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Abstract

Data-Driven Predictive Control Beyond Linearity: An Autonomous Driving Perspective

By

Siddharth Nair

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Francesco Borrelli, Chair

Model Predictive Control (MPC) has been widely adopted in the industry for constrained
optimal control, because of its straightforward transcription of the control problem and
the availability of mature convex optimization solvers for efficient control synthesis.
However as the name suggests, MPC requires a model of the underlying system and
a quantification of the uncertainty in the assumed model for reliable performance and
robustness. A vast body of work has been devoted to the analyses and design of ro-
bust and efficient MPC for linear systems with convex constraints. However, the world
inherently involves nonlinear phenomena and non-convex decision-making, be it the dy-
namics of a bicycle, the multi-modality of a human driver, or the combinatorial problem
of optimizing a route. While various MPC designs for nonlinear, non-convex settings
have been studied, most suffer from at least one of the following shortcomings: (1) lack
closed-loop performance guarantees or safety guarantees in the presence of uncertainty,
(2) have small regions of feasibility due to conservative convexification of constraints
or local linearization of dynamics, or (3) are intractable for real-time, high-frequency
control.

In this dissertation, we propose data-driven algorithms that exploit the nonlinearity and
non-convexity in the optimal control problem for MPC designs that are robust to uncer-
tainty and computationally efficient. The dissertation is divided into three parts focusing
on robustness, performance, and computational efficiency. Each part presents algorithms
that balance all three aspects, but are designed with an emphasis on the corresponding
part’s theme and demonstrated on practical applications in autonomous driving.
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Chapter 1

Introduction

Autonomous Vehicle (AV) technologies have seen a surge in popularity over the last
decade, with the potential to improve the flow of traffic, safety, and fuel efficiency [2].
Moreover, the autonomous driving problem serves as a benchmark for integrating au-
tonomy into our society; an autonomous decision-making agent must be able to interact
with living beings and other agents, navigate complex environments, learn from expe-
rience, take decisions quickly, and most importantly, be reliable. While existing semi-
autonomous vehicle technology is being gradually introduced into structured scenarios
such as highway driving and low-speed parking, control for fully autonomous driving
in urban settings remains elusive. The main challenges in designing control algorithms
for the AV are that it must be

1. robust to uncertainty arising from its dynamics (e.g. actuation delays, unmodeled
higher-order dynamics), and also the environment (e.g. the behavior of the other
agents in the vicinity),

2. performant in accomplishing its tasks such as following a comfortable, time-optimal
route without compromising on safety,

3. efficient in computing control actions for making quick decisions even in complex
environments such as unsignalized traffic intersections

This thesis investigates data-driven Model Predictive Control (MPC) algorithms to
address these challenges. MPC has been widely adopted in the industry for constrained
optimal control, because of its straightforward transcription of the control problem and
the availability of mature convex optimization solvers for efficient control synthesis.
However, as the name suggests, MPC requires a model of the underlying system and
the quantification of the uncertainty in the assumed model for reliable performance and
robustness. To address this shortcoming, several advances have been made over the
past decade towards incorporating data-driven models into the MPC design and analyz-
ing the closed-loop robustness and performance for linear dynamical systems subject to
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convex constraints. However, the autonomous driving problem features nonlinear phe-
nomena such as the dynamics of the vehicle or the multi-modal behavior of the human
drivers, as well as non-convex, optimization problems such as avoiding collisions with
other vehicles or the combinatorial problem of optimizing a route.

In this dissertation, we propose data-driven MPC algorithms that are robust to un-
certainty and computationally efficient by exploiting the nonlinearity and non-convexity
in optimal control problems arising in autonomous driving. The dissertation is divided
into three parts focusing on robustness, performance, and computational efficiency. Each
part presents algorithms that balance all three aspects, but are designed with an em-
phasis on the corresponding part’s theme and demonstrated on practical autonomous
driving applications. Next, we formalize the notions of robustness, performance, and
computational efficiency and contextualize our contributions with respect to literature.

1.1 Problem Formulation
Consider a nonlinear system (e.g. the AV) with discrete-time dynamics

xt+1 = f (xt, ut) + dt, dt ∈ D(xt, ut) (1.1)

where xt ∈ Rn and ut ∈ Rm are the system’s state and input respectively at time t,
and f (·, ·) represents the modeled dynamics. The model uncertainty or disturbance dt is
assumed to belong to compact set D(xt, ut) containing the origin, where D(·) is a set-
valued map, D : Rn+m → 2Rn

. The system is subject to operational constraints given by
compact and convex time-varying state and input constraint sets,

xt ∈ Xt, ut ∈ Ut, ∀t ≥ 0. (1.2)

Let the environment denote everything else in the world except the system (1.1), and
ot ∈ Rq be the observation of the environment at time t. Suppose that the predicted ob-
servation ot+1 at time t + 1 is distributed by some time-varying conditional distribution
pt(ot+1| ot, xt, xt+1), denoted (by abuse of notation) as ot+1 ∼ pt(ot+1| ot, xt, xt+1). The
system is subject to additional time-varying safety constraints

(xt, ot) ∈ St ∀t ≥ 0, (1.3)

which are possibly non-convex, e.g., collision avoidance constraints between the AV and
surrounding vehicles. The system must operate to minimize some performance measure
given by ∑k≥t ck(xk, uk), e.g., tracking a desired path.
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The Model Predictive Control (MPC) policy uMPC
t (xt, ot) is synthesized by solving

the following finite-horizon optimal control problem

min
ut|t,ut+1|t(·),...,ut+N−1|t(·)

E

[
t+N−1

∑
k=t

ck(x̄k|t, uk|t(x̄k|t, ok|t)) + PN(x̄t+N|t)

]
(1.4a)

s.t. xk+1|t = f (xk|t, uk|t(xk|t, ok|t)) + dk, (1.4b)

x̄k+1|t = f (x̄k|t, uk|t(x̄k|t, ok|t)), (1.4c)

ok+1|t ∼ pk(ok+1|t| ok|t, xk|t, xk+1|t), (1.4d)

(xk+1|t, uk|t(xk|t, ok|t)) ∈ Xk ×Uk, (1.4e)

P
[
(xk+1|t, ok+1|t) ̸∈ Sk+1

]
≤ ϵ, (1.4f)

x̄t+N|t ∈ X̄N, (1.4g)

∀dk ∈ D(xk|t, uk|t(xk|t, ok|t)), ∀k ∈ {t, . . . , t + N − 1}, (1.4h)

xt|t = xt, x̄t|t = xt, ot|t = ot (1.4i)

where the decision variables are the sequence of policies {ut|t, ut+1|t(·), . . . , ut+N−1|t(·)}.
The feedback from the state and environments appears in (1.4i) and the MPC policy is
given from the optimal solution as

uMPC
t (xt, ot) = u⋆

t|t (1.5)

The predicted state of the system at time k is denoted as xk|t for any realization of the
model uncertainties in (1.4b), whereas x̄k|t denotes the nominal state prediction when
there is no uncertainty (1.4c). The expectation in the cost (1.4a) is computed over the
probability distribution (1.4d) which induces a nominal trajectory distribution (1.4c) in
closed-loop with the policies ut|t, ut+1|t(·), . . . , ut+N−1|t(·). The terminal constraint set
X̄N and terminal cost PN(·) are designed such that the cost E[∑k≥t ck(xk, uk)] of the
closed-loop trajectory is bounded. The policies ut|t, ut+1|t(·), . . . , ut+N−1|t(·) are con-
strained such that the probabilistic environment constraints (1.4f) and the state-input
constraints (1.4e) are satisfied robustly across all uncertainty realizations (1.4h). The
challenges towards formulating the finite-horizon optimal control problem (1.4) and
computing (1.5) are as follows.

Challenges for Robustness

A robust MPC policy (1.5) ensures that the closed-loop system trajectories satisfy the
state-input constraints regardless of the uncertainty realizations, i.e.,

(xt, uMPC
t (xt, ot)) ∈ Xt ×Ut, ∀dt ∈ D(xt, uMPC

t (xt, ot)), ∀t ≥ 0,
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and the policy is safe if it satisfies the time-varying safety constraints (xt, ot) ∈ St, ∀t ≥
0. Towards ensuring robustness and safety, it is essential to quantify and address the
uncertainty D(·) in the system model, and the probability distribution pt(·) modeling
the environment’s evolution.

Model Uncertainty

The constraints (1.4e), (1.4h) in the MPC optimization problem are enforced such that the
closed-loop system satisfies constraints robustly for any realization of the model uncer-
tainty (provided that a feasible solution exists). Enforcing the robustified constraints re-
quires the designer to quantify the state-input dependent uncertainty set D(xt, ut) using
data. Uncertainty quantification for MPC can be broadly classified into parametric ap-
proaches [122, 124] (e.g. deep learning, set-membership techniques), and non-parametric
approaches [73, 31, 80] (e.g. Gaussian Processes (GPs), non-parametric regression) that
compute state-input dependent uncertainty sets that can be efficiently incorporated into
the MPC optimization problem. Non-parametric approaches such as GPs require min-
imal assumptions on the underlying uncertainty but are inefficient in terms of sample
complexity and memory footprint. Parametric approaches enjoy smaller memory foot-
prints and have better sample efficiency but are tractable and provide guaranteed outer
approximations of the uncertainty sets only under restrictive assumptions (e.g. linearly
parameterized with known uncertainty features, known function class).

In this dissertation, we develop convex programming-based set-membership tech-
niques to quantify the state-input-dependent uncertainty that combines the strengths of
both parametric and non-parametric approaches. We quantify the system’s uncertainty
using non-parametric set membership techniques using data and statistically estimated
side-information (e.g., Lipschitz constants, sector bounds). Then, we compute an effi-
cient uncertainty representation using convex programming that is guaranteed to outer-
approximate the true uncertainty set D(xt, ut) given accurate side-information. This
technique features in an adaptive robust MPC algorithm and a learning-based MPC for
nonlinear systems that guarantees robust constraint satisfaction in the presence of state-
dependent uncertainty.

Environmental Uncertainty

Towards satisfying the time-varying environmental constraints (xt, ot) ∈ St, ∀t ≥ 0, the
probabilistic constraints (1.4f) are enforced over the probability distribution (1.4d), which
is often difficult to model with first principles but rather learned from large datasets in-
stead [64, 29]. These distributions are typically dynamically varying, non-Gaussian and
possibly unbounded, so robustness to environmental uncertainty requires that (1.5) can
be computed reliably and tractably at each time step. In the context of autonomous
driving, significant research has been devoted to modeling the behavior of other agents
in traffic as multi-modal distributions [20, 37, 118]. These distributions model the un-
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certainty induced by partial observability of human drivers, where the discrete modal-
ity/intention of the human driver is modeled as a discrete random variable and the
variability in the execution of the intended maneuver is modeled as a continuous ran-
dom variable. Motion planning with multi-modal distributions using MPC has become
popular for synthesizing dynamically feasible trajectories and handling multi-modal
predictions [146, 133, 111, 13, 38, 147]. The works [146, 133, 147] propose MPC algo-
rithms that suitably reformulate collision avoidance chance constraints for a Gaussian
Mixture Model (GMM) as a nonlinear program that can be solved efficiently using tai-
lored solvers. However, the optimization problem is formulated to find a single open-
loop input sequence that satisfies the chance constraints for all modes and possible evo-
lutions of the environmental uncertainty (given by the GMM), which leads to either
very conservative/sub-optimal solutions or worse, no solution at all (infeasibility of the
MPC problem). The approaches in [38, 13, 111] propose MPC schemes that address
this issue by optimizing over multi-modal input sequences, one for each discrete mode,
which enhances the feasibility of the MPC optimization problem. The multi-modal in-
put sequences encode feedback on the discrete modes over the prediction horizon of
the finite-horizon optimal control problem. However, these approaches still suffer from
infeasibility arising from the continuous uncertainty in the discrete modes. For example,
a traffic vehicle can perform an unprotected left (discrete mode) at an intersection with
varying turning radii and speeds (continuous uncertainty).

In this dissertation, we propose a Stochastic MPC formulation that optimizes over
multi-modal feedback policies ut|t, ut+1|t(·), . . . , ut+N−1|t(·) for multi-modal predictions.
Finding feedback policies requires optimization over the infinite-dimensional space of
functions which is computationally intractable. To overcome this issue, we propose a pol-
icy parameterization that can be optimized using convex optimization. For autonomous
driving, the multi-modal predictions are obtained by training a deep neural network
[37] over a traffic dataset [64] to output a GMM. The policy parameterization is designed
for feedback over both, discrete modes and continuous observations of the TVs’ states.
Our formulation also includes a novel multi-modal chance constraint reformulation that
simultaneously allocates risk levels for the various modes based on their probabilities.
Our approach is evaluated in various autonomous driving scenarios via simulations and
hardware experiments. Our findings indicate that the proposed approach exhibits a sig-
nificant reduction in conservatism when compared to the conventional approaches that
optimize over open-loop or multi-modal control sequences.

Challenges to Performance

The performance of the system in closed-loop with (1.5) can be measured as the trajec-
tory cost ∑t≥0 ct(xt, uMPC

t (xt, ot)) of the closed-loop trajectory provided that it satisfies
constraints (xt, ut) ∈ X × U , and is safe (xt, ot) ∈ St. The key considerations for achiev-
ing good performance are that the policy (1.5) must be computable by solving (1.4) in
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closed-loop ∀t ≥ 0 and that the system, environment constraint formulations in (1.4) are
not overly conservative in modeling the optimal control problem.

Local Approximations of Dynamics

Computing the closed-loop trajectory cost ∑t≥0 ct(xt, uMPC
t (xt, ot)) necessitates that (1.4)

is feasible ∀t ≥ 0, and that the resulting trajectory cost is bounded. The MPC policy
satisfies these conditions if the following properties hold:

1. The system and environment start from a state x0, e0 at t = 0 for which (1.4) is
feasible and remains persistently feasible for all t ≥ 0. The MPC policy is then said
to be recursively feasible.

2. The policy (1.5) is stabilizing for a stage cost ck(xk, uk) that measures the distance
from a system equilibrium, or the error in tracking a reference trajectory.

A popular approach for designing the MPC policy (1.5) to satisfy these properties is
to design the terminal constraint set X̄N (1.4g) to be a control invariant set for the nominal
system, i.e.,

x̄t ∈ X̄N =⇒ ∃ũt(x̄t, ot) ∈ Ut : x̄t+1 ∈ X̄N, (1.6)

and design the terminal cost PN(·) as a convex, positive definite Control Lyapunov Func-
tion (CLF) on X̄N,

PN(x̄t+1)− PN(x̄t) ≤ ct(x̄t, ũt(x̄t, ot)). (1.7)

The efficient computation of the terminal constraint and terminal cost is well-studied for
linear systems using first principles techniques (involving polytopic computations, semi-
definite programming) or learning these components from data. For nonlinear systems,
it is difficult to compute control invariant sets and CLFs in general, especially within
constraints. There are broadly two model-based approaches for computing these termi-
nal components. The first approach uses linearized models of the nonlinear system to
construct these components using techniques developed for linear systems. The result-
ing MPC schemes with this approach tend to have a small set of states from which (1.4) is
feasible because of the locally designed terminal components. The second approach uses
sum-of-squares (SOS) programming to construct these components globally for polyno-
mial systems [127, 74]. However the resulting SOS programs are often difficult to solve
for high-dimensional systems, and moreover, are challenging to incorporate into (1.4) for
efficient computation of the MPC policy (1.5). The work in [113] proposes an approach
to iteratively learn control invariant sets and CLFs for arbitrary nonlinear systems from
historical data. These learned terminal components are convex by construction for con-
strained linear systems and can be efficiently incorporated into the MPC design. For
nonlinear systems, the control invariant set is a set of discrete points in the state space
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(given by the historical trajectory data), and the CLF is defined only on this discrete
set. Consequently, the resulting optimization problem (1.4) is a Mixed-Integer Nonlin-
ear Program (MINLP) which is impractical for real-time computation of the MPC policy
(1.5).

In this dissertation, we build on the ideas of [113] to learn convex control invariant
sets and CLFs from historical data for a specific class of nonlinear systems called differ-
ence flat systems [56, 135]. Such systems are often found in robotic applications, e.g. a
kinematic bicycle, a quadcopter, and a DC motor. The constructed terminal components
capture global properties of the nonlinear system via the trajectory data, in contrast
to local, linearization-based approaches in the literature. These terminal components
are integrated into a computationally efficient Learning MPC algorithm for nonlinear
systems that is recursively feasible, stabilizing, and uses historical data to improve the
closed-loop trajectory cost iteratively. The algorithm was successfully demonstrated for
autonomous racing using a 1/10 scale vehicle for robust constraint satisfaction, and iter-
ative lap-time improvement.

Conservative Environmental Constraints

The closed-loop performance of the system is also affected by the accuracy of the envi-
ronment model p(ot+1| ot, xt, xt+1) and the transcription of the environmental constraints
as the set-containment constraint (xt, ot) ∈ St. Ideally, the satisfaction of the chance con-
straint (1.4f) in the MPC should imply safety without sacrificing performance. However,
there is a trade-off between these aspects:

1. The distribution p(ot+1| ot, xt, xt+1) must capture the uncertainty in the realizable
environment evolutions ot, ot+1, . . . to compute the policies ut|t, . . . , ut+N−1|t(·) sat-
isfying (1.4f). However, such policies may not exist if p(ot+1| ot, xt, xt+1) pessimisti-
cally over-estimates the uncertainty.

2. The constraint (xt, ot) ∈ St must model safety but also allow tractable solution of
(1.4). A conservative model of safety may be computationally tractable but at the
expense of closed-loop performance.

For designing the MPC (1.4) towards autonomous driving, the AV must avoid col-
lisions with the surrounding vehicles, pedestrians while driving comfortably and com-
pleting the trip on time. The collision avoidance constraints are described by the safety
constraints (xt, ot) ∈ St, where the environment observation ot comprises the surround-
ing agents. There are various choices for modeling the environmental uncertainty (1.4d)
and formulating the chance constraints (1.4f) within the MPC. Gaussian distributions are
a common modeling choice for the uncertainty owing to the invariance to affine trans-
formations and closed-form expressions for affine chance constraints [26, 25]. For dis-
tributions with compact support, robust optimization approaches [123] are used where
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p(ot+1| ot, xt, xt+1) is modeled as a uniform distribution and ϵ is set to 0 in (1.4f). Dis-
tributionally robust formulations are also becoming increasingly popular to improve ro-
bustness to distributional assumptions [139, 121], by robustifying the chance constraint
against a set of distributions. The collision avoidance problem involves checking if there
is a non-empty intersection between two general sets (corresponding to the geometries of
the agent and obstacle). This is a non-convex problem and NP-hard in general [33], and
application-specific simplifications are commonly used for the improving the tractabil-
ity of the resulting optimal control problem. The most common simplifications involve
convexifying one or both of the sets as a 1) point, 2) affine space, 3) sphere, 4) ellipsoid,
or 5) polytope. Combinations of 1)-4) are convenient for their simplicity and computa-
tional tractability, but tend to be conservative since the shape of an actual car is not well
represented by such sets. Polytopes offer compact representations for obstacles in tight
environments and are popular in autonomous driving applications, but using them in
the collision avoidance problem results in non-smooth constraints, which require spe-
cialized solvers or mixed-integer reformulations.

In this dissertation, we develop an MPC algorithm for collision avoidance for dy-
namic obstacles represented as general convex sets, with prediction uncertainty pt(·).
We use the dual formulation of collision avoidance; checking for existence of a separat-
ing hyperplane between two sets. This perspective provides smooth collision-checking
conditions for convex sets (including polytopes) by introducing additional dual vari-
ables. We consider three different uncertainty descriptions: 1) Arbitrary distributions
with polytopic support, 2) Gaussian distributions, and 3) Arbitrary distributions with the
first two moments known. The MPC finds an optimal sequence of parameterized agent-
obstacle state feedback policies ut|t, ut+1|t(·), . . . , ut+N−1|t(·) to react to different trajec-
tory realizations of the agent and obstacles along the prediction horizon. We present a
systematic performance evaluation of the MPC along axes of (i) mobility, (ii) comfort,
(iii) conservatism and (iv) computational efficiency at a simulated traffic intersection.
Our findings indicate that the proposed approach exhibits a significant performance
improvement when compared to the conventional approaches.

Efficiency

AVs need to be sufficiently reactive and make quick decisions to accomplish tasks in
dynamic and uncertain environments. MPC offers a unifying framework for low-level
feedback control and high-level planning but requires the solution of the optimization
problem (1.4) at high frequency (≥ 10 Hz) for real-time computation of the policy (1.5).
This becomes increasingly difficult as the environment involves multiple agents interact-
ing with the AV, or the time-varying constraints (xt, ot) ∈ St are combinatorial in nature,
e.g., planning multiple lane changes.
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Combinatorial Decision-making

Multi-parametric Mixed-Integer Programming (mp-MIP) is a convenient framework for
modeling various non-convex motion planning and constrained optimal control prob-
lems [66]. The mixed-integer formulation can model constraints such as collision avoid-
ance [86], mixed-logical specifications [128] and mode transitions for hybrid dynamics
[61]. The multi-parametric nature of these mp-MIPs arises from requiring to solve these
problems for different initial conditions, obstacles configurations or system constraints—
all of which affect the MIP solution. However, computing MPC solutions given by MIP
formulations of (1.4) is NP−hard and challenging for real-time (≥ 10Hz) applications.
Prior approaches to address this issue can be broadly categorized into two categories:
(i) Explicit MPC [21, 15] which involves offline computation of the mp-MIP solution
map, and (ii) Machine Learning approaches to predict heuristics or partial solutions to
recover the mp-MIP solution quickly [87, 149, 18, 34]. The first approach produces certi-
fiably optimal solutions but is tractable only for moderately sized problems. The second
approach scales favorably with problem size but lack safeguards against poor quality
predictions during deployment.

In this dissertation, we use supervised learning to accelerate the computation of MPC
policies given by multi-parametric Mixed Integer Linear Programs (mp-MILPs) for real-
time control. We develop a supervised learning framework for fast solution of the mp-
MILP to predict parametric strategies for fast solution computation, along with sub-
optimality certificates. The sub-optimality certificates provide a priori quantification of
the predictions’ quality before applying the computed control to ensure safety. The
approach also shows favorable performance in terms of computation time compared to
state-of-the-art MILP solvers (Gurobi, Mosek, SCIP, GLPK) for real-time motion planning
using mixed-integer MPC.

Scalability for Complex, Interactive Environments

Motion planning for AVs in complex urban environments involving multiple human-
driven and autonomous vehicles poses a significant challenge, leading to the develop-
ment of various solutions for planning and behavior prediction. These solutions can be
categorized into three broad approaches: (i) Hierarchical Prediction and Planning [118,
38, 99]: where a sophisticated prediction architecture provides forecasts of the surround-
ing vehicles which is used for motion planning, (ii) Model-based Integrated Planning
and Prediction [48, 148, 105]: where planning and behavior prediction are simultane-
ously obtained by game-theoretic and joint-optimization approaches for all vehicles, and
(iii) End-to-End Learning-based Prediction and Control [78, 65]: where a sophisticated
neural network, trained using imitation/reinforcement learning algorithms on realis-
tic datasets, implicitly and jointly forecasts the behavior of surrounding vehicles and a
motion plan for the autonomous vehicle. Each of these approaches suffers from either
scalability for complex driving scenarios or safety of the computed motion plans.
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In this dissertation, we develop a hierarchical approach for scalable motion planning
using MPC for dense, interactive traffic scenarios. The main idea is to collect a dataset
of sparse solutions (obtained using l1−regularization) to the MPC problem, and then
train a transformer-based [130] supervisor using imitation learning to prescribe which
constraints and decision variables can be eliminated online before solving the MPC op-
timization problem. This defines a reduced MPC problem that can be solved more
efficiently. To ensure safety online, we use strong duality and sensitivity analysis to ro-
bustify the prescriptions against the prediction errors of the supervisor. Our approach
demonstrates considerable improvement in computing the motion plans at a simulated
intersection compared to the MPC approach that considers all agents and constraints in
the scene.

1.2 Outline
We now present an outline of this dissertation in the following section. The dissertation
is divided into three parts: Robustness, Performance, and Efficiency.

Part 1: Robustness

Chapter 2: Data-driven Graph Approximations for Model Uncertainty
Quantification and Robust Predictive Control

We propose a data-driven approach to obtain bounds on the unmodeled, uncertain
dynamics via semi-definite programming for robust control. The uncertainty in the
system is assumed additive, state-input dependent, and with knowledge of additional
side-information (such as Lipschitz constants, sector bounds). We use a non-parametric
technique for online identification of the system uncertainty by approximating its graph
defined by quadratic inequalities. This is then used in developing a Robust Adaptive
MPC algorithm which at any given time, by solving a set of convex optimization prob-
lems, guarantees robust constraint satisfaction for the closed-loop system for all possi-
ble values of system uncertainty. The uncertainty estimate is refined with data using
set-membership techniques. We highlight the efficacy of the proposed framework via
numerical examples.

This chapter is adapted from the articles:

1. Nair*, Siddharth H., Monimoy Bujarbaruah*, and Francesco Borrelli. ”Modeling
of dynamical systems via successive graph approximations.” IFAC-PapersOnLine
53.2 (2020): 977-982.

2. Bujarbaruah*, Monimoy, Siddharth H. Nair*, and Francesco Borrelli. ”A semi-
definite programming approach to robust adaptive MPC under state dependent
uncertainty.” 2020 European Control Conference (ECC). IEEE, 2020.



CHAPTER 1. INTRODUCTION 11

Chapter 3: Predictive Control with Uncertain, Multi-modal Predictions
of the Environment

We propose a Stochastic MPC (SMPC) formulation for path planning with autonomous
vehicles in scenarios involving multiple agents with multi-modal predictions. The multi-
modal predictions capture the uncertainty of urban driving in distinct modes/maneuvers
(e.g., yield, keep speed) and driving trajectories (e.g., speed, turning radius), which are
incorporated for multi-modal collision avoidance chance constraints for path planning.
In the presence of multi-modal uncertainties, it is challenging to reliably compute fea-
sible path planning solutions at real-time frequencies (≥ 10Hz). Our main technological
contribution is a convex SMPC formulation that simultaneously (1) optimizes over pa-
rameterized feedback policies and (2) allocates risk levels for each mode of the predic-
tion. The use of feedback policies and risk allocation enhances the feasibility and perfor-
mance of the SMPC formulation against multi-modal predictions with large uncertainty.
We evaluate our approach via simulations and road experiments with a full-scale vehicle
interacting in closed-loop with virtual vehicles. We consider distinct, multi-modal driv-
ing scenarios: 1) Negotiating a traffic light and a fast, tailgating agent, 2) Executing an
unprotected left turn at a traffic intersection, and 3) Changing lanes in the presence of
multiple agents. For all of these scenarios, our approach reliably computes multi-modal
solutions to the path-planning problem at real-time frequencies.

This chapter is adapted from the articles:

1. Nair*, Siddharth H., Govindarajan*, Vijay, et al. ”Stochastic mpc with multi-modal
predictions for traffic intersections.” 2022 IEEE 25th International Conference on
Intelligent Transportation Systems (ITSC). IEEE, 2022.

2. Nair*, Siddharth H., Govindarajan*, Vijay et al. ”Stochastic mpc with dual con-
trol for autonomous driving with multi-modal interaction-aware predictions.” 15th
International Symposium on Advanced Vehicle Control, 2022.

3. Nair*, Siddharth H., Lee*, Hotae, Joa*, Eunhyek et al. ”Predictive control for
autonomous driving with uncertain, multi-modal predictions.” arXiv:2310.20561
(2023).

Part 2 : Performance

Chapter 4: Output-lifted Learning Model Predictive Control

We propose an approach for designing Robust Learning Model Predictive Control (LMPC)
policies for a class of nonlinear systems with additive, unmodeled dynamics, to itera-
tively improve closed-loop performance by learning value function approximations and
model uncertainty estimates. The nominal dynamics are assumed to be difference flat,
i.e., the state and input can be reconstructed using flat output sequences, and some
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side-information is assumed to be available for the unmodeled dynamics. For the con-
sidered class of systems, we show how to use historical trajectory data to 1) construct
value function approximations using learned convex control invariant sets and convex
control Lyapunov functions in the space of output sequences and 2) obtain bounds on
the unmodeled dynamics using techniques from Chapter 2 for robust control. Contrary
to prior works for constructing control invariant sets and control Lyapunov functions
for nonlinear systems, our construction does not require local approximation of the dy-
namics and instead, exploits the nonlinearity implicitly using the historical data. These
components are used in the design of a Robust MPC state-feedback policy that iteratively
collects data to learn the value function and system uncertainty while enjoying theoreti-
cal guarantees of robust constraint satisfaction, asymptotic convergence to a desired goal
set, and non-decreasing closed-loop performance at each policy update. Finally, simula-
tion results demonstrate the effectiveness of the proposed strategy on a minimum time
control problem using a constrained nonlinear and uncertain vehicle model.

This chapter is adapted from the articles:

1. Nair, Siddharth H., Ugo Rosolia, and Francesco Borrelli. ”Output-lifted learning
model predictive control.” IFAC-PapersOnLine 54.6 (2021): 365-370.

2. Nair, Siddharth H., and Francesco Borrelli. ”Robust Output-Lifted Learning Model
Predictive Control.” arXiv:2303.12127 (2023).

Chapter 5: Optimization-based Collision Avoidance in Dynamic,
Uncertain Environments

We propose a Model Predictive Control (MPC) for collision avoidance between an au-
tonomous agent and uncertain, dynamic obstacles to improve closed-loop performance
by designing tight formulations of collision avoidance in the presence of uncertainty.
The collision avoidance constraints are imposed by enforcing positive distance between
convex sets representing the agent and the obstacles, and tractably reformulating them
using Lagrange duality. This approach allows for smooth collision avoidance constraints
even for polytopes, which otherwise require mixed-integer or non-smooth constraints.
We consider three widely used descriptions of the uncertain obstacle position: 1) Ar-
bitrary distribution with polytopic support, 2) Gaussian distributions and 3) Arbitrary
distribution with first two moments known, and obtain deterministic reformulations of
the collision avoidance constraints. The proposed MPC formulation optimizes over feed-
back policies to reduce conservatism in satisfying the collision avoidance constraints. The
proposed approach is validated using simulations of traffic intersections in CARLA, and
the closed-loop performance gains are evaluated along axes of (i) mobility, (ii) comfort,
(iii) conservatism and (iv) efficiency.

This chapter is adapted from the article:
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1. Nair, Siddharth H., Eric H. Tseng, and Francesco Borrelli. ”Collision avoidance
for dynamic obstacles with uncertain predictions using model predictive control.”
2022 IEEE 61st Conference on Decision and Control (CDC). IEEE, 2022.

Part 3 : Efficiency

Chapter 6: Learning for Mixed-Integer Predictive Control with
Parametric Sub-optimality Certificates

We propose a supervised learning framework for computing solutions of multi-parametric
Mixed Integer Linear Programs (MILPs) that arise in Model Predictive Control. Our ap-
proach also quantifies sub-optimality for the computed solutions. Inspired by Branch-
and-Bound techniques, the key idea is to train a Neural Network or Random Forest
which, for a given parameter, predicts a strategy consisting of (1) a set of Linear Pro-
grams (LPs) such that their feasible sets form a partition of the feasible set of the MILP
and (2) an integer solution. For control computation and sub-optimality quantification,
we solve a set of LPs online in parallel. We demonstrate our approach for a motion plan-
ning example and compare against various commercial and open-source mixed-integer
programming solvers.

This chapter is adapted from the article:

1. Russo*, Luigi, Nair*, Siddharth H., et al. ”Learning for online mixed-integer model
predictive control with parametric optimality certificates.” IEEE Control Systems
Letters (2023).

Chapter 7: Learning Safe Supervisors for Accelerating Model
Predictive Control in Interactive Environments

We propose a hierarchical architecture designed for scalable real-time Model Predictive
Control (MPC) in complex, multi-modal traffic scenarios. This architecture comprises
two key components: 1) RAID-Net, a novel attention-based Recurrent Neural Network
that predicts relevant interactions along the MPC prediction horizon between the au-
tonomous vehicle and the surrounding vehicles using Lagrangian duality, and 2) a re-
duced Stochastic MPC problem that eliminates irrelevant collision avoidance constraints,
enhancing computational efficiency. Our approach is demonstrated in a simulated traffic
intersection with interactive surrounding vehicles, showcasing a 12x speed-up in solving
the motion planning problem.

This chapter is adapted from the articles:

1. Kim*, Hansung, Nair*, Siddharth H., and Francesco Borrelli. ”Scalable Multi-
modal Model Predictive Control via Duality-based Interaction Predictions.” arXiv:
2402.01116 (2024).
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1.3 Notational Conventions

Sets

The index set {k1, k1 + 1, . . . , k2} is denoted by I
k2
k1

. The cardinality of a discrete set S is

denoted by |S| (e.g., |Ik2
k1
| = k2 − k1 + 1). ∥ · ∥ denotes the Euclidean norm in Rn and

∥ · ∥p denotes the p−norm. With slight abuse of notation, ∥ · ∥ also denotes the norm on
Rn×n induced by the Euclidean norm. The convex hull of a set S is denoted as cvx(S).
For a proper cone K and x, y ∈ K, we have x ⪰K y ⇔ x− y ∈ K. The dual cone of K is
given by the convex set K∗ = {y|y⊤x ≥ 0, ∀x ∈ K}.

Matrices

In ∈ Rn×n is the identity matrix. 0n is a column vector of n zeros and On is a n × n
matrix of zeros. [x]i denotes the ith element of vector x ∈ Rn, [M]ij denotes the ith
element in the jth column of matrix M ∈ Rn×m and [M]i denotes its ith column. We
denote the Hermitian of a real square matrix M as He(M) = M+M⊤

2 . Given matrices
A1, . . . AN ∈ Rn×n, we denote by blkdiag(A1, . . . , AN) ∈ RNn×Nn as the matrix with
block diagonals given by A1, . . . , AN and zeros everywhere else. As a shorthand, we

write the symmetric block matrix
[

A B
B⊤ C

]
as
[

A B
⋆ C

]

Operators

The binary operator ⊗ denotes the Kronecker product. Given two sets A and B, their
Minkowski sum, Pontryagin difference and Cartesian product is defined as

A⊕ B = {a + b |a ∈ A, b ∈ B},
A⊖ B = {a ∈ A |a + b ∈ A, ∀b ∈ B},
A× B = {(a, b) |a ∈ A, b ∈ B}

The partial derivative of function f (x, u) with respect to x at (x, u) = (x0, u0) is denoted
by ∂x f (x0, u0). We use the Fraktur font f(·) for denoting functionals (a function that acts
on functions).
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Part I

Robustness
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Chapter 2

Data-driven Graph Approximations for
Model Uncertainty Quantification and
Robust Predictive Control

2.1 Overview
Characterization of system model and associated uncertainties is of paramount impor-
tance while dealing with autonomous systems. In recent times, as data-driven decision
making and control becomes ubiquitous [110, 115], system identification methods are
being integrated with control algorithms for control of uncertain dynamical systems. In
computer science community, data driven reinforcement learning algorithms [17, 136]
have been extensively utilized for policy and value function learning of uncertain sys-
tems. In control theory, if the actual model of a system is unknown, adaptive control
[119] strategies have been applied for simultaneous system identification and control.
Techniques for system modelling and identification have been traditionally rooted in
statistics and data sciences [52, 60]. Statistical models that describe observed data, can
be classified into parametric [63], non-parametric and semi-parametric [58] models.

Parametric models assume a model structure a priori, based on the application and
domain expertise of the designer. In almost all of classical adaptive control methods,
parametric models are learned from data in terms of point estimates, and asymptotic
convergence of such estimates are proven under persistence of excitation conditions. The
concept of online model learning and adaptation has been extended to systems under
constraints as well, after obtaining a set or a confidence interval containing possible
realizations of the system model. Gaussian Mixture Modeling (GMM) [53, 70] has also
been used to identify unknown system parameters via the expectation maximization
algorithm. Although robust satisfaction of constraints is ensured with such set based
parametric uncertainty modeling, but computational tractability can be obtained only
for linear systems, due to the need for computation of robust invariant terminal sets
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[21] for the MPC problem. For nonlinear uncertain systems subject to constraints, non-
parametric modeling of uncertainty is therefore used to obtain lesser conservatism, at
the expense of robust guarantees. Moreover, parametric models are restricted only to
specified forms of function classes which may not accurately reflect reality.

Non-parametric models are increasingly being utilized for the richness of model es-
timates, whereby the model structure is also inferred from data. For non-parametric
modeling of systems, Gaussian Process (GP) regression [109] has been one of the most
widely used tools in control theory literature. GP regression keeps track of a Gaussian
distribution over infinite dimensional function spaces, in terms of a mean function and a
covariance kernel, which are updated with data. Given any system state, GP regression
returns the mean function value at that state, along with a confidence interval. Ker-
nel regression methods such as local linear regression [50, 112] and Nadaraya-Watson
estimator [120] are some other non-parametric methods for system identification and
control. MPC with GP and Kernel regression modeled uncertainty is presented in [62,
73, 124, 80]. Estimates obtained using these methods often come with deterministic or
statistical intervals all possible realizations of the uncertainty at a given state. However,
these non-parametric estimates are computationally expensive for real-time inference as
the dataset grows. Non-parametric approaches are also only able to provide estimates of
the model uncertainty at a point. For robust control, it is important to obtain estimates of
the model uncertainty over reachable sets of the system for robust constraint satisfaction.

Contributions

• We propose a non-parametric approach to quantify state and input dependent
model uncertainty via semi-definite programming using set-membership techniques.
The approach relies on building outer-approximations of the graph of the model
uncertainty using side-information (such as Lipschitz constants, sector bounds) to
provide non-parametric model uncertainty estimates at a desired state-input point
and also over a set of states and inputs.

• We show to quantify the model uncertainty over the reachable set of a linear system
with unmodeled dynamics, and propose a Robust Adaptive MPC algorithm that
robustly satisfies constraints and adaptively learns the model uncertainty during
execution.

2.2 Problem Formulation
Consider a nonlinear discrete-time system given by the dynamics

xt+1 = f (xt, ut) + dt, dt ∈ D(xt, u) (2.1)

where xt ∈ Rn and ut ∈ Rm are the system state and input respectively at time t, and
f (·, ·) is a known, continuous function. The disturbance dt is assumed to belong to
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compact set D(xt, ut), where D(·) is a set-valued map, D : Rn+m → 2Rn
. The map D(·)

is unknown and represents unmodeled dynamics. We assume that this map satisfies the
incremental property stated by the following assumption.

Assumption 2.1 The unknown set-valued map D(·) satisfies the following quadratic constraints,
for any q = (x, u), q′ = (x′, u′) in Rn+m: 1

q− q′

d− d′

⊤ Q

 1
q− q′

d− d′

 ≥ 0, ∀d ∈ D(q), ∀d′ ∈ D(q′),
∀Q ∈ Q

where Q = {Q(1), . . . , Q(nQ)} is a known, finite set of symmetric matrices. Additionally, D(z)
is compact for all z ∈ Rn+m.

Each matrix Q in Q, captures side information on the unmodelled dynamics such as
sector bounds, Lipschitz constants or Jacobian bounds [90, 59].

Example 2.1 Suppose that the disturbance takes the form dt = wt + d(xt, ut), where wt lies
within the setW := {w|∥w∥2 ≤ γ}, d(x, u) is an unknown, L−Lipschitz continuous function.
and so

D(xt, ut) = {dt ∈ Rn | ∃wt ∈ W , dt = wt + d(xt, ut)}.
Then for any z = (x, u), z′ = (x′, u′), w1, w2 ∈ W , we have (using the Lipschitz constant
L of d(·, ·) and bound γ for wt) that ||d(z) + w1 − d(z′) − w2∥2

2 ≤ (L∥z − z′∥2 + 2γ)2 ≤
2L2∥z− z′∥2

2 + 8γ2. Thus Q consists of a single matrix Q = blkdiag([8γ2, 2L2 In,−In]).

Remark 2.1 The side information in Q are either statistically estimated, or chosen as hyper-
parameters to be tuned. In the former case, without additional assumptions, robust constraint
satisfaction can be guaranteed only in probability [81, 85, 102, 73, 131].

Let the system (4.1) be subject to state and input constraints given by box sets,

X = {x ∈ Rn|lbx ≤ x ≤ ubx}, (2.2)
U = {u ∈ Rm|lbu ≤ u ≤ ubu}. (2.3)

In this chapter, we focus on solving two problems:

Problem 2.1 (Uncertainty Quantification) Using trajectory data {(x0, u0), . . . , (xT, uT)} and
the side-information from assumption 2.1 to construct bounds on the set-valued map D(·).

Problem 2.2 (Robust Control) Design Robust MPC ssing the bounds on the set-valued map
D(·) for robust constraint satisfaction (xt, ut) ∈ X × U∀ ≥ 0.
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2.3 Uncertainty Quantification by Learning Graph
Approximations

In this section, we first discuss how to quantify the uncertainty for the true system (4.1)
using trajectory data and Assumption 2.1. Then this uncertainty description will be used
for constructing tightened constraints for robust constraint satisfaction.

For quantifying the uncertaintyD, we use set-membership techniques and state-input
trajectory data {xt, ut}t≥0 collected from the true system (4.1) to outer-approximate the
graph G(D) of the set-valued map D(·), defined next.

Definition 2.1 (Graph) The graph of the set-valued map D : Rn+m → 2Rn
is defined as the set

G(D) = {(x, u, d) | ∀(x, u) ∈ Rn+m, ∃d ∈ D(x, u)}. (2.4)

The graph of D(·) encodes all possible values that the unmodelled system dynamics can
attain, but since the set-valued map D(·) is unknown, the set G(D) is unknown as well.
However, our main insight is that Assumption (2.1) allows us to outer-approximate G(D)
as an intersection of quadratic inequalities (defined using the system data), as stated in
the next proposition.

