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Abstract

The  South  American  palm  weevil,  Rhynchophorus  palmarum (Coleoptera:  Curculionidae),

established in San Diego County, California USA sometime around 2014. Attached to the motile

adults  of  this  destructive  palm  pest,  we  identified  three  species  of  uropodine  mites

(Parasitiformes: Uropodina), Centrouropoda n. sp., Dinychus n. sp. and Fuscuropoda marginata.

Two of these species, Centrouropoda n. sp. and Dinychus n. sp. are recorded for the first time in

the USA and were  likely introduced by  R. palmarum.  Several species of mites,  primarily of

Uropodina, have previously been recorded as phoretic on Rhynchophorus spp. In this study, we

examined 3,035 adult R. palmarum trapped over a 2.5-year period, July 2016 to December 2018,

and documented the presence of and species composition of phoretic mites and their relationship

with  weevil  morphometrics  (i.e.,  pronotum  length  and  width).  The  presence  and  species

composition of mites on weevil body parts changed over the survey period. No mites were found

under weevil elytra in 2016 and mite prevalence under elytra increased over 2017–2018 due to

an increased abundance of  Centrouropoda n. sp per individual beetle. Mite occurrence levels

were  significantly  correlated  with  reduced  pronotum  widths  of  male  weevils  only.  The

significance of this finding on male weevil fitness is unknown. Potential implications of phoretic

mites on aspects of the invasion biology of R. palmarum are discussed.

Keywords: invasive species, phoresy, South American palm weevil, species translocation
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Introduction

Infiltration  of new ecosystems by an invasive  species  may also result  in  the introduction  of

additional species –such as endosymbionts, pathogens, parasites and predators– associated with

the  invader  (Thomas  2011).  The  South  American  palm  weevil,  Rhynchophorus  palmarum,

established  in  San  Diego  County,  California,  USA  sometime  around  2014,  likely  from

populations that established in Tijuana, Baja California Norte, Mexico, which were first detected

in 2010 (Hoddle & Hoddle 2017). Adult  R. palmarum are highly vagile and capable of flying

long distances in relatively short periods of time (Hoddle et al. 2020; Hoddle et al. 2021). These

attributes may enable R. palmarum and associated symbionts, such as phoretic mites, to disperse

naturally into new areas from infested regions.

Rhynchophorus palmarum is a notorious palm pest in its native range, which includes

parts  of  Mexico,  Central  and South  America,  and the Caribbean  (EPPO 2021).  Larvae  feed

inside the palm crown, killing the apical growing region (Giblin-Davis 2001; Milosavljević et al.

2019). It is estimated that more than 10,000 ornamental Phoenix canariensis have been killed by

R.  palmarum in  San  Diego  Co.  (APC 2020).  The  risk  posed  to  palms  by  R.  palmarum is

increased  by  its  ability  to  vector  a  plant  pathogenic  nematode,  Bursaphelenchus  cocophilus

(Cobb) (Aphelenchida: Parasitaphelenchidae), the causative agent of a lethal palm malady, red

ring disease. This nematode has not yet been detected in California, but in its native range it is a

significant mortality agent in commercial oil palm and coconut plantations (Giblin-Davis 2001;

Milosavljević et al. 2019). 

Phoresy is a phenomenon by which an organism is actively carried to favorable habitats

either on or in a host and for a limited period of time (OConnor 1982; Kaliszewski et al. 1995).

Phoretic  mite  species  that  are adapted to  their  host  insects are often specialists  on the same

resources  used  by  their  insect  transporters  (OConnor  1982;  Wilson  &  Knollenberg  1987).

Association  with  phoretic  mites,  primarily  species  belonging  to  the  Uropodina  (Acari:

Mesostigmata),  have been documented for several  Rhynchophorus  spp. in their  native ranges

including R. phoenicis (Fabricius) in Cameroon (Kontschan et al. 2012), R. vulneratus (Panzer)

in Indonesia (Hoddle & Hoddle 2015),  R. ferrugineus (Olivier)  in the Philippines (Hoddle &
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Hoddle  2011)  and  Malaysia  (Dilipkumar  et  al.  2015),  R.  cruentatus (Fabricius) in  Florida

(Wattanapongsiri  1966, Giblin-Davis 2001), and  R. palmarum in Central and South America

(Husband  & Flechtmann  1972;  Husband  & OConnor  1999;  Rodriguez-Morell  et  al.  2012).

