express this as updating a QR factorization
by adding columns to the right of a matrix. There are two different ways to formulate the
update, depending on how one distinguishes “previous” vectors and “new” vectors:

1. Nonoverlapping approach: update a QR factorization by adding the columns of V k to
the right of Qk−1

2. Overlapping approach: update a QR factorization by adding the columns of V́ k to the
right of Qk−1

Both approaches compute the same QR factorization of [Qk−1, V́ k] = [Qk−1, V k] in exact
arithmetic. The reason for distinguishing the two approaches is that the first basis vector of
the kth outer iteration, vsk+1 (which is also qsk+1), is also the last basis vector of the (k−1)th

outer iteration. The vector vsk+1 has already been orthogonalized against the previous basis
vectors. The nonoverlapping approach chooses to orthogonalize vsk+1 redundantly against
the previous basis vectors, while the overlapping approach avoids this extra work. We will
compare both approaches in the sections that follow.

Nonoverlapping approach The nonoverlapping approach to the QR update proceeds as
follows. We begin with the previously computed matrix of sk orthogonal basis vectors Qk−1,
and then add the s+ 1 columns of V k to the right of it to form

Vk = [Qk−1, V k].
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Here, the first column vsk+1 = qsk+1 of V k is the last column of Qk. Then, we find the
QR factorization of Vk via an update. We call this approach “nonoverlapping” because we
think of qsk+1 as belonging to and being processed by outer iteration k, even though it was
generated by outer iteration k − 1 (or was the starting vector, if k = 0). This was the
approach we implemented in [78].

The nonoverlapping update proceeds as follows:
1: Rk−1,k := Q∗k−1V k . s(k − 1) by s+ 1 matrix
2: V ′k := V k −Qk−1Rk−1,k

3: Compute QR factorization Q
k
Rk = V ′k

The resulting new QR factorization QkRk = Vk has the form

Qk = [Qk−1, Qk
],

Rk =

(
Is(k−1),s(k−1) Rk−1,k

0 · e1e
T
s(k−1) Rk

)
.

Obtaining Qk−1 from Qk−1 is a special case of downdating the factorization (removing
the effects of a column). For a QR factorization, downdating the last column requires no
additional work. In a traditional Householder QR factorization, it involves ignoring the
Householder reflector corresponding to the last column, when applying the Q factor. In
TSQR (see Section 2.3), it involves ignoring the Householder reflector corresponding to the
last column, for all of the blocks comprising the factorization. Similarly, Rk−1 is just the
upper left s(k − 1) by s(k − 1) submatrix of Rk−1.

Overlapping approach The overlapping approach to the QR update proceeds as follows.
We begin with the previously computed matrix of sk+ 1 orthogonal basis vectors Qk−1, and

then add the s columns of V́ k to the right of it to form

Vk = [Qk−1, V́ k].

Here, the last column qsk+1 = vsk+1 of Qk−1 is the first column of V k. Then, we find the
QR factorization of Vk via an update. We call this approach “overlapping” because qsk+1

is processed by outer iteration k − 1, even though we think of it as “belonging” to outer
iteration k.

The overlapping update proceeds as follows:
1: Ŕk−1,k := Q∗k−1V́ k

2: V́
′
k := V́ k −Qk−1Ŕk−1,k

3: Compute QR factorization V́
′
k = Q́

k
Ŕk

The resulting new QR factorization QkRk = Vk has the following form:

Qk = [Qk−1, Q́k
],

Rk =

(
Is(k−1)+1,s(k−1)+1 Ŕk−1,k

0 · e1e
T
s(k−1)+1 Ŕk

)
.

This approach requires no downdating.
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Block CGS or block MGS

Both the overlapping and nonoverlapping approaches begin with a step of Block Gram-
Schmidt (see Section 2.4), to orthogonalize the the “new” set of basis vectors against the
previously orthogonalized basis vectors. This may be done for all sk + 1 resp. sk basis
vectors at once, which we call the Block Classical Gram-Schmidt or Block CGS approach.
Alternately, it may be done k− 1 times for each group of s previous basis vectors, which we
call the Block Modified Gram-Schmidt or Block MGS approach. We discuss both approaches
in general in Section 2.4.3 and show their performance models in Section 2.4.5. Here, we
show them in the context of CA-Arnoldi. When explaining Block CGS and Block MGS in
this section, we assume the overlapping update approach without loss of generality. It is
easy to extend the arguments here to the nonoverlapping update approach.

Algorithm 20 Block CGS update in outer iteration k of Arnoldi(s,t)

Require: k > 0
Input: Qk−1: sk + 1 already orthogonalized Arnoldi basis vectors

Input: V́ k: s more basis vectors, not orthogonalized, which are the output of the matrix
powers kernel

1: Ŕk−1,k := Q∗k−1V́ k

2: V́
′
k := V́ k −Qk−1Ŕk−1,k

Output: V́
′
k: s basis vectors, orthogonalized against Qk−1

Output: Ŕk−1: sk + 1 by s matrix

Algorithm 21 Block MGS update in outer iteration k of Arnoldi(s,t)

Require: k > 0
Input: Qk−1: sk + 1 already orthogonalized Arnoldi basis vectors

Input: V́ k: s more basis vectors, not orthogonalized, which are the output of the matrix
powers kernel

1: Ŕ0,k := Q∗
0
V́ k

2: V́ k := V́ k −Q0
Ŕ0,k

3: for j = 1 to k − 1 do
4: Ŕj,k := Q́

∗
j
V́ k

5: V́ k := V́ k − Q́j
Ŕj,k

6: end for
Output: V́

′
k: s basis vectors, orthogonalized against Qk−1

Output: Collection of k matrices Ŕ0,k, . . . , Ŕk−1,k. The first is s + 1 by s and the rest are
s× s.

We show Block CGS at outer iteration k of CA-Arnoldi as Algorithm 20. It requires
only two steps. Block MGS at outer iteration k of CA-Arnoldi is shown as Algorithm 21. It
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requires 2k steps. In Block MGS, we assemble Ŕk−1,k via

Ŕk−1,k =

 Ŕ0,k
...

Ŕk−1,k

 .

In exact arithmetic, both Block CGS and Block MGS compute the same updated basis

vectors V́
′
k and R factor component Ŕk−1,k. The differences are in performance and accuracy.

Since each “previous” block Q́
j

already has unitary columns, the accuracy of Block MGS is

comparable to that of orthogonalizing a vector against k unit-length orthogonal vectors using
standard MGS. Similarly, the accuracy of Block CGS is comparable to that of orthogonalizing
a vector against k unit-length orthogonal vectors with standard CGS.

Explicit or implicit Q factor

The standard version of Arnoldi stores all of the entries of the orthogonalized basis vectors
explicitly. However, the basis vectors make up the columns of a Q factor, and there are
implicit ways to represent and work with aQ factor. For example, Householder QR represents
the Q factor as a sequence of Householder reflectors, which are stored in the bottom triangle
of a matrix. TSQR (Section 2.3) computes the Q factor in a tree form, whose nodes are
themselves Q factors. Converting the resulting implicitly stored Q factor into an explicitly
stored matrix is another kernel, which requires as much communication (and about as much
arithmetic) as TSQR. Furthermore, the key operations in the CA-Arnoldi QR factorization
update do not require knowing the entries of the Q factor. They only require applying the Q
factor (or its (conjugate) transpose) to a matrix, and the TSQR implicit representation suffice
to compute that. Nevertheless, there are advantages to computing the explicit version of the
Q factor. When Q is stored as an explicit matrix, the Block Gram-Schmidt update steps can
use matrix-matrix multiplication, which is typically more optimized than the local QR-like
computations required to apply an implicitly stored Q factor. We chose to store the Q factor
produced by TSQR explicitly, in our CA-GMRES (see Section 3.4) implementation discussed
in Section 3.5. CA-GMRES is still faster than standard GMRES in our experiments, despite
the extra communication and computation required to compute the explicit form of the Q
factors.

Repartitioning the R factor

When showing how to compute the Arnoldi upper Hessenberg matrix from the R factor in
the QR factorization update (Section 3.3.3), it simplifies the notation if we first “repartition”
the block matrix Rk. This is purely notational; repartitioning requires no computation and
insignificant data movement.

To this end, we first define four variations on the block inner product:

Rk−1,k = Q∗k−1Vk,

Rk−1,k = Q∗k−1V k,

Ŕk−1,k = Q∗k−1V́k,

Ŕk−1,k = Q∗k−1V́ k.

(3.15)
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The notation is complicated but the pattern is this: the acute accent means V́k is involved,
and the underline means V k is involved. Both an acute accent and an underline means that
V́ k is involved. Given this notation, we can partition Rk and Rk in two different ways:

Rk =

(
Is(k−1)+1,s(k−1)+1 Ŕk−1,k

0s,s(k−1)+1 Ŕk

)
=

(
Is(k−1),s(k−1) Rk−1,k

0s,s(k−1) Rk

)
, and

Rk =

(
Is(k−1)+1,s(k−1)+1 Ŕk−1,k

0s,s(k−1)+1 Ŕk

)
=

(
Is(k−1),s(k−1) Rk−1,k

0s,s(k−1) Rk

)
.

(3.16)

3.3.4 Updating the upper Hessenberg matrix

In this section, we show how to compute the upper Hessenberg matrix Hk efficiently, using
the structure of the QR factorization update at outer iteration k. Recall that if CA-Arnoldi
performs all its iterations without breaking down, it produces the following matrix relation:

AQk = QkHk,

where
Qk = [Q0, Q1, . . . , Qk],

Qk = [Qk, qs(k+1)+1],

Hk =


H0 for k = 0,(

Hk−1 Hk−1,k

hk−1e1e
T
s(k−1) Hk

)
for k > 0,

and

Hk =

(
Hk

hke
T
s(k+1)

)
.

That is the end result, but how do we update the upper Hessenberg matrix Hk? Suppose
that we have already computed Hk−1 and the new basis V k. Then, AQk−1 = Qk−1Hk−1 and
thus

A[Qk−1, Vk] = [Qk, V k]Bk, (3.17)

where

Bk =

(
Hk−1 0s(k−1),s

hk−1e1e
T
s(k−1) Bk

)
, and

Bk =

(
Hk−1 0s(k−1),s

hk−1e1e
T
s(k−1) Bk

)
.

Now, we combine the QR factorization update in Section 3.3.3 with the Arnoldi relation
AQk = QkHk:

A[Qk−1, Qk]

(
Is(k−1),s(k−1) Rk−1,k

0s,s(k−1) Rk

)
=

[Qk−1, Qk
]

(
Is(k−1),s(k−1) Rk−1,k

0s,s(k−1) Rk

)(
Hk−1 0s(k−1),s

hk−1e1e
T
s(k−1) Bk

)
.
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Here, we use the repartitioning of the R factors described in Section 3.3.3 so that the sub-
blocks of R, R, and Bk line up for the multiplication. Assuming that the Arnoldi recurrence
hasn’t broken down, we then have

Hk = RkBkR
−1
k =(

Is(k−1),s(k−1) Rk−1,k

0 Rk

)(
Hk−1 0s(k−1),s

hk−1e1e
T
s(k−1) Bk

)(
Is(k−1),s(k−1) −Rk−1,kR

−1
k

0 R−1
k

)
=(

Hk−1 + hk−1(Rk−1,ke1)eTs(k−1) Rk−1,kBk

hk−1(Rke1)eTs(k−1) RkBk

)(
I −Rk−1,kR

−1
k

0 R−1
k

)
. (3.18)

We show in parentheses those terms in the last line of Equation (3.18) above which can
be simplified. Two simplifications follow from the properties of the CA-Arnoldi recurrence:

• Rke1 = 1 and Rke1 = 1, since at each outer iteration k, the first basis vector vsk+1 =
qsk+1 always has unit length by construction.

• Rk−1,ke1 = Q∗k−1V ke1 = Q∗k−1qsk+1 = 0s(k−1),1, and Rk−1,ke1 = 0s(k−1),1 also. This
makes only a mild assumption on the orthogonality of the Arnoldi basis vectors, namely
that the first basis vector qsk+1 of the s + 1 basis vectors at outer iteration k are
orthogonal to the previous group of s basis vectors.

These two simplifications will ensure that the matrix Hk has an upper Hessenberg structure
for all k. We now apply the simplifications to Equation (3.18) to obtain

Hk =

(
Hk−1 + hk−1(Rk−1,ke1)eTs(k−1) Rk−1,kBk

hk−1(Rke1)eTs(k−1) RkBk

)(
I −Rk−1,kR

−1
k

0 R−1
k

)
=(

Hk−1 Rk−1,kBk

hk−1e1e
T
s(k−1) RkBk

)(
I −Rk−1,kR

−1
k

0 R−1
k

)
=(

Hk−1 −Hk−1Rk−1,kR
−1
k + Rk−1,kBkR

−1
k

hk−1e1e
T
s(k−1) RBkR

−1
k − hk−1e1e

T
s(k−1)Rk−1,kR

−1
k

)
.

All these simplifications and calculations give us

Hk =

(
Hk−1 −Hk−1Rk−1,kR

−1
k + Rk−1,kBkR

−1
k

hk−1e1e
T
s(k−1) RBkR

−1
k − hk−1e1e

T
s(k−1)Rk−1,kR

−1
k

)
. (3.19)

Let Hk be the lower left s+ 1 by s submatrix of Hk. We can further simplify this as follows:

RkBkR
−1
k =

(
Rk zk
01,k ρk

)(
Bk

bke
T
s

)
Rk =

(
RkBkR

−1
k + ρ̃−1

k bkzke
T
s

ρ̃−1
k ρkbke

T
s

)
,

where we write ρ̃k = Rk(s, s). As long as Bk is upper Hessenberg, RkBR
−1
k is upper Hessen-

berg. From this, we have

Hk =

(
RkBkR

−1
k + ρ̃−1

k bkzke
T
s − hk−1e1e

T
s(k−1)Rk−1,kR

−1
k

ρ̃−1
k ρkbke

T
s

)
, (3.20)
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which is clearly upper Hessenberg. This gives us

Hk = RkBkR
−1
k + ρ̃−1

k bkzke
T
s − hk−1e1e

T
s(k−1)Rk−1,kR

−1
k (3.21)

and
hk = ρ̃−1

k ρkbk. (3.22)

All these equations give us an update procedure for Hk:
1: Compute Hk−1,k := −Hk−1Rk−1,kR

−1
k + Rk−1,kBkR

−1
k

2: Compute Hk via Equation (3.21)
3: Compute hk := ρ̃−1

k ρkbk

4: Hk :=

 Hk−1 Hk−1,k

hk−1e1e
T
s(k−1) Hk

01,s(k−1) hke
T
s


The total cost in floating-point operations of the Hk update, for k > 0, is 4s3(k +

1/4) + O(s2k) flops. In parallel, this requires no communication, as long as it is computed
redundantly on all processors. In the sequential case, this can be computed in fast memory
as long as s and k are of the small sizes expected in CA-Arnoldi. If we were to compute Hk

as RkBkR
−1
k , assuming only that the R factors are upper triangular and that Bk is upper

Hessenberg, this would cost 2s3k3/3 +O(s2k2) flops.

Computational notes

Note that in CA-Arnoldi, it is not strictly necessary to compute Hk before starting the
next outer iteration. The hk quantity tells us the magnitude of the last basis vector before
normalization, which gives us an idea of the convergence of Arnoldi. This can be computed
as soon as Rk is available from the QR factorization update. In fact, if we expect to run
CA-Arnoldi for several outer iterations before converging, we can delay computing Hk for
as long as we wish. Alternately, we can overlap the Hk update (mainly the computation of
Hk−1,k and Hk) with the next outer iteration.

One application of the Arnoldi process is the GMRES algorithm of Saad and Schultz [208]
for solving Ax = b. Saad and Schultz use a Givens rotation at every iteration of GMRES
to maintain a QR factorization of the Arnoldi upper Hessenberg matrix. This efficiently
computes the residual ‖b−Axk‖2 for the current approximate solution xk, without needing
to compute xk itself. It would not be difficult to modify CA-Arnoldi to use Givens rotations
in a similar way, to maintain a QR factorization of Hk. We outline how to do this in Section
3.4.

3.3.5 CA-Arnoldi algorithm

CA-Arnoldi is equivalent to standard Arnoldi iteration in exact arithmetic. The integer
parameter s (Arnoldi(s, t)) refers to the number of steps in each inner iteration and is the
parameter in the matrix powers kernel optimization which we described in previous sections.
The integer parameter t refers to the number of steps in each outer iteration, that is, the
number of times an s-step basis is generated before the Arnoldi method restarts. Thus,
CA-Arnoldi is equivalent to Arnoldi(st) in exact arithmetic. Algorithm 22 shows the Block
CGS update version of CA-Arnoldi.
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Algorithm 22 CA-Arnoldi

Require: n× n matrix A and n× 1 starting vector v
1: h0 := ‖r‖2, q1 := v/h0

2: for k = 0 to t− 1 do
3: Fix basis conversion matrix Bk

4: Compute V́ k using matrix powers kernel
5: if k = 0 then
6: Compute QR factorization V 0 = Q

0
R

7: Q0 := Q
0

8: H0 := R0B0R
−1
0

9: else
10: Ŕk−1,k := Q∗k−1V́ k

11: V́
′
k := V́ k −Qk−1Ŕk−1,k

12: Compute QR factorization V́
′
k = Q́

k
Ŕk

13: Compute Hk−1,k := −Hk−1Rk−1,kR
−1
k + Rk−1,kBkR

−1
k

14: Compute Hk via Equation (3.21)
15: Compute hk via Equation (3.22)

16: Hk :=

 Hk−1 Hk−1,k

hk−1e1e
T
s(k−1) Hk

01,s(k−1) hke
T
s


17: end if
18: end for

3.3.6 Generalized eigenvalue problems

CA-Arnoldi may also be used to solve generalized eigenvalue problems of the form

Ax = λMx, (3.23)

where A and M are both nonsingular n×n matrices. In that case, we may convert Equation
(3.23) into an equivalent form, such as

M−1Ax = λx. (3.24)

See Section 4.3 for details and a list of different equivalent forms. The result could be
called a “preconditioned eigenvalue problem,” that is an eigenvalue problem with respect to
a “preconditioned matrix.” (which is M−1A in the above “left-preconditioned” example).
Such problems may also be solved using CA-Arnoldi, if we change Line 4 of Algorithm 22
to compute a Krylov basis with respect to the preconditioned matrix, rather than to the
original matrix A. For example, if the preconditioned matrix is M−1A, then the columns of
V k must form a basis of

Ks+1(M−1A, vsk+1) = span{vsk+1,M
−1Avsk+1, (M

−1A)2vsk+1, . . . , (M
−1A)svsk+1}

at each outer iteration k of Algorithm 3.3. To compute this, we use the preconditioned
version of the matrix powers kernel (Section 2.2. CA-Arnoldi requires no other changes in
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order to solve generalized eigenvalue problems in a communication-avoiding way. (Some of
our other communication-avoiding Krylov methods, such as CA-Lanczos, do require changes
in this case. The algorithm and the matrix powers kernel both change. See Section 4.3 for
details.)

3.3.7 Summary

In this section, we presented CA-Arnoldi (Algorithm 22). It communicates a factor s less than
standard Arnoldi, both sequentially and in parallel. CA-Arnoldi uses a combination of the
matrix powers kernel (Section 2.1), Block Gram-Schmidt (Section 2.4), and TSQR (Section
2.3). It is equivalent to standard Arnoldi in exact arithmetic. We will use CA-Arnoldi
in Section 3.4 to derive CA-GMRES (Algorithm 23), which is a communication-avoiding
version of GMRES.

3.4 CA-GMRES

The Generalized Minimal Residual method (GMRES) of Saad and Schultz [208] is a Krylov
subspace method for solving nonsymmetric linear systems. It does so by choosing the solution
update from the span of the Arnoldi basis vectors that minimizes the 2-norm residual error.
This entails solving a least-squares problem with the Arnoldi upper Hessenberg matrix,
which is m+ 1 by m at iteration m of GMRES. Saad and Schultz’s formulation of GMRES
combines (standard, MGS-based) Arnoldi with a Givens rotation scheme for maintaining a
QR factorization of the upper Hessenberg matrix at each iteration. The Givens rotation
scheme exposes the residual error of the least-squares problem at every iteration j, which (in
exact arithmetic) is the GMRES residual error ‖b − Axj‖2 in iteration j. This means that
GMRES need not compute the approximate solution xj in order to estimate convergence.

We can compute exactly the same approximate solution as m iterations of Saad and
Schultz’s GMRES if we perform m iterations of Arnoldi(s, t), where s and t are chosen so
that m = s ·t. This results in an st+1 by st upper Hessenberg matrix Ht−1. We can even use
Givens rotations to maintain its QR factorization and get the same convergence estimate as
in Saad. The only difference is that we have to perform s Givens rotations at a time, since
Arnoldi(s, t) adds s columns at a time to the upper Hessenberg matrix with every outer
iteration. The Givens rotations technique has little effect on raw performance (one would
normally solve the least-squares problem with a QR factorization and use Givens rotations
to factor the upper Hessenberg matrix anyway), but it offers an inexpensive convergence
test at every outer iteration. The resulting algorithm, based on Arnoldi(s, t) and equivalent
to standard GMRES in exact arithmetic, we call Communication-Avoiding GMRES or CA-
GMRES (Algorithm 23).

CA-GMRES includes all of Arnoldi(s, t) as shown in Algorithm 22, and also at every
outer iteration k, solves the least-squares problem

yk := argminy ‖Hky − βe1‖2 (3.25)

to compute a new approximate solution xk+1 := x0 + Qkyk. Here, β = ‖b − Ax0‖2, the
2-norm of the initial residual. Algorithm 23 shows how we update a QR factorization of
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Hk by first applying all the previous sk + 1 Givens rotations G1, . . . , Gsk+1 to the new s
columns of Hk, and then applying s more Givens rotations Gsk+2, . . . , Gs(k+1)+1 to Hk to
reduce it to upper triangular form. The Givens rotations are also applied to the right-hand
side of the least-squares problem, resulting in what we denote at outer iteration k by ζk.
The last component of ζk, in exact arithmetic, equals the two-norm of the absolute residual
error b− Axk+1.

3.4.1 Scaling of the first basis vector

In Section 3.2.4, we discussed how some QR factorizations may give the basis vectors qj
computed by Arnoldi(s, t) a different unitary scaling than the basis vectors q̂j computed
by standard Arnoldi. Similarly, the upper Hessenberg matrices may differ by a unitary
diagonal similarity transform. This does not affect Ritz value calculations, but it does affect
the least-squares problem which GMRES solves in order to get the approximate solution to
Ax = b. We will now show that for CA-GMRES, the only scaling factor that matters is that
of the first basis vector q1. Furthermore, if CA-GMRES uses a QR factorization under which
the direction of the first column is invariant (i.e., where 〈q1, q̂1〉 = 1 as long as ‖q1‖2 = 1),
then CA-GMRES computes the same approximate solution in exact arithmetic as standard
GMRES at all iterations. Otherwise, one additional inner product will be necessary in order
to compute the change in direction of q1.

We review notation from Section 3.2.4 to describe the unitary scaling of the basis vectors.
If we run standard MGS Arnoldi for st iterations (with s and t ≥ 1) with the unit-length
starting vector q̂1, it produces st more basis vectors q̂2, . . . , q̂st+1 and an st+ 1 by st upper
Hessenberg matrix Ĥ such that

AQ̂ = Q̂H,

where Q̂ = [q1, . . . , qst] and Q̂ = [Q̂, qst+1]. If we run Arnoldi(s, t) with the same s and t as
above, with the same starting vector q̂1, we obtain st+ 1 basis vectors q1, q2, . . . , qst+1 and
an st+ 1 by st upper Hessenberg matrix Ht−1 such that

AQt−1 = Qt−1Ht−1.

The matrices Qt−1 and Q̂ may differ in exact arithmetic by a unitary scaling:

Q̂ = Qt−1Θ,

in which Θ is an st+ 1 by st+ 1 diagonal matrix with elements θ1, θ2, . . . , θst+1. For all j,
|θj| = 1, and Θ−1 = Θ∗. We write Θ for the st by st upper left submatrix of Θ. Similarly,
the relationship between the two upper Hessenberg matrices is

Ĥ = Θ∗HΘ. (3.26)

Suppose now that iteration st of standard GMRES computes an approximate solution x̂ =
x0 + Q̂ŷ, and our version of GMRES computes an approximate solution xt = x0 + Qt−1yt−1.
We can use Equation (3.26) to compare these two solution updates ŷ and yt−1. Our version
of GMRES obtains yt−1 as the solution of the least-squares problem

yt−1 = argminy ‖Ht−1y − βe1‖2,
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where β is the initial residual norm ‖b − Ax0‖2. Similarly, standard GMRES obtains ŷ as
the solution of

ŷ = argminy ‖Ĥt−1y − βe1‖2.

The pseudoinverse formula for the least-squares problem gives us

yt−1 = β
(
H∗t−1Ht−1

)−1
H∗t−1e1

and

ŷ = β
(
Ĥ
∗
Ĥ
)−1

Ĥ
∗
e1.

If we apply Equation (3.26), we get

ŷ = β
(
Θ∗H∗t−1ΘΘ∗Ht−1Θ

)−1
Θ∗H∗Θe1

= β
(
Θ∗H∗t−1Ht−1Θ

)−1
Θ∗H∗Θe1

= βΘ∗
(
H∗t−1Ht−1

)−1
ΘΘ∗H∗Θe1

= βΘ∗
(
H∗t−1Ht−1

)−1
H∗θ1e1

= βθ1Θ∗
(
H∗t−1Ht−1

)−1
H∗e1.

Finally,
x̂ = x0 + Q̂ŷ

= x0 + βθ1Qt−1ΘΘ∗
(
H∗t−1Ht−1

)−1
H∗e1

= x0 + βθ1Qt−1

(
H∗t−1Ht−1

)−1
H∗e1

= x0 + θ1Qt−1yt−1.

This differs from xk+1 = x0 + Qt−1yt−1 by the direction θ1 of the solution update. If θ1 6= 1,
the computed solution xk+1 will differ from the standard GMRES solution.

One way to fix this is to ensure that the QR factorization used in CA-GMRES always
results in an R factor with a nonnegative diagonal (see Demmel et al. [75]). This will preserve
the direction of the initial residual r0, so that q1 = r0/β. Another way is to orthogonalize
the first group of basis vectors V 0 using MGS, instead of some other QR factorization. This
happens naturally if the first outer iteration of CA-GMRES is performed using standard
GMRES, which one might do in order to compute Ritz values to use in the matrix powers
kernel basis. A third approach is to compute θ1 = 〈r0, q1〉/β via an inner product. This
requires an additional communication step, but it need only be performed once, after the
QR factorization of V 0. One might be tempted to avoid the inner product in the parallel
case by comparing corresponding components of r0/β and q1, since both r0/β and q1 are
unit length and colinear. In finite-precision arithmetic, however, the processors may end up
disagreeing on the value of θ1. Furthermore, this communication-free procedure would fail
in certain corner cases where one or more processor’s components of the residual vector are
all zero. If avoiding the latency of the extra inner product matters for performance, then
one could package it up in the next outer iteration’s communication steps.
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3.4.2 Convergence metrics

CA-GMRES (Algorithm 23) computes a convergence metric at every outer iteration, namely
the 2-norm absolute residual ‖rk+1‖2. It does so inexpensively, in a way that usually requires
little computation and no communication. Scaling this by β, the initial residual error, results
in the relative residual ‖rk+1‖2/‖r0‖2.

Many authors recommend other convergence metrics for iterative methods. See e.g.,
Barrett et al. [22, pp. 57–63]. This is because the relative residual error depends too strongly
on the initial guess x0. If x0 = 0, then it may be hard to make the relative residual small if
A is ill-conditioned and xk+1 lies nearly in the null space of A. In contrast, if ‖x0‖ is large,
then β = ‖r0‖2 will be large, which may cause the iteration to stop too early (as the relative
residual will be artificially small).

Some of the recommended convergence metrics require computing the current approxi-
mate solution norm ‖xk+1‖. Others, that account for the sparsity structure of A, may even
require a sparse matrix-vector product, as well as a norm. Norms involve summation or
finding a maximum element in absolute value, which entails communication: sequentially,
all the elements of a long vector must be read, and in parallel, the processors must perform
a reduction. An SpMV operation will also involve communication. For example, in parallel,
even if the structure of A completely decouples, some kind of synchronization is necessary
so that the vector output can be reduced to a norm.

Whether users employ standard GMRES or our CA-GMRES, they must decide whether
a good convergence metric is worth the cost. Since the two methods are equivalent in exact
arithmetic and converge at the same rate in practice for most problems, one would use the
same convergence metric for each. Thus, the convergence metric is just an additional cost
atop the chosen iterative method. When we compare the performance and convergence of the
two iterative methods, we use the already available relative residual metric. In practice, one
could monitor the relative residual and compute a more expensive metric only occasionally.

Both CA-GMRES and standard GMRES have an inexpensive way to compute the two-
norm of the current solution, if x0 = 0. In that case, the current solution is a linear
combination of unit-length orthogonal vectors (in exact arithmetic), and so the two-norm of
the coefficients gives the two-norm of the current solution.

3.4.3 Preconditioning

To get preconditioned CA-GMRES, replace the matrix A in Algorithm 23 with the precon-
ditioned matrix: L−1AL−T for a split preconditioner LLT , M−1A for a left preconditioner
M , or AM−1 for a right preconditioner M . The CA-GMRES algorithm does not otherwise
change, but the matrix powers kernel must change, as discussed in Section 2.2. One must
use a preconditioner compatible with the matrix powers kernel. The performance of precon-
ditioned CA-GMRES depends on the preconditioner. In some cases, it may be preferable to
compute the same output as the matrix powers kernel using standard sparse matrix-vector
multiplications and preconditioner applications. This is especially useful for longer restart
lengths, where orthogonalizing the Arnoldi basis vectors dominates the runtime, as TSQR
and block Gram-Schmidt are usually much faster than standard MGS.
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3.5 CA-GMRES numerical experiments

In this section, we describe numerical experiments that compare standard GMRES with
our CA-GMRES, as well as with earlier versions of s-step GMRES. The experiments show
that CA-GMRES (with the correct choice of basis and restart length r = s · t) converges in
no more iterations than standard GMRES (with the same restart length r) for almost all
practical and contrived examples. They demonstrate that our (novel) ability to choose the
s-step basis length smaller than the restart length improves convergence. (In Section 3.6, we
will also show that this ability improves performance.) In addition, the experiments show
that in many cases, equilibration (see Section 7.5.3) and / or choosing a basis other than the
monomial basis (see Section 7.3) are required for numerical stability. Equilibration may slow
convergence of CA-GMRES relative to standard GMRES for some extremely poorly scaled
matrices, but equilibration also allows the use of longer s-step basis lengths in such cases.

We begin this section with a key explaining the notation of the convergence plots, in
Section 3.5.1. This section contains four different types of numerical experiments. Details
on the matrix, right-hand side, and initial guess used for each experiment are found in
Appendix B.

1. Positive diagonal matrices with varying condition numbers, which are described in
more detail in Appendix B.1. The results of these experiments are shown in Section
3.5.2.

2. Discretizations of 2-D convection-diffusion PDEs, with physically relevant parameters
that allow us to control the nonsymmetry of the matrix. The PDE and its discretization
are described in Appendix B.4.2 resp. B.4.3. The results of these experiments are shown
here in Section 3.5.3.

3. A variety of sparse matrices from different applications, for which we first presented
CA-GMRES performance results in Demmel et al. [78]. These matrices are described
in Appendix B.5. We show the results of numerical experiments with these matrices
here in Section 3.5.4. Performance experiments for this set of matrices will be shown
in Section 3.6.2.

4. WATT1: A challenging nonsymmetric matrix from petroleum engineering. We describe
this matrix in detail in Appendix B.6, and present numerical experiments here in
Section 3.5.5. Performance experiments for the WATT1 matrix will be in Section
3.6.3.

Diagonal matrices help us analyze numerical stability of the s-step basis, as a function of
matrix condition number and distribution of the eigenvalues. Results for these matrices
should apply to all iterative methods in this thesis, regardless of whether or not they assume
the matrix is symmetric. The second class of problems, which are nonsymmetric and come
from previous work on s-step versions of GMRES, exercise the GMRES part of CA-GMRES.
The third class confirms that CA-GMRES obtains good approximate solutions on matrices
from applications, on which it also performs well. The fourth problem poses special challenges
to s-step basis stability. Previous work has studied the convergence behavior of the third
problem in enough detail for us to make a fair comparison with CA-GMRES. Performance
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results for the fourth problem, which we will show in Section 3.5.5, will illustrate the value
of our novel ability to choose the basis length shorter than the restart length. We conclude
with a summary of our results in Section 3.5.6.

3.5.1 Key for convergence plots

The x axis of all the convergence plots in this thesis shows the number of iterations of the
Krylov methods tested. These are iterations in the sense of a standard Krylov method
(such as standard GMRES); s of these iterations correspond to one “outer iteration” of a
communication-avoiding Krylov method (such as CA-GMRES) with basis length s. The
CA-GMRES convergence metric is evaluated and shown only once per outer iteration. The
convergence metric for standard GMRES is shown as a continuous line, to suggest that it is
evaluated more frequently than the CA-GMRES metric.

The y axis of the convergence plots shows the 2-norm of the relative residual vector:
when solving Ax = b with initial guess x0, the 2-norm of the relative residual at iteration k
is ‖b−Axk‖2/‖b−Ax0‖2. There are arguments for using other convergence metrics. See e.g.,
Liesen [168] and Barrett et al. [22, “Stopping Criteria”]. Some of these alternate convergence
metrics require additional communication, such as computing ‖xk‖. We chose the relative
residual both for its familiarity, and because it requires no additional communication (it
comes “for free” from GMRES itself). Furthermore, since the Krylov methods we compare
start with the same initial guess for a given linear system, and since we run the Krylov
methods for many iterations, the residual scaling factor does not matter.

Each convergence plot’s legend shows data for three kinds of methods:

GMRES(r) Standard GMRES with restart length r. Its convergence metric is always
shown as a black continuous line.

Monomial-GMRES(s,t) CA-GMRES with basis length s, restart length r = s · t, and the
monomial basis. The convergence metric is plotted as a circle, with a different color
for each s value shown in the plot.

Newton-GMRES(s,t) CA-GMRES with basis length s, restart length r = s · t, and the
Newton basis. The convergence metric is plotted as an upward-pointing triangle, with
a different color for each s value shown in the plot.

The legend includes other data for the CA-GMRES methods shown in the plot. That
data shows the quality of the s-step basis, over each outer iteration k. In CA-GMRES, we
write the s + 1 vectors in the s-step basis as V k = [vsk+1, vsk+2, . . . , vsk+s+1] (see Algorithm
23 in Section 3.4). The first basis quality metric shown in the legend is the “min,max basis
cond #,” i.e., mink κ2(V k) and maxk κ2(V k), the minimum and maximum 2-norm condition
number of the s-step basis over all the outer iterations. When ε · κ2(V k) > 1 (where ε is
machine epsilon), the s-step basis is no longer numerically full rank. This often predicts the
lack of convergence of the method.

The second s-step basis quality metric shown in the legend is the “min,max basis scaling.”
In Section 7.5, we explain that if the norm of the matrix A is significantly larger or smaller
than 1, then the norms of the successive s-step basis vectors can increase resp. decrease
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Figure # Cond # Restart length
3.1 105 60
3.2 1010 60
3.3 1015 60
3.4 105 20
3.5 1010 20
3.6 1015 20

Table 3.1: Figure numbers of convergence plots for diagonal test matrices in this section, cor-
responding to different test matrices and GMRES restart lengths. Each matrix is identified
by it 2-norm condition number (“Cond #”).

rapidly. This can lead to overflow resp. underflow. As we discussed in that section, previous
authors controlled this process by scaling each basis vector in turn by its norm, before
generating the next one. Each norm computation requires communication, and scaling each
basis vector by its norm sets up a data dependency that prevents hiding this communication
cost. (See Sections 1.1.3 and 1.3.) Our approach, which we discuss in Section 7.5, avoids
communication by scaling the rows and columns of the matrix A, before starting the iterative
method. Not all matrices A require this. Whether or not it is required, we measure the
increase or decrease of the norms of the s-step basis vectors using the “min,max basis scaling”
metric. For each outer iteration k, we compute the average basis scaling

AverageBasisScalingk ≡ ‖vsk+s+1‖1/s
2

=

(
‖vsk+2‖2

‖vsk+1‖2

· ‖vsk+3‖2

‖vsk+2‖2

· · · · · ‖vsk+s+1‖2

‖vsk+s‖2

)1/s

.
(3.27)

The average basis scaling is the geometric mean of the ratios between consecutive s-step
basis vectors. Note that vsk+1 = 1 in CA-GMRES; the input vector of the matrix powers
kernel is scaled to have unit length. As with the basis condition number metric, we show
the minimum and maximum of the average basis scaling over all outer iterations k.

3.5.2 Diagonal matrices

We first test CA-GMRES with 10000 × 10000 positive diagonal matrices, with maximum
element 1 and a specified 2-norm condition number. See Appendix B.3 for a detailed de-
scription of the diagonal test problems used in this thesis. Three different diagonal test
matrices were tried, with condition numbers 105, 1010, and 1015, respectively. We tested two
different restart lengths: 20, and 60. Table 3.1 shows which figure corresponds to which test
matrix and restart length.

For restart length r = 60, we show CA-GMRES results for s = 15 and s = 20. These
illustrate how CA-GMRES with the monomial basis fails to converge as s increases, whereas
CA-GMRES with the Newton basis can still converge even with larger s. For restart length
r = 20, we show CA-GMRES results for s = 10 and s = 20. (In the case of restart length
20, s = 15 does not divide 20 evenly, so we used s = 10 instead.) These illustrate the same
phenomenon, except that the effects of a convergence failure are less dramatic when restarting
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1e4 x 1e4 diagonal, logspace eigs, cond 1e−5:
Residual 2−norm, post−equilibration (if applicable), log scale

 

 GMRES(60)
Monomial−GMRES(15,4);
min,max basis cond #: 2.14e+08,8.87e+11;
min,max basis scaling: 6.34e−01,9.31e−01
Newton−GMRES(15,4);
min,max basis cond #: 1.00e+00,1.55e+10;
min,max basis scaling: 2.73e−01,1.00e+00
Monomial−GMRES(20,3);
min,max basis cond #: 9.81e+14,6.23e+16;
min,max basis scaling: 9.10e−01,1.00e+00
Newton−GMRES(20,3);
min,max basis cond #: 8.67e+11,1.52e+13;
min,max basis scaling: 2.82e−01,3.15e−01

Figure 3.1: Convergence of standard GMRES and CA-GMRES, with restart length 60, on
a 10000× 10000 positive diagonal test matrix with 2-norm condition number 105.
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GMRES(60)
Monomial−GMRES(15,4);
min,max basis cond #: 2.22e+08,1.27e+12;
min,max basis scaling: 6.30e−01,9.34e−01
Newton−GMRES(15,4);
min,max basis cond #: 1.00e+00,1.46e+10;
min,max basis scaling: 2.74e−01,1.00e+00
Monomial−GMRES(20,3);
min,max basis cond #: 8.90e+14,1.63e+17;
min,max basis scaling: 9.14e−01,1.00e+00
Newton−GMRES(20,3);
min,max basis cond #: 8.67e+11,1.59e+13;
min,max basis scaling: 2.75e−01,3.03e−01

Figure 3.2: Convergence of standard GMRES and CA-GMRES, with restart length 60, on
a 10000× 10000 positive diagonal test matrix with 2-norm condition number 1010.
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GMRES(60)
Monomial−GMRES(15,4);
min,max basis cond #: 2.60e+08,1.23e+12;
min,max basis scaling: 6.21e−01,9.38e−01
Newton−GMRES(15,4);
min,max basis cond #: 1.00e+00,1.97e+10;
min,max basis scaling: 2.73e−01,1.00e+00
Monomial−GMRES(20,3);
min,max basis cond #: 1.05e+15,1.30e+17;
min,max basis scaling: 9.27e−01,9.99e−01
Newton−GMRES(20,3);
min,max basis cond #: 8.84e+11,2.12e+13;
min,max basis scaling: 2.75e−01,3.04e−01

Figure 3.3: Convergence of standard GMRES and CA-GMRES, with restart length 60, on
a 10000× 10000 positive diagonal test matrix with 2-norm condition number 1015.
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GMRES(20)
Monomial−GMRES(10,2);
min,max basis cond #: 2.52e+07,1.69e+08;
min,max basis scaling: 6.48e−01,9.10e−01
Newton−GMRES(10,2);
min,max basis cond #: 8.47e+05,1.57e+07;
min,max basis scaling: 2.89e−01,3.46e−01
Monomial−GMRES(20);
min,max basis cond #: 1.18e+15,2.51e+16;
min,max basis scaling: 8.46e−01,9.98e−01
Newton−GMRES(20);
min,max basis cond #: 8.71e+11,1.71e+13;
min,max basis scaling: 2.81e−01,3.14e−01

Figure 3.4: Convergence of standard GMRES and CA-GMRES, with restart length 20, on
a 10000× 10000 positive diagonal test matrix with 2-norm condition number 105.
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GMRES(20)
Monomial−GMRES(10,2);
min,max basis cond #: 2.40e+07,1.87e+08;
min,max basis scaling: 6.42e−01,9.05e−01
Newton−GMRES(10,2);
min,max basis cond #: 8.31e+05,1.47e+07;
min,max basis scaling: 2.85e−01,3.35e−01
Monomial−GMRES(20);
min,max basis cond #: 1.11e+15,3.94e+16;
min,max basis scaling: 8.45e−01,9.99e−01
Newton−GMRES(20);
min,max basis cond #: 8.86e+11,1.62e+13;
min,max basis scaling: 2.75e−01,3.03e−01

Figure 3.5: Convergence of standard GMRES and CA-GMRES, with restart length 20, on
a 10000× 10000 positive diagonal test matrix with 2-norm condition number 1010.
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GMRES(20)
Monomial−GMRES(10,2);
min,max basis cond #: 2.36e+07,2.13e+08;
min,max basis scaling: 6.32e−01,9.05e−01
Newton−GMRES(10,2);
min,max basis cond #: 8.15e+05,1.73e+07;
min,max basis scaling: 2.86e−01,3.39e−01
Monomial−GMRES(20);
min,max basis cond #: 1.15e+15,2.32e+16;
min,max basis scaling: 8.42e−01,9.98e−01
Newton−GMRES(20);
min,max basis cond #: 8.80e+11,1.97e+13;
min,max basis scaling: 2.76e−01,3.04e−01

Figure 3.6: Convergence of standard GMRES and CA-GMRES, with restart length 20, on
a 10000× 10000 positive diagonal test matrix with 2-norm condition number 1015.
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Test # ‖A‖F condest(A)
Relative Relative departure Restart

nonsymmetry from normality length
1 2.8103× 102 3.4684× 104 6.9497× 10−3 9.83× 10−3 20
2 2.8103× 102 3.4684× 104 6.9497× 10−3 9.83× 10−3 30
3 2.8095× 102 1.4074× 104 2.1983× 10−2 3.11× 10−2 25

Table 3.2: Test matrices in the three test problems of Bai et al. [18] (corresponding to
Figures 1, 2, and 3 in that paper). Note that Test #1 uses the same matrix as Test #2;
the two tests differ only in the GMRES restart length. The “relative nonsymmetry” of a
matrix A is ‖(A − A∗)/2‖F/‖A‖F , where ‖ · ‖F denotes the Frobenius (square root of sum
of squares) norm. The “relative departure from normality” of the matrix is the Frobenius
norm of the strict upper triangle (not including the diagonal) of the upper triangular Schur
factor of A, divided by ‖A‖F . See Appendix D.1 for a detailed discussion of the departure
from normality.

is more frequent. In all cases, however, CA-GMRES with the “right” basis converges at the
same rate as standard GMRES with the same restart length, as it should in exact arithmetic.

3.5.3 Convection-diffusion PDE discretization

In this section, we describe the results of our numerical experiments using the three test
problems of Bai et al. [18], as described in Appendix B.4. They come from the finite-
difference discretization of a linear convection-diffusion partial differential equation on a 2-D
regular mesh with Dirichlet boundary conditions. The resulting matrix is nonsymmetric.
The discretization already scales the matrix and right-hand side so the norm of the matrix
is close to one, so equilibration is not necessary. We show some details of each of the three
test problems in Table 3.2, and show our convergence plots, one for each test problem, as
Figures 3.7, 3.8, and 3.9.

In comparing the results of our experiments with those of Bai et al., we first point out
that the authors chose the entries of the initial guess x0 from a random uniform [−1, 1]
distribution, without giving details of the random number generator. This makes it hard
for us to replicate their results. In fact, even when we tried two different implementations
of standard GMRES (the one that comes standard with Matlab, as well as our own), we
were unable to duplicate the convergence curve they observed for standard GMRES.4 For
example, compare Figure 1a in Bai et al. [18] with our Figure 3.7. The solid black line in
Figure 3.7, representing the convergence of standard GMRES (with restart length 20), should
coincide exactly with the solid black line in Figure 1a of Bai et al., since both the algorithms
and the matrix are the same, but it does not. Furthermore, that figure shows the monomial
basis failing to converge, but our version of monomial-basis CA-GMRES converges just as
well as standard GMRES for that problem. These discrepancies could be due to any of the
following reasons:

4Our version of standard GMRES has additional instrumentation and outputs so that we can use it to
“start up” CA-GMRES, for example in computing Ritz values for the Newton basis to use as shifts. We
have compared our version of GMRES and the version implemented by The MathWorks that is built in to
Matlab, and found them to produce the same numerical results for various matrices.
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GMRES(20)
Monomial−GMRES(10,2);
min,max basis cond #: 5.95e+08,2.30e+11;
min,max basis scaling: 3.45e+00,7.24e+00
Newton−GMRES(10,2);
min,max basis cond #: 6.61e+04,1.54e+05;
min,max basis scaling: 1.83e+00,2.84e+00
Monomial−GMRES(20);
min,max basis cond #: 3.80e+20,8.60e+22;
min,max basis scaling: 5.16e+00,7.12e+00
Newton−GMRES(20);
min,max basis cond #: 1.57e+08,3.39e+08;
min,max basis scaling: 2.06e+00,2.43e+00

Figure 3.7: Convergence of standard GMRES and CA-GMRES on the first test problem of
Bai et al.
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GMRES(30)
Monomial−GMRES(10,3);
min,max basis cond #: 1.07e+09,2.87e+11;
min,max basis scaling: 3.72e+00,7.27e+00
Newton−GMRES(10,3);
min,max basis cond #: 4.30e+04,1.16e+05;
min,max basis scaling: 1.87e+00,2.71e+00
Monomial−GMRES(30);
min,max basis cond #: 6.87e+11,1.36e+33;
min,max basis scaling: 6.10e+00,7.90e+00
Newton−GMRES(30);
min,max basis cond #: 1.00e+00,8.77e+11;
min,max basis scaling: 1.00e+00,2.20e+00

Figure 3.8: Convergence of standard GMRES and CA-GMRES on the second test problem
of Bai et al.
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Bai et al. 2−D conv−diff PDE: p1=2, p2=4, p3=30, 65 x 65 grid:
Residual 2−norm, post−equilibration (if applicable), log scale

 

 

GMRES(25)
Monomial−GMRES(5,5);
min,max basis cond #: 2.28e+03,3.49e+05;
min,max basis scaling: 2.01e+00,6.96e+00
Newton−GMRES(5,5);
min,max basis cond #: 5.53e+02,2.45e+03;
min,max basis scaling: 1.39e+00,3.50e+00
Monomial−GMRES(25);
min,max basis cond #: 1.68e+26,5.41e+28;
min,max basis scaling: 5.85e+00,7.81e+00
Newton−GMRES(25);
min,max basis cond #: 4.27e+09,3.70e+11;
min,max basis scaling: 1.75e+00,2.30e+00

Figure 3.9: Convergence of standard GMRES and CA-GMRES on the third test problem of
Bai et al.

• Our random initial guess x0 is different than theirs

• Our PDE discretization differs in some way from theirs

• Some subtle difference in our implementation of s-step GMRES

This means that we cannot make the desired comparison between the numerical results of
Bai et al., and our numerical results. Nevertheless, we can still compare standard GMRES
and our CA-GMRES on these test problems.

Another (small) difference between our convergence plots and those of Bai et al., is that
theirs show the 2-norm of the relative residual at each outer iteration of their Power-GMRES
and Newton-GMRES algorithms, so that the x-axis of Figures 1, 2, and 3 in their paper is
the outer iteration count. Our convergence plots show the “inner” iteration count, so one of
their x-axis units corresponds to s of ours (where s in their case is the restart length, which
is 20 for Figure 1, 30 for Figure 2, and 25 for Figure 3). This difference does not explain the
discrepancy between our convergence results.

The major difference, in terms of numerical stability, between Bai et al.’s s-step GMRES
algorithm and our CA-GMRES algorithm, is that CA-GMRES may choose the Krylov basis
length s to be shorter than the restart length. The algorithm of Bai et al. cannot do this:
their s-step basis length must be the same as the restart length. We simulate this restriction
with each of the three test problems, by running CA-GMRES with two different values of s:
first, with s equal to the restart length r for that test problem, and second, with s being the
next smaller integer factor of r. (Our CA-GMRES does not require that s divide the restart
length r evenly, but we impose this requirement in our experiments for simplicity.) We find
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in all the experiments, that CA-GMRES’ increased freedom to choose s independently of
the restart length improves numerical stability.

We begin with the first experiment, whose convergence results are shown as Figure 3.7.
The restart length is 20, and we compare standard GMRES, and CA-GMRES with both the
monomial and Newton bases. For CA-GMRES, we show results for s = 10 and s = 20. We
find, first, that for this problem, all of the bases and basis lengths tested converge at least
as fast as standard GMRES (the continuous black line, which is covered by the blue and
magenta circles representing monomial-basis CA-GMRES with s = 10 resp. s = 20). This
is true even though the monomial basis for s = 20 is ill-conditioned: its 2-norm condition
number ranges between 1020 and nearly 1023. Consequently, this demonstrates that CA-
GMRES can tolerate a severely ill-conditioned s-step basis, in some cases, without affecting
convergence significantly. Second, CA-GMRES with the Newton basis actually converges
faster than standard GMRES, after around 200 iterations. This result is surprising, since
CA-GMRES is equivalent to standard GMRES in exact arithmetic. This suggests that CA-
GMRES may be more tolerant of rounding error than standard GMRES. More experiments
and analysis are needed to find the cause of this phenomenon.

We show the convergence results of the second experiment as Figure 3.8. The matrix
is the same as in the first experiment, but the restart length is 30. We compare standard
GMRES, and CA-GMRES with both the monomial and Newton bases. For CA-GMRES,
we show results for s = 10 and s = 30. This plot shows how the condition number of the
monomial basis grows with s, and that if the condition number becomes too large, then the
convergence of CA-GMRES is affected. Here, the monomial basis with s = 30 produces
ill-conditioned s-step bases. This results in CA-GMRES failing to converge, and displaying
typical wandering behavior. However, the monomial basis with shorter basis length s = 10
produces s-step bases that are all numerically full rank, and CA-GMRES’ relative residuals
(the blue circles) track those of standard GMRES (the black line) exactly. Finally, Newton-
basis CA-GMRES shows different behavior, depending on the basis length s, even though
the s-step basis is always numerically full rank. Furthermore, Newton-basis CA-GMRES
converges faster than standard GMRES for s = 10, and (generally) slower for s = 30. This
illustrates that the type of basis affects convergence, even if the basis is numerically full rank.

We show the convergence results of the third experiment as Figure 3.9. Here, the matrix is
different – as Table 3.2 shows, it is more nonnormal than the matrix used in the previous two
experiments. The restart length is 25, and we compare standard GMRES, and CA-GMRES
with both the monomial and Newton bases. For CA-GMRES, we show results for s = 5 (the
largest integer factor of 25 smaller than 25) and s = 25. The third experiment affirms the
observation of the previous paragraph, that whether the s-step basis is numerically full rank
is not the only factor in its convergence. In fact, both for s = 5 and s = 25, the Newton basis
is always numerically full rank, but for s = 5 CA-GMRES (the green triangles) converges
slower than standard GMRES (the black line) and monomial-basis CA-GMRES (the blue
circles), and and for s = 25, CA-GMRES (the cyan triangles) does not converge at all. It
appears that this poor behavior of the Newton basis relates to the more severe nonnormality
of this test problem, though more experiments are needed to verify this observation. We
discuss this further in Appendix D.1.
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Matrix name Best s Best s
(Monomial basis) (Newton basis)

bmw7st 1 3 4
Cant A 4 4
cfd2 3 4
pwtk 5 5
shipsec1 3 3
xenon2 3 3

Table 3.3: Test matrices in [78] for which numerical experiments were performed, and the
basis lengths s resulting in the best matrix powers kernel performance on the Intel Clovertown
platform (see Appendix A for a description of that test platform) for the monomial and
Newton bases.

3.5.4 Sparse matrices from applications

In this section, we demonstrate that CA-GMRES converges for the s-step basis lengths
and restart lengths used to obtain maximum performance, on a set of test matrices from
applications. These are described in detail in Appendix B.5, and they are the same test
problems we used in [78].

Even though our paper [78] concerns only variants of GMRES, an iterative method for
nonsymmetric matrices, many (but not all) of the matrices we used there are symmetric
positive definite. We did so at the time for reasons of performance and convenience. The
matrix powers kernel requires a graph partitioner, and at the time, we had made an arbi-
trary choice of a graph partitioner which required symmetrization (A 7→ (A + AT )/2) for
nonsymmetric matrices. This may have degraded performance for nonsymmetric matrices.
(Future investigations of performance, not in this thesis, will include the use of partitioners
more suited for nonsymmetric matrices, such as hypergraph partitioners like Zoltan [80].)
Nevertheless, the test matrices are numerically interesting, at least for the matrix powers
kernel alone. One of the matrices (bmw7st 1) is badly scaled, which makes equilibration
challenging, and one of the matrices (xenon2) is nonsymmetric.

Table B.2 in Section B.5 lists the matrices in this collection for which we include numerical
experiments in this thesis. Table 3.3 in this section shows for each matrix, the basis length
s for each basis type (monomial or Newton) that resulted in the best matrix powers kernel
performance. The value of s for each matrix suggests a reasonable range of basis lengths
for which CA-GMRES must converge effectively on that matrix, in order for the method to
have optimal performance. We do not include the matrices 1d3pt, 1d5pt, and 2d9pt from
Demmel et al. [78], as they represent sparsity patterns from regular discretizations of 2-D
PDEs on square domains. This is a set of problems for which we already run more interesting
numerical experiments in this thesis (for example, in Section 3.5.3).

The main conclusion to draw from Table 3.3 is that the s-step basis length s need not
be very large in order to get the best performance on matrices from applications, at least
when running on a single parallel shared-memory node with a small number of processors.
For all the experiments presented in this thesis, CA-GMRES usually converges for s = 5 or
less, even for the monomial basis, and even when the matrix A is ill-conditioned. Thus, the
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choice of basis may not matter so much, at least for this particular hardware platform. This
conclusion is supported by the numerical results, which as we will discuss below, show that
equilibrating the matrix A before running CA-GMRES is often better for numerical stability
than the choice of s-step basis.

