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Abstract

Although implicit learning has been considered in recent
years as a declarative memory phenomenon, we show that a
procedural model can better elucidate some intriguing and
unexpected data deriving from experiments carried out with
Sugar Factory (Berry & Broadbent, 1984), one of the most
popular paradigms in this area, and can account for other
phenomena reported in the literature that are at odds with
current explanations. The core of the model resides in its
adaptive mechanism of action selection that is related to
outcome evaluation. We derived two critical predictions
from the model concerning: (a) the role of situational
factors, and (b) the effect of a change in the criterion
adopted by participants to evaluate the outcome of their
actions. We tested both predictions with an experiment
whose results corroborated the model. We conclude the
paper by emphasizing the role played by procedural
knowledge and evaluation mechanisms in explaining some
implicit learning phenomena.

Introduction
One of the current hot topics in cognitive science is
represented by implicit learning, that is the ability to
acquire new knowledge even when apparently unaware of
it, or unable to express it.  Research on implicit learning,
has focussed mostly on three phenomena. First, people
that in a learning phase have experienced a set of
grammatical strings generated from artificial grammar
automata are surprisingly good in the test phase at
discriminating new grammatical strings from
ungrammatical ones (Reber, 1967). Second, participants
seem able to abstract the structure of temporal event
series, as shown, for instance, by an above-chance ability
to predict the successive events (Kushner, Cleeremans &
Reber, 1991). Third, participants improve their capacity to
control a dynamic system, albeit being unable to report
significant information on how the system worked (Berry
& Broadbent, 1984).

In all these domains implicit learning was first
explained by supposing the existence of an unconscious
and autonomous learning system capable of extracting
knowledge in general, abstract, and transferable rule-like

form.   Starting from the 90s, however, it has been
suggested that many results could be explained by
supposing that participants acquire concrete, fragmentary,
declarative knowledge of the task represented through
instances.  Instance-based knowledge has indeed been
shown to underlie or significantly affect performance on
artificial grammar learning (Perruchet & Pacteau, 1990),
sequence prediction (Perruchet, 1994) and dynamic
system control tasks (Dienes & Fahey, 1995; Lebiere,
Wallach & Taatgen, 1998, Taatgen & Wallach, 2002).

In this paper we will focus on a widely adopted
dynamic system control task known as Sugar Factory
(Berry & Broadbent, 1984). In this task, henceforth SF,
participants are asked to imagine themselves in chief of a
sugar-producing factory. Their goal is to reach and
maintain the production of sugar (P) at a specified target
level by modifying the amount of workers (W) allocated
to the production.  Unbeknown to participants, P and W
are related by the equation:

Pt = 2Wt − Pt −1 + ε
where Pt is the quantity of sugar produced at trial t, just
after the allocation of Wt workers, Pt–1 represent the
amount of sugar produced in the previous trial, and ε is a
random variable that can assume with equal probability
one of the values in the set {–1, 0, +1}. The value for both
W e P ranges from 1 to 12; resulting values of P less than
1 are simply set to 1, and values exceeding 12 are set to
12. For a more realistic interpretation, values of W are
multiplied by 100 (hundreds of workers), and values of P
by 1,000 (tons of sugar).

In controlling SF for two subsequent blocks of trials,
participants generally exhibit an improvement in their
performance from the first to the second phase
demonstrating that some learning occurred, even if they
were actually unaware of the relation between W and P.

Performance in SF has been generally measured by the
total amount of hits, i.e., trials in which participants
reached a production that was at most one unit above or
below the target level.  This loose criterion was
introduced to take into account the role of the stochastic
noise ε, but is important to notice that participants were
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not informed about the adopted criterion, and they were
kept to believe that the only correct responses were those
capable of obtaining the exact target production level.

Two main computational models have been put forward
to explain the results from the Sugar Factory task: one
developed by Dienes & Fahey (1995), and the other by
Wallach and coworkers (Lebiere, Wallach & Taatgen,
1998; Taatgen & Wallach, 2002).  The former is loosely
based on Logan’s theory of automatization (Logan, 1988),
the latter is grounded on the ACT-R cognitive architecture
(Anderson & Lebiere, 1998) and takes advantage of many
of its features. Both models rely on the retrieval from
memory of previously stored instances of the interaction
with SF, although they differ in the way this information
is represented, and in the retrieval mechanism adopted.