Proposition 2.1 Given data {xt, ut}t≥0 for system (4.1), define dt = xt+1 − f (xt, ut), qt =
(xt, ut) for all t ≥ 0. Let Assumption 2.1 hold and consider the set

Gt =

(q, d)

∣∣∣∣∣∣
 1

q− qt
d− dt

⊤ Q

 1
q− qt
d− dt

 ≥ 0, ∀Q ∈ Q

 . (2.5)

Then the graph of D(·) satisfies,

G(D) ⊆
⋂
t≥0
Gt. (2.6)

Thus, the set of realizable disturbances in (4.1) across the state-input space can now
be outer-approximated as {d |∃(x, u, d) ∈ ⋂t≥0 Gt}. The outer-approximation of the set
D(x̄, ū) at a given state-input pair (x̄, ū) is similarly given as {d∥(x̄, ū, d) ∈ ⋂

t≥0 Gt}.
These characterisations represent a non-parametric description of the uncertainty map
D(·) because of its dataset-dependent definition. Figure 2.1 depicts these approximations
when the unmodeled map D(·) is given by a Lipschitz continuous function.

We use these non-parametric uncertainty estimates to construct an efficient paramet-
ric representation of the map D(·) using semi-definite programming (SDP). In particular,
we construct ellipsoidal outer-approximations of the set D(x, u) and also the set:

D(X ,U ) := {d |∀(x, u) ∈ X × U : ∃(x, u, d) ∈ D(x, u)} (2.7)
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Figure 2.1: Construction of an envelope for a one-dimensional system to approximate
the graph G(D) (black curve) of a Lipschitz continuous uncertainty D(x). Tuples
(xt, D(xt)) (red points) obtained from trajectory data are used for constructing the outer-
approximation (blue set) of G(D). The yellow set depicts an outer-approximation of
D(x̄).

Let ED(x̄, ū), ED(X ,U ), denote the ellipsoidal sets that outer-approximate D(x, u)
and (2.7) respectively. By proposition 2.1, notice that

ED(X ,U ) ⊇ {d |∀(x, u) ∈ X × U : ∃(x, u, d) ∈
⋂
t≥0
Gt} =⇒ ED(X ,U ) ⊃ D(X ,U ) (2.8)

ED(x̄, ū) ⊇ {d |∃(x̄, ū, d) ∈
⋂
t≥0
Gt} =⇒ ED(x̄, ū) ⊃ D(x̄, ū) (2.9)

Notice that the sets Gt, and the expression (2.10) are expressed as quadratic inequali-
ties in (1, x, u, d). So we use the S-procedure to cast the computation of the ellipsoidal sets
ED(x̄, ū), ED(X ,U ) satisfying the above inclusions as an SDP. To construct ED(X ,U ), we
will require the following lemma that constructs a quadratic inequality that is satisfied
for state-input pairs within constraints.

Lemma 2.1 For any symmetric matrix Bq ∈ Rn+m×n+m such that Bq ≥ 0, we have that if
q = (x, u) ∈ X × U then

(q− lbq)
⊤Bq(ubq − q) ≥ 0, (2.10)

where ubq = [ub⊤x ub⊤u ]⊤ and lbq = [lb⊤x lb⊤u ]⊤.
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The variable Bq will provide additional degrees of freedom to minimize the size of
the ellipsoidal sets, measured by the sum of its semi-axes. We now state our main result
for quantifying the uncertainty D(·) via the ellipsoidal sets ED(x̄, ū), ED(X ,U ).

Theorem 2.1 Let {(xt, ut, dt)}T
t=0 be the trajectory data of system (4.1) satisfying Assump-

tion 2.1.

1. Let λ⋆ > 0, S⋆ ≻ 0, c⋆ be the optimal solution of the SDP:

min
S,c,λ,Bq,τl

t

∀t∈IT
0 , ∀l∈I

|Q|
1

tr(S)

s.t

 λ · e1e⊤1 −Mq −
T
∑

t=0

|Q|
∑

l=1
τl

t Ml
t

−c⊤

0n
λ · In

⋆ S

 ⪰ 0,

Mq =

−lb⊤q Bqubq
1
2 (ubq + lbq)⊤Bq 0⊤n

−Bq On+m×n
⋆ On

 ,

Ml
t = (I2n+m+1 −

 0
qt
dt

 e⊤1 )
⊤Q(l)(I2n+m+1 −

 0
qt
dt

 e⊤1 ),

S ≻ 0, λ > 0, Bq ≥ 0, Bq = B⊤q , τl
t ≥ 0, ∀t ∈ IT

0 , l ∈ I
|Q|
1 ,[

1 −c̃⊤p
⋆ S̃p

]
≻
[

λ −c⊤

⋆ S

]
(2.11)

for any S̃p ≻ 0, c̃p ∈ Rn that defines the ellipsoid Dp = {d | (d− c̃p)⊤Sp(d− cp) ≤ 1}
such that D(X ,U ) ⊂ Dp. Then for S̃ = 1

λ⋆ S⋆, c̃ = 1
λ⋆ c⋆, the ellipsoid ED(X ,U ) =

{d | (d− c̃)⊤S̃−1(d− c̃) ≤ 1} satisfies

D(X ,U ) ⊆ ED(X ,U ) ⊂ Dp.
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2. For a given q̄ := (x̄, ū), let λ⋆
q > 0, S⋆

q ≻ 0, c⋆q be the optimal solution of the SDP:

min
Sq,cq,τl

tq

∀t∈IT
0 , ∀l∈I

|Q|
1

tr(Sq)

s.t

 λ · e1e⊤1 −
T
∑

t=0

|Q|
∑

l=1
τl

t Ml
tq
−c⊤q
λ · In

⋆ Sq

 ⪰ 0,

Ml
tq = H⊤Q(l)H +

[
h(qt, q̄)⊤Q(l)h(qt, q̄) −h(qt, q̄)⊤Q(l)H

H⊤Q(l)h(qt, q̄) On

]
,

H =

 1 0⊤n
0n+m On+m×n

0n In

 , h(qt, q̄) =

 0
qt − q̄

dt

 ,

Sq ≻ 0, λq > 0, τl
tq ≥ 0, ∀t ∈ IT

0 , l ∈ I
|Q|
1 ,[

1 −c̃⊤p
⋆ S̃p

]
≻
[

λ −c⊤q
⋆ Sq

]
(2.12)

Then for S̃ = 1
λ⋆

q
S⋆

q , c̃ = 1
λ⋆

q
c⋆q , the ellipsoid ED(x̄, ū) = {d | (d− c̃)⊤S̃−1(d− c̃) ≤ 1}

satisfies
D(x̄, ū) ⊆ ED(x̄, ū) ⊂ Dp.

The SDPs presented in theorem 2.1 can be solved efficiently using commercial solvers
and used online for robust control. The ellipsoid Dp models any prior bounds on the set
D(X ,U ). If no such prior is available, then we can set Dp = X .

Example: Quantifying Drag and Road Grade Uncertainty

Consider the discrete-time longitudinal model of a vehicle, expressed as[
st+1
vt+1

]
=

[
1 dt
0 1

] [
st
vt

]
+

[
0
dt

]
at + d(vt)︸ ︷︷ ︸

drag

+

[
0

−g(Cr cos αt + sin αt)dt

]
︸ ︷︷ ︸

rolling f riction + gravity

(2.13)

where st, vt, at are the station, speed and acceleration of the vehicle at time t, and
dt = 0.1s is the discretization time-step. The drag d(vt) experienced by the vehicle and
stochastic road-grade αt constitute the model uncertainty. We assume that the drag term
d(vt) is L−Lipschitz with L = 0.0046, the coefficient of rolling-friction is Cr = 0.0065
and the road-grade αt ≤ ∆ = 0.1. The true evolution of the road-grade is simulated
as αt = ∆ · sin(10t), and the true drag term is modeled as d(vt) = [0, 1

2m ρCd Av2
t ]
⊤

where drag coefficient Cd = 0.4, air density ρ = 1.08kgm−3, area A = 0.62m2 and
mass m = 1000kg. The set-valued map describing the model uncertainty is given by
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Figure 2.2: Trajectory data of (2.13)

D(xt) = {w |∃z ∈ [0, 0]× [−gdt(Cr + sin ∆),−gdt(Cr − sin ∆)] : w = d(vt) + z}. The set
of matrices Q considers the following side-information:

1. Q(1) = blkdiag([8 sin ∆2, 2L2 I2,−I2]) to capture Lipchitz drag and bounded uncer-
tainty arising from the road-grade,

2. Q(2) = ([1, 02, 02]
⊤× [gdt(sin ∆−Cr), 02, I2])+ ([1,2 , 02]

⊤× [gdt(sin ∆−Cr), O2, I2])
⊤

to model the fact that since the drag is always negative, the disturbance is bounded
above by gdt(sin ∆− Cr).

We estimate the model uncertainty D(·) via the ellipsoid ED(X ,U ) and also demon-
strate the uncertainty bounds ED(x̄, ū) at specific query points (x̄, ū). Our experiment is
summarized as follows:

• Trajectories up to a specified time instant N, starting from four different initial
conditions are simulated within constraints X = [0m, 20m]× [0ms−1, 14ms−1] and
U = [0ms−2, 2ms−2] and stored, as shown below.

• Realizations of the uncertainty dt ∈ D(xt) are recorded via consecutive state mea-
surements (xt, xt+1).

• Having recorded the measurements (xt, dt) for t = 0, 1, . . . , N − 1 along all four
trajectories, we use theorem 2.1 to construct the estimates ED(X ,U ) and ED

N(x̄) at
different speeds v̄ and for N = 50, 400.
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Discussion

The ellipsoid ED(X ,U is depicted in figure 2.3 which provides an outer-approximation
of the true uncertainty set D(X ,U ).

Figure 2.3: Uncertainty ellipsoid ED(X ,U ). The true uncertainty bound (calculated
within X ,U ) is given by the black dashed box

Table 2.1: Uncertainty range (up to 3 significant digits). [·, ·] denotes an interval

Speed v̄(m/s) ED
50(v̄) ED

400(v̄)

0 [−0.041, 0.033] [−0.024, 0.020]
2 [−0.084, 0.026] [−0.04, 0.01]

10 [−0.252,−0.027] [−0.082,−0.041]
12 [−0.336,−0.035] [−0.096,−0.059]
14 [−0.450,−0.037] [−0.118,−0.038]

From Table 2.1, we observe that the uncertainty estimates ED
N(x̄) shrink as more data

is collected since ED
N(x̄) is obtained with successive intersection operations upon gather-

ing new measurements. Notice that the speed 14ms−1 does not appear in the trajectory
data from figure 2.2. Approximating the graph D(x) allows us to extrapolate but at the
expense of a larger uncertainty estimate.
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2.4 Robust Adaptive Model Predictive Control
We will now propose a Robust MPC scheme for robust constraint satisfaction, with data-
driven adaptation of the model uncertainty using the graph approximation approach
from the preceding section. We restrict our attention to the following linear system,

xt+1 = Axt + But + d(xt) (2.14)

where the function d(·) is L−Lipschitz. We aim to solve the following Robust MPC
problem at each time t, in a receding horizon fashion:

min
ut|t,ut+1|t(·),...

t+N−1

∑
k=t

(x̄⊤k|tQx̄k|t + u⊤k|t(x̄k|t)Ruk|t(x̄k|t))

+ x̄⊤t+N|tPN x̄t+N|t

s.t. xk+1|t = Axk|t + Buk|t(xk|t) + d(xk|t),
x̄k+1|t = Ax̄k|t + Buk|t(x̄k|t) + d̄(x̄k|t),

lbx ≤ xk+1|t ≤ ubx, ∀d(xk|t) ∈ ED(xk|t),
lbu ≤ uk|t(xk|t) ≤ ubu, ∀d(xk|t) ∈ ED(xk|t), ∀k ∈ It+N−1

t ,
xt+N|t ∈ XN,
xt|t = x̄t|t = xt,

(2.15)

where xk|t is the predicted state after applying the predicted policy ut|t(xt|t), . . . ,
uk−1|t(xk−1|t) for k = {t + 1, . . . , t + N} to system (2.14), XN is the terminal set and
PN ≻ 0 is the terminal cost. ED(xk|t) is the state-dependent uncertainty estimate that
can be obtained using the graph approximation approach from section 2.3, and d̄(x̄k|t) ∈
ED(x̄k|t) is a nominal disturbance estimate. We proceed to address the three crucial
challenges associated with finding solutions of (2.15):

(i) Obtaining uncertainty estimates ED(xk|t) for state predictions xk|t which are deci-
sion variables in the MPC problem

(ii) Obtaining tractable parametrization of input policy u(·) to avoid searching over
infinite dimensional function spaces, and

(iii) Ensuring robust satisfaction of constraints for all times, if tractable reformulation
of (2.15) is feasible once.

Uncertainty Estimates Along the MPC Horizon

Definition 2.2 Robust Controllable States: The 1-Step Robust Controllable States from any
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set A is defined as

Succ(A,W) :={x+ ∈ X : ∃x ∈ A, ∃u ∈ U , ∃w ∈ W ,

s.t. x+ = Ax + Bu + w},

with state-inputs constraints X ,U defined in (2.2).

Given any state xt, we can use an S-procedure based approach (similar to section
2.3) to obtain an ellipsoidal outer approximation ED(xt). We then successively ob-
tain ellipsoidal outer-approximations for uncertainty sets ED(Xk|t), that is, ED(Xk|t) ⊇
∪xk|t∈Xk|t d(Xk|t), with

ED(Xk|t) =
⋃

xk|t∈Xk|t

ED(xk|t),

where

Xk|t ⊇ Succ(Xk−1|t, ED(Xk−1|t)), (2.16a)

∀k = t + 1, t + 2, . . . , t + N,
Xt|t = xt, Xt+N|t = X . (2.16b)

Let sets ED(Xk|t) for any k = {t, t + 1, . . . , t + N} be

ED(Xk|t) := {d : (d− pd
k|t)
⊤qd

k|t(d− pd
k|t) ≤ 1},

:=
[

d
1

]⊤
P̄d

k|t

[
d
1

]
≤ 0, (2.17)

with P̄d
k|t =

[
qd

k|t −qd
k|t pd

k|t
−(pd

k|t)
⊤qd

k|t (pd
k|t)
⊤qd

k|t(pd
k|t)− 1

]
, and center pd

k|t ∈ Rn and positive defi-

nite shape matrix qd
k|t ∈ Sn

++ are decision variables. We consider parametrizations of sets
Xk|t as

Xk|t := {x ∈ Rn : (x− px
k|t)
⊤qx

k|t(x− px
k|t) ≤ 1},

:=
[

x
1

]⊤
P̄x

k|t

[
x
1

]
≤ 0, (2.18)

where P̄x
k|t =

[
qx

k|t −qx
k|t px

k|t
−(px

k|t)
⊤qx

k|t (px
k|t)
⊤qx

k|t(px
k|t)− 1

]
for any k = {t, t+ 1, . . . , t+ N}. Center

px
k|t ∈ Rn and shape matrix qx

k|t ∈ Sn
++ can be successively chosen satisfying (2.16a), with

px
t|t = xt and qx

t|t = diag(∞, . . . , ∞) ∈ Sn
++, if sets ED(Xk|t) are found.
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Proposition 2.2 Using s-procedure, Ed(Xk|t) is obtained if the following holds true for some
scalars {ρk

t , τk
0 , τk

1 , . . . , τk
t−1} ≥ 0 at each k = {t, t + 1, . . . , t + N}, for all times t ≥ 0:
−ρk

t qx
k|t 0 ρk

t qx
k|t px

k|t
0 qd

k|t −qd
k|t pd

k|t
ρk

t (px
k|t)
⊤qx

k|t −(pd
k|t)
⊤qd

k|t (pd
k|t)
⊤qd

k|t(pd
k|t)− 1

+ρk
t − ρk

t (px
k|t)
⊤qx

t (px
k|t)


−

t−1

∑
i=0

τk
i Qd

L(xi) ⪯ 0. (2.19)

We reformulate the feasibility problem (2.19) as a SDP in the Appendix. After
finding ED(Xk|t) using (2.19), to efficiently compute (2.16a), we use polytopic outer-
approximations Pd(Xk|t) ⊇ ED(Xk|t) instead of ED(Xk|t), given by

Pd(Xk|t) := {d : Hd
k|td ≤ hd

k|t}, (2.20)

∀k = {t, t + 1, . . . , t + N}.

The choice of this polytope is designer specific.

Remark 2.2 Consider the state xk|t for prediction step k at time t in (2.15). From Proposition 2.2
we know that d(xk|t) ∈ ED(Xk|t) ⇒ d(xk|t) ∈ Pd(Xk|t), but d(xk|t) ∈ Pd(Xk|t) ⇏ d(xk|t) ∈
ED(Xk|t). As a consequence, Pd(Xk|t) ⊈ Pd(Xk|t−1) is possible. Hence, for ensuring recursive
feasibility of solved MPC problem (detailed in Theorem 2.2), we impose constraints in (2.15)
robustly for all d(xk|t) satisfying

d(xk|t) ∈ Pd(Xk|t) ∩ Pd(Xk|t−1), (2.21)

∀k ∈ {t, . . . , t + N − 1},

with the initialization {qd
−1|−1, qd

0|−1, . . . , qd
N−2|−1} = {0n×n, . . . , 0n×n} ∈ Rn×Nn.

Control Policy Parametrization

We restrict ourselves to the affine disturbance feedback parametrization [54] for control
synthesis in (2.15). For all k ∈ {t, · · · , t + N − 1} over the MPC horizon (of length N),
the control policy is given as:

uk|t(xk|t) =
k−1

∑
l=t

Mk,l|td(xl|t) + vk|t, (2.22)

where Mk|t are the planned feedback gains at time t and vk|t are the auxiliary inputs. Let
us define d(xt) = [d(xt|t), · · · , d(xt+N−1|t)]

⊤ ∈ RnN. Then the sequence of predicted
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inputs from (2.22) can be compactly written as ut = Mtd(xt) + vt at any time t, where
Mt ∈ RmN×nN and vt ∈ RmN are

Mt =


0 · · · · · · 0

Mt+1,t 0 · · · 0
... . . . . . . ...

Mt+N−1,t · · · Mt+N−1,t+N−2 0

 ,

vt = [v⊤t|t, · · · , · · · , v⊤t+N−1|t]
⊤.

Terminal Conditions

We use state feedback to construct terminal set XN, which is the maximal robust positive
invariant set [21] obtained with a state feedback controller u = Kx, dynamics (2.14) and
constraints (2.2). This set has the properties

XN ⊆ {x|lbx ≤ x ≤ ubx, lbu ≤ Kx ≤ ubu},
(A + BK)x + d ∈ XN,

∀x ∈ XN, ∀d ∈ Pd(X ).

(2.23)

Fixed point iteration algorithms to numerically compute (2.23) can be found in [21].

Tractable MPC Problem

The tractable MPC optimization problem at time t is given by:

min
Mt,vt

t+N−1

∑
k=t

(x̄⊤k|tQx̄k|t + v⊤k|tRvk|t) + x̄⊤t+N|tPN x̄t+N|t

s.t xk+1|t = Axk|t + Buk|t(xk|t) + d(xk|t),

x̄k+1|t = Ax̄k|t + Bvk|t + d̄k|t,

uk|t(xk|t) =
k−1

∑
l=t

Mk,l|td(xl|t) + vk|t,

Hxxk+1|t ≤ hx,

Huuk|t(xk|t) ≤ hu,

∀d(xk|t) ∈ Pd(Xk|t) ∩ Pd(Xk|t−1), ∀k ∈ It+N−1
t ,

xt+N|t ∈ XN, d(xN|t) ∈ Pd(X ),

xt|t = xt, x̄t|t = xt, d̄k|t ∈ Pd(Xk|t),

(2.24)

where xk|t is the predicted state after applying the policy [ut|t(xt|t), . . . , uk−1|t(xk−1|t)] for
k = {t + 1, . . . , t + N} to system (2.14), and the control invariant [19] terminal set is XN.
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The parameters {pd
k|t, qd

k|t} for k = {t, t + 1, . . . , t + N}, that is, uncertainty containment
ellipses in (2.24), are computed before solving (2.24) at each time t, by finding solutions
of (2.19). Nominal uncertainty estimate d̄k|t is chosen as the Chebyshev center (i.e, center
of the largest volume ℓ2 ball in a set) of Pd(Xk|t). After solving (2.24) at time t, in
closed-loop we apply

ut(xt) = v⋆t|t, (2.25)

to system (2.14) and then resolve (2.24) at t + 1.

Remark 2.3 Terminal set XN might be empty initially, due to conservatism resulting from a
large volume of the set Pd(X ). As more data is collected and the graph of d(·) is refined as in
(2.6), Ed(X ), and so Pd(X ) is refined with new data by solving (2.19) (for only k = t + N,
if data collected until instant t) with an updated Qd

L(·). This eventually results in a nonempty
XN. Once (2.24) is feasible with this XN, during the control process one may further update and
enlarge XN to lower conservatism of (2.24).

Algorithm 1: Robust Adaptive MPC

Initialize: Pd(X ) = Rn; j = 0;
begin exploration (offline)

1: while XN is empty do
2: Apply exploration inputs uj to (2.14). Collect

(xj, d(xj)) at j + 1. Set j = j + 1;
3: Solve (2.19) with k = j + N to get Pd(X ).

Compute XN from (2.23);
4: end while
end exploration set jmax ≡ t = 0.
begin control process (online)

5: while during control for t ≥ 0 do
6: Obtain Pd(Xk|t) for k = {t, t + 1, . . . , t + N − 1}

from feasibility of (2.19);
7: if larger XN desired then

Update Pd(X ) from (2.19) (with k = t + N).
Update XN from (2.23);

8: end if
9: Solve (2.24) and apply MPC control (2.25) to (2.14);

10: end while
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Theorem 2.2 Let optimization problem (2.24) be feasible at time t = 0. Assume the state
dependent uncertainty d(·) bounds along the horizon are obtained using (2.19), (2.16), and (2.20).
Then, (2.24) remains feasible at all times t ≥ 0, if the state xt is obtained by applying the closed-
loop MPC control law (2.25) to system (2.14).

Numerical Example

In this section we demonstrate both the aspects of exploration and robust control of
our robust Adaptive MPC, highlighted in Algorithm 1. We wish to compute feasible
solutions to the following infinite horizon control problem

min
u0,u1(·),...

∑
t≥0

x̄⊤t Qx̄t + u⊤t (x̄t)Rut(x̄t)

s.t. xt+1 = Axt + But(xt) + 0.05
[

tan−1(xt(1))
xt(2)

]
−1
−1
−4

 ≤ [ xt
ut(xt)

]
≤

1.5
3
1

 , (X × U )

∀d(xt) ∈ ED(xt),
x0 = x̄0 = xS, t = 0, 1, . . . ,

(2.26)

with initial state xS = [−1, 2]⊤, where A =

[
1.2 1.5
0 1.3

]
and B = [0, 1]⊤. Algorithm 1

is implemented with a control horizon of N = 3, and the feedback gain K in (2.23) is
chosen to be the optimal LQR gain for system x+ = (A + BK)x with Q = 10I2 and
R = 2.

Exploration for Uncertainty Learning

We initialize Pd(X ) = Rn, resulting in an empty terminal set XN in (2.24). In this
section, we present the ability of Algorithm 1 to explore the state-space with randomly
generated inputs uj ∼ N (0, 1), in order to eventually obtain a nonempty XN for starting
the control process. Let the time indices during exploration phase be denoted by j.

Fig. 2.4 shows the sets Ed(x) at four fixed query points xj = {[-1,2], [1,1], [-1,1], [-
2,-1]} as data is collected until instant j. This can be obtained from feasibility of (2.19)
(with k = j). As j increases, ED(x) for each x is contained in the successive intersections
of ellipsoids, and consequently, the intersection shrinks for all points. This is seen in
Fig. 2.4, which indicates improved information of ED(x) with added data, for all x ∈ X .
At jmax = 30, a nonempty XN is obtained, shown in Fig. 2.5. This is when we start
control and set t = 0.
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Figure 2.4: Uncertainty bound ED(x) estimation at query points with successive inter-
section of ellipses obtained from measured data. Star (⋆) denotes the true value of d(x),
lying in the intersection.

Robust Constraint Satisfaction

If the MPC problem (2.24) is feasible for parameters defined in (2.26), it ensures robust
satisfaction of constraints in (2.26) for all times t > 0. This is highlighted with a realized
trajectory in Fig. 2.6. Furthermore, the terminal set is recomputed and improved at a
t > 0 with (2.23), having refined Pd(X ) estimation1 from (2.19) (with k = t + N). The
set grows, as seen in Fig. 2.5, resulting in lesser conservatism of (2.24).

2.5 Conclusions
We proposed a framework to quantify state-dependent model uncertainty D(·) from
trajectory data and additional side-information by approximating the graph G(D). We
show how to derive global bounds on uncertainty ED(X ,U ) ⊇ D(X ,U ), point estimates
ED(x̄, ū) ⊇ D(x̄, ū), as well as uncertainty estimates ED(Xk|t) over reachable sets of the
system. We use the latter to propose a Robust Adaptive MPC algorithm to achieve
robust satisfaction of state and input constraints for uncertain linear systems. The un-
certainty estimate is adaptively refined with data as the system explores the state space.
Upon collection of sufficient data, the system is able to solve a robust MPC problem for

1rectangles with sides of length equal to major and minor axes of Ed(·)
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Figure 2.5: Terminal set construction. The set grows as estimation of d(x) is improved
from measurements.

all times from a given initial state. The algorithm further reduces its conservatism by
incorporating online model adaptation during control.

2.6 Appendix

Proof of Proposition 2.1

By Assumption 2.1, we know that for any q, q′ ∈ Rn+m, z ∈ D(q), z′ ∈ D(q′), we have
the incremental inequalities 1

q− q′

z− z′

⊤ Q(j)

 1
q− q′

z− z′

 ≥ 0, ∀Q(j) ∈ Q,

which also holds for (q, z), (q′, z′) ∈ G(D) by Definition 2.1. Now define the set G i
t

using the incremental inequalities and (qi
t, di

t) ∈ G(D) as in (2.5). Observe that for any
(q, z) ∈ G(D), we have (q, z) ∈ G i

t. Thus, G(D) ⊆ G i
t. Since this holds for any iteration i

and time t for system (4.1), we have G(D) ⊆ G i
t, ∀t ≥ 0, ∀i ≤ j− 1 which further implies

G(D) ⊆ ∩j−1
i=0 ∩t≥0 G i

t ■
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Figure 2.6: State trajectory with robust constraint satisfaction.

Proof of Lemma 2.1

For any q = (x, u) ∈ X ×U , we have lbq ≤ q ≤ ubq. For any matrix Bq with non-negative
entries, the quantity (q− lbq)⊤Bq(ubq − q) ≥ 0 because all terms ubq − q ≥ 0, lbq − q ≥
0, Bq ≥ 0 where the inequalities are implied element-wise. ■

Proof of Theorem 2.1

1. Take the Schur complement of the first LMI in (2.11), substitute for M11, Mq, Ml
t,

and multiply from both sides by [1 q⊤ d⊤] and [1 q⊤ d⊤]⊤ to get

λ⋆

(
1− (d− c⋆

λ⋆
)⊤
(

S⋆

λ⋆

)−1

(d− c⋆

λ⋆
)

)
≻

(q− lbq)
⊤B⋆

q (ubq − q)+

Tmax

∑
t=0

|Q|

∑
l=1

τl
t

 1
q− qt
d− dt

⊤ Q(l)

 1
q− qt
d− dt

 .

Then ∀(x, u, d) ∈ G(D), ∀q = (x, u) ∈ X × U , the two terms on the RHS are
positive from Proposition 2.1 and Lemma 2.1. For λ⋆ > 0, this in turn implies that
we have (d− c̃)⊤(S̃)−1(d− c̃) ≤ 1, which proves D(X ,U ) ⊆ ED(X ,U ).
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Multiplying the last LMI in (2.11) from both sides by [1 d⊤], [1 d⊤]⊤ gives 1− (d−
c̃p)⊤(S̃p)−1(z− c̃p) ≥ λ⋆(1− (z− c̃)⊤(S̃)−1(z− c̃), which implies ED(X ,U ) ⊂ Dp.

2. Similar to above, take the Schur complement of the LMI in (2.12), substitute for
Ml

tq, and multiply from both sides by [1 d⊤] and [1 d⊤]⊤ to get

λ⋆
q

1− (d−
c⋆q
λ⋆

q
)⊤
(

S⋆
q

λ⋆
q

)−1

(d−
c⋆q
λ⋆

q
)

 ≻
T

∑
t=0

|Q|

∑
l=1

τl
tq

 1
q̄− qt
d− dt

⊤ Q(l)

 1
q̄− qt
d− dt

 .

Then ∀(x̄, ū, d) ∈ G(D) for the given q̄ = (x̄, ū), the term on the RHS is positive
from Proposition 2.1 and Lemma 2.1. For λ⋆

q > 0, this in turn implies that we have
(d− c̃)⊤(S̃)−1(d− c̃) ≤ 1, which proves D(x̄, ū) ⊆ ED(x̄, ū).

Multiplying the last LMI in (2.12) from both sides by [1 d⊤], [1 d⊤]⊤ gives 1− (d−
c̃p)⊤(S̃p)−1(z− c̃p) ≥ λ⋆

q(1− (z− c̃)⊤(S̃)−1(z− c̃), which implies ED(x̄, ū) ⊂ Dp.

■

Proof of Proposition 2.2

Consider any vector [x⊤d⊤1]⊤ ∈ R2n+1 such that x ∈ Ed(Xk|t) and [x⊤d⊤]⊤ ∈ G(d).
Given that (2.19) is feasible for each prediction instant k = {t + 1, . . . , t + N} at any time
t, we multiply [x⊤d⊤1]⊤ on both sides of (2.19)

− ρk
t

[
x
1

]⊤
P̄x

k|t

[
x
1

]
+

[
d
1

]⊤
P̄d

k|t

[
d
1

]

−

x
d
1

⊤ t−1

∑
i=0

τk
i Qd

L(xi)

x
d
1

 ≤ 0,

for some {ρk
t , τk

0 , . . . , τk
t−1} ≥ 0, where P̄x

k|t and P̄d
k|t are defined in Section 2.4. Now using

Proposition 2.1, (2.18) and (2.21), we can infer
[

d
1

]⊤
P̄d

k|t

[
d
1

]
≤ 0. ■

SDP for Solving (2.19)

For all k = {t + 1, . . . , t + N}, along MPC horizon, let us use the variable nomen-

clature p(Xk|t) = −ρk
t qx

k|t +
t−1
∑

i=0
τk

i L2
d In, q(Xk|t) = ρk

t (q
x
k|t)
⊤px

k|t −
t−1
∑

i=0
τk

i L2
dxi, r(Xk|t) =
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−
t−1
∑

i=0
τk

i In, s(Xk|t) =
t−1
∑

i=0
τk

i d(xi), and t(Xk|t) = ρk
t

(
1− (px

k|t)
⊤qx

k|t px
k|t

)
−

t−1
∑

i=0
τk

i

(
− L2

dx⊤i xi +

d⊤(xi)d(xi)
)
− 1. Finding the minimum trace ellipsoid satisfying (2.19) is posed as an

SDP [30, Section 11.4] as:

min
ξ

trace((qd
k|t)
−1)

s.t.


p(Xk|t) On q(Xk|t) On

On r(Xk|t) s(Xk|t) −In

q⊤(Xk|t) s⊤(Xk|t) t(Xk|t) (pd
k|t)
⊤

On −In‘4− pd
k|t −(qd

k|t)
−1

 ⪯ 0,

ρk
t ≥ 0, τk

i ≥ 0, qd
k|t ≻ 0,

∀i = 0, 1, . . . , t− 1,

with ξ = {qd
k|t, pd

k|t, ρk
t , τk

0 , . . . , τk
t−1} and 0 ∈ Rn×n. ■

Proof of Theorem 2.2

Let the optimization problem (2.24) be feasible at time t. Let us denote the corresponding
optimal input policies as [π⋆

t|t(·), π⋆
t+1|t(·), · · · , π⋆

t+N−1|t(·)]. Assume the MPC controller

π⋆
t|t(·) is applied to (2.14) in closed-loop and ED(Xk|t+1) for k = {t + 1, t + 2, . . . , t +

N + 1} are obtained according to (2.19), (2.20) and (2.16). Consider a candidate policy
sequence at the next time instant as:

Πt+1(·) = [π⋆
t+1|t(·), . . . , π⋆

t+N−1|t(·), Kxt+N|t+1]. (2.27)

From (2.21) and definitions of ED(Xk|t) and Pd(Xk|t), we conclude that the policy se-
quence π⋆

t+1|t(·) ,π⋆
t+2|t(·), . . . , π⋆

t+N−1|t(·)] is an (N − 1) step feasible policy sequence
at t + 1 (excluding terminal condition), since at previous time t, it robustly satisfied all
stage constraints in (2.24). With this feasible policy sequence, xt+N|t+1 ∈ XN. From (2.23)
we conclude that (2.27) ensures xt+N+1|t+1 ∈ XN. This concludes the proof. ■
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Chapter 3

Predictive Control with Uncertain,
Multi-modal Predictions of the
Environment

3.1 Overview
Autonomous vehicle technologies have seen a surge in popularity over the last decade,
making it increasingly common for them to navigate roads with mixed traffic with vehi-
cles of varying automation levels [42]. While existing technology is being gradually in-
troduced into scenarios such as highway driving [36] and low-speed parking [145] where
other road users’ intents are relatively easy to infer, autonomous driving in mixed traffic
scenarios such as urban road driving and merging is an open challenge because of the
variability in the possible behaviors of the surrounding agents [3], [138]. To address this
difficulty, significant research has been devoted to modeling these agent predictions as
multi-modal distributions [20, 37, 118]. Such models capture uncertainty in both high-
level decisions (desired route) and low-level executions (agent position, heading, speed).
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(a) The AV (green) must decide whether
to cross a Traffic Light (TL) before it turns
red or come to a stop, while managing
the headway for the tailgating TV behind.
The discrete modes are given as {TL goes
red, TL stays yellow} × {TV stops for TL,
TV doesn’t stop for TL}. Inspired by
the dashcam footage: https://youtu.be/

i3pvrpKDjRQ.

(b) The AV (green) must find a feasible so-
lution to make a left turn in the presence
of an oncoming TV while accounting for
its multi-modal behavior: {give AV right-
of-way, go straight and turn left}. The AV
computes a policy tree to address the multi-
modal uncertainty. Inspired by the footage:
https://shorturl.at/aeJ12.

Figure 3.1: Multi-modal planning in urban driving.

The focus of this work is to incorporate these multi-modal distributions for the sur-
rounding agents (called Target Vehicles, or TVs) into a planning framework for the au-
tonomous agent (called Ego Vehicle, or AV). We investigate the planning problem in the
context of constrained optimal control and use Model Predictive Control (MPC) for com-
puting feedback control policies. The main challenge in designing MPC for effectively
addressing the multi-modal predictions is to find a good balance between performance,
safety, and computational efficiency. Consider the situation in Fig. 3.1a, where the AV is
approaching a traffic light with a tailgating TV behind. A performant MPC design would
enable the AV to assess the risk associated with the multi-modalities of the TV and
traffic light along the planning horizon so that the AV is able to cross the yellow light
or stop at the red light. For ensuring safety, the AV must also manage a safe distance
ahead of the TV despite the uncertain predictions. A conservative MPC design would
either fail to find a feasible solution in the presence of large uncertainty, or sacrifice
performance for safety by always choosing to stop. Prior works [13, 39, 101] show that
planning using trees or feedback policies over the multi-modal distribution is effective
for reliably finding high-quality solutions. Scenario trees [13, 39, 103] offer convenient
structure that can be exploited in the SMPC to enhance the feasibility of the SMPC op-
timization problem by optimize over policies along the prediction horizon. The policies
inherit a tree structure from the scenario tree, to encode feedback over the uncertainty

https://youtu.be/i3pvrpKDjRQ
https://youtu.be/i3pvrpKDjRQ
https://shorturl.at/aeJ12
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realization. This adds flexibility to find feasible solutions due to the ability to react
to different realizations of the vehicles’ trajectory predictions along the prediction hori-
zon. Mixture models like Gaussian Mixture Models (GMMs), are more memory-efficient
representations for the multi-modal uncertainty by using discrete random variables to
capture distinct modalities and continuous variables to capture the spread within each
mode. However, optimization over policies that assume feedback from the continuous
variables, is infinite-dimensional in general and computationally expensive for real-time
control. In this work, we propose a Stochastic Model Predictive Control (SMPC) frame-
work that incorporates multi-modal predictions of agents given as GMMs to enforce
probabilistic collision avoidance and state-input constraints.

Contributions

• We propose a convex formulation for Stochastic MPC that optimizes over tree-
structured feedback policies for multi-modal predictions specified as Gaussian
Mixture Models (GMMs).

• The policy parameterization is designed to receive feedback over both discrete
modes and continuous observations of the TVs’ states. Our formulation also in-
cludes a novel multi-modal chance constraint reformulation that simultaneously
allocates risk levels for the various modes based on their probabilities.

• We evaluate our approach in various autonomous driving scenarios via simulations
and hardware experiments. We demonstrate our SMPC via a hardware experiment
for a lane change scenario, characterized by the presence of two TVs with uncertain,
bi-modal predictions. Our findings indicate that the proposed approach exhibits
a significant reduction in conservatism when compared to the conventional ap-
proaches that optimize over open-loop control sequences. Additionally, we show
adaptability to variable probabilities of the modes of the TVs.

3.2 Problem Formulation
In this section we formally cast the problem of designing SMPC in the context of au-
tonomous driving.

Preliminaries

AV modeling

We model the dynamics of the AV in the Frenet frame moving along a curve γ(s) =
[X̄(s), Ȳ(s), ψ̄(s)] parameterised by the arc length s, which describes the position and
heading of the centerline of a lane in the road [51]. Let xt = [st, ey,t, eψ,t, vt]⊤ be the
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state of the AV at time t where st, ey,t, eψ,t are the arc length, lateral offset and relative
heading with respect to the centerline γ(·), and vt is the AV’s speed. Then the dynamics
of the AV can be described as

ẋt =



vtcos(eψ,t)

1− ey,tκ(st)
vt sin(eψ,t)

ψ̇t −
vtcos(eψ,t)κ(st)

1− ey,tκ(st)
at

 (3.1)

where κ(st) =
dψ̄(st)

ds
describes the curvature of γ(·), at is the AV’s acceleration and ψ̇t is

the AV’s global yaw rate. The dynamics of the AV are time-discretized (with any explicit
integration scheme) to obtain the model xt+1 = f (xt, ut), with inputs ut = [at, ψ̇t]. Given
the state xt, the AV’s global pose can be obtained via a function Gγ(·),Xt

Yt
ψt

 = Gγ(xt) =

X̄(st)− ey,t sin(ψ̄(st))
Ȳ(st) + ey,t cos(ψ̄(st))

eψ,t + ψ̄(st)

 . (3.2)

The system state and input constraints are given by polytopic sets which capture vehicle
actuation limits and traffic rules,

X = {x : a⊤x,ix ≤ bx,i ∀i ∈ I
nX
1 },

U = {u : a⊤u,iu ≤ bu,i ∀i ∈ I
nU
1 }. (3.3)

We assume a kinematically feasible reference trajectory,

{(xre f
t , ure f

t )}T
t=0 (3.4)

is provided for the AV. This serves as the AV’s desired trajectory which can be computed
offline (or online at lower frequency) accounting for the AV’s route, actuation limits, and
static environment constraints (like lane boundaries, traffic rules). However, this refer-
ence does not consider the dynamically evolving TVs for real-time obstacle avoidance.

TV predictions

Let nTV be the number of TVs in consideration and denote the position of the ith TV at
time t as oi

t = [Xi
t Yi

t ]
⊤, and define ot = [o1⊤

t , . . . , onTV
t ]⊤ which stacks the positions of

all the TVs. For collision avoidance, we use an off-the-shelf prediction model [37, 118]
trained on traffic datasets [64, 29] that provides N−step predictions of the TVs’ positions
given by a multi-modal Linear Time-Varying (LTV) model ∀k ∈ It+N

t , j ∈ I
J
1,

ok+1|t,j = Tk|t,jok|t,j + ck|t,j + nk|t,j, (3.5)
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where ok|t,j is the prediction of the TVs’ positions at time k for mode j, Tk|t,j, ck|t,j are time-
varying matrices and vectors for the TVs’ prediction for mode j, and the process noise is
given by nk|t,j ∼ N (0, Σk|t,j). The mode j ∈ I

J
1 captures distinct interactions/maneuvers

of the TVs as a group. We denote pt = [pt,1, .., pt,j] as the probability distribution over
the modes at time t, and σt to be the true, unknown mode.

Stochastic Model Predictive Control Formulation

We aim to design a computationally efficient feedback control ut = πt(xt, ot) for the AV
to track the reference trajectory (3.4), satisfy state-input constraints and avoid collisions
with the TVs by effectively addressing the uncertainty arising from the TVs’ multi-modal
predictions (3.5).