Additionally, phoretic mites have been recorded infesting invasive populations of R. ferrugineus

in the Mediterranean basin (Gomaa 2006; Longo & Ragusa Di Chiara 2006; Atakan et al. 2009;

Porcelli et al. 2009; El-Sharabasy 2010; Mazza et al. 2011), the Canary Islands, Spain (Abolafia

& Ruiz-Cuenca 2020), the Middle East (Al-Deeb et al. 2011; Farahani et al. 2016), and Aruba

and Curaçao Islands in the Caribbean (Amy Roda, USDA-APHIS pers. comm. 2021).

Phoretic mites may stimulate the onset of weevil  flight and consequently colonization

behavior which would favor the spread of mites and weevils (Porcelli  et al. 2009). In contrast,

secondary  consequences  of  phoresy  could  result  in  deleterious  effects  on  hosts.  Heavy (i.e.,

hundreds of mites) mite loads on adult weevils may reduce the efficiency of foraging activities

such as flying and increase susceptibility to predation and other stress-related causes that result in

premature mortality (Bajerlein & Bloszyk 2004; Porcelli et al. 2009; Al-Deeb et al. 2011; Mazza

et al. 2014). A possible parasitic interaction with hosts has been also suggested (Elzinga & Broce

1988; Houck & Cohen 1995; Holte et al. 2001; Cardoza et al. 2008; Al-Deeb et al. 2011;) and

the life span of adult  R. ferrugineus is reportedly reduced when weevils are infested with high

numbers of phoretic mites (Mazza et al. 2011).

The  life  cycle  and  behavior  of  one  phoretic  mite  species,  Centrouropoda  almerodai

Hiramatsu & Hirschmann 1992 (Uropodina), found in association with R. ferrugineus, have been

documented in some detail  (Longo & Ragusa Di Chiara 2006; Porcelli  et al. 2009). Female C.

almerodai lay eggs on rotting palm fibers. Larvae that emerge from eggs and protonymphs feed

on  rotting  ligneous  palm  material.  Deutonymphs  search  for  mature  R.  ferrugineus larvae,

especially the last larval, or pre-pupal stage. Deutonymphs remain on pre-pupal weevil larvae as

they build pupal cocoons from palm fibers within which they pupate. Prior to weevil emergence

from the cocoon, deutonymphs cluster on different body parts of the teneral adult. Once attached

to adult weevils, deutonymphs develop an anal pedicel which immobilizes and fixes mites onto

hosts. This process occurs most commonly on the underside of the elytra. Stalks remain under

elytra even after deutonymphs abandon hosts (Porcelli et al. 2009).
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Centrouropoda almerodai has been reported in association with R. ferrugineus and from

R. palmarum collected in Central America (Porcelli  et al. 2009; Rodriguez-Morell et al. 2012).

However, Kontschán et al. (2014) state that C. almerodai is not present in Central America and

phoretic  Centrouropoda mites associated with  R. palmarum represent an undescribed species.

Another  species  of  phoretic  mite  associated  with  R.  ferrugineus is  the  mycetophagous,

Fuscuropoda marginata (Koch) 1839 (Uropodina: Urodinychidae) (often listed as Uroobovella

marginata) (Bowman 2021). In contrast to C. almerodai, F. marginata preferentially attaches to

exposed  surfaces  of  the  sternum, pygidium,  head,  and  legs.  In  the  context  of  uropodine-

Rhynchophorus associations, attachment site has been hypothesized as a good indicator of mite

species (Porcelli et al. 2009). Fuscuropoda spp. have not previously been recorded in association

with R. palmarum.

In 2016, a trapping program monitoring  R. palmarum phenology in Bonita, San Diego

County was initiated.  As part  of this  effort,  captured adult  weevils  were counted and sexed.

