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Abstract
Background and Objectives
There is considerable heterogeneity in the association between increasing β-amyloid (Aβ)
pathology and early cognitive dysfunction in preclinical Alzheimer disease (AD). At this
stage, some individuals show no signs of cognitive dysfunction, while others show clear signs
of decline. The factors explaining this heterogeneity are particularly important for un-
derstanding progression in AD but remain largely unknown. In this study, we examined an
array of genetic variants that may influence the relationships among Aβ, brain structure, and
cognitive performance in 2 large cohorts.

Methods
In 2,953 cognitively unimpaired participants from the Anti-Amyloid Treatment in Asymp-
tomatic Alzheimer disease (A4) study, interactions between genetic variants and 18F-
Florbetapir PET standardized uptake value ratio (SUVR) to predict the Preclinical Alzheimer
Cognitive Composite (PACC) were assessed. Genetic variants identified in the A4 study were
evaluated in the Alzheimer Disease Neuroimaging Initiative (ADNI, N = 527) for their asso-
ciation with longitudinal cognition and brain atrophy in both cognitively unimpaired partici-
pants and those with mild cognitive impairment.

Results
In the A4 study, 4 genetic variants significantly moderated the association between Aβ load and
cognition. Minor alleles of 3 variants were associated with additional decreases in PACC scores
with increasing Aβ SUVR (rs78021285, β = −2.29, SE = 0.40, pFDR = 0.02, nearest gene ARPP21;
rs71567499, β = −2.16, SE = 0.38, pFDR = 0.02, nearest gene PPARD; and rs10974405, β = −1.68,
SE = 0.29, pFDR = 0.02, nearest gene GLIS3). The minor allele of rs7825645 was associated with
less decrease in PACC scores with increasing Aβ SUVR (β = 0.71, SE = 0.13, pFDR = 0.04, nearest
gene FGF20). The genetic variant rs76366637, in linkage disequilibrium with rs78021285, was
available in both the A4 and ADNI. In the A4, rs76366637 was strongly associated with reduced
PACC scores with increasing Aβ SUVR (β = −1.01, SE = 0.21, t = −4.90, p < 0.001). In the ADNI,
rs76366637 was associated with accelerated cognitive decline (χ2 = 15.3, p = 0.004) and atrophy
over time (χ2 = 26.8, p < 0.001), with increasing Aβ SUVR.

Discussion
Patterns of increased cognitive dysfunction and accelerated atrophy due to specific ge-
netic variation may explain some of the heterogeneity in cognition in preclinical and
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prodromal AD. The genetic variant near ARPP21 associated with lower cognitive scores in the A4 and accelerated
cognitive decline and brain atrophy in the ADNI may help to identify those at the highest risk of accelerated progression
of AD.

A key hallmark of Alzheimer disease (AD) is the accumulation of
β-amyloid (Aβ) pathology in the brain, which precedes significant
cognitive decline and dementia.1 However, there is considerable
heterogeneity in the association between elevated levels of Aβ
pathology and early cognitive dysfunction. Some individuals show
no signs of cognitive dysfunction while harboring a considerable
Aβ burden, while others show clear signs of decline.2-6 Identifying
the factors that explain this variation in cognitive performance in
individuals with elevated levels of Aβ and predicting future cog-
nitive changes are key to understanding early changes in AD.

The extent to which genetic factors account for the variation in
incipient cognitive decline in preclinical AD is largely unknown.
The relationship between common AD risk variants of the
APOE gene and both cognition and the accumulation of Aβ has
been consistently shown.7-9 Several other genetic variants
(GVs) have been identified for their association with cognition
during the course of AD, including Klotho-VS10,11 and brain-
derived neurotrophic factor.12,13 In addition, polygenic risk
scores have been developed to aggregate genetic risk across the
genome for AD and cognitive decline.14,15 Still, a large pro-
portion of the variation in cognitive ability and longitudinal
change remains unexplained. Preclinical AD comprises a mix-
ture of individuals who remain cognitively stable and those who
decline over time, resulting in high variance estimates and small
effect sizes (ESs) of change, requiring large sample sizes and
long studies to detect associations between Aβ and early cog-
nitive change. This is particularly difficult for clinical trial design
where drug effects may be modest.

