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Abstract 

Even newborn infants are able to extract structure from a 

stream of sensory inputs and yet, how this is achieved remains 

largely a mystery. We present a connectionist autoencoder 

model, TRACX2, that learns to extract sequence structure by 

gradually constructing chunks, storing these chunks in a 

distributed manner across its synaptic weights, and 

recognizing these chunks when they re-occur in the input 

stream. Chunks are graded rather than all-or-none in nature. 

As chunks are learned their component parts become more 

and more tightly bound together. TRACX2 successfully 

models the data from four experiments from the infant visual 

statistical-learning literature, including tasks involving low-

salience embedded chunk items, part-sequences, and illusory 

items. The model also captures performance differences 

across ages through the tuning of a single learning rate 

parameter. These results suggest that infant statistical learning 

is underpinned by the same domain general learning 

mechanism that operates in auditory statistical learning and, 

potentially, in adult artificial grammar learning.1  

 

Introduction 
We live in a world in which events evolve over time. 

Consequently, our senses are bombarded with 

information that varies sequentially over time. One of 

the greatest challenges for cognition is to find structure 

within this stream of experiences. Even newborn infants 

are able to do this (Teinonen, et al. 2009; Bulf, Johnson 

& Valenza, 2011), and yet, how this is achieved remains 

largely a mystery.  

  Two possibilities have been suggested (see Theissen, 

et al., 2013 for a detailed discussion). The first, 

characterised as statistical learning, involves using 

frequency and transition probabilities to construct an 

internal representation of the regularity boundaries 

among elements encountered. The second possibility 

suggests that elements that co-occur are recalled and 

simply grouped together – or chunked – into single 

units. Over time, these chunks can themselves be 

grouped into super-chunks or super-units. According to 

this view behaviour is determined by the recognition of 

these chunks stored in memory and associated with 

particular responses. What distinguishes these accounts 

                                                        
1 This article is an abridged, modified version of Mareschal, D. 

& French, R. M. (2017) TRACX2: a connectionist 

autoencoder using graded chunks to model infant visual 

statistical learning. Phil. Trans. R. Soc. B 2017 372 20160057; 

DOI: 10.1098/rstb.2016.0057.  

 

is that the former argues that it is the probabilistic 

structure of the input sequence that is represented and 

stored, whereas the later argues that specific co-

occurring elements are stored, rather than the 

overarching statistical structure. Ample evidence in 

support of both of these views has been reported. 

  We will argue that this is a false dichotomy: both 

transitional probability learning (statistical learning) and 

chunking co-exist in one system that smoothly 

transitions between these apparent modes of behaviour. 

The appearance of two modes of learning is an illusion 

because only a single mechanism underlies sequential 

learning; namely, Hebbian-style learning in a partially 

recurrent distributed neural network. Such a system 

encodes exemplars (typical of chunking mechanisms) 

while drawing on co-occurrence statistics (typical of 

statistical learning models). An important corollary of 

this approach is that chunks are graded in nature rather 

than all-or-none. Moreover, interference effects 

between chunks will follow a similarity gradient typical 

of other distributed neural network memory systems.   

  Chunks are most frequently thought of as all-or-

nothing items. Who thinks of "cups" and "boards" when 

they see the word "cupboard"? Or "foot" and "ball" 

when they encounter the word "football"? Indeed, 

chunks like these have essentially the same status as 

"primitive" words like "boat" or "tree", which are not 

made of component sub-words. But new chunks do not 

suddenly appear ex nihilo in language. Rather, they are 

generally formed gradually, their component words 

becoming more and more bound together with time and 

usage. For example, when we encounter the words 

"smartphone", "carwash", or "petshop", we still clearly 

hear the component words. We hear them less in words 

like "sunburn" and "heartbeat". We hear them hardly at 

all in "automobile." How long did it take for people to 

stop hearing "auto" and "mobile" when they heard or 

read the word "automobile"? Like "automobile", it is 

likely that in a few years the current generation will no 

longer hear "smart" and "phone" when they hear the 

word "smartphone". This simple observation involving 

the graded nature of chunks is at the heart of the 

chunking mechanism in TRACX2. 

  These ideas were implicit in our initial presentation of 

the TRACX model (French et al., 2011). In TRACX we 

showed that a connectionist autoencoder, augmented 

with conditional recurrence, could extract chunks from 

a stream of sequentially presented symbols. TRACX 

2031



2 
 

had two banks of input units, which it learned to 

autoencode onto two banks of identical output units. 

