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ABSTRACT OF THE DISSERTATION

Determinants of Intertwining Operators between Genuine Principal
Series Representations of Nonlinear Real Split Groups

by

Seung Won Lee
Doctor of Philosophy in Mathematics
University of California, San Diego, 2012

Professor Nolan Wallach, Chair

Classification of ”small K-types” for the connected, simply connected split
real form of simple Lie type other than type C, is obtained via Clifford algebras
which completes the list of all small K-types of dim > 1 for the connected, simply
connected split real form of simple Lie types. An analog, P¢, of Kostant’s P?
matrix is defined for a K-type V¢ of principal series admitting a small K-type, and
a product formula of the determinant of P¢ over the rank one subgroups corre-
sponding to the reduced restricted roots is proved. The product formula and the
relationship between P¢ and intertwining operator between the genuine principal
series representations give a method to compute the shift factors of Vogan and

Wallach’s generalization of Leslie Cohn’s determinant formula for the restriction

X



of the intertwining operator to a K-isotypic component given in terms of ratios of

classical gamma functions. The determinant of the intertwining operator between

the genuine principal series representations of SL(n,R) (n > 3) is obtained as a

ratio of classical gamma functions.



Chapter 1

Introduction

1.1 Background

In their 1990 paper, David Vogan and Nolan Wallach proved a difference
equation for intertwining operators for C'*° principal series by tensoring principal
series with a finite dimensional spherical representation of G. This difference equa-
tion was used to prove a meromorphic continuation of the intertwining operators
for C"*° principal series. It was also used to derive a generalization of Leslie Cohn’s
determinant formula for the restriction of the intertwining operator to a K-isotypic
component. This determinant is given in terms of ratios of classical gamma func-
tions with appropriate shifts that are yet unknown in general. In the same year,
Chen-bo Zhu generalized Vogan and Wallach’s work by showing that associated
with each irreducible finite dimensional representation of G, there is a functional
equation relating intertwining operators.

The intertwining operators are also related to Kostant’s 1971 paper in which
he proves irreducibility of spherical principal series and existence of complementary
series. In more detail, let H be the the space of K-harmonics on pc where p is
the -1 eigenspace of the Cartan involution on Lie(G). It is a result of Kostant and
Rallis that spherical principal series is isomorphic with H as a K module. For a
K-type v, let B, = (VV*)OM, let €1, ..., €y be a basis of I, and let vy, ..., v, be a
basis of VVOM where °M is the centralizer of a in K. Let Q" be the projection map

onto the first summand of U(g) = U(a) ®nU(g) ® U(g)t. Kostant defines what he



calls the PY matrix by (P7);; = (Q'(e;(v;))). The critical point of the paper is the
explicit determination of the determinant of P?. Kostant achieves the determinant
in split rank one case, and he derives the general formula for the determinant
by proving a product formula over the rank one subgroups corresponding to the
reduced restricted roots. In their 1977 paper, Kenneth Johnson and Nolan Wallach
proved a formula of the intertwining operator A,(r) for spherical principal series in
terms of Kostant’s P? matrices that is A,(v)(A®v) = Ao P (v) "' P(s(v—p)+p) Qv
where A € E,, v € V,, and s € W(A). In light of this formula and Kostant’s
product formula of the determinant of P?, one can obtain the appropriate shifts
in the gamma functions that give the determinant of the intertwining operator on

the ~ isotypic component.

1.2 Main Results

Similar technique of Kostant’s may be applied to principal series representa-
tions that admit so called ”"small K-types”. In the second volume of his book Real
Reductive Groups, Nolan Wallach defines small K-type V, to be an irreducible
representation of K whose irreducibility is preserved under restriction to °M/, and
gives examples for all real forms over R of all simple Lie types. Moreover, he proves
that as K modules, Ipg,, is isomorphic with U(g) @y @u(gx Vr where Ip,, is the
underlying (g, K)-module of the principal series induced from the °M irreducible
representation o = V|op; with minimal parabolic subgroup P, which also covers
Kostant and Rallis’ result because trivial representation is a small K-type.

Based on the results above, for a K-type V¢ that occursin Ip,,, we define an
analogue of Kostant’s P¥ matrix, P¢, whose definition is as follows. Let Tf, e Tf(g)
be a basis of Homoy (Vy, V¢) and €, ..., Ei(g) be a basis of Homg (Ve, U(g) @u v g)x
V.). Let Q, : U(g) Queyu(s Ve — Ipo, be the corresponding isomorphism as
K-modules, and define R, : U(g) @u@ugx Vr — Vr by R, (Z) := Q,(Z)(e). Note
every map defined above intertwines °M action, hence R, o ¢; o Tj does also for
all i and j. Define by P¢(v) the n(¢) by n(§) matrix such that (P%(v));; is the
polynomial in v in which R, o € o Tf acts on V;, and define by P¢ the n(£) by



n(€) matrix obtained from P%(v) by replacing the entries with the corresponding
elements in U(ac) ® End(V;).

Let G be any of the connected, simply connected split real form of simple
Lie type other than type C, with maximal compact subgroup K. First, by a re-
lationship between °M and Clifford algebra, we show that the examples of small
K-types given by Nolan Wallach exhaust the list of all small K-types, which com-
pletes the list of all small K-types of dim > 1 for the connected, simply connected
split real form of simple Lie types. If K is a product of two groups, denote by
p1 and ps the projection onto the first factor and the second factor respectively.
Denote by s the Spin representation of Spin(n) for n odd, and either of the two

half-Spin representations of Spin(n) for n even.

Theorem 3.3.2 Let G be any of the connected, simply connected split real form
of simple Lie type other than type C), with maximal compact subgroup K. The

following is a complete list of all small K-types.

Type K Small K-type

A, (n>2) Spin(n + 1) s

B, (n>3) Spin(n+1) x Spin(n) | sop; or sop, for n odd, sopy
for n even

D, (n>3) Spin(n) x Spin(n) SO pp Or S0 po

Es Sp(4) standard 8 dimensional rep-
resentation

E; SU(8) standard 8 dimensional rep-
resentation or its dual rep-
resentation

Eg Spin(16) standard 16 dimensional
representation

F, Sp(3) x SU(2) standard 2 dimensional rep-
resentation o po

Go SU(2) x SU(2) standard 2 dimensional rep-
resentation o p; or po

Second, for a K-type V¢ of principal series admitting a small K-type V;, a
product formula of the determinant of P¢ over the rank one subgroups correspond-
ing to the reduced restricted roots is proved. In more detail, let ¢ be a positive
root of Lie(G), and let G be the corresponding rank one subgroup. Gy has its
semisimple part the group generated by the metaplectic group Mpy(R) and °M.



Let K, be the maximal compact subgroup of G, generated by a torus and °M.
Let Ve = EB"(E V.. & W where V.. is an irreducible K4 module such that V. =V,
as M modules for all j = 1,...,n(¢) and W is a K4 submodule of V¢ such that
dimHomoy (V,,W) = 0. Let py = pfl...pf_’ o where p¢ is the determinant of P™
matrix of the rank one case of Gy with Kg-type V... Denote by py = Tp, - ,(ps)
where T),,_, is translation by ps — p. The following is a product formula of pe,
the determinant of P¢, over the rank one subgroups corresponding to the reduced
restricted roots for the connected, simply connected split real form of simple Lie

type other than type C),.