In this genome-wide association study, we examined how
genetic variation interacts with Aβ to predict cognitive per-
formance in 2 large, well-characterized cohorts of non-
demented older adults. Cross-sectional data from the Anti-
Amyloid Treatment in Asymptomatic Alzheimer disease
(A4) study16 were used to identify significant genetic
modifiers of the association between Aβ and cognition. The
large sample of cognitively unimpaired (CU) participants in
the A4 study with both genetic and Aβ information make it
particularly well-suited as a discovery cohort to detect mild
effects in the early stages of AD, before overt cognitive im-
pairment. Significant genetic modifiers identified in A4 were

then evaluated in the Alzheimer Disease Neuroimaging
Initiative17 (ADNI) to assess whether these associations
would extend to a longitudinal setting for changes in cog-
nition and structural MRI and in individuals with mild
cognitive impairment (MCI).

Methods
Participants
Participants from the A4 study18 and ADNI17 were included in
this study. Participants screened for the A4 study were included
in this study if they completed a PET scan, completed a battery
of neuropsychological testing, had available genetic data, had a
Clinical Dementia Rating of 0, scored between 25 and 30 on
the Mini-Mental State Examination (MMSE), and were be-
tween the ages of 65 and 85 years. Exclusion criteria for the A4
study have been previously described.16 In brief, A4 exclusions
included taking a prescription Alzheimer medication or had a
current serious or unstable illness that could interfere with the
study. Note that participants without evidence of brain Aβ at
screening were not randomized to treatment in the A4 study
but were included in this study.

Participants from the ADNI were included if they completed
an 18F-Florbetapir PET scan, had available genetic data,
completed a battery of neuropsychological testing, and were
either CU or had MCI at baseline.

18F-Florbetapir PET Imaging
In the A4 study, amyloid β PET imaging was performed using
18F-Florbetapir, acquired 50–70 minutes postinjection. Im-
ages were realigned and averaged and then spatially aligned to
a standard space template. 18F-Florbetapir, sampled in a
global neocortical region for Aβ, including the anterior and
posterior cingulate, precuneus, medial and orbitofrontal,
temporal and parietal lobes, was expressed as a standardized
uptake value ratio (SUVR) with a cerebellar reference re-
gion.16 Aβ positivity was defined as participants with 18F-
Florbetapir PET SUVR ≥1.10.3,20,21

Aβ PET imaging in the ADNI was performed using 18F-
Florbetapir data.22 A global amyloid target region was

Glossary
A4 = Anti-Amyloid Treatment in Asymptomatic Alzheimer disease; Aβ = β-amyloid; AD = Alzheimer disease; ADNI =
Alzheimer Disease Neuroimaging Initiative; CU = cognitively unimpaired; ES = effect size; FDR = false discovery rate; GV =
genetic variant; HWE = Hardy-Weinberg equilibrium; LD = linkage disequilibrium; MCI = mild cognitive impairment;
MMSE = Mini-Mental State Examination; PACC = Preclinical Alzheimer Cognitive Composite; SUVR = standardized uptake
value ratio; WMH = white matter hyperintensity.
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calculated using 4 FreeSurfer-defined regions on each par-
ticipant’s corresponding structural T1 MRI (frontal, cingu-
late, lateral parietal, and lateral temporal) and normalized to a
whole cerebellum reference region to create SUVRs. Aβ
positivity was defined as participants with 18F-Florbetapir
PET SUVR ≥1.10.20

MRI
In the ADNI, structural brain scans were acquired using
3.0T MRI. We used a standardized protocol including T1-
weighted MRI scans using a sagittal volumetric
magnetization–prepared rapid gradient echo sequence.23