During this  handling and record keeping process it  was noticed that  numerous weevils  were

infested with phoretic mites which indicated the possible introduction of new mite species into

California. Due to the presence of heavy mite loads on captured adult weevils, we hypothesized

that the presence of heavy mite loads imposes detrimental fitness consequences on weevils. To

test  this  hypothesis,  the  presence  or  absence  and  position  of  phoretic  mites  on  individual

captured weevils was recorded. Infestation levels were compared to an indicator of host size by

measuring weevil thorax size (i.e., width and length). The prediction to be tested was that higher

numbers  of  mites  are  correlated  with  smaller  weevils  as  measured  by thorax  size.  We also

investigated  the  species  diversity  of  phoretic  mites  associated  with  collected  weevils  and

reported here on the chronological sequence of their appearance on R. palmarum in California. 

Material and Methods

Sampling and locations

From July 2016 to December 2018, R. palmarum populations were monitored monthly at

the Sweetwater Recreational Reserve, Bonita, San Diego County in California, USA (N 32° 40’

57’’; W 117° 00’ 09’’). This riparian area has more than 800 wilding  P. canariensis many of

which are infested with R. palmarum. Adult weevils were captured using traps made from white
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7.5-liter paint buckets with lids (ULINE S-9941W, Pleasant Prairie, Wisconsin, USA). Buckets

had four evenly spaced 5-cm circular holes cut into the sides of the upper half of the bucket to

allow weevil entry (Milosavljević et al. 2020). Each bucket trap was wrapped with burlap fabric

(ULINE S-14512, Pleasant Prairie, Wisconsin, USA) to enable adult weevils attracted to traps to

climb the sides of the bucket to reach entry holes. Buckets were loaded with fermenting bait and

commercially  available  aggregation  pheromone  to  attract  weevils.  The  fermenting  bait  was

composed of dates, baker’s yeast, and water held within containers (470 ml plastic containers

Uline Inc.,  Pleasant  Prairie,  WI) fitted with perforated lids  (~ten 0.3 mm diameter  holes) to

permit  release  of  attractive  fermentation  volatiles.  The  commercial  aggregation  pheromone

dispenser  (ISCALure  IT192,  700mg at  98% purity  of  [4S,2E-6]-methyl-2-hepten-4-ol,  ISCA

Technologies, Riverside CA, USA) was suspended within the bucket from the lid. To increase

the  combined  attractiveness  of  the  pheromone  and  bait,  a  synergist,  ethyl-acetate  (20  ml,

Grainger Industrial Supply, Jackson, MS, USA), contained within a 25 ml plastic vial (Thermo

Fisher Scientific, Waltham, MA, USA) with a single perforation hole (~ 1–2 mm in diameter) in

the screw cap, was hung inside the bucket from the lid. The bucket contained antifreeze (i.e., 1.5

L of 50% propylene glycol solution) to drown and preserve captured weevils. Bucket traps were

suspended 1.5 m above the ground on tree branches. A total of 10 traps were hung in the reserve.

Traps were cleared and lures and baits replaced monthly (i.e., approximately every 30 days).

Rhynchophorus palmarum populations  and  pronotum size,  mite presence  on body parts  and

species identification

Captured weevils were counted, sexed, preserved in 95% ethanol in labeled containers,

and stored in a freezer at ~ -5° C until examined. For this study, 3,035 weevils were sexed (sex

ratio was calculated as the number of females divided by the total number of male and female

weevils per trap) and pronotum width and length was measured in mm with a digital  caliper

(Digital Caliper-Fractional & Decimal Display, Neiko Tools USA) and recorded.

The  presence  or  absence  of  mites  in  four  areas  of  the  body:  head  and  pronotum,

abdomen,  legs,  and  the  underside  of  the  elytra  (Figures  1–2)  were  recorded.  Weevils  with

missing body parts (e.g., heads) were excluded from the study. A subsample of mites attached to

the four body areas examined were removed and preserved in 95% ethanol in labeled vials for
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species-level identification. The discovery of deutonymphs of three species of Uropodina led to a

secondary investigation of attachment site preference by each species and possible sequence of

species appearances in California. To this end, a limited sample consisting of three weevils each,

collected in Fall of 2016, 2017 and 2018, was examined for presence and, if present, attachment

site  by  different  mite  species.  A  subsample  of  50–150  mites  /  year  for  both  external  and

subelytral  sites (if available) were cleared and slide mounted  (see Walter & Krantz 2009 for

mounting details) and identified to genus or species using available taxonomic keys (Karg 1989;

Krantz & Ainscough 1990; Hirschmann 1993).