Theorem 6.3.1 & Theorem 7.4.1 There exists a nonzero scalar ¢ such that
pe(v) = cllgea+pg) (V)

Third, Johnson and Wallach’s formula of the intertwining operator for
spherical principal series in terms of Kostant’s PY matrix remains true. Let
v € V.. We look at P%(v) as a map of @n(g Tg( V) — D2 n) Tf( V) by set-
ting PS(v)TE (v) = Z;LSI)TJ&(PJE( ). If Ve = @jfl) T (V,) & W is a decomposition
of V¢ as a ®M-module, we look at P*(v) as a map on V; where P*(v) acts as above
on @;LSI) Tf(VT) and acts trivially on W. We now look at P*(v) as an operator
on Homoy (Vg, V;) where P(v) - A = Ao P(v). With the new definition for P¢,
the formula of the intertwining operator obtained by Kenneth Johnson and Nolan

Wallach remains true for the underlying (g, K') module Ip,, in general.

Theorem 4.2.3 Given s € W(A) the Weyl group of a, let As(v) : Ipy,, —
Ip o s(w—p)+p be such that Ay (v)7, = Tsw—p)4p and Ay (V) o 7, (u) = Trs—py+p(u) ©
Ag(v) for all w € U(g). Then

As()(A@v) = Ao PH(v) ' Pi(s(v — p) +p) ® v

for A\ € Homoy (Ve, V;) and v € Vg, if det P*(v) # 0 and det P*(s(v — p) +p) #0
for all £ € K that occurs in Ipg,.

The determinant of the intertwining operator between the genuine princi-

—_—

pal series representations of SL(n,R) (n > 3) is obtained as a ratio of classical
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gamma functions. SL(n,R) (n > 3) is the connected, simply connected two-fold
covering group of SL(n,R) whose maximal compact subgroup K is Spin(n). Let
V. be the spin representation of Spin(n) for n odd and either of the two half-spin
representations of Spin(n) for n even. Denote by 1 the nontrivial element of the
covering homomorphism p : Spin(n) — SO(n), where we assume —1 action of 7.
Then, C[°M]/ < n+ 1 > is isomorphic with the subalgebra of Clif f, spanned by
the even number of products of the generators. Thus, C[°M]/ < n+1 > is isomor-
phic to the simple matrix algebra M2nT4 (C) for n odd and to a direct sum of two
isomorphic copies of the simple matrix algebra MQnT—Q (C) for n even. Based on
this observation, we have that V, is a small K-type, and Weyl dimension formula
implies that above examples of small K-types exhaust the list of all small K-types

—_—

for the group SL(n,R).
Define ¢, : 2N + 1 — C|[v] where N = {0, 1,2, 3, ...} as follows.
o (v +2i+ ) (v +2j+ 3) if 4 |773n —1
o (v +2i+ D (v+2j+3) x I A (v+2k+3)if 4| m—3
Define I',(m) : 2N 4+ 1 — M where M is the space of meromorphic func-

tions in v as follows.

) D(v+2j+4
) T(v+25+32

T, (m) =11, t ITi-h B2t

) .
=0T (2 ] ifd|m-—1

[ SIS N

m—3 . s 1 m—3 1
— 1—-1 T(v—2j+3) T(v+2j+3) D(v—2k+1) .
Fl,(m) = Hl:40 HjZOF(V—Qj—g) F(V+2j+§) X Hk:40 F(VTk—g) if 4 ‘ m-—3

Now, given an irreducible Spin(n)-module Vi C Ip,, with highest weight
€ = &er + ...+ &ueg, branch down to Spin(3) that occurs in the top left corner.
Let {4, ..., Jng} be the set of highest weights of Spin(3)-modules that occur in the
branching counting multiplicity. Denote by A(v) the intertwining operator A,(v)
with s the longest element of the Weyl group. The following formulas are with

p-shifts.

p§<V) = Ha€¢’+HZL:§1Q(V,a) (]k)



Pe(—V im, m, . 2 \dim
AWt = (D — (Mo T () 509 709

Where lf n —= 2]{3 + ]_, dlm(‘/g) = ngiqg;g%lhggk% Wlth pz =
i Py
k=it %, dim(V;) = 2, and if n = 2k, dim(Ve) = Ticjer S0 it
i Fj

pi =k —i, dim(V,) = 2k,

Last, cyclicity of a small K-type V; in Ip,, is determined by the determi-
nant of P® matrix. V; is cyclic in Ip,, if and only if p¢(v) # 0 for every K-type
¢ that occurs in Ip,,. By the product formula of p¢(v), we obtain the following

result and its corollary.

Theorem 8.3.1 Let G be any of the connected, simply connected split real form
of simple Lie type other than type C,, with maximal compact subgroup K. Let V,
be a small K-type and let 0 = V;|oy. If Re(v, ) > 0 for every a € T, i.e. in the

closed Langlands chamber, V. C Ip, , is cyclic.

Corollary 8.3.2 Let G be any of the connected, simply connected split real form
of simple Lie type other than type C,, with maximal compact subgroup K. Let V.
be a small K-type and let 0 = V,|oy;. The unitary principal series (7p,,,, H?7")

(Re v = 0) is irreducible.



Chapter 2

Principal Series and Intertwining

Operators

2.1 Principal Series Representation and the Un-
derlying (g, K)-module

Let G be a real reductive group with maximal compact subgroup K defined
as the set of fixed elements of a Cartan involution 6. Let g, be the Lie algebra
of G with complexification g. Let (P, A) be a standard p-pair with Langlands
decomposition P = M AN with Levi factor M A and unipotent radical N.

Definition 2.1.1.

e A Hilbert representation of G' on a topological vector space V over C is a
homomorphism 7 of G to GL(V') such that the map G x V' — V given by

(g,v) — m(g)v is continuous.

e A closed subspace W of V is invariant if 7(¢)W C W for all g € G. (w,V)

is irreducible if the only invariant subspaces of V are 0 and V.

e A Hilbert representation (7, V') of G is unitary if 7(g) is a unitary operator

for all g € G.



Definition 2.1.2. Let V' be a g-module and a K-module. V is a (g, K)-module
if:

1. k. Xv=Adk)X.kvforalveV, ke K, X €g.

2. If v € V', then K.v spans a finite dimensional vector subspace of V', W, such

that the action of K on W, is continuous.
3. If Y € Lie(K)c and v € V then 4|,_oexp(tY )v = Y.v.

Let (0, H,) be an irreducible Hilbert representation of M that is unitary
when restricted to K N %M, and let v € (Lie(A)c)*. Define *H?" as the space
of all smooth functions f : G — H, such that f(mang) = o(m)a"*f(g) for
me™W,ac A neN,and g € G. Define for f, g € *HPov

< f.g>= /K < f(k),g(k) > dk

Denote by H™?* the Hilbert space completion of *H"%". From 1.5.3 of
[RRG 1], we know that the right regular action 7p,,(g)f(x) = f(zg) gives a
Hilbert Representation (mp,.,, H??") of G.

Definition 2.1.3. The representation (7p,,, H"7") above is called a principal

series representation of G.

If X € g, then X.f(g) = %h:of(g -exp(tX)) gives a natural action of g
on H?" induced from Tpeoy. We will also denote this action of g by 7p,,. For
v € K, denote by HP?"(v) the sum of all the K-invariant, finite dimensional
subspaces of HP* that are in the class of 7. Denote by Ip,, the algebraic direct

- HPov (v) N °HPo" . The following is Lemma 3.3.5 of [RRG IJ.

sum @weK

Lemma 2.1.4. (7py,, Ips.) is a (g, K)-module.