Automated volumetric measures were performed with
FreeSurfer, and those examined included the amygdala,
banks of the superior temporal sulcus, caudal and rostral
anterior cingulate, caudal and rostral middle frontal, cau-
date, cuneus, entorhinal cortex, frontal pole, fusiform, hip-
pocampus, inferior/superior parietal, inferior/middle/
superior temporal, isthmus cingulate, lateral occipital, me-
dial and lateral orbitofrontal, lingual, pallidum, paracentral,
parahippocampal gyrus, pars opercularis, pars orbitalis, pars
triangularis, pericalcarine, postcentral, posterior cingulate,
precentral, precuneus, putamen, superior frontal, supra-
marginal, temporal pole, thalamus, transverse temporal, and
lateral and inferior lateral ventricles. The white matter
hyperintensity (WMH) volume estimation was based on a
Bayesian approach to segmentation of high-resolution
3-dimensional T1 and fluid-attenuated inversion recovery
sequences and has been previously described in detail (adni.
loni.usc.edu).

Cognitive Testing
A4 participants completed a neuropsychological test battery
including the Preclinical Alzheimer Cognitive Composite
(PACC),24,25 comprising the MMSE, Logical Memory
Delayed Recall, Free and Cued Selective Reminding Test, and
the Digit Symbol Substitution Test. Individual components
were z-transformed and summed. The resulting sum was then
centered on the mean and standard deviation of the Aβ-
negative group.

ADNI participants completed a neuropsychological test bat-
tery including a modified version of the PACC,24,25 com-
prising the MMSE, Logical Memory Delayed Recall, Delayed
Word Recall from the Alzheimer Disease Assessment Scale–
Cognitive Subscale, and Trail Making Test part B (log
transformed). The PACCwas calculated in the same way as in
the A4 study, but otherwise treated separately.

Genetic Data
In the A4 study, genetic data underwent a quality control
process limiting to variants with a call rate >95%, minor allele
frequency >1%, if cryptic relatedness was identified, or if out
of Hardy-Weinberg equilibrium (HWE) (p > 10−6). Impu-
tation was performed using the European samples from the
HRCr1.1.2016 reference panel (Build 37 Assembly 19).
Analyses were limited to those with European ancestry.

In the ADNI, quality control was performed at the participant
and genetic variation levels according to established proto-
cols.26 Person-based quality control included consistency be-
tween chip-inferred and self-reported sex, call rates (1% cutoff),
and intense heterozygosity. In addition, high-quality variants
(autosomal biallelic variants with HWE p > 10−8, minor allele
frequency ≥5% and with a call rate of >99%) were used.

Cardiovascular Risk Factors
In the A4 study, a cardiovascular risk score based on systolic
blood pressure, body mass index, smoking status, and in-
formation gathered during an initial health assessment and
neurologic and physical examination was used, as previously
described.8

Statistical Analysis
Data from the A4 study and ADNI were analyzed separately.
The A4 study was used to identify significant genetic mod-
erators of the relationship between Aβ and the PACC. The
ADNI was used to attempt to validate significant findings
from A4 using longitudinal PACC change and evaluate lon-
gitudinal MRI changes.

In the A4 study, PACC scores were regressed on the in-
teraction between 18F-Florbetapir PET SUVRs and each GV
separately. PACC scores were modeled using ordinary least
squares regression assuming a linear association with allele
frequency. Multiple comparison adjustment for SUVR × GV
interactions was performed using a false discovery rate (FDR)
correction. Significant GVs were evaluated again using re-
stricted cubic splines to capture potential nonlinearity in the
relationship between SUVR and PACC scores. A single in-
ternal spline knot was placed at the median SUVR value. Wald
tests were used to test for significance of the SUVR × GV
interaction. Likelihood ratio tests were used to test for non-
linearity. ESs for the difference in estimated PACC scores
were taken to be the difference between those with and
without the minor allele at SUVR 1.35, divided by the model-
estimated residual SD.