Statistical Analyses

Generalized  linear  models  were used to  compare  sex ratios  of  R. palmarum captures

between months and years. Quasibinomial error variance was used in model fittings as over-

dispersion in the sex ratio data was detected (Crawley 2007). A generalized linear model was

used  to  analyze  the  presence/absence  of  mites  by  sex  and  month.  To  analyze  whether  R.

palmarum pronotum size (i.e., width and length) was affected by sex and/or mite presence on

sampled weevils repeated measures generalized mixed-effects models were used to analyze data

for two complete years, 2017 and 2018 (2016 was excluded from this analysis as only six months

of data were available for this year). The factors for the repeated measures generalized mixed-

effects model were sex, mite presence/absence, their interactions, and month as a random factor.

The sample size was large (n=2,957 of the 3,035 weevils were used for analyses [see below]) and

data were normally distributed. The level of significance for all the analyses was set at < 0.05.

Analytical packages “stats”, “glm” and “nlm” in R (3.6.2. version) (R Core Team 2021) were

used for analyses.

Results

Rhynchophorus palmarum populations 

Bucket traps deployed at the Sweetwater Reserve captured a total number of 3,035  R.

palmarum from July 2016 to December 2018. A total of 2,957 weevils were undamaged (i.e., not

missing heads or legs)  and used for  data  collection.  The maximum total  number of  weevils

captured in all 10 traps in a single month was 245 in April of 2018. Female sex ratio averaged

0.623 ± 0.188 (Figure 2).  There were no significant  differences  in female  sex ratio  between
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months across years (GLM: Month, F1,116=0. 497, P=0.931; Year, F1,130=0.794, P=0.375) (Figure

2).

Mite presence on body parts

The infestation levels  of mites  under the elytra  increased over the three years of this

survey. Of the 2,957 adult R. palmarum examined for mite presence and from which pronotum

measurements were taken, 91.5 % of captured adults were infested with phoretic mites on some

part of the body, with 68% of weevils harboring mites under the elytra. Half of the weevils were

infested with mites in summer of 2016 (n=136 weevils) and only one weevil had mites under the

elytra during this period (Figure 3). From January 2017 until the end of the survey in December

2018, more than 85% of captured weevils were infested with mites in any given period (i.e.,

season). Specifically, 99% of weevils captured over winter (January–March) and spring (April–

June) of 2018 were infested with mites (Figure 3). In comparison with 2016, weevils captured in

summer (July–September) and fall (October–December) of 2017 exhibited 95% and 94% levels

of  infestation,  respectively.  The maximum prevalence  of  mites  under  elytra  reached 79% of

captured weevils and was observed in winter 2018 (Figure 3). The percentage of weevils infested

with mites differed significantly (F1,256=5.72, P=0.017) between the sexes and averaged 86.6% ±

1.9 and 92.5% ± 1.5 for females and males, respectively. 

Rhynchophorus palmarum pronotum size 

For weevils captured over 2017 and 2018, weevil sex and the presence of mites were

correlated with reduced pronotum width in males only. A similar relationship was not observed

for female weevils (Table 1 and Figure 4). The pronotum width of males infested with mites

averaged 10.74 ± 0.02 (mm ± SE) and was significantly smaller than the average pronotum width

(11.08 ± 0.1) for males with no mites on any body part. However, the average size difference is

small being only a 3% difference in width (Table 1). Greater differences in the average pronotum

width between males and females were found in May 2018 [10.776 ± 0.779 and 10.294 ± 0.116

for females (n=77) and males (n=67) respectively] and in June 2018 [10.356 ± 0.108 and 9.913 ±

0.124 for females (n=88) and males (n=53) respectively]. Pronotum length was not affected by

sex, mite presence, and/or their interaction (Table 1 and Figure 5).

Mite species identification
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Mites  infesting  R.  palmarum were  identified  as  Centrouropoda n.  sp.,  Fuscuropoda

marginata,  and  Dinychus n.  sp.  (Figure  6–11).  Kontschan  et  al. (2014)  noted  that  the

Centrouropoda deutonymphs  from  R.  palmarum in  Panama  identified  as  C.  almerodai by

Rodriguez-Morell et al. (2012) differed from typical C. almerodai by the lack of a fourth pair of

setae on the ventrianal shield and by the presence of a pair of long ventrals caudal (JV5?) setae.