(Tpow, Ipo,) is called the underlying (g, K')-module of the principal series

representation (7p,,, H?"). Consider the following Theorem of Harish-Chandra.

Theorem 2.1.5. There is a bijection between the set of irreducible unitary rep-
resentations of G and the set of irreducible (g, K)-modules admitting a positive

definite (g, K)-invariant Hermitian form.



R. Langlands has shown that every irreducible (g, K')-module can be real-
ized as a quotient of an underlying (g, K')-module of some principal series repre-

sentation.

Definition 2.1.6. The triple (P, o, v) is called a Langlands data if P is a parabolic
subgroup of G, (o, H,) is an irreducible unitary representation of °M such that
(H,)kron s tempered, i.e. the matrix coefficient m +— < o(m)v,w > lies in
L**¢(%M) for every € > 0 for all v,w € (H,)gnon, and v € (Lie(A)c)* such that
Re(v,a) > 0 for all &(P,A).

Definition 2.1.7. Define for v € (Lie(A)c)* the intertwining operator Jpp(v) :
XHPT — SHPO as (Jpp(v) f)(k) = [5 fo(0k)dn.

Theorem 2.1.8. (Langlands) Let V' be an irreducible (g, K)-module. Then there
exists a Langlands data (P,o,v) such that V' is (g, K)-isomorphic with the unique

irreducible quotient of Ip,,, which is (g, K) isomorphic to Jpp(Ips,.)-

The theorem of Harish-Chandra suggests to classify irreducible unitary rep-
resentations of G, it is enough to study irreducible (g, K')-modules. The theorem of
Langlands realizes an irreducible (g, K')-module as a unique quotient of the under-
lying (g, K)-module of some principal series representation. Hence, the problem
of Unitary Dual reduces down to finding among the underlying (g, K')-modules of
principal series Ip,, with (P, o,v) a Langlands data the ones that admit a positive

definite (g, K)-invariant Hermitian form.

2.2 Meromorphic Continuation of Intertwining

Operators

In 1990, David Vogan and Nolan Wallach achieved a meromorphic contin-
uation of the intertwining operators via the difference equation satisfied by the

intertwining operators. The following is Theorem 2.2 of [VW].

Theorem 2.2.1. There exist polynomials b, » and D, 5 in v with values in C and

U(g)™, respectively, with b,y # 0 s.t.

bor (V) Jpp (V) f = Jp1p(V + N)TPopia(Don(v)) f
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for feI® and Re(v,a) > ¢, for all ae®(P, A).

Meromorphic continuation of the intertwining operators has been achieved
in the past for the K-finite space Ip,,. The novelty of the theorem stated above
is that the authors were able to achieve the meromorphic continuation for 72° the
space of C'*° vectors by tensoring with a finite dimensional G-module. In addition,
using the two polynomials above, the authors were able to compute a determinant
formula of the intertwining operator on each K-isotypic component that generalizes

Leslie Cohn’s determinant formula. The following is Theorem 4.6 of [VW].

Theorem 2.2.2.

-11 [121” T(((, @) /4(Pay @) = sa()) 7™

det(]ﬁpl/|-[0 r o o
e sl | B S >F<<<u,a>/4<pa,a>>—bi,aw

The determinant formula is important for numerous reasons. First, by
Langlands’ classification theorem, the determinant formula gives the reduction
points of Ip,,. Also, the determinant formula can be used to show existence of

Complementary Series Representations, a subset of the unitary dual of G.

2.3 Harmonics on p and Kostant P?” matrix

Let GG be a connected semisimple Lie group with maximal compact subgroup
K defined as the set of fixed elements of a Cartan involution 6. Denote by g, the
lie algebra of G and let g, = &, @ p, be its Cartan decomposition where €, is
+1 eigenspace and p, is —1 eigenspace of the Cartan involution 6 of g,. Let a,
be a maximal abelian subalgebra of p,, and let “m, be the centralizer of a, in &.
We drop the subscript o to denote the complexifications of the subspaces of g,
introduced above. Let g = a @ ‘m @ 2 ped(g,a) g% be the root space decomposition,
and let n = E¢€¢+(g’a)g¢’.

Let S(p) be the space of symmetric polynomials on p and denote by S7(p)
the space of homogeneous polynomials on p of degree j. K acts on P(p) as K acts
on p, and K acts on S?(p) for all j € Zsg. Let S(p)* the space of K invariants on
S(p). S(p)® is graded by degree. Denote by S(p)% the subspace of K invariants
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of S(p) of degree strictly greater than 0. Note the subspace S(p)’ N (S(p)S(p)%)

is K-invariant, and hence there is a K-invariant subspace H’ of S7(p) such that

Si(p) = H/ @ {S(p)’ N (S(n)S(p))}
Definition 2.3.1. H = @jzo HY is the space of harmonics on p.

Theorem 2.3.2. (Kostant-Rallis [KR]) The map h® f — hf from H® S(p)¥ to

S(p) is a linear bijection, and H = Indf (1) as K modules.

Denote by U(g) the universal enveloping algebra of g and consider the
decomposition U(g) = U(a) ® U(g)t & nU(g).

Definition 2.3.3. Let Q' : U(g) — U(a) @ U(g)t®nU(g) be the projection onto

the first summand.

Denote by symm : S(g) — U(g) the symmetrization map. Let V. be an
irreducible K module that occurs in H hence in symm(H ). Denote by VVOM the sub-
space of M invariant elements where °M is the centralizer of a, in K. Lie(°M) =
%m,. Let dimVjM = I(7y). Let e,...,€) be a basis of Homg(V,, symm(H)),

V1, ..., Ui(y) be a basis of VvoM.

Definition 2.3.4.
e P7is an I(y) by I(7y) matrix with P = Q'(e;(v;)).

e p, =det P7.

2.4 Relationship between the P’ matrix and In-
tertwining Operators of Principal Series Rep-

resentations

Let G be a connected semisimple Lie group with maximal compact subgroup

K. Let V, be a K-type that occurs in H the space of harmonics on p of G.

Definition 2.4.1. For v € a*, P(v) = (Pj(v)).
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Let €1, ..., () be a basis of Homg(V,, symm(H)), v1, ..., vy be a basis of
V;M. PY(v) is a map of VWOM — V;M by PY(v)v; = ¥P;(v)v;. Consider the K-
module isomorphism Hom (V,, symm(H )RV, = Ipirivn(7) given by (A®v) (k) =
Ak - v) with A € Homg(V,, symm(H)) and v € V, where (7, Iptriv,) is the
underlying (g, K )-module of the principal series representation (7 p, iy, HT0v).
As Homg(V,, symm(H)) = (Vj)OM, we can consider the above map as a K-
module isomorphism (V;)OM @V, = Ipivw(y). For s € W(A) the Weyl group
of a, let A(v) : Iptrivy — Iptriv,s(v—p)+p D€ the map such that A (v) o m,(u) =
To—p)4p(tt) 0 Ag(v) for u € U(g) and As(v) - 1, = 14,—p)4p- The following is
Lemma 7.5 of [JW].

Theorem 2.4.2. Let A € (V)™ v e V..