Significant GVs from the A4 study that were available in the
ADNI were then evaluated for their moderating effect on the
relationship between Aβ and longitudinal change in the
PACC. In the ADNI, repeated measures of the PACC were
regressed on the interaction between 18F-Florbetapir PET
SUVRs and each GV identified in the A4 study separately,
using mixed-effects regression. Models included a random
intercept and slope and assumed an independent correlation
structure, conditional on the random effects. Mixed-effects
models directly handle differential follow-up time. PACC
assessments occurring before the Aβ PET scan were excluded.
Aβ SUVRs and time since baseline were parameterized using
restricted cubic splines with knots placed at the median Aβ
SUVR value and the median time since baseline. The in-
teraction between GV, spline terms for Aβ SUVR, and time
since baseline were tested for their association with longitu-
dinal change in the PACC using likelihood ratio tests.
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Repeated measures of structural MRI volumes were also
modeled using mixed-effects regression. Regional volumes
were regressed on the interaction between 18F-Florbetapir
PET SUVRs and each GV, similar to models of the PACC. All
models were adjusted for age, sex, and the first 5 principal
components of genetic background to account for un-
measured population stratification. Models of the PACCwere
additionally adjusted for years of education and models of
MRI volumes were additionally adjusted for intracranial vol-
ume. p Values for the multiple MRI regions were FDR cor-
rected. ESs at year 3 for the difference in estimated PACC
scores and significant MRI volumes were taken to be the
difference between those with and without the minor allele at
SUVR 1.35, divided by the model estimated residual SD.

Several sensitivity analyses were performed to evaluate the
effect of covariate adjustment for MCI status (for ADNI
only), APOE e4 carrier status, and baseline measures of MRI
outcomes that were found to be significant in the longitudinal
analyses (ADNI only). We also conducted sensitivity analyses
to evaluate models within CU only, MCI only, and Aβ+ only.
Additional models were fit to evaluate the effect of adjusting
for cardiovascular risk factors. In the ADNI, models were
adjusted for log-scaled and z-transformed baseline WMH.

Associations between 18F-Florbetapir and demographics
were assessed using the Spearman correlation for continuous
variables and a Kruskal-Wallis test for categorical variables. p
Values <0.05 were considered significant. All analyses were
performed in R version 4.1.1.

Standard Protocol Approvals, Registrations,
and Patient Consents
Institutional review boards of all participating institutions
approved this study. All participants provided informed
written consent.

Results
A4 Cohort Characteristics
Genetic, Aβ PET, and cross-sectional cognitive data were
available for 2,953 participants. Participants were 71.4 years of
age on average, were 59.7% female, had an average of 16.8
years of education, were 35.7% APOE e4 carriers, were 36.1%
Aβ+, and had an average MMSE score of 29.0 (Table 1).

Genetic Modifiers of the Relationship Between
Aβ and PACC Scores
After FDR correction, 4 GVs significantly moderated the Aβ
relationship with PACC performance (Figures 1 and 2).
Sample characteristics of these 4 GVs are summarized in
Table 2. The minor allele frequency of the 4 variants ranged
from 2% to 31% (rs78021285, 2.2%; rs71567499, 2.3%;
rs7825645, 30.9%; and rs10974405, 4.1%). There were 127
participants who carried the minor variant of rs78021285,
there were 137 carriers of rs71567499, there were 240 carriers

of rs10974405, and 290 carried 2 copies of the minor variant
for rs7825645.

The minor alleles of 3 variants were associated with an addi-
tional decrease in PACC scores with increasing Aβ SUVR
(rs78021285, β = −2.29, SE = 0.40, t = −5.78, pFDR = 0.02, ES at
SUVR 1.35 (ES1.35) = −0.43; rs71567499, β = −2.16, SE = 0.38,
t = −5.69, pFDR = 0.02, ES1.35 = −0.51; rs10974405, β = −1.68,
SE = 0.29, t = −5.73, pFDR = 0.02, ES1.35 = −0.35). Trajectories
of the PACC were significantly nonlinear with respect to Aβ
SUVR for all GVs (rs78021285, χ2 = 15.78, p < 0.001;
rs71567499, χ2 = 9.77, p = 0.002; rs10974405, χ2 = 13.85, p <
0.001; rs7825645, χ2 = 26.96, p < 0.001), as shown in Figure 3.
Theminor allele of rs7825645was associated with less decrease
in PACC scores with increasing Aβ SUVR (rs7825645, β =
0.71, SE = 0.13, t = 5.53, pFDR = 0.04) (Figure 3).