In the paper we illustrate a new procedural model that
can better elucidate some intriguing and unexpected data
obtained in previous experiments with SF (Fum & Stocco,
2003), and that can account for other phenomena reported
in the literature that are at odds with current explanations.
We present a new experiment testing two critical
predictions of the model concerning (a) the role of
situational factors, and (b) the effect of a change in the
criterion adopted by participants to evaluate the outcome
of their actions in which we obtained results that
corroborated the model. We conclude the paper by
emphasizing the role played by procedural knowledge and
evaluation mechanisms in explaining implicit learning
phenomena.

A Procedural Model for Sugar Factory
The model we developed for the SF task is grounded on
the assumption that participants interacting with SF can
exploit a set of very simple strategies in choosing the
workforce value for the SF task. By combing the SF
literature, and by looking at the interaction traces of the
participants, we could identify some of these strategies:

Choose-Random: Choose randomly a value between 1
and 12.

Repeat-Choice: Repeat the value of W chosen in the
previous interaction episode.

Stay-on-Hit: Whenever the previous W choice resulted
in a success, repeat it.  This strategy can be considered as
a more selective variant of the previous one.

Pivot-Around-Target: Choose for W the value of the
target, plus/minus one.

Jump-Up/Down: If the resulting P is lower than the
target, increase the value of W; if it is higher, diminishes
it. There exist several possible variants of this strategy.
The one employed in the model was the Jump-on-Middle,
i.e., choose as the new W a quantity that lies midway
between the previous value and the upper/lower limit of
the distribution of possible value (i.e., 1 when decreasing,
and 12 when increasing).

Our procedural model is also built on top of ACT-R
architecture (Anderson & Lebiere, 1998) but, differently
from Wallach’s model (Lebiere, Wallach & Taatgen,

1998; Taatgen & Wallach, 2002), it relies almost
exclusively on the subsymbolic procedural learning
mechanism provided by that architecture.

ACT-R is based on the assumption that the knowledge
utilized by the cognitive system can be distinguished
between declarative and procedural. The former encodes
knowledge related to remembered facts, perceived events
or sensorial input, and is represented through chunks, i.e.,
frame-like structures constituted by labeled slots with
associated filler values.  Procedural knowledge represents
processes and skills used by the cognitive systems to
pursue its goals. It is represented through production
rules, or productions, whose conditions specify the
patterns of declarative elements that are to be active for
the production to apply.  The action part of a production
specifies some modifications to be brought to declarative
chunks, or some actions to be performed in the
environment. Differently from chunks, productions are
supposed not to be conscious or reportable, and thus are
implicit in nature.  All the strategies encoded in our model
have been implemented as ACT-R productions that are let
compete for execution.

The process of selecting which production to execute
among those that have their conditions satisfied is based
in ACT-R on the concept of expected utility.  The utility
Ui of a production i is a noisy, continuously varying
quantity defined by the formula Ui = PiG – Ci, where Pi

represents the probability that production i will reach the
goal it is meant to achieve, G  is the value of the goal
itself, and Ci is the estimated cost of applying i.  The
higher the expected utility of a production, the higher the
probability that the production will be chosen for
execution, even if a randomly distributed noise prevents
the mechanism from being completely deterministic.

Subsymbolic procedural learning is accomplished in
ACT-R through the adjustment and refinement of the
production parameters. The estimated value Pi of a
production i, in particular, is given by the ratio between
the number of successes obtained in the past by applying
the production (i.e., the number of times the production
has succeeded in reaching its goal) and the total number
of times (i.e., the sum of the successes and failures) the
production has been executed.  After each production
firing, the probability Pi is updated to reflect the statistical
structure of environment, according to a Bayesian
updating framework.  Because probability P is initially
not defined (and after the very first production firing its
estimate will be 1 or 0 according to whether it was a
success of a failure), it is common practice to start the
learning process by providing each production with values
that represent prior estimates of the production’s
successes and failures.

This learning schema proved to be adaptive, and it
enabled to replicate some interesting phenomena like the
capability of humans to choose an option proportionally
to its probability of being correct (probability matching),
or to increasingly use those problem solving operators
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that were learned to be the most successful ones
(Anderson & Lebiere, 1998).

 Whenever the subsymbolic ACT-R procedural learning
mechanism is activated, successful applications of a
production increase its expected utility, and therefore
augment the likelihood that the production will be chosen
for execution in a next occasion.

Successful Applications of the Model
Our model allows to explain the common learning effect
obtained in SF as well as to better elucidate some
phenomena reported in the literature that are at odds with
current explanations, and eventually to account for the
puzzling results we found Fum & Stocco (2003).