Specimens  collected  in  this  study  share  these  characters  (Figure  7),  suggesting  that  the

Centrouropoda specimens associated with  R. palmarum throughout the Americas  represents a

new species. The identification of  Dinychus n. sp. is tentative, as this species may represent a

new genus  (Figure  10,  11).  Voucher  specimens  are  deposited  in  the  Ohio  State  University

Acarology Collection, with respective accession numbers OSAL 0153163-5, OSAL 0153166-7,

and OSAL 0153737-41. 

Centrouropoda n. sp. was commonly found under the elytra but was also found on the

venter  and  legs  of  weevils.  Its  occurrence  on  the  legs  and  venter  seemed  to  happen  most

commonly  as  the  numbers  and  subsequent  densities  of  Centrouropoda n.  sp.  increased,

suggesting  mites  may  “spill-over”  from  preferred  attachment  sites  to  occupy  less  preferred

attachment sites on adult weevils. As noted previously for R. ferrugineus (Porcelli  et al. 2009),

F. marginata attaches  to a  variety of external  locations  on weevils  (i.e.,  head, coxal region,

ventral abdomen, around the anus, femora and tibiae). Fuscuropoda marginata does not attach to

sites under the elytra. Among the “external” attachment sites there was no clear site preference

by either Centrouropoda n. sp. or F. marginata. Nearly all recovered specimens of Dinychus n.

sp.  (n=43)  were  located  under  the  elytra,  with  only  a  few  (n=3)  individuals  found  among

removed  specimens  of  the  other,  externally  attached,  mite  species.  Deutonymphs  of

Centrouropoda n. sp. and F. marginata attach to weevil hosts via stalks secreted by anal glands.

Our observations on Dinychus n. sp. suggest that this species does not generate stalks for host

attachment.

Invasion sequence and species interactions 

Based on the limited sampling of weevils inspected for mites in Fall of 2016, 2017, and

2018, F. marginata was present and common in 2016, but Centrouropoda n. sp. and Dinychus n.

sp. were not recovered until 2017. When recovered, these latter two species were initially found

predominantly under the elytra. In 2018, Centrouropoda n. sp. was dominant not only under the
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elytra, but also externally (Table 2). These observations are consistent with the observation that

the 2016  collections seldom included subelytral mites. Observed numbers of subelytral  mites

were large (>200 / elytron), occupying nearly all the space under elytra.  External  mites can be

equally numerous and were often attached in clusters on body parts (Figures 1, 2). Members of

Centrouropoda n.  sp.  and  F.  marginata were  found  in  mixed  species  clusters,  often  with

intertwined anal stalks.

Discussion

This  study documents  the  association  between  R.  palmarum and  phoretic  mites  in  southern

California for the first time. Three species of phoretic mite were detected from weevil trapping

surveys conducted over a 2.5-year period:  Centrouropoda n. sp.,  Fuscuropoda marginata, and

Dinychus n.  sp.  (this  species  may  actually  represent  a  new  genus).  The  percentage  of  R.

palmarum infested with mites ranged from 51% (in 2016) to 99% (in 2018). Previous studies

examining relationships between R. palmarum and phoretic mites did not specify the percentage

of weevils infested. However, Mazza  et al. (2011) found similar infestation levels of phoretic

mites on R. ferrugineus in Italy.

The composition of the phoretic mite fauna of California collected on  R. palmarum is

comparable to that of  R. ferrugineus in the Mediterranean region where C. almerodai and F.

marginata typically infest weevils (Porcelli  et al. 2009; Farahani et al. 2016). The detection of

Centrouropoda n. sp. and Dinychus n. sp. in this study may be the first official record of these

species in the U.S. Notably, phoretic mites have been observed infesting R. cruentatus in Florida

(R.  Giblin-Davis,  Univ.  Florida,  pers.  comm. June 2021).  This  palm weevil  is  native  to  the

southeast U.S. but the identities of associated phoretic mites have not been determined/published

and  warrant  investigation.  With  respect  to  the  association  of  Dinychus n.  sp.  with  a

Rhynchophorus sp., this is an unusual finding given that other members of this genus are rarely

recorded in association with beetles (Wisniewski & Hirschmann 1993).  