Sensitivity Analyses in the A4 Study
We conducted multiple sensitivity analyses to evaluate the
effect of covarying for APOE e4 carrier status, cardiovascular
risk factors, and restricting to Aβ+ participants only. None of
the sensitivity analyses changed the significance of the SUVR
× GV interactions. APOE e4 carrier status was not associated
with PACC performance after adjusting for model covariates
(β = −0.01, SE = 0.04, p = 0.72) and did not affect the
estimates or significance of any of the significant SUVR × GV
interactions. While cardiovascular risk scores were associated
with reduced PACC scores (β = −0.05, SE = 0.02, p = 0.005),
they did not affect the estimates of the SUVR × GV interac-
tions. When restricting to Aβ+ participants only, all SUVR ×

Table 1 Baseline Characteristics

Characteristic Aβ+ Aβ2 p Value

A4 N = 1,065 N = 1,888

Age 71.9 (4.9) 71.0 (4.6) <0.001

Female, n (%) 643 (60.4) 1,121 (59.4) 0.61

Education, y 16.8 (2.7) 16.8 (2.7) 0.90

APOE «4+, n (%) 622 (58.4) 433 (22.9) <0.001

MMSE 28.9 (1.2) 29.0 (1.1) 0.005

MCI, n (%) 0 (0) 0 (0) —

ADNI N = 331 N = 196

Age 74.8 (7.1) 74.4 (6.9) 0.34

Female, n (%) 149 (45) 83 (42.3) 0.59

Education, y 16.0 (2.4) 16.8 (2.3) 0.002

APOE «4+, n (%) 194 (58.6) 40 (20.4) <0.001

MMSE 28.1 (1.7) 29.1 (1.2) <0.001

MCI, n (%) 229 (69.2) 16 (8.2) <0.001

Abbreviations: A4 = Anti-Amyloid Treatment in Asymptomatic Alzheimer
disease; Aβ = β-amyloid; ADNI = Alzheimer Disease Neuroimaging Initiative;
MCI = mild cognitive impairment; MMSE = Mini-Mental State Examination.
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GV interactions remained significant (rs78021285, χ2 = 16.94,
p < 0.001; rs71567499, χ2 = 10.27, p = 0.006; rs10974405,
χ2 = 14.92, p < 0.001; rs7825645, χ2 = 26.96, p < 0.001).

Validation in the ADNI
In the ADNI, genetic, Aβ PET and cognitive data were
available for 527 participants. Participants were 74.6 years of
age on average, were 44% female, had an average of 16.3
years of education, were 44.4% APOE e4 carriers, were
62.8% Aβ+, and had an average MMSE score of 28.4, and
46.5% had an MCI diagnosis (Table 1). Participants had 5.4
(SD = 3.4) years of follow-up and 4.5 (SD = 2.0) study visits
on average.

One of the 4 GVs that was selected in the A4 study was available
in the ADNI, rs10974405 on chromosome 9. Another variant
available in the ADNI, rs76366637, was in linkage disequilibrium
(LD)with the variant selected in the A4 study on chromosome 3
(rs78021285). In the A4 study, rs76366637 was also strongly
associated with reduced PACC scores with increasing Aβ SUVR
(β = −1.01, SE = 0.21, t = −4.90, p < 0.001). rs76366637 was not
associated with age, sex, education, or APOE carrier status in
either the A4 study orADNI. rs76366637was also not associated
with cardiovascular disease in the A4 study or WMH in the
ADNI. rs10974405 and rs76366637 were assessed further in the
ADNI (the other 2 variants identified in the A4 study were not
mapped in the ADNI). The minor allele frequency of
rs10974405 was 6.6% in ADNI. The minor allele frequency of
rs76366637 was 8.1% in the ADNI and 8.4% in the A4 study. In
the A4 study, 15.9% (N = 471) of the participants carried the
minor variant for rs76366637 and 15.2% (N = 80) in the ADNI.

In the A4 study, 8.1% (N = 240) of the participants carried the
minor variant for rs10974405 and 6.7% (N = 35) in the ADNI.