It is important to note that almost all of the experiments
carried out with this paradigm adopted 9,000 tons of sugar
as target value for the production.  In our first experiment
we contrasted the performance obtained in the standard
condition with that deriving from a target of 3,000 tons,
and we found that the latter condition made the task of
controlling the SF system significantly easier (see first
two rows of Table 1). The finding that the target value
affects performance is difficult to explain for the models
that rely on the retrieval of stored interaction instances. A
priori all the target levels have an equal likelihood to be
obtained, and there is no sensible reason, in fact, why
remembering the W values leading to a target P of 3,000
tons should be easier than remembering the values
associated with 9,000 tons.

Even more difficult to account are the results obtained
in Fum & Stocco’s (2003) second experiment, concerning
the effects of a change in the value of the target
production between the first and the second phase. In the
experiment, one group switched from a starting target
value of 3,000 tons to a value of 9,000 tons in the second
phase. Another group experienced the same target levels
but in the reversed order.  A general effect of the phase
was found, providing evidence for a performance
improvement together with an interesting Target x Phase
interaction (see second two rows of Table 1).  According
to the instance based models, a change in the target value
should destroy the possibility of taking advantage in the
second phase from previous experience because almost all
the stored instances refer to episodes that are useless in
the new condition.   As a consequence, no positive
transfer between the two phases should be obtained.
These predictions were falsified by our experiment.

Table 1: Results from Fum & Stocco (2003)
compared with model’s predictions

First Phase Second Phase
Condition Particip. Model Particip. Model
3000-3000 10.57 9.35 13.18 12.30
9000-9000 7.26 7.02 9.26 8.83
3000-9000 9.39 9.32 8.70 9.04
9000-3000 6.86 6.96 12.84 12.12

An important preliminary insight deriving from our
model is that, because of the interaction between the
procedural strategies and the system dynamics (e.g., the
stochastic noise, or the way it deals with the out-of-range
values), some production target levels are inherently
easier to obtain than others. Figure 1 illustrates this idea
by reporting the results of a simulation carried out with
2,500 runs of the model for each target level between
2,000 and 11,000 tons.  It can be shown that each
production rule, implementing a separate solution
strategy, has a different probability of success (i.e. of
leading to the target) in the different conditions.  For
instance, the Repeat-Choice rule has an averaged
(between phases) success probability of 15.18% in the
3,000 tons condition vs. 11.32% in the 9,000 one.
Analogously, the Jump-on-Middle (up and down) rule has
success probabilities of 2.44% vs. 1.22% in the 3,000 and
9,000 tons conditions, respectively. This is a first
important fact that should be taken into account.

If we run the model with the ACT-R procedural
learning mechanism off and let the productions compete
for execution led only by chance and stochastic noise, the
result is affected only by situational factors, i.e. by the
target. If we change the target level between the two
phases, the model produces the results illustrated on the
left panel of Figure 2.

Another important insight deriving from the model is
that not only the success probability of a production is
different in different target conditions, but also that the
success probabilities of different productions in the same
target condition are different.  In other words, some
productions in the SF domain are inherently better that
others, independently from the condition in which they
are applied.  By looking at the execution traces, for
instance, it is possible to realize that Stay-on-Hit is always
better than Jump-on-Middle, or that Repeat-Choice is
always better than Choose-Random.

At the very beginning, all productions are considered as
equal by the model that does not use any a priori estimates
of success for them.  When the ACT-R subsymbolic
production learning mechanism is activated, however, it
increasingly tends to prefer the most successful
productions, and the more frequent firing of the these
productions results in the performance improvement that
is obtained from the first to the second experiment phase.

Figure 1. Model’s performance for different target levels.
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Just to give an example, the percentage of firings of the
Choose-Random production decreases in the 3,000 tons
condition, from the 16.63% in the first phase to the
11.54% in the second phase while the more successful
Repeat-Choice has an increase from the 29.07% in the
first phase to the 42.37% in the second.

The results of the first experiment are thus easily
explained: the difference between the 3,000-3000 and the
9,000-9,000 conditions is caused by the fact that the same
production has a different success rate in the two
conditions; the learning effect is cause by the fact that the
ACT-R subsymbolic learning mechanism stimulates the
firing of the most successful productions while
discouraging the least successful ones. The question of
what is learned by participants in the SF task has therefore
a simple answer: they are increasingly led to use those
productions that are more likely to obtain the goal.