We propose a Stochastic Model Predictive Control (SMPC) formulation to compute
the feedback control ut. The optimization problem of our SMPC takes the form,

min
{θt,j}J

j=1

J

∑
j=1

pt,jE
[
Ct(xt,j, ut,j)

]
(3.6a)

s.t. xk+1|t,j = f (xk|t,j, uk|t,j), (3.6b)

ok+1|t,j = Tk|t,jok|t,j + ck|t,j + nk|t,j, (3.6c)

P(gk(xk+1|t, oi
k+1|t) ≥ 0) ≥ 1− ϵ, (3.6d)

(xk+1|t,j, uk|t,j) ∈ X × U , (3.6e)

ut,j ∈ Πθt,j(xt,j, ot,j), (3.6f)

xt|t,j = xt, ut|t,j = ut|t,1, ot|t,j = ot, (3.6g)

∀i ∈ I
nTV
1 , ∀j ∈ I

J
1, ∀k ∈ It+N−1

t .

where ut,j = [ut|t,j, . . . , ut+N−1|t,j], xt,j = [xt|t,j, . . . , xt+N|t,j] and ot,j (defined similarly
to xt,j), denote stacked predictions along the horizon for mode j. The SMPC feedback
control action is obtained from the optimal solution of (3.6) as

ut = πSMPC(xt, ot) = u⋆
t|t,1, (3.7)

where the AV and TV state feedback enters the optimization problem in (3.6g). The
function Ct(·, ·) in the objective (3.6a) penalizes the deviation of the AV’s trajectory for
mode j from the reference (3.4), and is weighted by the probability of the mode given by
pt,j. The collision avoidance constraints are imposed as chance constraints (7.1f) along
with polytopic state and input constraints X ,U for the AV. The AV’s controls along
the prediction horizon are given by parameterized policies Πθt,j(xt,j, ot,j) (3.6f) that are
functions of the AV’s and TVs’ states, as opposed to open-loop sequences. The policies
are multi-modal, which makes the AV’s closed-loop trajectories in (3.6b) multi-modal.
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Consequently, the chance constraints (3.6d) are defined over the closed-loop multi-modal
distributions, re-written using the law of total probability as:

J

∑
j=1

pt,jP(gk(xk+1|t,j, oi
k+1|t,j) ≥ 0) ≥ 1− ϵ.

Deriving a deterministic reformulation of this chance constraint that is computationally
efficient, but not too conservative is the key technical challenge in the SMPC design. To-
wards addressing this challenge, our SMPC formulation features 1) a novel multi-modal
policy parameterization (3.6f) for shaping the multi-modal closed-loop distribution, 2) a
convex inner-approximation technique for the multi-modal chance constraint (3.6d) in-
volving mode-dependent, risk levels rt,j = 1− ϵt,j for ϵt,j ∈ [0, 1] and 3) simultaneous,
convex optimization over policy parameters and risk levels for control computation.
These features enable computationally efficient synthesis of (3.7) while enhancing the
feasibility of (3.6) by effectively addressing the multi-modal uncertainty.

3.3 Stochastic MPC with Multi-Modal Predictions
In this section, we detail our SMPC formulation for the AV to track the reference (3.4)
while incorporating multi-modal predictions (3.5) of the TV for obstacle avoidance.

Vehicles’ Prediction Models
The AV prediction model (3.6b) is a linear time-varying model (LTV), obtained by lin-
earizing f (·) about the reference trajectory (3.4). At time t, let t̄ = −t + arg mink∈IT

0
|st −

sre f
k | and define ∆xk|t = xk|t− xre f

k+t̄, ∆uk|t = uk|t− ure f
k+t̄, ∀k ∈ It+N−1

t . Then the LTV model
is given as

∆xk+1|t = Ak|t∆xk|t + Bk|t∆uk|t + wk|t (3.8)

Ak|t = ∂x f (xre f
k+t̄, ure f

k+t̄), Bk|t = ∂u f (xre f
k+t̄, ure f

k+t̄)

where the additive process noise wk|t ∼ N (0, Σw) (i.i.d with respect to k) models lin-
earization error and other stochastic noise sources. The polytopic state and input con-
straints (3.6e) are replaced by the chance-constraints ∀k ∈ IN−1

0 ,

P((∆xk+1|t, ∆uk|t) ∈ ∆Xk × ∆Uk) ≥ 1− ϵ, (3.9)

∆Xk = {∆x : a⊤x,i∆x ≤ bx,i − a⊤x,ix
re f
t̄+k, ∀ ∈ I

nX
1 },

∆Uk = {∆u : a⊤u,i∆x ≤ bu,i − a⊤u,iu
re f
t̄+k, ∀ ∈ I

nU
1 }.
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(a) Open-loop predictions, ut ∈ R2×N (b) Closed-loop predictions, ut ∈ Πθt(xt, ot)

Figure 3.2: In (a), solving (7.1) over open-loop sequences can be conservative because AV pre-
diction (green-dashed) from a single sequence of control inputs must satisfy all the obstacle
avoidance constraints. In (b), optimizing over policies (7.1d) allows for different AV predictions
depending on the TV trajectory realizations (green-dashed with highlights corresponding to dif-
ferent TV trajectories).

Parameterized AV & TV State Feedback Policies
We propose to use parameterized polices Πθt(xt, ot) so that the AV’s control ut are func-
tions of the AV and TV trajectories xt, ot along the prediction horizon (as depicted in
Fig. 3.2). Given the AV model (3.8) and mode-dependent TV model (3.5), consider the
following feedback policy ∆uk|t,j = πk|t,j(xk|t,j, ok|t,j) for the AV :

∆uk|t,j = hj
k|t +

k−1

∑
l=0

Mj
l,k|twl|t + K j

k|t(ok|t,j − µk|t,j), (3.10)

where µk|t,j = E[ok|t,j] denotes the expected prediction of the TVs in (3.5). The policy
(3.10) uses State Feedback (SF) for the TV states but Affine Disturbance Feedback (ADF)
for feedback over AV states (see [54] for equivalence to state feedback) instead of SF. SF
policies for the TVs are beneficial towards scaling our approach to multiple TVs because
we use O(N2 + nTV · N) parameters instead of O(nTV · N2) parameters for ADF.

Despite using SF for the TVs’ states, ∆xk|t are affine in {Ks|t}k
s=0 ∀k ∈ In−1

0 as

shown next.For mode j ∈ I
J
1, define the stacked quantities along the prediction hori-

zon ∆ut,j, wt, ot,j, µt,j (e.g., ∆ut,j = [∆u⊤t|t,j . . . ∆u⊤t+N−1|t,j]
⊤) and use (5.6) to get

∆ut,j = hj
t + Mj

twt + Kj
t(ot,j − µt,j)
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using the stacked policy parameters hj
t ∈ R2N, Mj

t ∈ R2N×4N, Kj
t ∈ R2N×2N·nTV ((3.24) in

appendix 5.6). Denote the stacked EV closed-loop predictions for mode j as ∆xt,j and the

TV’s stacked process noise as nt,j. Using matrices At, Bt, Tj
t, Cj

t, Lj
t, Et defined by (3.25),

(3.26) in the appendix, the closed-loop EV predictions are

∆xt,j =At∆xt|t + Bt(h
j
t + Kj

t(ot,j − µt,j)) + (Et + BtM
j
t)wt

=At∆xt|t + Bt(h
j
t + Kj

tL
j
tnt,j) + (Et + BtM

j
t)wt

which are affine in hj
t, Mj

t, Kj
t. The last equality uses µt,j = E[ot,j] = Tj

tot + Cj
t + Lj

tnt,j
from (3.26).

Figure 3.3: Tree for encoding mode feedback along the prediction horizon. TV1’s mode is
revealed at time-step t + 2, whereas the TV2’s mode is revealed at time t + 3. Consequently, all
the J = 4 EV feedback policies share the same parameters in the interval It+1

t . For time-step t+ 2,
parameters are shared by policies 1, 2 and 3, 4. After TV2’s mode is revealed at time t + 3, the J =
4 policies have independent parameters in the interval It+N

t+3 . The policy constraints are described
by the set Tt = {(t + 1, {1, 2}), (t + 1, {1, 3}), (t + 1, {1, 4}), (t + 2, {1, 2}), (t + 2, {3, 4})}. The
intervals for mode 4 are Bt,4 = {It+1

t , It+2
t+2, It+N

t+3 }

The policy parameters Θt(xt, ot) = {hj
t, Mj

t, Kj
t}

J
j=1 define J feedback policies ∆ut,j =

hj
t + Mj

twt + Kj
tot,j that assume feedback from xt,j, ot,j along the prediction horizon and

the mode j ∈ I
J
1. To have J independent feedback policies starting from times-step t + 1,
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the mode must be revealed at the time-step k = t + 1. To model more complex mode
feedback information structures along the horizon, we use the notion of an information
tree as illustrated in the Fig. 3.3. Additional constraints are imposed on Θt(xt, ot)
incorporate the mode feedback information structure along the prediction horizon, so
that (3.22) optimizes over realizable policies. For example, if the EV optimizes for J
different policies along the prediction horizon but the TVs’ mode is revealed at time-
step t + N − 1, then it is ambiguous whether which of the J policies the EV must use
in the interval It+N−2

t+1 . In practice, the predictions (3.5) and control (3.7) are computed
in a receding horizon fashion, but optimistically optimizing over un-realizable policies
incurs infeasibilities when solving (7.1).

To formalize the constraints on Θt(xt, ot), let the mode feedback information structure
be defined by the set Tt ⊂ It+N

t ×
(

I
J
1 × I

J
1

)
, where (k, {j1, j2}) ∈ Tt corresponds to

modes j1, j2 being ambiguous in interval Ik
t . Given (k, {j1, j2}) ∈ Tt, we constrain the

policy parameters of modes j1, j2 as:

hj1
k′|t, K j1

k′|t, {Mj1
l,k′|t}

k′−1
l=t = hj2

k′|t, K j2
k′|t, {Mj2

l,k′|t}
k′−1
l=t , ∀k′ ∈ Ik

t

so that the policies of modes j1 and j2 are same up to time k. For the example in Fig. 3.3,
the policy parameterization for mode j = 4 and N = 4 is given as

h4
t = [h1⊤

t|t h1⊤
t+1|t h3⊤

t+2|t, h4⊤
t+3|t, . . . h4⊤

t+N−1|t]
⊤

K4
t = blkdiag

(
K1

t|t, K1
t+1|t, K3

t+2|t, K4
t+3|t, . . . , K4

t+N−1|t

)

M4
t =


O O O O

M1
t,t+1|t O O O

M3
t,t+2|t M3

t+1,t+2|t O O
M4

t,t+3|t M4
t+1,t+3|t M4

t+2,t+3|t O


For each mode j, we denote Bt,j as the set of time intervals between the branch points,

defined formally as

Bt,j =

I
k2
k1
⊂ It+N

t

∣∣∣∣∣∣
∃j1, j2 : (k1, {j, j1}), (k2, {j, j2}) ∈ Tt,

k2 = min(t + N, min
k>k1,(k,{j,l})∈Tt

k)

 . (3.11)

For example, if the modes are revealed at time-step k = t+ 1, we have Tt = {(t, {1, j}) ∀j ∈
I

J
2} and Bt,j = {It+N

t } ∀j ∈ I
J
1. Then for each mode j, we can split the policy matrices as

the sums, Mj
t = ∑

|Bt,j|
b=1 M̄j,b

t , Kj
t = ∑

|Bt,j|
b=1 K̄j,b

t , where M̄j,b
t , K̄j,b

t have the same shape as in
(3.24) but consist only of policy parameters corresponding to the interval b ∈ Bt,j. We de-
note this policy parameterization as Θt(xt, ot; Tt). The tree structure Tt is assumed to be
inferred from the predictions (3.5) using some measure of distance between distributions
(e.g., Wasserstein distance).
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Collision Avoidance Formulation
We assume that we are given or can infer the rotation matrices for the ith TV for each
mode along the prediction horizon as {{Ri

k|t,j}
N
k=1}

J
j=1. For collision avoidance between

the AV and the ith TV, we impose the following chance constraint
J

∑
j=1

pt,jP(gi
k|t,j(Pk|t,j, oi

k|t,j) ≥ 1 ) ≥ 1− ϵ ∀k = t + 1, . . . , t + N (3.12)

where the AV’s position Pk|t,j = [Xk|t,j, Yk|t,j] is obtained from Gγ(∆xk|t,j + xre f
t+k), and

gi
k|t,j(P, o) =

∥∥∥ [ 1
aca

0
0 1

bca

]
Ri

k|t,j(P− o)
∥∥∥2

. (3.13)

aca = aTV + dAV , bca = bTV + dAV are semi-axes of the ellipse containing the TV’s extent
with a buffer of dAV . gk|t,j(P, o) ≥ 1 implies that the AV’s extent (modeled as a disc
of radius dAV and centre P) does not intersect the TV’s extent which is modelled as
an ellipse with semi-axes aTV , bTV and centre o, oriented by Rk|t,j. This constraint is
non-convex because of the integral of the nonlinear function gi

k|t,j(·) over the multi-
modal distribution of (Pk|t, ok|t, pt). To address the nonlinearity, we use the convexity of
gi

k|t,j(·) to construct its affine under-approximation li
k+1|t,j(·) by defining Pi

k|t,j = µk|t,j +

1√
gi

k|t,j(Pre f
k|t ,µi

k|t,j)
(Pre f

k|t − µi
k|t,j) to get:

li
k|t,j(P, o) =∂Pgi

k|t(Pi
k|t,j, µi

k|t,j)(P− Pi
k|t,j) (3.14)

+ ∂ogi
k|t(Pi

k|t,j, µi
k|t,j)(o− µi

k|t,j). (3.15)

Proposition 1 For the affine function li
k|t,j(P, o) defined in (3.14), the multi-modal chance con-

straint can be inner-approximated ∀k = t + 1, . . . , t + N as
J

∑
j=1

pt,jP(li
k|t,j(Pk|t,j, oi

k|t,j) ≥ 0 ) ≥ 1− ϵ (3.16)

⇒
J

∑
j=1

pt,jP(gi
k|t,j(Pk|t,j, ok|t,j) ≥ 1) ≥ 1− ϵ

The multi-modal, affine chance constraints for collision avoidance are given as
J

∑
j=1

pt,jP
[
li
k+1|t,j(Pk+1|t, oi

k+1|t,j) ≥ 0
]
≥ 1− ϵ. (3.17)

We define the curve γ(·) using piece-wise linear segments so that Gγ(∆xk|t + xre f
t+k) =

Gγ(xre f
t+k) + ∂xGγ(xre f

t+k)∆xk|t, and the constraint (3.17) is affine in the policy parameters
Θt(xt, ot; Tt). Next, we discuss the reformulation of the multi-modal affine chance con-
straints (3.9), (3.17).
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Reformulation of Multi-modal Chance Constraints

Figure 3.4: For x(µ) given by a GMM on the left (e.g., predicted distance from the lead ve-
hicle), the figure depicts the fixed-risk (top-right) and variable-risk (bottom-right) formulations
for shaping x(µ) for satisfying the constraint P(x(µ) > 0) ≥ p⋆ by optimizing µ within the
blue feasible region (e.g., dictated by actuation constraints). The variable-risk formulation can
choose a smaller µ = µ⋆

v within constraints by exploiting the difference in mode probabilities–
since p2 ≫ p1, assigning a larger risk level r2 (shaded yellow region) to mode 2 yields feasible
distributions. The fixed-risk formulation assigns r1 = r2 = p⋆ but the resulting µ = µ⋆

f violates
the constraints.

We propose a novel convex inner-approximation for multi-modal chance constraints,
with the key feature of simultaneous risk allocation for reduced conservatism. The con-
straints (3.9), (3.17) can be generically represented as the multi-modal affine chance con-
straint:

J

∑
j=1

pt,jP

[
a0 + a⊤1 hj

t + (a⊤2 Mj
t + a⊤3 )wt

+ (a⊤4 Kj
t + a⊤5 )L

j
tnt

≥ b

]
≥ 1− ϵ

⇔
J

∑
j=1

pt,jrt,j ≥ 1− ϵ, (3.18a)

P

[
a0 + a⊤1 hj

t + (a⊤2 Mj
t + a⊤3 )wt

+ (a⊤4 Kj
t + a⊤5 )L

j
tnt

≥ b

]
≥ rt,j,
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⇔ a0 + a⊤1 hj
t − b ≥ Φ−1(rt,j)

∥∥∥∥∥
[

Σt(M
j⊤
t a2 + a3)

Σt,jL
j⊤
t (Kj⊤

t a4 + a5)

]∥∥∥∥∥
2

(3.18b)

where Φ−1(·) is the quantile function for N (0, 1), and rt,j are the risk-levels ∀j ∈ I
J
1.

We assume that 1− ϵ ≥ 1
2 and rt,j ≥ 1

2 , ∀j ∈ I
J
1. As such, this constraint is non-convex

in the policy parameters Θt(xt, ot; Tt) and risk-levels rt,j because of (3.18b). The fixed-
risk allocation approach [146, 101] fixes the risk-level rt,j = 1− ϵ ∀j ∈ I

J
1 to obtain a

convex-inner approximation of the multi-modal chance constraint. However as depicted
in Fig. 3.4, this approach can be conservative and compromises the feasibility of the
SMPC optimization problem because the risk levels are allocated disregarding the prob-
ability of the individual modes. Alternatively, iterative solution strategies [104], have
been proposed for variable risk allocation where, alternating sub-problems are solved
by fixing either the policy parameters or risk levels. This enhances the feasibility of the
optimization problem but at the price of significant computational cost. Next, we pro-
pose a convex-inner approximation to the multi-modal chance constraint (3.18a), (3.18b)
for simultaneous risk-allocation and policy synthesis, to alleviate the computational cost
of iterative approaches, but also improve the feasibility of constraint compared to the
fixed allocation approach.

First, we focus on reformulating (3.18b). We recall that the policy parameters can be

split as Mj
t = ∑

|Bt,j|
b=1 M̄j,b

t , Kj
t = ∑

|Bt,j|
b=1 K̄j,b

t , and begin by introducing new variables

ηt,j = Φ−1(rt,j),

M̃j
t = Φ−1(rt,j)M̄

j,|Bt,j|
t , K̃j

t = Φ−1(rt,j)K̄
j,|Bt,j|
t

to rewrite the constraint (3.18b) as

a0 + a⊤1 hj
t − b ≥∥∥∥∥∥

[
Σt(M̃

j⊤
t a2 + ηt,j ∑

|Bt,j|−1
b=1 M̄j,b⊤

t a2 + a3ηt,j)

Σt,jL
j⊤
t (K̃j⊤

t a4 + ηt,j ∑
|Bt,j|−1
b=1 K̄j,b⊤

t a4 + a5ηt,j)

]∥∥∥∥∥
2

(3.19)

The variable ηt,j can be interpreted as the number of standard deviations by which the
affine constraint is tightened. Since rt,j ≥ 1

2 , we have ηt,j ≥ 0, and additionally, let
ηt,j ≤ ηmax to ignore the tail of the Gaussian distribution. The inequality (3.19) is non-

convex in the new variables because of the bilinear terms ηt,jM̄
j,b⊤
t , ηt,jK̄

j,b⊤
t . However,

fixing either variable in these terms yields a convex, second-order cone constraint. We
use this insight to obtain a convex inner-approximation of this non-convex inequality as
follows.
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Proposition 2 A convex inner approximation of (3.19) can be obtained as the intersection of the

two second-order cone constraints in the variables {hj
t, M̃j

t, K̃j
t, {M̄

j,b
t , K̄j,b

t }
|Bt,j|−1
b=1 , ηt,j}:

a0 + a⊤1 hj
t − b ≥

∥∥∥∥∥
[

Σt(M̃
j⊤
t a2 + a3ηt,j)

Σt,jL
j⊤
t (K̃j⊤

t a4 + a5ηt,j)

]∥∥∥∥∥
2

,

a0 + a⊤1 hj
t − b ≥∥∥∥∥∥

[
Σt(M̃

j⊤
t a2 + ηmax ∑

|Bt,j|−1
b=1 M̄j,b⊤

t a2 + a3ηt,j)

Σt,jL
j⊤
t (K̃j⊤

t a4 + ηmax ∑
|Bt,j|−1
b=1 K̄j,b⊤

t a4 + a5ηt,j)

]∥∥∥∥∥
2

(3.20)

With the new variable definitions, constraint (3.18a) takes the form ∑J
j=1 pt,jΦ(ηt,j) ≥

1 − ϵ, which is convex in ηt,j, but difficult to enforce since Φ(·) lacks a closed-form
expression. For η ∈ [0, ηmax], we approximate Φ(η) by a concave function Ψ(η) =
mini=1,..,ν{q1

i η + q0
i } such that Φ(η) ≥ Ψ(η), and replace (3.18a) with the convex inner-

approximation:
J

∑
j=1

pt,jΨ(ηt,j) ≥ 1− ϵ (3.21)

A candidate approximation of Φ(·) over [0, 2] with ν = 2 affine functions is shown in
Fig. 3.5 Thus, the non-convex constraints (3.18a), (3.18b) can be replaced by the con-

Figure 3.5: Ψ(η) as a concave under-approximation of Φ(η)

vex inner-approximations provided by the Second-Order Cone (SOC) constraints (3.21),
(3.20).

SMPC Optimization Problem
The cost (7.1a) of the SMPC optimization problem (7.1) is chosen as a convex quadratic
function to penalise deviations of the AV state and input trajectories from the reference
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trajectory (3.4) as

Ct(xt, ut) =
N−1

∑
k=0

∆x⊤k+1|tQ∆xk+1|t + ∆u⊤k|tR∆uk|t

where Q, R ≻ 0. Let ΘMPC
t (xt, ot; Tt) denote the set of policy parameters and risk levels,

θt := {hj
t, M̃j

t, K̃j
t, {M̄

j,b
t , K̄j,b

t }
|Bt,j|−1
b=1 , ηt,j}J

j=1

such that they satisfy

1. the SOC reformulations (3.20), (3.21) of the multi-modal state-input and collision
avoidance constraints (3.9), (3.17),

2. structural constraints given by Tt.

We use the single-shooting/batch formulation for the optimal control problem using the
linearized dynamics (3.8) so that the only decision variables in the optimization problem
are the policy parameters θt. Since the state-input predictions (∆xt,j, ∆ut,j) are affine in
the policy parameters θt, the cost function Ct(·) is quadratic in θt.

Proposition 3 The SMPC (3.7) for the AV can be synthesized by solving the second-order cone
program:

min
θt

J

∑
j=1

pt,jE
[
Ct(xt,j, ut,j)

]
s.t θt ∈ ΘMPC

t (xt, ot; Tt) (3.22)

3.4 Numerical Validation
In this section, we investigate the proposed algorithm, both qualitatively and quantita-
tively. To assess the benefits of our proposed stochastic MPC formulation, we demon-
strate our approach in three different scenarios: (A) Longitudinal control with a traffic light
and a following vehicle, (B) Unprotected left turn at an intersection, and (C) Lane change on a
straight road. In scenario (A), we validate the proposed algorithm in a simple 1-D sim-
ulation and show the qualitative behavior of our SMPC in managing the multi-modal
predictions. In scenarios (B) and (C), we use CARLA [45] for the simulator and adopt
the motion predictor MultiPath [37] to predict the multi-modal future motions of sur-
rounding vehicles. In these scenarios, we provide a quantitative study of our approach
against baselines.
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Qualitative analysis: Longitudinal control with a traffic light and a
following vehicle

Setup

Consider the situation in Fig.3.1a, where the AV is approaching a Traffic Light (TL) with
a tailgating TV behind. All vehicles and the traffic light are simulated in a simple 1D
simulator. Both vehicles are modelled as double integrators with Euler discretization
(@dt = 0.1s) as follows:

xt =
[
st vt

]⊤ , ut = at,

xt+1 =

[
1 dt
0 1

]
xt +

[
0.5dt2

dt

]
ut,

ot =
[
so

t vo
t
]⊤ , uo

t = ao
t ,

ot+1 =

[
1 dt
0 1

]
ot +

[
0.5dt2

dt

]
uo

t + wo
t ,

wo
t ∼ N (0, 0.6I2),

(3.23)

where each state comprises the longitudinal position and speed, each input is the accel-
eration, and wo

t is an additive process noise in the TV dynamics. For our simulation, the
initial states of the AV and the TV are set to x0 = [0, 13.9], o0 = [−12.75, 14] so that 1)
TV has a 0.7s time headway behind the AV, 2) there is enough distance for the AV to
brake at 0.7g and stop at the TL, which is located 50m ahead of the AV, i.e., s f = 50m.

The AV is subject to state-input constraints X × U = {(x, u) : v ∈ [vmin, vmax], a ∈
[amin, amax]} and collision avoidance constraints C = {(x, o) : s − o ≥ dsa f e}, where
vmin = 0m/s, vmax = 14m/s, amin = −7m/s2, amax = 4m/s2, dsa f e = 7m.

For simplicity, we assume that the driver in the TV has good decision-making skills
based on the previous observations. In particular, we assume the following:

• When the TV’s driver is confident that the TL will remain yellow until the TV
crosses with a probability of 1, the TV will maintain its speed.

• When the TV’s driver is not confident that the TL will remain yellow, they will
choose to brake. Here, we assume the probability of either red or yellow light is
0.5 conditioned on the TV choosing to brake.

• The TV’s driver will make a decision when the TV passes a certain point, i.e.,
so

t ≥ sdec.

Under this assumption, there are three possible modes:

• mode 0: TV keeps speed, TL stays yellow,

• mode 1: TV brakes, TL stays yellow,
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• mode 2: TV brakes, TL goes red before AV crosses.

The AV does not know the true mode σ ∈ {0, 1, 2}. The AV estimates the probabili-
ties of each mode as pt = [pt,0, pt,1, pt,2] using Bayes’ rule via observations of the TV’s
state history o0, o1, ..ot after crossing sdec. The tree structure Tt for the predictions is de-
termined by rolling out the TV’s acceleration commands and branching into the three
modes based on when it crosses sdec.

The chance constraints are imposed with risk level ϵ = 0.01. For deriving the
variable-risk reformulations of multi-modal chance constraints (3.9),(3.17) as shown in
Section 3.3, we use Ψ(η) as depicted in Fig. 3.5 as the concave under-approximation of
the CDF Φ(η) over η ∈ [0, 2]. For stopping at s f in mode 2, we enforce the terminal
constraint X f = {x = [s, v] ∈ X : v2 ≤ −2amin(s f − s)}.

The SMPC cost is given as Ct(xt,j, ut,j) = ∑t+N
k=t −Qsk+1|t,j + Ru2

k|t,j over prediction
horizon N = 12 with Q = 10, R = 20 to penalize slow progress and control effort.

Simulations

We run two different simulation scenarios, where true modes are σ = 0 and σ = 2,
respectively. Note that the AV does not know the true mode and estimates the mode
after TV crosses the decision point so

t ≥ sdec. We compare the proposed SMPC in (3.22)
(Proposed in Fig. 3.6) with an open-loop approach (OL in Fig. 3.6), where the AV solves
an SMPC with fixed-risk levels for each mode, and optimizes over a single open-loop
sequence ht i.e., the gains K j

k|t, Mj
l,k|t in (5.6) are eliminated. The results are illustrated in

Fig. 3.6.

Discussion

As depicted in Fig. 3.6, the open-loop approach is unable to exploit the mode probabil-
ities and is infeasible throughout the simulation, leading to a collision with the TV. In
contrast, the proposed approach accordingly accelerates to cross the yellow TL in the
first realization, while it decelerates to a stop in the second realization (without knowing
the true mode σ) after the TV crosses the decision point so

t ≥ sdec (around t = 30 sec).
This closed-loop behavior results from the estimation of the mode probabilities and the
incorporation of the multi-modal probability estimates in the chance constraints as in
(3.21).
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Figure 3.6: Closed-loop plots for the longitudinal control example for modes σ = 0, 2 by solving
(3.22) for the SMPC. Proposed is our proposed approach and OL is the open-loop approach. The
traffic light (TL) is located at s f = 50m. The AV is unaware of the true mode σ, but estimates the
mode probabilities from TV observations. Using the proposed approach, the AV is able to cross
the TL for σ = 0 and safely stop before the TL for σ = 2. Code: https://github.com/shn66/AV_

SMPC_Demos/tree/TL_eg.

https://github.com/shn66/AV_SMPC_Demos/tree/TL_eg
https://github.com/shn66/AV_SMPC_Demos/tree/TL_eg
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Table 3.1: Closed-loop performance comparison across all scenarios.

Scenario Policy Safety Solver Performance
F (%) d̄min (m) T̄solve (ms)

Unprotected left
OL 98.37 3.09 31.5

Fixed risk 98.37 3.09 31.5
Proposed 99.88 3.07 39.9

Lane change
OL 82.55 3.42 35.6

Fixed risk 96.08 3.21 325.20
Proposed 98.76 3.19 397.19

Quantitative analysis: Unprotected left turn and Lane change with
surrounding vehicles

(a) Unprotected left (b) Lane change

Figure 3.7: Carla simulation setup for unprotected left turn and lane change for AV (green)
in the presence of TVs (orange) and multi-modal predictions (depicted by the ellipses). Code:
https://github.com/shn66/SMPC_MMPreds

Setup

Consider the two scenarios as depicted in Fig. 3.7:

• Unprotected left: the AV makes a left turn through the intersection while avoiding
an oncoming TV.

• Lane change: the AV changes into the left lane in the presence of two TVs: One
ahead in the same lane and another behind in the adjacent lane.

All vehicles are simulated in a synchronous fashion in CARLA, ensuring that all pro-
cessing (prediction, planning, and control) is complete before advancing the simulation.

https://github.com/shn66/SMPC_MMPreds
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Thus, our results only consider the impact of the control and not the time delays incurred
in computation.

The TVs’ controls are given by a simple nonlinear MPC to go straight, with a kine-
matic bicycle model for predictions and simple distance-based collision avoidance con-
straints. From the AV’s perspective, the predictions of the TV’s motion are given by
a GMM for multi-modal trajectory predictions of the form (3.5). We obtain this multi-
modal distribution along with mode probabilities online using the MultiPath prediction
model from [37]. Given the predicted multimodal distributions for the TVs, we use
the framework introduced in Section 3.3 to generate feedback control policies, and use
Fig. 3.5 for the CDF approximation. A dynamically feasible AV reference trajectory (3.4)
is obtained by solving a nonlinear trajectory optimization problem for a kinematic bicy-
cle using IPOPT [132] to track a high-level route (provided by the CARLA waypoint API).
Given the AV reference (3.4) and TV predictions (3.5), the SMPC optimization problem
(3.22) is solved using Gurobi [57] to compute the acceleration and steering controls.

Policies

We evaluate and compare the following set of policies for this unprotected left scenario:

• Proposed: Our proposed framework, given by solving (3.22) which optimizes over
both, policies and risk levels for the multi-modal chance constraint (3.18a), (3.18b).

• Fixed risk: An ablation of our approach, which optimizes over policies but with
fixed risk levels rt,j = 1− ϵ for the multi-modal chance constraint (3.18a), (3.18b).

• OL: An ablation of our approach, where the gains K j
k|t, Mj

l,k|t are eliminated and
risk levels are fixed too.

Note that Proposed and OL in this section are the same algorithms that were compared
in Sec. 3.4.

Evaluation Metrics

We evaluate the closed-loop behavior of the policies in terms of safety and computational
efficiency. The following metrics are used to assess these factors:

• Safety: 1) F : Feasibility % of the SMPC optimization problem. A high F value
is desirable, as infeasibility of the SMPC can potentially lead to accidents. 2) d̄min:
Closest distance between the AV and TV of each algorithm, provided that the algo-
rithm remains feasible. A higher d̄min indicates that the algorithm should be more
conservative to maintain safety. This caution can lead to reduced feasibility when
the algorithm encounters congested urban road driving scenarios.

• Solver Performance: 1) T̄solve: Average time taken by the solver; lower is better.
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Discussion

Now, we present the results of the various SMPC policies. For each scenario, we roll
out each policy for 50 different initial conditions by varying: 1) starting positions within
[−5m, 5 m] and 2) nominal speed in [8m/s, 10m/s]. For all the policies, we use a pre-
diction horizon of N = 10, a discretization time-step of dt = 0.2 s, and a risk level of
ϵ = 0.02 for the chance constraints in the SMPC.

The performance metrics, averaged across the initial conditions, are shown in Ta-
ble 5.1. There is a noticeable improvement in safety, as the Proposed can stay close to
the TV-free reference trajectory and keep a safe distance from the TV. Proposed was also
able to find feasible solutions for the SMPC optimization problem more often our ex-
periments because the formulation optimizes over policies and risk levels for the multi-
modal constraints. Finally, we see that the OL is the fastest in solve time (because of
the missing policy and risk variables). However, we see that introducing the additional
risk level variables only marginally increases the solve time on comparing Proposed and
Fixed risk. The higher solve times for the proposed approach in the lane change scenario
are because of the additional TV and its associated multi-modal predictions. To remedy
this issue for the hardware experiments in the next section, we use a multi-threaded
implementation as described in Fig. 3.10b to solve the SMPC.

The results highlight the benefits of optimizing over policies and incorporating the
variable risk formulation in the SMPC formulation (7.1) for the AV, towards collision
avoidance with multi-modal predictions of the TV.

3.5 Experimental Validation
In this section, we validate our approach in hardware vehicle experiments to assess the
benefits of our proposed stochastic MPC formulation. The experiment videos can be
accessed at https://shorturl.at/ctQ57.

Test scenario and key takeaways

In the hardware experiment, we consider the same lane-change scenario introduced in
Sec. 3.4, wherein AV initiates a lane change maneuver with a leading TV ahead of the
AV in the same lane and a trailing TV behind the AV in the adjacent lane as illustrated
in Fig. 3.8. In this scenario, AV predicts multi-modal behaviors of other TVs and tries
to minimize the risk of collisions for every possible mode. As illustrated in Fig. 3.8, AV
predicts two different modes of TVs: keeping their lanes or changing lanes. However,
TVs will not change their lane until the end of this scenario.

We compare the proposed SMPC (Proposed) with the OL, introduced in Sec. 3.4.
The results in Fig. 3.12 show that while the OL cannot find a feasible solution due
to its conservativeness of the constraint tightening formulation, Proposed successfully
accomplishes the given scenario without any collisions. When OL problem becomes

https://shorturl.at/ctQ57
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infeasible, we change the control policy OL to a backup control policy: keeping the
current lane and decelerating mildly. This abrupt policy change can deteriorate the
comfort indices and it is more likely that tracking previous optimal trajectories from
OL leads to smoother behaviors. However, due to safety concerns, we tried to stop the
vehicle within the current lane.

Furthermore, we study how the predicted mode probability of the leading TV affects
the closed-loop behavior. Compared to the case that the leading TV is likely to keep its
lane (plk = 0.9), Proposed sets more margin in a lateral direction to avoid the collision
in case the leading TV changes lanes (plk = 0.1) as illustrated in Fig. 3.13.

Figure 3.8: Drone view of the testing scenario including AV (red) and 2 TVs (blue) with
predictions (yellow and green circles)

Hardware Architecture for Experiments

The test vehicle and the hardware setup are illustrated in Fig. 3.9. The computing unit
of the system consists of three computers: a Linux-based laptop, a Linux-based rugged
computer, and the dSPACE MicroAutoBox II (MABXII). The laptop is for simulating
virtual environments and transmitting all information such as states of surrounding
vehicles. The rugged PC is for implementing a planning and control software stack that
plans the ego vehicle’s behavior, generates dynamically feasible, safe trajectories, and
calculates acceleration and yaw rate to track the generated trajectories. The MABXII is
for implementing an actuator-level controller that calculates actuator control inputs and
a fail-safe logic that provides safety features.
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Figure 3.9: The hardware setup in the actual vehicle

The sensors of the system are an OxTS RT3000: a differential GPS to localize the ego
vehicle and production vehicle sensors to acquire vehicle state information.

Software Architecture for Experiments

The overall block diagram of control architecture and the entire system is illustrated in
Fig. 3.10a. In the following subsections, we describe the comprehensive details of this
experimental setup.

(a) Control signal flow (b) Trajectory planner architecture

Figure 3.10: Diagram of Control Architecture

Planning and Control Software Stack

The developed hierarchical control system consists of a lane selector, a trajectory planner,
and a vehicle controller. First, the lane selector determines the target lane for the ego
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vehicle. Second, given the target lane, the trajectory planner [68] generates a smooth,
comfortable trajectory to the target lane by solving a nonlinear optimization problem.
The calculated trajectory serves as the reference (3.4) for the proposed SMPC. Then the
proposed SMPC (3.22) is solved to determine acceleration and yaw rate commands that
satisfy state/input constraints. A kinematic bicycle model (3.1) is employed for the AV
predictions in the SMPC optimization problem, which is modelled with CasADi and
solved using Gurobi. For computing the SMPC commands at 10 Hz, we employ a multi-
threaded architecture that computes the gains K j

k|t, Mj
l,k|t and feedforward terms hj

k|t at
different frequencies as depicted in Fig. 3.10b. Finally, the vehicle actuator controller
calculates steering wheel angle and wheel torque commands from the optimal inputs of
the proposed SMPC (3.22).

Virtual Environment Simulator (Digital Twin)

To conduct real-world vehicle tests safely and efficiently, we employ a Vehicle-In-the-
Loop (VIL) system as outlined in [68], which integrates the operation of an actual vehicle
with a virtual environment simulation.

The CARLA [46] software is the primary simulator to build virtual environments and
simulate a variety of scenarios with ease. The virtual environment simulator constructs
all components such as road networks, other vehicles, traffic infrastructures, buildings,
and so on to replicate the real-world map. Fig. 3.11 shows the generated CARLA map,
the satellite image of the testing site, and the actual test vehicle.

Figure 3.11: The CARLA image, the satellite image of the testing site (RFS) and the actual
vehicle image

On the customized map, the CARLA simulates a traffic scenario with the same initial
conditions such as the number of spawned vehicles, the locations of the vehicles, etc. It
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is worth noting that the CARLA simulator exhibits inherent randomness in the motion
of each virtual vehicle, resulting in variations in the resulting traffic scenario. We also
synchronize the real world with the virtual world in terms of the physical AV. Based on
the obtained coordinate data from dGPS/IMU sensors, the simulator generates an agent
in the virtual world and teleports the vehicle by updating the position and orientation
of the agent every time it receives data from the actual sensors.

Experiment Results

Our experiment setup parameters are described as follows. The AV initiates motion with
an initial speed of zero. The leading TV begins its movement 10 meters ahead of the AV
in the same lane, while the trailing TV starts from a position 25 meters behind the AV
in the adjacent lane. Both Target Vehicles maintain a consistent average speed of 4m/s.
Each of the TVs operates in two distinct modes: Lane Keeping (LK) and Lane Change
(LC). The trailing TV equally splits its mode probability, with a 50% chance of LK and
a 50% chance of LC. To investigate the impact of varying mode probabilities, we change
the probability of the mode chosen by the leading TV.

The conducted tests are executed at the Richmond Field Station (RFS), as illustrated
in Fig. 3.11. The hardware experiments are primarily divided into two segments. The
first segment involves a comparison between our approach (which optimizers over multi-
modal policies and risk levels) against a baseline that only optimizes over multi-modal
open-loop sequences with fixed risk levels for each mode (this is OL from Section 3.4).
The second segment focuses on assessing the behavioral outcomes resulting from alter-
ations in the probability of the surrounding vehicle’s lane change mode and lane keeping
mode.

Proposed vs OL

Within the identical scenario, we conduct testing using two distinct control policies: Pro-
posed in Sec. 3.4 and OL in Sec. 3.4. When the SMPC problem becomes infeasible, a
lane-keeping controller with mild braking takes over the control. In an ideal practi-
cal application, a human driver should take over the control but due to our hardware
limitations, we utilize the lane-keeping controller as a backup controller.

Fig. 3.12 presents the closed-loop behaviors: a lateral error ey and a heading error
eψ with respect to a centerline, vehicle speed, steering wheel angle, and longitudinal
acceleration. The graphs clearly illustrate that the OL yields infeasible solutions, leading
to abrupt and undesirable motions with constraint violations. Conversely, the Proposed
consistently generates feasible solutions, facilitating smooth motions in accordance with
the predefined constraints.
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Change of mode probability

In the second part, we proceed with testing under the Proposed while varying the lane-
keeping probability of the leading TV. Specifically, we compare the case that the leading
TV is likely to keep its lane (plk = 0.9) with the case that the leading TV changes lanes
(plk = 0.1). In Fig. 3.13’s lateral error (ey) graph, it is evident that the lateral distance
is greater in the scenario with a lower lane-keeping probability. This observation aligns
with the intuitive analysis that the resulting control policy prioritizes the lane change
maneuver of the leading vehicle to the lane currently occupied by the AV. Due to the
presence of collision avoidance constraints, the AV endeavors to evade the anticipated
trajectory of the leading TV by maintaining larger lateral safety margins.

3.6 Conclusion
We proposed a Stochastic MPC formulation for autonomous driving with multi-modal
predictions of surrounding vehicles. We provide a convex formulation for simultane-
ously (1) optimizing over parameterized feedback policies and (2) allocating risk levels
to each mode for multi-modal chance constraint satisfaction. This enhances the fea-
sibility and closed-loop performance of the SMPC algorithm, as demonstrated by our
simulations and hardware experiments.
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Figure 3.12: Comparison: Proposed vs OL. (a) Lateral error with respect to the centerline of
the original lane. eref

y denotes the reference, (b) Heading error with respect to the centerline, (c)
Vehicle longitudinal speed, (d) Steering wheel angle, and (e) Longitudinal acceleration. Proposed
makes the ego vehicle keep the lateral distance (ey) close to the reference while satisfying the
multi-modal collision avoidance constraints. In contrast, the OL becomes infeasible during the
task.
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Figure 3.13: Comparison: plk = 0.1 vs plk = 0.9. (a) Lateral error with respect to the centerline
of the original lane. eref

y denotes the reference, (b) Heading error with respect to the centerline,
(c) Vehicle longitudinal speed, (d) Steering wheel angle, and (e) Longitudinal acceleration. Com-
pared to the case that the leading TV is likely to keep its lane (plk = 0.9), Proposed sets more
margin in a lateral direction to avoid the collision in case the leading TV changes lanes (plk = 0.1)
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3.7 Appendix

Matrix definitions

∆ut,j = hj
t + Mj

twt + Kj
t(ot,j − µt,j) {Stacked Control Policy}

hj
t = [hj⊤

t|t . . . hj⊤
t+N−1|t]

⊤, Kj
t = blkdiag

(
K j

t|t, . . . , K j
t+N−1|t

)
,

Mj
t =



O . . . . . . . . . O
Mj

t,t+1|t O . . . . . . O
...

...
...

...
Mj

t,k|t . . . Mj
k−1,k|t O . . . O

...
...

...
...