Sequential information was encoded by presenting 

successive elements of the sequence, first on the right 

input bank, then on the left input bank on the next time 

step. Thus, the sequence of inputs was presented in a 

successive series of right-to-left inputs, with learning 

occurring at each time step. However, if the output 

autoencoding error was below some pre-set threshold 

value (indicating successful recognition of the current 

pair of input elements), then, on the next time step, 

instead of the input to the right input bank being 

transferred to the left input bank, the hidden unit 

representation was put into the left input bank. The next 

item in the sequence was, as always, put into the right 

input bank. Weights were updated and the input 

sequence would then proceed as before. The result of 

this was that TRACX learned to form chunks of 

elements that it recognised as co-occurring (see French 

et al., 2011 for full details). TRACX successfully 

captured a broad range of data from the adult and infant 

auditory statistical learning literature and outperformed 

existing models of both chunking, notably, PARSER 

(Perruchet & Vinter, 1998) and statistical learning 

(SRNs, Cleeremans & McClelland, 1991).  

  TRACX2 (French & Cottrell, 2014), which we use in 

this paper to segment and chunk sequential visual items, 

is an updated version of TRACX. TRACX2 removes 

the use of an all-or-nothing error threshold that 

determines whether or not the items on input are to be 

chunked. This effectively removes a conditional jump 

(i.e. an if-then-else) statement from the model, jump 

statements of this kind not being natural to neural 

network computation. In TRACX2, the contribution of 

the hidden-unit activation vector to the left bank of 

input units is graded and depends on the level of 

learning already achieved. TRACX (French et al., 2011) 

and TRACX2 (French & Cottrell, 2014) were used to 

successfully model the segmentation of syllable (i.e., 

auditory) streams. In the present article, we use 

TRACX2 to model four experiments from the infant 

visual statistical learning literature. Visual statistical 

learning paradigms involve showing infants sequences 

of looming colored shapes with varying degrees of 

statistical regularity embedded in the sequences. It was 

first developed as a visual analogue of the auditory 

statistical learning experiments (Kirkham, Slemner & 

Johnson, 2002) and has yet to be captured by any 

modeling paradigm. 

 

The TRACX2 Architecture 
TRACX2 was initially introduced by French and 

Cottrell (2014). The key to understanding TRACX2 is 

to understand the flow of information within the 

network. Over successive time steps, the sequence of 

information is presented item-by-item into the right-

hand bank (RHS) of input units. The left-hand bank 

(LHS) of input units is filled with a blend of the right-

hand input and the hidden unit activations at the 

previous time step, as shown in the following equation:   

LHSt+1 = (1- tanh(Δt))*Hiddenst + (tanh(Δt))*RHSt 
 

where Δt is the absolute value of the maximum error 

across all output nodes at time t, LHSt is the activation 

across the left-hand bank of input nodes, Hiddenst are 

the hidden-unit activations at time t, RHSt is the 

activation across the right-hand bank of input nodes, 

and  is the sigmoid-"steepness" parameter, always set 

to 1 in the simulations presented here. If at time t, Δt is 

small, this means that the network has learned that the 

items on input are frequently together (otherwise Δt 

could not be small). The contribution to the left-hand 

bank of input units at time t+1 of the hidden-unit 

activations, which constitute the network's internal 

representation of the two items on input at time t, is, 

therefore, relatively large and the contribution from the 

right-hand inputs will be relatively small. Conversely, if 

Δt is large, meaning that the items on input have not 

been seen together often, the hidden-layer's contribution 

at time t+1 to the left-hand input bank will be relatively 

small and that from the right-hand inputs will be 

relatively large. At each time step, the weights are 

updated to minimise output error (Fig. 1). 

  In layman's terms,  this  means  that  as you experience  
 

 
Figure 1. Architecture and information flow in TRACX2. In all simulations reported in this paper,  = 1. When 

Δ is large (items not recognized as having been seen together before on input), almost all contribution to LHS 

comes from RHS. When Δ is small (items recognized as having been seen together before on input), almost all 

contribution to LHS comes from the Hidden layer (Hid). 
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items (visual, auditory, tactile) together over and over 

again, these items become bound to each other more 

and more strongly into a chunk until we no longer 

perceive its component parts.  