The results obtained in the second experiment derive
from the combined influence of situational (Target) and
learning (Phase) factors.  Figure 2 illustrates the idea.
Without learning, only situational factors are involved.  In
this case the model predicts a completely symmetrical
situation for the 3,000-9,000 and the 9,000-3,000
conditions.  When the learning mechanism is activated, it
interacts with the situational factors originating the results
obtained in the second experiment.

By using only the pure subsymbolic learning
mechanism of ACT-R, without any need for parameter
fitting or a priori estimates, the model is capable of
explaining our experimental results.

Further Explanations
Besides explaining previous results from the SF task and
the new findings from our experiments, our model can in
fact clarify some data from Marescaux (1997) that have
been considered as supporting the instance-based
viewpoint. Marescaux reports evidence from an
unpublished experiment, where participants first
interacted with the system and then were asked to
complete a written questionnaire. The items in the

questionnaire were constituted by hypothetical interaction
episodes, and participants had to figure out the proper
value of W in order to reach (a) the same production target
level adopted in the interaction phase (i.e., the standard
9,000 tons), or (b) a new target level (i.e., 6,000 tons).
Marescaux found that performance was lower for the (b)
items, and took this finding as indicative of lack of
generalization, and therefore corroborating instance-based
learning. Leaving aside the questionable choice of
adopting the written modality to test the participants’
knowledge, Marescaux did not take into account the
differential effect of the target levels that we found in our
experiment.  As we will see below, our model predicts a
difference in performance exactly in the same direction.

Another widely known, but hitherto never modeled
result, comes from a study of Berry (1991). The author
showed that material interaction with the system is
necessary for learning to occur. Berry (1991, Experiment
1) divided the participants into two groups: the
Observation group simply observed the experimenter
controlling SF for the first block of trials, and directly
interacted with the simulator in the subsequent phase. A
Control group interacted with the system in both periods.

Participants in the Observation condition were
impaired in the second phase in which they had to interact
with the system: their performance was just at the same
level of that provided by Control participants in the first
phase, as if they had never encountered the system before.
Moreover, performance during the interaction phase
remained unchanged even when participants were
previously given two observation phases (Berry, 1991,
Experiment 3).

It is somehow possible to account for such an effect
even in an instance-based framework. However, the
explanation given by our model is straightforward: during
observation, participants had no change to experience the
relative success rate of each production. Lack of
experience corresponds to the inhibition of subsymbolic
learning in the ACT-R architecture.

Figure 2: Model’s predictions for the second experiment of Fum & Stocco (2003).  Predicted performance (right) is the
sum of the effect of target level (left) and the acquisition of transferable knowledge.
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A New Experiment
Beyond providing an explanation for previous results, our
model, being a zero-parameter model, allows to make
experimentally testable predictions. Here we take into
account here two of them. The first concerns the possible
effect of a change in the criterion adopted by participants
to evaluate the outcome of their actions. The second
concerns, again, the role of situational factors.

As it has been previously mentioned, due to existence
of random noise that makes the task of controlling the
sugar production quite difficult, it is common practice in
SF to consider a participant successful in reaching the
target whenever the production falls within an interval of
±1 unit from it. It is interesting to wonder what would
happen if we make the participants aware of this scoring
criterion by saying that, when the target is set for instance
to 6,000 tons, their goal is to keep the production level
between 5,000 and 7,000 tons. According to our model,
making the scoring criterion explicit would cause, through
a rich-gets-richer effect, a more frequent application of
the most successful productions leading to an overall
performance improvement.  It is important to emphasize
that this result should be obtained not by changing the
scoring criterion adopted by the experimenter but by
changing the criterion used by participants to evaluate
their own performance. The experiment here described
was designed just to test such critical prediction.

It is worth noticing that instance-based approaches
cannot make clear predictions about the expected results:
performance could be positively affected by the
opportunity of storing a larger amount of successful
instances, but, on the other hand, such instances have a
greater probability of leading to an unsuccessful result.1

Moreover, a larger amount of instances is likely to
negatively affect the retrieval by augmenting memory
workload.

In the experiment we decided to adopt a target
production level of 6,000 tons in order to test whether this
situational factor would affect the performance in the way
predicted by our model. We already found that the 3,000
tons condition was significantly easier than the 9,000 one,
(Fum & Stocco, 2003, Experiment 1), but this result
would be consistent with other possible functions, e.g. by
assuming that performance would be inversely related to
the target level.