Mj
t,t+N−1|t . . . . . . Mj

t+N−2,t+N−1|t O


(3.24)

∆xt,j = At∆xt|t + Bt∆ut,j + Etwt {Stacked EV Predictions}

At =


I4

At|t
...

t+N−1
∏
k=t

Ak|t

 , Bt =


O . . . . . . O

Bt|t O . . . O
...

. . . . . .
...

t+N−1
∏

k=t+1
Ak|tBt|t . . . . . . Bt+N−1|t

 ,

Et =



O . . . . . . O
I4 O . . . O

At+1|t I4 . . . O
...

. . . . . .
...

t+N−1
∏

k=t+1
Ak|t . . . . . . I4


,

(3.25)

∆ot,j = Tj
tot|t + Cj

t + Fj
tnt,j {Stacked TV Predictions}

Tj
t =



I2
Tt|t,j

Tt+1|t,jTt|t,j
...

t+N−1
∏
k=t

Tk|t,j


, Cj

t =



O
ct|t,j

ct+1|t,j + Tt+1|t,jct|t,j
...

ct+N−1|t,j +
t+N−1

∑
k=t

t+N−1
∏

l=k+1
Tl|t,jck|t,j


,

Lj
t =



O . . . . . . O
I2 O . . . O

Tt+1|t,j I2 . . . O
...

. . . . . .
...

t+N−1
∏

k=t+1
Tk|t,j . . . . . . I2



(3.26)

Σw = IN ⊗ Σw, Σ
j
n = blkdiag(Σt|t,j, . . . , Σt+N−1|t,j) (3.27)

Q = IN+1 ⊗Q, R = IN ⊗ R, (3.28)
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Proof of proposition 1

First note that Pi
k|t,j is defined such that gi

k|t,j(Pi
k|t,j, µi

k|t,j) = 1. For any convex func-

tion f (x), we have ∀x0, x : f (x) ≥ f (x0) + ∂x f (x0)(x − x0). Since we gi
k|t,j(·) is con-

vex, we have gi
k|t,j(P, o) ≥ gi

k|t,j(Pi
k|t,j, µi

k|t,j) + li
k|t,j(P, o) = 1 + li

k|t,j(P, o). So li
k|t,j(P, o) ≥ 0 ⇒

gi
k|t,j(P, o) ≥ 1, and ∀k = t + 1, . . . , t + N,

J

∑
j=1

pt,jP(li
k|t,j(Pi

k|t, oi
k|t,j) ≥ 0 ) ≥ 1− ϵ

⇒
J

∑
j=1

pt,jP(gi
k|t,j(Pi

k|t, oi
k|t,j) ≥ 1) ≥ 1− ϵ

■

Proof of Proposition 2
First, we note the following auxilliary result: For a convex function f (·) and x ∈
[xmin, xmax] ⊂ R, if f (xminy) ≤ 0, f (xmaxy) ≤ 0, then f (xy) ≤ 0 for any x ∈ [xmin, xmax].
Now suppose that (3.20) holds, and use the above result for an arbitrary η̃t,j = γηmax +
(1− γ)0 with γ ∈ [0, 1] to get:

a0 + a⊤1 hj
t − b ≥∥∥∥∥∥

[
Σt(M̃

j⊤
t a2 + η̃t,j ∑

|Bt,j|−1
b=1 M̄j,b⊤

t a2 + a3ηt,j)

Σt,jL
j⊤
t (K̃j⊤

t a4 + η̃t,j ∑
|Bt,j|−1
b=1 K̄j,b⊤

t a4 + a5ηt,j)

]∥∥∥∥∥
2

Since, η̃t,j is arbitrary, the desired result is obtained by setting η̃t,j = ηt,j. ■

Proof of proposition 3

The set of feasible policy parameters ΘMPC
t (xt, ot; Tt) is given by SOC constraints by

construction. It remains to show that the cost function is quadratic, presented below:

Ct(xt, ut) =
J

∑
j=1

pt,jE

(
t+N−1

∑
k=t

∆x⊤k+1|tQ∆xk+1|t + ∆u⊤k|tR∆uk|t

)

= −∆x⊤t|tQ∆xt|t +
J

∑
j=1

pt,jE(∆x⊤t,jQ∆xt,j + ∆u⊤t,jR∆ut,j)

=
J

∑
j=1

pt,j

[
hj⊤

t (B⊤t QBt + R)hj
t + 2∆x⊤t|tA

⊤
t QBth

j
t + ∆x⊤t|t(A

⊤
t QAt −Q)∆xt|t

+ tr
(
ΣwMj⊤

t (B⊤t QBt + R)Mj
t + Lj

tΣnLj⊤
t Kj⊤

t (B⊤t QBt + R)Kj
t + ΣwE⊤t QEt

)]
Since the cost is quadratic in θt, we have that (3.22) is a SOCP. ■
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Chapter 4

Output-lifted Learning Model Predictive
Control

4.1 Overview
Infinite-horizon optimal control has a long and celebrated history, with the cornerstones
laid in the 1950s by [106] and [14]. The problem involves seeking a control signal that
minimizes the cost incurred by a trajectory of a dynamical system starting from an initial
condition over an infinite time horizon. While certain problem settings admit analyti-
cal solutions (like unconstrained LQR [77]), the infinite-horizon optimal control problem
for general nonlinear dynamical systems subject to constraints, is challenging to solve.
This is because these problems require the numerical solution of an infinite-dimensional
optimization problem, which is intractable even in the discrete-time setting (where the
solution is an infinite sequence of control inputs instead of a control input signal). Model
Predictive Control (MPC) is a methodology for tractable synthesis of feedback control of
constrained nonlinear discrete-time systems. The control action at every instant requires
the solution of a finite-horizon optimal control problem with a suitable constraint and
cost on the terminal state of the system to approximate the infinite-horizon problem.
These terminal components are designed so that the closed-loop system is stabilized to
a desired goal set and satisfies constraints. This is achieved by constraining the terminal
state to lie in a control invariant set containing the goal set, with an associated Control
Lyapunov function (CLF) [88]. The computation of these sets with an accompanying
CLF for nonlinear systems is challenging in general, and typically require local approxi-
mations of the nonlinear dynamics around the goal set [49, 21, 19]. Global constructions
of these components has been studied for systems with polynomial dynamics using
sum-of-squares (SOS) programming [127, 74]. However the resulting SOS programs are
often difficult to solve for high-dimensional systems, and moreover, are challenging to
incorporate into (1.4) for efficient computation of the MPC policy

The Learning Model Predictive Control (LMPC) strategy proposed in [114] iteratively
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constructs a control invariant terminal set and an accompanying terminal cost function
in an online fashion using historical data. The terminal set is defined as a discrete set
of past states and the terminal cost is only defined at these points and so the LMPC
relies on the solution of a Mixed-Integer Nonlinear Program (MINLP) at each instant
for guaranteed stability and constraint satisfaction. At each iteration, a feasible solution
to an infinite-horizon optimal control problem is obtained in an MPC framework. The
terminal set is recursively defined as the set of states obtained from previous iterations
and for each state in the set, the terminal cost is simply defined to be the cost incurred
by the obtained trajectory starting from that state. The LMPC has been shown to sta-
bilize constrained nonlinear systems while decreasing the cost incurred by trajectories
with every successive iteration. However these guarantees require solving a MINLP for
computing the MPC which may be prohibitive for real-time control. In [113], the au-
thors convexify the terminal set and the cost function and show that for linear systems,
the stability and iterative cost improvement properties of the LMPC are preserved while
ensuring that system operates within constraints. In this chapter, we propose a strategy
to reduce the computational burden of LMPC for a class of nonlinear systems by replac-
ing the discrete terminal set, cost with continuous, convex ones while still maintaining
safety and performance guarantees. Moreover, these quantities are computed without
any local approximations of the nonlinear dynamics.

We consider discrete-time nonlinear systems for which the state and input can be
reconstructed using certain system output sequences, which are defined as lifted outputs.
These outputs sequences are constructed using flat outputs [56] which have also been
used in [9] to construct dynamic feedback linearizing inputs for discrete-time systems.
Existing work on constrained control for such systems require a carefully designed ref-
erence trajectory which is then tracked using MPC with a linear model obtained either
by a first order approximation [43] or by feedback linearization [135, 55, 71, 6, 4]. In
both cases, there are no formal guarantees of closed-loop system stability and constraint
satisfaction, except in [6] and [4]. [6] proposes a model-free, data-driven approach based
on Willem’s fundamental lemma for Robust MPC by using input-output data of the
feedback-linearized system. However, the formulation can not enforce state constraints
for a recursively feasible Robust MPC scheme. In [4] a model-based hierarchical ap-
proach is considered: a Robust MPC scheme with the feedback-linearized dynamics
provides a reference trajectory, and a low level tracking controller for original nonlinear
system is designed to track the reference trajectory. The approach in [4] does not address
input constraints, and the terminal set is chosen as the desired goal set.

Contributions

1. We iteratively construct convex control invariant sets and CLFs in the space of
lifted outputs using historical trajectory data for flat nonlinear systems. These
constructions capture the global, nonlinear dynamics of the system using data.
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2. We propose an iterative Robust LMPC strategy for nonlinear systems with uncer-
tainty that iteratively collects data for learning (i) the control invariant sets and
CLFs, and (ii) the model uncertainty using ideas from Chapter 2

3. Our iterative approach rigorously provides closed-loop guarantees of i) constraint
satisfaction, ii) convergence to a desired set, iii) non-decreasing closed-loop sys-
tem performance across iterations. This is validated via numerical simulations for
optimizing an autonomous racing trajectory over a chicane.

4.2 Problem Formulation
Consider a nonlinear discrete-time system given by the dynamics

xt+1 = f (xt, ut) + dt, dt ∈ D(xt, ut) (4.1)

where xt ∈ Rn and ut ∈ Rm are the system state and input respectively at time t, and
f (·, ·) is a known, continuous function. As in Chapter 2, the disturbance dt is assumed
to belong to compact set D(xt, ut), where D(·) is a set-valued map, D : Rn+m → 2Rn

.
The map D(·) is unknown and represents unmodelled dynamics. We assume that this
map satisfies the incremental property stated by the following assumption.

Assumption 4.1 The unknown set-valued map D(·) satisfies the following quadratic constraints,
for any q = (x, u), q′ = (x′, u′) in Rn+m: 1

q− q′

d− d′

⊤ Q

 1
q− q′

d− d′

 ≥ 0, ∀d ∈ D(q), ∀d′ ∈ D(q′),
∀Q ∈ Q

where Q = {Q(1), . . . , Q(nQ)} is a known, finite set of symmetric matrices. Additionally, D(z)
is compact for all z ∈ Rn+m.

Also define the nominal nonlinear discrete-time system,

x̄t+1 = f (x̄t, ūt) (4.2)

where x̄t ∈ Rn, ūt ∈ Rm, are the nominal system state and input at time t. The output ȳt
is a difference flat output [56], and is used to construct the lifted output for the nominal
system (4.2) as discussed next.

Definition 4.1 Let ȳt = h(x̄t) with h : Rn → Rm be the output of system (4.2). If ∃R ∈ N

and a function F : Rm×R+1 → Rn×Rm, such that any state/input pair (x̄t, ūt) can be uniquely
reconstructed from a sequence of outputs ȳt, . . . , ȳt+R as

(x̄t, ūt) = F ([ȳt, ȳt+1, . . . , ȳt+R]), (4.3)
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then the lifted output is the matrix

Ȳt = [ȳt, . . . , ȳt+R] ∈ Rm×R+1. (4.4)

Remark 4.1 For linear discrete-time systems, the existence of the lifted output is equivalent to the
system being controllable and strongly observable with the output yt = Cxt [140]. For nonlinear
systems, flat outputs exist for systems that admit a dynamic feedback linearizing compensator
[9].

We formally assume the existence of the lifted output for our nominal system along
with some additional structure on the map F (·) next.

Assumption 4.2 We are given an output function ȳt = h(x̄t) with corresponding lifted output
Ȳt for the nominal system (4.2). Moreover, the map F (·) in (4.3) also satisfies the following
properties:

(A) F (·) is continuous, and requires R and R + 1 outputs for identifying the nominal state
and nominal input respectively, i.e.,

x̄t = Fx([ȳt, ȳt+1, . . . , ȳt+R−1]) (4.5)
ūt = Fu([ȳt, ȳt+1, . . . , ȳt+R]) (4.6)

(A) Let F i : Rm×R+1 → R be the ith component of the map F : Rm×R+1 → Rn ×Rm where
i = 1, . . . , n + m. For each i ∈ {1, . . . , n + m}, there exist functions F i,∪, F i,∩ such that
F i,∩(Ȳ) ≤ F i(Ȳ) ≤ F i,∪(Ȳ) where F i,∩ is quasiconcave and F i,∪ is quasiconvex, i.e.,

∀Ȳ1, Ȳ2 ∈ Rm×R+1, ∀t ∈ [0, 1] :

min{F i,∩(Ȳ1),F i,∩(Ȳ2)} ≤ F i,∩(tȲ1 + (1− t)Ȳ2),

F i,∪(tȲ1 + (1− t)Ȳ2) ≤ max{F i,∪(Ȳ1),F i,∪(Ȳ2)}.

The additional structure imposed by Assumption 4.2 is used for constructing invariant
sets for (4.1), (4.2) using historical data, which will be clarified in Section .

Example 4.1 Consider the kinematic bicycle, described by the Euler-discretized dynamics

Xt+1 = Xt + dt(vt cos(θt))

Yt+1 = Yt + dt(vt sin(θt))

θt+1 = θt + dt(
vt

L f
tan−1(

Lr

L f + Lr
tan(δt)))

with states x̄t = [Xt, Yt, θt] and controls ūt = [vt, δt. For the output ȳt = [Xt, Yt], the states
are reconstructed as [Xt, Yt] = ȳt, θt = tan−1( [0 1](ȳt+1−ȳt)

[1 0](ȳt+1−ȳt)
) and the inputs are reconstructed
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as vt = ∥ȳt+1−ȳt∥
dt , δt = tan−1(

L f +Lr
Lr

tan(
L f (θt+1−θt)

dtvt
)) (which involves ȳt, ȳt+1, ȳt+2), and so

R = 2.
For Assumption 4.2((A)), the states can be reconstructed from two consecutive outputs alone,

i.e., Fx(ȳt, ȳt+1) = [ȳt, tan−1( [0 1](ȳt+1−ȳt)
[1 0](ȳt+1−ȳt)

)].
For Assumption 4.2((A)), the bounding functions corresponding to the states are

[F 1,∩(Ȳt),F 2,∩(Ȳt)] = [F 1,∪(Ȳt),F 2,∪(Ȳt)] = ȳt

F 3,∩(Ȳt) = F 3,∪(Ȳt) = tan−1(
[0 1](ȳt+1 − ȳt)

[1 0](ȳt+1 − ȳt)
)

if [1 0](ȳt+1 − ȳt) > 0 (∵ composition of quasi-linear function [0 1](ȳt+1−ȳt)
[1 0](ȳt+1−ȳt)

with monotoni-

cally increasing function tan−1(·) is both quasi-convex and quasi-concave). For the bounding
functions of the inputs, we have for example,

F 4,∩(Ȳt) = 0,F 4,∪(Ȳt) =
∥ȳt+1 − ȳt∥

dt
F 5,∩(Ȳt) = −

π

2
,F 5,∪(Ȳt) =

π

2

Remark 4.2 Assumption 4.2((A)) is naturally satisfied by flat, simple mechanical systems [94]
(where the system geometry/kinematics are affected by the control inputs via integrators). The
bounding functions F i,∩(·),F i,∪(·) in Assumption 4.2((A)) can be constructed by exploiting
system constraints, and the required properties can be verified via first & second order condi-
tions or composition rules for quasiconvex functions [23]. If F i(·) is both quasiconcave and
quasiconvex already, then the bounding functions are simply F i,∩(·) = F i,∪(·) = F i(·).

System Constraints and Goal Set

In this work, we assume that system (4.1) is subject to state and input constraints given
by box sets {z| lb ≤ z ≤ ub}. We denote the goal set XG = {x ∈ Rn|Agx ≤ bg} as
the set within constraints into which we would like to steer the trajectories of (4.1). We
suppose that this set is control invariant for (4.1) i.e., ∀xt ∈ XG, ∃ut ∈ U ⇒ xt+1 ∈ XG.
We formalize this as the assumption below.

Assumption 4.3 The state constraints X and input constraints U are given by,

X = {x ∈ Rn|lbx ≤ x ≤ ubx},
U = {u ∈ Rm|lbu ≤ u ≤ ubu}.

for some lbx, ubx ∈ Rn and lbu, ubu ∈ Rm. The goal set XG = {x ∈ Rn|Agx ≤ bg} ⊂ X is
robustly control invariant for (4.1),

xt ∈ XG =⇒ ∃ut ∈ U : xt+1 ∈ XG ∀dt ∈ D(xt, ut)
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In subsequent sections, we show that the box constraints are required to exploit the
element-wise bounds on F (·) given in Assumption 4.2((A)). This helps in using system
trajectory data to construct lifted outputs that map to nominal states and inputs within
constraints.

Robust MPC for Nonlinear Systems

Consider the following infinite horizon robust optimal control problem for (4.1) starting
from state x0 = xS:

J∗0→∞(xS) = min
u0,u1(·),...

∑
k≥0

c(xk, uk)

s.t. xk+1 = f (xk, uk) + dk, ∀k ≥ 0
xk ∈ X , uk ∈ U , ∀dk ∈ D(xk, uk) ∀k ≥ 0
x0 = xS.

(4.7)

where the stage cost c(·) is continuous and chosen such that

c(x̄, ū) = 0 ∀(x̄, ū) ∈ XG ×U ,

c(x̄, ū) > 0 ∀(x̄, ū) ∈ Rn+m\XG ×U .

Observe that due to continuity and positive definiteness of stage cost c(·), a trajectory
corresponding to the optimizer of (4.7) must necessarily have its state converge to XG.

We aim to synthesize a state-feedback policy that approximates the solution to the
infinite-horizon (and infinite-dimensional) problem (4.7) such that it captures its most
desirable properties: (i) constraint satisfaction (feasibility) and (ii) asymptotic conver-
gence (bounded cost). To tackle the infinite-dimensional nature of the problem, we pro-
pose to use a rigid/homethetic tube-based [75] Robust MPC formulation which solves
finite-horizon versions of (4.7) at each time step.

Define the error system with state et = xt − x̄t and dynamics

et+1 = fe(et, x̄t, ūt) + dt, dt ∈ D(et + x̄t, ut)

fe(et, x̄t, ūt) = f (et + x̄t, ūt + κ(et))− f (x̄t, ūt) (4.8)

where ut is given as the sum of ūt and error feedback policy κ(et). For a fixed policy
κ(et), a robustly positively invariant set E for the error dynamics (4.8) satisfies,

∀xt ∈ X , ∀ut ∈ U :
et ∈ E ⇒ et+1 ∈ E ∀dt ∈ D(xt, ut). (4.9)

The nominal input ūt is obtained by solving the following finite-horizon optimal control
problem for the nominal system,
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J̄(xt) = min
ūt,x̄t

P(x̄t+N|t) +
t+N−1

∑
k=t

c(x̄k|t, ūk|t)

s.t. x̄k+1|t = f (x̄k|t, ūk|t),

x̄k|t ∈ X̄ , ūk|t ∈ Ū , ∀k ∈ It+N−1
t ,

x̄t+N|t ∈ X̄N,

xt − x̄t|t ∈ E

(4.10)

where ūt = [ūt|t, . . . , ūt+N−1|t], x̄t = [x̄t|t, . . . , x̄t+N|t] are decision variables, and xt is the
current state. The optimal solution of (4.10) provides the nominal control input as

ūMPC
t (xt) = ū⋆

t|t (4.11)

and the resulting feedback controller for system (4.1) is

ut = π(xt) = ūMPC
t (xt) + κ(xt − x∗t|t) (4.12)

The sets X̄ ⊂ X ⊖E and Ū ⊂ U ⊖ κ(E) are tightened nominal state and input constraints,
where κ(E) = {u ∈ Rm|∃e ∈ E : κ(e) = u} to ensure that if x̄t ∈ X̄ , ūt ∈ Ū , et ∈ E , then
xt ∈ X , ut ∈ U . The terminal cost P(·) and terminal set X̄N are designed such that the
oproblem (4.10) has a feasible solution ∀t ≥ 0 for system (4.1) in closed-loop with the
control (4.12), yielding a feasible and stabilizing solution to the infinite-horizon problem
(4.7). Observe that if the optimal cost J∗t→∞(xt) = ∑k≥t c(x∗k , u∗k) was known ∀t ≥ 0
over the state space, setting P(x̄t+N|t) = J∗t+N→∞(x̄t+N|t) solves (4.7) without requiring a
terminal constraint X̄N in (4.10). The other extreme case is setting X̄N = XG⊖E in (4.10)
which would yield a stable and feasible solution without requiring a terminal cost P(·).
That being said, computing J∗t→∞(·) exactly is possible only in trivial cases and setting
X̄N = XG ⊖ E may lead to an infeasible optimization problem if XG ⊖ E is not N−step
reachable from a nominal state x̄0 such that xS − x̄0 ∈ E . The goal is to design X̄N and
P(·) so that (4.10) is feasible for all t ≥ 0 while capturing the convergence properties of
the infinite-horizon robust optimal control problem.

Overview of Proposed Approach

The remainder of this chapter is organized as follows:

1. First, we design the terminal set X̄N by constructing a convex set using lifted output
data {[ȳt, .., ȳt+R−1]}t≥0, and taking its image under the map Fx(·) from Assump-
tion 4.2((A)). We provide a constructive proof in Section 4.3 for showing that this
set is control invariant for the nominal system (4.2): Definition 4.1 and Assumption
4.2((A)) together guarantee the existence of a control input to keep the state inside
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the set X̄N, and Assumption 4.2((A)) ensures that this input is within the input
constraints U . The terminal cost is constructed using Barycentric interpolation in
the space [ȳt, .., ȳt+R−1] and verified to be a Control Lypunov Function (CLF).

2. Second, we use uncertainty quantification technique from Chapter 2 to construct
outer-approximations D̂ of the set

D(X ,U ) =
⋃

(x,u)∈X×U
D(x, u), (4.13)

using trajectory data {(xt, ut)}t≥0 from the real system (4.1). This is used to con-
struct the error invariant E and define the tightened constraints X̄ , Ū .

3. Finally, we present an iterative procedure for collecting trajectory data that robustly
satisfies constraints using a Robust MPC policy. This data is used for learning (i)
the terminal control invariant X̄N and cost P()̇, and (ii) the uncertainty estimate D̂.

In Section 4.6, the resulting trajectories of system (4.1) in closed-loop with the Robust
MPC policy are shown to satisfy constraints robustly, and with non-increasing trajectory
costs across iterations.

4.3 Convex Control Invariant Sets and Control Lyapunov
Functions from Trajectory Data

In this section, we demonstrate how to exploit Assumption 4.2 to construct a control
invariant set within system constraints and a Control Lyapunov function using trajectory
data of the nominal system (4.2). To proceed, we stipulate conditions that the trajectory
data must satisfy.

Define the following sets in the state and input space,

S̄x =

{
x̄ ∈ Rn

∣∣∣∣∣∃ȳ ∈ Rm×R, x̄ = Fx(ȳ)
lbx ≤ F∩x (ȳ),F∪x (ȳ) ≤ ubx

}
(4.14)

S̄u =

{
ū ∈ Rm

∣∣∣∣∣∃Ȳ ∈ Rm×R+1, ū = Fu(Ȳ)
lbu ≤ F∩u (Ȳ),F∪u (Ȳ) ≤ ubu

}
, (4.15)

where F∪x (·) = [F 1,∪(·), . . . ,Fn,∪(·)], F∪u (·) = [Fn+1,∪(·), . . . ,Fn+m,∪(·)] and F∩x (·),
F∩u (·) are defined similarly. Observe that the inequalities in the definition ensure that
S̄x ⊆ X , S̄u ⊆ U because F∩(Ȳ) ≤ F (Ȳ) = (x̄, ū) ≤ F∪(Ȳ) from Assumption 4.2((A)).
Additionally, the sets S̄x, S̄u also enjoy the following property which will be crucial for
constructing the invariant sets within constraints from data.
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Lemma 4.1 Let {Ȳ1, . . . , Ȳp} be a set of lifted-outputs such that F (Ȳk) ∈ S̄x × S̄u ∀k =
1, . . . , p. Then under Assumptions 4.2((A)) and 4.3, it holds that F (Ȳ) = (x̄, ū) ∈ X × U for
any Ȳ ∈ cvx({Ȳ1, . . . , Ȳp}).

Now suppose that we are given trajectory data {(x̄t, ūt)}t≥0 of the nominal system
(4.2) such that

(x̄t, ūt) ∈ S̄x × S̄u, ∀t ≥ 0, distXG(x̄t)→ 0. (4.16)

Assemble output sequences ȳt = [ȳt, . . . , ȳt+R−1] ∀t ≥ 0 and define the Convex Output
Safe Set ¯CSy as the polytope

¯CSy = cvx(
⋃
t≥0

ȳt). (4.17)

By Assumption 4.2((A)), note that each ȳt uniquely identifies the nominal state x̄t via
the map (4.5) as Fx(ȳt) = x̄t, and the lifted-output Ȳt = [ȳt, ȳt+R] uniquely identifies the
nominal input ūt via the map (4.6) as Fu(Ȳt) = ūt. We now show that the set ¯CSy is in
fact, control invariant for the time-shift dynamics (4.18) and maps to nominal states and
inputs within constraints (as depicted in Figure 4.1).

ȳt+1 = [ȳt+1, ȳt+2, . . . , ȳt+R]

= δ([ȳt, ȳt+1, . . . , ȳt+R−1], ȳt+R) = δ(ȳt, ȳt+R) (4.18)

Figure 4.1: Illustration of the claim in Proposition 4.1.
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Proposition 4.1 Under Assumptions 4.2 and 4.3, the set ¯CSy (4.17) is control invariant for the
forward-time shift dynamics (4.18), i.e.,

∀ȳt ∈ ¯CSy, ∃ȳt+R : ȳt+1 = δ(ȳt, ȳt+R) ∈ ¯CSy, (4.19)

and the corresponding nominal state and input are within constraints,

x̄t = Fx(ȳt) ∈ X , ūt = Fu(ȳt, ȳt+R) ∈ U ,
Fx(ȳt+1) = f (x̄t, ūt) ∈ X . (4.20)

Corollary 4.1 A control invariant set in the state space can be implicitly defined using ¯CSy as

X̄N := {x̄ ∈ Rn |∃ȳ ∈ ¯CSy, Fx(ȳ) = x̄}. (4.21)

The set ¯CSy can be recursively enlarged using output sequences ȳ′t of another trajec-
tory {(x̄′t, ū′t)}t≥0 satisfying (4.16), as ¯CSy ← cvx( ¯CSy ∪ (

⋃
t≥0 ȳ′t)).

Remark 4.3 Note that the set (4.21) is constructed without any local linear approximations of
the nominal dynamics (4.2), and uses the nonlinear dynamics implicitly via the data {ȳt}t≥0 and
map F (·).

Example 4.2 Consider the 2-state nonlinear system[
x̄t+1[0]
x̄t+1[1]

]
=

[
x̄t[0] + dt(x̄t[0]− x̄3

t [1])
x̄t[1] + dt(x̄2

t [0]− ūt)

]
with flat output ȳt = x̄t[0], lifted-output Ȳt = [ȳt, ȳt+1, ȳt+2] and the map Fx(·) from Assump-
tion 4.2((A)) as Fx(ȳt) = [ȳt, ( 1

dt ((1 + dt)ȳt − ȳt+1))
1
3 ]. We collect two trajectories for this

system converging to distinct equilibria and construct the safe set ¯CSy (4.17) and corresponding
set X f using (4.21). To depict control invariance, we start from a state in X f and choose input
ut using (4.20) by finding ȳt ∈ ¯CSy such that Fx(ȳt) = x̄t.

Now we proceed to construct a convex Control Lyapunov Function Q̄(·) on the set
¯CSy using trajectories of the nominal system that satisfy (4.16). To do so, we require a

stage cost function c()̇ to penalize deviations of the system trajectory from XG. Construct
the following box sets, X̄G = {x|l̃bg

x ≤ x ≤ ũbg
x} ⊂ XG, and Unom = {u|l̃bnom

u ≤ u ≤
ũbnom

u } ⊂ U to define the convex set in the lifted output space,

YG =

{
Y

∣∣∣∣∣Y = [y, y], l̃bg
x ≤ F∩x (y),F∪x (y) ≤ ũbg

x,

l̃bnom
u ≤ F∩u (Y),F∪u (Y) ≤ ũbnom

u

}
. (4.22)
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Figure 4.2: Control invariant set construction in example 4.2 from two trajectories (black).
Notice that the test trajectory (green) starts outside of the convex hull of the collected
trajectory data.

Observe that Ȳ ∈ YG ⇒ F (Ȳ) = (x̄, ū) ∈ XG × Unom by Assumption 4.2((A)). Now let
c(·) be a convex, continuous function satisfying

c(Ȳ) = 0 ∀Ȳ ∈ YG, c(Ȳ) ≻ 0 ∀Ȳ ∈ Rm×R+1\YG (4.23)

for penalizing deviations from the set YG. Define the cost-to-go at time t corresponding
to ȳt,

Ct = ∑
k≥t

c(Ȳk). (4.24)

We construct the function Q̄(·) on ¯CSy as follows. Denote vert( ¯CSy) as the set of
vertices of the polytope ¯CSy, and let ȳti ∈ vert( ¯CSy) for i = 1, . . . , |vert( ¯CSy)|, with
{(x̄k, ūk), Ȳk}k≥ti being the corresponding state, input and lifted-output trajectory satis-
fying (4.16). Then for any ȳ ∈ ¯CSy, we define Q̄(ȳ) via linear interpolation:

Q̄(ȳ) = min
λi∈[0,1],

∀i=1,...,|vert( ¯CSy)|

|vert( ¯CSy)|

∑
i=1

λiCti

s.t.
|vert( ¯CSy)|

∑
i=1

λi

[
ȳti
1

]
=

[
ȳ
1

]
.

(4.25)
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To ensure that Q̄(·) takes finite values on ¯CSy, the trajectory {(x̄t, ūt)}t≥0 must also
satisfy C0 < ∞, formalized in the following assumption.

Assumption 4.4 We are provided with a nominal state-input trajectory {(x̄t, ūt)}t≥0 of system
(4.2) satisfying

1. (x̄t, ūt) ∈ S̄x × S̄u, ∀t ≥ 0, distXG(x̄t)→ 0,

2. C0 < ∞,

for defining ¯CSy as (4.17) and Q̄(·) as (4.25).

The function distS(x) = miny∈S = ||x− y||2 defines the distance of x from the set S. The
following proposition identifies CLF-like characteristics of the function (4.25) on the set

¯CSy which we will use for convergence analysis in Section 4.6.

Proposition 4 Given Assumptions 4.2 and 4.4, the cost function Q̄(·) satisfies the following
properties:

1. Q̄(·) is convex, non-negative, and equal to 0 only on the set given by

cvx
(
{ȳt|ȳt ∈ ¯CSy,Fx(ȳt) ∈ XG}

)
2. Q̄(ȳt+1) − Q̄(ȳt) ≤ −c(Ȳt), ∀ȳt ∈ ¯CSy where ȳt+1 = δ(ȳt, ȳt+R) as in (4.18) and

Ȳt = [ȳt, ȳt+R].

The above proposition shows that Q̄(·) is a CLF for the dynamics ȳt+1 = δ(ȳt, ȳt+R)
with input ȳt+R on the set CSy.

Corollary 4.2 A Control Lyapunov Function for the nominal system (4.2) is given by

P(x̄) := {C ∈ R|∃ȳ ∈ ¯CSy,Fx(ȳ) = x̄, Q̄(ȳ) = C}, (4.26)

for which, P(x̄t+1)− P(x̄t) ≤ −c(Ȳt), where (x̄t, ūt) = F (Ȳt) and x̄t+1 = f (x̄t, ūt).

4.4 Robustification of Constraints
For constructing the tightened constraints X̄ , Ū , we first require the error invariant set E .
Suppose we are given trajectory data {xt, ut, dt}t≥0 of the system (4.1). Using Assump-
tion 4.1 and Theorem 2.1 from Chapter 2, we can obtain the ellipsoidal set D̂ = ED(X ,U )
such that D̂ ⊃ D(X ,U ). We now construct the error invariant set E given a fixed error
policy κ(·). Let us conservatively model the true system (4.1) as the following uncertain
system

xt+1 = f (xt, ūt + κ(xt − x̄t)) + dt

x̄t+1 = f (x̄t, ūt) (4.27)
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where dt is the process noise with support D̂. Define the corresponding error system
with error state et = xt − x̄t and uncertain dynamics

et+1 = fe(et, x̄t, ūt) + dt (4.28)

where fe(·) is defined as in (4.8). Let E be a Robust Positive Invariant (RPI) set for (4.28):

∀x̄t ∈ X̄ , ∀ūt ∈ Ū :

et ∈ E ⇒ et+1 = fe(et, x̄t, ūt) + dt ∈ E , ∀dt ∈ D̂.

Constructing RPI E and error policy κ(·) for nonlinear systems is difficult in general.
However under additional assumptions on f (·) (cf. smoothness, Lipchitz continuity,
incremental stabilizability), it is common in the nonlinear MPC literature to fix a policy
κ(et) and compute E , or compute both jointly [108, 141, 126]. In view of this, we make
the following assumption to construct the error invariant for the actual error dynamics
(4.8) in Proposition 4.2.

Assumption 4.5 Given disturbance support D̂ ⊃ D and a known, fixed linear policy κ(et) =
Ket, the RPI set E for (4.28) can be computed such that

∀x̄t ∈ X̄ , ∀ūt ∈ Ū :

et ∈ E ⇒ et+1 = fe(et, x̄t, ūt) + dt ∈ E , ∀dt ∈ D̂.

Proposition 4.2 Let Assumption 4.5 hold and E be a Robust Positive Invariant set for (4.28)
with κ(et) = Ket for some disturbance support D̂ ⊃ D. Then for the true error system given by
(4.8) with error state et = xt − x̄t, we have

∀x̄t ∈ X ⊖ E , ∀ūt ∈ U ⊖ KE :
et ∈ E ⇒ et+1 = fe(et, x̄t, ūt) + dt ∈ E , ∀dt ∈ D(et + x̄t, ut).

Remark 4.4 In theory, the difference flatness of f (·) can be used for constructing the RPI. All
difference flat systems are linearizable by a dynamic feedback control [9], i.e., there exists a con-
tinuous map T(·) and extended state and input space (z, v) ∈ Rn′+m, with n′ > n such that
T(x, u) = (z, v), where the dynamics of (z, v) are linear. Then, mapping the uncertainty sup-
port D from (x, u) dynamics to the (z, v) dynamics is possible (although non-trivial) by over-
approximations of T. However, this approach will further increase conservatism in general.

Given the error invariant E and policy κ(et) = Ket, we construct the tightened con-
straints with the properties:

(i) X̄ ⊂ S̄x and Ū ⊂ S̄u so that the invariant set X̄N and terminal cost P(·) can be
constructed from trajectory data of the nominal system.
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(ii) X̄ ⊂ X ⊖ E and Ū ⊂ U ⊖ κ(E) so that x̄t ∈ X̄ , ūt ∈ Ū , et ∈ E ⇒ xt ∈ X , ut ∈ U for
system (4.1).

We construct these tightened sets in two steps. In the first step, we solve the following
nonlinear program

max
αx≥1,αu≥1,vx,vu

αx + αu

s.t αxX + vx ⊆ S̄x,
αuU + vu ⊆ S̄u (4.29)

to compute polytopic inner-approximations of S̄x, S̄u as the intermediate state and input
box sets

X̂ = α⋆xX + v⋆x,

Û = α⋆uU + v⋆u. (4.30)

Finally, the tightened state and input constraints are defined as

X̄ = X̂ ⊖ E ,

Ū = Û ⊖ KE . (4.31)

Figure 4.3: Construction of tightened state constraints X̄ via (4.29), and (4.31). The set
S̄x ⊂ X is defined so that lbx ≤ F∩x (Ȳ) ≤ Fx(Ȳ) = x̄ ≤ F∪x (Ȳ) ≤ ubx, required for
Lemma 4.1

Remark 4.5 To enforce αxX + vx ⊆ S̄x in (4.29), the n − 1 dimensional facets of αxX + vx
are gridded and each grid point is constrained to lie within S̄x. which is non-convex but simply
connected (which can be shown by exploiting the continuity, surjectivity of F (·) and convexity
of the set {ȳ|lbj

x ≤ F∪x (ȳ),F∩x (ȳ) ≤ ubj
x} [93, Chapter 9]). The constraints for Û are enforced

similarly.
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4.5 Iterative Robust MPC Design
Now we combine the elements from sections 4.3 and 4.4 to propose an iterative Robust
MPC algorithm for

1. driving the system (4.1) to the goal set XG while robustly satisfying constraints,

2. improving trajectory costs iteratively,

3. collecting trajectory data for learning the control invariant set ¯CSy, the CLF Q̄(·),
and the uncertainty support D̂.

An iteration as defined as a rollout of system (4.1) starting from a fixed state xS with
some policy π(·) such that system state and input remain within constraints, and the
system state is asymptotically steered to XG. Formally, at iteration j:

∀t ≥ 0 : xj
t+1 = f (xj

t, uj
t) + dj

t, dj
t ∈ D(xj

t, uj
t)

xj
0 = xS, xj

t ∈ X , uj
t = π j(xt) ∈ U ,

distXG(xj
t)→ 0 (4.32)

We denote π j(·) as the policy for iteration j and xj
t, uj

t are the state and input of (4.1)
respectively at time t. The quantities for the nominal system (4.2) are similarly denoted
as x̄j

t, ūj
t, ȳj

t.
At iteration j, we use trajectory data {{(xi

t, ui
t)}t≥0}

j−1
i=0 to construct outer-approximation

D̂ j of the disturbance support D(X ,U ) by solving (2.11) offline, which is used for com-
puting the error invariant E j. Then the tightened state and input constraints X̄ j, Ū j are
constructed using (4.31) with E j. The terminal constraint is defined as in (4.21) but with

¯CS j−1
y = cvx({⋃t≥0 ȳt}j−1

i=0). The stage cost c(·) is chosen as in (4.23), and the terminal

cost Q̄j−1(·) (4.26) is defined on ¯CS j−1
y . Like the forward-shift operator (4.18), we define

the backward-time shift operator,

Ȳt = [ȳt, . . . , ȳt+R]

= δ−([ȳt+1, ȳt+1, . . . , ȳt+R+1], ȳt)

= δ−(Ȳt+1, ȳt) (4.33)

Employing this definition, the optimization problem for Robust Output-Lifted LMPC is
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given by the following:

J j
t(xj

t) = min
ūj

t,x̄
j
t,

ȳj
t+N|t

Q̄j−1(ȳj
t+N|t) +

t+N−1

∑
k=t

c(Ȳj
k|t)

s.t. x̄j
k+1|t = f (x̄j

k|t, ūj
k|t),

x̄j
k|t ∈ X̄

j, ūj
k|t ∈ Ū

j ∀k ∈ It+N−1
t ,

Ȳj
k|t = δ−(Ȳj

k+1|t, h(x̄j
k|t)) ∀k ∈ It+N−2

t ,

x̄j
t+N|t = Fx(ȳ

j
t+N|t), ȳj

t+N|t ∈ ¯CS j−1
y ,

Ȳj
t+N−1|t = [h(x̄j

t+N−1|t), ȳj
t+N|t],

xj
t − x̄j

t|t ∈ E
j, x̄j

t|t = x̄j⋆
t|t−1

(4.34)

where uj
t = [ūj

t|t, . . . , ūj
t+N−1|t], xj

t = [x̄j
t|t, . . . , x̄j

t+N|t] and xj
t is the state of the system

at time t. The control policy is obtained by solving (4.34) online and using the optimal
solution ūj

t = ūj⋆
t|t, x̄j

t = x̄j⋆
t|t, as

uj
t = π j(xj

t) = ūj
t + K(xj

t − x̄j
t) (4.35)

The optimal nominal state-input trajectory {(x̄j⋆
t|t, ūj⋆

t|t)}t≥0 is used for constructing the

set ¯CS j
y and function Q̄j(·) for iteration j + 1. We summarize the iterative policy syn-

thesis in Algorithm 2. To initialize the iteration, we require a slight modification of
Assumption 4.4.

Assumption 4.6 (Modification of Assumption 4.4) We are provided with a state-input tra-
jectory {(x0

t , u0
t )}t≥0 of system (4.1) satisfying (4.32) and a nominal state-input trajectory

{(x̄0
t , ū0

t )}t≥0 satisfying

1. (x̄0
t , ū0

t ) ∈ X̄ 1 × Ū 1, ∀t ≥ 0, distXG(x̄t)→ 0,

2. C0 < ∞,

for defining ¯CS0
y as (4.17) and Q̄0(·) as (4.25).