A()A®v) =Xo PY(v) P (s(v — p) +p) @v

if det P(v) # 0 and det P(s(v — p)+ p) # 0 for all v € K that occurs in

Let A(v) = Ag(v) with s the longest element of the Weyl group. Then, for

a minimal parabolic subgroup P of GG, we have

Top()f = (cW)Aw + p)f) o k'

where ¢(v) is Harish-Chandra c-function on the trivial K-type and k* is a repre-
sentative of s € W(A) = Ng(A)/Zk(A). Therefore, determinant of P7(v) gives
the shift factors in the classical gamma functions in Theorem 2.2.2 modulo those

from Harish-Chandra c-function on the trivial K-type.

2.5 Product Formula of p,

Let G be a connected semisimple Lie group with Lie algebra g,. Denote
by ®f the set of reduced restricted roots of g,. If a € ®f, denote by g,, =
ao ®m, + 2?:72 g’ and denote by G, the analytic subgroup of G with Lie algebra
0o, Let K, °M, play the roles of K, °M for the case g,, = €., ® Pa., and denote
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by H, the space of harmonics on p,. Let V, be a K-type that occurs in the space
of harmonics H of G. For a € ®] of g,, let Span K, - VWOM = @z(li‘/ﬁx be a
decomposition into irreducible K, modules. For f € a*, let Ty : U(a) — U(a) be
defined by (Ttp)(g9) = p(g — f). Let p = %Ed)eq)Jrgb and let p, play the role of p for
gao'

Definition 2.5.1. Let a € 7.
® Do — p,yim...p%ob).
® D) = Too—pPa-
The following is Theorem 2.4.6 of [Kos].

Theorem 2.5.2. There exists a nonzero scalar ¢ such that

Py = ¢ yeat Pla)



Chapter 3

Small K-types

3.1 Small K-types and Principal Series Admit-
ting Small K-types

Let G be a real reductive Lie group with maximal compact subgroup K =
{g € G|©(g) = g}, the subgroup of fixed elements of a Cartan involution . Let
(P, A) be a minimal p-pair such that P = M AN with °M the centralizer of A in
K and unipotent radical N.

Definition 3.1.1. An irreducible representation (7,V;) of K is a small K-type if

irreducibility is preserved under restriction of K to °M.

Let 0 = Tloy. If Ip,, is the underlying (g, K') module of a principal series
that admits a small K-type (7, V;), one can describe the set of K-types that occur

in Ip,, and their multiplicities using Frobenius Reciprocity.

Lemma 3.1.2. Let Vg be an irreducible representation of K. Vg occurs in Ip,, if
and only if Velos contains a copy of Vi|onr, with multiplicity dim Homoy (Ve, V;),

the number of copies of Vi |ops within Ve|oys.

Proof. We have Hom (Ve, Ip,.,) = Homoy (Ve, V;) by Frobenius Reciprocity. Since
V; is a small K-type, V;|oy is irreducible. Thus by Schur’s Lemma, V¢ will occur in

Ip g, if Veloys contains a copy of V; |y, with multiplicity of dim Homoy (Ve, Vy). O

14



15

Consider the decomposition U(g) = U(a)U(¢) & nU(g). Let @ be the
projection onto the first summand. If n is an automorphism of U(a) given by
n(H) =H+pH) for Heca let n@7:U(a) @U(E) — U(a) ® End(V;) be
defined by n ® 7(a ® k) = n(a) @ 7(k). By Lemma 11.3.2 of [RRG II], there is a
homomorphism 7, : U(g)X — U(a) such that (n ® 7)(Q(9)) = 7-(g9) ® I, which

)& on V, considered as a

will give a natural action on V,, i.e. the action of U(g
subspace of Ip,,.
The following is a theorem in 11.3.6 of [RRG 1I] that gives another realiza-

tion of Ip,, as a K-module.

Theorem 3.1.3. U(g) @uwu(g Vo = Ipoy as K-modules and the two modules

have equivalent semi-simplifications.

3.2 Small K-types for connected, simply connected

split real form of simple Lie types

Let gr be a semisimple Lie algebra over R, and let g be its complexification.
Denote by G¢ the connected, simply connected Lie group with Lie algebra g and
by Ggr the connected subgroup of G¢ with Lie algebra gr. Let G be a covering
group of Gg with covering homomorphism p where we denote the kernel by Z. Fix
a maximal compact subgroup K of G and let U be a compact real form of G¢ such
that Gk NU = Kg = p(K). Let (P, A) be a minimal p-pair and P = M AN be

the Langlands decomposition as before.

The following theorem is from 11.A.2.1 of [RRG II] whose proof is a case
by case argument that gives examples of small K-types for all real forms over R

of all simple Lie types.

Theorem 3.2.1. Let x € Z. There ezists an irreducible representation (1,V) of

K such that 7|z = xI and T|oy is irreducible.
We also have the following theorem from 11.A.2.11 of [RRG IIJ.

Theorem 3.2.2. If gr is split over R, then Gr always has a two-fold covering
group.
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We consider the case ggr split over R. If GG is simple and not of type C I,
it is also simply connected. Second, the rank one subgroups of G corresponding
to the reduced restricted roots have their semisimple part as the group generated
by the metaplectic group Mpo(R) and °M, which simplify the product formula of
pe and the computation. Hence, we assume from now on G is a two-fold covering
group of a split real simple Lie group Gr. Let 1 be the nontrivial element of
Z = ps. If x(n) = Id, there is no difference between the representations of G and
Gr. Therefore, we assume x(n) = —Id.

The following are split real simple Lie groups and their examples of small
K-types from chapter 11 of [RRG IIJ.

e Type AL Gg = SL(n,R), n >3

The universal covering group SL(n,R) of SL(n,R) (n > 3) is a central
po-extension with maximal compact subgroup K = Spin(n). OMSL(,LR) is

isomorphic to (Z/2Z)"!, and °M Sm)is a nonabelian group of order 2.

3 ! !

2 H2 M2

3 ! \
OMSM) — Spin(n) <= SL(n,R)

3 ! !
OMSL(n,]R) — SO(n) — SL(n, R)

3 ! !

1 1 1

Let n be the nontrivial element in ps. As discussed above, we assume 7
action of —1. C[°M SL/(;/R)] / < m+ 1 > is isomorphic to the subalgebra of
Clif f,, spanned by the even number of products of the generators, thus

0
ClM gy

sum of two simple matrix algebras for n even. If we choose for 7 the Spin

/ < n+1>is a simple matrix algebra for n odd and a direct

representation of Spin(n) for n-odd and either of the half-Spin representa-
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. . . . . 0 o
tions of Spin(n) for n-even, 7 is a small K-type as restriction to "M SIOnR)

preserves irreducibility.

Type BD 1. Gg = Spin(p,q) withp=qorp=q+1,¢>3

Kr = (Spin(p)xSpin(q))/{1, (=1, 1)} and K = Spin(p)x Spin(q). "My —-

Spin(p.q)
is isomorphic to °M sTim) X M2 where °M _—— sits inside K diagonally, and

o can be either of (+1,1) or (1, £1) Whefé (Z;H’:T)tler is a subgroup in the center
of K. In the case p = q+1, OMSp%q) = {(&diag(g,1),9) | g € OMSm), le
Spin(p—q) = Spin(1)}. Z ={1,(—1,-1)} < K = Spin(p) x Spin(q). If x is
nontrivial, choose o to be the Spin representation and either of the two half-
Spin representations of Spin(q) for ¢ odd and even respectively. Also denote
by o either of the two half-Spin representations of Spin(p) = Spin(q + 1)
for g odd. Let p; denote the projection of K onto Spin(p), and let py denote
the projection of K onto Spin(q). If gisodd and T =cop,or T =0o0py, T
is a small K-type as in the example of type A L. If ¢ is even and 7 = o o py,

7 is a small K-type as in the example of type A L.