Many of the matrices in this collection are strongly affected by equilibration. It is im-
portant to note that equilibration is a special case of preconditioning, and thus affects the
convergence rate of both standard GMRES and CA-GMRES. In exact arithmetic, it should
affect the convergence rate in the same way, but this is not necessarily true when computing
in finite-precision arithmetic. Regardless, one should not expect the convergence of a single
method (such as standard GMRES) to be the same, with and without equilibration. This is
true even though we are careful to measure the residual error with respect to the nonequili-
brated problem, so that the norm in which we measure the residual error is the same with
or without equilibration.

Figures 3.10–3.17 show results with restart length 20 and no equilibration. Figures 3.18–
3.25 show results with restart length 20 and equilibration. Figures 3.26–3.33 show results
with restart length 60 and no equilibration, and Figures 3.18–3.25 show results with restart
length 60 and equilibration. For all the experiments, we show numerical results for basis
lengths s = 5 and s = 10. For almost all of the test problems, s = 5 is closer to the basis
length best for performance, which is why we show convergence for these relatively small
s values. What we found is that for all matrices tested but bmw7st 1, the choice of basis
does not affect convergence at all, and CA-GMRES converges at the same rate as standard
GMRES (excluding a few “blips” for some matrices, such xenon2).

For the bmw7st 1 matrix (see e.g., Figures 3.26 and 3.34 for restart length 60 without
resp. with equilibration), we observe an unusual effect. Without equilibration, standard
GMRES with the same restart length converges faster than CA-GMRES (with any basis).
CA-GMRES with the monomial basis and s = 10 utterly fails to converge, and in general
CA-GMRES converges better with the Newton basis. However, with equilibration, CA-
GMRES (with either basis, and either s = 5 or s = 10) converges at the same rate as
standard GMRES. Table B.4 in Appendix B.5 shows that the entries of bmw7st 1 vary much
more in magnitude than the entries of the other matrices, which could explain why this
matrix is so much more sensitive to equilibration. This is true even though bmw7st 1 is
symmetric positive definite. Further investigation is needed to determine when equilibration
is necessary, and to avoid reductions in the GMRES convergence rate when performing
equilibration.
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GHS_psdef/bmw7st_1 stiffness matrix (SPD):
Residual 2−norm, post−equilibration (if applicable), log scale

 

 

GMRES(20)

Monomial−GMRES(5,4);
min,max basis cond #: 4.39e+08,4.99e+12;
min,max basis scaling: 5.52e−03,9.94e−01

Newton−GMRES(5,4);
min,max basis cond #: 2.57e+08,6.34e+11;
min,max basis scaling: 1.78e−02,3.08e−02

Monomial−GMRES(10,2);
min,max basis cond #: 2.26e+17,3.28e+27;
min,max basis scaling: 1.49e−02,9.95e−01

Newton−GMRES(10,2);
min,max basis cond #: 7.52e+21,8.16e+25;
min,max basis scaling: 4.14e−03,2.71e−02

Figure 3.10: Convergence of standard GMRES and CA-GMRES, with restart length 20 and
without equilibration, on the matrix “bmw7st 1” from applications.
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FEM cantilever (SPD):
Residual 2−norm, post−equilibration (if applicable), log scale

 

 

GMRES(20)

Monomial−GMRES(5,4);
min,max basis cond #: 3.96e+19,1.36e+24;
min,max basis scaling: 8.31e+03,1.65e+04

Newton−GMRES(5,4);
min,max basis cond #: 2.11e+19,2.73e+22;
min,max basis scaling: 6.24e+03,8.46e+03

Monomial−GMRES(10,2);
min,max basis cond #: 1.11e+41,1.33e+47;
min,max basis scaling: 1.24e+04,1.76e+04

Newton−GMRES(10,2);
min,max basis cond #: 1.53e+38,2.30e+42;
min,max basis scaling: 6.19e+03,7.24e+03

Figure 3.11: Convergence of standard GMRES and CA-GMRES, with restart length 20 and
without equilibration, on the matrix “Cant A” from applications.
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Rothberg/cfd2 symmetric pressure matrix:
Residual 2−norm, post−equilibration (if applicable), log scale

 

 

GMRES(20)

Monomial−GMRES(5,4);
min,max basis cond #: 4.05e+04,2.50e+05;
min,max basis scaling: 2.91e+00,6.54e+00

Newton−GMRES(5,4);
min,max basis cond #: 1.59e+02,1.70e+04;
min,max basis scaling: 2.35e+00,2.93e+00

Monomial−GMRES(10,2);
min,max basis cond #: 1.98e+10,1.83e+11;
min,max basis scaling: 4.54e+00,7.01e+00

Newton−GMRES(10,2);
min,max basis cond #: 8.21e+03,1.92e+06;
min,max basis scaling: 2.19e+00,2.57e+00

Figure 3.12: Convergence of standard GMRES and CA-GMRES, with restart length 20 and
without equilibration, on the matrix “cfd2” from applications.
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Driven cavity, 20x20 elements, Re=5000:
Residual 2−norm, post−equilibration (if applicable), log scale

 

 

GMRES(20)

Monomial−GMRES(5,4);
min,max basis cond #: 2.81e+08,1.71e+11;
min,max basis scaling: 4.90e+01,1.41e+02

Newton−GMRES(5,4);
min,max basis cond #: 2.86e+09,1.28e+11;
min,max basis scaling: 6.59e+01,1.06e+02

Monomial−GMRES(10,2);
min,max basis cond #: 1.49e+19,1.01e+24;
min,max basis scaling: 8.26e+01,1.35e+02

Newton−GMRES(10,2);
min,max basis cond #: 1.49e+19,1.03e+23;
min,max basis scaling: 7.07e+01,9.05e+01

Figure 3.13: Convergence of standard GMRES and CA-GMRES, with restart length 20 and
without equilibration, on the matrix “e20r5000” from applications.
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Driven cavity, 40x40 elements, Re=5000:
Residual 2−norm, post−equilibration (if applicable), log scale

 

 

GMRES(20)

Monomial−GMRES(5,4);
min,max basis cond #: 1.00e+07,2.54e+09;
min,max basis scaling: 2.51e+01,6.33e+01

Newton−GMRES(5,4);
min,max basis cond #: 7.29e+07,1.98e+09;
min,max basis scaling: 3.11e+01,4.46e+01

Monomial−GMRES(10,2);
min,max basis cond #: 1.51e+16,1.79e+19;
min,max basis scaling: 4.15e+01,5.94e+01

Newton−GMRES(10,2);
min,max basis cond #: 1.67e+16,5.20e+17;
min,max basis scaling: 3.44e+01,3.79e+01

Figure 3.14: Convergence of standard GMRES and CA-GMRES, with restart length 20 and
without equilibration, on the matrix “e40r5000” from applications.
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Boeing/pwtk pressurized wind tunnel stiffness matrix (SPD):
Residual 2−norm, post−equilibration (if applicable), log scale

 

 

GMRES(20)

Monomial−GMRES(5,4);
min,max basis cond #: 1.80e+38,4.26e+43;
min,max basis scaling: 4.37e+07,8.74e+07

Newton−GMRES(5,4);
min,max basis cond #: 1.96e+37,1.90e+40;
min,max basis scaling: 2.69e+07,3.04e+07

Monomial−GMRES(10,2);
min,max basis cond #: 4.86e+78,9.90e+85;
min,max basis scaling: 6.53e+07,9.27e+07

Newton−GMRES(10,2);
min,max basis cond #: 3.17e+74,2.60e+78;
min,max basis scaling: 2.63e+07,2.96e+07

Figure 3.15: Convergence of standard GMRES and CA-GMRES, with restart length 20 and
without equilibration, on the matrix “pwtk” from applications.
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DNVS/shipsec1 Ship section/detail (SPD):
Residual 2−norm, post−equilibration (if applicable), log scale

 

 

GMRES(20)

Monomial−GMRES(5,4);
min,max basis cond #: 3.70e+64,Inf;
min,max basis scaling: 8.09e+12,1.59e+13

Newton−GMRES(5,4);
min,max basis cond #: 1.50e+64,Inf;
min,max basis scaling: 5.38e+12,6.07e+12

Monomial−GMRES(10,2);
min,max basis cond #: 6.48e+133,Inf;
min,max basis scaling: 1.26e+13,1.74e+13

Newton−GMRES(10,2);
min,max basis cond #: 9.66e+128,Inf;
min,max basis scaling: 4.60e+12,5.10e+12

Figure 3.16: Convergence of standard GMRES and CA-GMRES, with restart length 20 and
without equilibration, on the matrix “shipsec1” from applications.
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Ronis/xenon2 Complex zeolite,sodalite crystals (unsymm):
Residual 2−norm, post−equilibration (if applicable), log scale

 

 

GMRES(20)

Monomial−GMRES(5,4);
min,max basis cond #: 2.67e+144,Inf;
min,max basis scaling: 2.29e+28,5.04e+28

Newton−GMRES(5,4);
min,max basis cond #: 2.09e+143,Inf;
min,max basis scaling: 1.76e+28,2.32e+28

Monomial−GMRES(10,2);
min,max basis cond #: 6.56e+293,Inf;
min,max basis scaling: 3.43e+28,5.12e+28

Newton−GMRES(10,2);
min,max basis cond #: 3.14e+284,Inf;
min,max basis scaling: 1.65e+28,1.94e+28

Figure 3.17: Convergence of standard GMRES and CA-GMRES, with restart length 20 and
without equilibration, on the matrix “xenon2” from applications.
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Algorithm 23 CA-GMRES

Require: n× n linear system Ax = b, and initial guess x0

1: r0 := b− Ax0, β := ‖r0‖0, q1 := r0/β
2: for k = 0 to t− 1 do
3: Fix basis conversion matrix Bk

4: Compute V́ k using matrix powers kernel
5: if k = 0 then
6: Compute QR factorization V 0 = Q

0
R

7: Set Q0 := Q
0

and H0 := R0B0R
−1
0

8: Reduce H0 from upper Hessenberg to upper triangular form using s Givens ro-
tations G1, G2, . . . , Gs. Apply the same rotations in the same order to βe1,
resulting in the length s+ 1 vector ζ0.

9: else
10: Ŕk−1,k := Q∗k−1V́ k

11: V́
′
k := V́ k −Qk−1Ŕk−1,k

12: Compute QR factorization V́
′
k = Q́

k
Ŕk

13: Compute Hk−1,1 := −Hk−1Rk−1,kR
−1
k + Rk−1,kBkR

−1
k

14: Compute Hk via Equation (3.21)
15: Compute hk via Equation (3.22)

16: Hk :=

 Hk−1 Hk−1,k

hk−1e1e
T
s(k−1) Hk

01,s(k−1) hke
T
s


17: Apply Givens rotations G1, . . . , Gsk in order to

(
Hk−1,k

Hk

)
.

18: Reduce Hk to upper triangular form using s Givens rotations Gsk+1, . . . , Gs(k+1).

Apply the rotations in the same order to

(
ζk−1

0s

)
, resulting in the length

s(k + 1) + 1 vector ζk.
19: end if
20: Element s(k+ 1) + 1 of ζk is the 2-norm (in exact arithmetic) of the current residual

rk+1 = b− Axk+1 of the current solution xk+1.
21: if converged then
22: Use the above reduction of Hk to upper triangular form, and ζk, to solve yk :=

argminy ‖Hky − βe1‖2

23: Set xk := x0 + Qkyk, and exit
24: end if
25: end for
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GHS_psdef/bmw7st_1 stiffness matrix (SPD):
Residual 2−norm, pre−equilibration, log scale

 

 

GMRES(20)

Monomial−GMRES(5,4);
min,max basis cond #: 5.25e+04,4.13e+05;
min,max basis scaling: 2.91e+00,7.31e+00

Newton−GMRES(5,4);
min,max basis cond #: 6.64e+02,1.72e+04;
min,max basis scaling: 2.72e+00,3.81e+00

Monomial−GMRES(10,2);
min,max basis cond #: 1.90e+10,2.58e+11;
min,max basis scaling: 4.07e+00,7.41e+00

Newton−GMRES(10,2);
min,max basis cond #: 5.03e+04,2.52e+06;
min,max basis scaling: 2.56e+00,3.12e+00

Figure 3.18: Convergence of standard GMRES and CA-GMRES, with restart length 20 and
with equilibration, on the matrix “bmw7st 1” from applications.
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FEM cantilever (SPD): Residual 2−norm, pre−equilibration, log scale

 

 

GMRES(20)

Monomial−GMRES(5,4);
min,max basis cond #: 9.50e+03,2.69e+05;
min,max basis scaling: 2.31e+00,6.51e+00

Newton−GMRES(5,4);
min,max basis cond #: 2.80e+02,8.11e+03;
min,max basis scaling: 1.92e+00,3.07e+00

Monomial−GMRES(10,2);
min,max basis cond #: 2.72e+09,5.55e+10;
min,max basis scaling: 3.71e+00,6.05e+00

Newton−GMRES(10,2);
min,max basis cond #: 5.83e+03,6.33e+05;
min,max basis scaling: 1.98e+00,2.34e+00

Figure 3.19: Convergence of standard GMRES and CA-GMRES, with restart length 20 and
with equilibration, on the matrix “Cant A” from applications.
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Rothberg/cfd2 symmetric pressure matrix:
Residual 2−norm, pre−equilibration, log scale

 

 

GMRES(20)

Monomial−GMRES(5,4);
min,max basis cond #: 4.05e+04,2.50e+05;
min,max basis scaling: 2.91e+00,6.54e+00

Newton−GMRES(5,4);
min,max basis cond #: 1.59e+02,1.70e+04;
min,max basis scaling: 2.35e+00,2.93e+00

Monomial−GMRES(10,2);
min,max basis cond #: 1.98e+10,1.83e+11;
min,max basis scaling: 4.54e+00,7.01e+00

Newton−GMRES(10,2);
min,max basis cond #: 8.21e+03,1.92e+06;
min,max basis scaling: 2.19e+00,2.57e+00

Figure 3.20: Convergence of standard GMRES and CA-GMRES, with restart length 20 and
with equilibration, on the matrix “cfd2” from applications.
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Driven cavity, 20x20 elements, Re=5000:
Residual 2−norm, pre−equilibration, log scale

 

 

GMRES(20)

Monomial−GMRES(5,4);
min,max basis cond #: 2.81e+08,1.71e+11;
min,max basis scaling: 4.90e+01,1.41e+02

Newton−GMRES(5,4);
min,max basis cond #: 2.86e+09,1.28e+11;
min,max basis scaling: 6.59e+01,1.06e+02

Monomial−GMRES(10,2);
min,max basis cond #: 1.49e+19,1.01e+24;
min,max basis scaling: 8.26e+01,1.35e+02

Newton−GMRES(10,2);
min,max basis cond #: 1.49e+19,1.03e+23;
min,max basis scaling: 7.07e+01,9.05e+01

Figure 3.21: Convergence of standard GMRES and CA-GMRES, with restart length 20 and
with equilibration, on the matrix “e20r5000” from applications.
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Driven cavity, 40x40 elements, Re=5000:
Residual 2−norm, pre−equilibration, log scale

 

 

GMRES(20)

Monomial−GMRES(5,4);
min,max basis cond #: 1.00e+07,2.54e+09;
min,max basis scaling: 2.51e+01,6.33e+01

Newton−GMRES(5,4);
min,max basis cond #: 7.29e+07,1.98e+09;
min,max basis scaling: 3.11e+01,4.46e+01

Monomial−GMRES(10,2);
min,max basis cond #: 1.51e+16,1.79e+19;
min,max basis scaling: 4.15e+01,5.94e+01

Newton−GMRES(10,2);
min,max basis cond #: 1.67e+16,5.20e+17;
min,max basis scaling: 3.44e+01,3.79e+01

Figure 3.22: Convergence of standard GMRES and CA-GMRES, with restart length 20 and
with equilibration, on the matrix “e40r5000” from applications.
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Boeing/pwtk pressurized wind tunnel stiffness matrix (SPD):
Residual 2−norm, pre−equilibration, log scale

 

 

GMRES(20)

Monomial−GMRES(5,4);
min,max basis cond #: 6.60e+04,3.35e+05;
min,max basis scaling: 3.57e+00,7.26e+00

Newton−GMRES(5,4);
min,max basis cond #: 1.90e+02,2.67e+04;
min,max basis scaling: 2.43e+00,3.08e+00

Monomial−GMRES(10,2);
min,max basis cond #: 5.73e+10,3.08e+11;
min,max basis scaling: 5.45e+00,7.60e+00

Newton−GMRES(10,2);
min,max basis cond #: 1.70e+04,2.91e+06;
min,max basis scaling: 2.37e+00,2.81e+00

Figure 3.23: Convergence of standard GMRES and CA-GMRES, with restart length 20 and
with equilibration, on the matrix “pwtk” from applications.
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DNVS/shipsec1 Ship section/detail (SPD):
Residual 2−norm, pre−equilibration, log scale

 

 

GMRES(20)

Monomial−GMRES(5,4);
min,max basis cond #: 1.09e+04,6.76e+04;
min,max basis scaling: 2.10e+00,4.24e+00

Newton−GMRES(5,4);
min,max basis cond #: 1.49e+01,1.27e+03;
min,max basis scaling: 1.38e+00,2.01e+00

Monomial−GMRES(10,2);
min,max basis cond #: 8.93e+08,1.17e+10;
min,max basis scaling: 3.16e+00,4.54e+00

Newton−GMRES(10,2);
min,max basis cond #: 1.48e+02,1.25e+05;
min,max basis scaling: 1.44e+00,1.69e+00

Figure 3.24: Convergence of standard GMRES and CA-GMRES, with restart length 20 and
with equilibration, on the matrix “shipsec1” from applications.
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Ronis/xenon2 Complex zeolite,sodalite crystals (unsymm):
Residual 2−norm, pre−equilibration, log scale

 

 

GMRES(20)

Monomial−GMRES(5,4);
min,max basis cond #: 2.41e+04,1.31e+06;
min,max basis scaling: 1.99e−01,5.51e−01

Newton−GMRES(5,4);
min,max basis cond #: 1.34e+04,5.24e+05;
min,max basis scaling: 1.51e−01,1.98e−01

Monomial−GMRES(10,2);
min,max basis cond #: 6.65e+09,2.48e+11;
min,max basis scaling: 3.06e−01,7.15e−01

Newton−GMRES(10,2);
min,max basis cond #: 2.15e+09,1.58e+11;
min,max basis scaling: 1.18e−01,1.48e−01

Figure 3.25: Convergence of standard GMRES and CA-GMRES, with restart length 20 and
with equilibration, on the matrix “xenon2” from applications.
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GHS_psdef/bmw7st_1 stiffness matrix (SPD):
Residual 2−norm, post−equilibration (if applicable), log scale

 

 

GMRES(60)

Monomial−GMRES(5,12);
min,max basis cond #: 9.90e+08,2.55e+13;
min,max basis scaling: 7.30e−03,9.88e−01

Newton−GMRES(5,12);
min,max basis cond #: 2.37e+08,7.79e+11;
min,max basis scaling: 2.16e−02,3.06e−02

Monomial−GMRES(10,6);
min,max basis cond #: 3.58e+16,1.88e+26;
min,max basis scaling: 1.67e−02,9.95e−01

Newton−GMRES(10,6);
min,max basis cond #: 4.71e+21,1.05e+29;
min,max basis scaling: 4.95e−03,2.88e−02

Figure 3.26: Convergence of standard GMRES and CA-GMRES, with restart length 60 and
without equilibration, on the matrix “bmw7st 1” from applications.
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FEM cantilever (SPD):
Residual 2−norm, post−equilibration (if applicable), log scale

 

 

GMRES(60)

Monomial−GMRES(5,12);
min,max basis cond #: 3.63e+19,8.32e+24;
min,max basis scaling: 7.87e+03,1.65e+04

Newton−GMRES(5,12);
min,max basis cond #: 2.00e+19,1.70e+22;
min,max basis scaling: 6.24e+03,8.50e+03

Monomial−GMRES(10,6);
min,max basis cond #: 1.18e+41,8.12e+46;
min,max basis scaling: 1.21e+04,1.76e+04

Newton−GMRES(10,6);
min,max basis cond #: 1.72e+38,3.42e+43;
min,max basis scaling: 6.24e+03,7.29e+03

Figure 3.27: Convergence of standard GMRES and CA-GMRES, with restart length 60 and
without equilibration, on the matrix “Cant A” from applications.
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Rothberg/cfd2 symmetric pressure matrix:
Residual 2−norm, post−equilibration (if applicable), log scale

 

 

GMRES(60)

Monomial−GMRES(5,12);
min,max basis cond #: 3.98e+04,2.52e+05;
min,max basis scaling: 3.12e+00,6.61e+00

Newton−GMRES(5,12);
min,max basis cond #: 1.49e+02,1.66e+04;
min,max basis scaling: 2.29e+00,2.93e+00

Monomial−GMRES(10,6);
min,max basis cond #: 1.92e+10,1.55e+11;
min,max basis scaling: 4.68e+00,7.09e+00

Newton−GMRES(10,6);
min,max basis cond #: 9.26e+03,3.08e+06;
min,max basis scaling: 2.21e+00,2.58e+00

Figure 3.28: Convergence of standard GMRES and CA-GMRES, with restart length 60 and
without equilibration, on the matrix “cfd2” from applications.
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Driven cavity, 20x20 elements, Re=5000:
Residual 2−norm, post−equilibration (if applicable), log scale

 

 

GMRES(60)

Monomial−GMRES(5,12);
min,max basis cond #: 3.78e+08,9.96e+10;
min,max basis scaling: 5.19e+01,1.36e+02

Newton−GMRES(5,12);
min,max basis cond #: 2.92e+09,7.57e+10;
min,max basis scaling: 6.48e+01,1.02e+02

Monomial−GMRES(10,6);
min,max basis cond #: 1.32e+19,9.18e+23;
min,max basis scaling: 8.16e+01,1.41e+02

Newton−GMRES(10,6);
min,max basis cond #: 5.01e+19,1.84e+23;
min,max basis scaling: 6.83e+01,9.33e+01

Figure 3.29: Convergence of standard GMRES and CA-GMRES, with restart length 60 and
without equilibration, on the matrix “e20r5000” from applications.
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Driven cavity, 40x40 elements, Re=5000:
Residual 2−norm, post−equilibration (if applicable), log scale

 

 

GMRES(60)

Monomial−GMRES(5,12);
min,max basis cond #: 8.43e+06,3.32e+09;
min,max basis scaling: 2.43e+01,6.36e+01

Newton−GMRES(5,12);
min,max basis cond #: 7.03e+07,2.96e+09;
min,max basis scaling: 3.11e+01,4.84e+01

Monomial−GMRES(10,6);
min,max basis cond #: 1.23e+16,2.29e+20;
min,max basis scaling: 4.07e+01,6.64e+01

Newton−GMRES(10,6);
min,max basis cond #: 9.37e+15,4.07e+17;
min,max basis scaling: 3.43e+01,4.13e+01

Figure 3.30: Convergence of standard GMRES and CA-GMRES, with restart length 60 and
without equilibration, on the matrix “e40r5000” from applications.
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Boeing/pwtk pressurized wind tunnel stiffness matrix (SPD):
Residual 2−norm, post−equilibration (if applicable), log scale

 

 

GMRES(60)

Monomial−GMRES(5,12);
min,max basis cond #: 1.87e+38,8.49e+44;
min,max basis scaling: 4.49e+07,9.38e+07

Newton−GMRES(5,12);
min,max basis cond #: 1.66e+37,4.69e+40;
min,max basis scaling: 2.64e+07,3.10e+07

Monomial−GMRES(10,6);
min,max basis cond #: 2.58e+79,7.75e+84;
min,max basis scaling: 6.63e+07,9.43e+07

Newton−GMRES(10,6);
min,max basis cond #: 3.09e+74,1.44e+78;
min,max basis scaling: 2.61e+07,2.97e+07

Figure 3.31: Convergence of standard GMRES and CA-GMRES, with restart length 60 and
without equilibration, on the matrix “pwtk” from applications.
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DNVS/shipsec1 Ship section/detail (SPD):
Residual 2−norm, post−equilibration (if applicable), log scale

 

 

GMRES(60)

Monomial−GMRES(5,12);
min,max basis cond #: 1.77e+63,Inf;
min,max basis scaling: 3.98e+12,2.30e+13

Newton−GMRES(5,12);
min,max basis cond #: 4.11e+63,Inf;
min,max basis scaling: 4.91e+12,6.83e+12

Monomial−GMRES(10,6);
min,max basis cond #: 2.39e+129,Inf;
min,max basis scaling: 6.42e+12,2.36e+13

Newton−GMRES(10,6);
min,max basis cond #: 1.81e+128,Inf;
min,max basis scaling: 4.38e+12,5.12e+12

Figure 3.32: Convergence of standard GMRES and CA-GMRES, with restart length 60 and
without equilibration, on the matrix “shipsec1” from applications.
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Ronis/xenon2 Complex zeolite,sodalite crystals (unsymm):
Residual 2−norm, post−equilibration (if applicable), log scale

 

 

GMRES(60)

Monomial−GMRES(5,12);
min,max basis cond #: 7.92e+143,Inf;
min,max basis scaling: 2.42e+28,5.04e+28

Newton−GMRES(5,12);
min,max basis cond #: 6.56e+142,Inf;
min,max basis scaling: 1.76e+28,2.32e+28

Monomial−GMRES(10,6);
min,max basis cond #: 7.87e+290,Inf;
min,max basis scaling: 3.52e+28,5.12e+28

Newton−GMRES(10,6);
min,max basis cond #: Inf,Inf;
min,max basis scaling: 1.66e+28,1.94e+28

Figure 3.33: Convergence of standard GMRES and CA-GMRES, with restart length 60 and
without equilibration, on the matrix “xenon2” from applications.
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GHS_psdef/bmw7st_1 stiffness matrix (SPD):
Residual 2−norm, pre−equilibration, log scale

 

 

GMRES(60)

Monomial−GMRES(5,12);
min,max basis cond #: 4.32e+04,3.50e+05;
min,max basis scaling: 2.90e+00,7.43e+00

Newton−GMRES(5,12);
min,max basis cond #: 1.94e+02,1.79e+04;
min,max basis scaling: 2.46e+00,3.85e+00

Monomial−GMRES(10,6);
min,max basis cond #: 2.13e+10,3.51e+11;
min,max basis scaling: 4.16e+00,7.86e+00

Newton−GMRES(10,6);
min,max basis cond #: 2.64e+04,7.40e+07;
min,max basis scaling: 2.36e+00,3.18e+00

Figure 3.34: Convergence of standard GMRES and CA-GMRES, with restart length 60 and
with equilibration, on the matrix “bmw7st 1” from applications.
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FEM cantilever (SPD): Residual 2−norm, pre−equilibration, log scale

 

 

GMRES(60)

Monomial−GMRES(5,12);
min,max basis cond #: 9.94e+03,2.53e+05;
min,max basis scaling: 2.30e+00,6.55e+00

Newton−GMRES(5,12);
min,max basis cond #: 1.14e+02,9.34e+03;
min,max basis scaling: 1.89e+00,3.42e+00

Monomial−GMRES(10,6);
min,max basis cond #: 1.69e+09,2.43e+11;
min,max basis scaling: 3.53e+00,6.84e+00

Newton−GMRES(10,6);
min,max basis cond #: 4.43e+03,7.84e+07;
min,max basis scaling: 1.99e+00,2.27e+00

Figure 3.35: Convergence of standard GMRES and CA-GMRES, with restart length 60 and
with equilibration, on the matrix “Cant A” from applications.
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Rothberg/cfd2 symmetric pressure matrix:
Residual 2−norm, pre−equilibration, log scale

 

 

GMRES(60)

Monomial−GMRES(5,12);
min,max basis cond #: 3.96e+04,2.62e+05;
min,max basis scaling: 3.12e+00,6.62e+00

Newton−GMRES(5,12);
min,max basis cond #: 1.49e+02,1.69e+04;
min,max basis scaling: 2.29e+00,2.93e+00

Monomial−GMRES(10,6);
min,max basis cond #: 1.96e+10,1.32e+11;
min,max basis scaling: 4.67e+00,6.92e+00

Newton−GMRES(10,6);
min,max basis cond #: 6.72e+03,1.31e+06;
min,max basis scaling: 2.17e+00,2.52e+00

Figure 3.36: Convergence of standard GMRES and CA-GMRES, with restart length 60 and
with equilibration, on the matrix “cfd2” from applications.
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Driven cavity, 20x20 elements, Re=5000:
Residual 2−norm, pre−equilibration, log scale

 

 

GMRES(60)

Monomial−GMRES(5,12);
min,max basis cond #: 2.87e+08,9.64e+10;
min,max basis scaling: 4.92e+01,1.35e+02

Newton−GMRES(5,12);
min,max basis cond #: 3.07e+09,1.42e+11;
min,max basis scaling: 6.59e+01,9.95e+01

Monomial−GMRES(10,6);
min,max basis cond #: 1.02e+19,8.66e+24;
min,max basis scaling: 7.95e+01,1.39e+02

Newton−GMRES(10,6);
min,max basis cond #: 2.17e+19,1.66e+22;
min,max basis scaling: 6.99e+01,8.73e+01

Figure 3.37: Convergence of standard GMRES and CA-GMRES, with restart length 60 and
with equilibration, on the matrix “e20r5000” from applications.
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Driven cavity, 40x40 elements, Re=5000:
Residual 2−norm, pre−equilibration, log scale

 

 

GMRES(60)

Monomial−GMRES(5,12);
min,max basis cond #: 4.97e+06,3.05e+09;
min,max basis scaling: 2.18e+01,6.44e+01

Newton−GMRES(5,12);
min,max basis cond #: 8.21e+07,3.93e+09;
min,max basis scaling: 3.11e+01,4.79e+01

Monomial−GMRES(10,6);
min,max basis cond #: 7.49e+15,7.31e+20;
min,max basis scaling: 3.87e+01,6.62e+01

Newton−GMRES(10,6);
min,max basis cond #: 1.34e+16,4.71e+17;
min,max basis scaling: 3.40e+01,4.11e+01

Figure 3.38: Convergence of standard GMRES and CA-GMRES, with restart length 60 and
with equilibration, on the matrix “e40r5000” from applications.
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Boeing/pwtk pressurized wind tunnel stiffness matrix (SPD):
Residual 2−norm, pre−equilibration, log scale

 

 

GMRES(60)

Monomial−GMRES(5,12);
min,max basis cond #: 7.06e+04,3.42e+05;
min,max basis scaling: 3.79e+00,7.46e+00

Newton−GMRES(5,12);
min,max basis cond #: 1.94e+02,2.01e+04;
min,max basis scaling: 2.44e+00,3.13e+00

Monomial−GMRES(10,6);
min,max basis cond #: 7.39e+10,3.60e+11;
min,max basis scaling: 5.62e+00,7.92e+00

Newton−GMRES(10,6);
min,max basis cond #: 1.66e+04,1.31e+07;
min,max basis scaling: 2.39e+00,2.82e+00

Figure 3.39: Convergence of standard GMRES and CA-GMRES, with restart length 60 and
with equilibration, on the matrix “pwtk” from applications.
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DNVS/shipsec1 Ship section/detail (SPD):
Residual 2−norm, pre−equilibration, log scale

 

 

GMRES(60)

Monomial−GMRES(5,12);
min,max basis cond #: 7.94e+03,7.67e+04;
min,max basis scaling: 1.98e+00,4.47e+00

Newton−GMRES(5,12);
min,max basis cond #: 1.26e+01,7.94e+02;
min,max basis scaling: 1.38e+00,2.21e+00

Monomial−GMRES(10,6);
min,max basis cond #: 7.23e+08,1.81e+10;
min,max basis scaling: 2.89e+00,4.67e+00

Newton−GMRES(10,6);
min,max basis cond #: 1.96e+02,7.62e+04;
min,max basis scaling: 1.42e+00,1.78e+00

Figure 3.40: Convergence of standard GMRES and CA-GMRES, with restart length 60 and
with equilibration, on the matrix “shipsec1” from applications.

100 200 300 400 500 600 700 800 900

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Iteration count

R
es

id
ua

l 2
−

no
rm

, p
re

−
eq

ui
lib

ra
tio

n,
 lo

g 
sc

al
e

Ronis/xenon2 Complex zeolite,sodalite crystals (unsymm):
Residual 2−norm, pre−equilibration, log scale

 

 

GMRES(60)

Monomial−GMRES(5,12);
min,max basis cond #: 2.13e+04,3.72e+06;
min,max basis scaling: 1.40e−01,9.84e−01

Newton−GMRES(5,12);
min,max basis cond #: 1.20e+04,3.48e+05;
min,max basis scaling: 1.51e−01,1.92e−01

Monomial−GMRES(10,6);
min,max basis cond #: 5.27e+09,2.67e+11;
min,max basis scaling: 2.70e−01,9.94e−01

Newton−GMRES(10,6);
min,max basis cond #: 1.31e+09,3.57e+10;
min,max basis scaling: 1.15e−01,1.52e−01

Figure 3.41: Convergence of standard GMRES and CA-GMRES, with restart length 60 and
with equilibration, on the matrix “xenon2” from applications.
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3.5.5 WATT1 test problem

In this section, we compare the convergence of our CA-GMRES on a particular nonsymmet-
ric matrix, WATT1, with the convergence on the same matrix of the Newton-basis s-step
GMRES algorithm by Bai et al. [18]. Erhel [93] used this test problem to test her imple-
mentation of the algorithm of Bai and his coauthors. (Erhel’s implementation differs only in
that she uses a more efficient, but equally accurate, parallel QR factorization.) The ability of
our CA-GMRES to adjust the s-step basis length independently of the restart length helps
us achieve a qualitatively similar convergence rate as Erhel observes for the algorithm of
Bai et al. Erhel must compute 2s start-up iterations of standard GMRES in order to get s
sufficiently good shifts for the Newton basis; we simply choose s smaller to avoid this prob-
lem. Performance results for this matrix in Section 3.6.3 show that being able to choose the
s-step basis length to be smaller than the restart length improves performance. Of course,
we do not want to be forced to choose s too small, as that restricts the potential perfor-
mance improvements of the matrix powers kernel (see Section 2.1). Equilibration provides
the necessary numerical stability improvement to increase the range of possible s values.

The origin and properties of the WATT1 matrix is described in detail in Appendix B.6.
Erhel [93] used the first matrix WATT1 in the WATT set as a test problem for her imple-
mentation of the Newton-basis s-step GMRES of Bai et al. [18]. Her paper includes plots of
the 2-norm of the residual error at each iteration of the method, for standard GMRES (with
restart length s), monomial-basis s-step GMRES, and Newton-basis s-step GMRES. An “it-
eration” in her convergence plots refers to a single restart cycle, and in her case corresponds
to s iterations of standard GMRES. Unfortunately, Erhel does not mention what right-hand
side or initial guess she uses for her experiments, so we cannot compare her results directly
with ours. However, we can make a qualitative comparison.

Erhel’s implementation of GMRES uses different computational kernels than ours, as we
have mentioned before. The numerical properties of her algorithm are also different, because
the Newton-basis s-step GMRES algorithm of Bai et al. [18] that Erhel implements requires
that the basis length s be equal to the restart length. Our CA-GMRES has restart length s∗t,
where the basis length s may in general be less than the restart length. This generalization
is useful both for performance (as sometimes a smaller s performs better) and for accuracy
(as large values of s often result in an ill-conditioned or numerically rank-deficient s-step
basis).

Figures 3.42 and 3.42 show convergence results without resp. with equilibration, for
standard GMRES and CA-GMRES with restart length r = 30 on the WATT1 matrix. For
each plot, we show CA-GMRES with two values of s:

• the largest s value for which CA-GMRES has convergence behavior similar to standard
GMRES for some basis, and

• the smallest s value for which CA-GMRES does not converge well for any basis.

The largest “good” s value differs, depending on whether we perform equilibration on the
matrix. Without equilibration, this is s = 3, but with equilibration, this is s = 5. This
shows that equilibration helps convergence with larger values of s, although the effect is
not large. The smallest “bad” value also differs: with equilibration, the Newton basis can
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WATT1 (Harwell−Boeing collection, petroengineering, nonsymm):
Residual 2−norm, post−equilibration (if applicable), log scale

 

 

GMRES(30)

Monomial−GMRES(3,10);
min,max basis cond #: 7.26e+12,5.97e+19;
min,max basis scaling: 3.53e−03,1.00e+00

Newton−GMRES(3,10);
min,max basis cond #: 6.91e+12,6.65e+15;
min,max basis scaling: 6.85e−06,7.32e−05

Monomial−GMRES(10,3);
min,max basis cond #: 6.12e+109,7.08e+118;
min,max basis scaling: 1.00e+00,1.00e+00

Newton−GMRES(10,3);
min,max basis cond #: 7.68e+38,1.12e+45;
min,max basis scaling: 1.42e−03,3.39e−03

Figure 3.42: Convergence of standard GMRES and CA-GMRES, with restart length 30 and
without equilibration, on the WATT1 matrix. Two s values shown: s = 3 (largest with some
convergence success) and s = 10 (smallest with little or no convergence success).
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GMRES(30)

Monomial−GMRES(5,6);
min,max basis cond #: 2.88e+33,1.08e+48;
min,max basis scaling: 8.35e−01,1.00e+00

Newton−GMRES(5,6);
min,max basis cond #: 8.84e+25,1.37e+27;
min,max basis scaling: 1.39e−04,1.70e−04

Monomial−GMRES(15,2);
min,max basis cond #: 1.40e+184,2.11e+197;
min,max basis scaling: 1.00e+00,1.00e+00

Newton−GMRES(15,2);
min,max basis cond #: 1.00e+00,3.10e+65;
min,max basis scaling: 5.07e−05,1.00e+00

Figure 3.43: Convergence of standard GMRES and CA-GMRES, with restart length 30 and
with equilibration, on the WATT1 matrix. Two s values shown: s = 5 (largest with some
convergence success) and s = 15 (smallest with little or no convergence success).
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converge similarly to standard GMRES with s = 15, but without equilibration, the Newton
basis converges with s at most 10.

Erhel was aware that large basis lengths s could result in an ill-conditioned s-step basis.
She dealt with this by improving the accuracy of the Ritz values used as shifts in the
Newton basis. Rather than performing s iterations of standard GMRES as a preprocessing
step to get s Ritz values, she performed 2s iterations of standard GMRES to get 2s Ritz
values. The modified Leja ordering process then selects s of these as shifts for the Newton
basis. For s = 30, the basis length that Erhel used in her experiments, collecting 60 Ritz
values rather than 30 made Newton-basis GMRES converge with the WATT1 matrix, when
otherwise neither the Newton basis nor the monomial basis resulted in convergence. This,
however, increases the startup cost of the algorithm. We chose instead to solve this problem
by reducing the size of s, which when combined with equilibration, gives us both good
convergence and good performance (see Section 3.6.3).

We also found that subtle features of the modified Leja ordering computation (see Section
7.3.2 and Algorithm 40) were necessary to avoid failure of the ordering. In particular, for
many values of s, both with and without equilibration, the product of absolute differences
of shifts maximized in the modified Leja ordering algorithm (Line 16 of Algorithm 40) often
was zero or very small. This triggered a cycle of random perturbations (see Line 18 of the
algorithm). We set the perturbations so as to perturb each shift in a uniform random way by
a relative perturbation of 10−3+k, where k is the current random perturbation cycle number
(starts at k = 1 and increases by one each time the product in Line 16 underflows). One
perturbation cycle was generally enough to avoid underflow in the product to maximize.
This solution to the underflow problem was used Bai et al. [18] in their Newton GMRES
algorithm; Erhel does not mention it, although it seems necessary in the case of the WATT1
matrix. Note that the underflow problem is separate from the case of repeated shifts; we
already have a method of dealing with those (which we found in Reichel [201] but not in Bai
et al., who seem to rely only on random perturbations to deal with the problem).

3.5.6 Summary

In this section, we showed that CA-GMRES converges like standard GMRES for restart
lengths of interest on many types of problems, including those with badly scaled and / or
ill-conditioned nonsymmetric matrices. CA-GMRES can do so if we do the following:

• Pick the basis length s according to the difficulty of the problem (this might be done
dynamically in a practical implementation)

• Use the right s-step basis for the problem (usually the Newton basis is the right choice)

• Equilibrate the problem first, to avoid a badly scaled basis

The ability of CA-GMRES to choose the basis length s shorter than the restart length r = s·t
helps convergence in many cases. It also helps performance, as we will see in the next section.
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3.6 CA-GMRES performance experiments

In this section, we describe performance experiments that compare our shared-memory par-
allel implementation of CA-GMRES (Section 3.4, Algorithm 23) with standard GMRES,
on the experimental platforms described in Appendix A. CA-GMRES achieves a speedup
of 1.31 to 4.3× over standard GMRES on the Intel Clovertown platform on the set of test
problems in this section, and a speedup of 1.3 to 4.1× on the Intel Nehalem platform. Both
CA-GMRES and standard GMRES in this case are running on 8 cores of the platform.

The main set of test problems in this section are sparse matrices from various applications,
described in Appendix B.5, for which we showed in Section 3.5.4 that CA-GMRES converges
just as well as standard GMRES. We first presented performance results for these problems in
Demmel et al. [78]; there we only include results for the Intel Clovertown platform, whereas
here we also include Intel Nehalem results. Details on the matrix, right-hand side, and initial
guess used for each experiment are found in Appendix B. We also include performance results
for the WATT1 matrix, which we describe in Appendix B.6 and for which we show numerical
experiments in Section 3.5.5.

We begin in Section 3.6.1 by describing the details of our shared-memory parallel im-
plementations of standard GMRES and CA-GMRES. Section 3.6.2 shows the results of our
experiments for the sparse matrices from applications, and Section 3.6.3 the results for the
WATT1 matrix. Finally, Section 3.6.5 discusses future work.

3.6.1 Implementation details

Parallel primitives

We implemented parallelism in both standard GMRES and CA-GMRES using the POSIX
standard Pthreads library, with a custom low-overhead barrier implementation. We pro-
grammed in a single-program multiple-data style, in which each thread has a copy of its own
“main” function, and synchronize with each other using barriers and collective operations.
Threads were only created once, at the beginning of the benchmark, and destroyed once, at
the end of the benchmark.

Our implementation of standard GMRES required parallel reductions to compute vector
norms and inner products. We implemented reductions with a combination of the low-
overhead barriers and an array of per-thread local reduction results state, which one thread
was responsible for reducing to a single scalar. The array of shared state was padded to
avoid false sharing.

Third-party software libraries

We build our benchmark using Goto’s BLAS (version 1.26). See e.g., Goto and van de Geijn
[117]. This version of the BLAS uses OpenMP (see [33]) internally for parallelism. We
disabled this feature, however, when calling the BLAS from parallel TSQR, to avoid harmful
interactions between the two levels of parallelism. (Future work may explore using two levels
of shared-memory parallelism, so that parallel TSQR calls a parallel BLAS. For an example
of a parallel runtime system that enables correct and efficient use of shared-memory parallel
libraries calling other shared-memory parallel libraries, see the “Lithe” system of Pan et al.
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[187]. Their benchmark application is a sparse QR factorization that exploits parallelism
both in the sparse matrix’s elimination, and in the dense updates (via a parallel BLAS).)
Our benchmark requires at least version 3.2 of LAPACK, in order to ensure that DGEQRF

produces an R factor with a nonnegative real diagonal (see Section 3.2.4 for a full discussion
of this issue). For partitioning the sparse matrix for the matrix powers kernel, we used Metis
(version 4.0) (see Karypis and Kumar [148]).

Thread and memory affinity

Our benchmark implementation pins threads via the GNU / Linux sched setaffinity

system call, in order to ensure that at most one thread is associated to each core. (We found
no benefit from using the SMT feature of the Nehalem processor, so we do not show results
from intentionally scheduling more than one thread per core.) Even though the Clovertown
platform does not have NUMA memory, our implementation of TSQR and BGS uses the
first-touch policy, which in GNU / Linux (and in some but not all operating systems) ensures
that the memory in question is made local (in a NUMA sense) to the thread that initialized
it. On the Nehalem platform, our implementation of the matrix powers kernel uses the
libnuma library to set the affinity of sparse matrix data in a favorable way. (It is only an
artifact of the implementation that different kernels set memory affinity in different ways.)

Compiler

We build our benchmark with the GNU C and Fortran compilers (version 4.3). That version
or later was necessary, since only in version 4.3 was support for Fortran 2003’s ISO C BINDING

module introduced. Our benchmark uses the ISO C BINDING module to ease communication
between Fortran and C code. We encountered some difficulties when using ISO C BINDING

with the then-current version of the Intel Fortran Compiler. That module appeared to
interact with multithreading in an unexpected way, but we did not have time to determine
whether that was due to a compiler bug.

3.6.2 Results for various sparse matrices from applications

Table B.2 in Section B.5 lists the matrices in this collection for which we include numerical
and performance experiments in this thesis. For our experiments, we ran both standard GM-
RES and CA-GMRES with restart length r = 60. Our CA-GMRES experiments searched
over all basis lengths s ≥ 2 that divide r evenly.5 While the CA-GMRES algorithm itself
does not require this (it can even use a different basis length in each outer iteration), our
matrix powers kernel implementation did. In some cases, the matrix powers kernel was not
able to process the matrix for s sufficiently large, so we excluded those cases. CA-GMRES
performance is shown in all cases for the best choice of s, given a particular restart length
r. We ran our experiments for thread counts 1, 2, 4, and 8.

Table 3.4 in this section shows for each of the test matrices in this section, the basis length
s for each basis type (monomial or Newton) that resulted in the best matrix powers kernel
performance. The value of s for each matrix suggests a reasonable range of basis lengths

5We chose r = 60 for the same reason that the Babylonians chose the hour to have 60 minutes.
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Matrix name Best s Best s
(Monomial basis) (Newton basis)

1d3pt 15 15
bmw7st 1 3 4
Cant A 4 4
cfd2 3 4
pwtk 5 5
shipsec1 3 3
xenon2 3 3

Table 3.4: Test matrices from applications for which performance results are presented in
this section, and the basis length s for each resulting in the best matrix powers kernel
performance for the monomial and Newton bases.

for which CA-GMRES must converge effectively on that matrix, in order for the method to
have optimal performance. We do not include the matrices 1d3pt, 1d5pt, and 2d9pt from
Demmel et al. [78], as they represent sparsity patterns from regular discretizations of 2-D
PDEs on square domains. This is a set of problems for which we already run more interesting
numerical experiments in this thesis (for example, in Section 3.5.3).

3.6.3 Results for WATT1 matrix

In Section 3.5.5, we showed the results of numerical experiments with the WATT1 sparse
matrix from a petroleum engineering application. This matrix is described in Appendix B.6.
We tested the performance of CA-GMRES on this matrix on the Intel Clovertown platform
(see Appendix A), and achieved a speedup over standard GMRES of 1.31×. This was
attained when running on two cores, since neither algorithm benefited from more parallelism
than that on this platform. Furthermore, being able to choose the s-step basis length to
be smaller than the restart length, which previous versions of s-step GMRES could not do,
meant that CA-GMRES improved its performance by a factor of 2.23× when running on
one core, and 1.66× on two cores. The best s value is also different for different numbers
of processors, which illustrates the need for some combination of automatic tuning and
performance models to choose the best value.

As we mention in Section 3.5.5 and Appendix B.6, Erhel [93] uses WATT1 as a test
problem for her implementation of the Newton-basis GMRES algorithm of Bai et al. [18].
We cannot compare our implementation directly with Erhel’s, because hers was intended to
run on early 1990’s distributed-memory parallel hardware, whereas ours targets the single-
node shared-memory regime. For example, the parallel QR factorization discussed in her
paper, RODDEC, optimizes the number of messages on a ring network. TSQR (Section 2.3), in
contrast, minimizes the number of messages in parallel on a general network of processors,
as well as minimizing the volume of data movement between levels of the memory hierarchy.
Furthermore, Erhel did not show performance results for the WATT1 matrix in [93]. What we
can show, however, is that our algorithmic innovations result in performance improvements.

We have performance results for the Intel Clovertown platform (described in Appendix
A). We tuned over a variety of TSQR cache block sizes and matrix powers kernel options.
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Runtime per kernel, relative to CA-GMRES(k,t), for all test matrices,
using 8 threads and restart length 60
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Figure 3.44: Run time in seconds of standard GMRES and CA-GMRES on 8 cores of an Intel
Clovertown processor, with restart length 60, on the set of test problems from applications
described in Appendix B.5.
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Figure 3.45: Run time in seconds of standard GMRES and CA-GMRES on 8 cores of an
Intel Nehalem processor, with restart length 60, on the set of test problems from applications
described in Appendix B.5.
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For a given set of parameters, each timing run was repeated 100 times, to avoid variation
in the reported run times. We fixed the restart length to be r = 30, as Erhel used in her
experiments, and searched for the best CA-GMRES performance over all basis lengths s ≥ 2
that divide r evenly. CA-GMRES performance is shown in all cases for the best choice of s,
given a particular restart length r. We ran our experiments for thread counts 1, 2, 4, and 8.

Figure 3.46 compares the runtimes of CA-GMRES and standard GMRES on the WATT1
matrix, for different numbers of processors. The best speedup of CA-GMRES over standard
GMRES is 1.31×, when running on 2 processor cores. In fact, neither algorithm obtains a
total performance benefit from using more than two processor cores. Since the sparse matrix
and vectors are small enough to fit in the L2 cache on this platform, the main reason why
CA-GMRES is faster than standard GMRES is the use of TSQR and BGS instead of MGS
orthogonalization. Our ability in CA-GMRES to choose the s-step basis length s to be less
than the restart length r = s · t, means that CA-GMRES executes a restart cycle 2.23×
faster on one core and 1.66× faster on two cores, than the Newton-basis GMRES algorithm
of Bai et al. which requires that s equal the restart length r. Furthermore, this happens for
different values of s for different numbers of processors: s = 5 is the fastest choice when
running on one core, whereas s = 6 is the fastest when running on two cores. Although
neither CA-GMRES and standard GMRES benefit from more parallelism than this, it is
interesting to note that s = 15 is the fastest choice of basis length for CA-GMRES on 4 and
8 processors.

These results suggest that for small sparse matrices that fit in cache, that implementing
the matrix powers kernel straightforwardly, that is by using s invocations of SpMV, may
be faster than using any of the matrix powers kernel optimizations we discuss in Section
2.1. This was the case in our WATT1 experiments on 4 and 8 processors, as indicated in the
annotations of Figure 3.46. This is not surprising, because the primary motivation of previous
work in s-step GMRES was to decrease the run time of the orthogonalization process (see
e.g., Bai et al. [18]). In the standard MGS implementation of GMRES, orthogonalization may
take the majority of the runtime, so optimizing it was a first priority of authors developing
s-step versions of GMRES.

Note that in a deployment-quality implementation of the matrix powers kernel, one would
add the possibility of implementing the matrix powers kernel straightforwardly (that is,
by using s invocations of SpMV, without any matrix powers kernel optimizations) to the
autotuning process. We did not do so in the above performance results. Instead, we simply
substituted the time for s SpMV operations in standard GMRES for the matrix powers
kernel runtime. This may even be an overestimate of the resulting matrix powers kernel
runtime, due to reuse of the sparse matrix. Standard GMRES only performs one SpMV
operation before doing several vector operations. However, if the matrix powers kernel is
implemented straightforwardly, it may go faster than s times the runtime of a single SpMV,
since the matrix powers kernel reuses the sparse matrix s times. This is especially true if
the matrix is small enough to fit in cache.

3.6.4 Implementation challenges

We discovered painfully that our benchmark implementation approach of hand-coding all
of the parallelism constructs took much longer than anticipated. One challenge was that
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Figure 3.46: Relative run times of CA-GMRES and standard GMRES, with restart length
30, on the WATT1 matrix, on a single node of an 8-core Intel Clovertown. Each pair of
bars corresponds to a different number of threads used: 1, 2, 4, or 8. In each pair, the left
bar corresponds to CA-GMRES, and the right bar to standard GMRES. The top of each
bar shows the total run time for that particular method (standard GMRES or CA-GMRES)
and number of threads (1, 2, 4, or 8), relative to the total run time of CA-GMRES on one
thread. That is, the total run time of CA-GMRES on one thread is scaled to be one. For
each number of threads, the CA-GMRES run time shown is for the best (s, t) pair allowed
by the matrix structure such that restart length/s = t. For simplicity, we only test s values
that divide the restart length evenly, although the CA-GMRES algorithm does not require
this. For both standard GMRES and CA-GMRES, its total run time shown is the sum of
the total runtimes of the various kernels in that method. The height of each color within a
bar represents the part of the total runtime taken by that particular kernel. The annotation
above each pair of bars shows the best basis length s and the speedup only for that number of
threads resulting from using CA-GMRES instead of standard GMRES (that is, the standard
GMRES run time, divided by the CA-GMRES runtime). The actual speedup is 1.31×,
which is the best possible CA-GMRES run time (in this case, on 2 threads) divided by the
best possible standard GMRES run time (in this case, on 1 thread). If the annotation also
contains “Akx→SpMV,” then the matrix powers kernel would be faster (for that number of
threads) if implemented by (parallel) SpMV.
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we were limited to the low-level parallel primitives available in the Pthreads and system
libraries. While our first pass at the benchmark used OpenMP, this did not give us control
over memory affinity or over assignment of threads to cores. In particular, we needed to
ensure both that only one thread would run on one core, and that benchmark runs with
four or fewer threads would only use the four cores on one socket. (This was necessary for a
fair comparison of the four-thread case with the eight-thread case, since threads running on
one socket can share data via the shared cache.) Furthermore, the matrix powers kernel was
written by a collaborator, Marghoob Mohiyuddin, using Pthreads, so that he could control
affinity of data to threads in a NUMA implementation. Joining Pthreads code to OpenMP
code correctly, without disturbing the careful association of data to threads, was too difficult
for us to manage in the time allotted. This restricted us to a Pthreads-only implmentation.

Pthreads offers only limited collective operations, and its barrier implementation is known
to be orders of magnitude slower than performance-oriented expert implementations (see
Nishtala and Yelick [179]). This made us reach outside system libraries in search of im-
plementations of parallel primitives, like barriers and reductions. We attempted to use the
automatically tuned shared-memory collective operations by Nishtala and Yelick [179]. Their
library chooses the best implementation of each collective among many possibilities, via run-
time search at startup. While we had success with their barrier implementation, we found a
bug in their reduction implementation (which the authors later fixed, but too late for us to
use). Due to time constraints, we were forced to implement our own very simple reduction.
While we found later that the threads spent very little time in the reduction and so our sim-
ple implementation did not significantly affect performance, it did increase programmer time
and the potential for introducing additional bugs. This example illustrates the challenge of
writing correct shared-memory parallel code using low-level primitives, as the primary im-
plementer of Nishtala and Yelick’s library is a highly skilled parallel systems programmer
with experience in both the shared-memory and distributed-memory programming models.

We also encountered an interesting possible bug in the Intel Fortran Compiler’s (version
10.1) implementation of the ISO C BINDING module. This module, defined in the Fortran
2003 standard, provides a set of constructs that make it easier for Fortran and C libraries to
interact. We discovered that the C F POINTER subroutine seemed to be interacting oddly with
multiple threads. Investigation with a tracing tool6 showed that invocations of C F POINTER

at the same part of a subroutine but in different threads were sometimes resulting in crossed
pointer addresses, so that one thread could get another thread’s data. We lacked the time to
debug further or to provide a use case for verifying the bug, so to prevent the bug, we simply
had to rewrite that part of the code in C. The code we had to rewrite was dense matrix
manipulation code that is much easier to write in Fortran than C, which was a further
hindrance.