 

Modeling infant statistical learning 
In this section we report on a total of four different 

simulations using TRACX2 of infant visual statistical 

learning behaviour. We used  (the learning rate) as a 

proxy for development, with  set to 0.0005 for 

newborns, 0.0015 for 2-month-olds, 0.0025 for 5-

month-olds, and 0.005 for 8-month-olds. This is a 

typical parameter used to model age related differences 

in early learning (e.g., Thomas & Johnson, 2006). 

There was a bias node on the input and hidden layers 

and momentum was always set to 0. The key 

developmental hypothesis here is that, with increasing 

age, infants are progressively better at taking up 

information from an identical environment. This is 

consistent with the well-established finding that the 

average rate of habituation increases with increasing 

age during infancy (e.g., Bornstein et al., 1988; 

Colombo & Mitchell, 2009; Westermann & Mareschal, 

2013). Finally, as has been used repeatedly elsewhere, 

we take network output error as a proxy for looking 

time in the infant (Mareschal & French 2000; 

Mareschal, French, Quinn, 2000; Mareschal, Quinn, & 

French, 2002; Mareschal & Johnson, 2002; French, 

Mareschal, Mermillod & Quinn, 2004; Westermann & 

Mareschal, 2013). The idea here is that the amount of 

output error correlates with the number of cycles 

required to reduce the initial error, which corresponds 

to the amount of time or attention that the model will 

direct to a particular stimulus. 

  We begin by modeling the seminal Kirkham et al. 

(2002) visual statistical learning experiment 

demonstrating that age-related effects in the efficacy of 

learning can be accounted for by a simple and plausible 

parameter manipulation in TRACX2. We then show 

that TRACX2 can capture statistical learning in 

newborns, as well as their dependency on the 

complexity of the information stream (Bulf et al., 2011).  

  Finally, we show that, like 8-month-olds (Slone & 

Johnson, 2015), TRACX2 forms illusory conjunctions, 

normally taken as evidence of a statistical learning 

mechanism, but also shows decreased salience of 

embedded chunk items, normally taken as evidence of 

chunking. It, therefore, reconciles two apparently 

paradoxical behaviours within a single common 

mechanism. 

 

Visual statistical learning 

Kirkham et al (2002) developed a visual analogue of 

the auditory statistical learning tasks initially developed 

by Saffran et al. (1996) and Aslin et al. (1998). Instead 

of listening to unbroken streams of sounds, infants were 

shown continuous streams of looming colorful shapes 

in which successive visual elements within a “visual 

word” were deterministic, but transitions between 

words were probabilistic (see Fig. 2, leftmost panel). 

Infants at three different ages were first familiarized to 

this stream of shapes, then presented with either a 

stream made up of the same shapes but with random 

transitions between all elements, or a stream made up of 

the identical visual words as during habituation. 

Kirkham et al. found that infants from 2 months of age 

subsequently looked longer at the random sequence 

than the structured sequence (even though elements are 

identical between streams) suggesting that the infants 

had learned the statistical structure of the training 

sequence.                                    

  We modelled this experiment by training the model 

with a sequence of inputs containing the identical 

probability structure to that used to train infants. The 

training sequence was identical in length to that used by 

Kirkham. The transitional probability within a visual 

word was p=1.0, and between visual words p=.33. 

Shapes were coded using localist, bipolar (i.e., -1, 1) 

orthogonal encodings in order minimize effects due to 

input similarity. The RHS and LHS input vectors were  

comprised of 12 units.  

  Network performance was evaluated by averaging 

output error over all three of the possible two 

image ”visual words" in the sequence. This was then

 

 

 

 

 

 

                                                           

 

 

 

 

Figure 2. (leftmost panel) Illustration of visual sequences used to test infants (after Addyman & Mareschal, 

2013). (middle and rightmost panels) Left-hand panel: Infant performance reported in Kirkham et al. (2002) and, 

right-hand panel: TRACX2 performance with the familiar structured and novel non-structured sequences. (Error 
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is the maximum error of the network over all output units; SEM error bars.)  