Type C 1. Gg = Sp(n,R)

Kgr = U(n). The universal covering group of Gg = Sp(n,R) is a central

extension and we have

1—Z — Sp(n,R) — Sp(n,R) — 1

The two fold cover of Gg = Sp(n, R) is a central py extension. A character of
U(n) extends to a character of the two-fold covering group of U(n) that gives
us half-integrals. For 7 we may choose extension of characters of U(n) to its

two-fold cover. 7 is a small K-type as the representation is 1 dimensional.

Type E V.

Kr = SU(8)/£1 and K = SU(8). From the extended dynkin diagram in
chapter 6 of [Bou], there is a nontrivial homomorphism ¢ from SL(8,R) to
GRr. ¢ is easily seen to be injective by going to the complexification. Hence we

may assume °Mp is contained in the image of § and §(SO(8)) C Kg. Let 4 be



18

the lift of § to a homomorphism of Spin(8) into SU(8). The corresponding
representation of Spin(8) cannot factor through SO(8), hence it must be one
of the two half-spin representations. Because 5 is a homomorphism of the
simply connected covering group of SL(8,R) into G, 4 is injective on °M for

SL(8,R). If we choose 7 the standard 8-dimensional representation of SU(8)

or its dual representation, 7 is a small K-type as in the example for A I.

Type F L.

K = Sp(4). We embed Gy into that of the case of E V as the identity
component of °My where @ is a parabolic subgroup of Gy of case £ V. This
homomorphism 0 maps Kg into SU(8)/{£1}. The lift to K must be the
standard eight dimensional representation. Therefore, Z = {£+1}. Let n be
the nontrivial element of Z. C[°Mg]/ < n+1 >= Clif fq using the case of ¥
V. Therefore, if we choose 7 to be the standard 8-dimensional representation
of Sp(4), irreducibility is preserved under restriction of K = Sp(4) to "M

as in the example for A 1.

E VIIL

Kr = SO(16) and K = Spin(16). The highest weight of K action on p is
—ay. Therefore this action is one of the two half-spin representations, say
st, and Z = kers;. There is a nontrivial homomorphism ¢ from SL(9,R) to
Gr from the extended dynkin diagram in chapter 6 of [Bou|. ¢ is injective as
SL(9,R) has trivial center. We may assume again Mg is contained in the
image of § and 6(SO(9)) C Kg. Let & be the lift of § to a homomorphism of
Spin(9) into Spin(16). Let 7 be a 16 dimensional representation of Spin(16)
by using the covering homomorphism p : Spin(16) — SO(16) where the
ker(p) is the diagonal s in s X jip the center of Spin(16). u=mod is a 16
dimensional representation of Spin(9). Weyl dimension formula suggests that
there are exactly three irreducible representations of Spin(9) with dimension
at most 16. They are the trivial representation, o the 9-dimensional rep-
resentation corresponding to the covering of SO(9), and the 16-dimensional

spin representation. Since y is nontrivial, either y = 7-1@ ¢ or u = the spin
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representation. In the first case, 9 is the standard embedding of Spin(9) into
Spin(16). But it must push down to SO(9) hence it is not possible. Thus

—~——

must be the spin representation, and °M is isomorphic with that of SL(9,R).

—_—

We choose 7 = p, then the result for SL(9,R) implies 7 is a small K-type.

F 1L

K = Sp(3) x SU(2), and the highest weight of K action on p is —ay. (1,—1)
and (—1,1) both act on p by —I, and hence Z = {Id,(—1,—1)}. "My =
(Z/2Z)*. There is a nontrivial homomorphism § from Spin(5,4) into Gg.
The adjoint representation of g restricted to Spin(5,4) splits into the adjoint
representation of Spin(5,4) and the spin representation, hence ¢ is injective.
We can choose 0 so that 6 maps (Spin(5) x Spin(4))/{Id,(—1,—1)} into
(Sp(3) x SU(2))/{1d,(—1,—1)}. Spin(5) = Sp(2) and Spin(4) = SU(2) x
SU(2). The lift § of § to (Spin(5) x Spin(4)) must be given by the obvious
map of Sp(2) x Sp(1) into Sp(3). The image of Spin(5,4) contains the split

Cartan subgroup of Gg. Therefore "M is isomorphic to that of Spin(5,4),
hence °M = M SIiR) < M2 from the case of BD 1. Let py be the projection
of Sp(3) x SU(2) onto the second factor, and o the standard 2-dimensional

representation of SU(2). If T = opy, it is a small K-type as it is for Spin(5,4).

G 1L

K = SU(2) x SU(2) with Gg the split adjoint group of Gy. The action of
K is the tensor proudct of 2-dimensional representation with 4-dimensional
representation. Kg = (SU(2) x SU(2))/{Id,(—1,—1)}, and My = (Z/2Z)>.
From the extended dynkin diagram in chapter 6 of [Bou], there is a nontrivial
homomorphism § of SL(3,R) to Gg. ¢ is injective as SL(3,R) has trivial
center. Hence we may assume "My is contained in the image of §. 6(SO(3))
is the diagonal SO(3) in Kg as it is the only possibility. Hence the image of
the lift of d to Sm) contains M. Let o be the standard 2-dimensional
representation of SU(2). Let p; be the projection of K = SU(2) x SU(2)
onto the first factor and py be the projection of K = SU(2) x SU(2) onto

the second factor. Let 7 = op; or 7 = ogps. Then, as in type A 1., 7 is a
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small K-type.

—

3.3 Embedding of Metalinear group GL(n,R) or

———

SL(n,R) into G

For purposes of product formula of p, we introduce certain embedded sub-
group Gy of G where G is any of the connected, simply connected split real form of
simple Lie type other than type C),, and G is isomorphic to either the metalinear
group GL/(;,/R) or S[f(;,/R) for appropriate n.

We first introduce an embbeded subgroup of Gg isomorphic to G/ s using
dynkin diagram or extended dynkin diagram from chapter 6 of [Bou| where ps is

the kernel of both of the covering homomorphisms G — Gg and Gy — Go/ io.

o Al

GO/ILLQ = GL(n, R)
Let P be the parabolic subgroup with Levi factor L where the simple roots of
Lie(L) are ay, ..., a,—1. L is isomorphic with GL(n,R). Note the py < °Mg,

from the node «,, is contained in L.

e BD I
O—O0— -+ — O = O
651 (%) Op—1 Oy
@)
an
O—O0— -+ —O0—0
o Q9 Qp—9 Op_1

Go//ﬁz = SL(TL, R)
Let P be the parabolic subgroup with Levi factor L where the simple roots

of Lie(L) are ay,...,a,_1. The identity component of L is isomorphic with

SL(n,R).
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o /1.

O

|

O

|
O—O0— 0 —0—0

(651 as Oy (67 Qg

Go/,uz = GL(6, R)

Let P be the parabolic subgroup with Levi factor L where the simple roots
of Lie(L) are oy, as, ay, as, . The identity component of L is isomorphic
with SL(6,R). The embedded subgroup isomorphic to GL(6,R) is generated
by the SL(6,R), o from the node ay, and Ry from the node «y.