Remark 4.6 The nominal state x̄j
t = xj⋆

t|t for (4.34) at time t is obtained from the solution of

(4.34) at time t− 1. Consequently, the solution to (4.34) is the same for any xj
t ∈ E j ⊕ xj⋆

t|t. To
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Algorithm 2: Iterative Robust Output-lifted LMPC

Input : {(x0
t , u0

t )}t≥0, {(x̄0
t , ū0

t )}t≥0 satisfying Assumption 4.4,
Error policy κ(et) = Ket, max iters

Output: {{(xj
t, uj

t)}t≥0}max iters
j=1 satisfying (4.32)

Procedure Robust Output-lifted LMPC:
¯CS0

y ← ∅
X̂ , Û ← Use (4.3) after solving (4.29)
for j = 1 to max iters do

(Offline)
Step 1: Construct D̂ j by solving (2.11) and compute E j by Assumption 4.5
Step 2: Construct X̄ j, Ū j using (4.31)
Step 3: Construct ¯CS j

y like in (4.17) and Q̄j(·) from (4.25)
(Online)
xj

0 ← xS, t← 0
while xj

t ̸∈ XG do
Solve (4.34) and store x̄j

t ← x̄j⋆
t|t, ūj

t−1 ← ūj⋆
t−1|t

Apply (4.35) and store uj
t ← π

j
t(xj

t)

Measure xj
t+1

t← t + 1
end while

end for
return {{(xj

t, uj
t)}t≥0}max iters

j=1

incorporate feedback from xj
t, the constraints xj

t − x̄j
t|t ∈ E

j, x̄j
t|t = x̄j⋆

t|t−1 can be replaced with

xj
t − x̄j

t|t ∈ E
j, x̄j

t|t = f (x̄j⋆
t−1|t−1, ūj

t−1|t), ūj
t−1|t ∈ Ū

j, where the nominal state x̄j
t = xj⋆

t|t and

nominal input ūj
t−1 = ūj⋆

t−1|t are re-computed to generate a nominal state-input trajectory for

constructing the control invariant ¯CS j
y.

4.6 Properties of Proposed Strategy
In this section, we establish the closed-loop properties of the system trajectories with
the proposed Robust Output-lifted LMPC, and examine the system performance across
iterations.

Theorem 4.1 establishes the recursive feasibility of optimization problem (4.34) for
system (4.1) in closed-loop with the LMPC policy (4.35). We show this by leveraging the
recursive definition of ¯CS j

y and the result of Proposition 4.1.
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Theorem 4.1 [Recursive Feasibility] Given Assumptions 4.1-4.6, the optimization problem
(4.34) is feasible for the system (4.1) in closed-loop with the policy (4.35) ∀t ≥ 0 and for all
iterations j ≥ 1. Consequently, xj

t ∈ X , uj
t ∈ U ∀t ≥ 0, ∀j ≥ 1.

We also establish convergence of the closed-loop state trajectories of (4.1) to the set
XG. First, we show that if limt→∞ distYG(Ȳ

j
t) = 0 then limt→∞ distXG⊖E1(x̄j

t) = 0. We use

this result to finally show that limt→∞ distXG(xj
t) = 0 in the proof of Theorem 4.2.

Lemma 4.2 Given Assumption 4.2, if the trajectory of lifted outputs {Ȳt}t≥0 for system (4.2)
converges to the set YG, then the nominal state trajectory {x̄t}t≥0 converges to XG ⊖ E1, i.e.,

lim
t→∞

distYG(Ȳ
i
t) = 0⇒ lim

t→∞
distXG⊖E1(x̄t) = 0

Theorem 4.2 [Convergence] Given Assumptions 4.1-4.6, for any iteration j ≥ 1, the state
trajectory of system (4.1) in closed-loop with control (4.35) converges to the set XG, i.e.,

lim
t→∞

distXG(xj
t) = 0.

We conclude our theoretical analysis of the proposed Robust MPC (4.35) with the
following theorem. We state and prove that the closed-loop costs of system trajectories
in closed-loop with the LMPC do not increase with iterations if the system starts from
the same state, i.e., xj

0 = xS ∀j ≥ 0.

Theorem 4.3 [Performance Improvement] Given Assumptions 2.1-4.4, the cost of the trajec-
tories of system (4.1) in closed-loop with control (4.35) does not increase with iterations,

j2 > j1 ⇒ J j2
0→∞(xS) ≤ J j1

0→∞(xS)

where J j
0→∞(xS) = C

j
0, the cost of the jth iteration.

4.7 Numerical Example: Kinematic Bicycle in Frenet
Frame

In this section, we demonstrate our approach for constrained optimal control of a kine-
matic bicycle in the Frenet frame. The code for this example is hosted at https://

github.com/shn66/ROLMPC.

https://github.com/shn66/ROLMPC
https://github.com/shn66/ROLMPC
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Problem Formulation

We solve a constrained optimal control problem for driving a kinematic bicycle over a
chicane into a goal set XG. The dynamics f (·) of the bicycle are described in the Frenet
frame,

st+1 = st +
vt cos(eψt)

1− ey,tC(st)
dt + d1,t

ey,t+1 = ey,t + vt sin(eψ,t)dt + d2,t

eψ,t+1 = eψ,t + vt

(
tan(δt)

LRF
−

cos(eψt)C(st)

1− ey,tC(st)

)
dt + d3,t

where time-step dt = 0.2s, and state xt = [st, ey,t, eψ,t] consists of the longitudinal abcissa
st, the lateral offset ey,t and the heading alignment error eψ,t w.r.t the road center-line. The
disturbance dt = [d1,t, d2,t, d3,t] captures bounded process noise, errors from discretiza-
tion and conversion between the Euclidean and Frenet frame. The inputs ut = [vt, δt]
are the speed vt of the rear axle and steering angle δt of the front axle. LRF = 4m is the
wheelbase of the vehicle, and it is assumed that the centre of gravity is on the rear axle.
The center-line is given by a chicane with curvature C(st) = 1

10π tan−1(100− 1
2 s2

t ). The
constraints are given by the box sets as in Assumption 4.3:

X =
{
[s, ey, eψ]

∣∣∣s ∈ [−2, 60], ey ∈ [−4.5, 4.5], eψ ∈ [−π

3
,

π

3
]
}

U =
{
[v, δ]

∣∣∣ v ∈ [0, 18], δ ∈ [−π

2
,

π

2
]
}

,

and the goal set is XG = {[s, ey, eψ] ∈ X |s ≥ 40}.
We use our Robust Output-lifted LMPC to iteratively approximate the solution of the

following optimal control problem

min
{πt(·)}t≥0

∞

∑
t=0

max{40− st, 0}

s.t. xt+1 = f (xt, πt(xt)) + dt,
xt ∈ X , πt(xt) ∈ U ,
x0 = xS

(4.36)

for the kinematic bicycle starting from xS = [0, 1, 0]. To apply Algorithm 2, we verify
that Assumptions 2.1, 4.2 and 4.5 are satisfied. First, we describe the lifted output Ȳ
and associated maps Fx(·),Fu(·) for the kinematic bicycle, and obtain the bounding
functions F∪(·),F∩(·) for verifying Assumption 4.2. Second, we obtain an uncertainty
description (as in Assumption 2.1) for the additive disturbance dt using data. To verify
Assumption 4.5, we describe a procedure for constructing the error invariant E for the
error dynamics (4.8), and choosing a fixed linear policy κ(et) = Ket. The three steps are
detailed below.
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Lifted Outputs

The difference flat output for the nominal kinematic bicycle model are given by s̄t, ēy,t.
The lifted output and associated maps for the nominal system are given by

ȳt = [ȳ1,t ȳ2,t]
⊤ = [s̄t ēy,t]

⊤, Ȳt = [ȳt, ȳt+1, ȳt+2]

Fx(ȳt, ȳt+1) =

 ȳt

tan−1
(

ȳ2,t+1 − ȳ2,t

(1− ȳ2,tC(ȳ1,t))(ȳ1,t+1 − ȳ1,t)

)
Fu(ȳt, ȳt+1, ȳt+2) = [v̄t δ̄t]

⊤

v̄t =
1
dt

∥∥∥∥[(1− ȳ2,tC(ȳ1,t))(ȳ1,t+1 − ȳ1,t)
ȳ2,t+1 − ȳ2,t

]∥∥∥∥
2

δ̄t = tan−1
(
[0 0

LRF

dtv̄t
]
(
Fx(ȳt+1, ȳt+2)−Fx(ȳt, ȳt+1)

)
(ȳ1,t+1 − ȳ1,t)C(ȳ1,t)

)
Next, we propose bounding functions F∪(·), F∩(·) such that they are quasiconvex and

quasiconcave respectively, with F∩(Ȳ) ≤ F (Ȳ) ≤ F∪(Ȳ), as required by Assumption
4.2((A)). For the nominal positions s̄t, ēy,t, the bounding functions are trivially given by
F 1

x (·),F 2
x (·) because linear functions are both quasiconvex and quasiconcave.

[F 1,∩(Ȳt),F 2,∩(Ȳt)] = [F 1,∪(Ȳt),F 2,∪(Ȳt)] = ȳt

For the bounding functions corresponding to ēψ,t, we use the system constraints to
bound (1− ȳ2,tC(ȳ1,t)) ∈ [31

40 , 49
40 ], to construct bounding functions as:

F 3,∩(Ȳt) = tan−1

(
min{ (ȳ2,t+1 − ȳ2,t)

49
40 (ȳ1,t+1 − ȳ1,t)

,
(ȳ2,t+1 − ȳ2,t)

31
40 (ȳ1,t+1 − ȳ1,t)

}
)

F 3,∪(Ȳt) = tan−1

(
max{ (ȳ2,t+1 − ȳ2,t)

49
40 (ȳ1,t+1 − ȳ1,t)

,
(ȳ2,t+1 − ȳ2,t)

31
40 (ȳ1,t+1 − ȳ1,t)

}
)

where F 3,∪(·),F 3,∩(·) can be verified to be quasiconvex and quasiconcave respectively
by using composition rules of quasilinear functions. Similarly for the inputs, we get:

F 4,∩(Ȳt) = 0,F 4,∪(Ȳt) =
1
dt

∥∥∥∥[ 49
40 (ȳ1,t+1 − ȳ1,t)

ȳ2,t+1 − ȳ2,t

]∥∥∥∥
2

F 5,∩(Ȳt) = −
π

2
,F 5,∪(Ȳt) =

π

2
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Uncertainty Modeling

The disturbance dt is assumed to lie in a state dependent set D(x), modelled as D(x) =
{d|∃w : d = d(x) + w, ||w||2 ≤ γ}, where the function d(x) is unknown, but assumed to
be L−Lipschitz. The conditions on D(x) for Assumption 2.1 are satisfied as shown in
Example 2.1. The constants L, γ are estimated as follows:

1. Sample system transitions to obtain data-set T = {(xi, di)}T
i=1

2. The true Lipschitz constant L and bound γ are one of the minimizers of the follow-
ing semi-infinite, multi-objective optimization problem:

min

(L̃, γ̃) ∈ R2
+

∣∣∣∣∣∣∣
∥d̄− d̄′∥2 ≤

∣∣L̃ ∥∥x− x′
∥∥

2 + 2γ̃
∣∣ ,

∀d̄ ∈ D(x), d̄′ ∈ D(x′),
∀x, x′ ∈ Rn


3. We solve for L, γ for the scalarized objective L̃ + γ̃, and approximate the semi-

infinite optimization via the scenario approach using the data-set T to obtain the
LP:

min
L̃>0,γ̃>0

L̃ + γ̃

s.t ∥di − dj∥2 ≤ L̃
∥∥xi − xj

∥∥
2 + 2γ̃,

∀(xi, di), (xj, dj) ∈ T

The approximated constants obtained after solving the linear program were L̂ =
0.0329, γ̂ = 0.1640. Using [5, Corollary 6] and linearity of the semi-infinite con-
straints, it can be shown that sampled constraints provide an inner approximation
of the actual feasible set for the semi-infinite problem with high-confidence. Thus,
the event E := {L̂ ≥ L, γ̂ ≥ γ} holds with high probability, and the statements of
Theorems 2.1–4.3 hold conditioned on E (which is conventional as noted in Remark
2.1).

Error Invariant and Error Policy

To construct the error invariant and the error policy for Assumption 4.5, we linearise the
bicycle dynamics about xre f = (s, ey, eψ) = (

√
200, 0, 0) ure f = (v, δ) = (10, 0), and obtain

bounds on the higher-order terms using the system constraints to give the linearized
dynamics xt+1 = f (xre f , ure f ) + A(xt − xre f ) + B(ut − ure f ) + nt + dt, where nt ∈ W l is
the linearisation error and dt ∈ D̂ corresponds to the error due to unmodelled dynamics.
Similarly, the nominal dynamics are given as x̄t+1 = f (xre f , ure f ) + A(x̄t− xre f ) + B(ūt−
ure f ) + n̄t, and so, the error dynamics are et+1 = Aet + Bκ(et) + dt + [In − In][n⊤t n̄⊤t ]

⊤.
For the combined disturbance D̄ = D̂ ⊕ [In − In](W l ×W l), the RPI is computed by
fixing κ(et) = KLQRet and setting ERPI =

⊕∞
i=0(A + BKLQR)

iD̄. The cost matrices Q, R
for the LQR policy are tuned such that ERPI ⊂ X and KLQRERPI ⊂ U .
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Results

We implement the proposed Robust Output-lifted LMPC strategy as described in Al-
gorithm 2 for optimal control of the kinematic bicycle from Section 4.7. The results
emphasize the following aspects of our approach:

Iterative Learning

The trajectory data across iterations i = 0, .., j− 1 is used for constructing the disturbance
support D̂ j, the terminal set X̄ j

N and trajectory cost estimate via the terminal cost Pj(·).
In the following plots, we observe that with each successive iteration, the disturbance
supports shrink, the terminal sets enlarge and the trajectory costs decrease.

• Disturbance Bound: For Step 1 of Algorithm 2 at iteration j, we use the ap-
proach in Theorem 2.1 with system trajectory data {{xi

t, ui
t}t≥0}

j−1
i=0 to obtain the

outer-approximation of the disturbance support D̂ j as a product of intervals, D̂ j
1 ×

D̂ j
2 × D̂

j
3 ⊂ R3. We show the constructed disturbance support for iterations j =

1, 10, 15, 20, 25 in Figure 4.4. Notice that the disturbance supports shrink as more
trajectory data as collected, as enforced by the SDP (2.11).

Figure 4.4: Disturbance support estimates across iterations. As more data is collected,
the support estimates shrink.

• Tightened Constraints: For Step 2 of Algorithm 2 at iteration j, the tightened
constraints X̄ j, Ū j are obtained by solving NLP (4.29) and using (4.3), (4.31) in
Section 4.4. This requires the error invariant E j and error policy κ(et) = Ket for the
error dynamics (4.8) with disturbance support D̂ j computed in Step 1. The error
invariant and error policy are computed as described in Section 4.7. We show the
tightened constraints for iterations j = 1, 10, 15, 20, 25 in Figure 4.5. Notice that the
tightened state and input constraints increase in size with increasing iterations.
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(a) Tightened state constraints across iterations. (b) Tightened input constraints across iterations.

Figure 4.5: The tightened constraints increase in size across iterations, as the model
uncertainty is learned.

• Terminal Set: The terminal set at iteration j is constructed from ¯CS j
y as X̄ j

N =

{x̄|∃ȳ ∈ ¯CS j
y,Fx(ȳ) = x̄}. To visualize this set, 1) we sample points in ¯CS j

y, 2) map
them onto the state space via Fx(·) and 3) use Matlab’s alphaShape function to fit a
surface over the projected points (note that the image of convex set ¯CS j

y under con-
tinuous, surjective function Fx(·) can be shown to be path-connected [93, Chapter
9]). The resulting terminal set approximation is shown in Figure 4.6 using trajec-
tory data up to iteration j = 25, in both Frenet and global coordinates. Note that
these continuous sets were constructed without any local linear approximations,
or a pre-computed reference, and utilise the complete nonlinear dynamics of (4.1)
implicitly via trajectory data {x̄t, ūt}t≥0 and the map Fx(·).

• Trajectory Costs: We plot the trajectory costs of the closed-loop trajectories across
all the iterations in Figure 4.7, and see that the trajectory costs decrease with each
iteration, validating the claim of Theorem 4.3.

Robust Constraint Satisfaction

The tightened constraints within the Robust MPC formulation ensure that the closed-
loop system trajectories satisfy the constraints robustly, despite the uncertainty in the
dynamics.

We plot the closed-loop state and input trajectories of the kinematic bicycle in global
coordinates in Figures 4.8, 4.9a, 4.9c across the iterations. Iteration 0 corresponds to the
first trajectory with which our algorithm was initialized. At iteration 25, we see that
the path of the closed-loop trajectory is significantly tighter than that of iteration 0 in
Figure 4.8. From the Figures 4.9a, 4.9b, 4.9c, we see that the actual and nominal speed
profiles, and the steering commands are within constraints. The tightened constraints
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Figure 4.6: Terminal sets in state space, in Frenet and global coordinates constructed
from nominal system trajectory data up to iteration j = 20. The dark blue regions
denote states in XG.

Figure 4.7: Closed-loop trajectory costs decrease across iterations.

for the nominal speed 4.9b are shown for j = 25. Also notice in Figure 4.9b that the
trajectory in iteration 25 reaches XG the fastest.

Computational Tractability

The proposed Convex Output Safe set ¯CS j
y is a convex set, as opposed to the discrete

Safe set construction SS j in [114]. This improves computation efficiency for solving the
optimization problem 4.34 without sacrificing performance guarantees.

We compare the average solve times for our approach and the LMPC from [114] to
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Figure 4.8: State trajectories across iterations.

(a) Speed profile (b) Nominal speed profile

(c) Steering profile

Figure 4.9: Input trajectories across iterations.

demonstrate the benefit of using the continuous safe set ¯CS j
y over the discrete safe set
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SS j. The former leads to solving a nonlinear program (which is solved using IPOPT)
and the latter requires solving a mixed-integer nonlinear program (which is solved using
BONMIN). In Figure 4.10, we see that the solve times increase with iterations because
of the growing size of the safe sets, but our approach is markedly more efficient (with
solve times ≤ 10−0.5s ≈ 0.3s).

Figure 4.10: Avg. solve times for Output-lifted LMPC and LMPC for iterations j = 1 to
j = 20 in log10 scale.

4.8 Conclusion
We proposed a formulation of Robust LMPC for systems with lifted outputs perform-
ing iterative tasks. We showed that using Assumption 4.2 on the lifted otputs, we can
iteratively construct continuous, convex control invariant terminal sets and CLF termi-
nal costs for nonlinear systems using historical lifted output data. Furthermore, our
approach uses trajectory data to quantify and iteratively decrease model uncertainty,
and construct tightened state and input constraints for the Robust MPC design. The
proposed Robust Output-lifted LMPC scheme is recursively feasible, convergent, and
iteratively improves system performance while guaranteeing robust constraint satisfac-
tion.

4.9 Appendix

Proof of Lemma 4.1
Before proving the statement, we first prove the following auxiliary property that is
granted by Assumption 4.2((A)):

[F∩(Ȳ),F∪(Ȳ)] ⊆ [ min
k=1,..,p

F∩(Ȳk), max
k=1,..,p

F∪(Ȳk)]
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for Ȳ ∈ cvx({Ȳ1, . . . , Ȳp}), where the intervals and min, max are defined elment-wise.
We proceed using induction on p, the number of points in the set. For p = 2, the property
follows trivially by Assumption 4.2((A)). Suppose the property is true for p− 1, i.e.,

[F∩(Ȳ′),F∪(Ȳ′)] ⊆
[ min
k=1,..,p−1

F∩(Ȳk), max
k=1,..,p−1

F∪(Ȳk)]

for any Ȳ′ ∈ cvx({Ȳ1, . . . , Ȳp−1}). Adding an additional point Ȳp in the set, let Ȳ =
λȲp + (1− λ)Ȳ′ for some λ ∈ [0, 1]. Using the property for p = 2, we have

[F∩(Ȳ),F∪(Ȳ)] ⊆
[min(F∩(Ȳp),F∩(Ȳ′)), max(F∪(Ȳp),F∪(Ȳ′))]

Using the truth of property for p− 1, we therefore write

min
k=1,..,p

F∩(Ȳk) ≤ min(F∩(Ȳp),F∩(Ȳ′)),

max(F∪(Ȳp),F∪(Ȳ′)) ≤ max
k=1,..,p

F∪(Ȳk)

⇒[F∩(Ȳ),F∪(Ȳ)] ⊆ [ min
k=1,...,p

F∩(Ȳk), max
k=1,..,p

F∪(Ȳk)] (⋆)

where the min, max for vectors are computed element-wise. The property thus holds
true for p as well and induction helps us conclude that this holds for any p ≥ 1.

Now we prove constraint satisfaction. We have ∀k = 1, .., p, F (Ȳk) = (x̄k, ūk) ∈
X̄ j × Ū j. Since X̄ j × Ū j ⊂ S̄x × S̄u by construction, this implies that F∪(Ȳk), F∩(Ȳk) ∈
X̂ × Û ∀k = 1, . . . , p1. Additionally X̂ × Û is a box constraint, so we have

[ min
k=1,...,p

F∩(Ȳk), max
k=1,...,p

F∪(Ȳk)] ⊆ X̂ j × Û j.

Finally by using result (⋆) and F∩(Ȳ) ≤ F (Ȳ) ≤ F∪(Ȳ), we have F (Ȳ) ∈ X̄ j × Ū j for
any Ȳ ∈ cvx({Ȳ1, . . . , Ȳp}). ■

Proof of Proposition 4.1

By the definition of ¯CSy, we have for ȳt ∈ ¯CSy that[
ȳt
1

]
=
|vert( ¯CSy)|

∑
i=1

λi

[
ȳti

1

]
, (4.37)

ȳti ∈ vert( ¯CSy), λi ∈ [0, 1], ∀i = 1, . . . , |vert( ¯CSy)|

1Technically, ∃Ȳ
′k : F (Ȳ′k) = (x̄k, ūk),F∪(Ȳ′k),F∩(Ȳ′k) ∈ X̂ j×Û j but due to the uniqueness of (x̄k, ūk)

granted by Definition 4.1, we can use Ȳk instead of Ȳ
′k w.l.o.g.
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where each ȳti maps to a feasible state, i.e., Fx(ȳti) = x̄ti ∈ S̄x ⊆ X . Invoking Lemma 4.2
gives us,

Fx(ȳt) = x̄t ∈ S̄x ⊂ X (4.38)

We use the lifted-output Ȳti and map Fu(·) to reconstruct nominal inputs

ūti = Fu([ȳti , ȳti+1, . . . , ȳti+R]) = Fu([ȳti , ȳti+R])

and note that ūti ∈ S̄u ⊂ U . Consider the following control input

ūt = Fu(
|vert( ¯CSy)|

∑
i=1

λi[ȳti , ȳti+R])

= Fu([ȳt, ȳt+R]) (4.39)

where ȳt+R = ∑
|vert( ¯CSy)|
i=1 λiȳti+R. Invoking Lemma 4.2 again proves ūt ∈ U .

By construction, notice that ȳti ∈ ¯CSy ⇒ ȳti+1 ∈ ¯CSy. Thus, we can establish the
invariance of ¯CSy with respect to the time-shift dynamics δ(·) as follows:

ȳt+1 = δ([ȳt, ȳt+R])

= δ(
|vert( ¯CSy)|

∑
i=1

λi[ȳti , ȳti+R])

=
|vert( ¯CSy)|

∑
i=1

λiȳti+1 ⇒ ȳt+1 ∈ ¯CSy. (4.40)

Finally, we show that Fx(ȳt+1) is precisely x̄t+1 = f (x̄t, ūt) which also lies within
constraints. Let ū2, . . . , ūR−1 ∈ Rm be the remaining inputs that generate [ȳt, ȳt+1] ∈
Rm×R+1, i.e.,

[ȳt, ȳt+1] =[h(x̄t), h( f (x̄t, ūt)), h( f (2)(x̄t, ūt, ū2)), . . . ,

h( f (R−1)(x̄t, ūt, . . . , ūR−1))] ∈ Rm×R+1 (4.41)

where f (k)(x̄t, ūt, . . . , ūk) = f (. . . ( f︸ ︷︷ ︸
k times

(x̄t, ūt), . . . ūk). Using the map (4.5) to construct the

nominal state, we can write

Fx(ȳt+1) =Fx([h( f (x̄t, ūt)), h( f (2)(x̄t, ūt, ū2)), . . . ,

h( f (R−1)(x̄t, ūt, . . . , ūR−1))])

= f (x̄t, ūt) = x̄t+1

where the last equality is true because of the unique correspondence from [ȳt, . . . , ȳt+R−1]

= [h(x̄t), . . . , h( f (R−1)(x̄t, ūt, . . . , ūt+R−1))] to x̄t (Definition 4.1). Invoking Lemma 4.2
again using sequences ȳti+1, ∀i = 1, . . . , |vert( ¯CSy)| gives us

f (x̄t, ūt) ∈ X . (4.42)

■
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Proof of Proposition 4

1) First note that ȳ ∈ ¯CS j
y implies that the optimization problem implicit in the definition

(4.25) of Q̄j(·) is feasible. Also see that since the feasible set is compact (countable prod-
uct of compact sets is compact by Tychonoff’s theorem) and the objective is continuous
(linear, in fact, and bounded because of Theorem ), a minimizer exists by Weierstrass’

theorem for every ȳ ∈ ¯CS j
y. Thus for any ȳ ∈ ¯CS j

y, we can write Q̄j(ȳ) =
j−1
∑

i=0
∑

k≥0
λ⋆i

k C
i
k

where the λ⋆i
k s satisfy the constraints in (4.25). The definition of C i

k in (4.24) and positive
definiteness of c(·) by (4.23) imply that Q̄j(y) ≻ 0 ∀y ∈ CS j

y\YG. For any ȳ ∈ Y j
G,

we have ȳ = ∑
j−1
i=0 ∑k≥0 λi

kȳi
k with λi

k > 0 only for ȳi
k ∈ YG, implying Q̄j(ȳ) ≤ 0.

Thus, Q̄j(y) = 0 ∀ȳ ∈ Y j
G. We finish the proof for the first part by observing that for

ȳ ∈ YG\Y
j
G, there exists no combination of multipliers such that λi

k > 0 only for ȳi
k ∈ YG,

and since C i
k > 0 for ȳi

k ̸∈ YG, we must have Q̄j(ȳ) > 0.

2) For any ȳt ∈ ¯CS j
y, let Q̄j(ȳt) =

j−1
∑

i=0
∑

k≥0
λ⋆i

k C
i
k with λ⋆i

k satisfying the constraints in (4.25).

Observing the linearity of the forward-time shift operator δ(·, ·), we have

ȳt+1 = δ(ȳt, ȳt+R)

= δ(
j−1

∑
i=0

∑
k≥0

λ⋆i
k ȳi

k,
j−1

∑
i=0

∑
k≥0

λ⋆i
k ȳi

k+R)

=
j−1

∑
i=0

∑
k≥0

λ⋆i
k δ(ȳi

k, ȳi
k+R)

=
j−1

∑
i=0

∑
k≥0

λ⋆i
k ȳi

k+1.a

Thus the same λ⋆i
k s are also feasible for (4.25) at yt+1 and we have

Q̄j(ȳt+1)− Q̄j(ȳt) ≤
j−1

∑
i=0

∑
k≥0

λ⋆i
k (C

i
k+1 − C

i
k)

=
j−1

∑
i=0

∑
k≥0

λ⋆i
k (−c(Ȳi

k))

≤ −c(
j−1

∑
i=0

∑
k≥0

λ⋆i
k Ȳi

k)

= −c(Ȳt)



CHAPTER 4. OUTPUT-LIFTED LEARNING MODEL PREDICTIVE CONTROL 95

The second to last inequality comes from the convexity of c(·). This completes the proof
of the second part of the proposition. ■

Proof of Proposition 4.2

Since E is RPI for (4.28) with κ(et) = Ket and disturbance support D̂, we have

∀x̄t ∈ X ⊖ E , ∀ūt ∈ U ⊖ KE :

et ∈ E ⇒ et+1 = fe(et, x̄t, ūt) + dt ∈ E , ∀dt ∈ D̂.

Since xt = x̄t + et ∈ X and ut = ūt + Ket ∈ U for any et ∈ E , x̄t ∈ X ⊖ E , ūt ∈ U ⊖ KE ,
we have dt ∈ D(et + x̄t, ut) ⊂ D from (4.13). The desired result then follows because
D ⊂ D̂ and the definition of the Pontryagin difference operator ⊖. ■

Proof of Theorem 4.1

For any iteration j ≥ 1, suppose that the problem (4.34) is feasible at time t ≥ 1. Let the
state-input trajectory corresponding to the optimal solution of (4.34) be

{x̄j⋆
t|t, ūj⋆

t|t, x̄j⋆
t+1|t, ūj⋆

t+1|t, . . . , x̄j⋆
t+N|t, ȳj⋆

t+N|t}. (4.43)

Applying the control uj
t = ūj⋆

t|t + K(xj
t − x̄j⋆

t|t) to system (4.1) yields xj
t+1 such that xj

t+1 −
x̄j⋆

t+1|t ∈ E
j, ∀dt ∈ D(xj

t, uj
t) because xj

t − x̄j⋆
t|t ∈ E

j (∵ Proposition 4.2), where x̄j⋆
t+1|t =

f (x̄j
t, ūj⋆

t|t) and x̄j
t = x̄j⋆

t|t. We also have

x̄j⋆
t+N|t = Fx(ȳ

j⋆
t+N|t), ȳj⋆

t+N|t ∈ ¯CS j
y.

From Proposition 4.1, we have x̄j⋆
t+N|t ∈ X̄

j, and ∃ȳ′ such that ȳ′ = δ(ȳj⋆
t+N|t, ȳ′) ∈ ¯CS j

y,

ū′ = Fu([ȳ
j⋆
t+N|t, ȳ′]) ∈ Ū j and x̄′ = Fx(ȳ′) = f (x̄j⋆

t+N|t, ũ) ∈ X̄ j. Now consider the
following state-input trajectory

{xj⋆
t+1|t, ūj⋆

t+1|t, . . . , x̄j⋆
t+N|t, ū′, x̄′, ȳ′} (4.44)

and see that this is feasible for problem (4.34) at time t + 1.
We have shown that feasibility of the LMPC problem (4.34) at time t ≥ 1 implies fea-
sibility of the LMPC problem (4.34) at time t + 1. For t = 0 and any j ≥ 1, we have
xj

t = xj−1
t = xS and X̄ j ⊃ X̄ j−1, Ū j ⊃ Ū j−1, ¯CS j

y ⊃ ¯CS j−1
y . Thus, the solution to (4.34)

from iteration j − 1 at t = 0 is feasible for iteration j, with the initialization for j = 1
given by Assumption 4.4. Induction on time t proves the persistent feasibility of (4.34)
∀t ≥ 0, ∀j ≥ 1.

Thus, xj
t − x̄j

t ∈ E j, x̄j
t ∈ X̄ j ⊂ X ⊖ E j, ūj

t ∈ Ū j ⊂ U ⊖ KE j ∀t ≥ 0, ∀j ≥ 1. Since
(X ⊖ E j)⊕ E j ⊂ X , (U ⊖ KE j)⊕ KE j ⊂ U , we have xj

t ∈ X , uj
t ∈ U . ■



CHAPTER 4. OUTPUT-LIFTED LEARNING MODEL PREDICTIVE CONTROL 96

Proof of Lemma 4.2

Define the set Y x
G = {y|[y, y] ∈ YG}, which is just a linear projection of YG to obtain the

first R outputs, and see that limt→∞ distYG(Ȳt) = 0⇒ limt→∞ distY x
G
(ȳt) = 0 because of

the continuity of the projection. Then from the fact that the image of the flat map (4.5)
is unique (Definition 4.1) and the continuity of Fx(·) (Assumption 4.2(A)), we have

lim
t→∞

distXG⊖E1(x̄t) = lim
t→∞

distXG⊖E1(Fx(ȳt))

= lim
t→∞

distF−1
x (XG⊖E1)(ȳt).

From the definition of YG,Y x
G, we know that ȳ ∈ Y x

G ⇒ Fx(ȳ) = x̄ ∈ XG ⊖ Box(E1) ⊂
X ⊖ E1. Thus, Fx(Y x

G) ⊆ XG ⊖ E1 ⇒ Y x
G ⊆ F−1

x (XG ⊖ E1) and so limt→∞ distY x
G
(ȳt) =

0⇒ limt→∞ distF−1
x (XG⊖E1)(ȳt) = 0.

∴ lim
t→∞

distXG⊖E1(x̄t) = 0

. ■

Proof of Theorem 4.2

We adopt the same notation as the proof of theorem 4.1. Using the feasibility of (4.44)
for the problem (4.34) at time t + 1 and the fact that J j

t+1(xj
t+1) is the optimal cost at time

t + 1, we get

J j
t+1(xj

t+1) ≤ Q̄j(y′) + c(Ȳ⋆
N|t) +

N−1

∑
k=1

c(Ȳ⋆
k|t)

≤ Q̄j(ȳ⋆
N|t) +

N−1

∑
k=1

c(Ȳ⋆
k|t)

= J j
t(xj

t)− c(Ȳ⋆
t|t). (4.45)

The feasibility of the problem (4.34) (guaranteed by Theorem 4.1) and positive definite-
ness of c(·) imply that the sequence {J j

t(xj
t)}t≥0 is non-increasing. Moreover, positive def-

initeness of Q̄j(·) (by Proposition 4) further implies that the sequence is lower bounded
by 0. Thus the sequence converges and taking limits on both sides of (4.45) gives

0 ≤ lim
t→∞
−c(Ȳj

t) ≤ 0⇒ lim
t→∞

c(Ȳj
t) = 0

By continuity of c(·), we have that limt→∞ c(Ȳj
t) = 0 ⇔ limt→∞ distc−1(0)(Ȳ

j
t) = 0.

From (4.23), we know c−1(0) = YG and thus, limt→∞ distYG(Ȳ
j
t) = 0 and consequently
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limt→∞ distXG⊖E1(x̄j
t) = 0 by lemma 4.2. By Proposition 4.2, we also have xj

t − x̄j
t ∈ E j ⊆

E1. Using the facts (XG ⊖ E1)⊕ E1 ⊆ XG and distS(·) ≥ 0, we have

lim
t→∞

distXG(xj
t) = lim

t→∞
distXG(x̄j

t + xj
t − x̄j

t)

≤ lim
t→∞

dist(XG⊖E1)⊕E1(x̄j
t + xj

t − x̄j
t)

=0

⇒ lim
t→∞

distXG(xj
t) =0

■

Proof of Theorem 4.3

The cost of the trajectory in iteration j− 1 is given by

J j−1
0→∞(xS) = ∑

t≥0
c(Ȳj−1

t )

=
N−1

∑
t=0

c(Ȳj−1
t ) + C j−1

N

≥
N−1

∑
t=0

c(Ȳj−1
t ) + Q̄j(ȳj−1

N )

≥ J j
0(xS)

The second to last inequality comes from the definition of Q̄j(·) in (4.25) while the last
inequality comes from optimality of problem (4.34) in the jth iteration starting from
xj

0 = xS.
Now we use inequality (4.45) repeatedly to derive

J j
0(xS) ≥c(Ȳj

0) + J j
1(xj

1)

≥c(Ȳj
0) + c(Ȳj

1) + J j
2(xj

2)

≥ lim
t→∞

(
t−1

∑
k=0

c(Ȳj
t) + J j

t(xj
t))

≥ lim
t→∞

t−1

∑
k=0

c(Ȳj
t)

=J j
0→∞(xS)

Thus,
J j−1
0→∞(xS) ≥ J j

0→N(xS) ≥ J j
0→∞(xS)

The desired statement easily follows from above. ■
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Chapter 5

Optimization-based Collision Avoidance
in Dynamic, Uncertain Environments

5.1 Overview
In this chapter, we develop an MPC algorithm for motion planning in the presence
of uncertain predictions of the surrounding agents/obstacles represented by general
convex sets. Our main focus is to design a planner that can solve the planning problem 1)
efficiently (measured as time to compute the solution, critical for real-time deployment),
2) reliably (measured as low rate of infeasibility, critical for fewer interventions of backup
planners) and 3) compute high-quality solutions (measured in terms of mobility, comfort
and conservatism).

Contributions

• We build on the dual perspective collision avoidance from [144] to find separat-
ing hyperplanes between convex sets in the presence of three different uncertainty
descriptions: 1) Arbitrary distributions with polytopic support, 2) Gaussian distri-
butions, and 3) Arbitrary distributions with first two moments known.

• We propose a Sequential Convex Programming (SCP) approach for MPC formula-
tion, that jointly optimizes over the separating hyperplanes for collision avoidance
and parameterized feedback policies over the AV’s and obstacles’ states.

• We present a systematic evaluation of our framework along axes of (i) mobility, (ii)
comfort, (iii) conservatism and (iv) computational efficiency at a simulated traffic
intersection.
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5.2 Problem Formulation

Dynamics and Geometry of AV and Obstacles
We model the AV as a linear time-varying discrete-time model

xt+1 = Atxt + Btut + Etwt

pt = Cxt + ct (5.1)

where xt ∈ Rnx , ut ∈ Rnu , wt ∈ Rnx are the state, input and process noise respectively
and At, Bt, Et, C, ct are the system matrices at time t. The vector pt ∈ Rn describes
the position of the autonomous agent in a global, Cartesian coordinate system. Given
the rotation matrix Rt describing the orientation of the AV (with respect to the global
coordinate system) at time t, define the space occupied by the autonomous agent as the
set

St(xt) = {z ∈ Rn | z = Rty + pt, Gy ⪯K g} (5.2)

where G ∈ Rl×n, g ∈ Rl and K ⊂ Rl is a closed convex cone with non-empty inte-
rior. The set {y|Gy ⪯K g} is non-empty, convex and compact, and describes the space
occupied by the un-oriented agent at the origin, and can denote various shapes for an
appropriate choice of K (e.g., a polytope when K is the positive orthant or an ellipsoid
when K is the second-order cone).

Now suppose that there are M obstacles, each described by the affine time-varying
discrete-time dynamics

oi
t+1 = Ti

t oi
t + qi

t + Fi
t ni

t,

pi
t = Coi

t ∀i ∈ IM
1 (5.3)

where oi
t ∈ Rnx , pi

t ∈ Rn, ni
t ∈ Rnx are the state, position and process noise respectively

and Ti
t , qi

t, Fi
t , C are the system matrices of the ith obstacle at time t. Now suppose that

the orientation Ri
t of the ith obstacle at time t is given, and define the space occupied by

the obstacle as the set

Si
t(o

i
t) = {z ∈ Rn | z = Ri

ty + pi
t, Giy ⪯K gi} (5.4)

where the non-empty, convex and compact set {y|Giy ⪯K gi} describes the un-oriented
shape of the obstacle at the origin. We also introduce the notation ot = [o1⊤

t . . . , oM⊤
t ]⊤,

nt = [n1⊤
t . . . , nM⊤

t ]⊤ to denote the stacked obstacle state and process noise vectors at
time t, and Tt = blkdiag(T1

t , . . . , TM
t ), Ft = blkdiag(F1

t , . . . , FM
t ), qt = [q1⊤

t . . . qM⊤
t ]⊤ to

define the combined dynamics of the obstacles as ot+1 = Ttot + qt + Ftnt.

Uncertainty Description

The presence of process noises wt and nt in the dynamics of the controlled agent and the
obstacles adds uncertainty in the prediction of their state trajectories. In this paper, we
consider three different descriptions of the distributions of the process noise as follows.
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• D1: The process noise [w⊤t , n⊤t ]
⊤ are i.i.d ∀t ≥ 0 and have compact support,

[w⊤t n⊤t ]
⊤ ∈ D = {d| ||Γd||∞ ≤ γ}

for γ > 0 and non-singular Γ.

• D2: The process noise [w⊤t , n⊤t ]
⊤ are i.i.d ∀t ≥ 0 and are given by the Gaussian

distribution
[w⊤t n⊤t ]

⊤ ∼ N (0, Σ).

• D3: The process noise [w⊤t , n⊤t ]
⊤ are i.i.d ∀t ≥ 0 and are given by an unknown

distribution with known mean and covariance,

E
(
[w⊤t n⊤t ]

⊤
)
= 0,

E
(
([w⊤t n⊤t ]

⊤)([w⊤t n⊤t ])
)
= Σ.

Model Predictive Control Formulation
We aim to compute the MPC policy uMPC

t (xt, ot) for the AV such that it avoids col-
lisions with the obstacles, i.e., St(xt) ∩ Si

t(o
i
t) = ∅ ∀i ∈ IM

1 , while respecting poly-
topic state-input constraints given by XU = {(x, u) |Fx

j x + Fu
j u ≤ f j, ∀j ∈ I

J
1}, where

Fx
j ∈ R1×nx , Fu

j ∈ R1×nu , f j ∈ R ∀j ∈ I
J
1. To compute the MPC, we solve the following

finite-horizon constrained optimal control problem.

OPTt(D ∈{D1, D2, D3}) :
min

θt
Jt(xt, ut) (5.5a)

s.t. xk+1|t = Akxk|t + Bkuk|t + Ekwk|t (5.5b)

ok+1|t = Tkok|t + qk + Fknk|t (5.5c)

(wt, nt) given by D (5.5d)
(xt, ut, ot) ∈ C(D) (5.5e)
ut = Πθt(xt, ot) (5.5f)
xt|t = xt, ot|t = ot (5.5g)

∀k ∈ It+N−1
t

where xt = [x⊤t|t, . . . , x⊤t+N|t]
⊤ (ot similarly) and ut = [u⊤t|t, . . . , u⊤t+N−1|t]

⊤ (wt, nt simi-
larly). The objective (5.5a) penalizes deviation of the agent’s trajectory from a desired
reference. The obstacle avoidance constraints, and state-input constraints along the pre-
diction horizon are summarised as C(D) in (5.5e), and depend on the uncertainty de-
scription assumed in (5.5d). In (5.5f), the control inputs ut along the prediction horizon
are given by a parameterized policy class that depends on predictions of the agent’s and
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obstacles’ trajectories. We solve our MPC problem in batch form by explicitly substi-
tuting for the equality constraints (5.5b), (5.5c) and optimize over the policy parameters
θt.

5.3 Collision Avoidance for Dynamic Obstacles with
Uncertain Predictions

In this section, we detail our MPC formulation for avoiding collisions with uncertain,
dynamically moving obstacles. First, we present our choice of policy parameterization
in (5.5f). Second, we present a continuous reformulation of the set intersection problem
Sk(xk|t) ∩ Si

k(o
i
k|t) = ∅ ∀i ∈ IM

1 , which we use as our model for collision avoidance.
Then we derive deterministic reformulations of the collision avoidance constraints and
state-input constraints for each uncertainty description, and finally consolidate all these
components to present our MPC design.