In the ADNI, the minor allele of rs76366637 was associated
with accelerated cognitive decline on the PACC over time
with increasing Aβ SUVR (χ2 = 15.3, p = 0.004, ES at SUVR
1.35 at year 3, ES1.35 = −1.49, Figure 4), accelerated inferior
lateral ventricular expansion over time with increasing Aβ
SUVR (χ2 = 26.8, pFDR < 0.001, ES1.35 = 3.24, Figure 4), and
lateral ventricular expansion with increasing Aβ SUVR (χ2 =
19.7, pFDR = 0.001, ES1.35 = 2.91). The minor allele of
rs10974405 was not associated with an additional decline on
the PACC (χ2 = 0.37, p = 0.98) or with any structural MRI
measures (pFDR > 0.09 for all).

Sensitivity Analyses in the ADNI
While APOE e4 carrier status was associated with reduced
PACC scores (β = −0.38, SD = 0.13, p = 0.004), the effect of
the interaction between rs76366637 and Aβ on longitudinal
PACC change remained the same (χ2 = 15.5, p = 0.004).
Similarly, the estimates for the MRI outcomes were also un-
changed (inferior lateral ventricle, χ2 = 26.8, p < 0.001; lateral
ventricle, χ2 = 19.4, p < 0.001).

Although WMH were associated with reduced PACC scores
(β = −0.14, SE = 0.07, p = 0.04), model adjustment did not
affect the estimate of the interaction between rs76366637 and
Aβ to predict the PACC. Similarly, while baseline WMHwere
strongly associated with the MRI measures associated
with the SUVR × GV interaction, including the inferior lat-
eral ventricular volume expansion (β = 141.4, SE = 27.7,

Figure 1 Genome-wide Significance in the A4

Genome-wide significance in the A4. A4 = Anti-Amyloid
Treatment in Asymptomatic Alzheimer disease.
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p < 0.001) and lateral ventricular volume expansion (β =
2,035, SE = 433, p < 0.001), adjustment for WMH did not
affect the estimate or significance of the interaction between
rs76366637 and Aβ with either ventricular volume outcome.

Accelerated cognitive decline and ventricular expansion
remained significant when restricting to Aβ+ participants
(PACC, χ2 = 10.47, p = 0.03; inferior lateral ventricles,
χ2 = 11.1, p = 0.004; lateral ventricles, χ2 = 7.7, p = 0.02).

Figure 2 Regional Loci

Regional plots of each genetic variant’s locus in the A4. Selected variant shown in purple. R2 values are color coded to reflect the magnitude of linkage
disequilibrium. A4 = Anti-Amyloid Treatment in Asymptomatic Alzheimer disease.

Table 2 Genetic Variant Characteristics in A4

Characteristic

rs78021285 rs71567499 rs10974405 rs7825645

GV+
(N = 127)

GV2
(N = 2,826)

GV+
(N = 137)

GV2
(N = 2,816)

GV+
(N = 240)

GV2
(N = 2,713)

GV+/+
(N = 290)

GV2/+
(N = 1,245)

GV2/2
(N = 1,418)

Age 71.0 (4.4) 71.4 (4.8) 71.6 (4.8) 71.3 (4.8) 71.6 (4.5) 71.3 (4.8) 71.4 (4.8) 71.4 (4.8) 71.3 (4.7)

Female, n (%) 82 (64.6) 1,682 (59.5) 80 (58.4) 1,684 (59.8) 144 (60) 1,620 (59.7) 178 (61.4) 746 (59.9) 840 (59.2)

Education, y 16.9 (2.4) 16.7 (2.7) 17.1 (2.8) 16.7 (2.7) 16.7 (2.8) 16.8 (2.7) 17.0 (2.6) 16.8 (2.7) 16.6 (2.7)

APOE «4+, n (%) 47 (37) 1,008 (35.7) 50 (36.5) 1,005 (35.7) 82 (34.2) 973 (35.9) 113 (39) 439 (35.3) 503 (35.5)

CVD −0.09 (0.96) 0.00 (1.00) 0.14 (1.02) −0.01 (1.00) −0.05 (0.96) 0.00 (1.00) −0.05 (0.96) 0.03 (1.00) −0.01 (1.01)