EV.

¢)
%)

O—O0—0—0—0—0—0
(&%) aq (0%} Qg Qs Qg (0%4

Go/ug = GL(?, R)

Let P be the parabolic subgroup with Levi factor L where the simple roots
of Lie(L) are ap, aq, as, g, as, ag, a7. The identity component of L is iso-
morphic with SL(8,R), and GL(7,R) — SL(8,R) — G is obtained as in
the case of A L.

E VIIL

O
Q9

O—O0—0—0—0—0—0—0
a as Oy (€7 Qg (0%4 Qg &%)

Go/lug = GL(S, R)

Let P be the parabolic subgroup with Levi factor L where the simple roots
of Lie(L) are ay,as, ay, as, ag, a7, g, ap. The identity component of L is
isomorphic with SL(9,R), and GL(8, R) — SL(9,R) — Gp is obtained as
in the case of A I.
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o [

O—O0O—0 = 0—0O0
(&%) 631 (&%) a3 Oy

Go//ﬁz = Spm(5, 4)

Let P be the parabolic subgroup with Levi factor L where the simple roots
of Lie(L) are ag, ay, ag, ag. The identity component of L is isomorphic with
Spin(5,4).

o G L

O&E 0—0
o751 (%) Qp

Go/ug = SL(3, R)

Let P be the parabolic subgroup with Levi factor L where the simple roots of
Lie(L) are as, . The identity component of L is isomorphic with SL(3,R).
From the discussion of small K = SU(2) x SU(2)-type in 11.A.2.8 of [RRG

P

I1], the embedding lifts to an embedding of SL(3,R) into G such that the

—_——

maximal compact subgroup SU(2) of SL(3,R) embeds into the maximal
compact subgroup SU(2) x SU(2) of G diagonally.

Denote by p : G — G the covering homomorphism and let i : Go/uy — Gg
be the embedding described above. Denote by Gy the embedded subgroup of G
given by p~'(i(Go/p2)) and denote by Kj the maximal compact subgroup of Gj.

P e T s

Gy is isomorphic to GL(n,R), SL(n,R), GL(6,R), GL(7,R), GL(8,R), Spin(5,4),

—~——

SL(3,R) for G of type A,,BD I, Egs, E7, Es, Fy, and G, respectively.

Lemma 3.3.1. Let H be the space of harmonics onp of G, V; a small K-type, Ve a
K -type that occurs in H® V,. The restriction of K to K, preserve °Mg-invariants
of H and the decomposition Ve|oyr,. Moreover, Mg is isomorphic to OMGZ—(\n/R) or
0

Msm) X o for appropriate n.

Proof. For G of type BD 1., °Mg = °Mg, X us as discussed in the example of
small K-types for G. The ps can either be (£1,1) or (1,£1) < K = Spin(p) x
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Spin(q). Any choice of ps acts trivially on H as both are central in K. We can
also make a choice of uy that will act trivially on V, as the small K-type is the
Spin representation or either of the two half Spin representations after projection
onto the first or the second factor of K. Thus we have the statement of the lemma
for G of type BD 1.
Now consider G of type A,,, Es, E7, Eg, Fy, and Gy. As °Mg, is generated by
pos from each node of the dynkin diagram, we may assume that i(°Me, /,.,) = "M,
Let p : G — GR be the covering homomorphism. We have °M¢, = p~ (i1(°Mc, /)
and °Mg = p~'(°Mg, ), hence “Mg = °Mg, and we have the statement of the lemma
for G of type A, Fg, E7, Eg, Fy, and G,.
[

Theorem 3.3.2. Let G be any of the connected, simply connected R-split Lie
group of simple Lie type other than type C, with mazimal compact subgroup K.
The above examples of small K-types exhaust the list of all small K-types.

Proof. By Lemma 3.3.1, °M, is isomorphic to °M ciom OF M STonR) < H2 for ap-

propriate n. Suppose ‘Mg = OMGE(Z,/R)' If n = 2k + 1, a small K-type must
have dimension 2%. If n = 2k, a small K-type must have dimension 2*. Suppose
Me = Msm) X pg. If n =2k + 1, a small K-type must have dimension 2%. If
n = 2k, a small K-type must have dimension 2¢~!.

For type A,_1, a small K = Spin(n)-type must have dimension 2% if n =
2k + 1 and 2! if n = 2k. Weyl dimension formula implies that a small K-
type must be the Spin representation for n odd and either of the two half-Spin
representation for n even.

For type B, K = Spin(n+ 1) x Spin(n) and an irreducible representation
of K is an outer tensor product of irreducible representations of Spin(n + 1) and
Spin(n). A small K = Spin(n + 1) x Spin(n)-type must have dimension 2% if
n = 2k + 1 and 21 if n = 2k. Weyl dimension formula implies the following. If
n is odd, a small K-type must be either the Spin representation after projection
onto Spin(n) or either of the two half Spin representations after projection onto

Spin(n + 1). If n is even, a small K-type must be either of the two half Spin

representations after projection onto Spin(n).
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For type D,,, K = Spin(n)x Spin(n) and an irreducible representation of K
is an outer tensor product of irreducible representations of each of the two Spin(n)s.
A small K = Spin(n) x Spin(n)-type must have dimension 2* if n = 2k + 1 and
2F=1if n = 2k. Weyl dimension formula implies that for n odd, a small K-type
must be the Spin representation after projection onto either of the two Spin(n)s
and for n even, a small K-type must be either of the two half-Spin representations
after projection onto either of the two Spin(n)s.

For type Eg, a small K = Sp(4)-type must have dimension 8. By Weyl
dimension formula, the standard 8 dimensional representation of K is the only
irreducible representation of K of dimension 8.

For type E;, a small K = SU(8)-type must have dimension 8. By Weyl
dimension formula, the standard 8 dimensional representation of K and its dual
representation are the only irreducible representations of K of dimension 8.

For type FEg, a small K = Spin(16)-type must have dimension 16. By
Weyl dimension formula, the standard 16 dimensional representation of K after
projection onto SO(16) is the only irreducible representation of K of dimension
16.

For type Fjy, a small K = Sp(3) x SU(2)-type must have dimension 2. An
irreducible representation of K is an outer tensor product of irreducible representa-
tions of Sp(3) and SU(2). By Weyl dimension formula, the standard 6 dimensional
representation of Sp(3) is the smallest-dimensional nontrivial irreducible represen-
tation of Sp(3). Therefore, the 2 dimensional representation after projection onto
SU(2) is the only choice.

For type Go, a small K = SU(2) x SU(2)-type must have dimension 2. An
irreducible representation of K is an outer tensor product of irreducible represen-
tations of each of the two copies of SU(2). Therefore, a small K-type must be
the 2 dimensional representation after projection onto either of the two copies of
SU(2).