Each  phoretic  mite  species  observed  in  this  study  appears  to  have  site  attachment

preferences on R. palmarum. However, Centrouropoda n. sp. appear to “spill over” to attach to

external sites if its preferred subelytral sites are occupied. If this hypothesis is correct it suggests

that  this  mite  may  exhibit  flexibility  in  attachment  site  selection.  Data  presented  here also
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suggest  that  the  three  species  of  phoretic  mites  associated  with  R.  palmarum in  California

invaded sequentially,  specifically  Centrouropoda n.  sp.  arrived  later  than  F.  marginata.  The

situation for Dinychus n. sp. is less clear as the abundance of this species is substantially lower

than the other two species and its relative rarity, especially at invasion onset, may have made

detection difficult. Interestingly, our data suggests that the increase in numbers of Centrouropoda

n. sp. on weevils may have led to the competitive exclusion of F. marginata in 2018 (Table 2).

The putative mechanism for such preferred attachment site changes (from subelytral to external

sites) and the subsequent exclusion mechanism of mites from preferred weevil  body parts is

unclear for two reasons. First, mites rarely occupied all available external sites, and second, the

observation of mixed species clusters suggests some inter-species tolerance. Collectively, these

observations are tentative given the relatively small sample sizes examined. Consequently, these

hypotheses of attachment site preferences and exclusion mechanisms between species of phoretic

mites infesting  R. palmarum are tentative given the relatively small sample size examined and

would greatly benefit from additional investigation.

Finally, it is important to note that Uropodina are not the only mites, or even the only

mesostigmatid  mites,  associated  with  Rhynchophorus spp.  Phoretic  mites  of  the  family

Diplogyniidae  (Mesostigmata:  Trigynaspida)  were  found  attached  to  R.  palmarum adults  in

Brazil  (Negrisoli  Junior  et  al.,  2011).  Halliday  (2019)  suggested  that  these  mites  may  be

Crenamargo binuseta Hicks (Diplogyniidae) which has been previously found on R. palmarum

in Nicaragua (Hicks 1958) and Brazil (Flechtmann 1981). Collections from California have not

yet generated any confirmed cases of Diplogyniidae on  R. palmarum,  but these mites,  when

present, typically occur in small numbers and may be overlooked. It is possible that diplogyniid

mites may have invaded California with  R. palmarum,  and if so, they may be detected with

additional sampling efforts.

The infestation severity of mites on male  R. palmarum was slightly higher than those

observed for female weevils. This finding may indicate a minor preference of phoretic mites for

male weevils. This finding is tentatively supported by previous studies which found male biased

associations of phoretic mites on some species of beetles (Grossman & Smith 2008). In this

study,  the  presence  of  mites  on  R.  palmarum  males  was  associated  with  a  significant,  but

relatively small, 3% reduction in pronotum widths (but not lengths) in male weevils only. This
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finding may suggest that the presence of phoretic mites, assuming that they are associated with

pre-pupal and pupal weevils prior to infesting their respective adult hosts, could impose a fitness

cost in terms of resulting male size as measured by pronotum width. The exact nature of that

possible fitness cost on male weevils is unknown.

In the Mesostigmata,  the phoretic stage is usually either the last immature instar (the

deutonymph) of both sexes, or the adult female (Athias-Binche 1993; Walter & Proctor 1998).