Policy Parameterization
We use parameterised feedback policies Πθt(xt, ot) for the control actions ut (as in (5.5f))
along the prediction horizon. Consider the following policy for the input at time k,

uk|t = hk|t +
k−1

∑
l=t

Ml,k|twl|t + Kk|t(ok|t − ōk|t) (5.6)

which uses state feedback for the obstacles’ states but affine disturbance feedback for
feedback over the agent’s states (cf. [54] for equivalence of state feedback and distur-
bance feedback, [12] for a recent application). The nominal states ōk|t of the obstacles are
obtained as ōk+1|t = Tk ōk|t + qk ∀k ∈ It+N−1

t , with ōt|t = ot.
In Appendix 5.6, we define the matrices At, Bt, Et given by (5.23),(5.25) to get the

agent’s trajectory, xt = Atxt + Btut + Etwt. Similarly, the matrices Tt, qt, Ft given by
(5.24),(5.25), give the obstacles’ trajectory as ot = Ttot + qt + Rtnt. Defining ht, Mt, Kt
given by (5.21),(5.22), the control policies Πθt(xt, ot) along the prediction horizon are
ut = ht + Mtwt + KtFtnt, parameterized by θt = (ht, Mt, Kt).

Note that although ot doesn’t necessarily depend on xt (∵ nt may be independent
from wt), the policies Πθt(xt, ot) modify the distribution of xt in response to ot. Solving
(5.5) over open-loop sequences (i.e., Πθt(xt, ot) = ht) can be conservative because the
agent-obstacle trajectories (xt, ot) from a single control sequence ut = ht must satisfy all
the constraints regardless of the realizations of wt, nt.
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Collision Avoidance Constraint Reformulation by Dualization

The obstacle avoidance constraint between the agent and the ith obstacle at the kth time
step along the prediction horizon is given by Sk(xk|t) ∩ Si

k(o
i
k|t) = ∅. This can be equiva-

lently expressed as dist(Sk(xk|t), Si
k(o

i
k|t)) > 01 where dist(Sk(xk|t), Si

k(o
i
k|t)) is the solution

of the convex optimization problem

dist(Sk(xk|t), Si
k(o

i
k|t)) = min

z1∈Sk(xk|t),z2∈Si
k(o

i
k|t)
||z1 − z2||2

= min
z1,z2

||z1 − z2||2

s.t GR⊤k (z1 − pk|t) ⪯K g,

GiRi⊤
k (z2 − pi

k|t) ⪯K gi. (5.7)

In the following proposition, we use the above formulation (5.7) and Lagrange duality
to express the set intersection problem Sk(xk|t) ∩ Si

k(o
i
k|t) = ∅ as a convex feasibility

problem.

Proposition 5 Given the state and orientation of the agent xk|t, Rk, and state and orientation of
the ith obstacle oi

k|t, Ri
k at the kth prediction time step, we have

dist(Sk(xk|t), Si
k(o

i
k|t)) > 0

⇔∃λi
k|t, νi

k|t ∈ K
∗ : −λi⊤

k|t(GR⊤k (pk|t − pi
k|t) + g)− νi⊤

k|t gi > 0,

∥λi⊤
k|tGR⊤k ∥2 ≤ 1, λi⊤

k|tGR⊤k = −νi⊤
k|t GiRi⊤

k|t. (5.8)

The feasibility of (5.8) gives a separating hyperplane with normal vector µ = −λi⊤
k|tGR⊤k

for the sets Sk(xk|t), Si
k(o

i
k|t). For any z1 ∈ Sk(xk|t), z2 ∈ Si

k(o
i
k|t) and λi

k|t, νi
k|t ∈ K

∗ feasible for
(5.8), we have λi⊤

k|t(g− GR⊤k (z1 − pk|t)) ≥ 0, νi⊤
k|t(gi − GiRi⊤

k (z1 − pi
k|t)) ≥ 0. Adding these two

inequalities, we get µ⊤z1 − µ⊤z2 ≥ −λi⊤
k|t(GR⊤k (pk|t − pi

k|t) + g)− νi⊤
k|t gi > 0.

Next, we reformulate (5.8) to address the non-determinism arising from the uncer-
tainty in positions pk|t = Cxk|t + ck, pi

k|t = Coi
k|t along the prediction horizon due to

wt, nt.

Deterministic Constraint Reformulation

To specify the constraints (5.5e) for our MPC optimization problem, we derive deter-
ministic reformulations for the obstacle avoidance constraints (5.8) and the state-input
constraints XU = {(x, u) |Fx

j x + Fu
j u ≤ f j ∀j ∈ I

J
1} for the state predictions xt in closed-

loop with (5.6), for each uncertainty description: D1, D2 and D3.

1In practice, we replace > 0 with ≥ dmin for some small dmin > 0.
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We introduce the constant matrices Sx
k , Su

k , So,i
k such that Sx

k xt = xk|t, Su
k ut = uk|t and

So,i
k ot = oi

k|t. Let P be a permutation matrix such that [w⊤t n⊤t ]
⊤ = Pvt where vt =

[w⊤t|t n⊤t|t . . . w⊤t+N−1|t n⊤t+N−1|t]
⊤. Also, define λk|t = [λ1⊤

k|t . . . , λM⊤
k|t ]⊤, λt = [λ⊤t+1|t . . . , λ⊤t+N|t]

⊤

(similarly, νk|t , νt). For a given sequence of noise realisations (wt, nt), define the set
of feasible joint realizations of the agent and the obstacles (xt, ut, ot) in the lifted-space
(xt, ut, ot, λt, νt) as

St(wt, nt) =




xt
ut
ot
λt
νt



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀k ∈ It+N−1
t , ∀i ∈ IM

1 , ∀j ∈ I
J
1 :

λi
k+1|t, νi

k+1|t ∈ K
∗, ∥λi⊤

k+1|tGR⊤k+1∥2 ≤ 1,

λi⊤
k+1|tGR⊤k+1 = −νi⊤

k+1|tG
iRi⊤

k+1,

λi⊤
k|t(GR⊤k (C(S

x
k xt − So,i

k ot) + ct) + g)

< −νi⊤
k|t gi,

Fx
j Sx

k xt + Fu
j Su

k ut ≤ f j,

xt = Atxt + Btut + Etwt,

ot = Ttot + qt + Ftnt



. (5.9)

We now express the reformulations for the considered uncertainty descriptions using
this set.

Robust Formulation for Uncertainty Description D1

We seek to tighten the obstacle avoidance constraints, and state-input constraints to
find ut such that the tuple (xt, ut, ot) satisfies the aforementioned constraints for all
realisations of [w⊤k|t n⊤k|t]

⊤ ∈ D, ∀k ∈ It+N−1
t . We can write this formally as

C(D1) =
⋂

∀vt∈DN

St(wt, nt) (5.10)

where DN = {d| ∥Γd∥∞ ≤ γ}, Γ = IN ⊗ Γ.

Chance Constraint Formulation for Uncertainty Description D2

For uncertainty description D2, we have that [w⊤t , n⊤t ]
⊤ ∼ N (0, Σ), i.i.d. ∀t ≥ 0. Since

the uncertainties now have unbounded support, we adopt a chance constrained formu-
lation, where for some 0 < ϵ << 1, we find ut such that the tuple (xt, ut, ot, λt, νt)
satisfies the obstacle avoidance constraints (5.8) and state-input constraints with proba-
bility greater than 1− ϵ, given that [w⊤k|t n⊤k|t]

⊤ ∼ N (µ, Σ), ∀k ∈ It+N−1
t . Formally, we



CHAPTER 5. OPTIMIZATION-BASED COLLISION AVOIDANCE IN DYNAMIC,
UNCERTAIN ENVIRONMENTS 104

write this set as

C(D2) =




xt
ut
ot
λt
νt


∣∣∣∣∣∣∣∣∣∣
P




xt
ut
ot
λt
νt

 ∈ St(wt, nt)

 ≥ 1− ϵ

 (5.11)

where the probability measure P(·) is over vt, and constructed as the product of mea-
sures of N i.i.d Gaussian distributions N (0, Σ).

Distributionally Robust Formulation for Uncertainty Description D3

For uncertainty description D3, we have that [w⊤t , n⊤t ]
⊤ are i.i.d. ∀t ≥ 0 and have known

mean and covariance, E([w⊤t , n⊤t ]
⊤) = 0, E([w⊤t , n⊤t ]

⊤[w⊤t , n⊤t ]) = Σ. Denote the mean
and covariance of the stacked random variables vt as 0 = [0⊤ . . . , 0⊤]⊤, Σ = IN ⊗ Σ.
Now define the ambiguity set [107] as

P = {Probability distributions with E(vt) = 0, E(vtv⊤t ) = Σ}.

We adopt a distributionally robust chance constrained formulation, where for some 0 <
ϵ << 1, we find ut such that the tuple (xt, ut, ot, λt, νt) satisfies the obstacle avoidance
constraints (5.8) and state-input constraints with probability greater than 1− ϵ, for all
probability distributions in P . Formally, we write this set as

C(U3) =




xt
ut
ot
λt
νt


∣∣∣∣∣∣∣∣∣∣

inf
P∈P
vt∼P

P




xt
ut
ot
λt
νt

 ∈ St(wt, nt)

 ≥ 1− ϵ

 . (5.12)

The next theorem provides deterministic reformulations of the constraint sets pre-
sented above, and establishes the feasible set of (5.5) in terms of the policy parameters
θt = (ht, Mt, Kt) and Lagrange multipliers λt, νt.

Theorem 5.1 For the agent (5.1) in closed-loop with policy (5.6) and obstacles modelled by (5.3),
define the following functions ∀k ∈ It+N

t , ∀i ∈ IM
1 , ∀j ∈ I

J
1 in the dual variables and policy pa-

rameters θt = (ht, Mt, Kt):
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Yi
k|t(θt, λi

k|t, νi
k|t) = −λi⊤

k|tg− νi⊤
k|t gi − λi⊤

k|tGR⊤k ct

− λi⊤
k|tGR⊤k C(Sx

k (Atxt + Bht)− So,i
k (Ttot + qt)), (5.13)

Zi
k|t(θt, λi

k|t, νi
k|t) = λi⊤

k|tGR⊤k C
[
(Sx

k (BtMt + Et))⊤

F⊤t (S
x
k BtKt − So,i

k )⊤

]⊤
(5.14)

Ȳ j
k|t(θt) = f j − Fx

j Sx
k (Atxt + Bht)− Fu

j Su
k ht, (5.15)

Z̄j
k|t(θt) =

[
(Fx

j Sx
k (BtMt + Et) + Fu

j Su
k Mt)⊤

((Fx
j Sx

k + Fu
j Su

k )BtKtFt)⊤

]⊤
(5.16)

Then deterministic reformulations of the feasible sets of (5.5) are given as follows:

1. For uncertainty description D1, the feasible set is given by

Ft(D1) =




ht

Mt

Kt

λt

νt



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀k ∈ It+N−1
t , ∀i ∈ IM

1 , ∀j ∈ I
J
1 :

λi
k+1|t, νi

k+1|t ∈ K
∗∥λi⊤

k+1|tGR⊤k+1∥2 ≤ 1,

λi⊤
k+1|tGR⊤k+1 = −νi⊤

k+1|tG
iRi⊤

k+1,

Yi
k+1|t(θt, λi

k+1|t, νi
k+1|t) >

γ∥Zi
k+1|t(θt, λi

k+1|t, νi
k+1|t)PΓ−1∥1,

Ȳ j
k|t(θt)− γ∥Z̄j

k|t(θt)PΓ−1∥1 ≥ 0


(5.17)

2. For uncertainty description D2, the feasible set is inner-approximated by

Ft(D2) =




ht

Mt

Kt

λt

νt



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀k ∈ It+N−1
t , ∀i ∈ IM

1 , ∀j ∈ I
J
1 :

λi
k+1|t, νi

k+1|t ∈ K
∗∥λi⊤

k+1|tGR⊤k+1∥2 ≤ 1,

λi⊤
k+1|tGR⊤k+1 = −νi⊤

k+1|tG
iRi⊤

k+1,

Yi
k+1|t(θt, λi

k+1|t, νi
k+1|t) >

γca∥Zi
k+1|t(θt, λi

k+1|t, νi
k+1|t)PΣ

1
2 ∥2,

Ȳ j
k|t(θt) ≥ γxu∥Z̄j

k|t(θt)PΣ
1
2 ∥2


(5.18)

where γca = Φ−1(1 − ϵ
2NM ) and γxu = Φ−1(1 − ϵ

2NJ ), Φ−1(·) being the percentile
function of the standard normal distribution.

3. For uncertainty description D3, the inner-approximation of the feasible set, Ft(D3), is the

same as Ft(D2), except with γca =
√

2NM−ϵ
ϵ and γxu =

√
2NJ−ϵ

ϵ .

The constraint sets characterised in Theorem 5.1 are non-convex because the terms
Yi

k|t(·), Zi
k|t(·) ∀k ∈ It+N

t+1 , i ∈ IM
1 given by (5.13), (5.14) are bilinear in λt, θt. In the next

section, we proceed to derive a convex approximation of the constraint sets and propose
a MPC formulation amenable to convex programming.
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Sequential Convex Programming MPC Formulation

We linearize the bilinear terms Yi
k|t(·), Zi

k|t(·) ∀k ∈ It+N
t+1 , i ∈ IM

1 from (5.13), (5.14) for time

t, about the previous solution θ∗t−1, λ∗t−1, ν∗t−1 to get affine functions LYi
k|t(·),LZi

k|t(·)
given by

LYi
k|t(θt, λi

k|t, νi
k|t) =Yi

k|t(θt, λi∗
k−1|t−1, νi

k|t)

+Yi
k|t(θ

∗
t−1, λi

k|t − λi∗
k−1|t−1, νi

k|t)

LZi
k|t(θt, λi

k|t, νi
k|t) =Zi

k|t(θt, λi∗
k−1|t−1, νi

k|t)

+Zi
k|t(θ

∗
t−1, λi

k|t − λi∗
k−1|t−1, νi

k|t)

When γ > 0, ϵ < min{NM, NJ}, the constraints

LYi
k|t(θt, λi

k|t, νi
k|t) > γ∥LZi

k|t(θt, λi
k|t, νi

k|t)PΓ−1∥1,

LYi
k|t(θt, λi

k|t, νi
k|t) > γca∥LZi

k|t(θt, λi
k|t, νi

k|t)PΣ
1
2 ∥2

are second-order cone (SOC) representable (LP representable in the first case) because
the composition of a SOC constraint with an affine map is still an SOC constraint. Substi-
tuting these affine functions in the set definitions of Ft(D1),Ft(D2),Ft(D3), the resulting
constraint sets F̃t(D1), F̃t(D2), F̃t(D3) are convex. This follows from 1) convexity of the
dual cone K∗, 2) convexity of constraints ∥λi⊤

k|tGR⊤k ∥2 ≤ 1, λi⊤
k|tGR⊤k = −νi⊤

k|t GiRi⊤
k , and 3)

convexity of constraints Ȳ j
k|t(θt) ≥ γ∥Z̄j

k(θt)PΓ−1∥1, Ȳ j
k|t(θt) ≥ γxu∥Z̄j

k(θt)PΣ
1
2 ∥2 due to com-

position of SOC constraint with affine maps Ȳ j
k|t(·), Z̄j

k|t(·).
We also define a convex, quadratic cost (7.1a) of the MPC optimization problem (5.5)

to penalise deviations of the agent’s nominal (certainty-equivalent) state-input trajecto-
ries from a given reference trajectory xref

t = [xref⊤
t , . . . , xref⊤

t+N]
⊤, uref

t = [uref⊤
t , . . . , uref⊤

t+N−1]
⊤:

Ct(x̄t, ūt) =(xref
t − x̄t)

⊤Q(xref
t − x̄t) + (uref

t − ūt)
⊤R(uref

t − ūt) (5.19)

where Q, R ≻ 0, x̄t = Atxt + Btht, ūt = ht. The resulting optimization problem for
our MPC for either of the uncertainty descriptions D1, D2 or D3 is given by the convex
optimization problem:

OPTCVX
t (D ∈{D1, D2, D3}) :
min

{ht,Kt,Mt,λt,νt}
Ct(x̄t, ūt)

s.t x̄t = Atxt + Btht, ūt = ht,

{ht, Kt, Mt, λt, νt} ∈ F̃t(D). (5.20)

When the cone K is given by the positive orthant (for polytopic shapes) or the second-
order cone (for ellipsoidal shapes), the optimization problem (5.20) is given by a second-
order cone program which can be efficiently solved. The optimal solution to (5.20) is
used to obtain the control action u∗t|t given by (5.6).
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Remark 5.1 The feasible set of (5.20) is not a convex inner-approximation of the original prob-
lem with Ft(D). However, at the cost of introducing several new variables, a convex-inner
approximation can be obtained by enforcing the collision avoidance constraints for all points in
the convex relaxation of the bilinear equalities (5.13), (5.14) given by McCormick envelopes[89].
An investigation along these lines is left for future research.

5.4 Results
In this section, we demonstrate our MPC formulation 2 for an unprotected left turn at a
traffic intersection in CARLA. We evaluate the MPC formulations for each uncertainty
description D ∈ {D1, D2, D3} to highlight the benefit of the proposed collision avoid-
ance formulation.

Motion Planning Setup

The AV model (5.1) is obtained by linearizing the kinematic bicycle model about a ref-
erence trajectory. The reference trajectory is computed offline by solving a nonlinear
trajectory optimization problem to track a high-level route provided by the CARLA
waypoint API, while accounting for actuation limits and lane constraints. The predic-
tions for the target vehicle are given by Multipath [37] to produce a normally distributed
trajectory prediction. The mean and covariance of this distribution are used to define
the uncertainty descriptions D2, D3 and obtain the model (5.3). For uncertainty D1,
Γ, γ are chosen to construct a polytopic outer-approximation of the 1− ϵ confidence set
of normal distribution, where ϵ = 0.05. Both vehicle geometries are modeled as poly-
topes. The MPC optimization problem (5.20) is solved using Gurobi [57] and when an
infeasible problem is encountered, a braking control is commanded. The corresponding
control action u∗t|t is given as a reference to a low-level control module that sets the ve-
hicle’s steering, throttle, and brake inputs. These loops are repeated until all vehicles in
the scenario reach their destination.

Policies

We evaluate the following set of policies for each uncertainty description: We compare
the following control policies for the agent corresponding to the different uncertainty
descriptions: 1) Robust MPC (RMPC) for D1, 2) Stochastic MPC (SMPC) for D2, and 3)
Distributionally Robust MPC (DRMPC) for D3.

• Robust MPC (RMPC), given by (5.20) with uncertainty D1

2Experiments were run on a computer with a Intel i9-9900K CPU, 32 GB RAM, and a RTX 2080 Ti
GPU.
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• Robust MPC Baseline (RMPC BL), given by the collision avoidance formulation
from Chapter 3, but with robust constraint tightening for D1 and fixed risk alloca-
tion

• Stochastic MPC (SMPC), given by (5.20) with uncertainty D2

• Stochastic MPC Baseline (SMPC BL), given by the SMPC from Chapter 3 but with
fixed risk allocation

• Distributionally Robust MPC (DMPC), given by (5.20) with uncertainty D3

• Distributionally Robust MPC Baseline (DMPC BL), given by the collision avoid-
ance formulation from Chapter 3, but with distributionally robust constraint tight-
ening for D3 and fixed risk allocation

Evaluation Metrics

To evaluate the performance of our approach with respect to the baseline policies, we
introduce a set of closed-loop behavior metrics. A desirable planning framework enables
high mobility without being overly conservative, allowing the timely completion of the
driving task, while maintaining passenger comfort. The computation time should also
not be exorbitant to allow for real-time processing of updated scene information.

The following metrics are used to assess these factors:

• Mobility: We record the time the EV takes to reach its goal: T̃episode, normalised by
the time taken to reach the same goal without target vehicles.

• Comfort: We record (1) the peak lateral acceleration: Ãlat, normalised by the peak
lateral acceleration in the absence of TVs, (2) the average longitudinal jerk: J̄long
and (3) the average lateral jerk: J̄lat. High values are undesirable, linked to sudden
braking or steering.

• Conservatism: We record (1) the deviation of the closed-loop trajectory from the
trajectory obtained without TVs: ∆τ, (2) the smallest Euclidean distance observed
between the EV and TV: d̄min and (3) the feasibility % of the SMPC optimization
problem: F . While an increase in (1) and (2) corresponds to higher safety, a large
value could indicate an over-conservative planner and resulting low values of (3).

• Computational Efficiency: This is the average time taken by the solver: T̄solve;
lower is better.

We run each policy for 10 initial conditions by varying the initial speed and distance
from the intersection. The computed metrics are presented in Table 5.1.
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Table 5.1: Closed-loop performance comparison across all scenarios.

Policy
Mobility Comfort Conservatism Efficiency
T̃episode Ãlat J̄long ( m

s3 ) J̄lat ( m
s3 ) ∆τ (m) d̄min (m) F (%) T̄solve (ms)

RMPC BL 1.166 1.712 4.998 6.016 1.396 10.174 98.59 30.280
RMPC 1.094 1.512 2.531 5.691 1.242 4.884 100.00 35.949

SMPC BL 1.099 1.830 3.336 6.824 1.130 5.270 98.74 33.063
SMPC 1.086 1.027 2.098 6.554 1.242 3.578 100.00 52.319

DMPC BL 1.370 1.620 3.971 8.595 2.707 11.582 93.09 43.372
DMPC 1.252 1.159 2.143 4.378 1.734 7.917 97.51 61.400

Discussion

We observe that the tighter collision avoidance formulation proposed in this chapter
achieves better results than the baseline, all across mobility, comfort, and conservatism.
The additional dual variables increase the solve times but are still competitive for real-
time control. In general, we see that the distributionally robust approach is more con-
servative than the stochastic and robust counterparts.

To qualitatively depict the difference in performance, we compare the SMPC from
this chapter to the SMPC from chapter 3. In chapter 3, collision is modeled as the
intersection of an ellipse (for the obstacle) and a circle (for the agent), and the free space
is inner-approximated using an affine constraint. While the latter is robust to deviations
of the agent’s orientation along the predictions, this approach induces conservative and
undesirable maneuvers for collision avoidance. We summarise our findings in Figure 5.1,
and observe that the new approach allows for a tighter left-turn in Figure 5.1b.

5.5 Conclusion
We proposed convex MPC formulations for collision avoidance with dynamic obstacles
and prediction uncertainties given by 1) Polytopic supports, 2) Gaussian distributions
and 3) Arbitrary distributions with known mean and variance, and numerically vali-
dated our approach at traffic intersection scenarios. The key idea is to use dual per-
spective of collision avoidance, and tighten the reformulated dual feasibility problem for
different prediction uncertainties. This approach can be applied for agent and obstacle
geometries given by general convex sets such as ellipsoids and polytopes.
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(a) SMPC from chapter 3, [100]

(b) SMPC from this chapter

Figure 5.1: Closed-loop trajectories of the agent (green) with the SMPC from this chapter
versus that of chapter 2. The coloured ellipses are the confidence sets given by the multi-
modal predictions for the obstacle (red). The improved collision avoidance formulation
allows for a tighter turn. Video: https://youtu.be/wgqO36a1SU8

https://youtu.be/wgqO36a1SU8
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5.6 Appendix

Matrix definitions

ht = [h⊤t|t . . . h⊤t+N−1|t]
⊤, Kt = blkdiag

(
Kt|t, . . . , Kt+N−1|t

)
, (5.21)

Mt =


O . . . . . . O

Mt,t+1|t O . . . O
...

...
...

. . .
Mt,t+N−1|t . . . Mt+N−2,t+N−1|t O

 , (5.22)

At =


Inx

At
...

t+N−1
∏
k=t

Ak

 , Bt =


O . . . . . . O
Bt O . . . O
...

. . . . . .
...

t+N−1
∏

k=t+1
AkBt . . . . . . Bt+N−1

 , (5.23)

Tt =


Inx

Tt
...

t+N−1
∏
k=t

Tk

 , qt =


O
qt
...

qt+N−1 +
t+N−1

∑
k=t

t+N−1
∏

l=k+1
Tlqk

 , (5.24)

Et =


O . . . O
Et . . . O
...

. . .
...

t+N−1
∏

k=t+1
AkEt . . . Et+N−1

 , Ft =


O . . . . . . O
Ft O . . . O
...

. . . . . .
...

t+N−1
∏

k=t+1
TkFt . . . . . . Ft+N−1

 (5.25)

Proof of Proposition 5
Consider the Lagrangian of the optimization problem (5.7), L(z1, z2, λi

k|t, νi
k|t) = ||z1 −

z2||2 + λi⊤
k|t(GR⊤k (z1 − pk|t) − g) + νi⊤

k|t(G
iRi⊤

k (z2 − pi
k|t) − gi) where the Lagrange multipliers

λi
k|t, νi

k|t ∈ K
∗. Define the dual objective as

d(λi
k|t, νi

k|t) = infz1,z2L(z1, z2, λi
k|t, νi

k|t)

= −λi⊤
k|t(GR⊤k pk|t + g)− νi⊤

k|t(GRi⊤
k pi

k|t + gi)

− sup
z1,z2

( [−RkG⊤λi
k|t

−Ri
kGi⊤νi

k|t

]⊤ [
z1
z2

]
− f (z1 − z2)

)
where f (·) = || · ||2. We use the properties of convex conjugates to obtain the dual
objective. The convex conjugate of f (·) is given by f ∗(y) = supx y⊤x− f (x) = {0 if ||y||2 ≤
1, ∞ otherwise }. Moreover if h(x) = f (Ax), then h∗(y) = infA⊤z=y f ∗(z). For y =
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− [λi⊤
k|tGR⊤k νi⊤

k|t GiRi⊤
k ]⊤, A = [In − In], x = [z⊤1 z⊤2 ]

⊤, the dual function can now be written as
follows,

d(λi
k|t, νi

k|t) = −λi⊤
k|t(GR⊤k pk|t + g)− νi⊤

k|t(GRi⊤
k pi

k|t + gi)− h∗(y)

= −λi⊤
k|t(GR⊤k pk|t + g)− νi⊤

k|t(GRi⊤
k pi

k|t + gi)

for ∥λi⊤
k|tGR⊤k ∥ ≤ 1, ∥νi⊤

k|t GiRi⊤
k ∥2 ≤ 1, RkG⊤λi

k|t + Ri
k|tG

i⊤
k|tν

i
k|t = 0. The dual optimization prob-

lem for (5.7) can now be written as

max
λi

k|t,ν
i
k|t∈K

∗
− λi⊤

k|t(GR⊤k pk|t + g)− νi⊤
k|t(GRi⊤

k pi
k|t + gi)

s.t ∥λi⊤
k|tGR⊤k ∥2 ≤ 1, ∥νi⊤

k|t GiRi⊤
k ∥2 ≤ 1,

RkG⊤λi
k|t + Ri

k|tG
i⊤
k|tν

i
k|t = 0. (5.26)

Since the sets {e|Ge ⪯K g}, {o|Gio ⪯K gi} are non-empty, the feasible set of (5.7) has a
non-empty interior. By Slater’s condition, strong duality holds and dist(Sk(xk|t), Si

k(o
i
k|t))

is equal the optimal objective of (5.26). Thus, we rewrite dist(Sk(xk|t), Si
k(o

i
k|t)) > 0 as

max
λi

k|t,ν
i
k|t∈K

∗,∥λi⊤
k|tGR⊤k ∥2≤1

RkG⊤λi
k|t=−Ri

k|tG
i⊤
k|t νi

k|t

d(λi
k|t, νi

k|t) > 0

⇔∃λi
k|t, νi

k|t ∈ K
∗ : −λi⊤

k|t(GR⊤k (pk|t − pi
k|t) + g)− νi⊤

k|t gi > 0,

∥λi⊤
k|tGR⊤k ∥2 ≤ 1, RkG⊤λi

k|t = −Ri
k|tG

i⊤
k|tν

i
k|t

■

Proof of Theorem 5.1
For all k ∈ It+N−1

t , i ∈ IM
1 , define the sets

S i
k|t(wt, nt) =




xt
ut
ot
λt
νt



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λi
k|t, νi

k|t ∈ K
∗, ∥λi⊤

k|tGR⊤k ∥2 ≤ 1,

λi⊤
k|tGR⊤k = −νi⊤

k|t GiRi⊤
k ,

λi⊤
k|t(GR⊤k (C(S

x
k xt − So,i

k ot) + ct) + g)

< −νi⊤
k|t gi,

xt = Atxt + Btut + Etwt,
ot = Ttot + qt + Ftnt



S̄k|t(wt, nt) =

{
(xt, ut)

∣∣∣∣∣Fx
j Sx

k+1xt + Fu
j Su

k ut ≤ f j, ∀j ∈ I
J
1

xt = Atxt + Btut + Etwt

}
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and see that

St(wt, nt) =
t+N−1⋂

k=t

(
S̄k|t(wt, nt)

M⋂
i=1

S i
k+1|t(wt, nt)

)
(5.27)

We proceed to derive the feasible set for each case as follows.
1) We use (5.27) to express (5.10) as

C(D1) =
t+N−1⋂

k=t

 ⋂
vt∈DN

S̄k|t(wt, nt)
M⋂

i=1

S i
k+1|t(wt, nt)


For any k ∈ It+N

t+1 , i ∈ IM
1 , a feasible point in

⋂
vt∈DN S i

k|t(wt, nt) satisfies the constraints

− λi⊤
k|t(GR⊤k (C(S

x
k xt − So,i

k ot) + ct) + g) > νi⊤
k|t gi, ∀vt ∈ DN

λi
k|t, νi

k|t ∈ K
∗, ∥λi⊤

k|tGR⊤k ∥2 ≤ 1, λi⊤
k|tGR⊤k = −νi⊤

k|t GiRi⊤
k .

Plugging in the closed-loop evolution of xt, ot using ut = ht + Mtwt + KtFtnt, we can
rewrite this using the functions Yi

k(θt, λi
k|t, νi

k|t), Zi
k(θt, λi

k|t, νi
k|t) as

Yi
k(θt, λi

k|t, νi
k|t) + Zi

k(θt, λi
k|t, νi

k|t)

[
wt
nt

]
> 0, ∀vt ∈ DN ,

λi
k|t, νi

k|t ∈ K
∗, ∥λi⊤

k|tGR⊤k ∥2 ≤ 1, λi⊤
k|tGR⊤k = −νi⊤

k|t GiRi⊤
k .

The first inequality in the last implication can be equivalently expressed without the
quantifier ∀vt ∈ DN as

Yi
k(θt, λi

k|t, νi
k|t) + min

vt∈DN
Zi

k(θt, λi
k|t, νi

k|t)Pvt > 0

⇔Yi
k(θt, λi

k|t, νi
k|t)− max

∥d̃∥∞≤1
−Zi

k(θt, λi
k|t, νi

k|t)PγΓ−1d̃ > 0

⇔Yi
k(θt, λi

k|t, νi
k|t)− γ∥Zi

k(θt, λi
k|t, νi

k|t)PΓ−1∥1 > 0

where the last implication is obtained by noting that ∥ · ∥1 is the dual norm of ∥ · ∥∞. For
the state-input constraints, we similarly have for each j ∈ I

J
1,

Fx
j Sx

k+1xt + Fu
j Su

k ut ≤ f j, ∀vt ∈ DN

⇔Ȳ j
k(θt) + Z̄j

k(θt)

[
wt
nt

]
> 0, ∀vt ∈ DN ,

⇔Ȳ j
k(θt)− γ∥Z̄j

k(θt)PΓ−1∥1 ≥ 0

The feasible set Ft(D1) is thus defined by the above inequalities ∀k ∈ It+N−1
t , ∀i ∈

IM
1 , ∀j ∈ I

J
1.

2) Now we proceed to the chance-constrained case. For convenience, define zt =
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[x⊤t u⊤t o⊤t λ⊤t νt]⊤. The joint constraint P(zt ∈ St(wt, nt)) ≥ 1 − ϵ is difficult to re-
formulate in the given form, so we construct an inner-approximation to this set using
individual chance constraints as follows.

P(zt ∈ St(wt, nt)) = P(zt ∈
t+N−1⋂

k=t

(
S̄k|t(wt, nt)

M⋂
i=1

S i
k+1|t(wt, nt)

)
)

⇒ P(zt ̸∈ St(wt, nt)) = P(zt ̸∈
t+N−1⋃

k=t

(
S̄k|t(wt, nt)

M⋃
i=1

S i
k+1|t(wt, nt)

)
)

≤
t+N−1

∑
k=t

(
P(zt ̸∈ S̄k|t(wt, nt)) +

M

∑
i=1

P(zt ̸∈ S i
k+1|t(wt, nt))

)
Thus, if each P(zt ̸∈ S̄k|t(wt, nt)) ≤ ϵ

2N and P(zt ̸∈ S i
k+1|t(wt, nt)) ≤ ϵ

2NM , we get P(zt ∈
St(wt, nt)) = 1 − P(zt ̸∈ St(wt, nt)) ≥ 1 − ϵ. So for any k ∈ It+N−1

t+1 , we reformulate
P(zt ∈ S i

k|t(wt, nt)) ≥ 1 − ϵ
2NM using the result: P(a⊤x > b) ≥ 1 − ϵ, x ∼ N (µx, Σx) ⇔

a⊤µx −Φ−1(1− ϵ)∥a⊤Σ
1
2
x ∥2 > b.

P(zt ∈ S i
k|t(wt, nt)) ≥ 1− ϵ

2NM
,

⇔P(Yi
k(θt, λi

k|t, νi
k|t) + Zi

k(θt, λi
k|t, νi

k|t)

[
wt
nt

]
> 0) ≥ 1− ϵ,

λi
k|t, νi

k|t ∈ K
∗, ∥λi⊤

k|tGR⊤k ∥2 ≤ 1, λi⊤
k|tGR⊤k = −νi⊤

k|t GiRi⊤
k ,

⇔Yi
k(θt, λi

k|t, νi
k|t)− γca∥Zi

k(θt, λi
k|t, νi

k|t)PΣ
1
2 ∥2 > 0,

λi
k|t, νi

k|t ∈ K
∗, ∥λi⊤

k|tGR⊤k ∥2 ≤ 1, λi⊤
k|tGR⊤k = −νi⊤

k|t GiRi⊤
k .

where γca = Φ−1(1− ϵ
2NM ). The joint-chance constraint P((xt, ut) ̸∈ S̄k|t(wt, nt)) ≤ ϵ

2N is
similarly inner-approximated by imposing P(Fx

j Sx
k+1xt + Fu

j Su
k ut > f j) ≤ ϵ

2NJ ∀j ∈ I
J
1, which

is given by

Ȳ j
k(θt)− γxu∥Z̄j

k(θt)PΣ
1
2 ∥2 ≥ 0, ∀j ∈ I

J
1.

where γxu = Φ−1(1− ϵ
2NJ ). Thus, the inner-approximation of the feasible set is given by

Ft(D2), defined by the above inequalities ∀k ∈ It+N−1
t , ∀i ∈ IM

1 , ∀j ∈ I
J
1.

3) For the distributionally robust case, the joint-chance constraints are converted to in-
dividual chance constraints in the same way as shown above. However, since only the
first two moments of the probability distribution are known, we reformulate the con-
straint using the result: infP∈P̄

x∼P
P(a⊤x > b) ≥ 1− ϵ⇔ a⊤µx −

√
1−ϵ

ϵ ∥a⊤Σ
1
2
x ∥2 > b , where P̄ is

the set of distributions with mean µx and variance Σx. Proceeding identically as in the

chance-constrained case but with γca =
√

2NM−ϵ
ϵ and γxu =

√
2NJ−ϵ

ϵ , we get Ft(D3).
■
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Part III

Efficiency
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Chapter 6

Learning for Mixed-Integer Predictive
Control with Parametric Sub-optimality
Certificates

6.1 Overview
Multi-parametric Mixed-Integer Programming (mp-MIP) is a convenient framework for
modelling various non-convex motion planning and constrained optimal control prob-
lems [66]. The mixed-integer formulation can model constraints such as collision avoid-
ance [86], mixed-logical specifications [128] and mode transitions for hybrid dynamics
[61]. The multi-parametric nature of these mp-MIPs arises from requiring to solve these
problems for different initial conditions, obstacles configurations or system constraints—
all of which affect the MIP solution. When Model Predictive Control (MPC) [92, 21] is
used for such class of problems, an MIP has to be solved in a receding horizon fashion
at each time step. However, computing solutions for MIPs is NP−hard and challenging
for real-time (≥ 10Hz) applications.

There are two broad approaches towards solving these MIPs online for real-time
MPC. The first approach is Explicit MPC [21, 15] which involves offline computation
of the solution map of the mp-MIP explicitly as piece-wise functions over partitions of
the parameter space, so that online computation is reduced to a look-up. However this
approach is best suited for mp-MIPs of moderate size because the complexity of the
online look-up and offline storage of partitions, increases rapidly with scale [41]. The
second approach for real-time mixed-integer MPC relies on predicting warm-starts or
strategies for the mp-MIP by training Machine Learning (ML) models offline on large
datasets [87, 149, 18, 34]. The authors of [87, 149] use various supervised learning frame-
works to predict the optimal integer variables for the mp-MIP at a given parameter so
that the online computation is reduced to solving a convex program. In [18, 34], the
authors define the notion of an optimal strategy for a mp-MIP as a mapping from pa-
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rameters to the complete information required to efficiently recover an optimal solution.
For multi-parametric Mixed-Integer Linear/Quadratic Programs (mp-MILPs/MIQPs),
an optimal strategy is defined as a set of integer variables and active constraints at the opti-
mal solution. Given an optimal strategy, an optimal solution can be recovered by solving
a linear system of equations which is computationally inexpensive compared to tree
search methods typically used for solving MIPs, such as Branch-and-Bound (BnB). Thus,
a prediction model is trained offline to predict the optimal strategy for efficiently solving
the MIPs online. However, a common issue that plagues these ML-based approaches is
the inability to assess the quality of the predicted warm-start/strategy to guard against
poor predictions, which can lead to sub-optimal or infeasible solution predictions. In-
deed, prediction models may perform poorly for various reasons: insufficient richness
of the model parameterization, distribution shift between the training and test sets, con-
vergence of the training algorithm towards a sub-optimal minimum [142].

Contributions

1. We propose a supervised learning framework for predicting strategies to efficiently
solve an MILP, along with a mechanism to measure the sub-optimality of the pre-
diction.

2. Analogous to the duality gap in convex programming, we propose bounding func-
tions for sub-optimality quantification of the predicted strategy by drawing inspi-
ration from Branch-and-Bound. This enables us to efficiently recover the solution of
an MILP online from the predicted strategy by solving some LPs online in parallel,
and also measure the sub-optimality of the recovered solution.

3. Using ideas from multi-parametric programming, we show the parametric be-
haviour of our proposed strategy definition for mp-MILPs.

6.2 Problem Formulation
Consider the general formulation for Mixed-Integer MPC (MIMPC) adapted from [21]:

V⋆(xt) = min
xt,ut,
δt,zt

||Pxt+N|t||p +
t+N

∑
k=t
||Q

[
xk|t
δk|t

]
||p + ||Ruk|t||p,

s.t. xk+1|t = Axk|t + B1uk|t + B2δk|t + B3zk|t,

E2δk|t + E3zk|t ≤ E1uk|t + E4xk|t + E5,

xt|t = xt, δk|t ∈ {0, 1}nδ ∀k = t, .., t + N − 1

(6.1)

where xt is system state at time t, p = 1 or ∞, and decision variables xt = [xt|t, .., xt+N|t],
ut, δt, zt (defined similarly) are the states, inputs, binary variables and auxiliary variables
respectively. The optimal solution to (6.1) defines the MPC policy as πMPC(xt) = u⋆

t|t.
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The optimization problem (6.1) can be expressed as a multi-parametric Mixed-Integer
Linear Program (mp-MILP), with the parameters being the system state xt. The mp-
MILP can be concisely expressed as follows:

V⋆(b) = min
z,y

c⊤z + d⊤y,

s.t. Az + By = b,

z ≥ 0, y ∈ {0, 1}M

(6.2)

with continuous decision variables z ∈ Rn, binary decision variables y ∈ {0, 1}M and
parameters b ∈ Rm. Let z⋆(b), y⋆(b) be an optimal solution to (6.2) and V⋆(b) be the
optimal cost. For a given parameter b, let F (b) be the set of (z, y) feasible for (6.2) and
V(b, z, y) be the cost of any (z, y) ∈ F (b), with sub-optimality given by V(b,z,y)−V⋆(b)

|V⋆(b)| .
Also define B = {b ∈ Rm|F (b) ̸= ∅} as the set of parameters for which (6.2) is feasible.

In this work, we aim to exploit the parametric nature of the mp-MILP (6.2) to pre-
dict a solution (z̃(b), ỹ(b)) ∈ F (b) for real-time MPC, and quantify its sub-optimality
using strategies. The strategy maps a parameter b to an element of a finite and discrete
set S, which describes the complete information necessary to recover a feasible point
(z(b), y(b)) for (6.2) (if it exists), formally defined next.

Definition 6.1 A function s : B → S is a strategy for mp-MILP (6.2) if there exists a map
R(·) such that ∀b ∈ B : R(b, s(b)) = (z(b), y(b)) ∈ F (b), and evaluating R(b, s(b)) is
computationally efficient compared to solving (6.2) directly.

For example, in [18] the set S is given by all possible sets of active constraints for (6.2)
and for each b ∈ B, s(b) picks the active constraints for a (z, y) ∈ F (b). The recovery
map is then given as the solution of a linear system of equations.

The strategy s⋆(b) is said to be optimal at b ∈ B if R(b, s⋆(b)) = (z⋆(b), y⋆(b)). We
construct functions Vlb(·, ·), Vub(·, ·) that satisfy the following properties:

1. For any (z, y) ∈ F (b) such that R(b, s(b)) = (z, y),

Vlb(b, s(b)) ≤ V(b, z, y) ≤ Vub(b, s(b)).