O



Chapter 4

The P¢ matrix

4.1 Definition

Let G be any of the connected, simply connected split real form of simple
Lie type, and denote by K a maximal compact subgroup. Let V¢ be a K-type that
occurs in symm(H) ® V, with a small K-type V; and let 0 = V,|oy;. Recall n(§) is
the number of copies of V; in V restricted to M. By Frobenius reciprocity, V¢ has
multiplicity n(€) in symm(H) @ V,. Let T¢, "'>T§(5) be a basis of Homopy (V;, Ve)
and €, ...,ei(s) be a basis of Homg(Ve, symm(H) @ V). Let Q, : symm(H) ®
V; — Ip,, be the corresponding isomorphism as K-modules, and define R, :
symm(H)®V, — V. by R,(Z) := Q,(Z)(e). Every map defined in this paragraph

intertwines “M action, hence R, o ¢; o T} also for all 7 and j.
Definition 4.1.1.

e Define by P*(v) the n(£) by n(§) matrix where (P*(v));; is the polynomial
in v in which R, o ef o Tf acts on V,, without p-shift.

e Define by P¢ the n(€) by n(£) matrix obtained from P(v) by replacing

entries with the corresponding elements in U(a).

e Denote by p¢ and pe(v) the determinants of P* and P*(v) respectively.

25
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4.2 Relationship between P° matrix and Inter-
twining Operators of Principal Series Rep-

resentations

P¢(v) as a map of @;fl) Tf(VT) — @751) Tf(VT) by setting PE(v)T¢(v) =
E;lfl)Tf(]Dﬁ(V)U) forve V.. If Ve = @?Sl) Tjg(VT) @ W is a decomposition of V¢
as a °M-module, we look at P%(v) as a map on V; where P*(v) acts as above on
@7;51) Tf(VT) and acts trivially on . Thus, we may consider P*(v) as an operator
on Homoy (Ve, V) where PS(v). A = X o P5(v).

Definition 4.2.1.
o If X\ € Homop (Ve,V;) and v € Vg, define (A ® v)(k) = A(pe(k)v).

e Define for a € Homy (Ve, symm(H)®V,) and v € V¢, BS(a)(v) = 7, (a(v))(e)
where 7, (a(v)) denotes the first factor action on the second factor with 7.,
action by an abuse of notation. Then BS : Homy(Ve, symm(H) @ V) —
Homop (Ve, V7).

o Let T, : symm(H)®V; — Ip,, be defined by T,,(X(u;®v;)) = (7, (u;)v;).

We have a K-module isomorphism Ip,,(§) = Homoy (Ve, V;) ® Ve using
above.

There exists vy € a* such that T,, is a bijection from 11.3.6 of [RRG II.
Lemma 4.2.2. T,0T, '(A®v) = Ao P*(v)®u for A € Homoy (Ve,V;) and v € V.

Proof. This proof is almost word for word as the proof of Lemma 7.3 of [JW].
Let d¢ : Homg (Ve, symm(H) ® V) — Homoy (Ve, V) be defined so that
Ty (a(v)) = d¢(a) @v for a € Homy (V, symm(H) @ V,) and v € Ve. By the above
B, (a(v)) = d¢(a). Now T, o T, (B, (a) @ v) = BS(a) @ v. But Bﬁ(ai)(Tf(VT)) =
Pfj(y) where {a;} is a basis of Homoy (Ve, V;) and Tf(VT) is say for block diagonal
PS¢, or even an identity for P¢(vy) because P*(vp) is invertible. Thus BS(a) =
B (a) o P*(v). Hence if BS (a) = A, then T, o T, '(A®v) = Ao P¢(v) @ v. O
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Theorem 4.2.3. Given s € W(A) the Weyl group of a, let A,(v) : Ip,, —
Ipsos(v—p)4p e such that As(V)T, = To—py+p and Ag(v) o mrp(U) = Trs—p)1p(u) ©

A(v) for allu e U(g). Then
As)(A@v) = Ao PEW) ' P(s(v — p) +p) @ v

for X € Homop (Ve, V) and v € Ve, if det P*(v) # 0 and det P*(s(v —p) +p) # 0
for all € € K that occurs in Ips,.

Proof. This proof is almost word for word as the proof of Lemma 7.5 of [JW]. If
u®w € B(H)® V, is a simple tensor, then

A ()T, (u®@ w) = As(v)m,, (w)w, (4.2.1)
= Tr s(w—p)+p(W) As(V)w,, (4.2.2)
= Trs(w—p)+p(W)Ws(—p) 4o (4.2.3)
= Tsw—p)+p(u @) (4.2.4)
Hence A;(v)T, o T, ' (A ®v) = Tyy—p)p 0 T,; (A @ v). Thus,
Aw)A®v) = (Top-pypo T, o (T, 0 T, 1) (A @ 0) (4.2.5)
= Ao P (1) 'PS(s(v — p) +p) @ (4.2.6)
by Lemma 4.2.2. O

Let A(v) = Ag(v) with s the longest element of the Weyl group. Then, for

a minimal parabolic subgroup P of GG, we have

JppW)f = (c:(V)A(v +p)f) o K
where ¢;(v) is Harish-Chandra c-function on the small K-type V. and k* is a
representative of s € W(A) = Ng(A)/Zk(A). Therefore, determinant of P%(v)
gives the shift factors in the classical gamma functions in Theorem 2.2.2 modulo

those from Harish-Chandra c-function on the small K-type V.



Chapter 5

SL(n,R) and Metalinear Group
GL(n,R)

5.1 The Group SL(n,R)and the Metalinear Group
GL(n,R)

—_——

Let SL(n,R) be the connected, simply connected covering group of SL(n, R)
for n > 3. If 6 is the Cartan involution of SL(n,R) defined by 6(g) = (¢1)?, the set
of fixed points of € is the maximal compact subgroup SO(n) of SL(n,R), and the
set of fixed points of the lift of # is the maximal compact subgroup K = Spin(n)
of SL(n, R).

Let go = Lie(SL(n,R)) = Lie(SL(n,R)) = sl(n,R), a, C g, be the subal-

gebra of diagonal matrices and n, C g, the subalgebra of strictly upper triangular

matrices. Let P = M AN be a minimal parabolic subgroup of SL(n,R) with
M = Zy(A), A= exp(a,), and N = exp(n,).
For n > 3, SL(n,R) is a two-fold covering group of SL(n,R), and the

group SL(n,R) is a central ps-extension of the group SL(n,R). Denote by 7 the
nontrivial element of the group py. Then, n € °M < K as 7 is central and the
center is in K by Theorem 7.2.5 of [HAHS]. Hence, °M is a central ps-extension of
the group °Msy,r) of the diagonal elements of SO(n).

28
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3 3 \J

M2 H2 M2

3 3 \
oM — Spin(n) — S Z(\nﬁR)

\J 1 \J
Msrinry < SO(m) < SL(n,R)

3 3 \J

1 1 1

Similarly for n > 3, consider the Metalinear group GL(n,R), the dou-

ble cover of GL(n,R). In this case, O(n) is the maximal compact subgroup of

GL(n,R), and Pin(n) is the maximal compact subgroup of GL(n,R).

\ \ 4

M2 M2 M2

\ 1 1

W < Pin(n) — GL(n,R)

\ \ 4
Mermry — O(n) < GL(n,R)

b b 4

1 1 1

We now discuss in more detail the embedding described in chapter 3. Con-

sider the standard embedding of i : GL(n — 1,R) < SL(n,R) by

N9 0
i) = 0 det(g)™?

—_——

Let p: SL(n,R) — SL(n,R) be the covering homomorphism. Since
p L (i(GL(n—1,R))) = GL(n — 1,R), there is a natural inclusion i : GL(n — 1, R) <

—_—

SL(n,R). Under this inclusion, Pin(n — 1) < Spin(n).
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Lemma 5.1.1. Let n > 4. Given the embedding i - GL(n/:/l,R) — SIT(KR), we
onf —— \—_orf
have i( M, orin 1R)) = MSL(nR).