The other stages (i.e., eggs, protonymphs) of phoretic mites are usually free-living forms. In this

study, the free-living forms share the same ecological niche, rotting plant material in the interior

of palm trees, with R. palmarum larvae. Uropodid mites are generally considered mycophagous

(OConnor 1984). However, some species of the Uropodidea have been described as predators or

parasitic  haemolymph  feeders  (Walter  &  Proctor  1998).  Weevil  fitness  could  be  adversely

affected by phoretic mites if those mites feed on immature hosts to obtain protein (Longo &

Ragusa Di Chiara 2006; Mazza et al. 2011). Consequently, mites may not only exploit weevils

for dispersal, but they could also engage in a parasitic relationship by using hosts as a protein

source as suggested by Mazza et al. (2011). For example, Holte  et al. (2001) reported that the

phoretic  (heteromorphic)  deutonymphs  of  Hemisarcoptes  cooremani (Astigmata:

Hemisarcoptidae)  extract  materials  from  adult  coccinellid  hosts,  suggesting  a  parasitic

relationship  between  mites  and  beetle  hosts.  A  similar  process  may  explain  why  adult  R.

ferrugineus infested with phoretic mites exhibit reduced longevity (by ~33%) when compared to

uninfested weevils (Mazza et al. 2011). 

Substantial  loads  of  phoretic  mites  on  adult  weevils  may  impede  flight  capabilities

(Atakan  et  al.  2009).  However,  mites  might  not  impede  completely  flight  capacity  as  mite-

infested weevils are readily captured in traps (Mazza et al. 2011). Similarly, in this study, 91.5 %

of weevils that flew to bucket traps and were captured hosted mites on some part of the body.

However, the distances flown to reach traps are unknown and substantial mite loads on weevils

might  have a strong negative  effect  on long-distance  flight  capacities.  Interestingly,  phoretic

mites may stimulate weevils to abandon palms of declining quality to search for healthy palms to

infest, which promotes the spread of both mites and weevils (Porcelli  et al. 2009). Flight mill

studies are ideally suited to test these hypotheses regarding the effects of infestations of varying
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densities of single or mixed species loads of phoretic mites on the flight capabilities of male and

female R. palmarum (Hoddle et al. 2020; 2021).

Mazza et al. (2011) suggested that the chronological spread of invasive palm weevils into

new areas  may  be  reconstructed  by  tracking  the  spread  of  accompanying  species  that  have

dependent interspecific relationships with the host or vector. When surveys of  R. palmarum in

southern California commenced in 2016, phoretic mites were found primarily on the pronotum,

legs, and abdomen and the only identified species was F. marginata (Figure 6 and 7). Over the

course of this 2.5-year study, increasing densities of mites were found on the underside of elytra

while mite infestation levels on other body parts remained relatively consistent. Mite species

composition changed with subsequent detections of Centrouropoda n. sp. (one and three weevils

with mites under elytra in September/October 2016 and February 2017, respectively) (Figure 3).

This observation of sequential additions of phoretic mite species associated with  R. palmarum

over time, if confirmed, could be used to determine the relative age of weevil local infestations as

this pest spreads into new areas of California. The strength of the relationship and its utility for

reconstructing invasion timelines could be investigated by examining mite infestation loads on

weevils captured at the leading edges of the invasion and comparing mite loads (i.e., proportions

of  weevils  infested  with  phoretic  mites,  and  mite  species  compositions  and  densities)  to

populations with known residency times in infested areas. 

Additionally,  the  identification  of  the  phoretic  mite  fauna  associated  with  specific

Rhynchophorus species  could  be  studied  to  determine  the  competitive  interactions  amongst

different mite species. For example, the phoretic mite fauna on R. cruentatus (native to Florida)

has  not  been  studied  and  needs  documentation.  It  is  possible  that  at  some  future  time  R.

palmarum,  R.  ferrugineus (established  in  the  Caribbean), and  R.  cruentatus could  become

sympatric in southeast USA Baseline data on the phoretic mite fauna for R. cruentatus while in

allopatry would be essential for determining mite interactions after congeneric weevil species

become sympatric. Similarly, R. palmarum (native) and R. ferrugineus (invasive and introduced

from Egypt) co-exist in Aruba and Curaçao islands, in the Caribbean (A. Roda, USDA-APHIS,

pers. comm. June 2021). The phoretic mite fauna associated with these two weevil species has

not been studied in the Caribbean but might exhibit mixed species compositions comprised of

mite species from the Caribbean, the Middle East, and/or possibly from the original native range
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of  R. ferrugineus in tropical Asia. This possibility could be determined by characterizing the

phoretic  mite  fauna  for  each  weevil  species  in  allopatry  and  then  comparing  mite  species

compositions to weevil populations that occur in sympatry.