3.6.5 Future work

In this section, we discuss future work, specifically for the parallel shared-memory implemen-
tation of CA-GMRES described here. Much of this will involve deploying CA-GMRES and

6Thanks to Heidi Pan, then a graduate student at MIT working in the UC Berkeley Parallel Computing
Laboratory, for providing and helping with this tool.
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the other Krylov methods described in this thesis for use in real applications. Other future
work will include ways to improve performance by eliminating unnecessary synchronization
between kernels.

Usability

Time constraints, due mainly to the challenges of writing and debugging correct low-level
parallel code, meant that our benchmark was roughly written. This makes it hard to build
and maintain, hard to port to different platforms, hard to optimize further, and impossible
to expect nonexperts to use in realistic applications. A major near-term goal, therefore, is to
make communication-avoiding implementations of the kernels of Chapter 2, and also entire
solvers (such as CA-GMRES), available in an easy-to-use library. This requires solving two
problems:

1. Making the kernels and solvers available for easy use in applications

2. Reducing the time required to do runtime search for kernel tuning parameters

We plan to solve the first problem by implementing the communication-avoiding kernels in
the Trilinos [128] framework for solving “large-scale, complex multiphysics engineering and
scientific problems” (Heroux et al. [129]). Trilinos provides sparse matrix primitives, such as
data redistribution and repartitioning to minimize communication, that will make it easier
to implement and experiment with the matrix powers kernel in the distributed-memory set-
ting. This deserves more attention than we showed it in Demmel et al. [76], especially since
distributed-memory programming models can be used to program shared-memory machines
(e.g., one MPI process per socket, or one MPI process per compute accelerator such as a
Graphics Processing Unit (GPU)). Trilinos also has hooks for experimentation with mul-
tiple levels of parallelism, which would expand our search space of kernel implementation
possibilities.

The second problem mentioned above, the time required for runtime search of tuning
parameters, is a problem often concealed by typical reporting of performance results. We
did not show above the time required for runtime tuning of the CA-GMRES solver. In
many cases, it took much longer than the actual benchmark. This was because our kernels
were performing brute-force search over a large parameter space. In a real application, CA-
GMRES will have to reduce this search time considerably. This can be helped in part by
caching and reusing results of previous searches on the same or similar problems, as well
as allowing more advanced users to give the kernels “hints” that can be used to prune the
search space. These techniques are both described in Vuduc et al. [236]. We also plan to
work with collaborators on improved search strategies for runtime tuning, such as machine
learning. See Ganapathi et al. [106] for an example of how machine learning can improve
both performance and total energy consumption of an automatically tuned scientific code.

Removing unnecessary interkernel synchronization

Dr. Sam Williams (Lawrence Berkeley National Laboratory) pointed out to us that in our
CA-GMRES implementation, we were invoking our matrix powers, TSQR, and BGS kernels
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in a bulk synchronous parallel way (see Valiant [223] for a description of the Bulk Syn-
chronous Parallel (BSP) model of computation). Each kernel did its work on its own data
in parallel, and all the threads had to wait at a barrier until the next kernel was allowed to
start. In many cases, global synchronization between kernels is unnecessary. For example,
once one processor finishes computing its matrix powers kernel output in CA-GMRES, that
processor can begin the first step of parallel TSQR (the first local QR factorization) without
communicating or synchronizing with the other processors. A problem with this approach is
that it intertwines the kernel implementations, but this can be avoided by reimplementing
the kernels as a collection of tasks connected by a task graph. Kernels then would execute in
a dataflow fashion. Approaches like this have proven successful for one-sided dense matrix
factorizations which combine multiple kernels. See e.g., Song et al. [211].
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Chapter 4

Communication-avoiding symmetric
Lanczos

In this chapter, we develop communication-avoiding versions of symmetric Lanczos iteration,
a Krylov subspace method for solving symmetric positive definite eigenvalue problems. This
chapter is organized as follows. Section 4.1 summarizes the standard symmetric Lanczos al-
gorithm (Algorithm 24) for solving symmetric positive definite eigenvalue problems Ax = λx.
We show that standard Lanczos has communication-bound performance. Section 4.2 presents
CA-Lanczos (Algorithm 25), a communication-avoiding version of symmetric Lanczos iter-
ation for solving symmetric positive definite eigenvalue problems Ax = λx. CA-Lanczos
requires a factor of s times additional vector storage over standard Lanczos. However, in
parallel, it saves a factor of s fewer messages in the dense vector operations over standard
Lanczos. CA-Lanczos also communicates the sparse matrix a factor of s fewer times than
standard Lanczos. While the CA-Lanczos algorithm is similar to an existing s-step version
of Lanczos by Kim and Chronopoulos [150], it has the following advantages:

• Previous work did not include communication-avoiding kernels. CA-Lanczos uses the
kernels of Chapter 2 to avoid communication in both the sparse matrix and the dense
vector operations.

• Kim and Chronopoulos’ s-step Lanczos was limited to using the monomial basis. Our
CA-Lanczos algorithm can use any s-step basis, as well as the techniques discussed in
Chapter 7 for improving numerical stability of the basis.

• CA-Lanczos can also avoid communication when performing reorthogonalization, and
still reorthogonalize accurately. It does so using RR-TSQR-BGS (Algorithm 14 in
Section 2.4.8). Communication-avoiding reorthogonalization is completely independent
of the choice of Lanczos algorithm, so it may also be used with standard Lanczos.
Previous work did not address the cost of reorthogonalization.

Section 4.3 develops two communication-avoiding versions of Lanczos (Algorithm 28 in Sec-
tion 4.3.3 and Algorithm 29 in Section 4.3.4) for solving the generalized eigenvalue problem
Ax = λMx, where A and M are both symmetric positive definite. We call them “left-
preconditioned CA-Lanczos,” because we use them in Chapter 5 as a model for developing



CHAPTER 4. COMM.-AVOIDING SYMM. LANCZOS 188

communication-avoiding versions of the Method of Conjugate Gradients (CG, for solving
Ax = b). Algorithm 28, “Left-preconditioned CA-Lanczos without MGS,” avoids communi-
cation in the sparse matrix operations. It is good for when the SpMV operations dominate
the cost of standard Lanczos. Algorithm 29, “Left-preconditioned CA-Lanczos (with MGS),”
avoids communication in both the sparse matrix operations, and the dense vector dot prod-
ucts. It is good for when the dot products in standard Lanczos have a significant cost. As
far as we know, these two algorithms are completely novel.

4.1 Symmetric Lanczos

In this section, we discuss symmetric Lanczos iteration, a Krylov subspace method for solving
eigenvalue problems Ax = λx, where the matrix A is symmetric positive definite. We
abbreviate symmetric Lanczos as “Lanczos” unless we have a need to distinguish it from
the nonsymmetric Lanczos method, which is discussed in Chapter 6. Although Lanczos is
used for solving eigenvalue problems, it is closely related to other Krylov methods for solving
symmetric linear systems, such as the Method of Conjugate Gradients (CG – see Chapter 5)
for SPD matrices, and the Minimum Residual method (MINRES) for symmetric indefinite
matrices. We will use one of the communication-avoiding versions of Lanczos developed in
Section 4.3 of this chapter as a model to derive communication-avoiding CG in Chapter 5.

This section is organized as follows. Section 4.1.1 summarizes the standard Lanczos algo-
rithm. Section 4.1.2 explains the cost of communication in standard Lanczos, and shows that
the communication-avoiding versions of Lanczos we develop later in this chapter will require a
factor of s more storage and arithmetic operations in order to avoid communication. Finally,
Section 4.1.3 demonstrates how to avoid communication when performing reorthogonaliza-
tion. This can be done whether using standard Lanczos or one of the communication-avoiding
versions of Lanczos we develop later in this chapter.

4.1.1 The standard Lanczos algorithm

Lanczos begins with an n × n SPD matrix A and a starting vector v. After s steps, if the
method does not break down, it computes an s+ 1 by s tridiagonal matrix T (with principal
s× s submatrix T ) and an n by s orthonormal resp. unitary basis matrix Q = [q1, q2, . . . , qs]
such that

AQ = QT + βs+1qs+1e
T
s , (4.1)

where qs+1 is unit-length and orthogonal to q1, . . . , qs. The symmetric tridiagonal matrix T
has the following form:

T =


α1 β2 . . . 0

β2 α2
. . .

...
. . . . . . . . .

...
. . . . . . βs

0 . . . βs αs
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We refer to q1, q2, . . . , qs+1 as the Lanczos basis vectors. They span the Krylov subspace
span{v,Av,A2v, . . . , Asv}. They also satisfy the recurrence

βj+1qj+1 = Aqj − αjqj − βjqj−1 (4.2)

for each j = 1, 2, . . . , s, where we set q0 = 0n. Lanczos computes αj = 〈Aqj, qj〉 and
βj+1 = ‖Aqj − αjqj − βjqj−1‖2, each of which requires one inner product. Algorithm 24
shows the Lanczos method.

Line 8 of Algorithm 24 refers to the possibility of Lanczos breaking down. In exact
arithmetic, Lanczos only breaks down when the smallest j has been reached such that a
degree j − 1 polynomial pj−1 exists with pj−1(A)r = 0. This is called a lucky breakdown for
two reasons: when solving eigenvalue problems, the set of eigenvalues of T equals the set of
eigenvalues of A, and when solving linear systems, the current approximate solution equals
the exact solution. Lucky breakdowns are rarely encountered in practice, and so we do not
consider them here.

Algorithm 24 has many alternate formulations, which affect its performance characteris-
tics as well as its accuracy in finite-precision arithmetic. See e.g., Cullum and Willoughby
[64] for some alternate formulations. Regardless, ech iteration requires one SpMV, two dot
products, and two AXPY operations. If only the tridiagonal matrix T is desired, only the
two rightmost columns of the basis matrix Q need to be kept at any one time.

Algorithm 24 Symmetric Lanczos iteration

Require: r is the starting vector
1: β0 := 0, β1 := ‖r‖2, q0 := 0, q1 := r/β1

2: for k = 1 to convergence do
3: wj := Aqk − βkqk−1

4: αk := 〈wj, qk〉
5: wj := wj − αkqk
6: βk+1 := ‖wj‖2

7: if βk+1 = 0 then
8: Exit due to lucky breakdown
9: end if

10: qk+1 := wj/βk+1

11: end for

Lanczos can be considered as a special case of Arnoldi iteration for when the matrix A
is symmetric (in the real case) or Hermitian (in the complex case). In exact arithmetic,
if A = A∗, then the Lanczos basis vectors are the same as the Arnoldi basis vectors, and
T = H. In other words, the symmetry of the matrix A allows simplification of the Arnoldi
orthogonalization procedure to a short recurrence. This simplification is the main reason
for using Lanczos instead of Arnoldi, as it prevents the number of vector operations from
increasing linearly with the current iteration number, rather than remaining constant. Also,
for certain applications, Lanczos only needs to store three basis vectors at once,1 unlike
Arnoldi, which must store as many basis vectors as the restart length.

1Actually only two basis vectors are needed, if the sparse matrix-vector product kernel computes u :=
u+A · v rather than u := A · v; see [188, p. 290].
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4.1.2 Communication in Lanczos iteration

In the previous Chapter 3, we developed communication-avoiding versions of Arnoldi iter-
ation. Arnoldi benefits significantly from communication-avoiding techniques, but Lanczos
has different performance characteristics than Arnoldi. Depending on the restart length r
and the structure of the sparse matrix, Arnoldi may spend significantly more time orthogo-
nalizing its basis vectors than doing sparse matrix-vector products. For example, standard
Arnoldi requires r2/2 +O(r) inner products and r2/2 +O(r) vector subtractions per restart
cycle, and only r sparse matrix-vector products per restart cycle. The combination of TSQR
and Block Gram-Schmidt performs much better than MGS orthogonalization for sufficiently
long vectors, as the performance results (for CA-GMRES) in Section 3.6 show. Thus, CA-
Arnoldi may perform much better than standard Arnoldi, even if the sparse matrix-vector
products are not replaced with the matrix powers kernel.

In contrast, r iterations of symmetric Lanczos require only 2r inner products and 2r
AXPY operations, but have the same number of sparse matrix-vector products as r iterations
of Arnoldi. Even though Arnoldi and Lanczos are equivalent in exact arithmetic for a
symmetric resp. Hermitian matrix A, Lanczos exploits that symmetry to avoid performing
a full orthogonalization against all previous basis vectors at every step. Furthermore, we
will show that communication-avoiding versions of Lanczos require a factor of Θ(s) more
storage and arithmetic operations than standard Lanczos. This is also true for the method
of conjugate gradients. As a result, communication-avoiding versions of Lanczos require
larger communication costs relative to arithmetic costs than Arnoldi requires in order to pay
off.

4.1.3 Communication-avoiding reorthogonalization

Reorthogonalization in standard Lanczos can be done in a communication-avoiding way, by
using an algorithm analogous to the RR-TSQR-BGS orthogonalization method (Algorithm
14 of Section 2.4.8). This saves a factor of Θ(s) messages in parallel and a factor of Θ(s)
words transferred between levels of the memory hierarchy, yet achieves comparable or better
accuracy to full column-by-column MGS reorthogonalization. This works whether or not a
communication-avoiding Lanczos algorithm is used.

What is reorthogonalization?

Standard Lanczos iteration often requires reorthogonalizing the Krylov basis vectors, in order
to maintain accuracy of the computed eigenvalues and eigenvectors. This is because the
vectors tend to lose their orthogonality in finite-precision arithmetic. Paige [184] found that
the main cause of their loss of orthogonality is convergence of a particular Ritz value to an
eigenvalue of the matrix A, so this is not merely an issue of slow degradation due to gradual
accumulation of rounding errors. In particular, this occurs even for variants of Lanczos that
converge in only a few iterations, such as shift and invert for eigenvalues in the interior of
the spectrum, as well as for runs of many iterations. This makes reorthogonalization an
important part of the Lanczos method.
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Reorthogonalization schemes

Different reorthogonalization schemes are used in practice, depending on the problem size
and the number of iterations required. Full reorthogonalization means making all the basis
vectors orthogonal. Typically this is done using Modified Gram-Schmidt, or sometimes
Classical Gram-Schmidt. Full reorthogonalization is an obvious candidate for RR-TSQR-
BGS (Algorithm 14 of Section 2.4.8), which combines TSQR and Block Gram-Schmidt.

Selective reorthogonalization, as described in Bai et al. [15], only requires reorthogonaliz-
ing certain vectors, based on an inexpensively computed estimate of their loss of orthogonal-
ity. The point of selective reorthogonalization is to avoid the cost of a full reorthogonalization,
but RR-TSQR-BGS may make full reorthogonalization inexpensive enough to outweigh the
savings of the more complicated selective reorthogonalization procedures. Furthermore, fu-
ture work may suggest ways to do selective reorthogonalization in a communication-avoiding
way, for example, by grouping the selected vectors into blocks ad using

Local reorthogonalization is a last resort for when memory constraints forbid keeping all
the previous basis vectors, or performance constraints forbid reorthogonalizing against all of
them. Bai et al. [15] describe an approach in which at every iteration, the current basis vector
is reorthogonalized against the previous two basis vectors. One of our CA-Lanczos imple-
mentations will use TSQR to orthogonalize groups of s basis vectors at once. We conjecture
that this scheme is no less accurate, and perhaps more accurate, than local reorthogonaliza-
tion against the previous s basis vectors. The “automatic local reorthogonalization” that our
CA-Lanczos algorithm provides may delay the need for selective or full reorthogonalizations.

4.2 CA-Lanczos

In this section, we present CA-Lanczos (Algorithm 25), a communication-avoiding version
of symmetric Lanczos iteration for solving SPD eigenvalue problems Ax = λx. CA-Lanczos
uses the matrix powers kernel (Section 2.1) to avoid a factor of s communication in the
sparse matrix-vector products over standard Lanczos. It also uses the TSQR (Section 2.3)
and Block Gram-Schmidt (Section 2.4) kernels to save a factor of Θ(s) fewer messages in
parallel in the vector operations. The vector operations require no additional traffic between
levels of the memory hierarchy than those of standard Lanczos, and also are implemented
with BLAS 3 kernels instead of BLAS 1 or 2 kernels. Unlike CA-Arnoldi and CA-GMRES,
however, CA-Lanczos requires a factor of Θ(s) more computation and a factor of s additional
vector storage over standard Lanczos. This extra work and storage perform the same work as
partial reorthogonalization. Partial reorthogonalization may improve convergence in finite-
precision arithmetic (though not in exact arithmetic) when using Krylov methods to compute
eigenvalues. Thus, the extra arithmetic operations mean that CA-Lanczos may be more
accurate than standard Lanczos.

Just like CA-Arnoldi (Section 4.2) and CA-GMRES (Section 3.4), CA-Lanczos takes two
parameters s and t. Similarly, we also call CA-Lanczos “Lanczos(s, t).” The s parameter is
the s-step basis length, and the t parameter is the number of outer iterations before restart.
The restart length is thus r = s·t. Unlike CA-Arnoldi or CA-GMRES, the amount of storage,
floating-point operations, and communication does not increase linearly with each outer
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iteration; in CA-Lanczos, all of these are the same at each outer iteration. This means that
restarting is not necessary as a cost-saving measure. However, restarting standard symmetric
Lanczos is helpful in practice for maintaining orthogonality of the basis vectors (see e.g., [15,
“Implicit Restart”]), so we expect this to be true also for CA-Lanczos. Restarted versions
of Lanczos typically invoke the restart length number of iterations of standard Lanczos as
as “inner loop,” and we expect to be able to replace that with an invocation of CA-Lanczos
without damaging convergence. Indeed, CA-Lanczos may be able to use a longer restart
length, as we expect the basis vectors to lose their orthogonality a factor of s times slower
than standard Lanczos.

The CA-Lanczos algorithm was developed independently, but it is similar to the “s-
step Lanczos” algorithm of Kim and Chronopoulos [150]. CA-Lanczos has the following
advantages over s-step Lanczos.

• Kim and Chronopoulos did not use communication-avoiding kernels. CA-Lanczos uses
the kernels of Chapter 2 to avoid communication in both the sparse matrix and the
dense vector operations.

• Kim and Chronopoulos algorithm was limited to using the monomial basis. Our CA-
Lanczos algorithm can use any s-step basis, as well as the techniques discussed in
Chapter 7 for improving numerical stability of the basis.

• CA-Lanczos can also avoid communication when performing reorthogonalization, and
still reorthogonalize accurately. It does so using RR-TSQR-BGS (Algorithm 14 in
Section 2.4.8). Communication-avoiding reorthogonalization is completely independent
of the choice of Lanczos algorithm, so it may also be used with standard Lanczos.
Previous work did not address the cost of reorthogonalization.

Symmetric Lanczos produces two different outputs: a collection of mutually orthogonal
unit-length basis vectors, and an associated tridiagonal matrix which is the projection of the
original matrix A onto that set of basis vectors. Our CA-Lanczos produces exactly the same
output in exact arithmetic, except that it produces them in groups of s at a time, instead
of one at a time. In Section 4.2.1, we explain how we how we orthogonalize each group of
s new basis vectors against the previous basis vectors. Then, in Section 4.2.2, we show how
to update the Lanczos tridiagonal matrix, using the matrix powers basis coefficients and the
coefficients from the orthogonalization.

4.2.1 CA-Lanczos update formula

In this section, we present the CA-Lanczos update formula, which shows how we efficiently
orthogonalize each outer iteration’s group of s basis vectors against the previously orthog-
onalized basis vectors. Lanczos(s, t) is a special case of Arnoldi(s, t), so we model the
presentation here from that in Section 3.3.3. The difference is that Lanczos assumes that
the matrix A is symmetric, so the basis vectors satisfy a three-term recurrence which can be
exploited to orthogonalize them efficiently. Arnoldi does not assume that A is symmetric,
so each new basis vector must be orthogonalized against all the previous basis vectors. The
usual implementation of Lanczos need only keep a “window” of three basis vectors at one
time, as one can see from the inner loop:
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1: wj := Aqj − βjqj−1

2: αj := 〈wj, qj〉
3: wj := wj − αjqj
4: βj+1 := ‖wj‖2

5: qj+1 := wj/βj+1

We will see that CA-Lanczos needs to keep a window of two outer iterations’ worth (2s) of
basis vectors at once. Also, each new basis vector may need to be orthogonalized against
a different number of previous basis vectors (but no more than 2s of them). This means
CA-Lanczos requires a factor of Θ(s) more storage and Θ(s) more computation than the
usual implementation of Lanczos. However, even if we neglect the substantial benefits of the
matrix powers kernel, just the orthogonalization part of CA-Lanczos requires no more words
transferred between levels of the memory hierarchy than the orthogonalization operations in
the equivalent s number of iterations of standard Lanczos. In parallel, Lanczos(s, t) saves a
factor of Θ(s) messages over s iterations of standard Lanczos.

Notation

In this section, we recycle most of the notation in Section 3.3.3, where we present the
Arnoldi(s, t) update procedure. For Lanczos, we find it easier to use the overlapping approach
to orthogonalization. This motivates our use of V́ k, the right-shifted basis matrix at outer
iteration k:

V́k := [vsk+2, . . . , vsk+s],

V́ k := [V́k, vsk+s+1].

The acute accent, which points up and to the right, hints at a shift of the “window of
vectors” over to the right by one. Similarly, we define V̀ k, the left-shifted basis matrix at
outer iteration k:

V̀k :=

{
[0n,s, V0] for k = 0,

[vsk, Vk] for k > 0;

V̀ k := [V̀k, vsk+s+1].

The only time we will use V̀ k, though, is in the discussion in Section 4.2.1. For actual
computations, we will use the right-shifted basis matrix V́ k.

Updating the QR factorization

At outer iteration k, the matrix powers kernel takes the last basis vector qsk+1 = vsk+1 from
the previous outer iteration, and produces s more basis vectors vsk+2, . . . , vsk+s+1 which
satisfy

AVk = V kBk

for the s+ 1 by s tridiagonal basis matrix Bk. All this is the same as with Arnoldi(s, t). If
we were doing Arnoldi with overlapping orthogonalization, we would then orthogonalize V́ k

against the previous basis vectors via a QR factorization update:
1: Ŕk−1,k := Q∗k−1V́ k

2: V́ k := V́ k −Qk−1Ŕk−1,k
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3: Compute the n by s QR factorization Q́
k
· Ŕk = V́ k

4: Qk := [Qk−1, Q́k
]

5: Rk :=

(
Rk−1 Ŕk−1,k

0s,s(k−1)+1 Ŕk

)
Lines 4 and 5 involve no additional work, only notation. Lines 1 and 2 include all the work
of orthogonalizing V́ k against the previous basis vectors. In the case of Lanczos, we can save
most of the work in these lines, in that we only have to orthogonalize against Q

k−1
(one

previous group of basis vectors). The proof of this will fall out of the argument in Section
4.2.1. This optimization means that

Ŕk−1,k := Q∗k−1V́ k =

(
0s(k−2),s

Q∗
k−1

V́ k

)
This reduces line 1 above to

Ŕk−1,k := Q∗
k−1

V́ k

and line 2 above to
V́ k := V́ k −Qk−1

Ŕk−1,k.

That means in each outer iteration of CA-Lanczos, we have to keep around the previous
outer iteration’s group of orthogonalized basis vectors Q

k−1
.

Can we do better?

Section 4.2.1 suggests what we will show later, that CA-Lanczos costs a factor of Θ(s) more
flops than standard Lanczos. Furthermore, Θ(s) times more basis vectors must be stored.
One might wonder whether we could do better, perhaps by exploiting the structure of the
basis matrix Bk or that the matrix A is symmetric. If a three-term recurrence works in the
original Lanczos algorithm, why wouldn’t it suffice to invoke TSQR once to orthogonalize
V̀ k, as it contains the last two basis vectors from the previous outer iteration? In this section,
we will show that in general, one invocation of TSQR on V̀ k does not suffice to compute the
correct Lanczos basis vectors. In fact, in exact arithmetic, we will show that it is necessary
to keep all columns of Q

k−1
but the first, qs(k−1)+1.

In finite-precision arithmetic, the basis vectors in the usual implementation of Lanczos
rapidly lose orthogonality without reorthogonalization. CA-Lanczos uses a more accurate
orthogonalization scheme which should require reorthogonalization less often. Reorthogo-
nalization can be expensive both in terms of communication and in terms of computation,
and the extra work performed by CA-Lanczos in each outer iteration may save extra re-
orthogonalization work later. How much work is saved over standard Lanczos depends on
the specific problem as well as the reorthogonalization techniques used.

To show that CA-Lanczos requires all the previous outer iterations’ basis vectors, we
begin by defining

Ŕk−1,k := Q∗
k−1

V́ k.

The i, j entry of Ŕk−1,k is given by

Ŕk−1,k(i, j) = q∗s(k−1)+ivsk+j+1 = 〈vsk+1+j, qsk+1+(i−s−1)〉,
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where i ∈ {1, 2, . . . , s + 1} and j ∈ {1, 2, . . . , s}. We then expand out vsk+1+j as a sum of
the vectors vsk+1 = qsk+1, Aqsk+1, . . . , Aj−1qsk+1:

〈vsk+1+j, qsk+1+(i−s−1)〉 =

j−1∑
l=0

σjl〈Alqsk+1, qsk+1+(i−s−1)〉,

where the σjl are possibly nonzero constants whose values we won’t need. (The use of the
monomial basis here has nothing to do with the s-step basis which we are using for CA-
Lanczos; it just makes the proof easier.) By expanding out the Lanczos recurrence (either
for Alqsk+1, or for Alqsk+1+(i−s−1), the latter only if we exploit the symmetry of A by moving
Al to the other argument of the inner product), we see that this is nonzero only if i+j ≥ s+2.
(By adjusting the range of i appropriately, we can also see that Q∗

j
V́ k = 0s+1,s for j < k−1.)

Since Ŕk−1,k(i, j) is nonzero only if i+ j ≥ s+ 2, Ŕk−1,k has a structure like the following
example for s = 5: 

0 0 0 0 0
0 0 0 0 x
0 0 0 x x
0 0 x x x
0 x x x x
x x x x x

 ,

where x indicates a possibly nonzero value. In fact, we can’t assume anything more specific
than that about the nonzero structure of Ŕk−1,k, because the s-step basis can express the
basis vector vsk+1+j as pj(A)qsk+1 for any monic degree j polynomial pj(·). When we apply
the update

V́ k := V́ k −Qk−1
Ŕk−1,k,

we can exploit the above structure of Ŕk−1,k in order to save some computation and commu-
nication (not latency, but bandwidth). We are not required to exploit that structure, and
it could be that not exploiting the structure could produce an orthogonalization of better
quality in floating-point arithmetic.

Repartitioning the R factor

When showing how to compute the Lanczos tridiagonal matrix from the R factor in the
above QR factorization update, it simplifies the notation if we first “repartition” the block
matrix Rk. This only means dividing it up into blocks a different way; repartitioning requires
no computation and insignificant data movement.

To this end, we first define four variations on the block inner product:

Rk−1,k = Q∗k−1Vk,

Rk−1,k = Q∗k−1V k,

Ŕk−1,k = Q∗
k−1

V́k,

Ŕk−1,k = Q∗
k−1

V́ k.

(4.3)
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The notation is complicated but the pattern is this: the acute accent means V́k is involved,
and the underline means V k is involved. Both an acute accent and an underline means that
V́ k is involved. Given this notation, we can partition Rk and Rk in two different ways:

Rk =

 Rk−1

(
0s(k−2),s−1

Ŕk−1,k

)
0s,s(k−1)+1 Ŕk

 =

 Rk−1

(
0s(k−2),s

Rk−1,k

)
0s,s(k−1) Rk

 , and

Rk =

 Rk−1

(
0s(k−2),s

Ŕk−1,k

)
0s,s(k−1)+1 Ŕk

 =

 Rk−1

(
0s(k−2),s+1

Rk−1,k

)
0s,s(k−1) Rk

 .

(4.4)

4.2.2 Updating the tridiagonal matrix

If CA-Lanczos performs all its iterations without breaking down, it produces the following
matrix relation:

AQk = QkTk,

where
Qk = [Q0, Q1, . . . , Qk],

Qk = [Qk, qs(k+1)+1],

Tk =


T0 for k = 0,(

Tk−1 βsk+1es(k−1)e
T
1

βsk+1e1e
T
s(k−1) Tk

)
for k > 0,

and

Tk =

(
Tk

βs(k+1)+1e
T
s(k+1)

)
.

That is the end result, but how do we compute the symmetric tridiagonal matrix Tk?
We begin just as we did with Arnoldi(s, t) in Section 3.3, using a similar notation, and
then gradually apply the additional assumptions of the Lanczos process until we reach a
computational method of the desired efficiency. Suppose that we have already computed
Tk−1 and the new basis V k. Then, AQk−1 = Qk−1Tk−1 and thus

A[Qk−1, Vk] = [Qk, V k]Bk, (4.5)

where

Bk =

(
Tk−1 0s(k−1),s

βsk+1e1e
T
s(k−1) Bk

)
, and

Bk =

(
Tk−1 0s(k−1),s

βsk+1e1e
T
s(k−1) Bk

)
.

Now, we combine the QR factorization update in Section 4.2.1 with the Lanczos relation
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AQk = QkTk:

A[Qk−1, Qk]

Is(k−1),s(k−1)

(
0s(k−2),s

Rk−1,k

)
0s,s(k−1) Rk

 =

[Qk−1, Qk
]

Is(k−1),s(k−1)

(
0s(k−2),s

Rk−1,k

)
0s,s(k−1) Rk

( Tk−1 0s(k−1),s

βsk+1e1e
T
s(k−1) Bk

)
.

Here, we use the repartitioning of the R factors to make sure that the subblocks of the R,
R, and Bk matrices line up. Assuming that the Lanczos recurrence hasn’t broken down, we
then have

Tk =Is(k−1),s(k−1)

(
0s(k−2),s

Rk−1,k

)
0s,s(k−1) Rk

( Tk−1 0s(k−1),s

βsk+1e1e
T
s(k−1) Bk

)Is(k−1),s(k−1)

(
0s(k−2),s

Rk−1,k

)
0s,s(k−1) Rk

−1

=

 I

(
0s(k−2),s

Rk−1,k

)
0s,s(k−1) Rk

( Tk−1 0
βsk+1e1e

T
s(k−1) Bk

)I (
0s(k−2),s

−Rk−1,kR
−1
k

)
0 R−1

k

 .

Now we can compute this product (algebraically, not computationally – the algorithm doesn’t
need to do any of this work):

Tk =

I (
0s(k−2),s

Rk−1,k

)
0 Rk

 Tk−1

(
0s(k−2),s

−Tk−1Rk−1,kR
−1
k

)
βsk+1e1e

T
s(k−1) −βsk+1e1e

T
s Rk−1,kR

−1
k +BkR

−1
k

 =

Tk−1 + βsk+1

(
0s(k−2),s

Rk−1,ke1

)
eTs(k−1)

(
0s(k−2),s

Mess

)
βsk+1Rke1e

T
s(k−1) −βsk+1Rke1e

T
s Rk−1,kR

−1
k +RkBkR

−1
k

 . (4.6)

In Equation (4.6) above, Mess in the 1, 2 block of Tk is an expression taking up enough space
that we write it separately here:

Mess = −Tk−1Rk−1,kR
−1
k − βsk+1Rk−1,ke1e

T
s Rk−1,kR

−1
k +Rk−1,kBkR

−1
k . (4.7)

We can simplify Tk in Equation (4.6) by making the following simplifications:

• Rk−1,ke1 = 0s,1 and Rk−1,ke1 = 0s,1

• Rke1 = e1 and Rke1 = e1

• Rk−1,kBkR
−1
k = βsk+1es + Tk−1Rk−1,kR

−1
k
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The first simplification follows from the first column of V k (namely qsk+1) being already both
orthogonal to the columns of Qk−1 and of unit length. The QR factorization update thus
makes the 1, 1 entry of Rk one. The second simplification follows from

Rk−1,ke1 = Q∗k−1V ke1 = Q∗k−1qsk+1 = 0s,1.

Finally, the third simplification is a long chain of deductions:

Rk−1,kBkR
−1
k = Q∗k−1(V kBk)R

−1
k = Q∗k−1(AVk)R

−1
k =

Q∗k−1A(QkRk +Qk−1Rk−1,k)R
−1
k = Q∗k−1(AQk + AQk−1Rk−1,kR

−1
k ) =

Q∗k−1

(
βsk+1qsk +Q

k
T k + βs(k−1)+1qs(k−1)R

−1
k +Q

k−1
T k−1Rk−1,kR

−1
k

)
=

βsk+1es + [Is,s, 0s,1]

(
Tk−1

βsk+1e
T
s

)
Rk−1,kR

−1
k =

βsk+1es + Tk−1Rk−1,kR
−1
k .

Note the use of the Lanczos recurrence in

AQk = βsk+1qsk +Q
k
T k,

AQk−1 = βs(k−1)+1qs(k−1) +Q
k−1

T k−1.

Given all these simplifications, the expression for Tk in Equation (4.6) reduces nicely to

Tk =

(
Tk−1 βsk+1es(k−1)e

T
1

βsk+1e1e
T
s(k−1) RkBkR

−1
k − βsk+1e1e

T
s Rk−1,kR

−1
k

)
. (4.8)

This means that the way we compute Tk makes it structurally at least block tridiagonal.
Furthermore, this requires only a light assumption on the orthogonality of the basis vectors,
namely that neighboring groups of basis vectors Qk−1 and Q

k
are orthogonal. This assump-

tion is easily satisfied nearly to machine precision by the QR update process, which uses a
kind of modified block Gram-Schmidt.

Let T k be the s+ 1 by s lower left block of Tk. We can simplify it further. First,

RkBkR
−1
k =

(
Rk zk
0 ρk

)(
Bk

bke
T
s

)
=

(
RkBk + bkzke

T
s

ρkbke
T
s

)
R−1
k

=

(
RkBkR

−1
k + ρ̃−1

k bkzke
T
s

ρ̃−1
k ρkbke

T
s

)
,

where we define ρ̃k = Rk(s, s). This gives us an expression for T k:

T k = RkBkRk − βsk+1e1e
T
s Rk−1,kR

−1
k

=

(
RkBkR

−1
k + ρ̃−1

k bkzke
T
s − βsk+1e1e

T
s Rk−1,kR

−1
k

ρ̃−1
k ρkbke

T
s

)
,

(4.9)

which we can separate into an expression for Tk:

Tk = RkBkR
−1
k + ρ̃−1

k bkzke
T
s − βsk+1e1e

T
s Rk−1,kR

−1
k , (4.10)
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and an expression for βs(k+1)+1 = T k(s+ 1, s):

βs(k+1)+1 =
ρk
ρ̃k
bk. (4.11)

It would be interesting to prove structurally that Tk, the s × s upper submatrix of the
lower block entry

T k = RkBkR
−1
k − βsk+1e1e

T
s Rk−1,kR

−1
k

of Tk, is symmetric. We already know that it must be, via the Lanczos process on a symmetric
matrix A. It’s important to identify, though, what assumptions about orthogonality we might
be making in forcing Tk to be symmetric. Certainly Bk need not be symmetric – it may be
any upper Hessenberg matrix with nonzero subdiagonal – so it seems we have to compute T k
as a sum of products of dense (or at least triangular or Hessenberg) matrices. These are all
of dimension s× s, s+ 1 by s+ 1, or s+ 1 by s, though, so the cost of the dense products is
not much compared with the cost of assembling the tridiagonal matrix in standard Lanczos
iteration. Furthermore, in CA-Lanczos we have the flexibility to treat Tk as dense rather
than as tridiagonal, and see if that improves accuracy.

4.2.3 The CA-Lanczos algorithm

Algorithm 25 shows the final CA-Lanczos algorithm. It avoids communication in the sparse
matrix operations, by using the matrix powers kernel (Section 2.1) in Line 4. It also avoids
communication in the dense vector operations. Instead of using dot products and AXPYs
as in the standard Lanczos recurrence (Equation (4.2) in Section 4.1), it uses a combination
of TSQR (Lines 7 and 14) and a BGS update (Lines 12 and 13). This requires a factor of
Θ(s) more storage and arithmetic, but the same number of messages and the same amount
of memory traffic as standard Lanczos.

4.3 Preconditioned CA-Lanczos

In this section, we derive communication-avoiding symmetric Lanczos (CA-Lanczos) algo-
rithms with (symmetric) split preconditioning and left preconditioning. We do this not
because we want to precondition Lanczos iteration; that is not typically done.2 Rather, we
discuss “preconditioned Lanczos” for two reasons. The first is that we can use it to solve
the generalized eigenvalue problem Ax = λMx. That problem can be converted into a
“preconditioned eigenvalue problem,” in any of the following ways:

• If M is nonsingular, solving the left-preconditioned eigenvalue problem M−1Ax = λx
is equivalent to solving the generalized eigenvalue problem Ax = λMx.

• If M is nonsingular, solving the right-preconditioned eigenvalue problem AM−1x = λx
is equivalent to solving the generalized eigenvalue problem Ay = λMy and the linear
system y = M−1x.

2Balancing could be considered a type of preconditioning for eigenvalue problems, but symmetric matrices
do not need balancing.
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Algorithm 25 CA-Lanczos

Input: n× n symmetric matrix A and n× 1 starting vector r
1: β0 := ‖r‖2, q1 := r/β0

2: for k = 0 to t− 1 do
3: Fix basis conversion matrix Bk

4: Compute V́ k from qsk+1 and A using matrix powers kernel
5: if k = 0 then
6: B0 := B0

7: Compute (via TSQR) the QR factorization V 0 = Q
0
R0

8: Q0 := Q
k
,R0 := R0

9: T 0 := R0B0R
−1
0 , T0 := T 0

10: else

11: Bk :=

(
Tk−1 0 · e1e

T
s

βsk+1e1e
T
s(k−1) Bk

)
12: Ŕk−1,k := Q∗

k−1
V́ k

13: V́ k := V́ k −Qk−1
Ŕk−1,k

14: Compute (via TSQR) the QR factorization V́ k = Q́
k
Ŕk

15: Qk := [Qk−1, Q́k
]

16: Compute Tk (Eq. (4.10)) and βs(k+1)+1 (Eq. (4.11))

17: Tk :=

 Tk−1 βsk+1es(k−1)e
T
1

βsk+1e1e
T
s(k−1) Tk

01,s(k−1) βs(k+1)+1e
T
s


18: end if
19: end for

• If M is nonsingular with factorization M = M1M2, solving the eigenvalue problem
M−1

1 AM−1
2 x = λx is equivalent to solving the generalized eigenvalue problem Ay =

λMy and the linear system y = M−1
2 x.

We do not discuss this application of preconditioned Lanczos further in this thesis. The sec-
ond reason we develop preconditioned CA-Lanczos is because the algorithm will serve as a
template for deriving other preconditioned communication-avoiding Krylov methods. For ex-
ample, we will use the approach of this section to derive left-preconditioned communication-
avoiding CG in Section 5.5, and to point out how communication-avoiding versions of non-
symmetric Lanczos and BiCG may be derived (see Chapter 6). We will therefore develop
left-preconditioned and split-preconditioned communication-avoiding versions of Lanczos it-
eration (CA-Lanczos) in this section. The derivation of right-preconditioned CA-Lanczos is
similar enough to the left-preconditioned version that we do not discuss it further in this
thesis. Furthermore, we assume in this section that the split preconditioner is symmetric,
for reasons that we will explain later.

As we mentioned in Sections 4.2, to make Lanczos “communication-avoiding” means re-
ducing the amount of memory traffic, and the number of messages in parallel, for both the
sparse matrix operations and the dense vector operations. We do so by using a preconditioned
form of the matrix powers kernel (Section 2.2) to replace the sparse-matrix vector products
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and preconditioner applications, along with some combination of Block Gram-Schmidt (Sec-
tion 2.4) and either TSQR or CholeskyQR (both described in Section 2.3) to orthogonalize
the basis vectors. The way we do this for preconditioned CA-Lanczos depends on whether
it is left-preconditioned or symmetrically split-preconditioned. This is because the form of
the preconditioner affects both the form of the matrix powers kernel, and the methods that
may be used to orthogonalize the Krylov basis vectors. We discuss this in detail below,
but in brief, it relates to whether the preconditioned matrix is symmetric. (In the case of
left preconditioning with preconditioner M , the preconditioned matrix is M−1A, and in the
case of (symmetric) split preconditioning with preconditioner M = LL∗, the preconditioned
matrix is L−1AL−∗.) For example, symmetric split-preconditioned CA-Lanczos may use a
combination of TSQR and BGS to orthogonalize its Krylov basis vectors, just as in non-
preconditioned CA-Lanczos (Algorithm 25 in Section 4.2). Left-preconditioned CA-Lanczos
must use a variant of CholeskyQR instead of TSQR (see Section 2.3 as well as Algorithm 2
in Section 1.2.5). It also requires two different matrix powers kernels, which we will present
below.

Our preconditioned CA-Lanczos algorithms originate in s-step Krylov methods, just as
all the other communication-avoiding Krylov methods in this thesis do. However, we are
the first, as far as we know, to derive a preconditioned version of s-step symmetric Lanczos,
and to suggest using it to solve generalized eigenvalue problems. We are also the first to
avoid communication in both the sparse matrix and dense vector operations in symmetric
Lanczos.

We are also the first, as far as we can tell, to suggest equilibration as a way to control
s-step basis condition number growth. (See Section 7.5.3 for details.) Finally, we are the
first, as far as we know, to show the different matrix powers kernel required for left and
right preconditioning CG and symmetric Lanczos, when the matrix A is symmetric, but the
preconditioned matrix is not.

In Section 4.3.1, we give the standard versions of split-preconditioned, left-preconditioned,
and right-preconditioned Lanczos iteration. We also summarize the connection between the
three-term Lanczos recurrence and orthogonal polynomials. In Section 4.3.2, we use this
connection to show why s-step versions of left- and right-preconditioned Lanczos require
a different derivation than unpreconditioned and symmetric split-preconditioned Lanczos.
Sections 4.3.3 and 4.3.4 then show our development of left-preconditioned CA-Lanczos, which
we do in two phases: one in which we avoid communication only when computing the
sparse matrix-vector products and preconditioner applications, and one in which we avoid
communication both there and in the vector-vector operations. We defer many of the details
of those derivations until Section 4.3.5, which readers will only find useful if they want to
check our formulae.

4.3.1 Lanczos and orthogonal polynomials

We derive the split-preconditioned and left-preconditioned communication-avoiding Lanczos
algorithms by working with the orthogonal polynomials closely associated with the Lanczos
process. Gautschi [108] and Meurant [175] explain the relationship between the polynomi-
als, the Lanczos coefficients, and the inner product in which the Lanczos basis vectors are
orthogonal.
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Unpreconditioned symmetric Lanczos (Algorithm 24 in Section 4.1) is based on the three-
term polynomial recurrence

βk+1qk+1(t) = t · qk(t)− αkqk(t)− βkqk−1(t), (4.12)

in which the polynomials qk(t) are orthogonal with respect to a certain inner product. In
unpreconditioned Lanczos, this inner product is the usual Euclidean one, and the recurrence
translates into matrix-vector terms as

βk+1qk+1 = Aqk − αkqk − βkqk−1. (4.13)

This translation is possible because the matrix A is symmetric.3 This means that 〈u,Av〉 =
〈Au, v〉 for all u and v, so that a matrix-vector product A · v corresponds directly to mul-
tiplying a polynomial p(t) by the variable t. (The aforementioned authors explain this
correspondence more formally.) This property makes the three-term recurrence (4.12) work;
otherwise, some recurrence may hold, but it may be longer than three terms. (The Arnoldi
recurrence is the most general example, where the recurrence is of maximum possible length.)
There is an extensive theory of the matrix properties required for a recurrence of a certain
length ≥ 3 to exist. (This is generally called “Faber-Manteuffel theory” from these authors’
1984 work [94], though Voevodin in 1983 produced the earliest known proof that there is no
short-recurrence version of CG [233].) For our purposes, the three-term recurrence suffices,
since matrices that have longer but still bounded recurrences have very special properties
that are too expensive to check in practice.

For a preconditioned iterative method, the matrix on which the iterative method is
performed is no longer the original matrix A, but the preconditioned matrix. In split-
preconditioned Lanczos, the preconditioned matrix is L−TALT , and the three-term recur-
rence becomes

βk+1qk+1 = L−TAL−1qk − αkqk − βkqk−1. (4.14)

Since the preconditioned matrix is symmetric, the recurrence still works as before. Thus,
the qk vectors are still orthogonal with respect to the usual Euclidean inner product.

Algorithm 26 shows standard left-preconditioned symmetric Lanczos iteration, and Al-
gorithm 27 shows the right-preconditioned version of symmetric Lanczos. We chose Green-
baum’s notation for the latter; she shows how it can be derived from split-preconditioned
Lanczos, if one assumes that the preconditioner is SPD [119, p. 121]. Unlike in the split-
preconditioned version, in left-preconditioned Lanczos, the preconditioned matrix M−1A is
not necessarily self-adjoint with respect to the usual (Euclidean) inner product, even if M and
A are both symmetric. That is, there may exist u and v such that 〈u,M−1Av〉 6= 〈M−1Au, v〉.
Similarly, the right-preconditioned matrix AM−1 is also not necessarily self-adjoint with re-
spect to the usual inner product. However, the left-preconditioned matrix M−1A is self-
adjoint with respect to a different inner product, namely the so-called M inner product
〈u, v〉M := v∗Mu. For example,

〈u,M−1Av〉M = v∗AM−1 ·Mu = v∗Au = 〈u,Av〉
〈M−1Au, v〉M = v∗M ·M−1Au = v∗Au = 〈u,Av〉

3We label as “symmetric,” here as elsewhere in this thesis, both real symmetric matrices and complex
Hermitian matrices. All the algorithms shown should work in either the complex case or the real case, unless
specified.
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Algorithm 26 Left-preconditioned symmetric Lanczos iteration

Require: r is the starting vector
1: q0 := 0, z0 := 0
2: z1 := r, q1 := M−1z1

3: β1 :=
√
〈q1, z1〉

4: for k = 1 to convergence do
5: w := Aqk − βkzk−1

6: αk := 〈w, qk〉
7: w := w − αkzk
8: z := M−1w
9: βk+1 :=

√
〈w, z〉

10: qk+1 := w/βk+1

11: zk+1 := z/βk+1

12: end for

Algorithm 27 Right-preconditioned symmetric Lanczos iteration

Require: r is the starting vector
1: q0 := 0, z0 := 0
2: z := M−1r
3: β0 :=

√
〈r, w〉

4: q1 := r/β1

5: z1 := z/β1

6: for k = 1 to convergence do
7: vk := Azk − βkqk−1

8: αk := 〈vk, zk〉
9: w := w − αkqk

10: z := M−1w
11: βk+1 :=

√
〈w, z〉

12: qk+1 := w/βk+1

13: zk+1 := z/βk+1

14: end for

This means that the usual three-term recurrence holds

βk+1qk+1 = M−1Aqk − αkqk − βkqk−1,

but the qk are M-orthogonal : 〈qi, qj〉M = 〈qi,Mqj〉 = δij. An analogous property holds for
right-preconditioned Lanczos:

βk+1qk+1 = AM−1qk − αkqk − βkqk−1,

in which the vectors qk are M−1-orthogonal. From now on, we will restrict our discussion
to left-preconditioned Lanczos, with the understanding that analogous approaches apply to
the right-preconditioned version of the algorithm.
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4.3.2 Left preconditioning excludes QR

In left-preconditioned Lanczos, the basis vectors qk are not necessarily orthogonal in the
Euclidean sense. That means we cannot generate them directly by means of a matrix factor-
ization based on orthogonal transformations, such as Householder QR or TSQR. Standard
left-preconditioned Lanczos produces the basis vectors one at a time by means of a process
equivalent to Modified Gram-Schmidt (MGS) orthogonalization in the M inner product.
Each inner product requires a global reduction, so if we choose this approach in our s-step
version of Lanczos, we will lose the property that the number of messages is independent of
s.

Preconditioned conjugate gradient has the same problem with its residual vectors: In
unpreconditioned and split-preconditioned CG, the residual vectors are orthogonal, but in
left-preconditioned CG, the residual vectors are M -orthogonal, and in right-preconditioned
CG, the residual vectors are M−1-orthogonal. This is because the residual vectors in CG are
just scaled versions of the symmetric Lanczos basis vectors (see e.g., [119]). Chronopoulos
and Gear avoided this problem by generating a (monomial) basis for the M−1A-conjugate
vectors pk in preconditioned conjugate gradient, computing their Gram matrix, and using its
Cholesky factorization to reconstruct the pk vectors themselves [56]. Computing the Gram
matrix sacrifices stability because the Gram matrix’s condition number is the square of the
condition number of the basis itself. For an already poorly conditioned basis, this may mean
that the Gram matrix is numerically rank-deficient. This may make it impossible to use
the Gram matrix to make the basis vectors M -orthogonal. Nevertheless, it is not clear how
to make the basis vectors M -orthogonal without computing the Gram matrix, so we have
chosen this method when developing our algorithms.

4.3.3 Left-preconditioned CA-Lanczos with MGS

In this section and the next, we will derive the fully communication-avoiding version of
left-preconditioned Lanczos. We do so in two steps. In this section, we replace all the
sparse matrix-vector products with invocations of the matrix powers kernel, but leave the
inner products for computing the Lanczos coefficients. These inner products belong to a
kind of modified Gram-Schmidt orthogonalization procedure in the M inner product. The
resulting algorithm, CA-Lanczos with MGS, avoids communication in the sparse matrix-
vector products, but not in the inner products. In Section 4.3.4, we will replace the inner
products with quantities obtained from the Gram matrix of the basis vectors from the matrix
powers kernel. We call the resulting algorithm CA-Lanczos without MGS, or just “CA-
Lanczos.” The latter algorithm attains our goal, namely avoiding communication in both
the sparse matrix-vector products and the inner products.

We omit many of the details of our derivations in this section and the next. These details
await the particularly persistent reader in Section 4.3.5. It is not necessary to read that
section in order to understand our CA-Lanczos algorithms, however.

Ansatz

Suppose we start left-preconditioned symmetric Lanczos using the n × n matrix A, the
preconditioner M−1, and the starting vector v. The symmetric Lanczos process produces
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two sets of basis vectors: q1, q2, . . . , qs+1 and z1, z2, . . . , zs+1. These vectors satisfy the
following properties

1. z1 = v (the unpreconditioned starting vector);

2. qi = M−1zi for all i ≥ 1;

3. for 1 ≤ j ≤ s+ 1, span{q1, . . . , qj} = span{q1, (M
−1A)q1, . . . , (M

−1A)jq1}

4. for 1 ≤ j ≤ s+ 1, span{z1, . . . , zj} = span{z1, (AM
−1)z1, . . . , (AM

−1)j−1zsk+1};

5. 〈qi, qj〉M = 〈qi, zj〉 = δij (the qi vectors are M -orthogonal); and

6. 〈zi, zj〉M−1 = 〈qi, zj〉 = δij (the zi vectors are M−1-orthogonal).

Preconditioned Lanczos needs two bases because the preconditioned matrix M−1A is not
symmetric, but it is self-adjoint with respect to the M inner product 〈u, v〉M , as well as with
respect to the M−1 inner product 〈u, v〉M−1 . Rather than computing these inner products
directly, symmetric Lanczos relies on Properties 5–6 to perform Gram-Schmidt orthogonal-
ization in order to generate the two sets of basis vectors.

This suggests we should also use two sets of basis vectors in communication-avoiding
left-preconditioned symmetric Lanczos. We use the matrix powers kernel to construct two
bases:

• v1, . . . , vs+1 as a basis for span{q1, (M
−1A)q1, . . . , (M

−1A)sq1}, and

• w1, . . . , ws+1 as a basis for span{z1, (AM
−1)z1, . . . , (AM

−1)sz1}.

These bases satisfy Properties 1–4, but not Properties 5–6. We then construct the “Gram
matrix” [v1, . . . , vs+1]∗[w1, . . . , ws+1] and use it to reconstruct the original Lanczos basis vec-
tors, thus transforming the vi vectors into qi vectors and the wi vectors into zi vectors.

Notation

Our notation is similar to that we presented for Arnoldi(s, t) in Section 3.3.2. Each outer
iteration k of our communication-avoiding preconditioned Lanczos will require two different
n by s+ 1 basis matrices V k and W k, with

V k = [vsk+1, vsk+2, . . . , vsk+s, vsk+s+1] = [Vk, vsk+s+1]

and
W k = [wsk+1, wsk+2, . . . , wsk+s, wsk+s+1] = [Wk, wsk+s+1] .

These two matrices are produced by one invocation of the matrix powers kernel. Note that
the superscript of V k and W k refers to the outer iteration, whereas the superscript of a single
basis vector (such as vsk+1) refers to the total number of inner iterations (across all the outer
iterations of the algorithm).
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For j = 1, 2, . . . , s+ 1, the n by s+ 1 basis matrix V k satisfies

R (V k(:, 1 : j)) =

span{qsk+1, (M
−1A)qsk+1, (M

−1A)2qsk+1, . . . , (M
−1A)j−1qsk+1}, (4.15)

and for j = 1, 2, . . . , s+ 1, the n by s+ 1 basis matrix W k satisfies

R (W k(:, 1 : j)) =

span{zsk+1, AM
−1zsk+1, (AM

−1)2zsk+1, . . . , (AM
−1)j−1zsk+1}. (4.16)

(We will see more about the two subspaces in the above equations.) Furthermore, we choose
these bases so that M−1wsk+j = vsk+j for j = 1, . . . , s+ 1.

As with Arnoldi(s) in Section 3.2.2, we refer to the s+ 1 by s change of basis matrix Bk,
where k refers to the current outer iteration number. The basis (and therefore the change
of basis matrix Bk) may be different for each outer iteration k. In left-preconditioned CA-
Lanczos, we have two sets of basis vectors; for simplicity, we require that they satisfy the
following:

M−1AVk(:, 1 : j) = V k(:, 1 : j + 1)Bk(1 : j + 1, 1 : j) (4.17)

and
AM−1Wk(:, 1 : j) = W k(:, 1 : j + 1)Bk(1 : j + 1, 1 : j) (4.18)

for j = 1, . . . , s.
We also will need notation for four other basis matrices. Suppose we are at outer iteration

k ≥ 0 and inner iteration j (with 1 ≤ j ≤ s). If r is the starting vector of Lanczos, then the
vectors z1, z2, . . . , zsk+j form a basis of the Krylov subspace Ksk+j(AM

−1, r), as long as the
Lanczos process does not break down. (These zi vectors are the same in exact arithmetic as
in the usual left-preconditioned Lanczos (Algorithm 26).) In case k = 0, we set zsk = 0 and
in general zi = 0 for i ≤ 0. Then we define the n× s basis matrix Zk:

Zk := [zsk+1, . . . , zsk+s]

and the n by s+ 1 basis matrix Zk:

Zk := [zsk+1, . . . , zsk+s, zsk+s+1] = [Zk, zsk+1].

Here, the underline has the same implication as the underline in V k: “append a vector to
the end.” Similarly, we define the n× s basis matrix Qk:

Qk := [qsk+1, . . . , qsk+s]

and the n by s+ 1 basis matrix Q
k
:

Q
k

:= [qsk+1, . . . , qsk+s+1] = [Qk, qsk+1].