Abbreviations: A4 = Anti-Amyloid Treatment in Asymptomatic Alzheimer disease; CVD = cardiovascular disease; GV = genetic variant.
There were no significant group differences for any of the GVs.
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When adjusting for MCI status, the minor allele of
rs76366637 remained associated with accelerated cognitive
decline on the PACC over time with increasing Aβ SUVR
(χ2 = 16.0, p = 0.003), accelerated inferior lateral ventricular
expansion over time with increasing Aβ SUVR (χ2 = 27.2,
pFDR < 0.001), and lateral ventricular expansion with in-
creasing Aβ SUVR (χ2 = 19.9, pFDR = 0.001).

When adjusting for baseline inferior or lateral inferior ven-
tricular volume, estimates of the effect of the interaction
between rs76366637 and Aβ on longitudinal PACC also
remained the same. When considering CU participants only,
the minor allele of rs76366637 remained associated with
accelerated cognitive decline on the PACC over time with
increasing Aβ SUVR (χ2 = 14.2, p = 0.007), accelerated
inferior lateral ventricular expansion (χ2 = 106.3, pFDR
< 0.001), and lateral ventricular expansion (χ2 = 161.0, pFDR
< 0.001).

When considering MCI participants only, the minor allele of
rs76366637 remained associated with accelerated cognitive
decline on the PACC over time with increasing Aβ SUVR
(χ2 = 11.1, p = 0.03), with accelerated inferior lateral ven-
tricular (χ2 = 13.1, pFDR = 0.03), but not with lateral ven-
tricular expansion (χ2 = 9.2, pFDR = 0.07).

Discussion
In this study of GVs that may influence cognitive decline in
preclinical and prodromal AD, 4 GVs were found to signifi-
cantly moderate the relationship between Aβ and global
cognitive performance in the discovery cohort (A4). In A4,
16% of the sample carried at least 1 of the 3 variants
(rs78021285 on chromosome 3; rs71567499 on chromosome
6, rs10974405 on chromosome 9), which when combined
with elevated levels of Aβ, resulted in significantly lower
cognitive scores on average compared with individuals with-
out these risk variants. rs76366637 (in LD with rs78021285)
on chromosome 3 was associated with a lower cognitive
performance in A4 and both cognitive decline and increased
rates of atrophy in the ADNI with increasing levels of Aβ.
rs10974405 on chromosome 9 was not associated with either
cognitive decline or atrophy in the ADNI, while neither of the
remaining 2 GVs (rs71567499, rs7825645) were mapped in
the ADNI. Thus, the association with cognition of only one of
the GVs identified in A4, estimated cross-sectionally, was also
observed longitudinally in the ADNI.

This was an observational study, and though the exact mo-
lecular mechanisms underlying the association between the
GVs, Aβ accumulation, and cognitive decline could not be

Figure 3 PACC Scores in A4

PACC Scores are plotted against 18F-
Florbetapir SUVRs for each of the 4 var-
iants in the A4. Separate curves are
shown for participants carrying the mi-
nor allele of the genetic variant (GV+)
and noncarriers (GV−). Shaded regions
indicate 95% CIs. A4 = Anti-Amyloid
Treatment in Asymptomatic Alzheimer
disease; PACC = Preclinical Alzheimer
Cognitive Composite.
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determined, the identified variants do have several potential
links to AD. On chromosome 3, rs78021285 is an intergenic
variant in the pseudogene FECHP1, which is found down-
stream of the protein coding gene ARPP21. ARPP21 encodes
a neuronal phosphoprotein enriched in brain regions re-
ceiving dopaminergic innervation.27 ARPP21 also regulates
calmodulin signaling, believed to be associated with AD
pathogenesis.28,29 On chromosome 6, rs71567499 is found in
a region that is rich in genes (and several GVs in high LD with
rs71567499 are located within or close to different genes,
making it challenging to nominate a causative gene, Figure 2).
The nearest gene to rs71567499 is PPARD, believed to be a
potential risk factor of AD through its function and influence
over plasma levels of lipids and apolipoproteins and its asso-
ciation with diabetes.29,30 On chromosome 9, rs10974405 is
found near the protein-coding gene GLIS3, known to contain
loci associated with both CSF tau and p-tau levels.31