2. For the optimal strategy s⋆(b),

Vlb(b, s⋆(b)) = V⋆(b) = Vub(b, s⋆(b)).

For any b ∈ B, we use Vlb(·, ·), Vub(·, ·) to estimate the quality of a strategy s(b) with
respect to s⋆(b). In particular, the sub-optimality of a predicted strategy s̃(b) and the
recovered solution R(b, s̃(b)) = (z̃(b), ỹ(b)) is over-estimated as

sub opt(b, s̃(b)) =
∣∣∣∣Vub(b, s̃(b))−Vlb(b, s̃(b))

Vlb(b, s̃(b))

∣∣∣∣. (6.3)
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Organization

First, we present our choice of strategy s(·), the recovery map R(·), and the bound-
ing functions Vlb(·), Vub(·) that meet the desired properties in Section 6.3. Section 6.4
presents a supervised learning framework to approximate the optimal strategy s⋆(b),
and evaluate R(b, s⋆(b)), Vlb(b, s⋆(b)), Vub(b, s⋆(b)) efficiently for predicting solutions to
(6.1) online, and evaluate its sub-optimality. Finally, we demonstrate our approach for
motion planning using MIMPC and compare against open-source and commercial MILP
solvers in Section 6.5.

6.3 Strategy-based Solution to mp-MILPs
In this section, we present our design of the strategy s(·), the recovery map R(b, s(b))
and the bounding functions Vlb(b, s(b)), Vub(b, s(b)), along with theoretical justification
using ideas from the mp-MILP literature.

Preliminaries: Solving MILPs using Branch-and-Bound

Branch-and-Bound (BnB) is a tree search algorithm that solves MILPs, with each node
given as the LP sub-problem

V⋆
LP(b, lb, ub) = min

z,y
c⊤z + d⊤y,

s.t Az + By = b,
z ≥ 0, lb ≤ y ≤ ub,

(6.4)

where the binary variable bounds lb, ub ∈ {0, 1}M. For any b ∈ Rm, let FLP(b, lb, ub),
(z⋆(b, lb, ub), y⋆(b, lb, ub)) denote its feasible set and optimal solution respectively. At
iteration i of BnB, a collection of sub-problems identified by C i = {{lbi

k, ubi
k}

ni
k=1} is

maintained such that they form a cover over the set of binary sequences {0, 1}M:

ni⋃
k=1

[lbi
k, ubi

k] ⊇ {0, 1}M ⇒
ni⋃

k=1

FLP(b, lbi
k, ubi

k) ⊇ F (b).

A lower bound on V⋆(b) at iteration i is given as

Vi(b) = min
k∈{1,...,ni}

V⋆
LP(b, lbi

k, ubi
k) ≤ V⋆(b),

which can be shown in three steps:

1. Let (z̄, ȳ) = argmin{c⊤z + d⊤y|(z, y) ∈ ⋃ni

k=1FLP(b, lbi
k, ubi

k)} and k̄ ∈ {1, .., ni} be
the sub-problem such that (z̄, ȳ) ∈ FLP(b, lbi

k̄, ubi
k̄). Then c⊤z̄+ d⊤ȳ = V⋆

LP(b, lbi
k̄, ubi

k̄)

due to global optimality of the k̄th LP sub-problem.
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2. Observe that V⋆
LP(b, lbi

k̄, ubi
k̄) = Vi(b), because otherwise, ∃l ∈ {1, .., ni} such

that V⋆
LP(b, lbi

l, ubi
l) < V⋆

LP(b, lbi
k̄, ubi

k̄), which implies the contradiction min{c⊤z +
d⊤y|FLP(b, lbi

l, ubi
l)} < min{c⊤z + d⊤y|⋃ni

k=1FLP(b, lbi
k, ubi

k)}.

3. Finally since the sub-problems form a cover, Vi(b) = min{c⊤z + d⊤y|(z, y) ∈⋃ni
k=1FLP(b, lbi

k, ubi
k)} ≤ min{c⊤z + d⊤y|(z, y) ∈ F (b)} = V⋆(b).

Define the set of indices I i ⊆ {1, . . . , ni} such that their corresponding sub-problems
have solutions that are also feasible for (6.2), i.e.,

I i = {k ∈ 1, . . . , ni|(z⋆LP(b, lbi
k, ubi

k), y⋆LP(b, lbi
k, ubi

k)) ∈ F (b)}.

Then, an upper bound on V⋆(b) at iteration i is given as

V⋆(b) ≤ V̄i(b) =

{
mink∈I i V⋆

LP(b, lbi
k, ubi

k), I i ̸= ∅,
∞ I i = ∅

which is evident because V⋆(b) ≤ V⋆
LP(b, lbi

k, ubi
k) ∀k ∈ I i. If I i = ∅, often rounding

heuristics are applied to some sub-problem solutions to produce a feasible solution in
F (b). This describes the bounding process of BnB.

If Vi(b) ̸= V̄i(b), then the search proceeds to the next iteration via the branching
process, which constructs a new cover C i+1 from C i by splitting a sub-problem, say
{lbi

k, ubi
k}, into two new sub-problems {{lbi+1

k , ubi+1
k }, {lb

i+1
k+1, ubi+1

k+1}} by fixing one or
more variables to 0 in one sub-problem, and to 1 in the other. The branching deci-
sions depend on Vi(b), V̄i(b), the optimal sub-problem solutions, and some tree search
heuristics.

The search begins with the root node given by C0 = {{0M, 1M}} defining the LP
relaxation of (6.2). The search terminates at iteration “⋆” when V⋆(b) = V̄⋆(b) and
the optimal solution is given by the feasible solution that yields V̄⋆(b). This optimality
certificate is represented by

1. the optimal cover C⋆(b) = {{lb⋆
k , ub⋆

k}
n⋆
k=1} describing the LP sub-problems at the

terminal iteration,

2. the optimal binary solution y⋆(b) obtained from the sub-problem corresponding to
the upper-bound V̄⋆(b).
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Strategy Description for Parametric MILPs

Inspired by the optimality certificate obtained from BnB, we propose the following strat-
egy, bounding functions and recovery map:

s(b) = {C⋆(b), y⋆(b)}, (6.5a)
Vlb(b, s(b)) = min

k∈{1,...,n⋆}
V⋆

LP(b, lb⋆
k , ub⋆

k), (6.5b)

Vub(b, s(b)) = min
Az+By⋆(b)=b, z≥0

c⊤z + d⊤y⋆(b), (6.5c)

R(b, s(b)) = argmin
Az+By⋆(b)=b, z≥0

c⊤z + d⊤y⋆(b). (6.5d)

The strategy s(b̄) for parameter b̄ is optimal if it certifies optimality of the MILP (6.2)
via Vlb(b̄, s(b̄)) = V⋆(b̄) = Vub(b̄, s(b̄)). The next theorem highlights the parametric
behaviour of the optimality certificate provided by s(b̄), i.e., the set of parameters Pb̄ for
which s(b̄) remains optimal. Thus, for any parameter b ∈ Pb̄, the optimal solution can
be computed via (6.5d) without BnB.

Theorem 6.1 Let s⋆(b̄) = {C⋆(b̄), y⋆(b̄)} be the optimal strategy for solving MILP (6.2) with
the parameter b̄. Then there is a set of parameters Pb̄ ⊂ B, given by a union of convex polyhedra
for which s⋆(b̄) is also optimal,

Vlb(b, s⋆(b̄)) = V⋆(b) = Vub(b, s⋆(b̄)) ∀b ∈ Pb̄

The sets Pb̄i
can be constructed using ideas from multi-parametric programming, but

this approach would become intractable as the size of the problem increases. Instead, we
propose a supervised classification approach to predict an optimal strategy for a given
parameter in the next section. For a predicted strategy s̃(b), the functions in (6.5b), (6.5c)
are used to quantify its sub-optimality compared to s⋆(b). If no feasible solution is found
or the predicted strategy is too sub-optimal, an optimal solution can be retrieved from
C̃(b) by solving MILP sub-problems.

6.4 LAMPOS: Learning-based Approximate MIMPC with
Parametric Optimality Strategies

This section presents LAMPOS: (A) an offline supervised learning framework for strat-
egy prediction, and (B) an online algorithm for finding solutions to (6.1). The learning
problem of predicting s⋆(b) is split into two classification problems, from parameters b
to corresponding labels (γ⋆, υ⋆) for optimal cover C⋆(b) and binary solution y⋆(b), re-
spectively. The number of possible strategies/labels is exponential in the problem size,
which would make the classification problem intractable as well. To address this issue,
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Figure 6.1: We propose LAMPOS, a strategy-based solution approach for mp-MILPs for
real-time MPC. Offline, a prediction model Pθ(·) is trained on various MILP instances to
learn a strategy s(·), mapping parameters b to an optimal integer solution and a set of
LPs (called a cover) obtained from the leaves of the BnB tree. Online, a solution to the
MILP is obtained from the predicted strategy s(b) by solving a set of LPs in parallel. The
proposed strategy allows (1) sub-optimality quantification of MILP feasible solutions,
and (2) recovery of MILP solution if none were found from the LPs.

we construct our dataset with a limited number of strategies using the approach in [18].
For online deployment, the predicted strategy is used to obtain solutions to the (6.1)
using R(·), with sub-optimality quantification using Vlb(·), Vub(·).

Offline Supervised Learning for Strategy Prediction

Dataset Construction

Our dataset consists of parameter-strategy pairs (bi, s(bi)) where the strategy s(bi) =
(γi, υi) consists of a tuple of labels for the cover and binary solution respectively. We
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solve (6.2) for each bi and collect: (i) the set of leaves of the BnB tree that constitute our
optimal cover C⋆(bi) and (ii) the binary solution y⋆(bi), and assign a label to each. Let
S(BT) = {s1, s2, . . . , sM} be M strategies corresponding to T i.i.d. parameter samples
BT = {b1, b2, . . . , bT}. To determine the set of labels for the supervised classification
problem, we assess the probability of encountering a new strategy with a new i.i.d.
sample bT+1, i.e., P(s(bT+1) /∈ S(BT)). We adopt the Good-Turing estimator G = T1/T,
where T1 represents the number of strategies that have appeared exactly once, to bound
this probability with confidence at least 1− β as

P (s (bT+1) /∈ S (BT)) ≤ G + (2
√

2 +
√

3)

√
1
T

ln
(

3
β

)
.

For a fixed confidence β ≪ 1, we sample parameters and update G until the right-hand
side bound is less than a desired probability guarantee ϵ > 0. To conclude the dataset
construction, we use the insight from Theorem 6.1 to eliminate redundant strategies by
searching locally around bi in the dataset, for strategies s(bj) which maintain optimality
at bi.

Architecture and Learning problem

The classification problem for predicting the strategy can be solved using popular pre-
diction architectures such as Deep Neural Networks (DNN) and Random Forests (RF),
discussed as follows.

DNN-based Architecture

We use a feedforward DNN for cover prediction, with L layers composed together to de-
fine a function of the form γ̂ = fL( fL−1(. . . f1(b))). The output of the lth layer is given by
yl = fl(yl−1) = σl(Wlyl−1 +wl) where Wl ∈ Rpl×pl−1 and wl ∈ Rpl are the layer’s param-
eters, y0 = b, yL = γ̂ and σl is the activation function used to model nonlinearities. For
binary solution prediction for the MIMPC, we express y∗(b) = [y∗1(b), y∗2(b), . . . , y∗N(b)]
to divide the classification problem into N sub-problems, corresponding to each step
along the MPC horizon N. Each sub-problem j ∈ (1, 2, . . . , N) consists of finding the
label νj ∈ Υj associated with the binary solution for step j for parameter b, where Υj
is the set of labels for sub-problem j, and is predicted using a H layer DNN with pa-
rameters Wh ∈ Rph×ph−1 and wh ∈ Rph returning a label estimation ν̂j. The label for
ŷ(b) is given by the vector of labels υ̂ = [ν̂1, ν̂2, . . . , ν̂N]. This architecture makes the
classification task easier than directly recovering the full binary solution y∗(b) due to
the high number of different binary solutions in the dataset. Alternatively, any state-
of-the-art prediction architecture [35] can be adopted for capturing the temporal de-
pendence in the binary solution. The training process for DNN consists of finding the
network parameters that minimize a loss function that encodes misclassification error.
For all the classification problems, the Cross Entropy loss function is chosen, defined as



CHAPTER 6. LEARNING FOR MIXED-INTEGER PREDICTIVE CONTROL WITH
PARAMETRIC SUB-OPTIMALITY CERTIFICATES 124

H(p, q) = −∑K
i=1 pi log(qi), where p is the true label distribution over K labels and q is

the predicted label distribution. The optimization problem for DNN training is solved
using Stochastic Gradient Descent.

RF-based Architecture

The RF consists of multiple decision trees that are trained on random subsets of the
training data, and the final prediction combines the predictions of all the decision trees
in the forest by taking the majority vote. For the classification problems for binary and
cover prediction, the Gini impurity criterion can be used as the splitting criterion, which
measures the degree of impurity in a set of labels. The Gini impurity is defined as
Gini(p) = ∑K

i=1 pi(1− pi) where pi is the fraction of samples in a given set that belong
to class i. The Gini impurity is minimized by using a greedy approach for selecting the
split of the parameter space that maximizes the reduction in impurity.

Online Deployment for MIMPC

After training the prediction models offline, the online deployment of our approach
for MIMPC is described in Algorithm 3. The inputs to the algorithm are the trained
strategy prediction model Pθ⋆(·), the state of system xt and the desired sub-optimality
tolerance tol. The function solve MIMPC(·) returns the MPC policy πMPC(·). Inside it,
we first query the prediction model at the current state to obtain a strategy consisting
of the cover C̃(xt) and a candidate binary solution ỹ(xt). The list of LP sub-problems in
the cover is augmented with another LP by fixing the binary variable bounds to ỹ(xt).
Then the LPs are solved in parallel, while keeping track of MILP feasible solutions. The
solved sub-problems are sorted in the increasing order of cost, with ∞ assigned to the
cost of infeasible LPs. The lower bound LB on the optimal cost is provided by the first
LP sub-problem. The upper bound UB is obtained from the best MILP feasible solution,
if any. If the estimated sub-optimality UB−LB

|LB| is within tolerance, the MPC policy is
obtained as Sz⋆ where z⋆ is the LP solution corresponding to the upper bound and S
is a matrix that selects u⋆

t|t from z⋆. If no MILP feasible solutions were found (meaning

Ĩ = ∅) or the predictions do not meet the sub-optimality tolerance, we send the sorted
LP sub-problems to the backup procedure find sol(·) which solves a sequence of MILP
sub-problems. The backup returns an optimal solution if the MILP (6.1) is feasible, and
nothing otherwise. A deficiency of Algorithm 3 is the requirement of a MILP solver
for the backup procedure, which is unavoidable due to the NP-hardness of (6.2) if
optimal solutions are required (e.g., a stabilizing MPC policy for hybrid systems [15]). A
common heuristic solution is to query the prediction model for multiple binary solution
candidates [87, 34], which can be readily incorporated into Algorithm 3.
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Algorithm 3: LAMPOS (Online)
Input : Pθ⋆(·), xt, tol
Output: πMPC(xt)
Procedure solve MIMPC(xt):

/* Predict strategy */

[ C̃(xt) := {{ ˜lbk, ũbk}}nc
k=1, ỹ(xt)]← Pθ⋆(xt)

C̃(xt)← C̃(xt) ∪ {(ỹ(xt), ỹ(xt))}
/* Solve LPs in parallel */

Ĩ ← ∅, πMPC(xt)← ∅
parfor k = 1 to nc + 1 do

(Vk, zk, yk)←solve LP(xt, ˜lbk, ũbk)
if yk ∈ {0, 1}M then
Ĩ ← Ĩ ∪ {k}

end for
/* Check sub-optimality */

{(V̄k, ¯lbk, ūbk)}nc
k=1 ← sort({(Vk, ˜lbk, ũbk)}nc

k=1)
LB = V̄1
if Ĩ ̸= ∅ then

UB = mink∈Ĩ Vk, z⋆ ← zargmink∈Ĩ Vk

if UB− LB ≤ tol · |LB| then
πMPC(xt) = Sz⋆

if πMPC = ∅ then
(V̄, z̄, ȳ)←find sol ({(V̄k, ¯lbk, ūbk)}nc

k=1)
πMPC(xt) = Sz̄

return πMPC(xt)
Backup find sol({(Vk, lbk, ubk)}nc

k=1):
Vnc+1 ← ∞, (V̄, z̄, ȳ)← (∞, ∅, ∅)
for k = 1 to nc do

(V̂k, ẑk, ŷk)←solve MILP(xt, lbk, ubk)
(V̄, z̄, ȳ)← best sol({(V̂i, ẑi, ŷi)}k

i=1)
if V̄ ≤ Vk+1 then

break
end for

return (V̄, z̄, ȳ)

6.5 Numerical Experiments
In this section we demonstrate the effectiveness of our approach for a motion planning
problem and compare the performance against MILP solvers: GLPK-MI [82], SCIP [1],
Mosek [8] and Gurobi [57]. Our implementation is available at: https://github.com/

shn66/LAMPOS (•).

https://github.com/shn66/LAMPOS
https://github.com/shn66/LAMPOS
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MIMPC for 2D Motion planning

Figure 6.2: Obstacle configuration of the 2D motion planning problem, with the ith
obstacle’s shape: {(X, Y)| [pi

1
, pi

2
] ≤ [X, Y] ≤ [ p̄i

1, p̄i
2]}.

The motion planning problem is to steer the robot to the origin subject to state-input
and obstacle avoidance constraints as depicted in Fig. 6.2. The robot is modelled as an
Euler discretized, double integrator with state xt = [Xt, Ẋt, Yt, Ẏt], control ut = [Ẍt, Ÿt]
and sampling period dt = 0.1s. Policy πMPC(xt) is computed by solving the mp-MILP
(6.6), which is parametric in xt. The obstacle avoidance constraints are encoded using
the big-M method, with binary vectors δi

k|t, δ̄i
k|t ∈ {0, 1}2 introduced for each obstacle i

at time k, totalling 4 · nobs · N binary variables for a prediction horizon of N and nobs = 4
obstacles. The vectors x̄ = −x = [3, 3, 2, 2], ū = −u = [2, 2] define the state-input
constraints in (6.6), and Q = 103 I4, R = 50I2, P = 105 I4 define the cost matrices. We
model the problem using CVXPY and perform experiments for N = 20, 40.

min
xt,ut,δt

∥∥∥Pxt+N|t

∥∥∥
∞
+

t+N−1

∑
k=t

∥∥∥Qxk|t

∥∥∥
∞
+
∥∥∥Ruk|t

∥∥∥
∞

s.t. xk+1|t = I2 ⊗
[

1 dt
0 1

]
xk|t + I2 ⊗

[
0
dt

]
uk|t,

x ≤ xk+1|t ≤ x̄, u ≤ uk|t ≤ ū,

p̄i − δ̄i
k M ≤ [Xk+1|t, Yk+1|t] ≤ pi + Mδi

k,

1⊤δi
k + 1⊤δ̄i

k ≤ 3,

δi
k, δ̄i

k ∈ {0, 1}2 ∀i = 1, . . . , nobs

xt|t = xt, ∀k = t, . . . , t + N − 1.

(6.6)
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Implementation Details

Dataset construction

For dataset construction, we randomly sample parameters b = xt and solve MILP (6.6).
For each bi we collect the set of leaves of the BnB tree that represent our optimal cover
C∗(bi) and the binary solution y∗(bi). For eliminating redundant strategies we search
within the dataset locally around bi and look for strategies s(bj) for which the optimality
is maintained for bi. We used SCIP to save the leaves of the BnB solution tree to obtain
the covers C⋆(b). If the leaves/LP sub-problems are unavailable for the user’s solver of
choice, we provide a recursive algorithm to construct a cover C⋆(b) in Appendix 6.7.
For meeting the probability bound defined in Sec. 6.4, we fix β = 10−3, ϵ = 10−1. We
collected ∼ 105 samples for both N = 20, 40 cases. After data collection, we further
process the dataset by reassigning strategies with covers with a large number of LP
sub-problems, to another cover with the least sub-optimality and with fewer LP sub-
problems than a pre-defined threshold. This limits the online computation for solving
the LP sub-problems from the cover in parallel.

Supervised learning

For strategy predictions, we use RF for the N = 20 case and DNN for the N = 40 case.
For RF implementation we used the RandomForestClassifier from sci-kit setting number
of trees nt = 10 and used weighted tree splitting for both cover and binary solution
classification to mitigate unbalanced-ness in the dataset. The RFs were trained until
prediction accuracies ≥ 97% are achieved for binary and cover predictions. We use
Pytorch for our DNN implementation with architectures given by 2 hidden layers with
width 64 for binary prediction, and 3 hidden layers with width 128 for cover prediction.

Results

We tested our approach for cases N = 20, 40 by sampling 100 initial conditions x0 and
solve (6.6) for the policy πMPC(·) until the robot reaches the origin. For Algorithm 3,
the LPs were solved using ECOS [44] (for rapid infeasibility detection) and the backup
MILP sub-problems using SCIP. We compare LAMPOS against GLPK MI, SCIP, Mosek
and Gurobi for solve times. The solve times of our approach are compared to other
solvers in Fig. 6.3, 6.4. Our solve times include prediction time and LP sub-problem
solve times. In addition, we also solve (6.6) with SCIP, Mosek and Gurobi with a time-
limit of 50ms for N = 20, 40 1, and compare against LAMPOS for sub-optimality of
the obtained solution (if any). For each solver, we report the average sub-optimality of
feasible solutions and % of instances where it timed-out.

1No such interface for GLPK MI in CVXPY
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Figure 6.3: Comparison with solve times of other solvers for N = 20

Figure 6.4: Comparison with solve times of other solvers for N = 40

Discussion

In Fig. 6.3, 6.4 for solve times, we see that LAMPOS outperforms open-source solvers
GLPK MI, SCIP and is comparable to Mosek, Gurobi. Table 6.1 shows that LAMPOS,
Gurobi reliably find high-quality solutions within the time limit compared to SCIP,
Mosek (where we use (6.3) for quantifying LAMPOS’ sub-optimality). In our experi-
ments, we observed competitive solve times for LAMPOS when ỹ(b) = y⋆(b), but also
quick recovery otherwise by reusing the LP sub-problem information from C̃(b) during
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Table 6.1: Performance comparison with 50ms time limit

Horizon Metric Solver
LAMPOS SCIP Mosek Gurobi

N=20
Sub-opt (Avg) 0.04 0.34 0.16 1e-8
Time-out (%) 0 0 0.2 0.8

N=40
Sub-opt (Avg) 0.07 - 0.2 1e-10
Time-out (%) 18.6 100 22.7 10.8

backup calls (observed in 0.016%, 0.014% of the N = 20, 40 cases). To improve solve
times in the future, instead of solving the LP sub-problems (6.4) explicitly, exploiting
their parametric dependence on (b, lb, ub)[143].

6.6 Conclusion
We proposed a strategy-based prediction framework to solve mp-MILPs online with sub-
optimality quantification, and demonstrate it for real-time MIMPC. By exploiting the
parametric nature of the optimality certificate for mp-MILPs given by the optimal set of
LP sub-problems and an optimal integer solution, we observed favourable performance
compared to state-of-the-art MILP solvers. For future work, we aim to train prediction
models for solving the parametric LP sub-problems to further improve solve-times.

6.7 Appendix

Proof of Theorem 1

Let S⋆b̄ ⊂ I
n⋆
1 be the set of feasible LP sub-problems in the cover C⋆(b̄) = {{lb⋆

k , ub⋆
k}

n⋆
k=1},

and let k̄ be the optimal LP for which y⋆(b̄, lb⋆
k̄ , ub⋆

k̄) = y⋆(b̄) and V⋆
LP(b̄, lb⋆

k̄ , ub⋆
k̄) =

V⋆(b̄).
For sub-problem k ∈ S⋆b̄ , we have from [21, Theorems 6.2, 6.5] that there exists a

(convex) polyhedron of parameters b given by Kk = ∪pk
i=1K

k
i ⊂ B such that each Kk

i is
polyhedral, and (z⋆(b, lbk, ubk), y⋆(b, lbk, ubk)) are affine functions of b for b ∈ Kk

i . Define
the set Z k = ∪pk

i=1{(z, y, b) | b ∈ Kk
i , (z, y) = (z⋆(b, lbk, ubk), y⋆(b, lbk, ubk))} for each

k ∈ S⋆b̄ and for the optimal LP k̄, define the set Z⋆ = {(z, y, b) | (z, y, b) ∈ Z k̄, y = y⋆(b̄)}.
For any parameter b ̸= b̄, the solution of sub-problem k̄ is also optimal for the MILP

(6.4) at b if V⋆
LP(b, lb⋆

k̄ , ub⋆
k̄) = mini∈S⋆b̄

V⋆
LP(b, lb⋆

i , ub⋆
i ) and y⋆(b, lb⋆

k̄ , ub⋆
k̄)) ∈ {0, 1}M.
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Thus, the strategy s⋆(b̄) is optimal for b if

V⋆
LP(b, lb⋆

k̄ , ub⋆
k̄) = Vlb(b, s⋆(b̄)), y⋆(b, lb⋆

k̄ , ub⋆
k̄) = y⋆(b̄)

⇔ c⊤zk̄ + d⊤yk̄ ≤ c⊤zk + d⊤yk, (zk̄, yk̄, b) ∈ Z⋆, (zk, yk, b) ∈ Z k ∀k ∈ S⋆b̄ \{k̄}.

Thus, the set of parameters for which s⋆(b̄) is the optimal strategy is given by the set

Pb̄ =
{

b
∣∣∣∃(zk̄, yk̄, b) ∈ Z⋆, ∃(zk, yk, b) ∈ Z k ∀k ∈ S⋆b̄ \{k̄} : c⊤zk̄ + d⊤yk̄ ≤ c⊤zk + d⊤yk

}
which is a union of convex polyhedra (∵ affine projection of unions of convex polyhedra
Z⋆,Z k, intersected by affine halfspaces c⊤zk̄ + d⊤yk̄ ≤ c⊤zk + d⊤yk). ■

Cover Construction from Partial Set of Leaves

The recursive algorithm below constructs a cover {{lbk, ubk}}nc
k=1 given the optimal sub-

problem {lb⋆, ub⋆}, and a partial list of sub-problems {{lbk, ubk}}
np
k=1 by adding disjoint

facets [lbi, ubi] ⊂ [0, 1]M until ∪nc
k=1[lbk, ubk] ⊃ {0, 1}M.

Algorithm 4: Recursive cover construction

Input : optimal facet: {lb⋆, ub⋆}, partial cover (list of facets): {{lbk, ubk}}
np
k=1

Output: Cover C = {{lbk, ubk}}nc
k=1

Procedure mk cover( f acetr, f acet list):
/* Loop over parallel, adjacent facets of same dimension as f acetr

*/

for f acetn in parallel f acets do
/* Add f acetn if not contained in nor intersected by a facet in

f acet list. Before adding, remove subsets of f acetn from

f acet list */

if ̸ ∃ f acet′ in f acet list: f acet′ ⊃ f acetn OR f acet′ ∩ f acetn ̸= ∅ then
f acet list← f acet list\

{
f acet′ : f acet′ ⊆ f acetn

}
f acet list← f acet list ∪ f acetn
/* Next, call mk cover (·) from a facet containing f acetr,

f acetn */

f acetr ← conv hull( f acetr, f acetn)
if f acetr ̸= [0, 1]M then
C ←mk cover ( f acetr, f acet list)

break
end for

return C
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Chapter 7

Learning Safe Supervisors for
Accelerating Model Predictive Control in
Interactive Environments

7.1 Overview
Robotics and autonomous agents have begun integrating into our environment. Decision-
making for these agents (e.g. autonomous vehicles) in urban settings, involves mo-
tion planning in the presence of uncertain, multi-modal humans and other autonomous
agents leading to the development of various solutions for planning and behavior pre-
diction. These solutions can be categorized into three broad approaches: (i) Hierarchi-
cal Prediction and Planning [118, 38, 99]: where a sophisticated prediction architecture
provides forecasts of the surrounding vehicles which is used for motion planning, (ii)
Model-based Integrated Planning and Prediction [48, 148, 105]: where planning and be-
havior prediction are simultaneously obtained by game-theoretic and joint-optimization
approaches for all vehicles, and (iii) End-to-End Learning-based Prediction and Control
[78, 65]: where a sophisticated neural network, trained using imitation/reinforcement
learning algorithms on realistic datasets, implicitly and jointly forecasts the behavior of
surrounding vehicles and a motion plan for the autonomous vehicle. Each of these ap-
proaches suffers from either scalability for complex driving scenarios or interpretability
and safety of the computed motion plans. For instance in (i), [99] employs Gaussian
mixture models to explicitly express multi-modal predictions and positional uncertainty
of surrounding vehicles for multi-modal motion planning. While this approach show-
cases robust navigation capabilities in multi-modal traffic scenarios, it focuses on inter-
actions in simple traffic situations with limited traffic vehicles and does not scale for
real-time applicability in complex scenarios with many surrounding vehicles and their
multi-modal predictions. The game theoretic approaches in (ii) are generally compu-
tationally intractable for scenarios with many vehicles/agents, which is further exac-



CHAPTER 7. LEARNING SAFE SUPERVISORS FOR ACCELERATING MODEL
PREDICTIVE CONTROL IN INTERACTIVE ENVIRONMENTS 132

Figure 7.1: Our hierarchical architecture for motion planning with duality-based interaction
prediction. Given the environment observation, we classify which agents and their maneuvers can
be eliminated/screened for solving a reduced, real-time MPC problem.

erbated when the games are multi-modal/mixed. The End-to-End approaches in (iii)
are generally scalable to complex scenarios but lack interpretability in their predictions.
Given a scene with multiple agents, it is unclear how to interpret which agents and
which of their possible maneuvers are relevant for a safe motion plan for the ego agent.
In [78], an attention-based architecture discerns relevant vehicles at the current time-step
when controlling an autonomous vehicle in a simulated traffic intersection, but does not
explicitly consider safety or long-term interactions. Hence, there is a pressing need for
a scalable motion planning method in complex interaction-driven scenarios involving
possibly multi-modal predictions of the surrounding agents.

Contributions

• We present a duality-based interpretation of the interaction between the autonomous
agent and surrounding agents to deduce which variables and constraints are rele-
vant to MPC-based motion planning

• We design a Recurrent Neural Network (RNN) [84] with attention mechanisms
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to predict the interactions between the autonomous vehicle and its surrounding
vehicles, that is trained on a dataset of MPC solutions

• We present a Hierarchical MPC algorithm that uses the RNN-architecture to predict
a prior on which variables and constraints are relevant to the MPC problem. Then
using ideas from Lagrangian duality, we identify which constraints and variables
can be safely eliminated, to consequently define a reduced MPC problem.

7.2 Problem Formulation
Consider a motion planning problem (e.g., 7.1) where the robot/AV aims to reach its
destination while satisfying actuation and motion constraints, and avoiding multiple
dynamic obstacles. In a general MPC formulation for this problem, the robot solves the
following optimal control problem at time t:

min
{θk|t, ζk|t}t+N−1

k=t

t+N−1

∑
k=t

ck|t(xk|t, uk|t) (7.1a)

s.t. xk+1|t = f (xk|t, uk|t, wk|t), (7.1b)

oi
k+1|t = f i

k|t(ok|t, ζk|t, nk|t), (7.1c)

uk|t = πθk|t(xk|t, ok|t), (7.1d)

(xk+1|t, uk|t) ∈ Xt ×Ut, (7.1e)

gi
k|t(xk+1|t, oi

k+1|t, ζ i
k|t) ≥ 0, (7.1f)

xt|t = xt, ot|t = ot, (7.1g)

∀i ∈ I
no
1 , ∀k ∈ It+N−1

t

to compute the feedback policy πt(xt, ot) = u⋆
t|t where

• xk|t, uk|t, wk|t denote the state, input, and process noise predictions of the robot at
time step k. xt is the measured state of the robot at time t

• oi
k|t denotes the predicted position of obstacle i ∈ I

no
1 at time step k and the stacked

predictions of all the obstacles are denoted as ok|t = [o1
k|t, . . . , ono

k|t]. ot denotes the
measured obstacle positions at time t. If the predictions are multi-modal, we define
ok|t = [ok|t,1, . . . , ok|t,J ] where ok|t,j denotes the prediction for mode j

• θk|t are decision variables that parameterize the robot’s control policy along the
prediction horizon
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• If the predictions are multi-modal, then θk|t = [θk|t,1, . . . , θk|t,J ] ∀k > t, and similarly,
define the multi-modal closed-loop trajectories xk|t, uk|t

• ζk|t are auxiliary decision variables that scale with the dimension of ok|t, introduced
for miscellaneous purposes such as for tighter collision avoidance, game-theoretic
predictions or probabilistic reformulations

• (7.1a) describes the objective functional given as the sum of time-varying stage cost
functionals ck|t(·) that act on the predictions xk|t, uk|t, e.g., ck|t(xk|t, uk|t) = E[ ||xk|t−
xref

k ||2 + ||uk|t − uref
k ||2 ].

• (7.1b) describes the robot’s discrete-time dynamics used for closed-loop trajectory
predictions with the parameterized policy (7.1d)

• (7.1c) describes the prediction for obstacle i at time step k + 1, which in general,
could be a function of all the obstacles’ positions at time step k, and also multi-
modal. nk|t is the process noise for obstacle predictions.

• (7.1e) denotes polytopic state and input constraints for the robot’s trajectories

• (7.1f) describe the collision avoidance constraints between the robot and obstacle i
at time step k, where the functionals gi

k|t(·) encode some geometric and probabilis-

tic notion of safety, e.g., gi
k|t(xk|t, oi

k|t, ζ i
k|t) = P[||xk+1|t − oi

k+1|t||2 ≥ dmin]− 1− ζ i
k|t

models safety when the robot and obstacle i are dmin apart with probability at least
1− ζ i

k|t

• (7.1g) incorporates the feedback from the robot and observations of the obstacles
at time t

The main challenge in computing πt(·) is the solution of the optimal control problem
(1) at real-time frequencies (≥ 10 Hz) in complex scenarios (nO ≫ 1) and over long
horizons (N ≫ 1). Although the constraints and decision variables in the optimization
problem typically scale as O(N · nO), solving (1) via off-the-shelf solvers involves solving
linear systems incurring costs of O(N · n3

O) (and O(N · n3
O · J3) in the multi-modal case)

even in the best case, which is prohibitive for low-latency, reactive robot behavior.
In this paper, we propose a hierarchical policy architecture for accelerating the com-

putation of the policy πt(·) using Imitation Learning (IL) and Strong Duality. The hierar-
chy consists of a Safe Supervisor and a reduced MPC problem solver. The Safe Supervisor
is trained using Imitation Learning (IL) to take the current scene (AV’s state, obstacle
observations, semantic information) as input and output a set of constraints and vari-
ables that can be safely eliminated from the MPC optimization problem using ideas from
Strong Duality. Subsequently, the reduced MPC problem solver is set up and solved
for control computation to accelerate the solution of (1) without compromising on the
feasibility of the problem.
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7.3 Convexified, Group Regularized MPC Problem and
Duality-based Screening

For solving the MPC problem (7.1), we adopt a Sequential Convex Programming (SCP)
approach [83]. The convexified MPC can be compactly written as the following second-
order cone program:

(P) :

min
θt

1
2
||Qtθt||22 + C⊤t θt

s.t Atθt + Rt ∈ K := (
nc⊗

s=1

Ks)×Kxu

(7.2)

where nc = O(NV), Qt ≻ 0 Ks, ∀s ∈ I
nc
1 are the cones corresponding to the collision

avoidance, and let Kca = (
⊗nc

s=1Ks). Kxu is the cone that corresponds to all the state-
input constraints. Let nθ be the number of decision variables and Si⊤

k|tθt describe the pol-
icy parameters and additional variables (θk|t, ζk|t), and consider the group-regularized l1
problem:

(Pl1) :

min
θt

1
2
||Qtθt||22 + C⊤t θt + λ ∑

k∈It+N
t+1 , i∈IV

1

||Si⊤
k|tθt||1

s.t Atθt + Rt ∈ K := (
nc⊗

s=1

Ks)×Kxu

(7.3)

The l1 penalty promotes sparsity in the decision variables [32]. For example, the l1
penalty enforces sparsity in the policy parameterization from Chapter 3. Consider the
dual of (7.3),

(Dl1) :

min
µt,gt

1
2
||Q−1

t (A⊤t

[
µt
ηt

]
− Ct − λ ∑

k∈It+N
t+1 , i∈IV

1

Si
k|tg

i
k|t)||

2
2

+ R⊤t

[
µt
ηt

]
s.t µt ∈

nc⊗
s=1

K∗s , ηt ∈ K
∗
xu, ||gi

k|t||∞ ≤ 1 ∀k ∈ It+N
t+1 , i ∈ I

no
1

(7.4)

Notice that the feasible set of the dual problem is independent of the parameters of the
primal problem. The optimal primal and dual solutions (θ⋆t , µ⋆

t , η⋆t , g⋆
t ) are given by the
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KKT conditions:

Q2
t θ⋆t + Ct −A⊤t

[
µt
ηt

]
+ λ ∑

k∈IM
1 ,i∈I

no
1

Si
k|tg

i⋆
k|t = 0

Atθ
⋆
t + Rt ∈ K, µ⋆

t ∈
nc⊗

s=1

K∗s , η⋆t ∈ K
∗
xu, ||gi⋆

k|t||∞ ≤ 1,

[Atθ
⋆
t + Rt]xu ◦ η⋆t = 0, [Atθ

⋆
t + Rt]s ◦ [µ⋆

t ]s = 0 ∀s ∈ I
nc
1 ,

gi⋆⊤
k|t Si⊤

k|tθ
⋆
t = ||Si⊤

k|tθ
⋆
t ||1 ∀k ∈ It+N

t , i ∈ I
no
1 (7.5)

Observe from the last two equations that

1. if [µ⋆
t ]s = 0, then [Atθ

⋆
t + Rt]s ∈ int(Ks) and this constraint can be eliminated from

(7.3),

2. if ||gi⋆
k|t||∞ < 1, then the variables corresponding to Si⊤

k|tθ
⋆
t can be eliminated from

(7.3).

Let [Atθ + Rt]xu be the rows corresponding to the state-input constraints. We will
use ideas from sensitivity analysis of conic programs to eliminate vehicles to construct a
reduced optimization problem as follows. Define the maximum possible violation across
all the collision avoidance constraints for an ego trajectory that satisfies state and input
constraints,

D̄ := max
s,θs

min
zs

||[Atθ
s + Rt]s − zs||2

s.t s ∈ I
nc
1 , [Atθ

s + Rt]xu ∈ Kxu, zs ∈ Ks

The quantity D̄ is guaranteed to be finite because (i) the ego’s trajectories and target
vehicles’ predictions are bounded by dynamical and actuation constraints, and (ii) the
vehicle geometries are compact sets 1. Now let θ̄

s
t be the solution of (7.3) after eliminating

the sth collision avoidance constraint and define constraint violation δs = [Atθ̄
s
t + Rt]s −

arg minzs∈Ks ||[Atθ̄
s
t + Rt]s− zs||2. Let pt(δ

s) denote the cost of the solution θ̄
s
t , and pt(0)

denote the solution of the original problem (7.3). Then by using the global sensitivity
result [22, Chapter 5], we have

pt(0)− pt(δ
s) ≤ δs⊤[µ̂⋆

t ]s. (7.6)

So if ϵ is an acceptable deviation in the optimal cost of (7.1) and ||[µ⋆
t ]s||2 ≤ ϵ

D̄ , then
the optimal cost changes at most by ϵ. Thus, the sth collision avoidance can be ignored
without significantly affecting the cost of the computed motion plan.

1D̄ does not need to be explicitly computed and any D̃ > D̄ is sufficient, e.g., a conservative choice
could be D̃ = W, where W = largest dimension of drivable area.
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7.4 Recurrent Attention for Interaction Duals Network
(RAID-Net)

The optimal dual variables µ⋆
t ∈

⊗nc
s=1K∗s and g⋆t ∈ Rnθ contain information about

active constraints and sparsity pattern of the optimal solution for the primal optimization
problem (7.2) at time t. The continuous vector can be converted into binary vectors µ̃⋆

t ∈
{0, 1}nc , g̃⋆t ∈ {0, 1}Nno by applying the screening rules described in 7.3. If [µt]s > 0, then
the corresponding constraint is active and [µ̃⋆

t ]s = 1. Otherwise, [µ̃⋆
t ]s = 0 ∀s ∈ I

nc
1 . For

the sparsity pattern, let I(s) = (k, i) ∈ IN
1 × I

no
1 be an indexing scheme for s ∈ I

Nno
1 . Then

[g̃⋆t ]s = 0 denotes ||g̃i⋆
k|t||∞ < 0 and the variable Si⊤

k|tθ
⋆
t can be eliminated. Otherwise, its

optimal value is non-zero.
We propose Recurrent Attention for Interaction Duals Network (RAID-Net) that pre-

dicts the dual class [µ̃t, g̃⋆t ] given the observation (obt) of the environment. The ob-
servation may contain continuous or discrete information about the environment that
correlates with the dual variables. For instance, the current state of the ego vehicle, tar-
get vehicles’ positions and velocities, and semantic information such as target vehicles’
behavior prediction.

Expert Dataset

With access to a simulation environment, the optimal dual solutions {[µ⋆
t , g⋆t ]}T

t=0 (i.e.
expert actions in imitation learning nomenclature) are obtained by solving (7.2) at each
step t along the trajectory with length T. Then, it is converted into the binary class labels
{[µ̃⋆

t , g̃⋆t ]}T
t=0. The optimal dual class labels and observation of the environment pairs are

stored into a dataset D = {(obt, [µ̃⋆
t , g̃⋆t ])}B

t=0, where B is the user-defined dataset size.