We have M−1Zk = Qk by definition. Also, it is helpful to define qi = 0 and zi = 0 for i ≤ 0.
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Deducing the algorithm

We will deduce what we need by starting with the usual left-preconditioned symmetric
Lanczos algorithm. We borrow notation from Section 3.3 (the Arnoldi(s, t) algorithm)
whenever possible, and clarify when we introduce new notation or change the meaning of
existing notation.

We begin the algorithm in media res, at outer iteration k and at inner iteration j. The
outer iteration index k increases starting at 0, and the inner iteration index j ranges from
1 up to and including s. Here as in the rest of this work, the fixed parameter s governs the
number of vectors generated by the matrix powers kernel.

If we were running the standard Lanczos process instead, the corresponding iteration
index to outer iteration k and inner iteration j would be sk + j. There, the usual left-
preconditioned Lanczos recurrences take this form:

βsk+j+1qsk+j+1 = M−1Aqsk+j − αsk+jqsk+j − βsk+jqsk+j−1,

βsk+j+1zsk+j+1 = Aqsk+j − αsk+jzsk+j − βsk+jzsk+j−1,
(4.19)

where the q vectors are the M -orthogonal Lanczos basis vectors, and zi = Mqi for all
i > 0. The complicated subscripts let us compare the standard Lanczos process with our
communication-avoiding version.

Suppose we want to compute αsk+j, βsk+j+1, qsk+j+1, and zsk+j+1. In the standard Lanczos
process, we would do the following:

1: u := Aqsk+j − βsk+jzsk+j−1

2: αsk+j := 〈u, qsk+j〉
3: u := u− αsk+jzsk+j

4: v := M−1u
5: βsk+j+1 :=

√
〈u, v〉

6: zsk+j+1 := u/βsk+j+1

7: qsk+j+1 := v/βsk+j+1

In communication-avoiding Lanczos, we are not free to compute Aqsk+j or M−1u directly,
because these involve matrix-vector products that are not part of the matrix powers kernel.
Assembling these two vectors from the output of the matrix powers kernel is the topic of
this section. If we wish not to perform inner products as well, then we must also think of
other ways to compute αsk+j and βsk+j+1. This is the topic of Section 4.3.4.

In order to compute the Lanczos coefficient αsk+j, we need Aqsk+j. The coefficient αsk+j

satisfies
αsk+j = 〈M−1Aqsk+j − βsk+jqsk+j−1, qsk+j〉M

= 〈Aqsk+j − βsk+jMqsk+j−1, qsk+j〉
= 〈Aqsk+j − βsk+jzsk+j−1, qsk+j〉.

Given Aqsk+j, we could compute αsk+j with one inner product. It turns out (see Lemma 5
in Section 4.3.5 for the proof) that for k ≥ 0 and 1 ≤ j ≤ s, there is a vector of 2s + 1
coefficients dsk+j such that

Aqsk+j = [Zk−1,W k]dsk+j, (4.20)

and that dsk+j can always be computed from known scalar quantities. Given this vector of
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coefficients, we can compute αsk+j directly from

αsk+j = 〈[Zk−1,W k]dsk+j − βsk+jzsk+j−1, qsk+j〉.

The next Lanczos coefficient to find is

βsk+j+1 = 〈Aqsk+j − αsk+jzsk+j − βsk+jzsk+j−1,

M−1Aqsk+j − αsk+jqsk+j − βsk+jqsk+j−1

〉1/2
.

It also turns out (see Lemma 6 in Section 4.3.5 for the proof) that for k ≥ 0 and 1 ≤ j ≤ s,
the same vector of 2s+ 1 coefficients dsk+j as above satisfies

M−1Aqsk+j = [Qk−1, V k]dsk+j.

Then we could compute βsk+j+1 via

βsk+j+1 = 〈[Zk−1,W k]dsk+j − αsk+jzsk+j − βsk+jzsk+j−1,

[Qk−1, V k]dsk+j − αsk+jqsk+j − βsk+jqsk+j−1〉1/2 ,

qsk+j+1 via

qsk+j+1 = β−1
sk+j+1 ([Qk−1, V k]dsk+j − αsk+jqsk+j − βsk+jqsk+j−1) ,

and zsk+j+1 via

zsk+j+1 = β−1
sk+j+1 ([Zk−1,W k]dsk+j − αsk+jzsk+j − βsk+jzsk+j−1) .

That gives us everything we need for one iteration of left-preconditioned Lanczos. Algorithm
28 summarizes the resulting iteration, in which we use the superscript in parentheses to
denote the outer iteration number.

Now we have expressions for the next group of Lanczos coefficients as well as the next
Lanczos vector, in terms of dot products of known vectors and recurrence relations involving
known coefficients. In this subsection, the Lanczos coefficients αk and βk+1 were computed
using the same modified Gram-Schmidt process as in standard Lanczos iteration; the only
difference is the computation of intermediate vector terms, which come from recurrence
relations. This means we can restrict any stability analysis to the recurrence relations alone,
and then reconstruct the stability of the whole algorithm from what we know about the usual
Lanczos process. However, we have only managed to avoid communication in the matrix-
vector products and preconditioner applications, not in the orthogonalization process. In the
next subsection, we will avoid communication in the inner products of the orthogonalization
as well.

4.3.4 Left-preconditioned CA-Lanczos without MGS

In the previous subsection, we managed to avoid communication in computing Lanczos
vectors, but not in the inner products. Now we will handle the inner products in a process
that we call inner product coalescing.
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Algorithm 28 Left-preconditioned CA-Lanczos with MGS

Input: A ∈ Cn×n: SPD resp. HPD matrix
Input: r ∈ Cn: starting vector

1: q0 := 0, z0 := 0
2: z1 := r, q1 := M−1z1

3: α0 := 0, β0 := 0
4: for k = 0, 1, . . . until convergence do
5: Compute via matrix powers kernel V k = [vsk+1, vsk+2, . . . , vsk+s+1]. Its columns are a

basis for span{qsk+1,M
−1Aqsk+1, . . . , (M

−1A)sqsk+1}.
6: Compute via matrix powers kernel W k = [wsk+1, wsk+2, . . . , wsk+s+1]. Its columns

are a basis for span{zsk+1, AM
−1zsk+1, . . . , (AM

−1)szsk+1} and it also satisfies
M−1W k = V k.

7: for j = 1 to s do
8: Using Equation (4.33) in Section 4.3.5, compute dsk+j ∈ C2s+1 such that Aqsk+j =

[Zk−1,W k]dsk+j and M−1Aqsk+j = [Qk−1, V k]dsk+j

9: z := [Zk−1,W k]dsk+j

10: z := z − βsk+jzsk+j−1

11: αsk+j := 〈z, qsk+j〉
12: z := z − αsk+jzsk+j

Assert: z = Aqsk+j − αsk+jzsk+j − βsk+jzsk+j−1

13: q := [Qk−1, V k]dsk+j

14: q := q − αsk+jqsk+j − βsk+jqsk+j−1

Assert: q = M−1Aqsk+j − αsk+jqsk+j − βsk+jqsk+j−1

15: βsk+j+1 :=
√
〈z, q〉

16: zsk+j+1 := z/βsk+j+1

17: qsk+j+1 := q/βsk+j+1

18: end for
19: end for

Deducing the algorithm

Consider first the computation of αsk+j as shown above:

αsk+j = 〈[Zk−1,W k]dsk+j − βsk+jzsk+j−1, qsk+j〉.

It turns out (see Lemmas 7 and 8 in Section 4.3.5 for the proof) that for k > 0 and j =
1, 2, . . . , s, we can find a vector of coefficients gsk+j ∈ C2s+1 such that zsk+j = [Zk−1,W k]gsk+j

and qsk+j = [Qk−1, V k]gsk+j, and that gsk+j can always be computed from known scalar
quantities. This means that instead of computing αsk+j via the above dot product, we can
compute this coefficient using the Gram matrix of the basis vectors. We begin with

αsk+j = 〈Aqsk+j − βsk+jzsk+j−1, qsk+j〉 =

〈[Zk−1,W k]dsk+j − βsk+j[Zk−1,W k]gsk+j−1, [Qk−1, V k]gsk+j〉 =

g∗sk+j[Qk−1, V k]
∗[Zk−1,W k] (dsk+j − βsk+jgsk+j−1) .
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We define the Gram matrix Gk by

Gk = [Qk−1, V k]
∗[Zk−1,W k] =

(
Q∗k−1Zk−1 Q∗k−1W k

V ∗kZk−1 V ∗kW k

)
. (4.21)

Note that (assuming that M∗ = M)

(Q∗k−1W k)
∗ = W ∗

kQk−1 = V ∗kM
∗M−1Zk−1 = V ∗k Zk−1,

so we only need to compute one of the (1, 2) and (2, 1) blocks of Gk. Furthermore, if we
assume that the qi vectors are M -orthogonal, so that q∗i zj = δij, then

Gk =

(
Is×s Q∗k−1W k

(Q∗k−1W k)
∗ V ∗kW k

)
. (4.22)

This suggests computing Gk via the block inner product

Block(1 : 2, 2)k = [Qk−1, V k]
∗W k, (4.23)

which is the product of an n by 2s+ 1 matrix and an n by s+ 1 matrix. In parallel over P
processors, this computation requires only O(logP ) messages.

The orthogonality assumption matters because in practice, rounding error causes rapid
loss of orthogonality in the Lanczos basis vectors, unless some kind of reorthogonalization
is done. Reorthogonalization is expensive, but computing Q∗k−1Zk−1 (a kind of partial re-
orthogonalization) is less expensive and a possible alternative in this case. This would change
the block inner product used to compute Gk from that in Equation (4.23). If the goal is to
minimize the number of messages at any cost, either a single block product that computes
Q∗k−1W k and (Q∗k−1W k)

∗ redundantly, or two block inner products

Block(1 : 2, 2)k = [Qk−1, V k]
∗W k,

and
Block(1, 1)k = Q∗k−1Zk−1,

could be used. These two block inner products may be computed simultaneously.
Regardless of how we compute the Gram matrix Gk, we can use Gk to recover αsk+j via

the formula
αsk+j = g∗sk+jGk (dsk+j − βsk+jgsk+j−1) . (4.24)

Note that we are still using the modified Gram-Schmidt process to calculate αsk+j: we do
not use the mathematical identity αsk+j = 〈Aqsk+j, qsk+j〉 = 〈[Zk−1W k]dsk+j, [Qk−1, V kgsk+j〉,
which reduces to the classical Gram-Schmidt process. In essence, Equation (4.24) projects
the Lanczos vectors onto a lower-dimensional space in order to compute the Lanczos coeffi-
cient.

We can follow an analogous process to compute βsk+j+1. We have

|βsk+j+1|2 = 〈Aqsk+j − αsk+jzsk+j − βsk+jzsk+j−1

M−1Aqsk+j − αsk+jqsk+j − βsk+jqsk+j−1

〉
,
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and so, if we let
ξsk+j = dsk+j − αsk+jgsk+j − βsk+jgsk+j−1, (4.25)

then
|βsk+j+1|2 = 〈[Zk−1,W k]ξsk+j, [Qk−1, V k]ξsk+j〉 = ξ∗sk+jGkξsk+j. (4.26)

Note that our development of Equation (4.26) does not apply the mathematical identity

|βsk+j+1|2 =
〈
M−1Aqsk+j, Aqsk+j

〉
− |αsk+j|2 − |βsk+j|2.

Using this identity to compute βsk+j+1 could result in catastrophic cancellation, as it would
compute a quantity that should be positive using subtractions of quantities that are possibly
close in value. Our formula also uses subtractions, but it is equivalent to the M inner
product of two identical vectors. Furthermore, the Gram matrix Gk is guaranteed to be
positive definite as long as the Lanczos process has not broken down and the basis vectors
are not too ill-conditioned. This makes the above formula for βsk+j+1 robust. Also, we can
determine whether CA-Lanczos has broken down by testing whether Gk is positive definite;
this can be done without communication in O(s3) time, as long as Gk fits in fast memory.

We call the above computations inner product coalescing, because they coalesce 2s inner
products (to compute 2s Lanczos coefficients from s Lanczos vectors) into one or two block
inner products. Each block inner product requires only one communication step, for which
the number of messages is the same as that of a single inner product, and the total number
of words sent and received is no more than Θ(s) times more than for those 2s inner prod-
ucts. Algorithm 29 shows the complete communication-avoiding left-preconditioned Lanczos
procedure.

4.3.5 Details of left-preconditioned CA-Lanczos

In this section, we work out some details of left-preconditioned CA-Lanczos that we omitted
explaining in Sections 4.3.3 and 4.3.4. In particular, we show how to construct the “interme-
diate” vectors Aqsk+j, M

−1Aqsk+j, (from Section 4.3.3), zsk+j, and qsk+j (from Section 4.3.4)
without extra communication, using previously computed quantities in the algorithm.

We begin in Section 4.3.5 by proving four lemmas showing which sets of vectors we
need in order to compute these intermediate quantities. Then, in Section 4.3.5, we derive
recurrences that enable us to construct the intermediate vectors out of those sets and other
previously computed coefficients.

Spaces containing intermediate vectors

In this section, we prove four lemmas. Lemma 1 shows us what vectors we need to construct
Aqsk+j and Lemma 2 shows which vectors are needed to construct M−1Aqsk+j. Both lemmas
are required in Section 4.3.3. Lemma 3 shows which vectors are needed to construct zsk+j,
and Lemma 4 shows which vectors are needed to construct qsk+j. The latter two lemmas are
required in Section 4.3.4.

Lemma 1. For k > 0 and j = 1, 2, 3, . . . , s, the vector Aqsk+j in CA-Lanczos satisfies

Aqsk+j ∈ span{wsk+j+1, . . . , wsk+2, wsk+1} ⊕ span{zsk, . . . , zsk−j+1}. (4.27)
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Algorithm 29 Left-preconditioned CA-Lanczos without MGS

Input: A ∈ Cn×n: SPD resp. HPD matrix
Input: r ∈ Cn: starting vector

1: q0 := 0, z0 := 0
2: z1 := r, q1 := M−1z1

3: α0 := 0, β0 := 0
4: for k = 0, 1, . . . until convergence do
5: Compute via matrix powers kernel V k = [vsk+1, vsk+2, . . . , vsk+s+1]. Its columns are a

basis for span{qsk+1,M
−1Aqsk+1, . . . , (M

−1A)sqsk+1}.
6: Compute via matrix powers kernel W k = [wsk+1, wsk+2, . . . , wsk+s+1]. Its columns

are a basis for span{zsk+1, AM
−1zsk+1, . . . , (AM

−1)szsk+1} and it also satisfies
M−1W k = V k.

7: Compute the Gram matrix Gk (see Equation (4.21))
8: for j = 1 to s do
9: Using Equation (4.33) in Section 4.3.5, compute dsk+j such that Aqsk+j =

[Zk−1,W k]dsk+j and M−1Aqsk+j = [Qk−1, V k]dsk+j

10: Using Equation (4.34) in Section 4.3.5, compute gsk+j such that zsk+j =
[Zk−1,W k]gsk+j and qsk+j = [Qk−1, V k]gsk+j

11: αsk+j := g∗sk+jGk (dsk+j − βsk+jgsk+j−1) (see Equation (4.24))
12: ξsk+j := dsk+j − αsk+jgsk+j − βsk+jgsk+j−1 (see Equation (4.25))
13: βsk+j+1 := ξ∗sk+jGkξsk+j (see Equation (4.26))
14: z := [Zk−1,W k]dsk+j − αsk+jzsk+j − βsk+jzsk+j−1

15: q := [Qk−1, V k]dsk+j − αsk+jqsk+j − βsk+jqsk+j−1

16: qsk+j+1 := w/βsk+j+1

17: zsk+j+1 := z/βsk+j+1

18: end for
19: end for

The same holds for k = 0 if we define zi = 0 for i ≤ 0.

Proof. For j = 1, we have by the properties of the wi basis vectors that

Aqsk+1 = AM−1zsk+1 = [wsk+1, wsk+2]Bk(1 : 2, 1)

∈ span{wsk+1, wsk+2}.

For j = 2, we have βsk+2zsk+2 = AM−1zsk+1 − αsk+1zsk+1 − βsk+1zsk, and therefore

Aqsk+2 = AM−1zsk+2

∈ span{zsk, AM−1wsk+1, (AM
−1)2wsk+1}

= span{zsk, [wsk+1, wsk+2]Bk(1 : 2, 1), (AM−1)[wsk+1, wsk+2]Bk(1 : 2, 1)}
= span{zsk, [wsk+1, wsk+2]Bk(1 : 2, 1), [wsk+1, wsk+2, wsk+3]Bk(1 : 3, 2)Bk(1 : 2, 1)}
= span{zsk, wsk+1, wsk+2, wsk+3}.

Now assume 2 < j ≤ s. From the Lanczos recurrence,

βsk+j+1zsk+j = Aqsk+j−1 − αsk+jzsk+j−1 − βsk+jzsk+j−2.
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Now multiply both sides by AM−1:

βsk+j+1Aqsk+j = AM−1Aqsk+j−1 − αsk+jAqsk+j−1 − βsk+jAqsk+j−2.

First of all,
AM−1Aqsk+j−1 ∈ span{Aqsk+j, Aqsk+j−1, Aqsk+j−2}.

By the inductive hypothesis,

Aqsk+j−2, Aqsk+j−1 ∈ span{wsk+j, . . . , wsk+1} ⊕ span{zsk, . . . , zsk−j+2}.

If we multiply zsk−j+2 on the left by AM−1 and apply the Lanczos recurrence, we get
AM−1zsk−j+2 ∈ span{zsk−j+1, zsk−j+2, zsk−j+3}. This gives us the desired result, namely
that

Aqsk+j ∈ span{wsk+j+1, . . . , wsk+1} ⊕ span{zsk+1, zsk, . . . , zsk−j+1}
for j = 2, 3, . . . , s.

Lemma 2. For k > 0 and j = 1, 2, 3, . . . , s, the vector M−1Aqsk+j in CA-Lanczos satisfies

M−1Aqsk+j ∈ span{vsk+j+1, . . . , vsk+1} ⊕ span{qsk, qsk−1 . . . , qsk−j+1}. (4.28)

The same holds for k = 0 if we define zi = 0 for i ≤ 0.

Proof. Observe that zi = Mqi and wi = Mvi for all i, and apply Lemma 1.

Lemma 3. For k > 0 and 1 ≤ j ≤ s, the Lanczos basis vector zsk+j satisfies

zsk+j ∈ span{wsk+j, wsk+j−1, . . . , wsk+2, wsk+1} ⊕ span{zsk, . . . , zsk−j+2}. (4.29)

The same holds for k = 0 if we define zi = 0 for i ≤ 0.

Proof. The case j = 1 is trivially true: zsk+1 = wsk+1 by definition. Consider the case j = 2.
The zsk+j vectors satisfy the Lanczos three-term recurrence, so

βsk+2zsk+2 = AM−1zsk+1 − αsk+1zsk+1 − βsk+1zsk

= [wsk+1, wsk+2]Bk(1 : 2, 1)− αsk+1zsk+1 − βsk+1zsk

∈ span{wsk+2, wsk+1, zsk}.

Now consider the case 2 < j ≤ s. The zsk+j vectors satisfy the Lanczos recurrence

βsk+jzsk+j = AM−1zsk+j−1 − αsk+j−1zsk+j−1 − βsk+j−1zsk+j−2.

Lemma 1 tells us that

AM−1zsk+j−1 ∈ span{wsk+j, . . . , wsk+2, wsk+1} ⊕ span{zsk, . . . , zsk−j+2}.

The desired result follows from this and induction on zsk+j−2 and zsk+j−1.

Lemma 4. For k > 0 and 1 ≤ j ≤ s, the Lanczos basis vector qsk+j satisfies

qsk+j ∈ span{vsk+j, vsk+j−1, . . . , vsk+1} ⊕ span{qsk+1, qsk, . . . , qsk−j+2}. (4.30)

The same holds for k = 0 if we define zi = 0 for i ≤ 0.

Proof. Recall that zi = Mqi and wi = Mvi for all i, and apply Lemma 3.
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Construction of intermediate vectors

In this section, we prove four lemmas which explain how to compute various vectors from
previously computed vectors and coefficients. These lemmas are the computational analogues
of the theoretical lemmas presented in Section 4.3.5; they show how to compute the vectors
out of known data. This section may be of interest to implementers of CA-Lanczos and CA-
CG, as well as to those who want to check the numerical stability of the recursion formulae.

We will begin by defining some matrices of basis vectors. Let

Qk = [qsk+1, qsk+2, . . . , qsk+s] and

Q
k

= [Qk, qsk+s+1] ,

and let
Zk = [zsk+1, zsk+2, . . . , zsk+s] and

Zk = [Zk, zsk+1] .

Note that Zk(:, 1 : j) = MQ
k
(:, 1 : j) for 1 ≤ j ≤ s+ 1. We know that for 1 ≤ j ≤ s+ 1,

R
(
Q
k
(:, 1 : j)

)
= span{M−1zsk+1, (M

−1A)M−1zsk+1, . . . , (M
−1A)k−1M−1zsk+1}, (4.31)

and therefore for 1 ≤ j ≤ s+ 1,

R (Zk(:, 1 : j)) = R
(
MQ

k
(:, 1 : j)

)
= span{zsk+1, (AM

−1)zsk+1, . . . , (AM
−1)j−1zsk+1}.

(4.32)

Note also that for 1 ≤ j ≤ s+ 1,

R (V k(:, 1 : j)) = R
(
Q
k
(:, 1 : j)

)
and

R (W k(:, 1 : j)) = R (Zk(:, 1 : j)) .

We also have the useful properties that

M−1AVk(:, 1 : j) = V k(:, 1 : j + 1)Bk(1 : j + 1, 1 : j) and

AM−1Wk(:, 1 : j) = W k(:, 1 : j + 1)Bk(1 : j + 1, 1 : j)

for 1 ≤ j ≤ s. In case k = 0, we set qsk = 0 and zsk = 0.

Lemma 5. For k > 0 and j = 0, 1, 2, . . . , s, we can find a vector of coefficients dsk+j ∈ C2s+1

such that
Aqsk+j = [Zk−1,W k]dsk+j.

Furthermore, only elements s− j + 1 to s+ j + 1 (inclusive) of the 2s+ 1 elements of dsk+1

are nonzero. This lemma also holds for k = 0 if we set Z−1 = 0n×s.

Proof. For j = 0, we have Aqsk = βsk+1zsk+1 + αskzsk + βskzsk−1, and therefore

dsk = (0s−2, βsk, αsk, βsk+1, 0s)
T .
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For j = 1, we have Aqsk+1 = AM−1wsk+1 = wsk+1Bk(1, 1) + wsk+2Bk(2, 1), and therefore

dsk+1 = (0s, Bk(1, 1), Bk(2, 1), 0s−1)T .

For j = 2, 3, . . . , s, we have by Lemma 1 that

Aqsk+j ∈ span{zsk+1, wsk+1, . . . , wsk+j} ⊕ span{zsk−j+1, . . . , zsk}
∈ R (Zk−1)⊕R (W k) .

The maximum value of j under consideration is s, so the least index of the zi vectors required
to express all the Aqsk+j is i = sk−s+1 = s(k−1)+1. Furthermore, only elements s−j+1
to s+ j + 1 (inclusive) of dsk+j are nonzero. By the Lanczos recurrence, for j = 2, . . . , s, we
have

βsk+jzsk+j = Aqsk+j−1 − αsk+j−1zsk+j−1 − βsk+j−1zsk+j−2

and therefore

βsk+jzsk+j = [Zk−1,W k]dsk+j−1 − αsk+j−1zsk+j−1 − βsk+j−1zsk+j−2.

Multiply both sides by AM−1 on the left:

βsk+jAM
−1zsk+j =


AM−1[Zk−1,W k]dsk+j−1−
αsk+j−1AM

−1zsk+j−1−
βsk+j−1AM

−1zsk+j−2,

βsk+jAqsk+j =


AM−1[Zk−1,W k]dsk+j−1−

αsk+j−1Aqsk+j−1−
βsk+j−1Aqsk+j−2,

βsk+j[Zk−1,W k]dsk+j =


AM−1[Zk−1,W k]dsk+j−1−
αsk+j−1[Zk−1,W k]dsk+j−1−
βsk+j−1[Zk−1,W k]dsk+j−2.

Since at least the first and last entries of dsk+j−1 are zero,

AM−1[Zk−1,W k]dsk+j−1 = [AQk−1,W kBk]dsk+j−1

= [Zk−1T k−1,W kBk]dsk+j−1.

Therefore, for j = 2, 3, . . . , s,

βsk+j[Zk−1,W k]dsk+j = [Zk−1T k−1,W kBk]dsk+j−1

− αsk+j−1[Zk−1,W k]dsk+j−1 − βsk+j−1[Zk−1,W k]dsk+j−2.

By matching up identical vector terms, this gives us a recurrence for the entries of dsk+j. We
show the final result below as Equation (4.33).

dsk+j =



(0s−2, βsk, αsk, βsk+1, 0s)
T , j = 0,

(0s, Bk(1, 1), Bk(2, 1), 0s−1)T , j = 1,
β−1
sk+j(T k−1dsk+j−1(1 : s), 0s)

T

+β−1
sk+j(0s, Bkdsk+j−1(s+ 2 : 2s+ 1))T

−β−1
sk+j (αsk+j−1dsk+j−1 + βsk+j−1dsk+j−2)

2 ≤ j ≤ s.

(4.33)
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Lemma 6. For k > 0 and j = 0, 1, 2, . . . , s, the vector of coefficients dsk+j ∈ C2s+1 from
Lemma 5 also satisfies

M−1Aqsk+j = [Qk−1, V k]dsk+j.

Proof. See proof of Lemma 2.

Lemma 7. For k > 0 and j = 1, 2, . . . , s, we can find a vector of coefficients gsk+j ∈ C2s+1

such that
zsk+j = [Zk−1,W k]gsk+j.

Furthermore, only elements s− j + 2 to s+ j − 1 (inclusive) of the 2s+ 1 elements of gsk+j

are nonzero. This lemma also holds for k = 0 if we set Z−1 = 0n×s.

Proof. For j = 1, the lemma holds trivially with gsk+1 = (0s, 1, 0s)
T . For j = 2, 3, . . . , s, we

have by Lemma 3 that

zsk+j ∈ span{wsk+j−1, wsk+j−2, . . . , wsk+1} ⊕ span{zsk, . . . , zsk−j+2}
∈ R (W k)⊕R (Zk−1) .

The maximum value of j under consideration is s, so the least index of the zi vectors required
to express all the zsk+j is i = sk − s + 2 = s(k − 1) + 2. Furthermore, the first s − j + 1
elements of gsk+j as well as the last s− j + 1 elements of gsk+j are all zero.

Here, we show how to compute gsk+j for j > 1. As mentioned above, for j = 1 we have
gsk+1 = (0s, 1, 0s)

T . For j = 2, we have

βsk+2zsk+2 = AM−1zsk+1 − αsk+1zsk+1 − βsk+1zsk

= [wsk+1, wsk+2]Bk(1 : 2, 1)− αsk+1wsk+1 − βsk+1zsk

and therefore

gsk+2 = β−1
sk+2(0s−1,−βsk+1, Bk(1, 1)− αsk+1, Bk(2, 1), 0s−1)T .

For 3 ≤ j ≤ s+ 1, we proceed as follows. Start with the usual Lanczos recurrence for the zi
vectors:

βsk+jzsk+j = Aqsk+j−1 − αsk+j−1zsk+j−1 − βsk+j−1zsk+j−2

and apply Lemma 5 to Aqsk+j−1:

βsk+j[Zk−1,W k]gsk+j =

[Zk−1,W k]dsk+j−1 − αsk+j−1[Zk−1,W k]gsk+j−1 − βsk+j−1[Zk−1,W k]gsk+j−2.

This gives us a recursion formula for the gsk+j coefficients:

gsk+j =


(0s, 1, 0s)

T , j = 1,

β−1
sk+2(0s−1,−βsk+1, Bk(1, 1)− αsk+1, Bk(2, 1), 0s−1)T , j = 2,

β−1
sk+j (dsk+j−1 − αsk+j−1gsk+j−1 − βsk+j−1gsk+j−2) , 3 ≤ j ≤ s+ 1.

(4.34)

Lemma 8. For k > 0 and j = 1, 2, . . . , s, the vector of coefficients gsk+j ∈ C2s+1 from
Lemma 7 also satisfies

qsk+j = [Qk−1, V k]gsk+j.

Proof. See proof of Lemma 4.



217

Chapter 5

Communication-avoiding CG

In this chapter, we will develop a communication-avoiding version of the conjugate gradient
(CG) method for solving SPD linear systems Ax = b. We call this algorithm Communication-
Avoiding CG (CA-CG). The parallel version of CA-CG requires a factor of Θ(s) fewer
messages than standard CG, where s is the number of basis vectors generated by the matrix
powers kernel. The sequential version of CA-CG reads the sparse matrix A a factor of
s fewer times than standard CG. Both algorithms come at an additional memory cost:
they require 2s vectors to be stored, rather than 4 (as in standard CG). We develop both
nonpreconditioned and preconditioned versions of CA-CG. As far as we know, we are the first
to develop communication-avoiding versions of CG that can be preconditioned, that work
with an arbitrary s-step basis, and that avoid communication both in parallel and between
levels of the memory hierarchy.

We begin this chapter with Section 5.1, where we show the standard CG algorithm. In
Section 5.2, we summarize prior work on Communication-Avoiding CG. In Section 5.3, we try
to make the most commonly taught version of the CG algorithm communication-avoiding.
The attempt shows us that we should start with a different variant of CG, the “three-term
recurrence variant” we call CG3. We use CG3 to develop CA-CG in Section 5.4. In Section
5.5, we use a similar approach to construct a left-preconditioned version of CA-CG, called
LP-CA-CG. Finally, we summarize in Section 5.6.

5.1 Conjugate gradient method

The conjugate gradient method (CG) is used to solve symmetric positive definite linear sys-
tems Ax = b. Its authors Hestenes and Stiefel [130] conceived of it as a direct method for
solving linear systems, but it has proven much more useful as an iterative method. It has
since been understood within the framework of Krylov subspace methods as mathematically
equivalent to the symmetric Lanczos process. See e.g., Greenbaum [119] or Saad [207], who
explain what it means for these methods to be mathematically equivalent. There are many
different versions of CG that are equivalent in exact arithmetic; Saad [207] presents two
of them. Algorithm 30 shows the formulation of CG that most people learn in textbooks.
There, the rj vectors are computed residuals that in exact arithmetic are the Lanczos or-
thogonal basis vectors, scaled by constant factors. The pj vectors are basis vectors that are
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Algorithm 30 Conjugate gradient method

Input: Ax = b: n× n SPD linear system
Input: x1: initial guess
Output: Approximate solution xj of Ax = b

1: r1 := b− Ax1

2: p1 := r1

3: for j = 1, 2, . . . , until convergence do
4: Compute w := Apj
5: αj := 〈rj, rj〉/〈w, pj〉
6: xj+1 := xj + αjpj
7: rj+1 := rj − αjw
8: βj := 〈rj+1, rj+1〉/〈rj, rj〉
9: pj+1 := rj+1 + βjpj

10: Test convergence (e.g., using βj)
11: end for

A-conjugate, which is another way to say A-orthogonal: with respect to the inner product
defined by 〈u, v〉A := v∗Au, the vectors p1, . . . , pj are orthogonal.

5.2 Prior work

In this Section, we describe prior work relating to our CA-CG algorithm. These include
algorithms with the specific goal of avoiding communication, as well as algorithms with
other goals that are nevertheless predecessors of CA-CG. We devote Sections 5.2.1 and 5.2.2
to the two important predecessors of CA-CG: “s-step CG” by Chronopoulos and Gear [56],
and “Krylov basis CG” by Toledo [221].

The very first reference we found to algorithms like our CA-CG is a work by Van
Rosendale [227]. Working in a PRAM parallel performance model [100], Van Rosendale
“unrolls” the CG iteration in order to eliminate the data dependencies between the inner
products (to compute the coefficients), the AXPY vector operations (which use the coeffi-
cients), and the sparse matrix-vector products (which take as input the results of the previous
iteration’s vector operations). The resulting algorithm, when given an n × n sparse linear
system Ax = b, requires only max{log(d), log(log(n))} iterations to run on n processors (in
the PRAM model). The “unrolled” algorithm is more or less an s-step version of CG using
the monomial basis, where Van Rosendale sets s to the total number of iterations needed
to converge. Van Rosendale discovered that the algorithm is not numerically unstable [228],
which one may surmise is due to a combination of using the monomial basis, and the basis
length s being too large. We can surmise the latter also by the doctoral thesis of Leland
[165], which cites Van Rosendale [227] and sets s = log n in order to maximize parallelism
under the PRAM model. He also discovered experimentally that the algorithm is not stable.

Van Rosendale did recognize that the data dependencies in standard CG limited potential
parallelism. However, his reliance on the PRAM model prevented him from developing a
practical performance model of the algorithm. The implementation lacked optimized kernels
such as the matrix powers kernel, and was not numerically stable.



CHAPTER 5. COMMUNICATION-AVOIDING CG 219

5.2.1 s-step CG

Our CA-CG algorithm was inspired in part by an algorithm by Chronopoulos and Gear called
“s-step CG” [56]. Here, s is the s-step basis length, just as in CA-Lanczos (Section 4.2),
CA-GMRES (Section 3.4), and CA-Arnoldi (Section 3.3). Unlike those algorithms, however,
the s-step CG algorithm does not include restarting, so the authors did not provide a restart
length parameter. (In CA-Lanczos, CA-GMRES, and CA-Arnoldi, the t parameter is the
number of outer iterations, so that the restart length is s·t. Restarting CA-CG is unnecessary
for performance or memory capacity reasons, as neither the storage requirements nor the
computational requirements increase as the algorithm progresses.)

Here is a list of differences between the s-step CG algorithm of Chronopoulos and Gear,
and our CA-CG algorithm.

• Chronopoulos and Gear base s-step CG on Algorithm 30, the standard formulation of
CG. We will base our CA-CG algorithm on the three-term recurrence variant of CG,
Algorithm 32.

• The two authors do not use an optimized matrix powers kernel to compute the Krylov
basis, although they do recognize that an optimized version of the kernel might exploit
parallelism better than the usual CG. We exploit the full range of matrix powers kernel
optimizations described in Sections 2.1 (for unpreconditioned CA-CG in Section 5.4)
and 2.2 (for preconditioned CA-CG in Section 5.5).

• Chronopoulos and Gear compute a Gram matrix involving the basis vectors (see e.g.,
Section 5.4.5 for a definition of Gram matrix) in order to compute the coefficients in
s-step CG. Our CA-CG also computes a Gram matrix, but unlike Chronopoulos and
Gear’s algorithm, CA-CG does not perform matrix subtractions in order to compute
the Gram matrix. This ensures that the Gram matrix is always SPD as long as the s-
step basis is sufficiently well-conditioned, so that the positive definiteness of the matrix
A is preserved under projection onto the Krylov basis. This helps preserve numerical
stability.

• The two authors use a monomial basis which spans the same space as the A-conjugate
vectors pj in standard CG (Algorithm 30). As we explain in Chapter 7, the mono-
mial basis limits them to small values of s. Otherwise the iterations diverge, since
the s-step “basis” is no longer a basis; it is no longer numerically full rank. In fact,
Chronopoulos and Gear observe that s = 5 is the upper limit for numerical stability
in the examples they tested. Later, Chronopoulos and other collaborators would use
modified Gram-Schmidt orthogonalization, at significant computational expense, to
improve the condition number of the s-step basis (see e.g., [59]). In our CA-CG algo-
rithm, we have several choices of s-step basis (as described in Chapter 7), which allow
us to use larger basis lengths s without sacrificing numerical stability, and also without
requiring expensive orthogonalization. Larger s mean greater potential for performance
improvements, since CA-CG communicates a factor Θ(s) less than standard CG.

• Chronopoulos and Gear were only able to use preconditioners that commuted with the
matrix A, such as polynomial preconditioners, or block diagonal preconditioners (that
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require no parallel communication) [55]. Our methods do not have this limitation, as
we discuss in Section 5.5.

5.2.2 Krylov basis CG

Toledo constructed an algorithm called “Krylov basis CG” [221], which was inspired by
Chronopoulos and Gear’s s-step CG. He begins with a kernel like the matrix powers kernel,
and a sequential algorithm implementing it that saves communication between levels of the
memory hierarchy. The algorithm works especially well for low-dimensional meshes. It also
applies to matrices whose graph structure has nonlocal connections, although the benefits in
that case are less. We discuss the latter in the context of multigrid in Section 1.6.4. While the
algorithm does work for general sparse matrices, Toledo only implemented it for tridiagonal
matrices, and considered the task of generalizing this implementation quite difficult. (He
was not mistaken, as our collaborators discovered when implementing the matrix powers
kernel for general sparse matrices.)

Toledo applies the kernel in order to avoid communication in his Krylov basis CG algo-
rithm. He also observes that computing the Gram matrix instead of performing the inner
products individually saves communication, which is an observation that previous authors
either did not make or did not clearly state. Toledo proceeds much as we do in this sec-
tion. First, he constructs a communication-avoiding version of CG for s = 2, called the
“ClusteredDotProdsCG” algorithm [221, p. 117]. We do something similar in Section 5.3,
although unlike him, we eventually use a different approach to develop CA-CG. Then, Toledo
generalizes the algorithm into “KrylovBasisConjugateGradient” [221, p. 119].

The following list summarizes the differences between Toledo’s work and ours.

• Toledo does have an optimized matrix powers kernel algorithm that can handle general
sparse matrices, but his implementation only works for tridiagonal matrices. We have
both algorithms and implementations of the matrix powers kernel for general sparse
matrices (Section 2.1) and even include preconditioning (Section 2.2), which Toledo
does not.

• Krylov basis CG requires about twice as many vectors as our CA-CG algorithm, and
twice as many invocations of the matrix powers kernel. This is because he computes an
s-step basis using both the current residual vector, and the current A-conjugate vector.
Like Chronopoulos and Gear, Toledo bases his algorithm on the standard version of
CG (Algorithm 30), which has both residual vectors and A-conjugate vectors. Since
we base CA-CG on the three-term recurrence variant of CG (Algorithm 32), we only
need to compute and store an s-step basis for the current residual vector.

• Toledo does suggest the use of different s-step bases other than the monomial basis,
in order to improve stability and allow larger basis lengths s [221, p. 122]. We do the
same, for the same reasons. However, Toledo does not show the necessary changes to
the matrix powers kernel if preconditioning is included, which we do show (see Section
5.5).

• Toledo has an idea for an s-step basis which we do not explore in this thesis: using
polynomials whose local components are orthogonal [221, pp. 123–4]. This means first
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partitioning the matrix of s-step basis vectors into block rows, commensurate with the
partitioning of the sparse matrix into subdomains for the matrix powers kernel. Then,
as the matrix powers kernel computes each s-step basis vector in turn, the components
of that vector in each block row are orthogonalized against the previous columns of
that block row. This requires no communication, since all of the orthogonalization
operations happen inside each subdomain. The resulting s-step basis vectors are not
orthogonal, but this process supposedly makes them better conditioned. Toledo claims
that doing this lets him use very large basis lengths s [221, p. 123]. However, he does
not show numerical or performance results for this process. Furthermore, the resulting
basis polynomials no longer satisfy a three-term recurrence, which increases the amount
of fast memory required by the matrix powers kernel and thus may increase the number
of block transfers between levels of the memory hierarchy (see Section 2.1).

• When Toledo uses the monomial basis, he suggests a clever technique to represent the
Gram matrix implicitly via the FFT [221, p. 120]. This saves floating-point operations
in the small dense matrix-vector operations used to compute the CG coefficients. The
corresponding operations in our Communication-Avoiding CG (Algorithm 35 in Section
5.4.5) require Θ(s2) operations per outer iteration; in Toledo’s algorithm, they require
only Θ(s log s) operations. Of course, this does not affect the asymptotic number of
flops, if one assumes (as we do) that s2 � n.

• Like Chronopoulos and Gear, Toledo also suggests using polynomial preconditioning
[221, p. 126–7]. In particular, since Chebyshev preconditioning can sometimes perform
badly, even if the spectral bounds are accurate, he suggests using the polynomial pre-
conditioning technique of Fisher and Freund [97], which exploits spectral information
estimated from the CG coefficients. However, he does not test preconditioning either
in numerical experiments or for performance, nor does he show how preconditioning
would change the Krylov basis CG algorithm. Our left-preconditioned communication-
avoiding CG (LP-CA-CG) (Algorithm 37 in Section 5.5) is able to avoid communication
with a larger class of preconditioners (via the techniques of Section 2.2) than those that
Toledo mentions in [221].

5.2.3 Summary

The main issues with previous communication-avoiding versions of CG were

1. Lack of effective matrix powers kernel

2. Limited to monomial basis (especially if preconditioning)

3. Limited preconditioning options

We have addressed issue #1 with algorithms and implementations in Demmel et al. [76, 77,
78]. Toledo (in the context of CG – other authors have introduced other bases for s-step
GMRES) have addressed #2 by suggesting the use of s-step bases other than the monomial
basis. However, they do not show how to use bases other than the monomial basis when
including preconditioning, which we do show how to do in this thesis.
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As far as we can tell, no authors dealt completely with issue #3. Either they do not
show how to include preconditioning in the s-step algorithm, or they limit themselves ei-
ther to block diagonal preconditioners (that require no communication) or preconditioners
that commute with the matrix A (such as polynomial preconditioners). In [76], we first
characterized the structure of effective preconditioners compatible with the matrix powers
kernel. We summarize those results in Section 2.2. In this work, we show how to apply left
preconditioning to CA-CG with preconditioners that need not commute with the matrix A.

Note that our innovation with CA-GMRES (Section 3.4) of being able to choose the
s-step basis length s independently of the restart length r = s · t does not apply to CA-CG.
Unlike CA-Arnoldi and CA-GMRES, the storage and computational requirements of CA-CG
do not increase as the algorithm progresses, so it is not necessary to consider restarting.

We develop our communication-avoiding versions of CG directly from corresponding ver-
sions of the Lanczos process. For nonpreconditioned or split-preconditioned CG, we present
our communication-avoiding CG (CA-CG) algorithm in Section 5.4. In Section 5.5, we de-
velop a left-preconditioned version of CA-CG, using an analogous derivation approach to
that of Sections 4.3.3 and 4.3.4 for left-preconditioned CA-Lanczos.

5.3 Communication-avoiding CG: first attempt

The standard formulation of CG (Algorithm 30) involves two coupled recurrences: one for
the residuals rj, and one for the A-conjugate basis vectors pj. In this section, we will attempt
to rearrange this formulation into an s-step method. The attempt fails, but this failure leads
us to a different variant of CG which is amenable to such rearrangements, which we will
present in Section 5.4. The conclusion is that trying to combine the A-conjugate vectors pj
with the residual vectors rj complicates the algorithm; it is better to use one or the other.
We use the residual vectors, since that lets us apply very similar recurrence techniques as
we used in Sections 4.3.3 and 4.3.4 for the Lanczos process.

Suppose we want to perform two steps of CG in a single iteration, using the matrix powers
kernel (s = 2). At step j, we know αj, xj+1, rj+1, βj and pj+1, and we wish to compute αj+1,
xj+2, rj+2, βj+1 and pj+2. (We increment j by two each iteration, to simplify the notation.)
In order to compute αj+1, we first need Apj+1. Given the equation pj+1 = rj+1 + βjpj, we
pre-multiply both sides by A:

Apj+1 = Arj+1 + βjApj,

and then use the equation rj+1 = rj − αjApj to obtain:

Apj+1 = A(rj − αjApj) + βjApj = Arj − αjA2pj + βjApj.

If j = 0, then rj = pj = r0, and we have from the output of the matrix powers kernel the
necessary quantities Ap0 and A2p0. If j > 0, then we need to solve for Arj:

Arj = Apj − βj−1Apj−1,

so that
Apj+1 = (Apj − βj−1Apj−1)− αjA2pj + βjApj

= (1 + βj)Apj − βj−1Apj−1 − αjA2pj.
(5.1)
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Recall that j increases by increments of two. In the previous iteration (j − 2), we needed to
compute Ap(j−2)+1 = Apj−1, so as long as we save that vector from the previous iteration,
we can use it to compute Arj in the current iteration. That lets us compute Apj+1. Now we
can compute αj+1:

αj+1 = 〈rj+1, rj+1〉/〈Apj+1, pj+1〉,
update the residual:

rj+2 = rj+1 − αj+1Apj+1,

and compute βj+1 and pj+2:

βj+1 = 〈rj+2, rj+2〉/〈rj+1, rj+1〉,
pj+2 = rj+2 + βj+1pj+1.

One step of the original CG procedure requires one sparse matrix-vector multiply (Apj),
two inner products (〈Apj, pj〉 and 〈rj+1, rj+1〉), and three AXPYs. Two steps of ordinary
CG need two sparse matrix-vector multiplies, four inner products, and six AXPYs. In either
case, four vectors (rj, pj, Apj and xj) must be saved. The modified CG procedure requires
additional space for storing Apj−1 and A2pj. It only needs storage for Apj−1 and Apj; it
can overwrite Apj−1 with Apj+1 and keep Apj for the next iteration. The first half-iteration
requires two dot products and three AXPYs. The second half-iteration requires five AXPYs
and two dot products, so a single “double iteration” calls for eight vector additions and four
inner products (which is only two more vector additions than standard CG).

Algorithm 31 shows the resulting “two-step” version of CG. Despite this promising begin-
ning, however, this approach does not seem to generalize to an s-step method of arbitrary
length. Note that at every iteration, Algorithm 31 needs the vectors Apj−1, A2pj−1, . . . ,
Aρ−1pj−1. For s = 2, this is not a problem, since we computed these vectors in the previous
iteration. However, for s > 2, we lack access to these vectors, unless we compute them
explicitly at additional expense. The problem comes from the cyclic dependency between
pj and rj in the standard CG algorithm. A variant of CG (see Saad [207, p. 192]) uses a
three-term recurrence to calculate xj+1 and rj+1, thus avoiding the pj vectors altogether,
at the cost of keeping one additional vector rj−1. Algorithm 32 shows the variant. We will
show that this algorithm admits a simpler approach to generalizing CG for the matrix powers
kernel.

5.4 Communication-avoiding CG

In this section, we develop two communication-avoiding versions of CG. Algorithm 34 avoids
communication in the sparse matrix operations only, by replacing the sparse matrix-vector
multiplies with the matrix powers kernel (Section 2.1). The result is that a single outer
iteration of Algorithm 34 does the same work as s iterations of standard CG, but reads the
sparse matrix from slow memory only 1 + o(1) times, rather than s times. Algorithm 34 is
best for problems such that either SpMV or the sequential part of vector operations dominate
the runtime of standard CG. The second communication-avoiding version of CG, Algorithm
35, incorporates both the matrix powers kernel (Section 2.1) and a block inner product.
As a result, a single outer iteration of Algorithm 35 only requires Θ(logP ) messages for the
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Algorithm 31 2-step conjugate gradient

Input: Ax = b: n× n SPD linear system
Input: x1: initial guess
Output: Approximate solution xj of Ax = b

1: r1 := b− Ax1

2: p1 := r1

3: β0 := 0
4: q := 0
5: for j = 1, 3, 5, . . . , until convergence do
6: Compute w1 := Apj and w2 = A2pj
7: αj := 〈rj, rj〉/〈w1, pj〉
8: xj+1 := xj + αjpj
9: rj+1 := rj − αjw1

10: βj := 〈rj+1, rj+1〉/〈rj, rj〉
11: pj+1 := rj+1 + βjpj
12: w := (1 + βj)w1 − αjw2 − βj−1q . Now w = Apj+1.
13: αj+1 := 〈rj+1, rj+1〉/wpj+1

14: xj+2 := xj+1 + αj+1pj+1

15: rj+2 := rj+1 − αj+1Apj+1

16: βj+1 := 〈rj+2, rj+2〉/〈rj+1, rj+1〉
17: pj+2 := rj+2 + βj+1pj+1

18: q := w
Assert: q = Apj+1 from the last iteration
19: end for

vector operations, rather than Θ(s logP ) as in Algorithm 34 and standard CG. Furthermore,
Algorithm 35 retains the property of Algorithm 34, that a single outer iteration only reads
the sparse matrix from slow memory 1 + o(1) times, rather than s times as in standard CG.
Algorithm 35 is best for problems such that the cost of global reductions is a significant part
of the runtime of standard CG.

5.4.1 Three-term recurrence variant of CG

The discussion in the previous section suggests that the data dependencies between the resid-
ual vectors rj, and the A-conjugate vectors pj, hinder the development of a communication-
avoiding version of CG. Despite the name “CG” (the “Method of Conjugate Gradients”),
there are mathematically equivalent formulations of the algorithm which do not include the
A-conjugate vectors. Our approach to developing a communication-avoiding version of CG
is, therefore, to abandon standard CG and start instead with a different formulation, called
CG3 (see e.g., Saad [207, Algorithm 6.19, p. 192]). CG3 is a three-term recurrence variant of
CG which only uses the residual vectors rj and the approximate solution vectors xj. In exact
arithmetic, CG3 computes the same approximate solutions xj at each iteration as standard
CG. CG3 does not communicate asymptotically more or less than standard CG; we present
it only as an intermediate step between standard CG and the two communication-avoiding
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versions of CG presented in this section.

Algorithm 32 CG3 (3-term recurrence variant of CG)

Input: Ax = b: n× n SPD linear system
Input: x1: initial guess
Output: Approximate solution xj of Ax = b

1: x0 := 0n,1, r0 := 0n,1, r1 := b− Ax1

2: for j = 1, 2, . . . , until convergence do
3: wj := Arj
4: µj := 〈rj, rj〉; test for convergence
5: νj := 〈wj, rj〉
6: γj := µj/νj
7: if j = 1 then
8: ρj := 1
9: else

10: ρj :=
(

1− γj

γj−1

µj

µj−1

1
ρj−1

)−1

11: end if
12: xj+1 := ρj(xj + γjrj) + (1− ρj)xj−1

13: rj+1 := ρj(rj − γjwj) + (1− ρj)rj−1

14: end for

We show CG3 here as Algorithm 32. We give a detailed derivation of CG3 in Appendix
C.1, where in particular we show that the coefficient ρj is always defined as long as CG3
has not broken down (like standard CG, CG3 is subject to “lucky” breakdown). Note that
Saad’s CG3 has a small error in the recurrence formula for xj+1; we discuss this further in
Appendix C.1.

CG3 amounts to a “decoupling” of the “coupled two-term” recurrences for rj and pj in
the standard version of CG. Many Krylov subspace methods may be reformulated either as
coupled two-term recurrences, or uncoupled three-term recurrences. The accuracy proper-
ties of these two formulations may differ in finite-precision arithmetic, which is investigated
e.g., by Gutknecht and Strakoš [124]. The authors observe that in the three-term recurrence
variant of algorithms such as BiCG,1 local roundoff errors are amplified rapidly. As a result,
the residual vector rj computed by the recurrence (the updated residual) may differ signifi-
cantly from b−Axj (the true residual). While such behavior is possible for CG, in practice
it is not commonly observed. This helps justify our use of CG3, rather than standard CG,
as the base of CA-CG. Nevertheless, this observation requires further treatment in Chapter
6, when we discuss the development of communication-avoiding versions of nonsymmetric
Lanczos and BiCG.

Our development of CA-CG is based on the orthogonality of the residual vectors rj in
CG3. The residual vectors rj in CG3 are the same, in exact arithmetic, as the residual
vectors in standard CG. That means they are orthogonal in exact arithmetic, and in fact
they are just scaled versions of the symmetric Lanczos residual vectors. This means that we

1BiCG is the method of biconjugate gradients, for solving nonsymmetric linear systems. See Chapter 6
for details.
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can construct CA-CG from CG3 using the same techniques in Sections 4.3.3 and 4.3.4 that
we used to develop the Gram-Schmidt and Gram matrix versions of communication-avoiding
Lanczos iteration.

5.4.2 Summary of CA-CG derivation

The two communication-avoiding CG algorithms are complicated, so we develop them in
steps, which we summarize here. The final two steps will avoid communication, the first
between levels of the memory hierarchy, and the second both in parallel and between levels
of the memory hierarchy. We begin with CG3 (Algorithm 32) and then do the following:

1. Algorithm 33: Add an “outer iteration” loop, so that we can name quantities both
with the inner iteration number j and the outer iteration number k. This differs from
Algorithm 32 only notationally.

2. Algorithm 34: Replace the sparse matrix-vector products in Algorithm 33 with the
matrix powers kernel. The result is that a single outer iteration of Algorithm 34 does
the same work as s iterations of standard CG, but reads the sparse matrix from slow
memory only 1 + o(1) times.

3. Algorithm 35: replace the inner products in Algorithm 34 with a new inner product
coalescing kernel. The result is that a single outer iteration of Algorithm 35 only
requires Θ(logP ) messages for the vector operations, rather than Θ(s logP ) as in
Algorithm 34 and standard CG. Furthermore, Algorithm 35 retains the property of
Algorithm 34, that a single outer iteration only reads the sparse matrix from slow
memory 1 + o(1) times, rather than s times as in standard CG.

We begin with the first step. This adds an outer iteration loop to CG3 (Algorithm 32),
resulting in Algorithm 33. This is only useful for setting up notation for future steps. For
example, it lets us name quantities both with the inner iteration number j and the outer
iteration number k. Many of these quantities will be the same (in exact arithmetic) in this
algorithm as in CA-CG.

5.4.3 Recurrence for residual vectors

We now use Algorithm 33 to derive a matrix-style recurrence for the residual vectors, anal-
ogous to the Lanczos recurrence. This will serve as useful notation for later. CG3 computes
residual vectors via a three-term recurrence

rsk+j+1 = ρsk+j (rsk+j − γsk+jArsk+j) + (1− ρsk+j)rsk+j−1, (5.2)

which we rearrange into

Arsk+j =
1− ρsk+j

ρsk+jγsk+j

rsk+j−1 +
1

γsk+j

rsk+j −
1

ρsk+jγsk+j

rsk+j+1. (5.3)

This rearrangement is legitimate for the following reasons:
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Algorithm 33 CG3 with outer and inner iteration indexing

Input: Ax = b: n× n SPD linear system
Input: x1: initial guess
Output: Approximate solution xsk+j of Ax = b

1: x0 := 0n,1, r0 := 0n,1, r1 := b− Ax1

2: for k = 0, 1, 2, . . . , until convergence do
3: for j = 1, 2, . . . , s do
4: wsk+j := Arsk+j

5: µsk+j := 〈rsk+j, rsk+j〉; test for convergence
6: νsk+j := 〈wsk+j, rsk+j〉
7: γsk+j := µsk+j/νsk+j . γi is defined for i ≥ 1
8: if sk + j = 1 then . ρi is defined for i ≥ 1
9: ρsk+j := 1

10: else

11: ρsk+j :=
(

1− γsk+j

γsk+j−1

µsk+j

µsk+j−1

1
ρsk+j−1

)−1

12: end if
13: xsk+j+1 := ρsk+j(xsk+j + γsk+jrsk+j) + (1− ρsk+j)xsk+j−1

14: rsk+j+1 := ρsk+j(rsk+j − γsk+jwsk+j) + (1− ρsk+j)rsk+j−1

15: end for
16: end for

1. γsk+j = 〈rsk+j, rsk+j〉/〈Arsk+j, rsk+j〉 is always positive in exact arithmetic, as long as
rsk+j is nonzero. (This is because A is SPD.)