Our hypotheses were therefore that: (a) adopting a loose
scoring criterion should improve the participants’
performance; and (b) the performance with the new
production level would comply to the predictions of our

                                                          
1 In fact, it is possible to demonstrate that, due to the noise
parameter ε, the probability for a retrieved instance to lead to
success falls from 0.78 in the narrow condition to 0.60 in the
broad one.

model, i.e. should be lower than that obtained with both
the previous target levels.

Method
Participants Participants were 93 students (29 males and
64 females) aged 19 to 30 (median 19) all recruited from a
General Psychology course.
Design The main independent variable was the scoring
criterion.  Participants in the Narrow group were
instructed to maintain the sugar production at exactly
6,000 tons, while those in the Broad group were told to
keep it between 5,000 and 7,000 tons. The main
dependent variable was, as usual, the number of hits.  The
experiment adopted a 2 (Criterion: Narrow vs. Broad) x 2
(Phase: First vs. Second) mixed design, with Criterion as
between subjects and session Phase as within subjects
factors.
Procedure All participants were tested individually in
single sessions comprising two blocks of 40 trials each.
Participants interacted with SF through a computer
program, written in Python and running on a Dell PC
provided with a 15’ LCD flat screen. The GUI of the
program presented, for each trial, the current amounts of
workers (W) and production (P). Participants could
change the former by pressing one of keys F1…F12 on
the computer keyboard, each key corrisponding to one of
the possible values for W. After a 1s delay the program
showed the resulting value for P, and was ready again for
a new input value. Each time a participant reached the
correct production level (6,000 for the Narrow, a value
between 5,000 and 7,000 for the Broad condition), the
system played a beep through the speakers. Initial values
for the first trial for both W and P were randomized.

Results and Discussion
Table 2 reports both the results from the experiment and
our model predictions (obtained through 2,500 runs).

Table 2: Experiment results and model’s predictions

First Phase Second Phase
Condition

Particip. Model Particip. Model
Narrow 6.70 5.85 7.68 6.93
Broad 7.52 7.55 9.96 8.50

An ANOVA computed on participants data revealed as
significant the main effects of Criterion (F(1,91)=5.97,
MSE=111.36, p=.016)  and of the Phase (F(1,91)=12.26,
MSE=134.22, p=.007), but not their interaction. As
predicted by the model, the performance in the Narrow
condition was significantly lower than in the Broad
condition, while both groups improved their ability of
controlling the system from the first to the second phase.

In order to test our second hypothesis concerning the
existence of the U-shaped curve relating target level and
performance (Figure 1), we carried an ANOVA
comparing the performance of the Narrow group with that
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obtained by the 9,000-9,000 group in first experiment of
Fum & Stocco (2003), that was run under comparable
conditions. We found, again, a significant effect of phase
(F(1,88)=8.28, MSE=96.8, p=.005), but the effect of
target level (6,000 vs. 9,000) resulted marginally
significant (F(1,88)=3.59, MSE=50.88, p=.06). However,
we decided to accept this result as a corroboration for our
hypothesis, given the fact that the predicted magnitude of
the effect was small, and that a one-tailed t test carried out
on the results of the second phase yielded a significant
difference (t(88) = 1.94, p=.028).

Conclusions
We developed a model for the SF dynamic system control
task that explains far more results than any other instance-
based model and that relies on procedural knowledge
unconsciously selected on the basis of its expected utility.
We provided further evidence for the model by testing
two critical predictions: the existence of a U-shaped
performance curve, and the effect of broadening the range
of perceived successful results. Our predictions turned out
to be correct.

It is worth to emphasize that we do not assume that
participants are unable to store any memory of their
interactions with the system nor that instance-based
models are useless to explain human cognition.  We
simply state that, contrary to what is posited by these
models,  instances do not play a significant functional role
in learning to control a simple, but not trivial, dynamic
system like SF, at least for the time scale covered by the
experiments. As a matter of fact, both Dienes & Fahey
(1998), and Schoppek (2002) reported no evidence for
instance-based behavior even when participants were able
to show some kind of declarative knowledge. Finally,
instance-based explanations are somewhat at odds with
results by Squire & Frambach (1990), who found amnesic
patients performing at the same level of normal control
participants when interacting with SF.

We believe that research on implicit learning has
somehow neglected the role of outcome evaluation
mechanisms that are essentially procedural in nature and
adaptive in function. By putting these mechanism again
into focus we could hope to bridge again research on
implicit learning with evidence from animal cognition and
neuropsychological studies.
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