 

compared to the average output error for a set of three 

randomly selected two-image “visual non-words” that 

were neither words nor part-words, and, consequently, 

occurred nowhere in the training sequence. This is 

analogous to the word/non-word testing procedure used 

in auditory statistical learning studies (e.g., Saffran et 

al., 1996), and completely equivalent to testing the 

networks with a structured sequence (from which they 

would have extracted visual words) and a fully random 

sequence (in which no previous words or part-words 

exist). The model, like infants of all ages, looked longer 

at the randomised sequence than the structured 

sequence (Fig. 2, rightmost panel). 

 

Visual statistical learning in newborns 

Bulf, Johnson, and Villenza (2011) asked whether the 

sequence-learning abilities demonstrated by Kirkham et 

al (2002) were present from birth. They tested 

newborns (within 1 week of birth) on black and white 

sequences of streaming shapes. In their “High Demand 

Condition”, the sequence had the same statistical 

structure as in Kirkham et al. That is, the sequences 

were made up of 3 visual words, each made up of two 

shapes with a constant transition probability of 1.0 

defining the word, and transitional probabilities of .33 

between words. They also introduced a “Low Demand 

Condition” in which the sequences were made up of 

only two words ( each consisting of two shapes with 

internal transition probabilities of 1.0) leading to 

transition probabilities at word boundaries of 0.5 

(instead of the .33 previously used). The reasoning here 

was that newborns had more limited information 

processing abilities and may therefore struggle with a 

more complex sequence, already proving to be a 

challenge for 2 month olds. 

 
 

Figure 3. Newborn performance as reported in Bulf & 

Johnson (2011) in left panel and TRACX2 performance 

in right panel for familiar structured and novel non-

structured sequence.  
 

  Again, we modelled this study using TRACX2, in the 

same way as above, but by (1) reducing the learning 

rate to 0.0005, and (2) creating both high-demand and 

low-demand sequences. In the low-demand condition 

(LDC), there were two pairs of images, each made up 

of two different images (i.e., a total of 4 separate 

images). In the high-demand condition (HDC) there 

were three pairs of images, each made up of two 

different images (i.e., a total of 6 separate images). In 

the simulation for both the high-demand and low-

demand conditions, TRACX2 saw sequences of 120 

words. Statistics were averaged over 30 runs of the 

program, with each run consisting of 10 simulated 

subjects. Figure 3 shows both the infant data and the 

model results. As with the infants, TRACX2 did not 

discriminate between the structured training sequence 

and the random sequence in the high demand condition 

(with the lower learning rate) but did discriminate 

between the two sequences in the low demand 

condition.  

 

Learning embedded and illusory items. 

One consequence of chunking is that elements within a 

chunk become less salient as the chunks are 

increasingly consolidated. In contrast, statistical 

learning mechanisms predict that learners should form 

illusory items from elements that accidentally appear 

together on occasion. Slone & Johnson (2015) explored 

whether infants’ learning mechanisms would lead to the 

reduced salience of embedded items or to the 

emergence of illusory chunks, as a means of testing 

whether chunking or statistical learning underpins 

infant learning. To do this, they presented 8-months-

olds with sequences structured as depicted in Figure 4a. 

Infants in the “Embedded Pair Experiment” did not 

differentiate embedded pairs from part-pairs that 

crossed word boundaries, but both were differentiated 

from the word pairs. Infants in the “Illusory Item 

Experiment” did not differentiate the illusory triplets 

from the part triplets, but both were differentiated from 

the actual triplets. This is perplexing because one result 

suggests that infants utilize chunking, whereas the other 

results suggests that they engage in statistical learning. 

TRACX2 captures both of these results well, with the 

caveat that the model is designed to produce the 

smallest error on the best learned patterns. (Figs. 4b, 4c). 

If we consider output error to be a measure of attention 

(the higher the error, the more attention the infant pays 

to that item), then we can say that TRACX2 is designed 

to orient to novel test patterns most (i.e., shows a 

novelty preference). In short, when modeling a novelty 

preference, the greater TRACX2's Error on output, the 

longer the looking time for infants. 

  Familiarity preferences are, in some sense, the inverse 

of novelty preferences. This means that the smaller the 

error for an item, the more attention the infant pays to 

that item. Thus, to model familiarity preferences we 

subtract the error on output from the maximum possible 
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error and call this "Inverse Error" (Fig. 4c). So, when 

modeling a familiarity preference, the greater TRACX's 

Inverse Error, the longer the infants' looking time.  