2. ρsk+j is always defined and nonzero in exact arithmetic, as long as CG3 has not broken
down. (See Section C.1 for a detailed discussion.)

Thus, the above coefficients always will be defined (in exact arithmetic) as long as the
iteration has not converged. From the above vector recurrence (Equation (5.3)), we can
construct a matrix-style recurrence for the CG3 residual vectors analogous to the Lanczos
recurrence. Define the matrix of residual vectors

Rk = [rsk+1, . . . , rsk+s]

for k = 0, 1, 2, . . . , and define
Rk = [Rk, rsk+s+1].

Note that this is not an R factor from a QR factorization. The notation does conflict
with that of earlier chapters,2 but our versions of CG will not involve QR factorizations, so
there should be no confusion. We also define R−1 = 0n,s (an n × s matrix of zeros) and
R−1 = [0n,s, r0].

From Equation (5.3), it follows that

ARk =
1− ρsk+1

ρsk+jγsk+1

rske
T
1 +RkT k, (5.4)

2We didn’t wish to use Pk, because the A-conjugate vectors in standard CG are named with lowercase p.
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where the s+ 1 by s tridiagonal matrix T k is given by

T k = T̃ k · diag (ρsk+1γsk+1, . . . , ρsk+sγsk+s)
−1 ,

T̃ k =



ρsk+1 1− ρsk+2 0 . . . 0

−1 ρsk+2 1− ρsk+3
...

0 −1
. . . . . .

...
. . . 1− ρsk+s

−1 ρsk+s

0 −1


.

(5.5)

This matrix should not be confused with the tridiagonal matrix from symmetric Lanczos.
For instance, Tk, the leading s× s block of T k is not necessarily symmetric.

5.4.4 Including the matrix powers kernel

In this section, we derive “CA-CG with inner products” (Algorithm 34). This involves
replacing the sparse matrix-vector products in Algorithm 33 with an invocation of the matrix
powers kernel, and adding new recurrences to make the resulting algorithm (Algorithm 34)
equivalent in exact arithmetic to to Algorithm 33. One outer iteration of Algorithm 34
does the same work as s iterations of standard CG, but reads the sparse matrix from slow
memory only 1+o(1) times, rather than s times. Furthermore, in parallel, one outer iteration
of Algorithm 34 requires only about as many messages for the sparse matrix operations as
s iterations of standard CG. Algorithm 34 is best for problems such that the sparse matrix
operations dominate the runtime of standard CG. In the following Section 5.4.5, we will
derive Algorithm 35, which also avoids messages in parallel for the vector operations.

CA-CG with inner products has the following rough outline:
1: r0 := 0
2: for k = 0, 1, 2, . . . until convergence do
3: vsk+1 := rsk+1 . Current residual vector
4: Use the matrix powers kernel to compute V k = [vsk+1, vsk+2, . . . , vsk+s+1] whose

columns are a basis for span{rsk+1, Arsk+1, . . . , A
srsk+1}

5: for j = 1, 2, . . . , s do
6: Compute vector of 2s+ 1 coefficients dsk+j such that Arsk+j = [Rk−1, V k]dsk+j

7: wsk+j := [Rk−1, V k]dsk+j . wsk+j = Arsk+j

8: µsk+j := 〈rsk+j, rsk+j〉; test for convergence
9: νsk+j := 〈wsk+j, rsk+j〉

10: γsk+j := µsk+j/νsk+j

11: Compute ρsk+j using previously computed quantities γsk+j−1, γsk+j, 〈rsk+j, rsk+j〉,
〈rsk+j−1, rsk+j−1〉, and ρsk+j−1

12: xsk+j+1 := ρsk+j(xsk+j + γsk+jrsk+j) + (1− ρsk+j)xsk+j−1

13: rsk+j+1 := ρsk+j (rsk+j − γsk+jw) + (1− ρsk+j) rsk+j−1

14: end for
15: end for
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The key difference here between ordinary three-term CG and the communication-avoiding
algorithm is the vector of 2s+ 1 coefficients dsk+j such that

Arsk+j = [Rk−1, V k]dsk+j,

where V k = [vsk+1, vsk+2, . . . , vsk+s+1] is the matrix of basis vectors generated by the matrix
powers kernel. We can derive a recursion formula for dsk+j by using the recurrence (5.3) for
the residual vectors, which we repeat here:

Arsk+j =
1− ρsk+j

ρsk+jγsk+j

rsk+j−1 +
1

γsk+j

rsk+j −
1

ρsk+jγsk+j

rsk+j+1.

This holds for k = 0, 1, . . . and for j = 1, 2, . . . , s. For any k ≥ 0, we will need to compute
dsk, dsk+1, . . . , dsk+s, each using already computed quantities. By inspection, for k = 0,
dsk = d0 = 02s+1, and for k > 0, dsk = [01,s−1, 1, 01,s+1]T . This formula only makes sense
for s ≥ 2; of course s < 2 means the matrix powers kernel isn’t used and the method is no
different than CG3, so we can dismiss this case.

The next step in developing a recurrence for the dsk+j coefficients is to use the coefficients
in the s-step basis V k. Recall that when we began to explain the Arnoldi(s) algorithm in
Section 3.2.1, we introduced the s-step basis equation (Equation (3.3)). We repeat it here:

AVk = V kBk, (5.6)

where
V k = [Vk, vsk+s+1] = [vsk+1, vsk+2, . . . , vsk+s, vsk+s+1],

and Bk is the s+ 1 by s “change-of-basis” matrix, whose entries depend only on the choice
of basis in outer iteration k. See Chapter 7 for formulae for Bk for various s-step bases. For
the bases we use in this thesis, the matrix Bk is always tridiagonal, and in some cases it is
bidiagonal. However, in the derivation below, the strongest assumption we make is that it
is upper Hessenberg. In the case of CA-Arnoldi (Section 3.3, CA-Lanczos (Section 3.3), and
CA-GMRES (Section 3.4), the starting vector vsk+1 of the basis is unit-length. However,
this assumption is not necessary. In a communication-avoiding version of CG, we can choose
vsk+1 = rsk+1 and obtain a perfectly legitimate Krylov subspace basis.

Given Equation (5.6) and vsk+1 = rsk+1, we can immediately deduce a formula for dsk+1:

dsk+1 = [01,s, Bk(1, 1), Bk(2, 1), 01,s−1]T .

For j > 1, we derive a recurrence for the dsk+j coefficients. Begin with the recurrence for
the residual vectors:

rsk+j = −ρsk+j−1γsk+j−1Arsk+j−1 + ρsk+j−1rsk+j−1 + (1− ρsk+j−1)rsk+j−2,

and multiply both sides by A:

Arsk+j = −ρsk+j−1γsk+j−1A
2rsk+j−1 + ρsk+j−1Arsk+j−1 + (1− ρsk+j−1)Arsk+j−2.

Now use the definition of dsk+j−1 and dsk+j−2. Note that in this case, 2 ≤ j ≤ s.

Arsk+j = −ρsk+j−1γsk+j−1A[Rk−1, V k]dsk+j−1+

ρsk+j−1[Rk−1, V k]dsk+j−1 + (1− ρsk+j−1)[Rk−1, V k]dsk+j−2. (5.7)



CHAPTER 5. COMMUNICATION-AVOIDING CG 230

This almost gives us a recursion formula for dsk+j, except for the term

A[Rk−1, V k]dsk+j−1.

However, we can simplify this term using Equation (5.4), the basis equation AVk = V kBk,
and what we can deduce about the structure of dsk+j−1. First, recall from Equation (5.4)
that

ARk−1 =
1− ρs(k−1)+1

ρs(k−1)+1γs(k−1)+1

rs(k−1)e
T
1 +Rk−1T k−1,

where the s + 1 by s tridiagonal matrix T k−1 is zero for k = 0, and for k > 0 is given by
Equation (5.5). Also, it’s easy to prove by induction that the first entry of dsk+j−1 must be
zero for 2 ≤ j ≤ s. Thus,

ARk−1dsk+j−1(1 : s) =

(
1− ρs(k−1)+1

ρs(k−1)+1γs(k−1)+1

rs(k−1)e
T
1 +Rk−1T k−1

)
dsk+j−1(1 : s)

=
(
Rk−1T k−1

)
dsk+j−1(1 : s)

=
(
Rk−1Tk−1 −

(
ρs(k−1)+sγs(k−1)+s

)−1
rsk+1e

T
s

)
dsk+j−1(1 : s)

= (Rk−1Tk−1) dsk+j−1(1 : s)− (ρskγsk)
−1 rsk+1dsk+j−1(s)

= [Rk−1, V k]

 Tk−1dsk+j−1(1 : s)

− (ρskγsk)
−1 dsk+j−1(s)
0s

 .
From a similar easy induction, entry 2s+ 1 (the last entry) of dsk+j−1 must also be zero

for 2 ≤ j ≤ s. Thus,

AV kdsk+j−1(s+ 1 : 2s+ 1) = A[Vk, 0]dsk+j−1(s+ 1 : 2s+ 1)

= [V kBk, 0]dsk+j−1(s+ 1 : 2s+ 1)

= V kBkdsk+j−1(s+ 1 : 2s).

It follows that

A[Rk−1, V k]dsk+j−1 =

[Rk−1, V k]

[
Tk−1dsk+j−1(1 : s)

− (ρskγsk)
−1 dsk+j−1(s)e1 +Bkdsk+j−1(s+ 1 : 2s)

]
. (5.8)

We can now plug Equation (5.8) into Equation (5.7) to get the recurrence for dsk+j, when
2 ≤ j ≤ s:

dsk+j = ρsk+j−1dsk+j−1 + (1− ρsk+j−1) dsk+j−2 −

ρsk+j−1γsk+j−1

[
Tk−1dsk+j−1(1 : s)

− (ρskγsk)
−1 dsk+j−1(s)e1 +Bkdsk+j−1(s+ 1 : 2s)

]
. (5.9)
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Figure 5.1: Spy plot (visualization of the sparsity pattern) of the 2s + 1 by s + 1 matrix
[dsk, dsk+1, . . . , dsk+s], for the case s = 5. Each (potential) nonzero in the matrix is shown as
a blue dot.

Equation (5.9) holds for all k ≥ 0. Here is the complete recurrence for dsk+j, with all the
cases:

dsk+j =



{
02s+1,1 for k = 0, j = 0,

[01,s−1, 1, 01,s+1]T for k > 0, j = 0,

[01,s, Bk(1, 1), Bk(2, 1), 01,s−1]T for j = 1,

ρsk+j−1dsk+j−1 + (1− ρsk+j−1) dsk+j−2 −

ρsk+j−1γsk+j−1

[
Tk−1dsk+j−1(1 : s)

−dsk+j−1(s)

ρskγsk
e1

]
+

ρsk+j−1γsk+j−1

[
0s,1

Bkdsk+j−1(s+ 1 : 2s)

] for j = 2, 3, . . . , s.

(5.10)

There is plenty of structure to exploit in these recurrences. In particular, the nonzeros
of dsk+j grow outward by one from the center, for each increase in j. Figure 5.1 shows a
visualization of the nonzeros of the matrix [dsk, dsk+1, . . . , dsk+s+1], for the illustrative case
s = 5. We show the recurrences in the above matrix form for brevity and clarity.

The coefficients dsk+j satisfying Arsk+j = [Rk−1, V k]dsk+j let us recover the CG residual
vectors from the output V k of the matrix powers kernel, without needing to compute the
sparse matrix-vector product w := Arsk+j. From this comes Algorithm 34, a version of CA-
CG that uses the matrix powers kernel for the sparse matrix-vector products, but retains the
inner products of the original three-term recurrence version of CG. A single outer iteration of
Algorithm 34 computes the same approximate solution (in exact arithmetic) as s iterations
of standard CG, but reads the sparse matrix A from slow memory only 1+o(1) times, rather
than s times. Algorithm 34 is best for problems such that either SpMV or the sequential
part of vector operations dominate the runtime of standard CG. If the parallel part of vector
operations – that is, the global reductions and / or the synchronizations – takes a significant
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part of the runtime of standard CG, then Algorithm 35 in the following Section 5.4.5 should
be considered.

Algorithm 34 CA-CG with inner products

Input: Ax = b: n× n SPD linear system
Input: x1: initial guess
Output: Approximate solution xsk+j of Ax = b

1: x0 := 0n,1, r0 := 0n,1, r1 := b− Ax1

2: for k = 0, 1, . . . , until convergence do
3: vsk+1 := rsk+1 . Residual vector from previous outer iteration
4: Compute matrix powers kernel V k = [vsk+1, . . . , vsk+s+1]
5: for j = 1, 2, . . . , s do
6: Compute coefficients dsk+j such that Arsk+j = [Rk−1, V k]dsk+j (Eq. (5.10))
7: wsk+j := [Rk−1, V k]dsk+j

8: µsk+j := 〈rsk+j, rsk+j〉; test for convergence
9: νsk+j := 〈w, rsk+j〉

10: γsk+j := µsk+j/νsk+j

11: if sk + j = 1 then
12: ρsk+j := 1
13: else

14: ρsk+j :=
(

1− γsk+j

γsk+j−1

µsk+j

µsk+j−1

1
ρsk+j−1

)−1

15: end if
16: xsk+j+1 := ρsk+j(xsk+j + γsk+jrsk+j) + (1− ρsk+j)xsk+j−1

17: rsk+j+1 := ρsk+j(rsk+j − γsk+jwsk+j) + (1− ρsk+j)rsk+j−1 . Computing xsk+j+1

and rsk+j+1 requires no parallel communication, and no synchronization until
we compute µsk+j+1

18: end for
19: end for

5.4.5 Removing the inner products

In this section, we derive CA-CG (Algorithm 35). This completes the derivation process of
the previous two sections. Algorithm 35 is equivalent in exact arithmetic to standard CG, in
that one outer iteration of Algorithm 35 does the same work as s iterations of standard CG.
Like Algorithm 34, Algorithm 35 reads the sparse matrix from slow memory only 1 + o(1)
times per outer iteration, rather than s times. In parallel, one outer iteration of Algorithm
35 requires only about as many messages for the sparse matrix operations as s iterations
of standard CG. Furthermore, unlike CA-CG with inner products, one outer iteration of
Algorithm 35 requires only Θ(logP ) messages in parallel for the vector operations. One
outer iteration of Algorithm 34, or s iterations of standard CG, require Θ(s logP ) messages
in parallel for the vector operations. Algorithm 35 is best for problems such that the parallel
cost of global reductions is significant in standard CG.
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The Gram matrix

We begin deriving CA-CG (Algorithm 35) by replacing the inner products in Algorithm 34
of the previous section with much shorter inner products involving the 2s+1 by 2s+1 Gram
matrix

Gk := 〈[Rk−1, V k], [Rk−1, V k]〉 =

(
R∗k−1Rk−1 R∗k−1V k

V ∗kRk−1 V ∗kV k

)
. (5.11)

We defined the Gram matrix in Section 2.5. As we observe there, computing it in parallel
requires only one reduction (over blocks of the Rk−1 and V k matrices. Sequentially, it only
requires reading the input data once, which is no worse asymptotically than standard CG.
The shorter inner products involving Gk require no communication. In the context of CG,
we call the computation of the Gram matrix inner product coalescing, since it computes the
same essential information (in exact arithmetic) as the inner products in CG3, but in only
one communication step.

Note that Equation (5.11) can be simplified, since the columns of [Rk−1, vsk+1] are or-
thogonal in exact arithmetic. For example, R∗k−1Rk−1 = Dk−1, an s × s diagonal matrix
with

Dk−1(j, j) = 〈rs(k−1)+j, rs(k−1)+j〉 = µs(k−1)+j. (5.12)

At outer iteration k, we have already computed the µs(k−1)+j coefficients (in the previous
outer iteration k − 1). Thus, we do not need to recompute R∗k−1Rk−1. Furthermore,

R∗k−1V k = (V ∗kRk−1)∗. (5.13)

, i.e., the Gram matrix Gk is symmetric. This symmetry suggests that we can compute it
in two block reductions, rather than one, in order to reduce the bandwidth cost (both in
parallel and sequentially):

1. Compute Gk,k−1 := R∗k−1V k

2. Compute Gkk := V ∗kV k

Then, we have

Gk =

(
Dk−1 Gk,k−1

G∗k,k−1 Gkk

)
. (5.14)

Replacing the inner products

In this section, our goal is to replace the two inner products

µsk+j := 〈rsk+j, rsk+j〉 and

νsk+j := 〈Arsk+j, rsk+j〉

with much shorter inner products, involving the Gram matrix, that require no communication
(other than to compute the Gram matrix). We do so much as we did in Section 4.3.4 when
deriving left-preconditioned CA-Lanczos: we derive vectors of 2s + 1 coefficients dsk+j and
gsk+j, for j = 0, 1, . . . , s, where

[Rk−1, V k]dsk+j = Arsk+j and [Rk−1, V k]gsk+j = rsk+j,
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and combine them with the Gram matrix to recover the CG coefficients. We already derived
a recurrence (Equation (5.10)) for dsk+j in Section 5.4.4. Here, we derive a recurrence for
the gsk+j coefficients, for j = 0, 1, . . . , s. This will let us compute µsk+j and µsk+j via

µsk+j = g∗sk+jGkgsk+j and νsk+j = g∗sk+jGkdsk+j.

Consider the vector of 2s+ 1 coefficients gsk+j such that

rsk+j = [Rk−1, V k]gsk+j.

We can derive a recursion formula for gsk+j (where j = 0, 1, . . . , s) by using the CG3
recurrence (Equation (5.2)) for the residual vectors:

rsk+j = ρsk+j−1 (rsk+j−1 − γsk+j−1Arsk+j−1) + (1− ρsk+j−1)rsk+j−2.

For k = 0 and j = 0, we have gsk+j = g0 = 02s+1,1 trivially. For k > 0 and j = 0, we have

gsk = [0T1,s−1, 1, 0
T
1,s+1]T

by inspection, since rsk is column s of Rk−1. Also by inspection,

gsk+1 = [0T1,s, 1, 0
T
1,s]

T .

For j = 2, 3, . . . , s, we have

[Rk−1, V k]gsk+j = ρsk+j−1[Rk−1, V k]gsk+j−1

− ρsk+j−1γsk+j−1[Rk−1, V k]dsk+j−1 + (1− ρsk+j−1) [Rk−1, V k]gsk+j−2

and therefore

gsk+j = ρsk+j−1gsk+j−1 − ρsk+j−1γsk+j−1dsk+j−1 + (1− ρsk+j−1) gsk+j−2.

This gives us a recurrence for gsk+j:

gsk+j =



{
02s+1,1 k = 0

[01,s−1, 1, 01,s+1]T k > 0
j = 0

[01,s, 1, 01,s]
T j = 1

ρsk+j−1gsk+j−1 − ρsk+j−1γsk+j−1dsk+j−1

+ (1− ρsk+j−1) gsk+j−2,
2 ≤ j ≤ s.

(5.15)

Now we can compute the inner products in CG via

〈rsk+j, rsk+j〉 := g∗sk+jGkgsk+j and

〈Arsk+j, rsk+j〉 := g∗sk+jGkdsk+j.

The resulting CG method, CA-CG, is shown as Algorithm 35.
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Algorithm 35 CA-CG

Input: Ax = b: n× n SPD linear system
Input: x1: initial guess
Output: Approximate solution xsk+j of Ax = b

1: x0 := 0n,1, r0 := 0n,1, R−1 = 0n,s, r1 := b− Ax1

2: for k = 0, 1, . . . , until convergence do
3: vsk+1 := rsk+1 . Residual vector from previous outer iteration
4: Compute matrix powers kernel V k = [vsk+1, . . . , vsk+s+1]
5: Gk,k−1 := R∗k−1V k, Gkk := V ∗kV k . 2 block reductions

6: Gk :=

(
Dk−1 Gk,k−1

(Gk,k−1)∗ Gkk

)
(Gram matrix, via Eq. (5.14))

7: for j = 1, 2, . . . , s do
8: Compute dsk+j such that Arsk+j = [Rk−1, V k]dsk+j (Eq. (5.10))
9: Compute gsk+j such that rsk+j = [Rk−1, V k]gsk+j (Eq. (5.15)) . dsk+j and gsk+j

computed redundantly on each parallel processor
10: wsk+j := [Rk−1, V k]dsk+j . No parallel communication or synchronization
11: µsk+j := g∗sk+jGkgsk+j; test convergence . µsk+j = 〈rsk+j, rsk+j〉 in exact

arithmetic
12: νsk+j := g∗sk+jGkdsk+j . νsk+j = 〈Arsk+j, rsk+j〉 in exact arithmetic
13: γsk+j := µsk+j/νsk+j . Computing µsk+j and νsk+j requires no communication
14: if sk + j = 1 then
15: ρsk+j := 1
16: else

17: ρsk+j :=
(

1− γsk+j

γsk+j−1

µsk+j

µsk+j−1

1
ρsk+j−1

)−1

18: end if
19: xsk+j+1 := ρsk+j(xsk+j + γsk+jrsk+j) + (1− ρsk+j)xsk+j−1

20: rsk+j+1 := ρsk+j(rsk+j − γsk+jwsk+j) + (1− ρsk+j)rsk+j−1 . Computing xsk+j+1

and rsk+j+1 requires no parallel communication, and no synchronization until
the next outer iteration (for the matrix powers kernel)

21: end for
22: end for

5.4.6 Eigenvalue estimates for basis construction

Some of the s-step bases in the matrix powers kernel, such as the Newton and Chebyshev
bases, require estimates of the eigenvalues of the matrix A. See Chapter 7 for details. In
CA-Arnoldi (Section 3.3), CA-GMRES (Section 3.4), and CA-Lanczos (Section 4.2), our
approach is to execute s (or 2s, in some cases) iterations of standard Arnoldi resp. standard
GMRES resp. standard Lanczos, use the Ritz values collected from these steps to construct
a good basis, and then continue the iteration (without restarting) using CA-Arnoldi resp.
CA-GMRES resp. CA-Lanczos. CG is a method for solving linear systems, not eigenvalue
problems. However, CG is equivalent in exact arithmetic to Lanczos iteration (see e.g.,
Greenbaum [119] or Saad [207]). Saad [207, pp. 192–3] shows how to compute the Lanczos
tridiagonal matrix T using the CG coefficients. We adapt his calculations to show how to
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compute T from s steps of CG3 (Algorithm 32). Since CA-CG and CG3 compute the same
coefficients ρj and γj and the same residual and approximate solution vectors rj resp. xj,
in exact arithmetic, it is easy to continue the CG3 iteration from where we left off using
CA-CG. Without this technique, we would have to restart after collecting the Ritz values,
and thus we would waste s steps running an unoptimized iterative method.

We begin by assuming that we have run s iterations of CG3. The residual vectors r1,
r2, . . . , rs produced by CG3 and CA-CG are, in exact arithmetic, just scaled versions of the
Lanczos basis vectors q1, q2, . . . . In particular,

qj =
eiφj

‖rj‖2

rj for j = 1, 2, . . . , s,

where eiφj is a unit-length scaling whose value doesn’t matter. We can find a formula for
‖rj‖2 in terms of the CG3 coefficients, but this will not be needed.

The s× s tridiagonal matrix T produced by symmetric Lanczos has the following form:
α1 β1 . . . 0

β1 α2
. . .

...
. . . . . . . . .

...
. . . . . . βs−1

0 . . . βs−1 αs

 .

Here, for j > 1,

αj =

{
〈Avj, vj〉 for j = 1,

〈Avj − βjvj−1, vj〉 for j > 1;

and

βj =

{
〈Avj − αjvj, vj+1〉 for j = 1,

〈Avj − αjvj − βj−1vj−1, vj+1〉 for j > 1.

We can simplify these formulae by defining v0 = 0.
We compute αj from the CG3 coefficients by using orthogonality of the Lanczos basis

vectors:
αj = 〈Avj − βjvj−1, vj〉 = 〈Avj, vj〉

=
〈Arj, rj〉
‖rj‖2‖rj‖2

=
〈Arj, rj〉
〈rj, rj〉

=
1

γj
.

Orthogonality of the vj gets us started with computing βj:

βj = 〈Avj − αjvj − βj−1vj−1, vj+1〉

= 〈Avj, vj+1〉 =
〈Arj, rj+1〉
‖rj‖2‖rj+1‖2

.

Now, we rearrange the three-term recurrence for the CG3 residual vectors, and take dot
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products of both sides with rj+1:

rj+1 = ρj (rj − γjArj) + (1− ρj)rj−1 =⇒
ρjγjArj = −rj+1 + ρjrj + (1− ρj)rj−1 =⇒

ρjγj〈Arj, rj+1〉 = −〈rj+1, rj+1〉+ ρj〈rj, rj+1〉+ (1− ρj)〈rj−1, rj+1〉 =⇒
ρjγj〈Arj, rj+1〉 = −〈rj+1, rj+1〉.

This gives us

〈Arj, rj+1〉 = −〈rj+1, rj+1〉
ρjγj

,

and therefore

βj =
〈Arj, rj+1〉
‖rj‖2‖rj+1‖2

= − 〈rj+1, rj+1〉
ρjγj‖rj‖2‖rj+1‖2

= −
√
〈rj+1, rj+1〉

ρjγj
√
〈rj, rj〉

.

The final formulae are

αj =
1

γj
(5.16)

and

βj = −
√
〈rj+1, rj+1〉

ρjγj
√
〈rj, rj〉

. (5.17)

We use these to recover the s× s tridiagonal matrix T and compute from it the Ritz values.

5.5 Left-preconditioned CA-CG

In this section, we derive the left-preconditioned communication-avoiding CG (CA-CG) al-
gorithm, which we call LP-CA-CG (Algorithm 36). Analogous to the previous section’s
CA-CG (Algorithm 35), one outer iteration of LP-CA-CG requires reading the matrix A
and preconditioner M−1 only 1 + o(1) times each from slow memory, rather than s times
each as in standard preconditioned CG. Furthermore, one outer iteration of LP-CA-CG re-
quires only Θ(logP ) messages on P parallel processors for the vector operations, rather than
Θ(s logP ) messages, as standard preconditioned CG does. It is possible to derive a precon-
ditioned version of “CG with inner products” (Algorithm 34), which does not save parallel
messages for the vector operations. We omit the derivation for brevity’s sake. As far as we
know, we are the first to give a fully communication-avoiding version of left-preconditioned
CG that works for arbitrary s-step bases. See Section 5.2 for a full discussion of prior work.

We only consider left preconditioning in this section without loss of generality, be-
cause the right-preconditioned version of CA-CG requires only a minor modification of
left-preconditioned CA-CG. For reasons discussed in Section 4.3.1, the split-preconditioned
algorithm differs from unpreconditioned CA-CG (as shown in Section 5.4) only in the matrix
powers kernel. Thus, we do not show split-preconditioned CA-CG in this section either.
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The reason we developed left-preconditioned CA-Lanczos in such detail in Sections 4.3.3
and 4.3.4 was to make it easier to develop other algorithms, such as left-preconditioned CA-
CG in this section. As we discussed in Section 5.4, the residual vectors r0, r1, . . . in standard
unpreconditioned CG are just scalar multiples of the basis vectors q1, q2, . . . in standard
unpreconditioned Lanczos. In that section, we used that correspondence to derive CA-CG,
and in this section, we use an analogous correspondence to derive LP-CA-CG.

We begin our development of LP-CA-CG in Section 5.5.1 by presenting the three-term
recurrence variant of left-preconditioned CG, and using that to define some notation for
LP-CA-CG. Section 5.5.2 adds another bit of notation, the tridiagonal (but nonsymmetric)
matrix T k. Section 5.5.3 introduces the Gram matrix, which LP-CA-CG uses instead of
computing inner products. In Section 5.5.4, we derive the recurrence relations that allow
us to avoid communication when computing the CG coefficients. The following Section
5.5.6 shows how to compute those CG coefficients, once the recurrence relations are known.
Finally, Section 5.5.7 shows the entire LP-CA-CG algorithm.

5.5.1 Left-preconditioned CG3

Algorithm 36 Left-preconditioned CG3

Input: Ax = b: n× n SPD linear system
Input: n× n SPD (left) preconditioner M−1

Input: Initial guess x1 to Ax = b
Output: Approximate solution xj to Ax = b, with j ∈ {1, 2, . . . }

1: z0 := 0n,1, and q0 := 0n,1
2: z1 := b− Ax0, and q1 := M−1z1 . z1 is the unpreconditioned initial residual, and q1 the

preconditioned initial residual.
3: for j = 1, 2, . . . until convergence do
4: µj := 〈zj, qj〉; test for convergence
5: wj := Aqj and vj := M−1wj
6: νj := 〈wj, qj〉
7: γj := µj/νj
8: if j = 1 then
9: ρj := 1

10: else

11: ρj :=
(

1− γj

γj−1
· µj

µj−1
· 1
ρj−1

)−1

12: end if
13: xj+1 := ρj (xj + γjqj) + (1− ρj)xj−1

14: zj+1 := ρj (zj − γjwj) + (1− ρj)zj−1

15: qj+1 := ρj (qj − γjvj) + (1− ρj)qj−1

16: end for

In this section, we show as Algorithm 36 the left-preconditioned three-term recurrence
variant of CG, which we call “LP-CG3.” That algorithm is a straightforward application of
preconditioning to CG3 (Algorithm 32), the three-term recurrence variant of CG, which we
discussed in Section 5.4.1. LP-CA-CG is mathematically equivalent to LP-CG3, in that it
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computes the same CG coefficients ρj and γj, the same unpreconditioned and preconditioned
residual vectors zj resp. qj, and the same approximate solutions xj as LP-CG3 does, in exact
arithmetic. We therefore use LP-CG3 as a model for the notation of LP-CA-CG.

In LP-CG3, the SPD n×n linear system to solve is Ax = b, M−1 is an SPD preconditioner
for that linear system, and the initial guess is x1. (This differs from the conventional x0 only
so that we can avoid writing x−1.) Note that the notation for the residual vectors in LP-CG3
differs from that in CG3. In CG3, there is only one set of residual vectors rj = b − Axj
for j = 1, 2, . . . . In LP-CG3, there are two sets of residual vectors: the unpreconditioned
residual vectors zj = b − Axj, and the preconditioned residual vectors qj = M−1zj, for
j = 1, 2, . . . . We change the notation to emphasize the similarities between LP-CG3 (and
the subsequent LP-CA-CG algorithm), and the left-preconditioned CA-Lanczos algorithms
we derive in Sections 4.3.3 and 4.3.4. The main difference between the zj and qj vectors in LP-
CG3 (and LP-CA-CG), and the corresponding vectors in left-preconditioned CA-Lanczos,
is that in CA-Lanczos, the zj and qj vectors are scaled so that ‖zj‖M = 1 and ‖qj‖M = 1
(in exact arithmetic). In LP-CG3 and LP-CA-CG, the same zj and qj symbols are used to
indicate the (unscaled) residual vectors. Since we want to use this notation to make it easy
to compare LP-CG3 and LP-CA-CG with left-preconditioned CA-Lanczos, we do not use rj
to indicate the residual vectors.

The indexing of vectors helps illustrate the differences between LP-CA-CG and LP-CG3.
LP-CA-CG has two levels of indexing, so that we write (for instance) xsk+j instead of xj
for the current approximate solution. There, the fixed integer s ∈ {2, 3, . . . } indicates the
matrix powers kernel basis length. The index k = 0, 1, 2, . . . represents the outer iteration
number. In each outer iteration, the matrix powers kernel is invoked twice:

• once for the right-side basis W k = [wsk+1, . . . , wsk+s+1] such thatR (W k) = span{wsk+1,
AM−1wsk+1, (AM−1)2wsk+1, . . . , (AM−1)swsk+1} = Ks+1(AM−1, wsk+1), and

• once for the left-side basis V k = [vsk+1, . . . , vsk+s+1] such that R (V k) = span{vsk+1,
M−1Avsk+1, (M−1A)2vsk+1, . . . , (M−1A)svsk+1} = Ks+1(M−1A, vsk+1).

The initial vectors for these invocations of the matrix powers kernel are wsk+1 := zsk+1 resp.
vsk+1 := qsk+1, and by construction, vsk+1 = M−1wsk+1 for all k. (Note that in LP-CA-
CG, these initial vectors for the matrix powers kernel are not necessarily unit length, as
they are in CA-Lanczos.) Within an outer iteration, LP-CA-CG executes s inner iterations;
j = 1, 2, . . . , s is used to index those inner iterations. Each inner iteration produces an
unpreconditioned residual vector zsk+j+1, a preconditioned residual vector qsk+j+1, and a
current approximate solution xsk+j+1, as well as approximations to the current residual M -
norm 〈zsk+j, qsk+j〉.

In LP-CA-CG, computation of xsk+j+1, qsk+j+1, and zsk+j+1 may be deferred until the
end of outer iteration k. In that case, these vectors with indices sk+2, sk+3, . . . , sk+s+1 =
s(k+ 1) + 1 may be computed all at the same time. This may have performance advantages.

Also in LP-CA-CG, we let

Zk = [zsk+1, . . . , zsk+s], and

Qk = [qsk+1, . . . , qsk+s]
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denote the matrices whose columns are the unpreconditioned resp. preconditioned residual
vectors produced by outer iteration k. Occasionally we will need to extend those basis
matrices by one additional vector, in which case we will write

Zk = [Zk, zsk+s+1], and

Q
k

= [Qk, qsk+s+1].

We denote by Gk the 2s + 1 by 2s + 1 Gram matrix (which we will describe further in
Section 5.5.3) at outer iteration k. Even at the first outer iteration k = 0, Gk is still 2s+ 1
by 2s + 1, though all entries of it but the lower right s + 1 by s + 1 block are zero when
k = 0. (This is purely a notational convenience.)

5.5.2 Tridiagonal matrix Tk

The first new notation we introduce to explain LP-CA-CG is the (nonsymmetric) s × s
tridiagonal matrix Tk, and its s + 1 by s extension T k. In LP-CG3 (Algorithm 36), the
preconditioned residual vectors qi satisfy the recurrence

ρiγiM
−1Aqi = (1− ρi)qi−1 + ρiqi − qi+1.

In LP-CA-CG, the recurrence is the same, but the single index i is replaced with a double
index sk + j, as mentioned above:

ρsk+jγsk+jM
−1Aqsk+j = (1− ρsk+j)qsk+j−1 + ρsk+jqsk+j − qsk+j+1. (5.18)

Recall that k is the outer iteration index, and j = 1, 2, . . . , s is the inner iteration index. This
forms a three-term recurrence, much like the Lanczos three-term recurrence. In a similar
way, we may write this recurrence in matrix form with a tridiagonal matrix. The case of
LP-CA-CG differs in two ways:

1. The resulting tridiagonal matrix is not symmetric, and

2. We only want to write this recurrence in matrix form for the vectors of outer iteration
k, not for all the vectors.

For each outer iteration, let ∆k be the s× s diagonal matrix with ∆k(j, j) = ρsk+jγsk+j. Let
T̃k be the following s× s tridiagonal matrix:

T̃k =


ρsk+1 1− ρsk+2 . . . 0

−1 ρsk+2
. . .

...
...

. . . . . . 1− ρsk+s

0 . . . −1 ρsk+s

 (5.19)

and let T̃ k be the s+ 1 by s tridiagonal matrix given by

T̃ k =

(
T̃k

0, . . . , 0,−1

)
. (5.20)
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Then we may write the three-term recurrence (5.18) in matrix form as follows:

M−1AQk∆k = (1− ρsk+1)qske
T
1 +Q

k
T̃ k. (5.21)

where Q
k

= [Qk, qs(k+1)+1]. Note that the matrix formulation of the usual Lanczos recurrence
would start with the first vector q1, and not with the vector qsk+1. This is why Equation
(5.21) includes the “previous” vector qsk, as well as the “final” vector qs(k+1)+1.

We can simplify Equation (5.21) by eliminating the diagonal scaling ∆k. We do so by
multiplying both sides of Equation (5.21) on the right by ∆−1

k :

M−1AQk = (1− ρsk+1)qske
T
1 ∆−1

k +Q
k
T̃ k∆

−1
k

=
1− ρsk+1

ρsk+1γsk+1

qske
T
1 ∆−1

k +Q
k
T̃ k∆

−1
k .

(5.22)

If we then define the s× s tridiagonal matrix Tk as

Tk = T̃k∆
−1
k (5.23)

and the s+ 1 by s tridiagonal matrix T k as

T k = T̃ k∆
−1
k =

(
T̃k∆

−1
k

−ρ−1
sk+sγ

−1
sk+s · eTs

)
, (5.24)

we may write Equation (5.21) in final matrix form as

M−1AQk =
1− ρsk+1

ρsk+1γsk+1

qske
T
1 +Q

k
T k. (5.25)

We will make use of this notation in Section 5.5.4 when developing formulae for other recur-
rences in LP-CA-CG.

5.5.3 The Gram matrix

In Section 4.3.1, we observed that the basis vectors in left-preconditioned Lanczos (both in
standard Lanczos or CA-Lanczos) are not orthogonal with respect to the usual Euclidean
inner product. Rather, the qi basis vectors are orthogonal with respect to the M inner
product (whereM is the SPD preconditioner for the matrixA), so that q∗jMqi = δij. Also, the
zi basis vectors are orthogonal with respect to the M−1 inner product, so that z∗jM

−1zi = δij.
This means that one cannot use a QR factorization like Householder QR to orthogonalize
the basis vectors. We solved this problem for CA-Lanczos in Section 4.3.4 by computing
what we called a “Gram matrix” in each outer iteration. The Gram matrix is the matrix
of inner products of the basis vectors. We show in Section 2.5 how computing the Gram
matrix requires only one reduction over blocks, at a cost of logP messages in parallel, and
how it can be used to M -orthogonalize the basis vectors. The 2s+ 1 by 2s+ 1 Gram matrix
Gk is computed using both the current sets of s+ 1 not yet orthogonalized basis vectors V k

and W k, as well as the previous set of already M -orthogonalized s basis vectors Q
k−1

. In
LP-CA-CG, we will use a combination of the Gram matrix and coefficients computed via a
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recurrence relation to orthogonalize the current set of s+1 basis vectors against the previous
set of s already orthogonal basis vectors. The properties of the Lanczos algorithm guarantee
that in exact arithmetic, this suffices in order to make the current set of s+ 1 basis vectors
orthogonal with respect to all the previously orthogonalized basis vectors.

For LP-CA-CG, Equation (5.26) gives the definition of the Gram matrix, analogous to
Equation (4.21) in Section 4.3.4 for left-preconditioned CA-Lanczos:

Gk =

(
Q∗k−1Zk−1 Q∗k−1W k

V ∗kZk−1 V ∗kW k

)
. (5.26)

The LP-CA-CG residual vectors zi (which are unpreconditioned residuals) and qi (which
are preconditioned residuals) differ from the left-preconditioned CA-Lanczos basis vectors,
in that the LP-CA-CG residual vectors do not necessarily have unit length in the M -norm.
That means the CA-CG Gram matrix (Equation (5.26)) simplifies differently than the CA-
Lanczos Gram matrix (Equation (4.21) in Section 4.3.4), even though we use the same
notation for both. For example, in LP-CA-CG, Q∗k−1Zk−1 = Dk−1, where Dk−1 is an s × s
diagonal matrix with

Dk−1(j, j) = µs(k−1)+j. (5.27)

This simplification assumes M -orthogonality of the residual vectors, so making it may result
in loss of accuracy in finite-precision arithmetic. In CG, orthogonality of the residual vectors
is less important than orthogonality of the basis vectors in Lanczos, so the simplification
may be less risky. Note that if the current outer iteration is k, the entries µs(k−1)+j of this
diagonal matrix have already been computed by outer iteration k − 1 of CA-CG and are
available for reuse in outer iteration k, when Gk is computed. The second simplification to
the Gram matrix expression in Equation (5.26), namely

V ∗kZk−1 = (Q∗k−1W k)
∗,

makes no orthogonality assumptions on the residual vectors. We have already seen this
simplification in left-preconditioned CA-Lanczos. If we include all the simplifications, the
resulting Gram matrix is given by

Gk =

(
Dk−1 Q∗k−1W k

(Q∗k−1W k)
∗ V ∗kW k

)
, (5.28)

where Dk−1 is given by Equation (5.27). Note that Gk is symmetric: V ∗kW k = V ∗kMV k, and
M is symmetric (SPD, in fact). Furthermore, Gk is positive definite, as long as V k is full
rank and no diagonal entries of Dk−1 are zero.

5.5.4 Vector coefficients

We derive LP-CA-CG from LP-CG3, and our derivation follows the pattern of our deriva-
tion of left-preconditioned CA-Lanczos in Section 4.3. Iteration i of LP-CG3 computes the
following quantities directly, in the following partial order:

1. µi := 〈zi, qi〉 (test convergence)
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2. wi := Aqi

3. vi := M−1(Aqi) (depends on Aqi)

4. νi := 〈Aqi, qi〉 (depends on Aqi)

5. zi+1 (depends on Aqi, 〈Aqi, qi〉, and 〈zi, qi〉)

6. qi+1 (depends on M−1Aqi, 〈Aqi, qi〉, and 〈zi, qi〉)

7. xi+1 (depends on 〈Aqi, qi〉 and 〈zi, qi〉)

LP-CA-CG needs the same quantities at inner iteration sk+ j = i, where j = 1, 2, . . . , s and
k is the current outer iteration index. However, computing the first four quantities directly
would require communication, assuming that the preconditioner is nontrivial. LP-CA-CG
avoids this by means of the following approach:

• Express the vectors qsk+j and M−1Aqsk+j as linear combinations of the columns of
Qk−1 = [qs(k−1)+1, . . . , qsk] and the columns of V k = [vsk+1, . . . , vsk+s+1].

• Express the vectors zsk+j and Aqsk+j (= AM−1zsk+j) as linear combinations of the
columns of Zk−1 = [zs(k−1)+1, . . . , zsk] and the columns of W k = [wsk+1, . . . , wsk+s+1].

• The coefficients of those linear combinations form short (length 2s + 1) vectors. Use
those along with the 2s + 1 by 2s + 1 Gram matrix Gk to reconstruct the required
inner products without communication, and use the values of those inner products to
compute the vectors for the next inner iteration.

The computation of zsk+j+1 and qsk+j+1 for j = 1, 2, . . . , s in each outer iteration k, as well
as the computation of the inner products 〈zsk+j, qsk+j〉 and 〈Aqsk+j, qsk+j〉 for j = 1, 2, . . . , s
in outer iteration k, may be deferred until the end of that outer iteration. This may have
performance advantages, both because it avoids synchronization points (the inner products
are required to compute the vectors), and because it permits a BLAS 3 - style computation of
the vectors, rather than the BLAS 1 computation in the standard algorithm. Deferring the
computation of zsk+j+1 and qsk+j+1 until the end of outer iteration k also requires deferring
the computation of the current approximate solution xsk+j+1 in the same way.

Analogously to the derivation in Section 5.4 of the nonpreconditioned version of CA-CG,
we will use two sets of coefficients in our derivation of LP-CA-CG. For j = 0, 1, . . . , s, the
vector dsk+j of 2s+ 1 coefficients satisfies

[Zk−1,W k]dsk+j = Aqsk+j

and
[Qk−1, V k]dsk+j = M−1Aqsk+j.

For j = 0, 1, . . . , s+ 1, the vector gsk+j of 2s+ 1 coefficients satisfies

[Zk−1,W k]gsk+j = zsk+j
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and
[Qk−1, V k]gsk+j = qsk+j.

We derive below a recurrence relation for each of these coefficients. After that, in Section
5.5.6, we show how to use the dsk+j and gsk+j coefficients along with the Gram matrix Gk

for communication-free computation of the values of the inner products 〈zsk+j, qsk+j〉 and
〈Aqsk+j, qsk+j〉.

Coefficients dsk+j

Here, we derive a recurrence for dsk+j, for j = 0, 1, 2, . . . , s. The vector dsk+j of 2s + 1
coefficients satisfies two equations:

[Zk−1,W k]dsk+j = Aqsk+j, and

[Qk−1, V k]dsk+j = M−1Aqsk+j.
(5.29)

We can use the recurrence

ρsk+jγsk+jAqsk+j = −zsk+j+1 + ρsk+jzsk+j + (1− ρsk+j)zsk+j−1. (5.30)

for the CA-CG residual vectors to derive a recurrence for dsk+j, just as we did to derive an
analogous recurrence for left-preconditioned CA-Lanczos in Section 4.3.3.

The cases j = 0 and j = 1 are the base cases of the recurrence for dsk+j. We can compute
these cases directly, without recursion. For j = 0, we can find dsk via

[Zk−1,W k]dsk = Aqsk

=
1− ρsk
ρskγsk

zsk−1 + γ−1
sk zsk − ρ

−1
sk γ

−1
sk zsk+1,

so that

dsk =

[
0T1,s−2,

1− ρsk
ρskγsk

, γ−1
sk ,−ρ

−1
sk γ

−1
sk , 0

T
1,s

]
. (5.31)

For j = 1, we can find dsk+1 via

[Zk−1,W k]dsk+1 = Aqsk+1

= W kBk(:, 1 : 2)

so that
dsk+1 =

[
0T1,s, Bk(:, 1), Bk(:, 2), 0T1,s−1

]
. (5.32)

Now we need to find dsk+j for j = 2, 3, . . . , s. To do so, we begin by stating a fact that is
obvious by inspection:

Aqsk+j ∈ span{zsk−j+1, . . . , zsk} ⊕ span{wsk+1, . . . , wsk+j+1}, for j = 2, . . . , s. (5.33)

This means that dsk+j has a particular sparsity structure, given by

• Only dsk(s− 1 : s+ 1) are nonzero
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• Only dsk+1(s+ 1 : s+ 2) are nonzero

• For j = 2, . . . , s, only dsk+j(1 + s− j : 1 + s+ j) are nonzero.

In particular, only for j = s are the first and last entries of dsk+j nonzero. The sparsity
pattern of dsk+j is the same as the vector of coefficients of the same name in unpreconditioned
CA-CG (Algorithms 34 and 35). See Figure 5.1 in Section 5.4.4 for an illustration.

The sparsity pattern of dsk+j matters not only for making computation more efficient,
but also for the following derivation of a recurrence for dsk+j. We begin with the definition
of dsk+j−1:

[Zk−1,W k]dsk+j−1 = Aqsk+j−1, (5.34)

where j = 2, . . . , s. Multiply both sides of Equation (5.34) by AM−1, using Zk−1 = MQk−1

and W k = MV k:
[AQk−1, AV k]dsk+j−1 = A(M−1Aqsk+j−1). (5.35)

The right-hand side of Equation (5.35) can be replaced by the recurrence (5.30) for the CG
residual vectors, and multiplying through by A on the left:

[AQk−1, AV k]dsk+j−1 =

1− ρsk+j−1

ρsk+j−1γsk+j−1

Aqsk+j−2 + γ−1
sk+j−1Aqsk+j−1 − ρ−1

sk+j−1γ
−1
sk+j−1Aqsk+j. (5.36)

Simplify the right-hand side of Equation (5.36) by applying the formula for dsk+j:

[AQk−1, AV k]dsk+j−1 =

1− ρsk+j−1

ρsk+j−1γsk+j−1

dsk+j−2 + γ−1
sk+j−1dsk+j−1 − ρ−1

sk+j−1γ
−1
sk+j−1dsk+j, (5.37)

and isolate the term dsk+j, which we want to know:

ρ−1
sk+j−1γ

−1
sk+j−1dsk+j =

− [AQk−1, AV k]dsk+j−1 −
1− ρsk+j−1

ρsk+j−1γsk+j−1

dsk+j−2 − γ−1
sk+j−1dsk+j−1. (5.38)

The only term left to simplify in Equation (5.38) is [AQk−1, AV k]dsk+j−1. We can do so by
recalling the definition of the tridiagonal matrix T k, and the definition of the change-of-basis
matrix Bk:

AQk−1 =
1− ρs(k−1)+1

ρs(k−1)+1γs(k−1)+1

zs(k−1)e
∗
1 + Zk−1T k−1 (5.39)

and
AV k = W kBk + ? · wsk+s+2e

∗
s+1. (5.40)

In Equation (5.40), ? represents some coefficient whose value does not matter. The reason
it does not matter is because for j = 2, . . . , s, the first and last elements of dsk+j−1 are zero
(see Equation (5.33)). As a result,

[AQk−1, AV k]dsk+j−1 =
[
Zk−1T k−1,W kBk]

]
=
[
Zk−1Tk−1, T k−1(s+ 1, s)zsk+1e

∗
1 +W kBk

] (5.41)
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Furthermore, T k−1(s+ 1, s) = −ρ−1
sk γ

−1
sk (see Equations (5.20) and (5.24)), so that

[AQk−1, AV k]dsk+j−1 =
[
Zk−1Tk−1,−ρ−1

sk γ
−1
sk zsk+1e

∗
1 +W kBk

]
= [Zk−1,W k]

(
Tk−1 0s,s
0s+1,s −ρ−1

sk γ
−1
sk e1e

∗
1 +Bk

)
.

(5.42)

This makes it easy now to simplify Equation (5.38), so we can obtain a recurrence for dsk+j

for j = 2, . . . , s:

dsk+j = ρsk+j−1γsk+j−1

(
−Tk−1 0s,s
0s+1,s ρ−1

sk γ
−1
sk e1e

∗
1 −Bk

)
dsk+j−1

− (1− ρsk+j−1)dsk+j−2 − ρsk+j−1dsk+j−1. (5.43)

We show the complete recurrence formula for dsk+j as Equation (5.44):

dsk+j =



[0T1,s−2,
1−ρsk

ρskγsk
, γ−1

sk ,−ρ
−1
sk γ

−1
sk , 0

T
1,s] for j = 0,

[0T1,s, Bk(:, 1), Bk(:, 2), 0T1,s−1] for j = 1,

ρsk+j−1γsk+j−1

(
−Tk−1 0s,s

0s+1,s ρ−1
sk γ

−1
sk e1e

∗
1 −Bk

)
dsk+j−1

− 1− ρsk+j−1

d sk+j−2
− ρsk+j−1dsk+j−1

for j = 2, . . . , s.

(5.44)

5.5.5 Coefficients gsk+j

For j = 0, 1, . . . , s, the vector gsk+j of 2s+ 1 coefficients satisfies two equations:

[Zk−1,W k]gsk+j = zsk+j, and

[Qk−1, V k]gsk+j = qsk+j.
(5.45)

We can use the recurrence for the CA-CG residual vectors to derive a recurrence for gsk+j,
just as we used the recurrence for the CA-Lanczos basis vectors to derive the analogous
recurrence for the CA-Lanczos algorithm.

The two base cases of the recurrence are j = 0 and j = 1. There are furthermore two
cases for j = 0: k = 0 (the first outer iteration), and k > 0 (subsequent outer iterations).
For k = 0, gsk = 0, else for k > 0, gsk = [0s−1, 1, 0s+1]T . For all k, gsk+1 = [0s, 1, 0s]

T . The
recurrence, which holds for j = 2, 3, . . . , s, is given by

gsk+j = −ρsk+j−1γsk+j−1dsk+j−1 + ρsk+j−1gsk+j−1 + (1− ρsk+j−1)gsk+j−2. (5.46)

Thus, we can express gsk+j for any valid k and j as follows:

gsk+j =



02s+1 k = 0 and j = 0

[0s−1, 1, 0s+1]T k > 0 and j = 0

[0s, 1, 0s]
T j = 1,

− ρsk+j−1γsk+j−1dsk+j−1+

ρsk+j−1gsk+j−1+

(1− ρsk+j−1)gsk+j−2

j = 2, 3, . . . , s.

(5.47)
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5.5.6 Inner products

Each inner iteration sk + j of left-preconditioned CA-CG requires the value of two different
inner products:

• 〈zsk+j, qsk+j〉

• 〈Aqsk+j, qsk+j〉

In fully communication-avoiding CA-CG, these inner products are not computed directly.
Rather, they are computed using the above dsk+j and gsk+j coefficients and the Gram matrix
Gk. The first inner product’s value may be computed by

〈zsk+j, qsk+j〉 = g∗sk+jGkgsk+j. (5.48)

Recall that Gk is symmetric. It is also positive definite, as long as V k is full rank. Thus,
as long as V k is sufficiently well conditioned, g∗sk+jGkgsk+j > 0 as long as gsk+j 6= 0, even in
finite-precision arithmetic. The second inner product’s value may be computed by

〈Aqsk+j, qsk+j〉 = g∗sk+jGkdsk+j. (5.49)

5.5.7 LP-CA-CG algorithm

Algorithm 37 shows left-preconditioned CA-CG in its entirety. Note that the vector opera-
tions are not strictly necessary until the end of each outer iteration. That means they can
be coalesced into a single BLAS 3 - type operation, which also would reduce the number of
synchronization points.

5.6 Summary

In this chapter, we presented both unpreconditioned and preconditioned communication-
avoiding versions of CG. They improve on previous work first in how they avoid communi-
cation:

• Their use of the matrix powers kernel (Sections 2.1 and 2.2) means that they send a
factor of Θ(s) fewer messages in parallel for the sparse matrix operations. They also
read the sparse matrix (and preconditioner, if applicable) from slow memory a factor
of s fewer times (each).

• If parallel messages are expensive, the algorithms can also avoid communication in
the vector operations, by replacing the dot products with block reductions (the Gram
matrix computation). This means they require a factor of s fewer messages in parallel
than standard CG for the vector operations.

Second, the algorithms improve on accuracy and numerical stability:

• They can avoid communication in the sparse matrix operations with a much larger
class of preconditioners (described in Section 2.2). Previous s-step CG algorithms
were limited to preconditioners that require no communication.
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Algorithm 37 Left-preconditioned CA-CG

Input: Ax = b: n× n SPD linear system
Input: Initial guess x1 to Ax = b
Output: Approximate solution xi to Ax = b, with i ∈ {1, 2, . . . }

1: z0 := 0, z1 := b− Ax0 . z1 is the unpreconditioned initial residual
2: q0 := 0, q1 := M−1z1 . q1 is the preconditioned initial residual
3: for k = 0, 1, . . . until convergence do
4: Compute V k via matrix powers kernel . R (V k) = Ks+1(M−1A, qsk+1)
5: Compute W k via matrix powers kernel . M−1W k = V k

6: Gk,k−1 := V ∗kZk−1, Gkk := V ∗kW k . 2 block reductions; can compute by reading V k

only once, saving memory traffic

7: Gk :=

(
Dk−1 G∗k,k−1

Gk,k−1 Gkk

)
(Gram matrix, via Eq. (5.28))

8: for j = 1 to s do
9: Compute dsk+j (Eq. (5.44)) and gsk+j (Eq. (5.47))

10: µsk+j := g∗sk+jGkgsk+j (Eq. (5.48)); test for convergence . µsk+j = 〈zsk+j, qsk+j〉
11: νsk+j := g∗sk+jGkdsk+j (Eq. (5.49)) . νsk+j = 〈Aqsk+j, qsk+j〉
12: if sk + j = 1 then
13: ρsk+j := 1
14: else

15: ρsk+j :=
(

1− γsk+j

γsk+j−1
· 〈zsk+j ,qsk+j〉
〈zsk+j−1,qsk+j−1〉

· 1
ρsk+j−1

)−1

16: end if . Nothing from top of j loop to here requires communication
17: xsk+j+1 := ρsk+j(xsk+j + γsk+jqsk+j) + (1− ρsk+j)xsk+j−1

18: usk+j := [Qk−1, V k]dsk+j

19: qsk+j+1 := ρsk+j(qsk+j − γsk+jusk+j) + (1− ρsk+j)qsk+j−1

20: ysk+j := [Zk−1,W k]dsk+j

21: zsk+j+1 := ρsk+j(zsk+j − γsk+jysk+j) + (1− ρsk+j)zsk+j−1 . None of the last 5 lines
require parallel communication or synchronization

22: end for
23: end for

• They can use any of the s-step bases we discuss in Chapter 7, with or without pre-
conditioning. A better basis allows larger basis lengths s without sacrificing numerical
stability or requiring expensive reorthogonalization of the basis vectors. As a result,
our algorithms have larger potential speedups.