The fourth variant, rs7825645, is located in an intergenic
region on chromosome 8, closest to the coding gene

FGF20, a growth factor, strongly enriched in the brain with
reported roles in brain development. Risk variants of other
FGF20 genetic variation have been linked to an increased
risk of Parkinson disease. The minor variant of rs7825645,
carried by 10% of the sample, demonstrated the least de-
crease in cognitive scores compared with individuals car-
rying 1 of the 2 major variants, among individuals with
elevated levels of Aβ.

Multiple GVs associated with cognitive resilience have re-
cently been identified and replicated in independent co-
horts. Among them, located on chromosome 8 similar to
our findings, genetic variation at the MTMR7/CNOT7/
ZDHHC2/VPS37A locus (rs12056505) was shown to be
associated with cognitive resilience among those with ele-
vated levels of Aβ.32 The protective association was not
explained by differences in tau deposition or cerebrovas-
cular disease, but possibly linked to synaptic plasticity and
hippocampal-dependent learning and memory. In addition,
a GV on chromosome 12 within the IAPP/SLCO1A2 genes

Figure 4 PACC Scores and Structural MRI

Cross-sectional PACC scores for participants in the A4 are plotted against 18F-Florbetapir SUVRs by carrier status for the variant rs76366637 in the upper left
panel. Longitudinal PACC scores for participants in the ADNI are plotted over time in the upper right panel, with estimated curves and 95% CIs for 4 groups: low
amyloid GV carriers in blue, low amyloid GV noncarriers in black, high amyloid GV noncarriers in gold, and high amyloid GV carriers in red. SUVRs weremodeled
continuously, though specific SUVRsare used for thepurposeof depiction. Similarly, in the bottomrow, longitudinal ventricular volumes for ADNI participants are
plotted over timewith estimated curves and 95%CIs for the same 4 groups. A4 = Anti-Amyloid Treatment in Asymptomatic Alzheimer disease; ADNI = Alzheimer
Disease Neuroimaging Initiative; GV = genetic variant; PACC = Preclinical Alzheimer Cognitive Composite; SUVR = standardized uptake value ratio.
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(rs73069071) was shown to modify the association be-
tween cortical Aβ deposition on AD-related cognitive im-
pairment and temporal lobe atrophy.33

A4 data are limited by their cross-sectional nature. It is un-
known whether the individuals carrying the GVs identified
here and high levels of Aβ are declining over time or if they
have stable, low cognitive scores on average. However, it
seems that it is the combination of these variants and elevated
Aβ that are associated with poor PACC performance, rather
than the GVs alone. This suggests that PACC performance
may only be reduced once Aβ levels become elevated later in
life. This is supported by our partial validation, where one of
the GVs in the ADNI, rs76366637, was associated with in-
creased rates of cognitive decline over time. The ADNI has a
considerably smaller sample size than the A4 and may not be
fully powered to detect longitudinal associations, but the
validation of rs76366637 is encouraging. In the ADNI,
rs76366637 was also linked to accelerated brain atrophy in the
presence of Aβ pathology, which supports that this GV or its
genomic environment is relevant for an increased suscepti-
bility to brain damage in individuals with preclinical and
prodromal AD. More longitudinal and multimodal follow-up
studies will be required to confirm the effects of the identified
GVs. Such studies could, for example, include measures of tau
pathology, for example, tau PET. We also note that the
population in these analyses was restricted to non-Hispanic
White participants and may not be fully representative of the
population at risk of cognitive decline associated with AD.
Exclusion criteria for the A4 also limited enrollment to those
without health conditions that could interfere with partici-
pation in the study, potentially introducing bias.

Finding GVs that alter the relationship between AD pa-
thology and cognitive functioning will help to identify
those at the greatest risk of future decline. Determining the
factors that predict accelerated decline will also help to
expedite the completion of clinical trials, particularly
within a CU population that requires large sample sizes,
long recruitment, and long follow-up periods to demon-
strate treatment efficacy.1
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