Input Normalization and Encoding

We assume that the observation of the environment is available and includes information
about the ego vehicle’s states, previous control input, and target vehicles’ states along
with semantic information about the ego and target vehicles’ modes.

The observation is normalized using environment and system information such as
maximum states and inputs (restricted by the environment and system limitations), the
maximum number of modes per vehicle, etc. In the context of complex interactive au-
tonomous driving scenarios, employing graph encoding of the scene is crucial as it al-
lows for a comprehensive representation of the intricate relationships and interactions
among various entities within the scene. Nodes in the graph represent vehicles including
the ego vehicle, while directed edges (originating in the ego vehicle) capture the dynamic
relationships and interaction between the ego vehicle and target vehicles. We utilize an
ego-centric graph encoding using time-to-collision (TTC) between the ego vehicle to the
target vehicles to represent the edges. In RAID-Net the observation is separated per i-th
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Figure 7.2: Schematic of our Recurrent Attention for Interaction Duals Network (RAID-
Net) for predicting relevant constraints for the MPC optimization problem. RAID-
net is invariant to the number and order of target vehicles, and has a MPC horizon-
independent memory footprint because of its recurrent architecture.

vehicle: obi
t ∀i ∈ I

no
0 , where i = 0 represents the ego vehicle and augmented with the

TTC graph encoder. Subsequently, a transformer-based encoder embeds the augmented
observations, producing a scene representation feature vector denoted as fi ∈ Rdem . In
this work, we define dem = 2× |ob|, where |ob| represents the dimension of the observa-
tion space.

The encoder exhibits permutation invariance, indicating that the network’s output
remains unchanged even when the order of the input is interchanged. This invariance
is achieved by summing the feature vectors { fi}no

i=0 over all vehicles before feeding them
into the decoder as depicted in Fig. 7.2.

Network Architecture

The normalized and encoded inputs undergo N sequential passes through an attention-
based and gated recurrent network of decoders (the decoders share parameters), as il-
lustrated in Fig. 7.2.

The decoder includes a multi-head attention mechanism to capture the different types
of relationships between the encoded inputs [129]. Each head of the attention mechanism
focuses on different interactions between the AV and obstacles. See [129] for detailed
explanations for a multi-head attention network architecture. The multi-head attention
network in the decoder features an embedding dimension of dem and nh denotes the
number of heads.

The decoder also features dropout and layer normalization layers to prevent overfit-
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ting and stabilize the training process [125][10]. A multi-layer perceptron (MLP) or a
fully-connected neural network is included to allow the model to learn complex interac-
tions and relationships in the data in the embedded dimension. The MLP in RAID-Net
decoder is

zℓ = σLeakyReLU(Wℓzℓ−1 + bℓ), ℓ = 1, ..., L (7.7)

where Wℓ, bℓ the parameters of ℓ-th layer of the network with hidden state dimension
hMLP where the input and output of the MLP are z0, zL ∈ Rdem·(V+1); σLeakyReLU(x) =
max(0, x) + α min(0, x) where α is the negative slope parameter that controls the activa-
tion in the negative input region; L is the number of layers. The hidden states and the
input to the decoder network are passed to a gated recurrent unit (GRU) which applies
an input-dependent gating mechanism to modify the hidden state that will be passed on
to the subsequent decoder (See Fig. 7.2). The GRU’s input is identical to the correspond-
ing decoder’s input denoted as z ∈ Rdem . The number of features or hidden size of the
GRU is set to dem · (V + 1) which represents the sequence of embedded states of all ve-
hicles including the ego that will be passed to the next recurrent decoder. The recurrent
structure is popular in obstacle motion prediction as it captures the time-dependence
mechanism of motion [117, 67]. Similarly, it is useful for complex interaction predictions
to capture the time-dependence of the AV’s interactions with the obstacles and prevents
the vanishing gradient problem that is prevalent in standard recurrent neural networks
[40]. Also, the recurrent structure renders the RAID-Net independent of the prediction
horizon (N) as decoders share parameters. A linear projection layer (Wpz + bp), defined

by the parameters Wp ∈ R
nc+NV

N ×dem·(V+1), bp ∈ R
nc+NV

N with sigmoid activation, lifts
the sequence of embedded states to predict the class-1 probabilities of dual variables
corresponding to the collision avoidance constraints and primal decision variables for
obstacle i at time t + 1: pi

t+1 ∈ RM, where the m-th element corresponds to the class-1
probability for the m-th mode configuration of the obstacles in the scenario. Collecting
the {pi

t+1}
no
i=1 from each decoder, we get

pt = [{pi
t+1}V

i=1, ..., {pi
t+N}V

i=1] ∈ Rnc+nθ (7.8)

Loss function

Given the i−the datapoint (pi, µ⋆
i , g⋆i ), let pµ

i , pg
i denote the class-1 probabilities for the

duals µi and gi respectively. The binary cross-entropy loss function for training the
neural network to predict the dual classes is

ℓ(p, µ̃⋆, g̃⋆) = − 1
n

n

∑
i=1

( nc

∑
s=1

(wp[µ
⋆
i ]s log[pµ

i ]s + (1− [µ⋆
i ]s) log(1− [pµ

i ]s)

+
Nno

∑
s=1

(wp[g⋆i ]s log[pg
i ]s + (1− [g⋆i ]s) log(1− [pg

i ]s)
)

, (7.9)
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where [pµ
i ]s, [µ̃

⋆
i]s is the s-th component of the class-1 probability prediction and the

target class label for the dual µ̃ in the i-th sample (with analogous definitions for g̃).
n is the training batch size and wp is the weight corresponding to positive class. By
choosing wp appropriately, the learned classifier can conservatively over-predict class 1
and account for a potential imbalance in a dataset (i.e. number of class 0 ≫ number of
class 1). This is critical for safety as increasing wp will reduce false negative classification of
active constraints.

Online Inference

For online inference, we use the RAID-Net to obtain the class-1 probabilities as pRAIDN
t .

The selection policy for the dual classes is then given as

πRAIDN(obt) :=

µ̃t =

{
[µ̃t]s = 1 ∀s ∈ I

nc
1 if [pµ

t ]s ≥ 0.5
[µ̃t]s = 0 otherwise

g̃t =

{
[g̃t]s = 1 ∀s ∈ I

Nno
1 if [pg

t ]s ≥ 0.5
[g̃t]s = 0 otherwise

(7.10)

where pµ
t , pg

t are the RAID-Net output representing the probabilities of the correspond-
ing dual classes being 1, given the observation of the environment at time t.

7.5 Hierarchical MPC with Safe Supervision
In this section, we describe our Hierarchical MPC architecture for accelerating the com-
putation of the MPC solution using RAID-Net.

Safe Screening

As the dual variable class predictions from the policy πRAIDN(obt) may be incorrect,
eliminating or screening a set of constraints and variables based on the output of a
neural network carries a safety risk. Thus, we derive additional conditions for screening
variables and constraints to ensure safety (i.e. constraint satisfaction for (7.3)) using
strong convexity and concepts from strong duality.

Assumption 7.1 The matrix Q−1
t is finite and strictly positive definite.

Denote objective of the dual problem 7.4 as d(µ, g), and let σ, σ̄ > 0 be the smallest
and largest eigenvalues of Q−1

t by Assumption 7.1. Then d(·) is σ−strongly convex, with
an σ̄−Lipschitz gradient. Define the ”projected gradient” for the dual as

∇†d(µ, η, g) = [µ, η, g]− projK∗([µ, η, g]−∇d(µ, η, g)),
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for which ∇†d(µ⋆, η⋆g⋆) = 0 at the optimal dual solution (µ⋆, η⋆, g⋆) [16]. Then, the
following inequality estimates the distance of a dual feasible (µ, η, g) from optimality
[134]:

∥(µ, η, g)− (µ⋆, η⋆, g⋆)∥2 ≤
1 + σ̄

σ
||∇†d(µ, η, g)||2. (7.11)

Notice that since ∇†d(µ⋆, η⋆, g⋆) = 0, the bound (7.11) is tight. Define the function

gap(µ, η, g) =
1 + σ̄

σ
||∇†d(µ, η, g)||2, (7.12)

and suppose that for some s ∈ I
nc
1 , we have ||[µt]s||2 + gap(µt, ηt, gt) ≤ ϵ

D̄ for some
feasible duals (µt, ηt, gt). Then from (7.6),

pt(0)− pt(δ
s) ≤ δs⊤[µ⋆

t ]s

= δs⊤([µ⋆
t ]s − [µt]s) + δs⊤[µt]s

≤ ||δs||2(||[µ⋆
t ]s − [µt]s||2 + ||[µt]s||2)

≤ D̄(gap(µt, ηt, gt) + ||[µt]s||2)
≤ ϵ (7.13)

Thus if ||[µt]s||2 + gap(µt, ηt, gt) ≤ ϵ
D̄ , the sth constraint can be safely screened from (7.3)

without significantly affecting the optimal cost. Similarly, if ||gi
k|t||∞ + gap(µt, ηt, gt) < 1

some k ∈ It+N
t+1 , i ∈ I

no
1 , then we have

||gi⋆
k|t||∞ ≤ ||g

i
k|t||∞ + ||gi⋆

k|t − gi
k|t||2

≤ ||gi
k|t||∞ + gap(µt, ηt, gt)

< 1 (7.14)

and consequently, the variables Si
k|tθt can be safely eliminated from (7.3).

To summarize, given a dual feasible solution (µt, ηt, gt) to (7.4), we compute the
gap function gap(µt, ηt, gt) and safely eliminate constraints and variables according to
decision rules:

1. The conic collision avoidance constraint [Atθ
⋆
t + Rt]s ∈ Ks can be safely eliminated

from (7.3) if

||[µt]s||2 + gap(µt, ηt, gt) ≤
ϵ

D̄
(7.15)

2. The variables Si
k|tθt comprising the policy parameters and exogenous variables for

obstacle i at time k can be safely eliminated from (7.3) if

||gi
k|t||∞ + gap(µt, ηt, gt) < 1 (7.16)
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Hierarchical Algorithm

For online deployment, we use the RAID-Net in a hierarchical structure with the MPC
planner as formalized in Algorithm 5. Given the dual class-1 probabilities, we first
recover a dual feasible solution (µ̂t, η̂t, ĝt) efficiently. Using (7.10), define the following
sets at time t that contain all the indices of constraints that are predicted to be active,
and all variables that are predicted to have non-zero values:

Ŝµ : = {s ∈ I
nc
1 | [µ̃t]s = 1}

Ŝθ : = {(k + t, i) ∈ It+N
t+1 × I

nc
1 | (k, i) = I(s), [g̃t]s = 1}

(7.17)

We obtain a feasible dual ĝt by setting ĝi
k|t = 1 nθ

NV
for all (k, i) ∈ Ŝθ and 0 nθ

NV
otherwise.

For the remaining dual variables we solve the reduced linear system via least-squares,

[At]Ŝµ∪xuQ−1
t [At]

⊤
Ŝµ∪xu

[
[µ̄t]Ŝµ

η̄t

]
=[At]Ŝµ∪xuQ−1

t (Ct + λ ∑
(k,i)∈Ŝθ

1)− [Rt]Ŝµ∪xu (7.18)

to obtain the unconstrained minimizer of the reduced dual problem (by eliminating all
duals µt not in Ŝµ and fixing gt = ḡt). Then we project η̄t onto K∗xu and project [µ̄t]Ŝµ

onto the corresponding cones to get [µ̂t]Ŝµ and set the other elements of µ̂t to be 0.
Finally we compute the gap(µ̂t, η̂t, ĝt) as in (7.12) using the dual feasible candidate

(µ̂t, η̂t, ĝt) and define the reduce set of variables and constraints via the rules (7.15),
(7.16):

SR :={s|∀s ∈ I
nc
1 : ||[µ̂t]s||2 + gap(µ̂t, η̂t, ĝt) >

ϵ

D̄
}

θR
t :=

{
0 ∀(k, i) ∈ It+N

t+1 × I
no
1 : ||ĝi

k|t||∞ + gap(µ̂t, η̂t, ĝt) < 1

Si
k|tθt otherwise

(7.19)

Thus, we can now define the reduced optimization problem

(Pr) :
min

θR
t

1
2
||Qtθ

R
t ||22 + C⊤t θR

t

s.t [Atθ
R
t + Rt]SR∪xu ∈ (

⊗
s∈SR

Ks)×Kxu
(7.20)

The Reduced MPC (ReMPC) is given by the optimal solution of (7.20) as

ut = πReMPC(At, Rt, Qt, Ct) = u⋆
t|t (7.21)

where At and Rt represent the initial conditions, state and input constraints, respectively.
We assume obt is available (from the simulation environment or on-vehicle sensory de-
vices) and contains the necessary information to construct At, Rt, Qt, Ct.
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Theorem 7.1 Let Assumption 7.1 hold and θR⋆
t be the optimal solution reduced MPC problem

at time t computed using Algorithm 5. Then if θR⋆
t is feasible for the original MPC problem (7.2),

then it is the optimal solution, i.e., θR⋆
t = θ⋆t . Otherwise it is at most

√
2ncϵ

σ̄ away from the
optimal solution.

Algorithm 5: Hierarchical MPC (HMPC): Hierarchical Motion Planning with
Duality-based Safe Supervision

Require: πRAIDN

1: Set the task horizon T
2: while t < T do
3: obt ← Observation from the environment
4: At, Rt, Qt, Ct ← obt {Constructed from observation}
5: Ŝµ, Ŝθ ← Computed using (7.17) from πRAIDN(obt) (7.10)
6: SR, θR

t ← Reduced variables and constraints set using screening criterion (7.19)
7: ut ← πReMPC(At, Rt, Qt, Ct)
8: Apply ut to system
9: t← t + 1

10: end while

7.6 Example: Planning at a Traffic Intersection

Simulation Environment

We created a customized Python simulation environment for unsignalized traffic inter-
section based on OpenAI gymnasium [24]. The simulation environment has four node
zones: N, S, W, and E as shown in Fig. 7.3. From each node zone, vehicles are randomly
generated in the following order: Firstly, the ego vehicle is placed at the starting node in
W zone, starting with a random target node (N or E defining 2 modes for ego vehicle).
Note that the S node isn’t considered a target for the vehicle starting in W zone as it leads
to minimal interaction between vehicles. Next, V target vehicles are randomly spawned.
V is a random integer from the interval [1,Vmax], where Vmax is the maximum possible
number of target vehicles defined by the user. In this work, we arbitrarily set Vmax = 3.

Each of these target vehicles originates from distinct zones (W, S, and E) and is as-
signed a randomly determined target node based on the available modes outlined in
Table 7.1. The target vehicle spawning from the E zone, serving as cross-traffic for the
ego vehicle, is provided with four modes for diverse interactive scenarios, while tar-
get vehicles starting from other zones have two modes each. The total possible mode
configuration of the target vehicles in the scenario is then M = 16, which leads to
13 · 16 · 3 = 624 collision avoidance constraints for (7.2) when N = 14.
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Figure 7.3: An example scene in the custom unsignalized intersection environment. The
ego vehicle (green rectangle) is approaching the intersection and interacts with the target
vehicles (blue rectangles).The active and inactive constraint predictions from the πRAIDN

are depicted as yellow and magenta ellipses, respectively.

Given the starting and target node, each vehicle follows a fixed reference trajectory
marked with white dashed lines in Fig. 7.3. The vehicle states are x = [s, v] ∈ R2,
where s and v are displacement along the reference trajectory and velocity, respectively.
The target vehicle starting from the W node begins 8 meters ahead of the ego vehicle,
moving at an initial velocity of 8 m/s. Target vehicles from the E zone start with an
initial velocity of 8 m/s (7 if slow), while those from the S zone begin with 7 m/s.

Table 7.1: Simulator Vehicle’s Modes

Start Node Target Node # Modes
W E, N 2
S N, E 2
E W, W (slow), S, N 4

The target vehicle resets to its starting node upon reaching its target node, ending
the simulation episode if a collision occurs or when the ego vehicle reaches its target
node. Target vehicles employ a Frenet-frame Intelligent Driver Model (fIDM) for safe and
human-like acceleration, considering virtual projections of surrounding vehicles on the
controlled vehicle’s reference trajectory, akin to the generalized Intelligent Driver Model
in [76]. The fIDM also features logic gates that prioritize vehicles within intersections,
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emulating human-like driving behavior. For instance, the approaching vehicle will yield
to the surrounding vehicle that is already in the interaction zone as shown in Fig. 7.3.
After computing acceleration inputs for the ego vehicle and target vehicles using the
relevant motion planner and fIDM, they are simulated forward by a time step (∆t) along
their respective reference trajectories using the kinematic bicycle model.

The observation vector available to the ego vehicle from the simulator is represented
as obt = [xt, ut−1, modeev, {oi

t}
Vmax
i=1 , {modei}Vmax

i=1 , {TTCi}Vmax
i=0 ] ∈ R17, where xt, ut−1, and

modeev denote the ego states, control input at previous time step, and EV’s mode, re-
spectively. oi

t represents the state of the i-th target vehicle, modei denotes its mode, and
TTCi denotes the time-to-collision between the ego vehicle and the i-th target vehicle,
with TTC0 = 0. When V < Vmax, we spawn dummy vehicles outside the traffic scene for
the rest.

RAID-Net Imitation Learning

We use a behavior cloning algorithm [91] to train the RAID-Net to mimic the expert
(optimal dual solutions to 7.2). Data is collected by rolling out NT trajectories in the
aforementioned simulator using the expert policy (7.2) with prediction horizon N = 14
and sampling time ∆t = 0.2s. Then, (obt, µ̃t

⋆) pairs at each time step t are recorded.
During the data collection phase, the optimization problem is formulated in CasADi[7]
and solved using IPOPT[28] to extract optimal dual solutions. Repeating the process
initialized with randomly generated scenarios, 120,315 data points are collected. We
decompose the dataset into training (85%) and test (15%) datasets.

In dual-class classification for predicting active constraints, minimizing false nega-
tives is crucial for safety. While low precision is acceptable, high recall is desired, which
represents the model’s ability to find all positive classes. To counter dataset imbalance
and introduce a positive-class bias in the model, we employ wp = 60 in (7.9) during
model training. Additionally, we address dataset imbalance using a weighted random
sampler in PyTorch during training, assigning a higher weight to the under-represented
class to achieve balanced class representation in the training batch. The RAID-Net is

Table 7.2: RAID-Net model parameters

α pdropout hMLP L nh

-0.1 0.1 128 6 1

constructed using PyTorch and trained using the training dataset and the loss function
(7.9). The parameters used to construct the RAID-Net are reported in Table 7.2. We train
the RAID-Net for 3000 epochs using a batch size of 1024 and the Adam with a constant
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learning rate of 0.001 and β1, β2 = (0.9, 0.99) [79]. The training process takes in total of
5 hours. 2

7.7 Results
In this section, we first present the imitation learning results of the RAID-Net. Secondly,
we compare the performance of our proposed HMPC policy 5 to the full MPC policy
(7.2) (N = 14, ∆t = 0.2 s for both policies) across 100 randomly generated scenarios in
numerical simulations 2. During the evaluation of HMPC and full MPC policies, the
optimization problems are formulated in CasADi and the MPC SOCPs are solved using
Gurobi [57].

RAID-Net Evaluation

The trained RAID-Net model was evaluated on the test dataset. We compare the nor-
malized loss statistics of RAID-Net to an MLP NN (πMLP) trained with the configuration
as RAID-Net and following parameters: hMLP = 128, L = 6 in Fig. 7.4a. We report the
normalized confusion matrix of RAID-Net in Fig. 7.4b. The RAID-Net model adeptly
captures intricate interactions between the ego vehicle and target vehicles, surpassing the
capabilities of an MLP NN. Further, the RAID-Net model, utilizing dual-class classifica-
tion, achieved a recall of 0.95 and a precision of 0.44. Evaluated on the test dataset, it at-
tained 98.1% correct predictions of dual classes with a low 0.055 false negative rate. This
performance showcases the proposed architecture’s effectiveness in capturing complex
interactions between the ego vehicle and target vehicles with multi-modal predictions.

Policy Comparison

The performance metrics over 100 runs are recorded in Table 7.3. We record % of time
steps where MPC infeasibility and collision with a target vehicle were detected, along
with average % of constraints that were imposed in the MPC. Furthermore, average times
for solving (7.2) and (7.20) as well as the average times for querying the RAID-Net. Fi-
nally, the average task completion (reaching the target node) time for HMPC normalized
by that of the full MPC is reported. Fig. 7.3 presents a snapshot of an example scene
in the custom simulation environment, visualizing the πRAIDN predictions. The HMPC
algorithm imposes only the collision avoidance constraints corresponding to the yellow
multi-modal prediction of the target vehicle. A video demonstrating the HMPC algo-
rithm in multiple scenarios can be found here: https://youtu.be/-TcMeolCLWc

2Training and experiments were run on a computer with a Intel i9-9900K CPU, 32 GB RAM, and a
RTX 2080 Ti GPU.

https://youtu.be/-TcMeolCLWc
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Figure 7.4: RAID-Net evaluation results on a test dataset: (a) histogram of the nor-
malized loss value of RAID-Net versus MLP neural network, (b) normalized confusion
matrix of RAID-Net

Table 7.3: Performance metrics across all policies for 7.7.

Performance metric Full MPC (7.2) HMPC (5)
Feasibility (%) 98.97 99.79
Collision (%) 0 4.0

Avg. Constraints Enforced (%) 100 17.45
Avg. Solve Time (s) 0.92± 0.18 0.063± 0.073

Avg. RAID-Net Query Time (s) − 0.013± 0.003
Avg. Total Computation Time (s) 0.92± 0.18 0.076± 0.076
Avg. normalized task completion 1 0.91time (by that of Full MPC)

Discussion

On average, the solve time including the RAID-Net query time for the HMPC algorithm
is 12 times faster than that of the full MPC as highlighted in the 6-th row of Table
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7.3. This significant acceleration in solving time is attributed to the reduced number
of constraints using our proposed algorithm. The HMPC algorithm enables real-time
applications at frequencies ≥ 10Hz by predicting interactions and selectively impos-
ing only safety-critical multi-modal collision avoidance constraints with multiple target
vehicles, which is not feasible in real-time otherwise. Additionally, HMPC algorithm
had slightly higher average feasibility % which is also attributed to imposing fewer
constraints. Considering that only 1.52% of the total constraints were active in the test
dataset, a prediction of 17.45% for active constraints is a conservative estimation that was
deliberately achieved for safety. The HMPC algorithm achieved a 0.91 normalized task
completion time, indicating a 9% faster task completion compared to control with the
full MPC. The HMPC-ego vehicle completes the task faster as it is optimistic, imposing
fewer constraints, while the full MPC-ego vehicle exhibits a more conservative behavior.

We note that out of 100 runs, the ego vehicle collided with a target vehicle 4 times
when controlled using the HMPC algorithm compared to 0 times using the full MPC.
Collisions occurred due to false negative classification of dual variables leading the
HMPC algorithm to screen out incorrect constraints.

The results highlight the advantages of screening inactive constraints from the MPC
formulation for motion planning in highly interactive traffic scenarios to accelerate the
computation of MPC. Numerical simulations revealed that, in practice, very few con-
straints are active in MPC formulation for motion planning with multi-modal collision
avoidance constraints. With the proposed RAID-Net architecture, the model can learn
to predict which target vehicles, and which modes along the prediction horizon interact
with the ego vehicle given the graph encoding of the scene. Thus by imposing only the
relevant, interactive constraints, we achieve over 12 times improvement in solution time
while ensuring safety with a high probability.

7.8 Conclusion
We proposed a hierarchical architecture for scalable real-time MPC for complex, multi-
modal traffic scenarios, consisting of 1) RAID-Net, an attention-based recurrent NN ar-
chitecture that predicts dual variable candidates for the MPC problem for identifying
relevant ego-target vehicle interactions along the MPC horizon, 2) A screening mecha-
nism based on strong duality which determines which variables and constraints can be
safely eliminated, and 3) a reduced Stochastic MPC problem solved without the screened
constraints and variables for computational efficiency. We demonstrate our approach at
a simulated traffic intersection with interactive vehicles and achieve a 12x speed-up in
MPC solve times.
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7.9 Appendix

Proof of Theorem 7.1

Suppose that θR⋆
t is feasible for the original MPC problem (7.2). From (7.14), it is clear

that θR⋆
t can not be more sparse than θ⋆t . Moreover, since (7.20) has fewer constraints

than (7.2), the feasible set of (7.2) is contained within the feasible set of (7.20). Thus, the
optimal solution of (7.20) is less than the cost of (7.2). But θR⋆

t is feasible for (7.2), and so
it must be optimal by convexity of (7.2).

Now suppose that θR⋆
t is not feasible for (7.2) and let some m constraints out of the nc

conic constraints from the original problem be violated. Let pt(δi1 , . . . , δim) be the cost of
the reduced problem where δi1 , . . . , δim are the m constraint violations. Then from (7.13),
the optimal cost of reduced MPC problem is at most mϵ less than than the cost of θ⋆t .
From Assumption 7.1 and the duality between Lipshitz gradients and strong convexity
[69], we have the cost of (7.2) is σ̄−strongly convex, for which we have

σ̄

2
||θR⋆

t − θ⋆t ||2 ≤ pt(0)− pt(δ
i1 , . . . , δim) ≤ mϵ ≤ ncϵ

=⇒ ||θR⋆
t − θ⋆t || ≤

√
2ncϵ

σ̄

■
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Chapter 8

Conclusion and Future Directions

Opportunities abound in developing computational tools and algorithms towards en-
abling heterogeneous, collaborative robots to solve real-world problems at the intersec-
tion of economic and environmental sustainability. Sectors such as agriculture, manu-
facturing, aerospace operations, logistics, and transportation offer exciting opportunities
in this realm for robotics and autonomy solutions, for example, towards distributed an-
alytics and efficient dispatch. To develop solutions in these areas, our robots require
algorithms that equip them with the following capabilities:

(C1) reliability and adaptability in complex, ever-changing environments,

(C2) precision and high performance in task execution despite uncertainty,

(C3) fast decision-making for task-level planning and low-level execution.

In this thesis, we developed data-driven MPC algorithms for autonomous vehicles to-
wards enabling them with the capabilities (C1), (C2) and (C3). The proposed approaches
have been validated to be robust, performant adn efficient, both in theory and in practice
via hardware and computational experiments. We summarize the contributions of this
thesis as follows.

Robustness

Robots operating autonomously in the world must navigate while interacting with the
environment and the other agents. For example, autonomous vehicles in complex traffic
scenarios need to plan their maneuvers while perceiving the behavior of the vehicles
around them. While doing so, it must also be robust to changes and uncertainty in its
own behavior. Towards enabling (C1), we have developed (i) set-membership techniques
for using limited system trajectory data to quantify model mismatch for robust control
within the specified operational constraints, and (ii) MPC algorithms that incorporate
multi-modal predictions of the environment.
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In [96, 27], we develop convex programming-based, non-parametric estimation tech-
niques to quantify the system’s model mismatch and adapt online for robust MPC. Sta-
tistically estimated system constants (such as the Lipschitz constant) are used to design
efficient set-based representations of the mismatch as a function of the trajectory data,
which enables set-membership-based estimation using convex optimization. Contrary
to prior works on non-parametric estimation of model mismatch, our approach can ef-
ficiently estimate model mismatch over reachable sets of the robot, and with minimal
assumptions and hyper-parameter tuning.

In [101, 99], we developed Stochastic MPC algorithms for an autonomous vehicle
to track its desired route, operate within constraints and avoid collisions. To accom-
plish this, we train models on open-source traffic datasets [29] to predict the maneuvers
of the vehicles as multi-modal probability distributions, to capture variability in dis-
crete maneuvers (e.g., yield or cross) as well as continuous trajectory realizations (e.g.,
vehicle speed, turning radius). The main technical contributions in this project focus effi-
ciently addressing the multi-modal predictions for interacting with the environment. To
address the uncertainty arising from the multi-modal predictions, the articles develop
SMPC formulations that optimize over multi-modal policy parameterizations (as op-
posed to open-loop sequences). This enhances the feasibility of the SMPC optimization
problem by allowing the SMPC’s optimal solution to adapt to different realizations of
the surrounding vehicles’ multi-modal predictions. The main ideas of this project were
validated via hardware experiments on a full-scale vehicle for autonomous lane change
in the presence of virtual vehicles with bi-modal predictions.

Performance

Most of the popular robotic systems in use today are modeled as nonlinear dynamical
systems, be it manipulators, drones, or self-driving cars, and all of which are required to
deliver high performance in tightly constrained, uncertain environments. Towards (C2),
we develop (i) an efficient value function approximation for optimal control for nonlinear
systems to efficiently improve performance from data, and (ii) an optimization-based
formulation for collision avoidance in tightly constrained, uncertain environments.

In [97, 95], we iteratively learn convex control invariant sets and value function ap-
proximations for constrained optimal control of flat nonlinear systems (e.g. kinematic
bicycles, quadrotors, DC motors), using historical trajectory data. Our constructions cap-
ture global properties of the nonlinear system via the trajectory data, in contrast to local,
linearization-based approaches in the literature. The key idea is to exploit the linearity
of the time-shift dynamics of flat nonlinear systems in the flat output trajectory space,
for convex interpolation of trajectory costs within recorded trajectories, akin to Learn-
ing MPC [113]. The culmination of this project is the algorithm, ”Robust Output-lifted
Learning MPC”, which was successfully demonstrated for autonomous racing using a
1/10 scale vehicle for robust constraint satisfaction, and iterative lap-time improvement.
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In [98], we actively decrease the effect of the uncertainty for collision avoidance by
proposing optimization-based collision avoidance formulations that avoid conservative
over-approximations of the vehicles’ geometry. The key idea is to use the dualized per-
spective of collision avoidance for efficient collision checking using convex optimization.
We propose collision avoidance formulations for various uncertainty characterizations
to highlight the general applicability of the approach. Moreover, the approach improves
over the prevailing approaches for realistic driving scenarios against a metric that quan-
tifies mobility, comfort, conservatism, and computational efficiency.

Efficiency

Robots need to be sufficiently reactive and make quick decisions to accomplish tasks
in dynamic and uncertain environments. MPC offers a unifying framework for low-
level feedback control and high-level planning but requires the solution of moderately-
sized optimization problems at high frequency (≥ 10 Hz) for real-time control. This
is challenging for accomplishing (C3) when the environment involves multiple agents
interacting with the robot, or the planning requires combinatorial decision-making.

In [116], we use supervised learning to accelerate the computation of MPC policies
for real-time control towards enabling (C3). We developed a supervised learning frame-
work for fast solution of multi-parametric Mixed Integer Linear Programs (mp-MILPs)
to predict parametric strategies for fast solution computation, along with sub-optimality
certificates. The sub-optimality certificates provide a priori quantification of the predic-
tions’ quality before applying the computed control to ensure safety so that (C1) is not
compromised. The approach also shows favorable performance compared to state-of-
the-art MILP solvers (Gurobi, Mosek, SCIP, GLPK) for real-time motion planning using
mixed-integer MPC.

Finally in Chapter 7, [72], we develop a hierarchical approach towards accelerating
MPC algorithms for motion planning involving complex interactions. The idea is to col-
lect a dataset of sparse solutions to the SMPC problem, and train a transformer-based
neural network architecture using imitation learning to prescribe which constraints and
decision variables can be eliminated before solving the MPC optimization problem. For
ensuring safety online, we robustify the prescriptions using Lagrangian duality so that
critical constraints and variables are kept in the MPC formulation. Compared to the pre-
vailing approaches, we demonstrate considerable improvement in computational perfor-
mance without sacrificing safety.

Future directions

Scaling optimization-based decision-making and control for deployment on robots, and
developing algorithms for large-scale, collaborative robotics, are promising directions to
build on the ideas of this dissertation towards enabling (C1), (C2) and (C3).
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1) Automated Tuning, Evaluation, and Generalization
Taking lessons from the successes of modern deep learning, it would be worthwhile
to investigate differentiable programming frameworks for automated tuning and
evaluation of optimization-based control algorithms (such as those developed in
Chapters 2-5) with limited real-world robot data. This is crucial for the deployment
of reliable optimization-based control algorithms at scale. Additionally, algorithms
for out-of-distribution detection, generalization, and adaptation will help us close
the control design loop by enabling the collection of safe, real-world data.

2) Distributed Algorithms for Interactive Decision-making
The research in Chapters 3, 5 assumes that a single robot bears the computational
load of decision-making, which presents a challenge for real-time control in large-
scale, interactive scenarios. By exploiting communication between agents for large-
scale applications, robots can collaborate by distributing the computation to miti-
gate the issue of scale and decrease prediction uncertainty in heterogeneous teams
via interaction. In this direction, developing algorithms for computing distributed,
closed-loop Nash equilibria in the presence of uncertainty for motion planning
with heterogeneous robot teams would be a promising avenue.

3) Hierarchical Algorithms for Large-scale Planning and Control
Modern decision-making pipelines in robotics [11, 137, 47] feature a hierarchical
approach: first, compute coarse high-level plans for completing the task, and then
synthesize low-level control for executing the plans. This modular approach de-
couples the decision-making problem to enable tractable, high-frequency decision-
making but at the price of sub-optimal solutions, because the interplay between
modules is often not modeled explicitly. A bilevel/Stackelberg game approach for
the co-design of hierarchical planners would be a promising direction to investi-
gate to address this shortcoming. The bilevel optimization problem can be refor-
mulated into a tractable single-level problem by approximating the value function
of the nested optimization problem using the techniques developed in [97, 113],4.
Additionally, there are many open challenges towards building on Chapters 6, 7 to
develop safe, data-driven models for solving mixed-integer programs prevalent in
large-scale decision-making.
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[9] E Aranda-Bricaire, Ülle Kotta, and CH Moog. “Linearization of discrete-time sys-
tems”. In: SIAM Journal on Control and Optimization 34.6 (1996), pp. 1999–2023.

[10] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer Normalization.
2016. arXiv: 1607.06450 [stat.ML].

[11] Abraham Bachrach. “Skydio autonomy engine: Enabling the next generation of
autonomous flight”. In: 2021 IEEE Hot Chips 33 Symposium (HCS). IEEE Computer
Society. 2021, pp. 1–43.

https://doi.org/10.1109/TAC.2009.2031207
https://arxiv.org/abs/1607.06450


BIBLIOGRAPHY 155

[12] Isin M Balci and Efstathios Bakolas. “Covariance control of discrete-time Gaus-
sian linear systems using affine disturbance feedback control policies”. In: arXiv
preprint arXiv:2103.14428 (2021).

[13] Ivo Batkovic et al. “A Robust Scenario MPC Approach for Uncertain Multi-modal
Obstacles”. In: IEEE Control Systems Letters 5.3 (2020), pp. 947–952.

[14] Richard Bellman. “Dynamic programming”. In: Science 153.3731 (1966), pp. 34–37.

[15] Alberto Bemporad, Francesco Borrelli, and Manfred Morari. “Optimal controllers
for hybrid systems: Stability and piecewise linear explicit form”. In: Proceedings of
the 39th IEEE Conference on Decision and Control. Vol. 2. IEEE. 2000.

[16] Dimitri Bertsekas, Angelia Nedic, and Asuman Ozdaglar. Convex analysis and op-
timization. Vol. 1. Athena Scientific, 2003.

[17] Dimitri P Bertsekas and David Alfred Castanon. “Adaptive aggregation methods
for infinite horizon dynamic programming”. In: IEEE Transactions on Automatic
Control 34.6 (1989), pp. 589–598.

[18] Dimitris Bertsimas and Bartolomeo Stellato. “Online mixed-integer optimization
in milliseconds”. In: INFORMS Journal on Computing 34 (2022).

[19] Franco Blanchini. “Set invariance in control”. In: Automatica 35.11 (1999),
pp. 1747–1767.

[20] H. A. P. Blom and Y. Bar-Shalom. “The interacting multiple model algorithm for
systems with Markovian switching coefficients”. In: IEEE Transactions on Auto-
matic Control 33.8 (1988), pp. 780–783. doi: 10.1109/9.1299.

[21] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive control for
linear and hybrid systems. Cambridge University Press, 2017.

[22] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[23] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge univer-
sity press, 2004.

[24] Greg Brockman et al. OpenAI Gym. 2016. eprint: arXiv:1606.01540.
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[132] Andreas Wächter and Lorenz T Biegler. “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming”. In:
Mathematical programming 106.1 (2006), pp. 25–57.

https://arxiv.org/abs/1706.03762


BIBLIOGRAPHY 163

[133] Allen Wang, Ashkan Jasour, and Brian C Williams. “Non-gaussian chance-
constrained trajectory planning for autonomous vehicles under agent uncer-
tainty”. In: IEEE Robotics and Automation Letters 5.4 (2020), pp. 6041–6048.

[134] Po-Wei Wang and Chih-Jen Lin. “Iteration complexity of feasible descent methods
for convex optimization”. In: The Journal of Machine Learning Research 15.1 (2014),
pp. 1523–1548.

[135] Zejiang Wang, Jingqiang Zha, and Junmin Wang. “Flatness-based model predic-
tive control for autonomous vehicle trajectory tracking”. In: 2019 IEEE Intelligent
Transportation Systems Conference (ITSC). IEEE. 2019, pp. 4146–4151.

[136] Christopher JCH Watkins and Peter Dayan. “Q-learning”. In: Machine learning
8.3-4 (1992), pp. 279–292.

[137] Waymo. “Sense, solve and go: The magic of the Waymo driver”. https://www.
youtube.com/watch?v=hA_-MkU0Nfw.

[138] Lianzhen Wei et al. “Autonomous Driving Strategies at Intersections: Scenarios,
State-of-the-Art, and Future Outlooks”. In: arXiv preprint arXiv:2106.13052 (2021).

[139] Skylar X Wei et al. “Moving obstacle avoidance: A data-driven risk-aware ap-
proach”. In: IEEE Control Systems Letters 7 (2022), pp. 289–294.

[140] Sze Zheng Yong, Brian Paden, and Emilio Frazzoli. “Computational methods for
MIMO flat linear systems: Flat output characterization, test and tracking control”.
In: 2015 American Control Conference (ACC). IEEE. 2015, pp. 3898–3904.

[141] Shuyou Yu et al. “Tube MPC scheme based on robust control invariant set with
application to Lipschitz nonlinear systems”. In: Systems & Control Letters 62.2
(2013), pp. 194–200.

[142] Chiyuan Zhang et al. “Understanding deep learning (still) requires rethinking
generalization”. In: Communications of the ACM 64 (2021).

[143] Xiaojing Zhang, Monimoy Bujarbaruah, and Francesco Borrelli. “Near-optimal
rapid MPC using neural networks: A primal-dual policy learning framework”.
In: IEEE Transactions on Control Systems Technology 29 (2020).

[144] Xiaojing Zhang, Alexander Liniger, and Francesco Borrelli. “Optimization-based
collision avoidance”. In: IEEE Transactions on Control Systems Technology (2020).

[145] Xiaojing Zhang et al. “Autonomous parking using optimization-based collision
avoidance”. In: 2018 IEEE Conference on Decision and Control (CDC). IEEE. 2018,
pp. 4327–4332.

[146] Bingyu Zhou et al. “Joint multi-policy behavior estimation and receding-horizon
trajectory planning for automated urban driving”. In: 2018 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE. 2018, pp. 2388–2394.

https://www.youtube.com/watch?v=hA_-MkU0Nfw
https://www.youtube.com/watch?v=hA_-MkU0Nfw


BIBLIOGRAPHY 164

[147] Jian Zhou, Björn Olofsson, and Erik Frisk. “Interaction-Aware Motion Planning
for Autonomous Vehicles with Multi-Modal Obstacle Uncertainty Predictions”.
In: IEEE Transactions on Intelligent Vehicles (2023).

[148] Edward L Zhu and Francesco Borrelli. “A sequential quadratic programming
approach to the solution of open-loop generalized nash equilibria”. In: 2023 IEEE
International Conference on Robotics and Automation (ICRA). IEEE. 2023.

[149] Jia-Jie Zhu and Georg Martius. “Fast non-parametric learning to accelerate mixed-
integer programming for hybrid model predictive control”. In: IFAC-PapersOnLine
53 (2020).


	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Formulation
	Outline
	Notational Conventions

	 Robustness 
	Data-driven Graph Approximations for Model Uncertainty Quantification and Robust Predictive Control
	Overview
	Problem Formulation
	Uncertainty Quantification by Learning Graph Approximations
	Robust Adaptive Model Predictive Control
	Conclusions
	Appendix

	Predictive Control with Uncertain, Multi-modal Predictions of the Environment
	Overview
	Problem Formulation
	Stochastic MPC with Multi-Modal Predictions
	Numerical Validation
	Experimental Validation
	Conclusion
	Appendix


	 Performance 
	Output-lifted Learning Model Predictive Control
	Overview
	Problem Formulation
	Convex Control Invariant Sets and Control Lyapunov Functions from Trajectory Data
	Robustification of Constraints
	Iterative Robust MPC Design
	Properties of Proposed Strategy
	Numerical Example: Kinematic Bicycle in Frenet Frame
	Conclusion
	Appendix

	Optimization-based Collision Avoidance in Dynamic, Uncertain Environments
	Overview
	Problem Formulation
	Collision Avoidance for Dynamic Obstacles with Uncertain Predictions
	Results
	Conclusion
	Appendix


	 Efficiency 
	Learning for Mixed-Integer Predictive Control with Parametric Sub-optimality Certificates
	Overview
	Problem Formulation
	Strategy-based Solution to mp-MILPs
	LAMPOS: Learning-based Approximate MIMPC with Parametric Optimality Strategies
	Numerical Experiments
	Conclusion
	Appendix

	Learning Safe Supervisors for Accelerating Model Predictive Control in Interactive Environments
	Overview
	Problem Formulation
	Convexified, Group Regularized MPC Problem and Duality-based Screening
	Recurrent Attention for Interaction Duals Network (RAID-Net)
	Hierarchical MPC with Safe Supervision
	Example: Planning at a Traffic Intersection
	Results
	Conclusion
	Appendix

	Conclusion and Future Directions
	Bibliography