In conclusion, work presented here suggests that two species, Centrouropoda n. sp. and

Dinychus  n.  sp.,  of  phoretic  mites  have  sequentially  invaded  California  with  R.  Palmarum.

Fuscuropoda marginata is considered cosmopolitan and was likely already present in California

and may not have invaded in association with  R. palmarum.  Data presented here documented

that mite densities and potentially species compositions changed over the course of this ~2.5-

year study. Phoretic mites may extract  a fitness cost on adult  male  R. palmarum as infested

males, on average, tend to exhibit reduced (~3%) pronotum widths when compared to uninfested

males. However, the fitness effects of possible size reduction in males are unclear. Manipulative

experiments  that  assess  the  effects  of  varying  phoretic  mite  loads  associated  with  prepupal

larvae, pupae, and adults have on adult male and female size (e.g., flight mill studies to quantify

dispersal capabilities),  or on longevity could be undertaken to better understand the potential

fitness costs of phoretic mites on R. palmarum.
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Table 1. Results of repeated measures generalized mixed-effects model examining the effects of

sex and mite occurrence (presence vs absence) on pronotum width and length of Rhynchophorus

palmarum captured  in  bucket  traps  at  the  Sweetwater  Recreational  Reserve,  San  Diego,

California in 2017 and 2018.

pronotum width pronotum length

  df F P F P

Sex (S) 2752 18.562 < 0.001 3.389 0.066

mite presence (MP) 5.015 0.025 0.040 0.842

S x MP   2.132 0.144 3.807 0.051
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Table  2.  Relative  abundance  of  uropodine deutonymphs  on  Rhynchophorus  palmarum by

attachment site, based on subsamples of mites identified and taken from weevils collected during

Fall  of  2016,  2017  and  2018.  Format:  total  number  of  mites  on  the  subsampled  weevils

(percentage of total for Centrouropoda n. sp. and plus F. marginata)

Site –––––––––––––External––––––––––––– ––––––––––––Sub-elytral––––––––––––

Year

Centrouropoda

n. sp.

Fuscuropoda

marginata

Dinychus

n. sp.

Centrouropoda

n. sp.

Fuscuropoda

marginata

Dinychus

n. sp.
2016 0 73 (100%) 0 0 0 0
2017 15 (25%) 45 (75%) 0 74 0 39
2018 123 (94%) 8 (6%) 3 55 0 4
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Figures 1–2. Rhynchophorus palmarum male  infested  with  phoretic  uropodine  mites  on  (1)

ventral  side including  underneath  wing  elytra  and  (2)  lateral view  of  head,  pronotum,  and

foreleg.
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Figure 3. Rhynchophorus palmarum population dynamics and proportion of captured females

(sex ratio) in the Sweetwater Recreational Reserve, Bonita, San Diego County, California, USA

from July 2016 to December 2018. The total number of weevils was calculated as the sum of 10

traps per month and the average sex ratio was calculated (females/total  number of male and

female weevils captured) for each trap with weevils.
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Figure 4. Percentage of  Rhynchophorus palmarum infested with mites,  and proportion of mites on each body part.  Bars  show the

percentage of weevils with mites detected on some part of the body (excluding elytra) and black areas correspond to the percentage of

weevils with (one or more) mites under elytra (other body parts not excluded). Pie charts represent the percentage of weevils infested

with mites on different parts of the body (“n” indicates the number of weevils with mites within each season by year).
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Figures 5. Rhynchophorus palmarum A) pronotum width and B) pronotum length (mm ± SE)

for females and males that were infested and not infested with phoretic mites in 2017 and 2018

(uninfested females n=121 and uninfested males n=50, infested females n=1595 and infested

males n=1001).
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Figures  6–11. Phoretic  mites  (uropodine deutonymphs)  found on Rhynchophorus  palmarum

collected  in  Fall  of  2016,  2017,  and 2018 in Sweetwater  Recreational  Reserve,  Bonita,  San

Diego  County  in  California,  USA.  Dorsal  (6,  8,  10)  and  ventral  (7,  9,  11)  views  of

Centrouropoda n. sp. (6, 7),  Fuscuropoda marginata (8, 9), and Dinychus n. sp. (10, 11) (this

species may represent a new genus). Scale bars are 100 µm.
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