Numerical and benchmarking studies are required, but our successes with CA-GMRES (Sec-
tions 3.4 and 3.5) convince us of the potential of our CA-CG algorithms.
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Chapter 6

Communication-avoiding
nonsymmetric Lanczos and BiCG

In this chapter, we briefly discuss how one might go about developing versions of iterative
methods related to nonsymmetric Lanczos iteration (for solving Ax = λx) or BiCG (for
solving Ax = b), that avoid communication in the sparse matrix operations and the vector
operations.

Previous authors have come up with an s-step version of nonsymmetric Lanczos, though
their algorithm did not use optimized kernels and required use of the monomial s-step basis.
Using techniques discussed in this thesis, we outline in this chapter how one might remove
these restrictions, for both nonsymmetric Lanczos (for solving eigenvalue problems) and
BiCG (the Method of Biconjugate Gradients, for solving linear systems). Also in this chapter,
we point out alternate ways to optimize algorithms related to nonsymmetric Lanczos and
BiCG, including using the matrix powers kernel to accelerate the lookahead process.

In Section 6.1 of this chapter, we discuss nonsymmetric Lanczos, including the standard
version of the algorithm, an existing s-step variant, and our suggested approach to develop a
communication-avoiding version analogous to CA-Arnoldi and symmetric CA-Lanczos. We
also suggest how one could use the matrix powers kernel to accelerate lookahead in nonsym-
metric Lanczos. Finally, in Section 6.2, we cite our colleague Erin Carson’s development of
a new communication-avoiding version of BiCG.

6.1 Nonsymmetric Lanczos

6.1.1 The standard algorithm

Nonsymmetric Lanczos iteration, also called Lanczos biorthogonalization, is an iterative
method for solving sparse nonsymmetric eigenvalue problems. It is shown here as Algo-
rithm 38. (Note that we use a nonstandard notation for the algorithm. This will help us
compare it in Section 6.1.6 to left-preconditioned symmetric Lanczos.) After k iterations, if
the method does not break down (see Section 6.1.2), it produces a k × k possibly nonsym-
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Algorithm 38 Nonsymmetric Lanczos iteration

Input: n× n matrix A and two length n starting vectors z1 and q1 . qk vectors span
K(A, q1), and zk vectors span K(A∗, z1)

Require: 〈z1, q1〉 = 1
1: q0 := 0, z0 := 0
2: for k = 1 to convergence do
3: q′k+1 := Aqk − γkqk−1

4: z′k+1 := A∗zk − βkzk−1

5: αk := 〈z′k+1, qk〉
6: q′′k+1 := q′k+1 − αkqk
7: z′′k+1 := z′k+1 − ᾱkqk
8: ωk+1 := 〈z′′k+1, q

′′
k+1〉

9: if ωk+1 = 0 then
10: The algorithm has broken down (see Section 6.1.2 for the causes and possible

ways to recover from a breakdown).
11: end if
12: βk+1 :=

√
|ωk+1|

13: γk+1 := ωk+1/βk+1 . One may choose any nonzero βk+1 and γk+1 such that
βk+1γk+1 = ωk+1; the choice shown here is typical.

14: qk+1 := q′′k+1/βk+1

15: zk+1 := z′′k+1/γk+1

16: end for

metric tridiagonal matrix

Tk =


α1 γ2 . . . 0

β2 α2
. . .

...
...

. . . . . . γk
0 . . . βk αk

 . (6.1)

The eigenvalues (called either “Ritz values” or “Petrov values”) of Tk are approximations of
the eigenvalues of A. These k iterations also produce two sets of k basis vectors each: one
set {q1, q2, . . . , qk} which is a basis for a Krylov subspace involving A, and the other set
{z1, z2, . . . , zk} which is a basis for a Krylov subspace involving A∗. For more details on
nonsymmetric Lanczos, see [15].

The method of biconjugate gradients, also called BiCG, is to nonsymmetric Lanczos as
ordinary CG is to symmetric Lanczos. Several iterative methods for solving sparse linear
systems originate from BiCG. “Originate” may mean either that they are modifications of
BiCG in order to improve numerical stability, or that they are mathematically related (for
example, they may use the same two Krylov subspaces that nonsymmetric Lanczos does,
but in a different way). These algorithms include QMR [102], TFQMR [101], CGS [213],
and BiCGSTAB [225], among others. For more details, see [22].
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6.1.2 Breakdown of nonsymmetric Lanczos

Symmetric Lanczos, Arnoldi, and related Krylov methods such as CG, all “break down” in
exact arithmetic, when the maximum dimension of their Krylov subspace has been reached.
This dimension may be smaller than the dimension of the matrix. Regardless, one often calls
this a “lucky breakdown,” because it means that an invariant subspace has been reached.
When solving linear systems Ax = b for nonsingular A, it means one has computed the exact
solution (hence “lucky”). When solving eigenvalue problems, it means one has reached an
invariant subspace and the subspace’s corresponding eigenvalues have converged.

Nonsymmetric Lanczos does have an analogous “lucky breakdown” condition, but it also
has another case, which Wilkinson termed a “serious breakdown” (see e.g., [190, p. 107]).
Both possibilities are summarized in e.g., Parlett et al. [190], and they both relate to the
terms in the inner product

ωk+1 := 〈z′′k+1, q
′′
k+1〉 (6.2)

in Line 8 of Algorithm 38. The first case, when either of the vectors z′′k+1 or q′′k+1 are zero, is
analogous to the aforementioned “lucky breakdown” in Arnoldi or symmetric Lanczos. The
second case – the “serious breakdown” mentioned above – is when neither of the vectors in
the inner product in Equation (6.2) are zero, but ωk+1 is zero.

The possibility of “serious breakdown” has important consequences for an s-step version
of nonsymmetric Lanczos, as we will discuss below. In fact, s-step versions of nonsymmetric
Lanczos may skip over serious breakdowns, but they also may make it harder to distinguish
between the different breakdown cases and the third case of an ill-conditioned s-step basis.

6.1.3 Lookahead and the s-step basis

Nonsymmetric Lanczos requires modifications in order to recover from serious breakdown.
One option is lookahead, which is given an overview e.g., in [15]. Lookahead involves “skip-
ping over” the offending iteration in the algorithm, by constructing different bases and
relaxing the requirement for that step that the Lanczos tridiagonal matrix be tridiagonal.
Two papers on this subject are Parlett et al. [190] and Freund et al. [103].

We mention lookahead because the lookahead approaches mentioned above entail the
construction of either a the monomial (in the case of Parlett et al.) or Chebyshev (in the
case of Freund et al.) s-step basis. As far as we know, no one has suggested accelerating this
computation by using an optimized matrix powers kernel. We make this suggestion now as
a direction for future work.

Since serious breakdown may not occur often (or at all), it is not clear whether the cost
of setting up the matrix powers kernel is justified. As Section 2.1 indicates, this setup cost
may be significant. However, one could make an s-step version of nonsymmetric Lanczos
with lookahead, and exploit the same matrix powers kernel for both the s-step basis and
lookahead. We will discuss serious breakdown and s-step versions of nonsymmetric Lanczos
below.
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6.1.4 s-step nonsymmetric Lanczos

Kim and Chronopoulos [152] develop an s-step version of nonsymmetric Lanczos iteration.
The authors sought both to improve data locality, and to reduce the number of global syn-
chronization steps. Their algorithm replaces the 2s inner products in s iterations of standard
nonsymmetric Lanczos, with a single block inner product (a matrix multiply of s×n by n×s,
where n is the dimension of A). That block inner product can be implemented with a single
reduction operation. The two “tall and skinny” n × s matrices involved in this block inner
product are generated by two independent invocations of the s-step monomial basis. The
authors intend by their use of an s-step basis, as Chronopoulos and his coauthors intended
in their other s-step methods, to expose the data locality latent in that operation. However,
Kim and Chronopoulos do not have a specialized matrix powers kernel for computing the
s-step basis. Just like s-step CG or symmetric Lanczos, the algorithm requires a factor of
Θ(s) additional vectors to be stored.1

The s-step nonsymmetric Lanczos iteration computes the same approximate eigenvalues
and eigenvectors in the same number of iterations, in exact arithmetic, as does standard
nonsymmetric Lanczos. However, unlike standard nonsymmetric Lanczos, this s-step version
produces a block (nonsymmetric) tridiagonal matrix, where the blocks are s× s. This does
not significantly increase the computational cost, since s is typically a small constant.

Kim and Chronopoulos’ algorithm is restricted to the monomial basis. Their derivation of
the method (see [152, p. 365], equations (3.7.1), (3.7.2), (3.8.1), and (3.7.2)) depends on the
use of the monomial basis. (It seems, though we have not proven this, that this dependency
is related to the monomial basis being the only basis (modulo scaling the vectors) for which
the matrix of moments is equal to the Gram matrix of the basis vectors.) As we mentioned
before in the context of CG and symmetric Lanczos, limiting oneself to the monomial basis
has the potential to hinder numerical stability. It also may limit performance, by forcing
s to be smaller than it should be for optimal matrix powers kernel performance. Also, the
authors perform no scaling of the matrix A, which has the potential to make this worse, as
we discuss in Chapter 7.

Another possible deficiency in the algorithm is that it only makes available the s-step basis
vectors. It does not compute the actual “Lanczos vectors,” which are mutually biorthogo-
nal in exact arithmetic, and the vectors it does compute are not mutually biorthogonal. In
standard nonsymmetric Lanczos, the Lanczos biorthogonal vectors do tend to lose their mu-
tual biorthogonality in finite-precision arithmetic, sometimes making re-biorthogonalization
necessary. (See Day [68] for a discussion of different re-biorthogonalization approaches,
and an argument for re-biorthogonalizing under a “semiduality” condition analogous to the
semiorthogonality condition in symmetric Lanczos (see e.g., [15]).) In Kim and Chronopou-
los’ algorithm, this loss of mutual biorthogonality may be exacerbated by the Lanczos vectors
being represented implicitly, as a collection of vectors that are not mutually biorthogonal.
This may also complicate the process of detecting whether re-biorthogonalization is neces-
sary.

1While symmetric and nonsymmetric Lanczos both may need to keep the Lanczos basis vectors from all
past iterations in order to perform re(bi)orthogonalization, all but the previous two vectors do not need to be
accessed unless re(bi)orthogonalization takes place. Thus, they need not occupy space even in slow memory,
for example; they may be pushed to a backing store.
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6.1.5 Does s-step Lanczos need lookahead?

Kim and Chronopoulos point out that their use of an s-step basis may sometimes overcome
the breakdown conditions that may make nonsymmetric Lanczos unreliable in some case. In
particular, they point out [152, p. 368] that in exact arithmetic, if breakdown were to occur
at a particular iteration k of standard nonsymmetric Lanczos, then in s-step nonsymmetric
Lanczos, that same breakdown could only occur if k is a multiple of s. This is because their
algorithm uses bases resulting in a block tridiagonal Lanczos matrix, which has the same
effect as performing lookahead once every s iterations of the standard algorithm. Detecting a
breakdown in s-step nonsymmetric Lanczos in exact arithmetic amounts to making sure that
none of the block inner products of the two s-step bases have determinant zero. However,
it is unclear how to translate the above exact-arithmetic observation into a useful test when
working in finite-precision arithmetic, especially given the loss of mutual biorthogonality
mentioned in Section 6.1.4. Kim and Chronopoulos do not address this issue in their paper.

6.1.6 Towards nonsymmetric CA-Lanczos

Algorithm 39 Left-preconditioned symmetric Lanczos iteration
Input: n× n SPD matrix A
Input: n× n SPD preconditioner M−1

Input: Length n starting vector z1 with ‖z1‖2 = 1 . qk vectors span K(M−1A,M−1z1),
and zk vectors span K(AM−1, z1)

1: q0 := 0, z0 := 0
2: q1 := M−1z1

3: for k = 1 to convergence do
4: z′k+1 := Aqk − βkzk−1

5: αk := 〈z′k+1, qk〉
6: z′′k+1 := z′k+1 − αkzk
7: q′′k+1 := M−1z′′k+1

8: ωk+1 :=
√
〈z′′k+1, q

′′
k+1〉

9: qk+1 := q′′k+1/ωk+1

10: zk+1 := z′′k+1/ωk+1

11: end for

For the reasons mentioned in Section 6.1.4, we think it necessary to develop a “nonsym-
metric CA-Lanczos” algorithm, rather than to use the one of Kim and Chronopoulos. We
do not develop this algorithm in full in this thesis; we leave it for future work. However,
doing so should require only small changes to the left-preconditioned symmetric CA-Lanczos
algorithm of Section 4.3.4 (Algorithm 29). The only major changes, in fact, are to what the
two invocations of the matrix powers kernel per outer iteration should compute. We will
show in the paragraphs below why we believe this to be the case.

We first compare the zk and qk basis vectors in the left-preconditioned version of (stan-
dard) symmetric Lanczos (Algorithm 26 in Section 4.3.1), with the two sets of basis vectors
in (nonpreconditioned) nonsymmetric Lanczos. We reproduce left-preconditioned symmet-
ric Lanczos here as Algorithm 39, with a few small changes in notation to make clear the
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similarities between the two algorithms. In Algorithm 39, the basis vectors q1, q2, . . . , qk
span the Krylov subspace

Kk(M−1A, q1) = span{q1,M
−1Aq1, (M

−1A)2q1, . . . , (M
−1A)k−1q1},

and the basis vectors z1, z2, . . . , zk span the Krylov subspace

Kk(AM−1, z1) = span{z1, AM
−1z1, (AM

−1)2z1, . . . , (AM
−1)k−1z1}.

In nonsymmetric Lanczos, the basis vectors q1, q2, . . . , qk span the Krylov subspace

Kk(A, q1) = span{q1, Aq1, A
2q1, . . . , A

k−1q1},

and the basis vectors z1, z2, . . . , zk span the Krylov subspace

Kk(A∗, z1) = span{z1, A
∗z1, (A

∗)2z1, . . . , (A
∗)k−1z1}.

Abstractly, in each algorithm there are two different Krylov subspaces: Kk(A1, q1) and
Kk(A2, z1). In symmetric Lanczos, A1 = M−1A and A2 = AM−1, and in nonsymmetric
Lanczos, A1 = A and A2 = A∗. In fact, in both cases A1 = A∗2 (since in symmetric Lanczos,
we assume that A and M−1 are both symmetric). The only difference is that in symmetric
Lanczos, the basis vectors q1 and z1 are related by preconditioning: q1 = M−1z1. We call
z1 in symmetric Lanczos therefore the “unpreconditioned starting vector,” and q1 the “pre-
conditioned starting vector.” In nonsymmetric Lanczos, the two vectors need only satisfy
〈z1, q1〉 = 1.

Another similarity between left-preconditioned symmetric Lanczos and nonsymmetric
Lanczos are the inner product computations. In Algorithm 39, these are lines 5 and 8. In
Algorithm 38, these are lines 5 and 8. (The computation of βk+1 in symmetric Lanczos
corresponds to the computation of ωk+1 in nonsymmetric Lanczos.) The reason the cor-
responding inner products in the two algorithms look so similar is because they are both
implicitly computing an orthogonalization. In the case of symmetric Lanczos, they implicitly
orthogonalize the qk vectors with respect to the M inner product, and the zk vectors with
respect to the M−1 inner product. In the case of nonsymmetric Lanczos, they implicitly
biorthogonalize the qk vectors against the zk vectors, so that 〈zj, qi〉 is 1 if i = j, and is zero
otherwise.

These two similarities mean that a nonsymmetric CA-Lanczos algorithm may use an
analogous Gram matrix computation to perform the biorthogonalization, just as left-precon-
ditioned symmetric CA-Lanczos computes a Gram matrix and uses it to M -orthogonalize
the qsk+j vectors and M−1-orthogonalize the zsk+j vectors (see Algorithm 29 and Section
4.3.4).

The basic structure of the algorithm is outlined above. We do not discuss further details
in this thesis, because we do not have time to finish all the details and develop a robust
algorithm. We discuss below why making the algorithm robust may be more challenging
than previous authors may have thought.
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6.1.7 CA-Lanczos and breakdown

We believe the interaction between possible breakdown and the s-step part of the method
in finite-precision arithmetic may be challenging to understand. In particular, it may be
difficult to distinguish between the following three conditions:

1. “Lucky” breakdown

2. Serious breakdown

3. One or both of the s-step bases in an outer iteration are not numerically full rank

or to formulate a strategy that makes it unnecessary to distinguish between these conditions.
In this thesis, we will only speculate on some strategies for distinguishing between them. We
leave refinement of this speculation for future work. We can think of at least two possible
approaches:

1. Run “recklessly,” without breakdown tests, until some kind of failure (overflow via
division by zero, for example). Then backtrack, run a few iterations of standard non-
symmetric Lanczos with careful tests for breakdown, and use one of the existing looka-
head techniques if breakdown is detected. If no breakdown is detected, then assume
that one or both of the s-step bases were ill-conditioned; reduce s and / or otherwise
improve the basis, and continue with nonsymmetric CA-Lanczos.

2. If the block inner product (Gram matrix) in nonsymmetric CA-Lanczos is not numer-
ically full rank in a particular outer iteration, first test each of the two s-step bases
(via rank-revealing TSQR – see Section 2.4.8) to see if they are both numerically full
rank. If they are, assume that serious breakdown has occurred. Adjust s as necessary
in order to look ahead of the breakdown spot.

6.1.8 Future work

The above discussion should make it clear that nonsymmetric CA-Lanczos requires more
work. For example, the s-step nonsymmetric Lanczos algorithm of Kim and Chronopoulos
needs further investigation, in particular to see if the breakdown condition they discuss is
sensible in finite-precision arithmetic. The nonsymmetric CA-Lanczos algorithm should be
completed, and compared with the algorithm of Kim and Chronopoulos, both in terms of
accuracy and in terms of performance. We do not have time to solve these problems in this
thesis, but we plan to investigate them further at a later time.

6.2 BiCG

The Method of Biconjugate Gradients (BiCG) is a Krylov subspace method for solving
systems of nonsymmetric linear equations. It is mathematically equivalent to nonsymmetric
Lanczos, in that it produces two sets of basis vectors for the same two Krylov subspaces as
in the latter iteration. The BiCG basis vectors differ only by scaling from the nonsymmetric
Lanczos basis vectors.
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When we discussed with our colleague Erin Carson the suggestions of Section 6.1.6,
she wrote out a “Communication-Avoiding BiCG” algorithm (CA-BiCG) and performed
preliminary numerical experiments with it (see [46]), which appear successful. We will not
show the algorithm or experiment with it in this thesis, though we do plan on collaborating
with our colleague as needed to develop and improve the algorithm.
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Chapter 7

Choosing the basis

This chapter discusses the s-step basis computed by the matrix powers kernel. This basis
affects the stability of the s-step Krylov methods discussed in this thesis more than anything
else. We deferred discussion of the choice of basis until this chapter, because this subject is
complicated enough to deserve study on its own, yet we can describe our iterative methods
algebraically without considering the type of basis.

Our main contributions in this chapter are:

• We are the first to suggest scaling the rows and columns of the matrix A as a prepro-
cessing step for s-step Krylov methods. This improves both numerical stability and
the convergence rate, especially when A is badly scaled.

• We are the first to show how to incorporate preconditioning into an s-step basis other
than the monomial basis.

Scaling the matrix A avoids rapid increase or decrease in the lengths of the s-step basis
vectors. In the worst case, this may cause underflow resp. overflow in finite-precision arith-
metic. Even without underflow or overflow, it may cause inaccuracy in the s-step method.
Previous authors observed this phenomenon, but proposed fixing it by scaling each basis
vector in turn after computing it. This requires a factor of s additional communication per
computation of the s-step basis. In contrast, scaling the matrix A need only be done once,
requires work equivalent to a small number of sparse matrix-vector multiplies, and greatly
improves numerical stability of the iterative method. In fact, for CA-GMRES (Section 3.4),
we found that scaling the matrix A could improve numerical stability more than choosing
the “right” s-step basis, if the matrix A is badly scaled (see Section 3.5). However, if A is not
badly scaled but ill-conditioned, the type of basis matters more. Thus, scaling the matrix A
is not enough, nor is choosing the right basis enough: the two must be done together.

As we discussed in Section 2.2, preconditioning is important for accelerating the conver-
gence of Krylov methods. Previous work in s-step Krylov methods only showed how to apply
conditioning when using the monomial basis v, Av, A2v, . . . , Asv. In Section 2.2, we showed
the form of the s-step basis for different kinds of preconditioning, including split, left, and
right preconditioning. In this chapter, we show the form of the “change-of-basis matrix” B,
for the different types of preconditioned s-step basis. The change-of-basis matrix relates to
the so-called “Krylov decomposition,” in a way that we will describe below.
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7.1 Chapter outline

We begin with Section 7.2, where we review notation for an s-step basis, and explain how
the numerical rank of the basis affects numerical stability and convergence of s-step Krylov
methods. In Section 7.3, we present the three types of s-step basis – monomial, Newton,
and Chebyshev – used in previous research in s-step Krylov methods. In this thesis, we only
experiment with the monomial and Newton bases, but we describe the Chebyshev basis as
another possibility. Next, in Section 7.4, we explain more formally why the condition number
of the s-step basis affects the numerical stability and convergence of s-step Krylov methods.
We also summarize known lower bounds on the growth of the basis condition number with
respect to s, for the monomial, Newton, and Chebyshev bases. In addition, we talk about
how the accuracy of orthogonalizing the s-step basis against previously orthogonalized basis
vectors (as one does, for example, in CA-GMRES (Section 3.4), CA-Arnoldi (Section 3.3),
and CA-Lanczos (Section 4.2)) influences numerical stability. In Section 7.5, we discuss
the phenomenon of rapid growth or decrease in the lengths of the s-step basis vectors, and
propose scaling the rows and columns of the matrix A in order to prevent this problem.
We suggest two different scaling schemes – balancing for solving eigenvalue problems, and
equilibration when solving linear systems – and we summarize inexpensive and effective
algorithms for each of these schemes. Finally, in Section 7.6, we suggest future directions for
research in s-step basis selection.

7.2 Introduction

The matrix powers kernel discussed in Section 2.1 requires a choice of s-step basis. If we say
“basis” in this chapter, we mean s-step basis, unless otherwise specified. We can express
the choice of basis as a set of s + 1 polynomials p0(z), p1(z), . . . , ps(z), where z is an
abstract variable, and pj has degree j for j = 0, 1, . . . , s. Our presentation assumes that
the polynomials have complex coefficients and that the matrix A is complex, unless we say
otherwise, but the discussion applies also if the matrix is complex and the coefficients real,
or if both matrix and coefficients are real.

The matrix powers kernel uses these polynomials, along with the starting vector v, to
generate the s basis vectors p0(A)v, p1(A)v, . . . , ps(A)v. The simplest such basis is the
monomial basis, where pj(z) = zj. We have already mentioned the monomial basis and
other choices of basis in Section 3.2.2, in the context of Arnoldi iteration, but in this chapter,
we will discuss three bases in detail: the monomial basis (Section 7.3.1), the Newton basis
(Section 7.3.2), and the Chebyshev basis (Section 7.3.3).

Any set of polynomials may be used for the basis, as long as pj has degree j for
j = 0, 1, . . . , s. However, both performance and numerical stability concerns constrain the
properties of the basis. For better performance, we prefer that the polynomial basis satisfy
either a two-term or a three-term recurrence. This means that pj+1(A)v be computed as
a linear combination of Apj(A)v, pj(A)v, and possibly also pj−1(A)v, for j > 0. Longer
recurrences mean more floating-point operations, and they may also mean less fast memory
available for cache blocks, or more memory traffic at smaller levels of the memory hierarchy.
We discuss the performance issues in detail in Section 2.1; this chapter only covers numerical
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stability issues.
In order for the basis in exact arithmetic to be a basis in finite-precision arithmetic, it

should be numerically full rank. Experiments and theory show that as the basis length s
increases, the basis vectors tend to become increasingly dependent. The rate of this process
depends on the choice of basis. Eventually, the basis reaches a length at which it becomes
numerically rank deficient, even though in exact arithmetic it still forms a basis. This
phenomenon is not unique to the s-step bases we use in this work. In fact, it seems to
occur for any Krylov subspace basis, even when the basis is guaranteed to be orthogonal in
exact arithmetic (such as in symmetric Lanczos), as long as the basis is constructed without
careful reorthogonalization.1 However, typical s-step bases lose their independence in finite-
precision arithmetic after far fewer vectors. We study this problem because it often happens
for basis lengths s we would like to use, from a performance perspective.

Loss of independence of the s-step basis in finite precision has two causes:

1. Breakdown of the Krylov subspace: the Krylov subspace cannot be extended further,
even in exact arithmetic. This has nothing to do with the use of an s-step iterative
method.

2. Dependence caused by the s-step basis itself, which has nothing to do with lucky
breakdown.

Once we have determined that a particular s-step basis is numerically rank-deficient, there
are many ways to distinguish between these two cases. For example, one may switch from
an s-step iterative method to its corresponding standard iterative method for s iterations of
the latter. If the standard iterative method breaks down, then the fault lies with the Krylov
subspace itself and not with the s-step basis. (It may not even be a fault; for example, when
solving Ax = b, if the initial guess is zero and b is an eigenvector of A, breakdown will result
in one iteration, because the exact solution is b.) Otherwise, the s-step basis is to blame.
We will not consider the first case (breakdown due to the Krylov subspace) further in this
chapter.

Loss of independence of the s-step basis vectors may either cause a catastrophic con-
vergence failure of the s-step iterative method, or slow down its convergence rate. This is
because Krylov subspace methods converge as the dimension of their Krylov subspace in-
creases. If the s-step basis is not numerically full rank, the Krylov subspace’s dimension
either does not increase, or increases more slowly than it should. Some postprocessing of
the s-step basis, such as a stable rank-revealing decomposition and the use of pseudoin-
verses when factors of the basis are required, may help prevent a catastrophic failure of the
method. Even simple orthogonalization of the basis helps somewhat, as the work of Swanson
and Chronopoulos [219], who added MGS orthogonalization to their basis computation to
improve stability and allow larger values of s. However, postprocessing cannot recover search
directions lost in the s-step basis computation. There are two solutions for this problem:

1. Choosing a better-conditioned s-step basis

2. Using higher-precision arithmetic

1For a full discussion in the context of symmetric Lanczos, see e.g., [175].
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If the matrix and vectors are stored, read, and written in higher precision, the memory traffic
will at least double. Floating-point performance will be reduced, by some hardware- and
software-dependent factor. More judicious use of higher-precision arithmetic may reduce
these costs, while improving stability somewhat. Choosing a better basis is almost always
a good idea. This is because it has little performance overhead (as shown in Section 2.1),
yet often allows the basis length s to be chosen larger, which may improve performance
(depending on the structure of the matrix).

We will define what we mean by “numerically full rank” and “well conditioned” more
formally in Section 7.4. There, we will summarize known results about the growth of this
condition number with respect to the basis length for different bases. We will also dis-
cuss how the condition number might be affected by orthogonalization against previously
orthogonalized basis vectors, in our versions of Lanczos and Arnoldi iteration.

7.3 Three different bases

In this section, we present three bases – monomial, Newton, and Chebyshev – that have been
used in s-step Krylov methods. We summarize why they were chosen by previous authors,
and briefly mention advantages and disadvantages of each basis. We also show the change
of basis matrix B for each. Here, B is the s+ 1 by s tridiagonal matrix satisfying

AV = V B,

for the unpreconditioned (or split-preconditioned) basis of s + 1 vectors V = [V, vs+1] =
[v1, v2, . . . , vs+1]. In the case of left preconditioning, B satisfies both

M−1AV = V B

and
AM−1W = WB,

where V = [V, vs+1] comprise the left-hand basis and W = [W,ws+1] the right-hand basis.
For details on the preconditioned s-step basis, see Section 2.2. Later, in Section 7.4, we will
summarize known results on the condition number of each basis as a function of s.

7.3.1 Monomial basis

The very first s-step Krylov methods used the monomial basis

Ks+1(A, v)Monomial = [v1, v2, . . . , vs+1]

= [v, Av,A2v, . . . , Asv].
(7.1)

This has a change of basis matrix

B = [e2, e3, . . . , es+1], (7.2)
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where ej represents the j-th column of the s + 1 by s + 1 identity matrix. Sometimes a
scaled monomial basis was used, where σkvk+1 = Avk for k = 1, 2, . . . , s and for positive real
scaling factors σ1, . . . , σs. In that case, the change of basis matrix is given by

B = [σ1e2, σ2e3, . . . , σses+1]. (7.3)

Previous work using the monomial basis, either in the original or in the scaled form,
includes the s-step CG algorithms devised by Van Rosendale [227] and Chronopoulos and
Gear [56], as well as Walker’s Householder GMRES [237, 134, 238]. The motivation behind
these algorithms was to break the data dependency in traditional Krylov methods between
the result of the sparse matrix-vector product, and the result of one or more dot products
and other vector operations. Breaking this dependency meant more freedom for humans
and compilers to optimize the resulting computational kernels, and thus potentially more
performance. As we discuss elsewhere in this thesis, other authors and finally we realized
this potential by providing optimized kernels.

The monomial basis was a natural (though not necessary) choice for s-step Krylov meth-
ods, as it is the basis one commonly uses when notating a Krylov subspace. Several other
reasons suggest it. First, computing the Gram matrix G of the monomial basis when A
is Hermitian results in a “matrix of moments”: Gij = v∗A(i−1)+(j−1)v, just as the (i + j)th

moment of the monomial polynomials is
∫

Ω
xi+j dx (where the domain of definition of the

polynomials is some region Ω). This is not necessarily true for other bases. In general,

Gij = v∗pj−1(A)pi−1(A)v,

and it may not be true that pj−1(z)pi−1(z) = pj+i−2(z). (In fact, this assumes that pj+i−2(z)
has been defined, whereas the s-step basis only defines polynomials up to degree s.) Chro-
nopoulos and Gear exploit this property of the monomial basis in their s-step CG algorithm.
Computationally, the kernel represented by Equation (7.1) has other applications, such as
multiple smoothing steps in multigrid (see [88, 218]), or lookahead in nonsymmetric Lanczos
(see Parlett et al. [190]). This helps justify the effort of optimizing such a kernel. Finally,
the monomial basis also requires no additional information to compute other than the sparse
matrix A and the starting vector v. Other bases require spectral estimates or bounds; this
introduces a chicken-and-egg problem, since one generally must compute such estimates with
a Krylov subspace method. (We will talk about how that chicken-and-egg problem is solved
in Sections 7.3.2 and 7.3.3.)

The cost of the monomial basis’ simplicity is numerical stability. In exact arithmetic, any
basis of the Krylov subspace in question will do, but finite-precision arithmetic changes this.
Chronopoulos and Gear [56] found that for their test problems, basis lengths longer than
s = 5 prevented their s-step CG from converging. Van Rosendale also noticed numerical
stability problems due in part to his use of the monomial basis, but was unsure at the
time how to correct them [228]. Hindmarsh and Walker [134] tried scaling the vectors in
the monomial basis to avoid overflow and numerical instability in Householder GMRES,
though as we will discuss in Section 7.4, this cannot help the latter much. Chronopoulos and
his collaborators later developed ad-hoc techniques to circumvent stability problems. For
example, they applied iterative refinement when solving linear systems to extract coefficients
from the basis [54], or postprocessed the basis vectors by applying modified Gram-Schmidt
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orthogonalization [59]. This latter step let Chronopoulos and Swanson increase the usable
basis length to s ≤ 16 for the problems of interest, but at the expense of significant additional
computation and bandwidth requirements, that prevent their algorithm from meeting our
goal of avoiding communication.

The monomial basis has another name: the power method, which is a simple iteration for
finding the principal eigenvalue and corresponding eigenvector of a matrix. If the matrix and
starting vector satisfy certain conditions, then repeatedly applying the matrix to a suitable
starting vector causes the resulting vector to converge to the principal eigenvector of the
matrix. The power method is used most famously by Google in their PageRank algorithm
(see e.g., [38]), though it occurs in many contexts, such as the adaptive Chebyshev method
for solving linear systems [171], and some ordinary differential equation solvers.

Intuitively, converging is not something one wants a basis to do. In exact arithmetic, any
basis will do, but in finite-precision arithmetic, basis vectors should be maximally indepen-
dent, ideally orthogonal. Instead, as the basis length s increases, the successive vectors of the
monomial basis tend to get closer and closer together in direction. In informal language, once
the matrix of basis vectors is no longer numerically full rank, they can no longer be called a
basis. Once this happens, no postprocessing can recover the lost rank information. That has
already been lost in the basis computation. No matter how accurately the postprocessing
is done, computing the basis itself in finite-precision arithmetic loses that information. Of
course, some techniques such as careful orthogonalization, or iterative refinement, or column
scaling may help to some extent, depending on the details of the Krylov method.

This problem with the monomial basis reminds one of the analogous difficulty in using the
monomial basis for polynomial interpolation. In fact, the two situations are closely related,
and will enable more formal definitions of “numerically full rank” and “ill-conditioned.” We
will discuss this later in Section 7.4. The connection with polynomial interpolation also
suggests other bases to try. One of these is the Newton basis, which will be shown below.
However, an important point which we will examine later in more depth is that the ill
conditioning of the monomial basis depends significantly on the matrix. In fact, there are
matrices for which the monomial basis is better conditioned than the Newton basis, and vice
versa.

7.3.2 Newton basis

The Newton basis

Ks+1(A, v)Newton = [v1, v2, . . . , vs+1]

=

[
v, (A− θ1I)v, (A− θ2I)(A− θ1)v, . . . ,

s∏
i=1

(A− θiI)v

]
(7.4)

in s-step Krylov methods corresponds intuitively to the Newton basis p0(z) = 1, p1(z) = z−
θ1, p2(z) = (z−θ2)(z−θ1), . . . , ps(z) = (z−θs) · · · (z−θ1) for polynomial interpolation at the
nodes θ1, θ2, . . . , θs. In the case of Krylov methods, the θi are called shifts rather than nodes.
This (deliberately) recalls the shifts used in eigenvalue solvers to improve convergence near a
specific eigenvalue. The intuition behind the Newton basis comes directly from polynomial
interpolation: in many (but not all) cases, the Newton polynomial basis is better conditioned
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than the monomial polynomial basis, for the same set of interpolation nodes. We will discuss
this connection between the s-step basis and polynomial interpolation further in Section 7.4.

The Newton basis has an s+ 1 by s change of basis matrix

B =


θ1 0 . . . 0

1 θ2
. . .

...

0 1
. . . 0

...
. . . . . . θs

0 0 . . . 1

 . (7.5)

The Newton basis may be scaled just like the monomial basis, so that σkvk+1 = (A− θk)vk
for k = 1, 2, . . . , s and for positive real scaling factors σ1, . . . , σs. In that case, the change
of basis matrix is given by

B =


θ1 0 . . . 0

σ1 θ2
. . .

...

0 σ2
. . . 0

...
. . . . . . θs

0 0 . . . σs

 . (7.6)

Previous work

Bai et al. [17, 18] were the first, as far as we know, to use the Newton basis in an s-step
Krylov method.2 The method was GMRES, and their goal was to avoid communication in
the vector-vector operations (though they did not express it in terms of communication).
Bai et al. observed that standard GMRES requires many vector-vector operations, which
are slow relative to matrix-matrix operations on vector and parallel architectures. Walker’s
Householder QR version of GMRES [237, 238] replaces those vector-vector operations with
a dense QR factorization. However, it uses the monomial basis, which makes the algorithm
unstable for all but the smallest basis lengths s. Applying an analogy with polynomial
interpolation, Bai et al. replaced this monomial basis with a modified version of the Newton
basis. This improved numerical stability.

The Newton GMRES algorithm of Bai et al. allows the use of any QR factorization.
This differs from standard GMRES, which requires column-oriented MGS. However, the
column-by-column (unblocked) Householder QR factorization performs similarly to column-
oriented MGS, because the cost of both is dominated by (the same number of) vector-vector
operations. Bai et al. do suggest that one could use other QR factorization algorithms,
including the blocked QR factorization of Pothen and Raghavan [197], which is a precursor
of QR (even though Pothen and Raghavan’s QR factorization does not keep the Q factor,
so their algorithm cannot be used in s-step GMRES without modification). Erhel [93]
implemented the same version of Newton-basis GMRES as Bai and his coauthors, though
her implementation uses a new parallel QR factorization intended to improve performance
over standard Householder QR.

2Joubert and Carey [143] suggested the Newton basis as a possibility, but they implemented a Chebyshev
basis instead (see Section 7.3.3).
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Choosing the shifts

All the authors we found chose the shifts θ1, . . . , θs from among the eigenvalues of the upper
Hessenberg projection matrix (the Ritz values) resulting from some number of steps of the
iterative method: for example, (standard) Arnoldi iteration / GMRES for nonsymmetric A,
or symmetric Lanczos / CG for SPD A. The Ritz values must be arranged in a particular
ordering, either the Leja ordering for complex arithmetic or the modified Leja ordering for
real arithmetic, in order to improve numerical stability. We will explain these ordering
schemes in Section 7.3.2.

At least s Ritz values are required for the s shifts. Erhel found that for some problems,
it improved numerical stability to compute 2s Ritz values (via 2s iterations of the standard
iterative method), and then use the Leja ordering to sort and pick s of them. The authors
treated these s or 2s steps of standard Arnoldi as a startup phase: first, perform that number
of iterations of the standard method, then restart, and use the Ritz values to do restart cycles
of the s-step method (with s steps in each restart cycle). One intuitive reason to choose
Ritz values as shifts, is that (any version of) Arnoldi works by implicitly constructing an
interpolating polynomial of the characteristic polynomial of the matrix A (assuming that
A can be diagonalized) at the Ritz values. That makes the Ritz values natural choices
for the interpolation nodes of the Newton basis polynomial. We will discuss more formal
explanations when and why the Newton basis is a good choice in Section 7.4.

Avoiding complex arithmetic

Even if the linear system Ax = b and the initial guess x0 are all real, the current set of
Ritz values may have imaginary components, if A is nonsymmetric. Complex-valued shifts
will likely result in a complex-valued Newton basis. In exact arithmetic, this will not affect
the minimum residual approximate solution (as produced by GMRES and mathematically
equivalent algorithms), nor will it affect the minimum A-norm approximate solution (as pro-
duced by CG and mathematically equivalent algorithms). This is because these minimization
problems always have a unique (real) solution, as long as the Krylov basis vectors do form a
basis. Nevertheless, complex arithmetic doubles the storage requirement for all the vectors,
along with the bandwidth requirements. It also more than doubles the number of floating-
point operations. Due to rounding error, it likely introduces small imaginary components
into the approximate solution, which may be nonphysical or unexpected. These imaginary
components may be discarded.

The eigenvalues of real matrices that have imaginary components always occur in complex
conjugate pairs. This is also true for the matrices’ Ritz values. Bai et al. [17, 18] exploit
this to avoid complex arithmetic, by arranging the shifts in a particular order and modifying
the Newton basis. The order of the shifts does matter for numerical stability, as we will
discuss below. However, the authors also arrange the shifts so that complex conjugate pairs
occur consecutively, with the element of the pair with positive imaginary part occurring
first. Suppose that θj, θj+1 constitutes such a pair, with θj+1 = θ̄j. Rather than choosing the
corresponding basis vectors vj+1 and vj+2 as vj+1 = (A− θjI)vj, and vj+2 = (A− θ̄jI)vj+1,
as the usual Newton basis would do, they pick

vj+1 = (A−<(θj)I)vj (7.7)
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and
vj+2 = (A−<(θj)I)vj+1 + =(θj)

2vj. (7.8)

As a result,
vj+2 = (A−<(θj)I)2vj + =(θj)

2vj

= A2vj − 2<(θj)Avj + <(θj)
2vj + =(θj)

2

= A2vj − 2<(θj)Avj + |θj|2vj
= (A− θ̄jI)(A− θj)vj.

It is as if the basis “skips over” the offending complex shifts, since picking vj+1 = (A−θjI)vj,
and vj+2 = (A− θ̄jI)vj+1 results in the same vj+2 (in exact arithmetic).

One way this approach might lose accuracy is if θj−1 is real, <(θj−1) = θj, and θj and
θj+1 form a complex conjugate pair. Then,

vj = (A− θj−1I)vj−1,

vj+1 = (A− θj−1I)2vj−1,

vj+2 = (A− θj−1I)3vj−1 + =(θj)
2(A− θj−1I)vj−1.

The vectors vj and vj+1 then form two steps of the monomial basis, with a possibly ill-
conditioned matrix A− θj−1I. Situations like this could arise if the Ritz values fit within an
ellipse with a long vertical axis and a short horizontal axis. Otherwise, the ordering of the
shifts discussed below will tend to maximize the distances between consecutive shifts that
are not in the same complex conjugate pair.

It could be that such situations do not make the basis ill-conditioned enough to be of
concern. If they are a problem, however, one might consider another choice for vj+1 other
than (A − <(θj)I)vj, when θj+1 = θ̄j. It’s not clear what to pick; for example, vj+1 = Avj
reintroduces the problem with a “zero shift.” Resorting to complex arithmetic has its own
problems, as discussed above. For this reason, one may wish to use a Chebyshev basis (see
Section 7.3.3), which by construction produces real polynomials from a real matrix A.

The Leja and Modified Leja orderings

The order in which the shifts appear in the Newton basis affects numerical stability. For
example, the effect of two nearly identical consecutive shifts θj+1 ≈ θj is nearly the same as
generating two monomial-basis vectors with a shifted matrix A − θjI. The shifts are Ritz
values of A, so the shifted matrix A−θjI is probably ill-conditioned. Several nearly identical
shifts in a row could thus result in an ill-conditioned basis.

Bai et al. [18] avoid this problem by arranging the shifts according to the Leja ordering
(see e.g., [201]). The Leja ordering of the shifts θ1, . . . , θs is defined as follows. We define
the set Kj for j = 1, 2, . . . , s as follows:

Kj ≡ {θj+1, θj+2, . . . , θs}.

We choose the first shift θ1 as
θ1 = argmaxz∈K0

|z|. (7.9)
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Then, we choose subsequent shifts θ2, . . . , θs using the rule

θj+1 = argmaxz∈Kj

j∏
k=0

|z − zk|. (7.10)

This sequence is not necessarily unique, but any such sequence that could be generated by
such a procedure is called a sequence of Leja points for the set K0. This procedure can be
used for any set of points in the complex plane, even an infinite set (which results in an
infinite sequence of Leja points). See Reichel [201] and Calvetti and Reichel [45] for details
on this definition and on the efficient computation of Leja points for real intervals.

Equation (7.10) suggests the point of the Leja ordering: to maximize a particular measure
of the “distance” between the current shift θj and the previous shifts θ1, . . . , θj−1. This
makes the resulting Newton basis as “unlike” the monomial basis as possible. The Leja
ordering improves the accuracy of operations on polynomials, such as Newton interpolation
[201] and evaluating polynomial coefficients from their roots [45]. We will cite more formally
stated results on this below. Given the connections between Krylov methods and polynomial
interpolation, one should not be surprised that using the Newton s-step basis with the Leja
ordering of the shifts can help slow condition number growth of the basis as a function of s.

Three deficiencies with the above definition suggest themselves:

1. If the matrix A is real but nonsymmetric, it may have complex Ritz values (that occur
in complex conjugate pairs). The Leja ordering may separate complex conjugate pairs,
thus defeating the scheme mentioned above (Equations (7.7) and (7.8)) for preserving
real arithmetic.

2. Repeated shifts (i.e., θj = θk for some j 6= k) may cause the product to maximize in
Equation (7.10) to be zero for all possible choices of the next shift θj+1, so that there
is no clear choice for the next shift. (Ritz values from a Krylov method may be unique
in exact arithmetic, but need not be in finite-precision arithmetic.)

3. The product to maximize in Equation (7.10) may underflow (if the shifts are close
together) or overflow (if the shifts are far apart) in finite-precision arithmetic. Under-
flow means that the product is zero in the arithmetic. Overflow makes the product
Inf (floating-point infinity) for all choices of the next shift, which results in the same
problem (not having a clear choice of the next shift).

The first problem can be solved by using the modified Leja ordering of Bai et al. [18]. This
changes the Leja ordering so that complex conjugate pairs θj, θj+1 = θj occur consecutively,
arranged so that =(θj) > 0 and =(θj+1) < 0. As shown above (see Equations (7.7) and
(7.8)), if complex conjugate pairs of shifts occur consecutively in this arrangement, and the
matrix A and vector v are real, the Newton basis can be computed using only real arithmetic.
Equation (7.10) is used to choose the first element θj of the complex conjugate pair (with
positive imaginary part), and θj+1 is chosen to be θj. The effects of the modified Leja
ordering on numerical stability are unclear in theory, but our experience is that it is not
generally harmful.
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Reichel [201, Equation 1.5b, p. 341] describes how to solve the second problem of repeated
shifts. Suppose that for a set of candidate shifts K0 = {θ1, θ2, θk}, each shift θj occurs µj
times (where µj is a positive integer). We choose the first shift as before:

θ1 = argmaxz∈K0
|z|,

but we choose subsequent shifts θ2, . . . , θk using the rule

θj+1 = argmaxz∈Kj

j∏
i=0

|z − zi|µi . (7.11)

Bai et al. [18] do not use this approach. Instead, they deal with this problem by randomly
perturbing all the shifts slightly, and then repeating the computation from scratch. In our
implementation of the Newton basis, we use Reichel’s approach to handle multiple shifts.
We only apply the random perturbation as a last resort, if the technique of Equation (7.11)
and the solution to Problem 3 (described below) do not work.

Problem 3 can be solved by carefully scaling the points during the Leja ordering com-
putation. Reichel [201] defines a quantity called the capacity of a subset K of the complex
plane. We give the full definition of the capacity in Appendix D.2. What matters is that for
the finite set K0 = {θ1, θ2, . . . , θs} ⊂ C, Reichel explains [201, Section 3, p. 340] that its
capacity c can be estimated by the quantity

ck ≡
k−1∏
j=1

|θk − θj|1/k . (7.12)

Thus, when using Equation (7.11) to compute the Leja ordering, one should divide θ1, . . . ,
θk by the capacity estimate ck before computing the ordering. Reichel suggests computing
the capacity estimate once. We instead update it by computing ck+1 after every time we use
Equation (7.11) to compute θk+1, for each subsequent shift. Reichel does not explain how to
extend this capacity estimate to the case of multiple shifts, but the formula is obvious:

ck ≡
k−1∏
j=1

|zk − zj|µj/k . (7.13)

Bai et al. do not describe how to compute the capacity estimate for the shifts, but they do
reference Reichel’s work.

Algorithm 40 shows how to compute the modified Leja ordering. It contains the methods
we use to solve Problems 1–3 above. In the form shown, it requires Θ(s3) operations,
but computing the Ritz values from an s × s upper Hessenberg matrix requires that many
operations anyway, so the number of operations is not of concern.

7.3.3 Chebyshev basis

Definition

The Chebyshev basis

Ks+1(A, v) = [T̃0(A)v, T̃1(A)v, . . . , T̃s(A)v]
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Algorithm 40 Modified Leja ordering

Input: n unique shifts z1, . . . , zn, ordered so that any complex shifts only occur consecu-
tively in complex conjugate pairs zk, zk+1 = zk, with =(zk) > 0 and =(zk+1) < 0

Input: Each shift zk has multiplicity µk (a positive integer)
Output: n unique shifts θ1, . . . , θn, which are the input shifts arranged in the modified

Leja order
Output: outList: array of indices such that for k = 1, . . . , n, θk = zoutList(k)

Output: C: estimate of the capacity of {z1, . . . , zn}

1: C ← 1 . Initial capacity estimate
2: Let k be the least index j maximizing |zj|
3: θ1 ← zk, and outList← [k]
4: if =(zk) 6= 0 then
5: If =(zk) < 0 or k = n, error: Input out of order
6: θ2 ← zk+1, and outList← [outList, k + 1]
7: L← 2
8: else
9: L← 1

10: end if

11: while L < n do
12: C ′ ← C, and C ←

∏L−1
j=1 |θL − θj|

µoutList(j)/L . Update capacity estimate. outList(j)
is the multiplicity of θj.

13: for j = 1, . . . , n do . Rescale all the shifts
14: zj ← zj/(C/C

′), and θj ← θj/(C/C
′)

15: end for
16: Let k be the least index k in {1, . . . , n} \ outList maximizing

∏L−1
j=1 |zk − θj|

µoutList(k)

17: If the above product overflowed, signal an error.
18: If the above product underflowed, randomly perturb z1, . . . , zn and start over from

scratch. Keep track of the number of times this happens, and perturb by a
larger amount each time. Signal an error if the number of restarts exceeds a
predetermined bound.

19: θL+1 ← zk, and outList← [outList, k]
20: if =(zk) 6= 0 then
21: If =(zk) < 0 or k = n, error: Input out of order
22: θL+2 ← zk+1, and outList← [outList, k + 1]
23: L← L+ 2
24: else
25: L← L+ 1
26: end if
27: end while
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uses scaled and shifted Chebyshev polynomials.3 The (unscaled, unshifted) Chebyshev poly-
nomials are a sequence of polynomials T0(x), T1(x), . . . , which satisfy the recurrence

T0(x) = 1,

T1(x) = x,

Tk+1(x) = 2xTk(x)− Tk−1(x) for k > 0.

(7.14)

If we restrict x ∈ [−1, 1], these polynomials satisfy

Tk(x) = cos(n cos−1 x)

for all k = 0, 1, . . . . The region of definition may be extended continuously to include
complex numbers, if we write

Tk(z) = cosh(k cosh−1 z).

For the Krylov basis, the Chebyshev polynomials are scaled and shifted:

T̃k(λ) =
Tk(

d−λ
c

)

Tk(
d
c
)

(7.15)

where d and c may in general be complex, and T̃k(0) = 1 for all k. If we define σk = Tk(d/c)
for k = 1, 2, . . . , s, and set σ0 = 1, then we obtain the following recurrence for the scaled and
shifted Chebyshev polynomials:

T̃0(λ) = 1,

T̃1(λ) =
1

σ1

λ,

T̃k+1(λ) =
2σk
σk+1

λTk(λ)− σk−1

σk+1

Tk−1(λ) for k > 0.

(7.16)

The choice of d and c determines a family of ellipses F (d, c) in the complex plane, with foci
at d ± c. One chooses the ellipse to be a good fit to the eigenvalues of the matrix A, for
reasons we will explain below.

If we define σk = Tk(d/c) for k = 1, 2, . . . , s, and set σ0 = 1, then the s+1 by s Chebyshev
change of basis matrix is given by Equation (7.17):

B =



0 σ0

σ1
0 . . . 0

σ1 0 σ1

σ2

. . .
...

0 σ2

2σ1
0

. . . 0
... 0 σ3

2σ2

. . . σs−2

σs−1

. . . . . . 0
0 . . . σs

2σs−1


, (7.17)

which comes from rearranging the three-term recurrence in Equation (7.16) to obtain

λT̃k(λ) =
σk+1

2σk
T̃k+1(λ) +

σk−1

σk
T̃k−1(λ).

3More specifically, it uses “Chebyshev polynomials of the first kind.” There are also “Chebyshev polyno-
mials of the second kind,” which we will not reference further in this work.
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Properties

Chebyshev polynomials have a unique “minimax” property. Over all (appropriately scaled
and shifted) real polynomials of a specified degree on a specified real interval, the Chebyshev
polynomial of that degree minimizes the max imum absolute value on the interval. (Hence,
the term “minimax.”) When their region of definition is extended to ellipses in the complex
plane, the Chebyshev polynomials still satisfy the minimax property asymptotically, though
not (always) exactly (see e.g., [95]). The minimax property makes Chebyshev polynomials
both theoretically and practically useful for Krylov subspace methods.4 On the one hand,
their minimax property makes them a powerful theoretical tool for bounding the convergence
rate of iterations such as CG and GMRES (see e.g., Greenbaum [119]), which promise optimal
reduction of an error or residual norm in each iteration. This error minimization phenomenon
also inspired the use of Chebyshev polynomials in practical iterative methods. Direct use
of these polynomials in a Krylov subspace method for solving linear systems, along with
some technique for estimating a region containing the spectrum of the matrix, is called
Chebyshev iteration (see e.g., Manteuffel [171]). (We discuss this iteration for solving linear
systems in more detail in Section 1.6.3.) Chebyshev polynomials of matrices are also used
in polynomial preconditioners, both for their error minimization property and because they
can be computed without expensive inner products (see e.g., [206]). Finally, some versions of
the “lookahead” process in nonsymmetric Lanczos use a basis of Chebyshev polynomials to
advance the iteration past a temporary breakdown point (see e.g., [103]). Here the minimax
property helps keep the basis vectors well-conditioned, without needing to orthogonalize each
basis vector after creating it. We have the same goal in mind as in lookahead when choosing
the Chebyshev basis.

Prior work

De Sturler [70] suggested using Chebyshev polynomials in an s-step method, but did not
implement the idea at that time. He was inspired by their “minimax” property. Joubert
and Carey [143, 144] developed a similar Chebyshev-basis s-step GMRES algorithm and
implementation. Van der Vorst and de Sturler [72] later implemented an s-step version of
GMRES using the Chebyshev basis. Even though they used neither an optimized matrix
powers kernel nor an optimized QR factorization (such as TSQR, see Section 2.3), just
rearranging GMRES in this way achieved a speedup of 1.81× over standard GMRES on 196
processors of a 400-processor Parsytec Supercluster, even though that machine was known
for having fast communication and slow computation relative to other parallel computers of
its day.

Real and complex arithmetic

Performance reasons require avoiding complex arithmetic if the original matrix A (and right-
hand side b, if solving Ax = b) is real. We have already discussed how to avoid complex
arithmetic with the Newton basis in Section 7.3.2, when any complex shifts that occur do

4Koch and Liesen [156] concisely state this dual utility of Chebyshev polynomials in the context of Krylov
subspace methods.
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so in complex conjugate pairs (as they must if they are Ritz values of a real matrix A with a
real starting vector). Similarly, we can avoid complex arithmetic with the Chebyshev basis.
In the change of basis matrix B given by Equation (7.17), the scaling factors σk are given by

σk = Tk(d/c) = cosh(k cosh−1(d/c)),

where d and c determines a family of ellipses F (d, c) in the complex plane, with foci at d± c.
These ellipses are chosen to be a good fit to the spectrum of the matrix A. If A is real,
then d (the center of the ellipse) must be on the real axis, and c must be either real or pure
imaginary. If d and c are both real, then σk is always real for all k, and the change of basis
matrix is real. However, if c is imaginary, σ1 = T1(d/c) = d/c will certainly be imaginary.
Also, it is not hard to show that if z is pure imaginary, then Tk(z) is pure imaginary if k
is odd, and real if k is even. That means σk/σk+1 and σk+1/σk must be pure imaginary for
k ≥ 1, if d/c is pure imaginary.