  Such shifts in orienting behaviour are common in 

infant visual orienting, and have been related to the 

complexity of the stimuli and the depth of processing 

(Roder, Bushnell, & Sassville, 2000; Hunter & Ames, 

1988; see Sirois & Mareschal, 2004, for a process 

account of the familiarity-to-novelty shift in a neural 

network model of habituation). Thus, TRACX2 

captures both the reduced salience of embedded chunk 

items and the appearance of illusory conjunctions 

within a single mechanism, thereby reconciling 

apparently paradoxical infant behaviours. 

 

Discussion 
TRACX2 (French & Cottrell, 2014) is an updated 

version the TRACX architecture (French et al. 2011). 

As in the original architecture, TRACX2 is a memory-

based chunk-extraction architecture. Because it is 

implemented as a recurrent connectionist autoencoder 

in the RAAM family of architectures (Pollack, 1989), it 

is also naturally sensitive to distributions statistics in its 

environment. In TRACX2, we replace the arbitrary all-

or-none chunk-learning decision mechanism with a 

smooth blending parameter. TRACX2 learns chunks in 

a graded fashion as a function of its familiarity with the 

material presented. An implication of this is that chunks 

are no longer to be thought of as “all-or-none" entities. 

Rather, there is a continuum of chunks whose elements 

are bound together more or less strongly. 

 TRACX2 was used to model a representative range of 

infant visual statistical learning phenomena. No 

previous models of these behaviours exist. As with the 

auditory learning behaviours, TRACX2 captures 

infants' apparent use of forward and backward 

transitional probabilities, the diminishing sensitivity to 

embedded items in the sequence, and the emergence of 

illusory words. However, it is important to understand 

that TRACX2 is not simply internalising the overall 

statistical structure of the  sequence,  but  encoding, 

remembering and recognizing previously seen chunks 

of information. This is a fundamentally different 

account of infant behaviours than has previously been 

proposed (Krogh, Vlach & Johnson, 2013).   

  TRACX2 can use frequency of occurrence or 

transitional probabilities equally well and fluidly to 

learn a task (as is the case with 8-month-olds; 

Marcovitch & Lewkowicz, 2009). This would suggest 

that categorizing learning either as statistical or 

memory-based is a false dichotomy. Both can happen in 

a single system, with different behaviours seeming to 

appear depending on the constraints of the task, the 

level of learning and the level of prior experience. 

Moreover, the idea that infant looking time is 

determined by the recognition of regularly re-occurring 

items (chunks or individual items) is consistent with the 

recent evidence suggesting that local redundancy in the 

sequences is the prime predictor of looking away in 

infant visual statistical learning experiments (Addyman 

& Mareschal, 2013).  

TRACX2 also suggests that there are no 

specialised mechanisms in the brain dedicated to 

sequence learning. Instead, sequences emerge from the 

application of fairly ubiquitous associative mechanisms, 

coupled with graded top-down re-entrant processing.  
 

 

 

 

 
Figure 4 (a) 

                 

 

 

 

 

 

 

 

 

 

 

 

  

                                                (b)                                                                                    (c) 
 

Figure 4. (a) Familiarisation and testing items for embedded pairs (left panel) and illusory items (right panel) (after 

Slone & Johnson, submitted). (b) Infant data (left-hand side of figure, familiarity preference, Experiment 1) and 

TRACX2 performance (right-hand side, SEM error bars). (c) Infant data (left-hand side of figure, novelty preference, 

Experiment 2) and TRACX2 performance (right-hand panel, SEM error bars). (Figure (a) permission pending).
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Although there may be differences in the

speed and richness of encoding across modalities, there 

is nothing intrinsically different in the way TRACX2 

processes visual or auditory information. This suggests 

than any modality-specific empirical differences 

observed can be attributed to encoding differences 

rather than core sequence-processing differences.  

  In conclusion, we believe that chunking cannot be 

viewed as an all-or-nothing phenomenon. Chunks are 

learned and over the course of being learned their 

component parts become more and more tightly bound 

together. This is a fundamental principle of TRACX2. 

The results of the present paper suggest that infant 

statistical learning is underpinned by the same domain 

general learning mechanism that operates in auditory 

statistical learning and, potentially, also in adult 

artificial grammar learning. TRACX2, therefore, offers 

a parsimonious account of how infants find structure in 

time. 
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