If d/c is pure imaginary, then the change of basis matrix B will also be pure imaginary:
B = iB′, where B′ is real. However, recall that the Chebyshev basis is shifted: for the (real)
matrix A and real vector v,

T̃k(A)v = Tk

(
1

c
(dI − A)

)
/Tk(d/c).

Recall that if d is real and c is pure imaginary, then Tk(d/c) must also be pure imaginary.
Also, if c is pure imaginary and d and (the matrix) A are real, then Tk

(
1
c

(dI − A)
)

must

also be pure imaginary. That means T̃k(A)v is real. In that case, we can replace c with
c/i without changing the basis. This amounts to rotating the ellipse 90 degrees clockwise,
so that its foci are on the real axis. It makes the change of basis matrix B real, without
actually changing the basis.

Estimating ellipse parameters

Just like with the Newton basis, the Chebyshev basis requires some estimated information
about the spectrum of A. Specifically, it requires a bounding ellipse. In the case of Chebyshev
iteration, there are many adaptive schemes for estimating the center d and foci d± c of the
ellipse, especially when the matrix A is real. Elman et al. [91] show how to use the results of
a few steps of Arnoldi iteration to estimate the d and c parameters. We may do the same,
but instead of running Chebyshev iteration once we have d and c, we may run our s-step
Arnoldi (or Lanczos in the case of symmetric A) algorithm.

Performance notes

The Chebyshev basis uses a three-term recurrence. This increases the computational require-
ments (the number of floating-point operations). It may also increase the amount of storage
in fast memory, depending on how the matrix powers kernel is implemented (see Section 2.1,
in particular the “implicit” SA3 algorithm). Note, however, that the the modified Newton
basis, if there are complex conjugate pairs of shifts, requires the same amount of fast mem-
ory storage as the Chebyshev basis, and at worst an amount of computation intermediate
between that of the Newton basis with all real shifts, and the Chebyshev basis.
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Our experience in our parallel shared-memory implementation of CA-GMRES (see Sec-
tion 3.6) is that the runtime of the Newton basis is nearly the same as the runtime of the
monomial basis. Whether the Chebyshev basis’ additional term in the vector recurrence
matters depends on whether the matrix powers kernel performance is still bound by mem-
ory bandwidth. That additional term only affects the sequential part of the matrix powers
kernel; it does not add to the number or size of the messages in parallel.

7.4 Basis condition number

Any s-step basis must be linearly independent in exact arithmetic, as long as the Krylov
subspace can be extended. However, the basis vectors tend to lose their independence as
the basis length s increases. At some point, the vectors become no longer full rank in finite-
precision arithmetic. That may have many ill effects on the convergence of the iterative
method. First, the s basis vectors may not be able to increase the dimension of the Krylov
subspace by s. This will make the s-step method no longer mathematically equivalent to the
conventional Krylov iteration from which it was derived, and could (at best) slow conver-
gence. Second, depending on how the solution update at that outer iteration is computed, it
may be inaccurate or even undefined. Finally, the inaccurate solution update may cause the
Krylov method to diverge. Fixing divergence requires either backtracking to some previous
outer iteration, or restarting entirely from some known good starting vector. Either way
loses time solving a problem that a conventional Krylov iteration would not have had. Thus
it is important to understand the factors that can cause loss of linear independence in the
s-step basis vectors.

We begin with Section 7.4.1, where we define more formally what we mean by the “con-
dition number” of the basis. That is, we state the mapping whose sensitivity to relative
perturbations the condition number (which is a kind of derivative) measures. This will lead
into Section 7.4.3, where we summarize results relating the s-step Krylov basis to poly-
nomial interpolation on the eigenvalues of the matrix A. The condition numbers of these
processes are also related. In Section 7.4.4, we cite known results concerning the condi-
tion number growth of the monomial, Newton, and Chebyshev bases. Finally, in Section
7.4.2, we talk about the influence of orthogonalizing each group of s (or s + 1, depending
on the algorithm) basis vectors against the previously orthogonalized basis vectors, in our
communication-avoiding versions of Lanczos or Arnoldi iteration.

7.4.1 Condition number

Many authors speak of the “condition number” of the s-step basis. The condition number
measures the relative sensitivity of some computation’s output to the input, but most of these
authors do not define that computation explicitly. Defining it is important because different
computations, and different ways of computing them, have different condition numbers. For
example, suppose that A is a dense 10×10 Jordan block with eigenvalues all 1. If I compute
a dense 10 × 10 random orthogonal matrix Q, then the condition number of QAQ∗ with
respect to solving linear systems is about 13. However, the condition numbers of each of its
eigenvalues are all greater than 1.6× 1013. The first authors we found to make explicit what



CHAPTER 7. CHOOSING THE BASIS 273

they mean by the “condition number” of the s-step basis were Joubert and Carey [143], and
the content of this section was inspired by them.

In this section, we speak of the condition number of the s-step basis, when we are using
that basis in a Krylov method to solve linear systems. As the above Jordan block example
illustrates, eigenvalue problems have their own entirely different condition numbers. The
analysis of Joubert and Carey covers the t = 1 case of our CA-GMRES algorithm (Section
3.4). Here, we extend the analysis to the general t ≥ 1 case. The analysis can also be
extended to our CA-CG algorithm (Section 5.4), in a sense we will explain below. This
section describes work in progress, and we will identify the steps which need completion.

GMRES

Each iteration of standard MGS-based GMRES requires solving a linear least-squares prob-
lem to find the solution update at that iteration. The least-squares problem uniquely deter-
mines the solution update (in exact arithmetic). It is the condition number of this problem
which matters for the accuracy of the approximate solution to the linear system Ax = b. If
we write Q(j) for the matrix of j basis vectors produced by j iterations of standard GMRES,
x0 for the initial guess, and r0 = b−Ax0 for the initial residual, the least-squares problem is

yj := argminy ‖r0 − AQ(j)y‖2 (7.18)

and the approximate solution xj is

xj := x0 +Q(j)yj.

Of course, GMRES does not solve Equation (7.18) explicitly. However, all algorithms equiv-
alent to standard GMRES in exact arithmetic solve this least-squares problem in some way,
so determining the sensitivity of this problem to perturbations is generally applicable. The
accuracy of yj and therefore of xj depends on various factors, here especially on the 2-norm
condition number of the matrix AQ(j). We can look at the least-squares problem in two
different ways:

1. As a monolithic problem, which gives the expected accuracy of the solution xj, con-
sidering the entire basis Q(j) up to the current iteration j this point; or

2. As a QR factorization update, in which we assume that the columns of Q(j−1) are
perfectly orthonormal resp. unitary, and only consider the accuracy of updating the
basis (to get Q(j)) by adding a new column.

Our CA-GMRES (Section 3.4) algorithm solves the same least-squares problem (in exact
arithmetic) as does standard GMRES, but computes both the basis vectors and the solution
in a different way (that matters for finite-precision arithmetic). Also, CA-GMRES only
produces an approximate solution xk+1 = x0 + Qkyk once every outer iteration k. If we
prefer the monolithic approach, we get

yk := argminy ‖r0 − A[V1, . . . , Vk]yk‖2,
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which suggests that the condition number of A[V1, . . . , Vk] is of interest. If we choose to look
at the least-squares problem as an update, we get

yk := argminy ‖r0 − A[Qk−1, Vk]yk‖2,

which suggests that the condition number of AVk, or of A[Qk−1, Vk], is of interest.

CG

CG is equivalent in exact arithmetic to the Full Orthogonalization Method (FOM) for solving
linear systems (see e.g., Saad [207]). FOM computes the same basis vectors and upper
Hessenberg matrix as GMRES, except that FOM’s approximate solution comes from solving
a least-squares problem in the A norm:

yk := argminy ‖e0 − [V1, . . . , Vk]y‖A.

We can express this as a 2-norm least squares problem:

yk := argminy ‖A1/2e0 − A1/2[V1, . . . , Vk]y‖2. (7.19)

Thus the condition number that matters is that of A1/2[V1, . . . , Vk]. The matrix square root
exists because we assume that A is positive definite.

Eigensolvers

We reserve discussion of the condition number of the basis with respect to various eigenvalue
problems for future work.

7.4.2 The projection step

CA-GMRES (Section 3.4), CA-Arnoldi (Section 3.3), and CA-Lanczos (Section 4.2) all or-
thogonalize the current set of basis vectors V́ k against the previous basis vectors Qk−1,
before making the updated s-step basis orthogonal with a QR factorization.5 We call this
the projection step of outer iteration k, because it involves projecting V k orthogonally onto

R
(
Qk−1

)⊥
, which is the orthogonal complement of the range of Qk−1. The basis condition

number analysis of Joubert and Carey [143] does not include the projection step, because
their algorithm is equivalent in exact arithmetic to Arnoldi(s, 1). We leave a full analysis of
the influence of the projection step to future work, but we discuss a few possible directions
of that analysis here.

In this section, we only consider CA-Arnoldi for simplicity. Let V́ k be the s-step basis

generated at outer iteration k by the matrix powers kernel, and let V́
′
k be the result of

projecting V́ k orthogonally ontoR
(
Qk−1

)⊥
. This is done by either the MGS or CGS variants

5The left-preconditioned algorithms derived from CA-Lanczos orthogonalize with respect to a different
inner product, so they cannot use a QR factorization, but otherwise the process is similar. Also, depending
on how the algorithms are implemented, Qk−1 may be replaced with Qk−1 and V́ k may be replaced with
V k. The details are not so important here.
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of Block Gram-Schmidt, which we describe in Section 2.4. There are many variations on
Block Gram-Schmidt and also many reorthogonalization options; we gloss over these here
and try to address the issues that are independent of the choice of Block Gram-Schmidt
scheme.

We discuss a general Block Gram-Schmidt reorthogonalization scheme in Section 2.4.8.
That can be applied to any collection of vectors, even if they are dependent in exact arith-
metic. Our vectors specifically are the Krylov basis vectors in a Krylov subspace method.
This means both that the “Twice is Enough” observation of Kahan applies (cited in Parlett
[188, Section 6.9]), and that detecting loss of linear independence is important. Furthermore,
the scheme in Section 2.4.8 performs more computations and requires more communication
than we would like. Most of the communication comes from computing the norms of columns

both of V́ k (before the projection step) and V́
′
k (after the projection step). Computing col-

umn norms defeats the communication-avoiding feature of the combination of TSQR and
block Gram-Schmidt.

In our iterative methods, V́
′
k may be numerically rank-deficient for two reasons:

1. Lucky breakdown of the iterative method

2. The s-step basis is poorly conditioned

It is very important to distinguish the two causes, as lucky breakdown means the Krylov
subspace cannot be extended further and the iterative method should stop. A poorly condi-
tioned s-step basis, in contrast, calls for adjusting the basis (by reducing the basis length s
and/or improving the basis polynomials) and repeating the affected outer iteration.

The numerical rank-deficiency of an s-step basis in one outer iteration of CA-Arnoldi
does not depend on the numerical rank deficiency of previous or future outer iterations; it
only depends on the matrix A, the starting vector of that outer iteration, the basis length
s, and the particular basis used. This means we can use a dynamic approach to distinguish
the two causes of numerical rank deficiency in the s-step basis. If efforts to improve the
conditioning of the s-step basis do not succeed, then we can revert to a standard Krylov
subspace method from that point. This will detect a lucky breakdown accurately, albeit
expensively. Lucky breakdowns are rare, though, so we do not expect to pay this price often.

Standard Arnoldi computes and orthogonalizes each basis vector one at a time. The
above phenomenon could still occur, in the sense that the norm of a new basis vector Avj
might drop significantly after one round of orthogonalization. This is often associated with
convergence of a particular Ritz value (in case reorthogonalization is desirable), although it
may also signal lucky breakdown. However, in an s-step method like Arnoldi(s, t), the s-step
basis complicates the analysis. For example, if the monomial basis is used and if the power
method applied to A and qsk+1 would converge quickly, then the basis vectors may have a

large qsk+1 component relative to their R
(
Qk−1

)⊥
component. If the power method applied

to A and qsk+1 would not converge quickly, then the basis vectors should have a significant

R
(
Qk−1

)⊥
component. This could explain the phenomenon we observed in experiments,

that the monomial basis works poorly for symmetric matrices (on which the power method
converges nicely) as compared with other bases, but better for highly nonnormal matrices
(on which the power method may take many iterations to converge, or may not converge at
all).
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From the above argument, it seems that loss of linear independence in the columns of
V́ k, and loss of accuracy in the projection step, are correlated. However, we will have to do
more experiments and analysis to confirm this.

7.4.3 Basis as polynomial interpolation

In this section, we illustrate the connections between the s-step Krylov basis, and polynomial
interpolation of the eigenvalues of the matrix A. Much of the content in this section comes
from Beckermann [24, 25].

We first introduce notation. We call the matrix

Ks+1(A, v) = [p0(A)v, p1(A)v, . . . , ps(A)v] (7.20)

corresponding to a particular choice of s-step basis polynomials p0(z), p1(z), . . . , ps(z) a
Krylov matrix. Depending on the basis type, this may be either a Krylov-monomial, Krylov-
Chebyshev, or Krylov-Newton matrix. (Some authors call this a “Krylov-like” matrix if the
basis is not monomial.) The choice of polynomials is implicit in the above notation and
understood from context. The matrix powers kernel at outer iteration k of CA-GMRES
(Section 3.4), CA-Arnoldi (Section 3.3), or CA-Lanczos (Section 4.2) generates a Krylov
matrix

V k = Ks+1(A, qsk+1) = [p0(A)qsk+1, p1(A)qsk+1, . . . , ps(A)qsk+1].

Suppose that the n × n matrix A has an eigenvalue decomposition A = UΛU−1, where the
matrix Λ is the diagonal matrix of eigenvalues. Here, we do not assume that the matrix of
eigenvectors U is orthogonal resp. unitary. Then the Krylov matrix Ks+1(A, v) satisfies

Ks+1(A, v) = U [p0(Λ)U−1v, p1(Λ)U−1v, . . . , ps(Λ)U−1v].

If we let [z1, . . . , zn]T = U−1v, then

Ks+1(A, v) = U


p0(λ1)z1 p1(λ1)z1 . . . ps(λ1)z1

p0(λ2)z2 p1(λ2)z2 . . . ps(λ2)z2
...

...
. . .

...
p0(λn)zn p1(λn)zn . . . ps(λn)zn



= UeiΦ diag(e−iφ1z1, . . . , e
−iφnzn)


p0(λ1) p1(λ1) . . . ps(λ1)
p0(λ2) p1(λ2) . . . ps(λ2)

...
...

. . .
...

p0(λn) p1(λn) . . . ps(λn)

 ,

(7.21)

where we define the diagonal matrix

eiΦ ≡ diag(eiφ1 , . . . , eiφn). (7.22)

In Equation (7.21), we chose each φj so that e−iφjzj is nonnegative and real.
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We call matrices of the form

Ps+1(λ1, . . . , λn) =


p0(λ1) p1(λ1) . . . ps(λ1)
p0(λ2) p1(λ2) . . . ps(λ2)

...
...

. . .
...

p0(λn) p1(λn) . . . ps(λn)

 (7.23)

Vandermonde matrices. Most authors restrict the term “Vandermonde matrix” to the mono-
mial basis pj(z) = zj, and call matrices in the form of Equation (7.23) “Vandermonde-like”
if they correspond to a different basis (see e.g., Gautschi [107]). As with Krylov matrices,
we say “Vandermonde-monomial matrix” for the monomial basis, “Vandermonde-Newton
matrix” for the Newton basis, and so on for other bases.

Recall the definition of the Krylov basis condition number for GMRES (Equation (7.18))
and for CG (Equation (7.19)). Equation (7.21) suggests that two important factors in the
basis condition number are the condition number of the eigenvectors of A (so, κ2(U−1U)),
which is 1 when A is normal, and matrices of the form

P̃s+1 = diag(e−iφ1z1, . . . , e
−iφnzn)Ps+1(λ1, . . . , λn). (7.24)

Matrices of the form of P̃s+1 are called row-scaled Vandermonde matrices. Beckermann
uses row-scaled Vandermonde matrices in his analysis. A row-scaled Vandermonde matrix
arises when doing polynomial interpolation in which the different observations (correspond-
ing to different rows of the Vandermonde-like matrix and their right-hand side elements)
have different weights. For example, one may trust certain observations more than others.
(Beckermann requires that those weights be positive, which is why we include the additional
diagonal matrix of e−iφj terms.)

We see from the above that using the Krylov basis to compute the solution update in
an iterative method is like doing weighted (i.e., row-scaled) polynomial interpolation. The
interpolation nodes are the eigenvalues of the matrix A, the values to interpolate are the
entries of the residual vector (for GMRES) or the error vector (for CG), and the weights
are the absolute values of the components of that vector in the basis of eigenvectors of the
matrix A. We made simplifications in the above arguments, but this decomposition can be
generalized, for example when the matrix has repeated eigenvalues or is defective.

Before we continue the analysis, we first make some observations about the decomposition
in Equation (7.21). First, if A is normal, then U is unitary and thus we can ignore the U
factor in analyzing the condition number of Ks(A; qsk+1). Second, the row scaling does
affect the condition number, although measuring the error in a different norm removes the
influence of the row scaling completely, as long as none of the zj are zero. In this case, the
norm is determined by the components of the starting vector in the eigenbasis of A. We
do not know these components, but it may not be necessary if we can bound the condition
number independently of the row scaling. Third, while we do not have U or U−1b, we do
have approximations of the eigenvectors of A, since we are performing the Arnoldi process.
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7.4.4 Condition number bounds

Monomial basis

Theory confirms the experimental observation that the condition number of the monomial
basis grows exponentially with the basis length s, when the eigenvalues of the matrix are
real. The situation may be quite different for matrices with complex eigenvalues; in fact, we
will show an example with condition number one. Furthermore, unpredictable behavior may
result if the matrix A is nonnormal; the basis may be better conditioned than one would
expect from the eigenvalues of A. However, the case of real eigenvalues covers all symmetric
and Hermitian matrices, among others.

The choice of basis for the Krylov subspace corresponds intuitively to polynomial inter-
polation. When using the monomial basis of polynomials 1, z, z2, . . . , zs to interpolate the
nodes z1, . . . , zn, an n by s+ 1 Vandermonde matrix results:

Ps+1(z1, . . . , zn) :=


1 z1 z2

1 . . . zs1
1 z2 z2

2 . . . zs2
...

...
...

. . .
...

1 zn z2
n . . . zsn


Many authors have observed that for real nodes z1, . . . , zn, Vandermonde matrices have a
large condition number with respect to the least-squares polynomial interpolation problem

min
y∈Rs+1

‖b− Ps+1(z1, . . . , zn)y‖2.

For example, Gautschi [109] showed that for any real nodes z1, . . . , zn, the 2-norm condition
number of Ps+1(z1, . . . , zn) grows no slower than exponentially in s. Note that this may not
hold if the nodes are not all real. For example, if ωs is the sth complex root of unity, then the
Vandermonde matrix Vs−1(ω0

s = 1, ω1
s , ω

2
s , . . . , ω

s−1
s ) has orthogonal columns, all of length s,

and κ2(Vs−1) = 1. (This matrix is just a multiple of the discrete Fourier transform matrix.)
Nevertheless, the case of real nodes leads us to consider the large class of matrices with real
roots.

This connection between Vandermonde matrices and the monomial basis can be formal-
ized. Beckermann [24, 25] does so by applying the theory of orthogonal polynomials to
relate the matrix of monomial basis vectors to Vandermonde and Hankel matrices. He uses
this to prove that the condition number of the monomial basis matrix grows no slower than
exponentially in the number of basis vectors, when the matrix A is diagonalizable and has
real eigenvalues.

Beckermann quantifies the intuitive observation above, that the condition numbers of the
following matrices are related:

1. Krylov matrices Ks+1(A, v) = [v,Av,A2v, . . . , As]

2. Square Vandermonde matrices

3. Row-scaled Vandermonde matrices DPs+1(z1, . . . , zn)

4. Matrices of moments H(µ)ij =
∫

supp(µ)
xi+j
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5. Hankel matrices (square matrices with constant antidiagonals)

The condition numbers of Hankel matrices tend to grow rapidly with their dimension. The
best-known example is the Hilbert matrix

Hij =
1

i+ j − 1
,

though there are many other examples. Beckermann observes that for any real positive
semidefinite Hankel matrix H, there exists some positive (possibly discrete) Borel measure
µ with real support supp(µ) ⊂ R such that

Hij =

∫
supp(µ)

x(i−1)+(j−1) dµ(x). (7.25)

That means any real positive semidefinite Hankel matrix is also a matrix of moments. Fur-
thermore, given any Vandermonde matrix P = Ps+1(z1, . . . , zn), the matrix P ∗P is an s+ 1
by s+ 1 Hankel matrix.

Beckermann continues to define some notation for lower bounds. Given a real interval
I ⊂ R, he defines Γs(I)2 as the (square of the) lower bound of the 2-norm condition number
of all s+ 1 by s+ 1 Hankel matrices Hs+1 (defined by Equation (7.25)):

Γs(I)2 ≡ inf{κ2(Hs+1(µ)) : supp(µ) ⊂ I}. (7.26)

Similarly, for all real Vandermonde matrices with s + 1 columns and the same number of
nodes z1, . . . , zs+1:

ΓPs (I) ≡ inf{κ2(Ps+1(z1, . . . , zs+1)) : z1, . . . , zs+1 ∈ I}. (7.27)

For all row-scaled Vandermonde matrices DPs+1(z1, . . . , zn) with s+1 columns and n nodes:

ΓDs (I) ≡ inf{κ2(D · Ps+1(z1, . . . , zn)) : z1, . . . , zn ∈ I,D diagonal.} (7.28)

Finally, for all n by s+ 1 Krylov matrices Ks+1(A, v) with Hermitian A and n > s+ 1:

ΓKs (I) ≡ inf{κ2(Ks+1(A, v) : σ(A) ⊂ I}. (7.29)

Beckermann [25, Theorem 2.1] proves that for each interval I ⊂ R and for all s > 0,

Γs(R) ≤ Γs(I) = ΓKs (I) = ΓDs (I) ≤ ΓPs (I). (7.30)

This shows the close relationship between the condition numbers of Vandermonde matrices,
Krylov matrices, matrices of moments, and Hankel matrices, at least for the monomial basis.
The author then defines the constant

Γ(R) ≡ exp(2 · Catalan/π) ≈ 1.792, (7.31)

and finally proves [25, Theorem 3.6] two bounds, one for general real intervals, and one for
nonnegative intervals:

Γ(R)s

4
√
s+ 1

≤ Γs(R) ≤ Γ(R)s+1

√
2

, (7.32)
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and
Γ(R)2s

4
√
s+ 1

≤ Γs(R) ≤ Γ(R)2s+1

√
2

, (7.33)

If we combine these results with Equation (7.30), we can bound the condition number of
Krylov-monomial matrices above and below, using Bound (7.32) for general Hermitian ma-
trices, and Bound (7.33) for Hermitian positive semidefinite matrices. These bounds show
that for Hermitian matrices at least, the growth of the condition number of the monomial
basis is at least exponential, and the constant is at least Γ(R) ≈ 1.792 (Equation (7.31)).

Newton basis

In Section 7.4.3, we discuss the connections between the choice of basis and polynomial
interpolation with that basis. Reichel’s [201] analysis of polynomial interpolation with the
Newton basis at Leja points inspired Bai, Hu, and Reichel [17, 18] to use this technique for
their s-step GMRES algorithm. Reichel showed that for most compact sets K in the complex
plane, the Vandermonde-like matrix resulting from Newton polynomial interpolation at Leja
points of that compact set has a condition number that grows subexponentially in the number
of interpolation points. That means, for normal matrices A at least, we can expect the same
subexponential growth of the Krylov basis’ condition number with respect to the length s,
if we use the analogous procedure to generate the basis. There, the ideal choice of the set
K is the set of eigenvalues of the matrix A, but one does not know the eigenvalues of A in
practice. Instead, one has the Ritz values, which are eigenvalue estimates. This difference
may cause the basis condition number to grow more quickly, but if the Ritz values are good
approximations of the eigenvalues, it should still be well conditioned.

This observation hints at a possible source of trouble for the Newton basis. If the Ritz
values are poor approximations of the matrix’s eigenvalues, then the basis condition number
may grow much faster than Reichel’s theory predicts. Erhel [93] observed this phenomenon,
in that convergence failed for some matrices unless she used s Ritz values from 2s steps
of standard Arnoldi, rather than s steps as one would ordinarily do. If we take a large
number (� s) of steps of the iterative method to converge, then this overhead is modest
and pays off. Nonnormal matrices may have ill-conditioned eigenvalues that are difficult
to approximate, and it could be that the condition number of the Newton basis for highly
nonnormal matrices is more sensitive to the accuracy of the eigenvalue estimates than for
more well-behaved matrices.

Chebyshev basis

Joubert and Carey [143] use a mix of theoretical and heuristic arguments to suggest that
with the Chebyshev basis, when the spectrum is well approximated by the bounding ellipse
and the matrix A is not severely nonnormal, the condition number of the s-step basis grows
no faster than s3/2. They also point out that the position and shape of the bounding ellipse
affect the basis condition number more than the size of the ellipse.

We did not have a chance to evaluate their claim experimentally. Doing so would require
a numerical method for computing a “good” bounding ellipse of a finite set of points. The
Computational Geometry Algorithms Library [96] offers an algorithm for computing the
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unique ellipse of minimum area enclosing a set of points in the plane. As mentioned above,
though, the area of the bounding ellipse is not necessarily the metric to minimize. We
also achieved good numerical results by choosing from the Newton and monomial bases,
especially when we incorporated techniques for keeping the basis vectors well scaled (Section
7.5). Thus, we decided to leave evaluating the stability of the Chebyshev basis for future
work.

7.5 Basis scaling

Sometimes the lengths of the basis vectors may increase or decrease rapidly with respect
to the basis length s. This is generally caused by the matrix having norm significantly
larger resp. smaller than one. For large enough s, we observed in our numerical experiments
(see e.g., Section 3.5.4) that this often causes loss of accuracy or slower convergence in the
approximate solutions computed by our communication-avoiding Krylov methods. Previous
authors observed this phenomenon and suggested scaling each basis vector by its Euclidean
norm as it is generated. Hindmarsh and Walker [134] proposed this solution in order to avoid
overflow and improve numerical stability of the “Householder GMRES” algorithm of Walker
[237], which uses the monomial basis. Bai et al. [18, Algorithm 3.2] also scale each basis
vector in turn by its norm in their Newton-basis GMRES algorithm. Scaling each vector after
it is computed requires a factor of Θ(s) additional communication in the iterative method,
which would remove its asymptotic advantage over the non-communication-avoiding version
of the Krylov method. Joubert and Carey [143] instead used a scaled Chebyshev basis. The
scaling factor for each basis vector is computed in advance, without requiring communication
during the computation of basis vectors. However, the quality of the scaling factor depends
in a complicated way on the quality of the estimated eigenvalue bounds in the algorithm.
Joubert and Carey do not address this relationship or discuss basis scaling much, which could
be because their test problems (PDE discretizations on regular 2-D meshes) only produce
matrices with norms close to one.

We propose as a general solution, scaling the rows and columns of the matrix A (and
the preconditioner also, if applicable). This requires a communication cost equivalent to a
few sparse matrix-vector multiplications. However, it is only done once, as a preprocessing
step for the Krylov method. When solving linear systems Ax = b, equilibration should be
used, since it is already a natural preprocessing step for improving accuracy of solving linear
systems. For solving eigenvalue problems Ax = λx, balancing (if the matrix is nonsymmet-
ric), followed by a scaling A 7→ A/‖A‖, should be used. We found equilibration effective in
practice when solving Ax = b using CA-GMRES, as our numerical experiments in Section
3.5.4 show. As far as we know, no other authors have proposed scaling the matrix to solve
the s-step basis vector growth problem without additional communication. The mathemati-
cal analyses in this section, in particular those explaining why the scaling of the s-step basis
vectors affect numerical stability (Section 7.5.1), are also unique as far as we know.

We begin in Section 7.5.1 by explaining why the scaling of the basis vectors matters
for the accuracy of methods such as CA-GMRES. Then, Section 7.5.2 informally explains
basis vector growth in the context of the three different bases mentioned in this thesis.
Next, Section 7.5.3 shows the two different ways of scaling the matrix A: equilibration and
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balancing. We explain when each is appropriate, and outline the costs of each for general
sparse matrices. Section 7.5.4 summarizes our findings.

7.5.1 Why does column scaling matter

In this section, we explain why the scaling of the s-step basis vectors can affect the numerical
stability of our communication-avoiding Krylov methods. We consider CA-GMRES (Section
3.4) in this section, since of all the Krylov methods described in this thesis, it should be the
least susceptible to the scaling of the basis vectors. We present experimental evidence in
Section 3.5.4 that the scaling of the basis vectors does matter in CA-GMRES, but we want
to show here that the phenomena we observed are not necessarily just an artifact of our
implementation. What we show in this section is that poor column scaling of the matrix of
basis vectors translates to poor row scaling when solving the least-squares problem for the
coefficients of the new approximate solution. This is true even if the QR factorization in CA-
GMRES orthogonalizes the basis vectors to machine precision. Least-squares problems are
insensitive to column scaling, but sensitive to row scaling, and require additional techniques
in the latter case to ensure an accurate solution. Including those techniques in CA-GMRES
and our other Krylov methods is future work.

Column scaling, QR, and least squares

The QR factorization of the s-step basis vectors V = [V, vs+1] = [v1, . . . , vs, vs+1] in CA-
GMRES (Section 3.4) is insensitive to column scaling. By this, we mean that if we use
Householder QR to compute the QR factorization V = QR in finite-precision arithmetic,

• The Q factor is always orthogonal to machine precision

• The normwise relative residual error ‖V − QR‖2/‖V ‖2 is always small (on the order
of machine precision)

This holds regardless of the scaling of the columns of V . See e.g., Higham [132, Theorem
19.4 and Equation (19.12), p. 360]. While CA-GMRES uses TSQR (Section 2.3) instead of
Householder QR to orthogonalize the basis vectors, it is reasonable to assume that TSQR
shows the same behavior.

We can see the invariance of QR to column scaling by a simple example. Suppose we are
using CA-GMRES with t = 1 (restarting after every invocation of the matrix powers kernel)
to solve Ax = b. Suppose also that the n × n matrix A consists of columns 2, 3, . . . , n, 1
of the diagonal matrix diag(1, 8, 64, . . . , 8n), so that A is upper Hessenberg with n nonzero
entries. Suppose also that the starting vector for the monomial basis is v = e1. Then, the
monomial s-step basis has the form

V = [e1, 8e2, 64e3, . . . , 8
ses+1]. (7.34)

The columns of this Krylov matrix are perfectly orthogonal. If we are using base-2 floating-
point arithmetic, then the QR factorization of (7.34) in floating-point arithmetic is ex-
actly the same as the QR factorization of the first s + 1 columns of the identity matrix
[e1, e2, . . . , es+1], as long as s is not so large that overflow occurs. Nevertheless, κ2(V ) = 8s,
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so that if we measure its numerical rank only using the singular values, V is numerically
rank-deficient in IEEE 754 double-precision arithmetic when s > 13.

Even if the column scalings are not powers of two, the normwise accuracy of the House-
holder QR factorization does not significantly on the scaling of the columns of the input
matrix, excepting only underflow or overflow. This also means that if we use QR to solve a
least-squares problem, the accuracy of the solution is insensitive to the column scaling.

Standard GMRES and least squares

To see how the scaling of the basis vectors could affect CA-GMRES accuracy, we have to look
not just at the basis vectors themselves, but at the least-squares problem which CA-GMRES
solves in order to compute the solution update at each outer iteration. We discussed this
in Section 7.4.1, and we summarize it briefly here. Suppose that we are solving Ax = b,
and suppose we have executed s iterations of standard GMRES. This produces basis vectors
Q = [Q, qs+1] = [q1, . . . , qs, qs+1 that have been made orthogonal in exact arithmetic using
Modified Gram-Schmidt (MGS) orthogonalization, as well as an s+1 by s upper Hessenberg
matrix H such that AQ = QH, whose entries are the MGS coefficients. Standard GMRES
computes the approximate solution

xMGS-GMRES = x0 +QyMGS-GMRES,

where yMGS-GMRES = yExact GMRES in exact arithmetic. Here, yExact GMRES satisfies

yExact GMRES ≡ argminy ‖b− AQy‖2 (7.35)

in exact arithmetic. However, standard GMRES does not compute yMGS-GMRES in this way;
rather it computes yMGS-GMRES as the solution of the least-squares problem

yMGS-GMRES ≡ argminy ‖βe1 −Hy‖2, (7.36)

where β = ‖b − Ax0‖2. We see from Equation (7.36) that the accuracy of yMGS-GMRES is
connected to the accuracy of H as computed by MGS using the Arnoldi process. Basis
vectors can never grow larger than ‖A‖ in length, since A is only multiplied by unit-length
vectors. Thus, as long as GMRES does not break down, the norms of the columns, or of the
rows, of H are never more than a factor of ‖A‖ apart.

CA-GMRES and least squares

CA-GMRES computes its vector of solution update coefficients yCA-GMRES by solving a dif-
ferent least-squares problem than standard GMRES. If

V = [V, vs+1] = [v1, . . . , vs, vs+1]

are the s-step basis vectors computed by CA-GMRES that satisfy AV = V B for the s + 1
by s change of basis matrix B, and if V = QR and V = QR are the QR factorizations of V
resp. V , then CA-GMRES computes yCA-GMRES via

yCA-GMRES = argminy ‖βe1 −RBR−1y‖2. (7.37)

This is equivalent to Equation (7.35) in exact arithmetic, but may produce different results
in finite-precision arithmetic. CA-GMRES solves Equation (7.37) in three steps:
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1. Compute the s+ 1 by s upper Hessenberg matrix C = RB

2. Solve the s+ 1 by s least-squares problem minz ‖βe1 − Cz‖2 for z

3. Compute yCA-GMRES = Rz

If the columns of V are badly scaled, then the columns of R are badly scaled, which means
that the rows of C are badly scaled. This of course depends on the structure of B, which
depends in turn on the s-step basis being used. With the monomial basis, scaling the rows
of B is equivalent to scaling the columns. However, with the Newton or Chebyshev basis,
scaling the rows of B is not in general equivalent to scaling its columns.

Row scaling, QR, and least squares

While the solution of linear least-squares problems with Householder QR (or similar fac-
torizations, like TSQR (Section 2.3)) is not sensitive to column scaling, it is sensitive to
row scaling. Higham [132, Section 19.4, pp. 362-363] shows that Householder QR alone
cannot guarantee small backward errors; two additional techniques must be added to the
Householder QR factorization:

1. Column pivoting during the QR factorization (see Golub and Van Loan [113, Section
5.4.1, pp. 248–9])

2. One of the following:

• Row pivoting during the QR factorization (choosing the row with largest infinity
norm as the pivot row, for each column of the input matrix)

• Before the QR factorization, sorting the rows in decreasing order of their infinity
norms

Linear least-squares problems with poor row scaling do come up in applications. For example,
Van Loan [170] shows how to solve equality-constrained least-squares problems of the form

x̂ = argminBx=d ‖Ax− b‖2 (7.38)

by transforming them into a sequence of unconstrained least-squares problems

x̂(µ) = lim
µ→∞

argminx

∥∥∥∥(µBA
)
x−

(
µd
b

)∥∥∥∥
2

. (7.39)

When A and B are sparse, Van Loan’s formulation avoids fill. The problem with this
technique is that Equation (7.38) can result in least-squares problems with a poor row
scaling. As we mentioned above, solving such problems with Householder QR alone can
result in large relative errors in the computed solution x(µ), even though the original problem
is well conditioned. That is, solving Equation (7.38) directly using standard techniques
results in an accurate solution, but solving the equality-constrained least squares problem
by transformation into Equation (7.39) and ordinary Householder QR does not. However,
augmenting Householder QR with both column pivoting, and row pivoting or sorting the
rows, results in an accurate x(µ). Higham [132] demonstrates this by using a small test
problem from Van Loan [170, Section 3, pp. 855-857].
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An inexpensive fix?

One possible way to fix the above problem, is to compute the solution of Equation (7.37)
in the way described by Higham: using careful column and row pivoting to solve the least-
squares problem. It should be the case that the initial QR factorization of the basis vectors
V = QR does not affect the accuracy of the computed R factor itself, so that we can still
use TSQR to factor V . This is more or less the same thing as the Rank-Revealing TSQR
(RR-TSQR) factorization (Section 2.4.8): the initial invocation of TSQR reduces the size
of the problem without affecting accuracy. We leave investigating this possible solution for
future work.

In this section, we did not consider the effects of Block Gram-Schmidt (BGS) on the
least-squares problem. That is, we did not consider the t > 1 case in CA-GMRES. We leave
such investigations for future work.

7.5.2 Analysis of basis vector growth

In this section, we give a part theoretical, part heuristic description of s-step basis vector
length growth for the monomial and Newton bases, in terms of the spectrum of the matrix
A. This is much easier to do when the matrix A is normal, as then ‖A‖2 = λmax(A). When
‖A‖2 � λmax(A), the spectrum is much less descriptive of the basis’ behavior.

Case A: A is normal

Understanding the possible cause of a poorly scaled basis is much easier when the matrix
A is normal. Then the eigenvalues corresponding to the eigenvectors of A directly indicate
how much the matrix “pushes” a vector in the direction of those eigenvectors, since the
eigenvectors are all orthogonal. The power method reflects this direct connection, in that it
converges well on a normal matrix as long as the largest two eigenvalues in absolute value
are sufficiently separated.

We begin by considering just one step vk 7→ Avk of the s-step basis computation. This
suffices for describing the behavior for normal matrices. First, suppose that the vector vk is
close to an eigenvector of A, so that Avk ≈ λjvk, where λj is the eigenvalue corresponding
to that eigenvector. In that case, the Krylov method is close to a lucky breakdown, and no
s-step basis will be a good basis. For example, for the monomial basis, further s-step basis
vectors vk+2 = A(Avk), . . . , will be nearly parallel to vk. This is also true for the Newton and
Chebyshev bases. Since the monomial basis converges faster to the principal eigenvector of
the matrix A, this behavior is more likely to occur with the monomial basis, but we exclude
this case in the arguments that follow.

If we assume the iterative method is not close to lucky breakdown, then we can further
assume that the vector vk has no strong components in any particular eigenvectors of A.
Since A is normal, the spectrum of A governs the worst-case growth behavior of the basis.
There are three cases of interest:

1. If ‖A‖2 = λmax(A) � 1, then the basis vectors may grow rapidly in length as s
increases.
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2. If ‖A‖2 � 1, the basis vectors must shrink rapidly in length (since ‖A‖2 is the largest
possible value of ‖Ax‖2/‖x‖2 for any nonzero vector x).

3. If ‖A‖2 ≈ 1, then the behavior of the basis depends in a more complicated way on the
eigenvalues and eigenvectors of A, as well as on the starting vector of the s-step basis.

If we have a good estimate of ‖A‖2, we can reduce Cases 1 and 2 to Case 3, either by
scaling the matrix A by its norm estimate, or by scaling successive basis vectors by the norm
estimate. Neither of these require any communication. However, Section 7.5.3 will show
more effective techniques.

For the Newton basis, the shifts θ1, . . . , θs change the maximum scaling factor for each
basis vector. We assume the (nonmodified) Leja ordering for simplicity (see Section 7.3.2).
This ordering ensures that the first shift, θ1, has the largest absolute value among all the
shifts. The resulting maximum value of ‖v2‖2/‖v1‖2 is the spectral radius of the shifted
matrix A− θ1I. This is given by Equation (7.40):

ρ(A− θ1I) = max
λ∈Λ(A)

|λ− θ1|. (7.40)

If we assume that the shifts are good approximations of the eigenvalues, and approximate
the set Λ(A) by {θ2, . . . , θs} in Equation (7.40), the Leja ordering ensures that

max
λ∈{θ2,...,θs}

|λ− θ1| = |θ2 − θ1|.

Thus, |θ2 − θ1| approximates the maximum scaling factor of ‖v2‖2/‖v1‖2.
The extremal Ritz values tend fastest to the extremal eigenvalues of A, so θ1 is likely

a good approximation of λmax(A), if s is sufficiently large. That means v2 = (A − θ1I)v1

has at most a small component in the principal eigenvector of A, in terms of the basis of
eigenvectors. This means we can ignore θ1 when considering the maximum growth factor
of ‖v3‖2/‖v2‖2. By the same argument as above, the maximum growth factor is thus well
approximated by |θ3 − θ2|. In general, the maximum growth factor of ‖vk+1‖2/‖vk‖2 for the
Newton basis is well approximated by |θk+1 − θk|.

One possibility for scaling the Newton basis vectors without communication would be,
therefore, to use the above growth factor approximations:

σk ≡

{
1 for k = 1,

|θk+1 − θk| for k > 1,

vk ≡

{
v1 for k = 1,

σ−1
k σk−1(A− θk−1I)vk−1 for k > 1.

For the Chebyshev basis, one already uses shifted and scaled polynomials. The scaling
factor comes from the center and focal locations of the estimated bounding ellipse of the
eigenvalues. The result of the shift and scaling is that the ellipse is transformed into the unit
circle at the origin. Thus, as long as the ellipse does actually bound all the eigenvalues, and
as long as the magnitude of the largest eigenvalue is not much smaller than the two-norm of
the matrix, the lengths of the basis vectors should not grow fast. (This requirement includes
many more matrices than just SPD matrices.)
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Case B: A is not SPD

The situation when the matrix A is not SPD, and especially when A is not normal, is much
more difficult to analyze. In the latter case, the power method may not converge, even if
the first and second largest eigenvalues in magnitude are well separated. This is because
the eigenvalues may be sensitive to perturbations. Of course, for us the power method
not converging means that it may make a good basis. In that case, however, we found
experimentally that other bases, such as the Newton basis, increase much faster in condition
number with s than the monomial basis. This is likely also to happen to the Chebyshev
basis, since the scaling and shifting only move the eigenvalues inside the unit circle, not
the two-norm of the matrix. It is difficult to know a priori whether this will happen, and
sometimes difficult to know whether the matrix is nonnormal.

The only thing we can recommend in that case is a cautious dynamic approach. First,
try one kind of basis with very small s. Observe the scaling of the basis vectors, as well
as their condition number. (Both of these can be monitored, at least indirectly, from a
rank-revealing factorization of the R factor from TSQR of the basis vectors.) Estimate a
scaling factor if necessary and try again, scaling each basis vector in turn. If that does not
help, try a different basis. Once the right basis is found, increase s, monitoring the basis
condition number and scaling the whole while, until the desired value of s for performance
considerations is reached.

The dynamic approach to basis selection does sacrifice performance in a start-up phase of
computation. However, the information gathered during that start-up phase can be recycled,
either for the same matrix with a different right-hand side, or for similar matrices.

7.5.3 Scaling the matrix A

Scaling the rows and columns of the matrix A is another way to prevent rapid growth of
the basis vectors. As far as we know, we are the first to address this problem by scaling
the matrix. Other authors scaled the basis vectors instead, sometimes at an additional
communication cost of one reduction per vector.

We consider two different types of scaling:

1. Balancing: replacing A by A′ = DAD−1 with D diagonal

2. Equilibration: replacing A by A′ = DrADc with Dr and Dc diagonal

Balancing preserves the eigenvalues of the matrix, which is useful when solving Ax = λx.
Equilibration may change the eigenvalues, but it may also reduce the condition number
when solving linear systems Ax = b. Both balancing and equilibration can be computed and
applied inexpensively to sparse matrices, and an approximate balancing can be computed
even if the matrix A is only available as an operator x 7→ A · x that performs matrix-vector
multiplications. In our numerical experiments solving Ax = b with CA-GMRES, we found
equilibration to be effective in practice. A full theoretical and experimental comparison of
the two techniques to scaling the basis vectors is future work.
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Balancing

Balancing is a way of scaling the rows and columns of a square, nonsymmetric matrix A
that may reduce ‖A‖2, without affecting the eigenvalues of A. It entails applying a similarity
transform A 7→ A′ = DAD−1 with a diagonal matrix D, where D is chosen to minimize the
Frobenius norm (and equivalently, the two-norm) of A approximately:

D = argminD diagonal ‖DAD−1‖F .
If A is symmetric, then the above minimum is attained when D = I, so balancing is unnec-
essary. Balancing often improves accuracy when solving Ax = λx for nonsymmetric A, as
typical eigensolvers can only guarantee accuracy of an eigenvalue relative to the two-norm
of the matrix. See e.g., [4, “Balancing and Conditioning”].

Balancing alone does not suffice to prevent rapid growth of the s-step basis vector lengths.
One must also scale the balanced matrix A′ = DAD−1 by a constant so that the absolute
values of the entries of A′ are not much larger than 1. For example, one may scale A′ by its
maximum entry in absolute value, resulting in a matrix A′′:

A′′ =
1

maxi,j |A′ij|
A′. (7.41)

If we are using a Krylov subspace method to solve Ax = λx, then we need to undo this
scaling of the approximate eigenvalues after they are computed, since dividing the entire
matrix by a constant also divides the eigenvalues by that constant.

LAPACK’s nonsymmetric eigenvalue solver routine xGEEVX [4] uses the balancing algo-
rithm of Parlett and Reinsch [189] to preprocess general dense matrices before finding their
eigenvalues (see e.g., [4, “Balancing and Conditioning”] and [51]). The solver first attempts
to permute the matrix so it is more nearly upper triangular. After that, the balancing algo-
rithm iterates over pairs of corresponding rows and columns of the matrix, searching for a
power of two scaling factor which makes their one-norms (not including the diagonal elements
of the matrix) approximately equal. (The one-norm is chosen not for accuracy, but to save
floating-point arithmetic. This procedure may be done in any norm (see e.g., [51]).) The
algorithm continues passing over the matrix until the one-norms of corresponding rows and
columns are equal to within a certain tolerance. Three or four passes often suffice to reduce
the two-norm of the matrix sufficiently. Powers-of-two scaling factors are chosen because
they do not change the significands of the entries of the matrix, in binary floating-point
arithmetic. (Physicists and engineers approximate this procedure intuitively when picking
the best SI units for a decimal floating-point computation.)

The balancing procedure of Parlett and Reinsch may also be applied to sparse matrices.
In that case, only the nonzero values of the matrix are examined. Typical sparse matrix
data structures do not support efficient iteration over both rows and columns of the matrix,
though there are data structures which do. Chen [51] describes a specialized modification
of the Compressed Sparse Column data structure which makes computing column and row
sums (without the diagonal elements) more efficient. Depending on the data structure, the
total cost is equivalent to reading the entries of the matrix 6–8 times.

A sparse matrix A can be balanced even if it is only available as an operator x 7→ A · x.
Chen [51] describes so-called Krylov-based balancing algorithms that use only sparse matrix-
vector products with A and A∗ (“two-sided”), or just with A (“one-sided”). Two-sided
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algorithms tend to be more effective, and five iterations (each of which involve computing
A · x and A∗ · y for some vectors x and y) often suffice to compute a good approximate
balancing. Here, the vectors are chosen from a certain random distribution. Chen’s two-
sided algorithm gives D = I if A happens to be symmetric, so it does not make a symmetric
problem nonsymmetric.

Note that balancing is often defined to include an initial permutation step, that at-
tempts to put A in upper triangular or block upper triangular form. See [4, “Balancing and
Conditioning”] and [51]. The permutation step may save computation when computing the
eigenvalue decomposition of a dense matrix, but offers no such benefits for iterative methods.
Also, the matrix powers kernel may require another permutation for performance reasons
(see Section 2.1).

Equilibration

Equilibrating a matrix A means applying diagonal row and column scalings Dr resp. Dc,
so that the norms of each row and column of the equilibrated matrix DrADc are all one.
(This is not possible when A has a zero row or column, so we assume this is not the case.)
Equilibration may be done in any of various norms. Typically the norm used is the infinity
norm ‖ · ‖∞, which means that the largest element in each row or column of DrADc has
magnitude one. The 1-norm ‖ · ‖1 may also be used, in which case, if A contains only
nonnegative entries, then DrADc is doubly stochastic (all the entries are nonnegative, and
each row or column sums to one).

Equilibrating the matrix A helps prevent excessive growth or decay of the s-step basis
vector lengths as a function of s. For example, if A is n× n and e = [1, 1, . . . , 1]T is length
n, then equilibrating A in the 1-norm makes ‖Ake‖1 = 1 for k = 1, 2, 3, . . . . Equilibrating
A in the infinity norm makes ‖Akej‖∞ = 1 for k = 1, 2, 3, . . . , where ej is column j of the
n×n identity matrix. Equilibration also improves the accuracy of solving linear systems. For
example, if D is the diagonal of the n×n SPD matrix A, then van der Sluis [224, Theorem 4.1]
showed that the equilibration A 7→ D−1/2AD−1/2 minimizes the 2-norm condition number
of A (with respect to solving linear systems) over all such symmetric scalings, to within
a factor of the dimension n of A. Consequently, equilibration is not just useful for s-step
Krylov methods, but useful in general.

There are many options for equilibrating sparse matrices. For example, for our numerical
experiments with nonsymmetric matrices, we adapted the LAPACK subroutine DGEEQU for
dense matrices (see [4]), which equilibrates in the infinity norm. There are a variety of options
for nonsymmetric matrices. See e.g., Riedy [202]. For symmetric matrices, the algorithm
based on DGEEQU does not preserve symmetry. It first computes row scaling factors, and then
computes column scaling factors of the row-scaled matrix; those two sets of factors may be
different. However, it is possible to equilibrate in a way that preserves symmetry. If A is
symmetric positive definite, then A 7→ D−1/2AD−1/2 with Dii = Aii results in an equilibrated
SPD matrix. If A is symmetric but indefinite, there are a number of alternatives. Bunch [41]
gives an algorithm for equilibrating dense symmetric indefinite matrices. It makes one left-
to-right pass in a left-looking fashion over the lower triangle of the matrix, and produces an
equilibrated matrix satisfying the same criteria as the output of LAPACK’s DGEEQU. MC30
[65] in the HSL library [138] produces a scaling A 7→ DAD that makes all the entries as
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close to one in absolute value as possible. It does this by minimizing the sum of squares
of the natural logarithms of the magnitudes of the entries of the scaled matrix. Ruiz [205]
presents an iterative equilibration algorithm for sparse matrices that respects symmetry. It
converges linearly at a rate of at least 1/2 per pass over the matrix. The algorithm has
been implemented as MC77 in the HSL 2004 numerical library [138]. Livne and Golub [169]
develop a different iterative algorithm, BIN (for “binormalization”), that respects symmetry.
In the SPD case, it sometimes produces a scaled matrix with a lower condition number
than scaling symmetrically by the diagonal. Duff and Pralet [90] compare a number of
equilibration schemes for symmetric indefinite matrices.

The cost of equilibration depends both on the equilibration algorithm, and how the
matrix is stored. Our translation for sparse matrices of LAPACK’s dense nonsymmetric
equilibration DGEEQU requires two read passes over the entries of the sparse matrix, once
for the row scalings and once for the column scalings. (Even if the matrix is stored in
CSR format (as a row-oriented adjacency list), the second pass for the column scalings still
only requires iterating over the nonzero values and their column indices once.) Bunch’s
symmetric indefinite equilibration [41] requires reading and writing each row of the lower
triangle of the matrix once, and writing each column of the lower triangle once. If the
matrix is sparse, that amounts to reading the nonzeros twice and writing the nonzeros once.
However, the algorithm constrains the read and write order in a way that could hinder an
efficient implementation, if the sparse matrix is stored in either a row-oriented or a column-
oriented format. Ruiz’s iterative scaling method [205] has a similar cost per iteration, but
imposes fewer constraints on the order of reading the matrix entries. The maximum weighted
matching step in the scaling method of Duff and Pralet [90] requires in the worst case, for a
nonsymmetric matrix, Θ(nnz · n log n) operations, where nnz is the number of nonzeros and
n is the dimension of the matrix.

Nonsymmetric equilibration is less expensive than balancing, when the entries of the
sparse matrix A can be accessed directly. For a general nonsymmetric sparse matrix, equi-
libration only requires reading the nonzero values of the matrix twice: once when iterating
over rows, and once again when iterating over columns. Balancing may require several passes
over the rows and columns of the matrix. When the matrix A is only available as an oper-
ator x 7→ A · x (and possibly y 7→ A∗ · y), equilibration is more difficult. One could use a
randomized approach to estimate the largest nonzero absolute value of each row and column
of A. However, balancing seems more natural in this case than equilibration. Accompanied
by a constant scaling of the entire matrix, it also achieves the desired effect of restricting
s-step basis length growth. In that case, one may use one of the randomized Krylov-based
balancing algorithms of Chen [51]. We do not investigate this case further in this thesis.

Row scalings and residual norms

Scaling the rows of the matrix A affects the residual rk = b − Axk, whose norm is part
of the stopping criterion for many iterative methods. The pre-scaling residual norm may
be computed without communication, though it does require an additional division per
element of the vector. Suppose A 7→ DrADc is the row and column scaling (which may
be an equilibration or a balancing), and that xk is the current approximate solution in the
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iterative method running on the scaled matrix. Let rk be the residual norm before scaling:

rk = b− Axk,

and let r̃k be the residual norm after scaling:

r̃k = Drb−DrADc(D
−1
c xk) = Drrk.

The iterative method normally only works with the scaled matrix DrADc, so the residual it
computes is the post-scaling residual r̃k. However, as long as the diagonal row scaling Dr is
available, computing rk from r̃k only requires elementwise division. Furthermore, Equation
(7.42) bounds how much the pre-scaling relative residual ‖rk‖/‖r0‖ may differ from the
post-scaling ‖r̃k‖/‖r̃0‖:

min(Dr)

max(Dr)
≤

rk
r0
r̃k
r̃0

≤ max(Dr)

min(Dr)
(7.42)

These lower and upper bounds may be used to avoid computing the pre-scaling residual, if
the post-scaling residual norm is sufficiently large that the iterative method could not have
converged to within the desired tolerance yet.

Experimental note

Scaling the matrix is a special case of preconditioning, so we should expect that it affect the
convergence of the iterative method, even in exact arithmetic. This is why, when compar-
ing s-step iterative methods with their conventional counterparts, one should use the same
matrix scaling for each.

7.5.4 Conclusions

In our experiments solving nonsymmetric linear systems with CA-GMRES (Section 3.4),
we found that for practical problems and basis lengths s that achieve good performance,
equilibration almost made the basis type irrelevant. That is, either the monomial or the
Newton basis could be used without affecting numerical stability. Section 3.5.4 in particular
gives examples of sparse matrices from applications, some very badly scaled, for which equi-
libration meant the difference between CA-GMRES not converging at all, and CA-GMRES
converging at the same rate as standard GMRES (which it should do in exact arithmetic).
Of course, equilibration by itself is not enough to ensure stability of CA-GMRES, if the ma-
trix is badly conditioned. Our CA-GMRES numerical experiments with diagonal matrices
in Section 3.5.2 illustrate that when the matrix is badly conditioned, the monomial basis
may not converge once s is sufficiently large, whereas the Newton basis often does converge.
Equilibration makes scaling the basis vectors by their norms (a communication latency -
intensive procedure) unnecessary for practical problems. Furthermore, computing an equili-
bration requires the equivalent of only 2 passes over the nonzero entries of a sparse matrix.
Computing a balancing requires the equivalent of a few more passes, and is appropriate when
solving Ax = λx.
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7.6 Future work

Much of the basis condition number analysis in Section 7.4 requires refinement. First, the
influence of the projection step (as discussed in Section 7.4.2) is not well understood. The
projection step allows the basis length s to be smaller than the restart length, which has
advantages both for performance and accuracy, so it is important to understand how pro-
jecting the current basis vector onto the orthogonal complement of the previous basis vectors
affects their condition number. It is also important to develop inexpensive tests for loss of
independence of the s-step basis vectors. The rank-revealing version of TSQR may be used
in that case, as we discuss in Section 2.4.8.

There are also unresolved questions with the Newton basis. The influence of the modified
Leja ordering and the real-arithmetic variant of the Newton basis on the condition number
is not understood. We also observed in experiments that the Newton basis often does much
worse than the monomial basis on highly nonnormal matrices. This may have something
to do with the power method being unstable for highly nonnormal matrices, so that the
monomial basis does not converge. Alternately, it could have to do with the Ritz values
being poor approximations to the eigenvalues of the matrix A, so that the shifts in the
Newton basis just make the condition number worse. Both experiments and theoretical
analysis are required to address these issues.

There are also questions left to answer about the Chebyshev basis. The condition number
of the Chebyshev basis is affected by how closely the chosen bounding ellipse approximates
the spectrum of the matrix A, but this relationship requires more study. It’s known that
for Chebyshev iteration [171], the estimates of the field of values must be fairly accurate in
order to ensure that the method converges. It’s not clear whether this observation carries
over to the condition number of a Chebyshev basis for a general s-step Krylov method, but
intuition suggests this. This is because the minimax property of Chebyshev polynomials
follows from their regular alternation in sign within the minimax region. The exhaustion of
all roots and inflection points within that region means that Chebyshev polynomials grow
fast in absolute value outside of it. If the bounding region is too small, then the Krylov basis
effectively evaluates Chebyshev polynomials at eigenvalues of the matrix A which lie outside
the region. (This is a problem for symmetric Lanczos, for which the extremal Ritz values
converge outwards to the extremal eigenvalues.) However, if the bounding region is too
large, then the resulting basis may not have a suboptimal condition number. Furthermore,
the bounding region may unnecessarily contain forbidden points, like the origin.

One way to solve this problem is to allow more general bounding regions than ellipses.
The resulting polynomials are called Faber polynomials, of which the shifted and scaled
Chebyshev polynomials are a special case. Koch and Liesen [156] address this with their
delightfully named “conformal bratwurst maps,” which are easily computable Riemann maps
(in the sense of the Riemann Mapping Theorem – see e.g., [166, Theorem 8.1, p. 322]) from
parametrically distorted ellipses to the unit disk.

One ultimate goal would be to have complete backward stability proofs for all of our
iterative methods. Such proofs have been developed in great detail for standard GMRES.
See e.g., Greenbaum et al. [120] and the extensive bibliography in Paige et al. [185].
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Appendix A

Experimental platforms

Most of the performance results in this thesis refer to shared-memory parallel benchmarks,
run on two experimental platforms: an Intel Nehalem node and an Intel Clovertown node.
This includes performance results both for individual kernels – such as the matrix powers
kernel (Section 2.1), TSQR (Section 2.3), and BGS (Section 2.4) – and for the CA-GMRES
solver built of these kernels (Section 3.6). Table A.1 compares their architectural features of
these two platforms.

We sketch the architecture of each node pictorially in Figures A.1 (for the Nehalem)
resp. A.2 (for the Clovertown). The chief difference between the two platforms is that the
Nehalem has more memory bandwidth than the Clovertown, both actually (especially for
writes) and effectively (due to NUMA, so that the two sockets do not need to share a single
connection to memory). The result of more memory bandwidth is that our CA-GMRES has
a somewhat smaller speedup over standard GMRES, as one would expect.

There are two other features which the Nehalem processor has that the Clovertown does
not. First, the Nehalem supports simultaneous multithreading (SMT). SMT is a technique
allowing a single processor core to share its resources between multiple threads of execution.
We found that SMT did not improve the performance of either standard GMRES or CA-
GMRES, so we did not exploit it; we pinned one thread to each processor core. Second, the
Nehalem has a “TurboMode” feature, in which each processor core is allowed to control its
clock rate automatically and independently of the other processors. This lets one core run
faster if the other cores are not busy, but throttles back the frequency of all the cores if they
are all busy. The purpose of TurboMode is to control the temperature of the processor, since
higher frequencies use more power and thus dissipate more heat. We disabled TurboMode
in order to make the timings regular, since otherwise the CPU may change the frequency
automatically and without programmer control. While this biases the timings to favor using
more cores, TurboMode does not affect the memory bandwidth, which is the more important
hardware feature for these tests.
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Manufacturer Intel Intel
Nickname Nehalem Clovertown
Number X5550 X5345
# threads / core 2 1
# cores / socket 4 4
# sockets 2 2
CPU freq. (GHz) 2.66 2.33
Peak Gflop/s 85.3 74.66
Caches 256 KB L2 per core, 4 MB L2, shared

8 MB L3 per socket by every 2 cores
Peak memory 2× 25.6 21.33 (read)
bandwidth (GB/s) (read or write) 10.66 (write)
Memory type 1066 MHz DDR3 667 MHz FBDIMM
DIMMs 12× 1 GB 8× 2 GB
NUMA? Yes No

Table A.1: Characteristics of the two hardware platforms used for our shared-memory paral-
lel performance experiments. “# threads / core” refers to the simultaneous multithreading
(SMT) feature; if 1, the processor does not have SMT. “CPU freq.” is the CPU frequency,
and “Peak Gflop/s” the peak double-precision floating-point performance. “Peak memory
bandwidth” is a shared resource among all cores, unless shown as S×B, in which case each
of S sockets has B memory bandwidth. “DIMMs” is the number N and capacity C (in GB)
of DRAM memory units, shown as “N × C.” “NUMA?” is “Yes” if the memory is NUMA
and “No” otherwise.

Figure A.1: Architecture of the Intel Nehalem processor used in our performance experi-
ments. Each socket (shown as a white box with rounded corners) contains four processor
cores (“Nehalem core”), and each core has its own private L2 cache. “QPI” refers to the
“Quick-Path Interconnect,” which replaces the Front-Side Bus (FSB) in earlier Intel archi-
tectures. It can handle 6.4 billion transactions (GT) per second.



APPENDIX A. EXPERIMENTAL PLATFORMS 295

Figure A.2: Architecture of the Intel Clovertown processor used in our performance exper-
iments. Each socket (shown as a white box with rounded corners) contains two dies. Each
die has two cores (each is shown as “Core2,” which is the brand name of the core type, and
does not mean that there are two cores there), which share a single shared L2 cache. “FSB”
refers to the “Front-Side Bus,” which is a single bus which all processors must use in order
to read resp. write data from resp. to main memory.
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Appendix B

Test problems

B.1 Test matrices

We tested our iterative methods on several different classes of matrices. Some of them come
from real applications, and others are contrived problems. We also show performance results
for some of the matrices from applications in Section 3.6, comparing optimized versions of
CA-GMRES (see Section 3.4) and standard GMRES. The contrived test problems are not
as interesting from a performance standpoint, but they do a better job than the “real-life”
matrices of exercising the techniques we use to improve numerical stability.

The first class of matrices tested are positive diagonal matrices with varying condition
numbers. We discuss these test problems in detail in Appendix B.3. When the condition
number is relatively large, the Newton basis is more stable than the monomial basis.

The second class of test problems come from existing literature on s-step methods, in
particular s-step versions of GMRES by Bai et al. [18]. We chose this class of problems
in order to verify our methods against previous work. All of these test problems are linear
convection-diffusion PDEs on a 2-D square domain, discretized with a regular mesh. The
problems have parameters which can be adjusted to increase the asymmetry of the matrix in
a physically plausible way (by increasing the ratio of convection to diffusion, for example).
This is important because some s-step bases require estimates of the eigenvalues of the
matrix, and nonsymmetric matrices have more interesting spectra.

The third class of matrices tested come from physical applications. We first chose them
in Demmel et al. [78] to illustrate the performance benefits of the matrix powers kernel and
block orthogonalization optimizations, on “real-life” problems. The applications represented
include structural engineering, computational fluid dynamics, and computational chemistry.
Some are symmetric, and some are not. In addition, some of the matrices have entries which
range widely in magnitude. This tests the use of equilibration in order to avoid under- or
overflow in the s-step basis (see Section 7.5). In fact, we found that for this class of matrices,
the choice of basis often matters much less than the use of equilibration. This was not true
for some other classes of matrices we tested. Also, for some of these problems, the Newton
basis is less stable than the monomial basis.

The fourth class of matrices tested includes only one matrix, WATT1, a sparse matrix
from petroleum applications that was suggested by Erhel [93] as a nonsymmetric test problem
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for s-step GMRES. The spectral properties of WATT1 make it especially interesting and
challenging to construct a well-conditioned s-step basis. As we show in Section 3.5.5, it also
justifies our innovation in CA-GMRES of choosing the s-step basis length s smaller than the
restart length r = s · t.

B.2 Exact solution and right-hand side

Whenever we solve a linear system Ax = b with a test matrix A, we choose the right-hand
side b by first picking a known exact solution x, and then computing b = A · x. For all test
problems, we choose the exact solution x as the sum of both a “white noise” component and
a more slowly varying periodic component: for x ∈ Rn, the kth component of x is given by

x(k) = u(k) + sin(2πk/n),

where the scalar u(k) is chosen from a random uniform [−1, 1] distribution. We choose
x in this way because a completely random solution is usually nonphysical, but a highly
nonrandom solution (such as a vector of all ones) might be near an eigenvector of the matrix
(which would result in artificially rapid convergence of the iterative method).

B.3 Diagonal matrices

We first test each new Krylov method in this thesis with positive diagonal matrices. In
exact arithmetic at least, they suffice to investigate symmetric matrices completely, because
symmetric matrices are equivalent to diagonal matrices via orthogonal transformation. They
are also a useful “sanity check” for nonsymmetric Krylov methods.

We choose the matrices to have dimensions 10000 × 10000, and vary their condition
numbers. Their diagonal entries have values logarithmically spaced between 1 and 1/κ,
where κ (the only parameter) is the 2-norm condition number of the matrix. Since these
diagonal test matrices have a positive diagonal and their maximum element is always 1,
they need no further equilibration or scaling in order to avoid underflow or overflow in the
matrix powers kernel (see Section 7.5). (Equilibration would make any diagonal matrix the
identity, and balancing does not change a symmetric matrix.) This means that the only
factor affecting convergence of our iterative methods on these matrices is the distribution of
their eigenvalues.

While these are the only diagonal matrices we test in this thesis, in general diagonal
matrices can be used to generate a wider range of test problems. For example, one may
choose the diagonal matrix to have norm� 1 or� 1, in order to investigate the effects of a
poorly scaled s-step basis (see Section 7.5). Diagonal matrices also let us study effects related
to the distribution of eigenvalues and singular values, independently of other properties such
as normality. For many possible choices of diagonal matrices for testing the convergence of
CG, see also D’Azevedo et al. [69].

Constructing more general matrices with a given set of eigenvalues or singular values
is a challenging problem in itself, which we did not take the time to solve in this thesis.
For examples of such “inverse eigenvalue problems,” their practical applications, and how
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to solve them, see e.g., Chu [60]. A simple way to construct a nonsymmetric matrix with a
given set of singular values is to make the singular values the diagonal of a diagonal matrix,
and then permute the rows and columns of that matrix nonsymmetrically. The row resp.
column permutation matrix forms the left resp. right singular vectors, which are orthogonal
by construction (since they are a permutation).

B.4 Convection-diffusion problem

In this section, we describe a partial differential equation (PDE) boundary-value problem
with three parameters, and its discretization, resulting in a sparse linear system Ax = b.
Bai et al. [18] use this problem and discretization to test their Newton-basis s-step GMRES
algorithm. Typical values of the three parameters result in a nonsymmetric but nonsingular
matrix. This suits the problem for testing iterative methods that work on nonsymmetric
matrices, such as variations of GMRES or BiCGSTAB. We use the discretization to test
the convergence of our CA-GMRES algorithm. Of the many such PDE discretization test
problems available, we chose that of Bai et al. because they used it to investigate convergence
of an s-step GMRES method.

B.4.1 The problem is representative

PDE discretizations on 2-D domains are popular test problems for Krylov subspace methods.
We describe examples from three different authors, in order to show that the test problem
of Bai et al. are representative of other authors’ test problems for nonsymmetric iterative
solvers.

Saad and Schultz [208] compare the convergence of GMRES, GCR, and ORTHOMIN(k)
using the five-point discretization of a second-order linear 2-D PDE on the unit square with
Dirichlet boundary conditions, with variable coefficients and a forcing term chosen so that
the solution is known and infinitely differentiable. The two first-derivative terms involve
multiplicative real parameters β resp. γ. They do not affect the solution of the PDE, but
they do affect the symmetry of the discretized linear system. Choosing the test problem so
that the underlying PDE has infinitely differentiable coefficients and solution on its domain
could be a way to isolate the effects of the matrix itself on the iterative method, from the
potential effects of a difficult-to-solve PDE.

Another example comes from Elman et al., in which they test their hybrid Chebyshev-
Krylov subspace method [91]. The test involves the following 2-D second-order PDE:

−(e−xyux)x − (exyuy)y + γ
(

(x+ y)uy + ((x+ y)u)y

)
+

u

1 + x+ y
= f(x, y) (B.1)

on the unit square Ω = [0, 1]2, with homogeneous Dirichlet boundary conditions u(x, y) = 0
on ∂Ω. In Equation (B.1), γ is a real scalar parameter, and the right-hand side f(x, y) is
chosen to make the exact solution u(x, y) as follows:

u(x, y) = xexy sin(πx) sin(πy). (B.2)
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Elman et al. discretize this PDE using the usual five-point second-order centered finite dif-
ference stencil on a regular mesh. They vary γ (choosing γ = 5 and γ = 50) in order to vary
the nonsymmetry of the matrix.

A third example is Sonneveld’s [213] “Problem 1,” which he uses to compare Bi-CG,
ORTHOMIN, and CGS. The 2-D second-order PDE is as follows:

−ε
(
∂2u

∂x2
+
∂2u

∂y2

)
+ cos(α)

∂u

∂x
+ sin(α)

∂u

∂y
= 0 (B.3)

again on the unit square Ω = [0, 1]2, and again with homogeneous Dirichlet boundary con-
ditions u(x, y) = 0 on ∂Ω.1 In Equation (B.3), ε > 0 and α are real-valued parameters.
Sonneveld chooses to discretize the problem on a square regular mesh with N = (1/∆x−1)2

interior points, with a five-point hybrid difference scheme: upwind differencing is done only
if necessary to maintain diagonal dominance, otherwise central differencing is done. The α
parameter lets users make the matrix progressively less symmetric (as it varies away from
π/4). Decreasing the ε parameter decreases the amount of diffusion in the problem, and
therefore decreases the influence of a positive definite additive term on the matrix. Thus,
the two parameters govern the two matrix attributes of interest in the comparison study:
symmetry, and positive definiteness.

B.4.2 The partial differential equation

The test problem of Bai et al. is a linear convection-diffusion PDE on the unit square Ω =
[0, 1]2, with homogeneous Dirichlet boundary conditions. It is given by Equation (B.4).

−∆u+ 2p1ux + 2p2uy − p3u = f (B.4)

on Ω = [0, 1]2, with homogeneous Dirichlet boundary conditions u(x, y) = 0 on ∂Ω. In
Equation (B.4), p1, p2, and p3 are constant parameters. The right-hand side function f(x, y)
is chosen so that the exact analytic solution u(x, y) is given by

u(x, y) = xexy sin(πx) sin(πy). (B.5)

Note that the parameters p1, p2, and p3 do not go into the exact solution u(x, y); rather, they
go into the PDE and the forcing function f(x, y). We do not show the latter function here
because it is long, and also because the derivation is not informative. (We used a computer
algebra system to check our derivation.)

B.4.3 Its discretization

Bai et al. discretize Equation (B.4) using centered finite differences on a regular n + 2 by
n + 2 grid (including boundary points) with grid spacing h = 1/(n + 1) in each dimension.
This results in an n2 × n2 system of linear equations Ax = b. Bai et al. do not precondition
this system. They use different values of the parameters and different restart lengths to
construct three different test problems, which are illustrated in Table B.1.

1The paper omits the Dirichlet boundary condition, though this is easy to infer from the fact that
Sonneveld only discretizes on interior mesh points.



APPENDIX B. TEST PROBLEMS 300

Experiment # Matrix dimension p1 p2 p3 Restart length
1 3969 1 1 20 20
2 3969 1 1 20 30
3 3969 2 4 30 25

Table B.1: Matrix dimensions, parameter values, and GMRES restart lengths used by Bai
et al. [18] in their numerical experiments. Matrix dimension 3969 corresponds to n = 63
grid points in each dimension, not including boundary points.

Bai et al. use this family of test problems to test their Newton-basis s-step GMRES
algorithm. They helpfully show plots of the 2-norm of the residual error over several iterations
of the method, for both their Newton basis and for a monomial basis. It is important to note
that Bai et al. scale their s-step basis vectors so that all of them have unit length, before
computing their QR factorization. They do this for the same reason that we equilibrate the
matrix: in order to avoid excessive growth in the basis vector lengths that causes inaccuracy
in the QR factorization, or even overflow or underflow. See Section 7.5 for details. We
choose to equilibrate instead of scaling the basis vectors, because computing the length
of each basis vector separately requires additional communication. In parallel, it requires
Θ(logP ) messages per vector, and sequentially, it requires reading and writing each basis
vector. Part of the comparison between the results of Bai et al. and our results, therefore,
involves the effects of equilibration, so we show results both with and without equilibration.

B.5 Sparse matrices from applications

In Section 3.5, we perform numerical experiments comparing CA-GMRES and standard
GMRES, using a collection of test matrices from applications. In Sections 2.1 and 3.6, we
show performance results for nearly the same set of matrices. Here, we describe the structural
and numerical properties of those matrices, and list their sources. We introduced these test
problems in Demmel et al. [78] to investigate the performance both of the matrix powers
kernel by itself, and of CA-GMRES as a whole. We also make brief reference to numerical
results in that paper, but this thesis is where we first study the numerical properties of CA-
GMRES and other communication-avoiding iterative methods in detail. For some of those
matrices, only the nonzero pattern and not the nonzero values were available at the time we
submitted [78]. For those matrices for which we have the nonzero values as well, we present
numerical results in this thesis.

Table B.2 lists the matrices and some of their structural properties, including dimensions
and number of nonzero entries. That table includes numbers which refer to the sources of the
matrices. Those numbers correspond to those in the list of sources below. In this list, “UF”
refers to the University of Florida Sparse Matrix Collection [67]. Within the UF collection
are named various “groups,” which help to identify the source of the matrix in the collection.
All but one of the matrices are available from the UF collection.

1. UF, GHS psdef group: finite element method (FEM) stiffness matrix with two strongly
connected components, from a car model
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Short name Source name Dim nnz Sym? SPD? Source
bmw bmw7st 1 141K 3.7M Y Y (1)
cant Cant A 62K 4.0M Y Y (2)
cfd cfd2 123K 3.1M Y Y (3)
pwtk pwtk 218K 11M Y Y (4)
shipsec shipsec1 141K 3.6M Y Y (5)
xenon xenon2 157K 3.9M N N (6)

Table B.2: Test matrices in [78] for which we perform numerical experiments in this thesis.
“Short name” refers to the label used in [78], and “Source name” refers to the label used
in the source of the matrix. “Dim” is the matrix dimension (number of rows – all matrices
in the table are square). “nnz” (number of nonzero elements in the sparse matrix) includes
both numerical nonzero elements, and explicitly stored zeros (if there are any). “Sym?” is
Y if the matrix is symmetric, N if not. “SPD?” is Y if the matrix is SPD, N if it is not. The
source number refers to the list of sources in this section (Section B.5).

Short name Source name Dim nnz Sym? SPD? Source
1d3pt 1d3pt 1M 3M Y Y (7)
1d5pt 1d5pt 1M 5M Y Y (7)
2d9pt 2d9pt 1M 9M Y Y (7)
marcat TCOMM 548K 2.7M N N (8)
mc2depi TwoD 526K 2.1M N N (9)

Table B.3: Test matrices in [78] for which we do not perform numerical experiments in this
thesis. “Short name” refers to the label used in [78], and “Source name” refers to the label
used in the source of the matrix. “Dim” is the matrix dimension (number of rows – all
matrices in the table are square). “nnz” (number of nonzero elements in the sparse matrix)
includes both numerical nonzero elements, and explicitly stored zeros (if there are any).
“Sym?” is Y if the matrix is symmetric, N if not. “SPD?” is Y if the matrix is SPD, N if it
is not. The source number refers to the list of sources in this section (Section B.5).

2. Adams [2]: FEM stiffness matrix, cantilever elasticity model, with large jumps in
material coefficients and incompressible materials. I received this matrix via personal
communication, as it is no longer available at its former web address (http://www.
columbia.edu/~ma2325/femarket/).

3. UF, Rothberg group: symmetric pressure matrix from computational fluid dynamics

4. UF, Boeing group: pressurized wind tunnel stiffness matrix

5. UF, DNVS group: ship section / detail (structural problem) with three strongly con-
nected components

6. UF, Ronis group: analysis of elastic properties of complex zeolite, sodalite crystals

Table B.3 lists those matrices for which performance experiments are included in [78],
but on which we do not perform numerical experiments in this thesis. Either the matrices
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are too simple (such as the 1-D Laplacian) to be interesting, or their nonzero values are not
available and the matrix cannot be reconstructed from its supposed source. The matrices
in the latter category were collected in a test suite for measuring the performance of tuned
sparse matrix-vector multiply implementations. Vuduc [234] cites Im [139] as the source
for some these matrices, and Im cites both Davis [67] and Li [167] as the source. Li does
not include the marcat or mc2depi matrices in her thesis, so their ultimate provenance is
unclear. We have traced them to a collection of Markov chain test problems by Stewart
[217], but there these are presented as parametrized problems, and the parameters which
produced the matrices with the attributes we have are unclear. Table B.3 includes source
numbers, which correspond to the numbers in the list below.

7. 〈n〉d〈k〉pt refers to a sparse matrix constructed from a regular discretization of the
Poisson equation on the domain [0, 1]n (n dimensions), using a k-point stencil. The
nonzero elements of the matrix are stored explicitly, even though the discretization
does not require this.

8. UF, Rothberg group: Aircraft flap actuator model

9. Stewart [217]: A queueing network model of impatient telephone customers on a com-
puterized telephone exchange. The model is parametrized, but the values of the original
parameters which produced this test matrix have been lost. See also Philippe et al.
[195], where the authors use this model (with parameters resulting in smaller dimen-
sions and fewer nonzeros) to test various numerical methods (including Arnoldi) to
find the steady-state vector of the Markov chain.

10. Stewart [217]: general 2D Markov chain model – in this case, a Ridler-Rowe model of
an epidemic. The model is parametrized, but the original parameters which produced
this test matrix have been lost. See also Pollett and Stewart [196].

Finally, for the matrices for which we perform CA-GMRES numerical experiments in
Section 3.5, we show properties relating to equilibration in Tables B.4 and B.5. In particular,
we perform symmetric equilibration by scaling symmetrically by the absolute value of the
diagonal entries. If some of the diagonal entries in absolute value are greater than one, and
some are less than one, we scale symmetrically only those rows and columns corresponding
to the diagonal elements with absolute value greater than one.

B.6 WATT1 test matrix

In this section, we describe WATT1, a sparse matrix suitable for testing nonsymmetric s-step
iterative methods, such as CA-GMRES and CA-Arnoldi. The spectral properties of WATT1
make it especially interesting and challenging to construct a well-conditioned s-step basis.
This makes it a good test problem for comparing the numerical stability of s-step Krylov
methods with their corresponding standard Krylov methods. Erhel [93] used WATT1 to
test her implementation of the Newton-basis s-step GMRES algorithm of Bai et al. [18]. As
we showed in Section 3.5.5, it also justifies our innovation in CA-GMRES of choosing the
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Matrix name min{|Aij | 6= 0} max(|Aij |) min{|Aii| 6= 0} max |Aii|
bmw7st 1 5.0487× 10−29 5.33× 1015 5.05× 10−29 5.33× 1015

Cant A 5.5511× 10−17 7.05× 103 5.55× 10−17 7.05× 103

cfd2 6.6582× 10−9 1.00× 100 1.00× 100 1.00× 100

e20r5000 3.2526× 10−19 9.40× 101 N/A N/A
e40r5000 8.5665× 10−20 4.11× 101 N/A N/A
pwtk 4.0390× 10−28 3.67× 107 4.04× 10−28 3.67× 107

shipsec1 2.8422× 10−14 1.42× 1013 2.84× 10−14 1.42× 1013

xenon2 5.4251× 1023 3.17× 1028 N/A N/A

Table B.4: For the matrices from applications described in this section: the minimum and
maximum nonzero elements in absolute value of each matrix, along with the minimum and
maximum diagonal elements in absolute value of each matrix. The latter matters for sym-
metric positive definite equilibration (symmetrically scaling by the absolute value of the
diagonal), so if the matrix is nonsymmetric, we show “N/A” (not applicable) there. All of
these values are pre-equilibration, if applicable.

Matrix name min{|Aij| : Aij 6= 0} max(|Aij|) Equilibrated?
bmw7st 1 7.1693× 10−35 1.0000× 100 Y
Cant A 1.5737× 10−20 1.0000× 100 Y
cfd2 6.6582× 10−9 1.0000× 100 N
e20r5000 3.2526× 10−19 9.3981× 101 N
e40r5000 8.5665× 10−20 4.1058× 101 N
pwtk 1.2682× 10−32 1.0000× 100 Y
shipsec1 9.7502× 10−22 1.0000× 100 Y
xenon2 2.3895× 10−7 1.0000× 100 Y

Table B.5: For the matrices from applications described in this section: the minimum and
maximum nonzero elements in absolute value of each matrix after equilibration, if applicable.
“Equilibrated?” is “Y” if equilibration (whether symmetric or nonsymmetric) was done, else
“N.” Only xenon2 (which is nonsymmetric) was equilibrated nonsymmetrically.

Matrix name Dimensions # nonzeros κ2(A)
WATT1 1856× 1856 11360 4.3596× 109

WATT2 1856× 1856 11550 1.3628× 1011

Table B.6: Properties of the two matrices in the WATT set, in the Harwell-Boeing collection
of sparse matrices. Although WATT1 and WATT2 are both sparse, they are small enough
that their 2-norm condition numbers may be computed using the dense SVD.
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(a) Nonzero structure (“spyplot”)
of the WATT1 matrix.

(b) Spectral portrait of the WATT1 matrix. The image illustrates
the ε-pseudospectrum of WATT1, as a function of ε (see below for
explanation).

Figure B.1: These two figures were copied without permission from the Matrix Market
[34] interactive collection of test matrices. The ε-pseudospectrum of a matrix A is the set
Λε = {z ∈ C : z is an eigenvalue of A+ E with ‖E‖2 ≤ ε‖A‖2}. The spectral portrait shows
the mapping z 7→ log10 ‖(A− zI)−1‖2‖A‖2 as a heat plot on a subset of the complex plane.
The color scale shows the inverse base-10 logarithm of the perturbation ε, so for example 2
indicates ε = 10−2. The region enclosed within a particular ε contour on the plot indicates
the set of all eigenvalues of all matrices A+ E, where ‖E‖2 ≤ ε‖A‖2.

s-step basis length s smaller than the restart length r = s · t. For details on our CA-GMRES
experiments, see Section 3.5.

The WATT1 matrix belongs to the WATT collection of real nonsymmetric sparse ma-
trices from petroleum engineering applications. Some properties of the two matrices in this
collection, including their dimensions and condition numbers, are shown in Table B.6. The
WATT matrices belong to the Harwell-Boeing test suite [89], to which they were added in
December 1983. The submitter noted that “[t]he values of the coefficients can vary by as
much as 1014 and the use of automatic scaling routines were giving singular matrices. Fill-in
was also higher than expected.” We show the nonzero structure of WATT1 in Figure B.1a.

The WATT matrices are small (by current sparse matrix standards), so they can be
analyzed accurately and in detail using dense factorizations, yet they are nonsymmetric and
ill-conditioned. They also come from applications, rather than being contrived examples.
This makes them valuable as test problems for iterative methods. Most importantly for
our purposes, their largest eigenvalues are densely clustered. For example, Matlab’s dense
eigensolver finds that 1 is the largest eigenvalue of WATT1, the first matrix in the WATT set,
and it occurs 128 times. We can see this and more from the spectral portrait of WATT1, as
provided by the Matrix Market [34] interactive collection of test matrices, and shown here in
Figure B.1b. The spectral portrait is a heat plot of the ε-pseudospectrum of the matrix. It is
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explained further in the caption. The spectral portrait illustrates both that the eigenvalues
of WATT1 have two clusters in the complex plane (one around 1, and one around 0), and
that these eigenvalues of the matrix can be located accurately within the cluster.

The dense clustering of the eigenvalues of WATT1, and the clusters’ relative insensitivity
to perturbations, explain the observation that a small number of Arnoldi iterations on these
matrices produce a set of Ritz values with repetitions or near-repetitions. This is of specific
interest to s-step methods, especially with the Newton basis. Repeated shifts require special
handling when computing their Leja or modified Leja ordering for the Newton basis. Also,
nearly identical shifts may cause underflow when computing this ordering. One way to
prevent underflow is to perturb the shifts randomly, which we found does prevent underflow
in the case of the WATT1 matrix. (See Section 7.3.2 for details on computing the Leja
ordering for the Newton basis, and how we prevent possible underflow when doing so.)
Finding matrices from applications with these properties justifies the effort spent getting
that special handling correct.

Erhel [93] used the first matrix WATT1 in the WATT set as a test problem for her
implementation of the Newton-basis s-step GMRES of Bai et al. [18]. (She implements
the same Newton-basis GMRES algorithm, but uses a different, though equally accurate,
QR factorization in order to improve performance.) Her paper includes plots of the 2-norm
of the residual error at each iteration of the method, for standard GMRES (with restart
length s), monomial-basis s-step GMRES, and Newton-basis s-step GMRES. Thus, we can
easily compare the convergence of the algorithm she implements with the convergence of our
CA-GMRES algorithm.

When solving linear systems Ax = b with the WATT1 matrix, we choose the exact
solution x and right-hand side b according to the procedure described in Chapter B, as we
do for all the other numerical experiments in this thesis.
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Appendix C

Derivations

This appendix contains algebraic derivations of various algorithms and formulae that appear
throughout this thesis. We put derivations in this appendix that we think would interrupt
the flow if left in the main text, for one or more of the following reasons:

• They only summarize known results, without presenting new results.

• They give so much detail that most readers may find them excessively tedious, yet
they may be of interest to some readers.

Section C.1 gives a full derivation of CG3, the three-term recurrence variant of CG. Section
C.2 provides a simple example of how Block Gram-Schmidt with reorthogonalization by
blocks is not sufficient to ensure orthogonality of the computed vectors in finite-precision
arithmetic, even when the block orthogonalization phase is accurate to machine precision
and the QR factorization of the current block is performed in exact arithmetic.

C.1 Detailed derivation of CG3

In this section, we derive CG3 – the three-term recurrence variant of CG. We derive it in
extreme detail, and this section contains no new results. We first showed CG3 as Algorithm
32 in Section 5.4. We show it again here as Algorithm 41, with a slightly different notation
to facilitate our explanations in this section.

We learned CG3 from Saad [207, Algorithm 6.19, p. 192]. The algorithm shown there
contains a small error: Line 5 of the algorithm should read

xj+1 = ρj(xj + γjrj) + (1− ρj)xj−1

instead of
xj+1 = ρj(xj − γjrj) + (1− ρj)xj−1.

We also index our algorithm differently than he does: we use k as the index here instead of
j, and we start with k = 1 instead of j = 0 (which we do in order to avoid negative indices).

CG3 is mathematically equivalent to CG. In particular, the residual vectors rk in CG3
are equal (in exact arithmetic) to their corresponding residual vectors in CG. CG3 computes
and stores only residual vectors and solution vectors, unlike standard CG, which stores these
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Algorithm 41 CG3 (3-term recurrence variant of CG)

Input: Ax = b: n× n SPD linear system
Input: x1: initial guess
Output: Approximate solution xj of Ax = b

1: x0 := 0, r0 := 0
2: r1 := b− Ax1 . Initial residual
3: for k = 1, 2, . . . , until convergence do
4: Compute wk := Ark
5: Compute 〈rk, rk〉 and 〈Ark, rk〉. If either or both are zero, the algorithm has broken

down.
6: γk := 〈rk,rk〉

〈Ark,rk〉
7: if j = 1 then
8: ρk := 1
9: else

10: ρk :=
(

1− γk

γk−1
· 〈rk,rk〉
〈rk−1,rk−1〉

· 1
ρk−1

)−1

11: end if
12: xk+1 := ρk(xk + γkrk) + (1− ρk)xk−1

13: rk+1 := ρk(rk − γkwk) + (1− ρk)rk−1

14: end for

as well as A-conjugate vectors pk. This makes CG3 attractive for adaptation into an s-step
method, since standard CG has data dependencies between the rk residual vectors and the
pk A-conjugate vectors, whereas CG3 has no such data dependencies.

CG3 can be derived using the following three observations, which apply in exact arith-
metic:

1. The residual vectors rk in CG (and CG3) are nonzero scalar multiples of the symmetric
Lanczos basis vectors qk. (See symmetric Lanczos, Algorithm 24 in Section 4.1.)

2. As a result, the residual vectors rk must satisfy a three-term recurrence, as the basis
vectors qk in symmetric Lanczos do.

3. Also as a result, the residual vectors rk in CG (and CG3) are orthogonal (in exact
arithmetic): 〈rj, ri〉 = 0 if i 6= j, otherwise it is nonzero.

We now show this derivation here. We follow the pattern of Saad’s derivation [207, pp.
190–192] in this section, with one correction and a few additional explanations. In particular,
we take care to show that the coefficients γk and ρk are both always real and always defined
in exact arithmetic, as long as CG has not broken down (i.e., as long as {r1, r2, . . . , rk}
continues to be a basis of the Krylov subspace Kk(A, r1)).

We begin the derivation in Section C.1.1 with the three-term recurrence for the residual
vectors rk (Line 13 of Algorithm 41). We continue in Section C.1.2 with the three-term
recurrence for the solution vectors xk (Line 12 of Algorithm 41). Sections C.1.3 and C.1.4
show how the formulae for the γk resp. ρk coefficients in CG3 are derived. In those two
sections, we show that γk and ρk are defined for all k = 1, 2, 3, . . . , as long as CG3 itself does
not break down.
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C.1.1 Three-term rk recurrence

The residual vectors rk in CG3 satisfy a three-term recurrence. We may write this in terms
of vectors and matrices:

rk+1 = ρk (rk − γkArk) + δkrk−1, (C.1)

where ρk, γk, and δk are scalar coefficients whose values we will determine for all k. Note
that as long as {r1, r2, . . . , rk+1} is a basis for the Krylov subspace

Kk+1(A, r1) = span{r1, Ar1, A
2r1, . . . , A

kr1},

then both ρk and γk must be nonzero. We will use this fact many times below. We may
also write the three-term recurrence as a polynomial recurrence, in which we use t for the
placeholder variable in the polynomials:

rk+1(t) = ρk (rk(t)− γkt · rk(t)) + δkrk−1(t). (C.2)

In Equation (C.2), rk(t) is an overloaded notation referring to the residual vector rk as a
polynomial with scalar coefficients µj in a monomial polynomial basis:

rk(t) =
k−1∑
j=0

µjt
j · r1(t). (C.3)

We will not refer to the µj coefficients further, but we will refer to this mapping implicitly
in the arguments that follow. The mapping rk(t) 7→ rk (from polynomial to vector) is
accomplished by replacing tj in Equation (C.3) with the matrix Aj, and replacing r1(t)
with the initial vector r1. The initial residual polynomial r1(t) maps to the initial residual
r1 = b− Ax1, which is a function of A; thus, r1(0) maps to the vector b− 0x1 = b. We can
see from this that rk(0) for k = 1, 2, . . . is some nonzero constant C (as long as b is nonzero).

We can already simplify the three-term recurrence for the residual vectors using the
observation that for k = 1, 2, . . . , rk(t) = C, a nonzero constant (as long as b 6= 0). Thus,
setting t = 0 in Equation (C.2), we obtain

C = ρk (C − γk0 · C) + δkC,

and thus δk = 1− ρk. We see also from this argument that the value of the constant C does
not matter, as long as it is nonzero, so we choose C = 1.

We now may state the three-term recurrence in its familiar form as Equation (C.4):

rk+1 = ρk (rk − γkArk) + (1− ρk)rk−1. (C.4)

C.1.2 Three-term xk recurrence

The approximate solution vectors xk in CG3 also satisfy a three-term recurrence. We can
see this using an argument of Saad [207, p. 191]. Saad begins with the polynomial version
of the three-term recurrence for the residual vectors:

rk+1(t) = ρk (rk(t)− γkt · rk(t)) + (1− ρk)rk−1(t).
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Suppose we also express the solution vectors xk in polynomial form as xk(t). (Formally,
this also happens via the mapping expressed in Equation (C.3).) Since rk+1 = b−Axk+1 in
vector form, rk+1(t) = 1− txk+1(t) in polynomial form. (Recall that b in vector form maps
to r1(0) = 1 in polynomial form. Saad then solves this polynomial equation for xk+1(t) to
obtain

xk+1(t) =
1− rk+1(t)

t
. (C.5)

Dividing through by t in polynomial form is equivalent to multiplying both sides of the vector
form on the left by A−1. The matrix A is invertible because we are running a form of CG,
which assumes that A is SPD.

We may now substitute into Equation (C.5) the recursion formula for the residual poly-
nomials rk+1(t):

xk+1(t) =
1− rk+1(t)

t
= t−1 (1− ρk(rk(t)− γkt · rk(t))− (1− ρk)rk−1(t))

= t−1 (1− ρk (1− txk(t)− γkt · rk(t))− (1− ρk)(1− txk−1(t)))

= t−1 ((1− ρk) + ρkt(xk(t) + γkrk(t))− (1− ρk) + (1− ρk)txk−1(t))

= ρk(xk(t) + γkrk(t)) + (1− ρk)xk−1(t).

The last line of the above derivation translates directly into a vector recurrence for the
approximate solution xk:

xk+1 = ρk(xk + γkrk) + (1− ρk)xk−1. (C.6)

Note the difference in sign between this recurrence and the three-term recurrence for the
residual vectors, Equation (C.4).

C.1.3 A formula for γk

We now derive a formula for the γk coefficient in CG3. The γk coefficient is defined for
k = 1, 2, . . . , as long as CG3 has not broken down. We begin with the newly simplified
recurrence for the residual vectors, Equation (C.4):

rk+1 = ρk (rk − γkArk) + (1− ρk)rk−1,

and multiply both sides on the left by r∗k. Doing so and applying the orthogonality of the
residual vectors rk−1, rk, and rk+1 we obtain:

r∗krk+1 = ρk (r∗krk − γkr∗kArk) + (1− ρk)r∗krk−1,

0 = ρk (〈rk, rk〉 − γk〈Ark, rk〉) + (1− ρk) · 0,
ρkγk〈Ark, rk〉 = ρk〈rk, rk〉.

Since ρk 6= 0 (unless CG has reached a lucky breakdown), we obtain the following formula
for γk:

γk =
〈rk, rk〉
〈Ark, rk〉

. (C.7)
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Note that if there is a lucky breakdown and Ark ∈ span{r1, r2, . . . , rk}, then there are two
possibilities:

1. Ark has no components in the rk direction, in which case 〈Ark, rk〉 = 0. Therefore,
since A is SPD, rk = 0 as well.

2. Ark has some component νk in the rk direction, in which case 〈Ark, rk〉 = νk > 0.

We will discuss how to detect breakdown in Section C.1.5.

C.1.4 A formula for ρk

We now derive a formula for the ρk coefficient in CG3. The ρk coefficient is defined for
k = 1, 2, . . . , as long as CG3 has not broken down. We begin by showing that ρ1 = 1. We
first recall that since the CG3 residual vectors are orthogonal, 〈r2, r1〉 = 0. The formula for
x2 (recall that x0 = 0) in Algorithm 41 is

x2 = ρ1(x1 + γ1r1).

Multiply both sides on the left by −A and add b to both sides:

b− Ax2 = b− ρ1Ax1 − ρ1γ1Ar1,

b− Ax2 = b− Ax1 + Ax1 − ρ1Ax1 − ρ1γ1Ar1,

r2 = r1 + (1− ρ1)Ax1 − ρ1γ1Ar1,

multiply both sides on the left by r∗1:

r∗1r2 = r∗1r1 + (1− ρ1)r∗1Ax1 − ρ1γ1r
∗
1Ar1,

0 = 〈r1, r1〉+ (1− ρ1)〈Ax1, r1〉 − ρ1γ1〈Ar1, r1〉,
0 = 〈r1, r1〉+ (1− ρ1)〈Ax1, r1〉 − ρ1γ1〈Ar1, r1〉,

and apply the formula γ1 = 〈r1, r1〉/〈Ar1, r1〉:

0 = 〈r1, r1〉+ (1− ρ1)〈Ax1, r1〉 − ρ1〈r1, r1〉,
0 = (1− ρ1)〈r1, r1〉+ (1− ρ1)〈Ax1, r1〉.

(C.8)

Since x1 is the starting guess and may be arbitrary, and since we assume A is nonsingular,
Ax1 may be arbitrary and independent of r1. In order for Equation (C.8) to hold for any
starting guess x1 and any right-hand side b, it must be the case that ρ1 = 1.

We now derive a recursion formula for ρk with k = 2, 3, . . . . We begin with the recurrence
for the residual vectors:

rk = ρk−1 (rk−1 − γk−1Ark−1) + (1− ρk−1)rk−2.

When k = 2, rk−2 = r0 = 0. Regardless, ρk−1 = ρ1 = 1 and therefore the r0 term disappears
anyway. Thus, we do not need to handle the case k = 2 separately; it is allowed in the
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arguments below. If we multiply both sides of the above equation on the left by r∗k, we
obtain the following:

rk = ρk−1 (rk−1 − γk−1Ark−1) + (1− ρk−1)rk−2,

r∗krk = ρk−1 (r∗krk−1 − γk−1r
∗
kArk−1) + (1− ρk−1)r∗krk−2,

〈rk, rk〉 = ρk−1 (0− γk−1〈Ark−1, rk〉) + (1− ρk−1) · 0,
〈rk, rk〉 = −ρk−1γk−1〈Ark−1, rk〉.

Since the terms 〈rk, rk〉, ρk−1, and γk−1 are all nonzero, we may simplify this further to obtain
Equation (C.9):

〈Ark−1, rk〉 = − 〈rk, rk〉
ρk−1γk−1

. (C.9)

Now we use the residual vector recurrence for rk+1:

rk+1 = ρk (rk − γkArk) + (1− ρk)rk−1,

and multiply both sides of it on the left by r∗k−1, obtaining:

rk+1 = ρk (rk − γkArk) + (1− ρk)rk−1,

r∗k−1rk+1 = ρk
(
r∗k−1rk − γkr∗k−1Ark

)
+ (1− ρk)r∗k−1rk−1,

0 = ρk (0− γk〈Ark, rk−1〉) + (1− ρk)〈rk−1, rk−1〉,
0 = −ρkγk〈Ark, rk−1〉+ (1− ρk)〈rk−1, rk−1〉,

ρkγk〈Ark, rk−1〉 = (1− ρk)〈rk−1, rk−1〉.

Since the terms 〈rk−1, rk−1〉, ρk, and γk are all nonzero, we may simplify this further to obtain
Equation (C.10):

〈Ark, rk−1〉 =
1− ρk
ρk

· 〈rk−1, rk−1〉
γk

. (C.10)

The left-hand side of Equation (C.10) is almost, but not quite the same as the left-hand side
of Equation (C.9). In real arithmetic, they are equal, but in complex arithmetic, they are
complex conjugates. We will assume the latter for maximum generality:

〈Ark−1, rk〉 = 〈Ark−1, rk〉

and thus, if we take conjugates of both sides of Equation (C.9), we obtain Equation (C.11):

〈Ark, rk−1〉 = −
(
〈rk, rk〉
ρk−1γk−1

)
= − 〈rk, rk〉

ρk−1γk−1

.

(C.11)

The simplification on the second line of Equation (C.11) follows from 〈rk, rk〉 and γk−1 both
being real. Now we may eliminate the 〈Ark, rk−1〉 term in Equations (C.10) and (C.11), by
setting their right-hand sides equal to each other:

− 〈rk, rk〉
ρk−1γk−1

=
1− ρk
ρk

· 〈rk−1, rk−1〉
γk

,

− 〈rk, rk〉
〈rk−1, rk−1〉

· γk
γk−1

· 1

ρk−1

=
1− ρk
ρk

.
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Given that ρk 6= 0 (as long as symmetric Lanczos has not broken down), we conclude that

ρk =

(
1− 〈rk, rk〉
〈rk−1, rk−1〉

· γk
γk−1

· 1

ρk−1

)−1

(C.12)

for k > 1. The inverse on the right-hand side is possible by observing that if

1− y
y

= −x

and y 6= 0, then x 6= 1 (otherwise 1− y = −y and 1 = 0, which is impossible). Thus

y =
1

1− x
.

We can remove the conjugation ρk−1 in Equation (C.12) using induction. By definition,
ρ1 = 1, which is real. Also, we know that all of the terms in Equation (C.12) are real, except
perhaps for ρk and ρk−1. If we take complex conjugates of both sides, and inductively assume
that ρk−1 is real, then ρk must be real and therefore ρk is real for all k. This gives us the
final formula for ρk:

ρk =

1 for k = 1,(
1− 〈rk,rk〉

〈rk−1,rk−1〉
· γk

γk−1
· 1
ρk−1

)−1

for k = 2, 3, . . . .
(C.13)

C.1.5 Detecting breakdown

We mentioned at the end of Section C.1.3 that if there is a lucky breakdown and Ark ∈
span{r1, r2, . . . , rk}, then there are two possibilities for the value of 〈Ark, rk〉:

1. Ark has no components in the rk direction, in which case 〈Ark, rk〉 = 0. Therefore,
since A is SPD, rk = 0 as well.

2. Ark has some component νk in the rk direction, in which case 〈Ark, rk〉 = νk > 0.

The first case makes it easy to detect breakdown before computing γk. However, the second
case makes breakdown harder to detect. If γk may be well defined and nonzero even when
Ark ∈ span{r1, r2, . . . , rk}, then how do we detect the breakdown before trying to compute
a nonsensical value of ρk?

In exact arithmetic, if CG3 first breaks down in iteration k, the residual rk+1 should be
exactly zero. If we substitute this into the three-term residual recurrence, we obtain

0 = ρk(rk − γkArk) + (1− ρk)rk−1,

ρkγkArk = ρkrk + (1− ρk)rk−1.
(C.14)

The case ρk = 0 is impossible since that would make rk−1 = 0, but CG3 did not break down
in that iteration so rk−1 6= 0. We see, therefore, that we have nothing to worry about; ρk
is well defined, and we will detect at the next iteration k + 1 that rk+1 is zero (in exact
arithmetic; in finite-precision arithmetic it will have very small norm). We will compute
〈rk+1, rk+1〉 in the next iteration anyway, so we will detect it then. Such detection takes
place in Line 5 of Algorithm 41.
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C.2 Näıve Block Gram-Schmidt may fail

In Section 2.4.7, we referred to an observation by Stewart [216], in which he points out
how Block Gram-Schmidt with reorthogonalization by blocks is not sufficient to ensure
orthogonality of the computed vectors in finite-precision arithmetic, even when the block
orthogonalization phase is accurate to machine precision and the QR factorization of the
current block is performed in exact arithmetic. The following simple example illustrates this
phenomenon. Suppose we want to orthogonalize the columns of the matrix

V = [V1, V2, . . . , Vk, . . . , VM ],

where each Vk is a block of vectors. We have already orthogonalized blocks V1, . . . , Vk−1, and
thus computed the corresponding blocks Q1, . . . , Qk−1. Say also we have already computed
the orthogonal projection

Yk = (I − [Q1, . . . , Qk−1][Q1, . . . , Qk−1]∗)Vk.

We skip any possible block reorthogonalization step for simplicity. Suppose that Yk, and
thus Vk, have two columns: Yk = [y1, y2]. In addition, suppose that y1 ⊥ R ([Q1, . . . , Qk−1])
already, and that y2 = y1 + εw, where ε is a tiny scalar and ‖w‖2 = 1. The “noise term”
εw may be used to represent in a simplified way the effects of block reorthogonalization,
which guarantee orthogonality to machine precision. Alternately, y1 and y2 may represent
two vectors that are nearly dependent in exact arithmetic. The effects will be the same,
regardless of the cause.

If we now compute the thin QR factorization of Yk in exact arithmetic (not considering
the effects of rounding error), we obtain Yk = QkRkk with

Rkk =

(
‖y1‖2 ‖y1‖2 + εθ

0 |ε|
∥∥∥w − θ

‖y1‖2y1

∥∥∥
2

)
, (C.15)

where θ = 〈w, y1/‖y1‖2〉 is a scalar in [−1, 1] (because it is the inner product of two unit-
length vectors), and the Q factor is given by

Qk = [q1, q2]

=
[
‖y1‖−1

2 y1, Rkk(2, 2)−1ε
(
w − θ‖y1‖−1

2 y1

)]
.

(C.16)

We may further simplify q2 as follows:

q2 = sign(ε)

∥∥∥∥w − θ

‖y1‖2

y1

∥∥∥∥−1

2

·
(
w − θ

‖y1‖2

y1

)
, (C.17)

Depending on the direction of the unit-length noise term w, q2 may consist mainly of noise.
Furthermore, that noise may not be at all orthogonal to R ([Q1, . . . , Qk−1]), and reorthog-
onalizing Qk against those blocks will only promote the noise term in q2. Note that this
problem does not come from the particular orthogonalization procedure, since all QR fac-
torizations result in the same Q factor, up to a unitary column scaling (see e.g., Golub and
Van Loan [113]).
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Appendix D

Definitions

This appendix contains definitions and discussions of terms that appear throughout this
thesis. We put definitions in this appendix that we think would interrupt the flow if left in
the main text, for one or more of the following reasons:

• They only summarize known results, without presenting new results.

• They give so much detail that most readers may find them excessively tedious, yet
they may be of interest to some readers.

Section D.1 defines the departure from normality of a square matrix A, which is useful for
understanding the numerical behavior of s-step bases. Section D.2 defines the capacity of
a subset of the complex plane satisfying certain criteria. We refer to the capacity and use
estimates of the capacity in Section 7.3.2, when computing the Leja or modified Leja ordering
of shifts for the Newton s-step basis.

D.1 Departure from normality

The “departure from normality” of a square matrix A measures the “nonnormality” of A.
The matrix A is normal when it commutes with its adjoint, i.e., when A∗A = AA∗. Other-
wise, A is nonnormal. The departure from normality ∆(A) of the matrix A is the Frobenius
norm of the strict upper triangle (not including the diagonal) of the upper triangular Schur
factor of A. That is, if A = UTU∗ is the Schur decomposition of A, with U unitary and T
upper triangular, and T = D + M with D diagonal (its entries being the eigenvalues of A)
and M upper triangular with a zero diagonal), then

∆(A)2 ≡ ‖M‖2
F = ‖T‖2

F − ‖D‖2
F . (D.1)

Henrici [126] defines the above quantity, and points out that while the off-diagonal elements
of the Schur triangular factor are not unique, the departure from normality itself is unique
in exact arithmetic. It is also within a factor of

√
n (where the matrix A is n × n) of the

distance from A to the nearest normal matrix (Higham and Knight [133, p. 347]):

∆(A)√
n
≤ min

E
{‖E‖F : A+ E is normal} ≤ ∆(A). (D.2)
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The departure from normality of a matrix A is useful for at least two reasons, relevant to the
content of this thesis. First, it expresses the sensitivity of the eigenvalues of A to additive
perturbations; see e.g., Wilkinson [239, pp. 167–8], quoting a result by Henrici [126] (see also
Golub and Van Loan [113, p. 312]). All the s-step bases we present in this thesis, except
for the monomial basis, require estimates of the spectrum of A. Without foreknowledge of
the spectrum, these estimates are taken from the Ritz values computed using the Krylov
method itself. The Newton and Chebyshev s-step bases are able to keep the condition
number of the basis small, by constructing the bases using polynomials that are known to
be bounded or to have slow growth as a function of s on the approximate spectrum. Outside
of the approximate spectrum, the polynomials may grow rapidly. Thus, if it is hard to
approximate the eigenvalues of the matrix A, the s-step bases may not be accurate.

The departure from normality also affects the relationship between the spectral radius λA
of A (the maximum eigenvalue of A in absolute value), and the 2-norm ‖Ar‖2 of a positive
integer power r of A. For normal matrices, ‖Ar‖2 = λrA; for nonnormal matrices, this is not
necessarily true. Henrici [126, Theorem 2] gives an upper bound on ‖Ar‖2, which shows that
‖Ar‖2 can grow much faster than λrA, depending on the departure from normality ∆(A).
This relates directly to the convergence of the power method in finite-precision arithmetic,
as discussed by Higham and Knight [133]. They find that if the matrix A is sufficiently
nonnormal, even if λA < 1, repeated powers of the matrix may not converge to zero. For the
s-step monomial basis, of course, the intention is that the basis vectors not converge as a
function of s, or at least converge slowly. This could explain what we observed, for example,
with the test problems of Bai et al. [18] in Section 3.5.3, namely that CA-GMRES with
the monomial basis sometimes converges better than with the Newton basis for sufficiently
nonnormal matrices.

D.2 Capacity

Reichel [201] defines the “capacity” of a subset K of the complex plane C. He uses it as
a theoretical tool in order to prove a bound on the growth of the condition number of the
Newton basis for polynomial interpolation. The capacity also plays an important role in
computing the Leja ordering of points in K (see Section 7.3.2), since running estimates of
the capacity can be used to scale the points in order to avoid underflow or overflow in finite-
precision arithmetic. The Leja ordering matters to us because it often makes the Newton
s-step Krylov basis better conditioned than the monomial s-step Krylov basis.

We paraphrase Reichel’s [201, p. 332] definition of the capacity here. Let K ⊂ C be
compact and possibly infinite. Identify C with R2 in the usual way: z = x + ıy 7→ (x, y).
Suppose also that the complement (C∪{∞})\K of K is connected and has a Green’s function
G(x, y) with a pole at infinity. The following three requirements uniquely determine G(x, y):

1. ∆G(x, y) = 0 in C \K (it satisfies Laplace’s equation)

2. G(x, y) = 0 on the boundary ∂K of K (Laplace’s equation for G has Dirichlet boundary
conditions)

3. 1
2π

∫
∂K

∂G
∂n

(x, y) ds = 1 (where ∂
∂n

denotes the normal derivative directed into C \K)
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The capacity c of the set K is a nonnegative constant defined by

c ≡ lim
|z|→∞

|z| exp(−G(x, y)). (D.3)

For example, the circle of radius r in the complex plane has capacity r. If K has capacity
c, and α > 0, then the set αK = {αz : z ∈ K} has capacity αc. Thus, the capacity of K
relates to its scaling. Estimating the capacity c of K and working with c−1K helps avoid
underflow or overflow when computing the Leja or modified Leja ordering of points in K, as
we explain in Section 7.3.2.
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