Proof. °Mgpmr) = { (g deg )_1> | g € O(n—1) diagonal}, the image of "Mer,(n—1r)
eg\yg

under the inclusion map 7. Hence z'(OMGL(n_LR)):OMSL(n,R). Consider the maxi-

g
0 det(g)™?

of SL(n,R) with Levi factor Mp,, = i(GL(n — 1,R)). P < P4, where P is

the minimal parabolic subgroup of SL(n,R) consisting of upper triangular ma-

mal parabolic subgroup P = {( ) | g € GL(n — 1,R), z € R}

trices. Let p : SL(n,R) — SL(n,R) be the covering homomorphism for n > 4,
and let P = p~'(P). Then, P = OMSm)AN and My— = p~'(Mp,,,) =
p(i(GL(n — 1, R))). Thus My € p~'(i(GL(n — 1,R))) = i(GL(n — 1,R)).

Therefore, Z(OMGL(/\/ )) = OMSm).

]

5.2 Irreducible Representations of Pin(n) and Small
Pin(n) types relative to the Metalinear Group

We recall two theorems that can be found in section 5.5.5 of [GW] that
describe irreducible regular representations of Pin(n). The theorems are stated in
terms of Orthogonal and Special Orthogonal groups in [GW]; however, the same

statements are true for the pair Pin and Spin groups.
Definition 5.2.1.

o Ifn =2k+1isodd, let go = —1 € Ok +1). If n = 2k is even, let
go € O(2k) be the diagonal matrix whose entries are all 1 except for last
Gookor = —1. Let p: Pin(n) — O(n) be the covering homomorphism and let
¢ be any choice of p~*(go).

e Let (my, Vi) be the irreducible representation of Spin(n) with highest weight

A and let (py, V3) be the induced representation [ ndggﬁéck)(w,\)
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Theorem 5.2.2. The irreducible reqular representations of Pin(2k + 1) are of
the form (m$, V), where (m$, VY) restricted to Spin(2k + 1) is the highest weight

representation (mx, Vi), and ¢ acts on Vi by el where e = £.

Theorem 5.2.3. Let k > 2. The irreducible representation (o, W) of Pin(2k) is
one of the following two types.

e Suppose dimW™ =1 and b acts by the weight X\ on W™ . (0, W) 2 (x5, V)
where (5, Vy) restricted to Spin(2k) is the highest weight representation
(mx, VA), and ¢ acts on W™ by el where € = +.

o Suppose dimW™ = 2. Then b has two distinct weights X and ¢ - A on we',
and (o, W) = (px, Vi).

We list the small K = Pin(n)-types for the Metalinear Group GL(n,R) by
Theorem 5.2.2 and 5.2.3.

Definition 5.2.4.
e If n is even, let V1 be the Pin-representation.

e If n is odd, let Vi be either of the two Pin-representations.

5.3 Structure of irreducible K, ,-modules in H,

and H, ® V-

P

Recall that for the group SL(n,R) and the maximal compact subgroup
K = Spin(n) we have as the small K-type (7,V;) the spin representation for n
odd and either of the two half-spin representations for n even. Let o = ¢; — ¢; be

a positive root of Lie(SL(n,R)) and denote by E, an n by n matrix with entry 1

in the position (i,j) and 0 elsewhere.
Definition 5.3.1. t, = i(E, + 0(E,)).

Lemma 5.3.2. Ad(°M)|,, = {£1}.
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Proof. °M = Zy(A), thus °M acts by a character on n, because it is 1-dimensional.
Since the square of any character of °M is equal to 1 by 2.2.2 of [RRG 1], any element
of °M must act on E, by +1. Therefore, °M will act by +1 on E, + 0(E,), hence
on t,. If a is a simple root, exp(wit,) € °M will act by +1 on t, and if 3 is a simple
root connected to « in the dynkin diagram, exp(mitg) € M will act by —1 on t,.
Since all positive roots of Lie(SIM)) are conjugates by elements of the Weyl
group N (A)/Zx(A) and N (A) acts on °M, for any positive root « there is an

element of °M that will act by +1 and an element of °M/ that will act by —1. [
Definition 5.3.3.

o Let °M™ (resp. °M ™) be the set of elements of °M that act on t, by +1
(resp. —1).

e Let VT (resp. V.7) be the subspace of V; consisting of t, weight vectors of

weights +1 (resp. — 3).

For a positive root o = ¢; — ¢; of Lie(SL(n,R)), let X, = E; — Ej;,
Yo, = E, —0(E,), Z, = X, + 1Y, where Ej is a diagonal matrix with entry 1 in
the position (k, k) and 0 elsewhere and F,, is a matrix with entry 1 in the position
(7,7) and 0 elsewhere. Then, E, € n,, 0(E,) € n_, and t, € £ = so(n,C) with
[to, ZL] = 217! and [t,, Z}] = —21Z.

Definition 5.3.4.

e Let go, = a0 ® n,y, ®1,, and G, be the rank one subgroup of SL(n,R)
generated by exp(g,,) and °M. G, is the group generated by Mp(2,R), the
semisimple part of the group generated by exp(ga,), °M, and exp(al) where

ag = ®Be<b+—{a} RXg.

o Let K, be the subgroup of K generated by exp(iRt,) and °M, the maximal

compact subgroup of G,,.

e Let H, be the space of harmonics on p, = a @ CY, for the group G,. H, as
a space is @,5(CZ}, @ (CZ_al).
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o Let goginpr), = RI, ®© go,. Let G « CLOR) be the rank one subgroup of

the metalinear group GL(n,R) generated by exp(gagin,r),) and M GLR)

G, GLinR) is the group generated by SL(2,R), the semisimple part of the

group generated by exp(gagnr),), "M CLR)
@,8@#—{&} RXB

o Let K GLinR) be the subgroup of Pin(n) generated by exp(iRt,) and °M GLnE)

the maximal compact subgroup of G

, and exp(RI, @ al) where ag =

a,GL(nR)’

o Let H, gnr) be the space of harmonics on pq ginr) = CI,, ® a @ CY,, for the

group G Ha gi(n,r) as a space is @,-,(CZ,, @ CZ_QI).

(n R)
By Lemma 5.1.1, °M PR = =~ Opf CLTLR) Therefore, the semisimple parts

of G, and G’ ( g A€ isomorphic and K, = Ka GLITLE)

of Lze(GL(n - 1,R)) C Lie(SIi(;,/]R)). Thus the space of harmonics for G, and

for a a positive root

« CLITLR) is the same with the same K, = Ka,GL(/rT—/l,R)

Lemmas and Theorems are true for both G, and G

action, and the following
a,GL(n—1R)"

Lemma 5.3.5. Let V,, be an irreducible nontrivial K,-module that occurs in H,.

There exist exactly two t,-weights on V., and they are dual representations.

Proof. Start with the t, weight vector of weight 21, Z_é OM is a group of finite
order that centralizes a and M+ act by £1 on t,. Therefore, M+ will fix ZL and
M~ will move Z! to Z.. Hence the weights are 21 and -21. [

Lemma 5.3.6. Let V¢, be an iwrreducible K,-module that occurs in H, @V;. There

exist exactly two to-weights on Ve, and they are dual.

Proof. Let v € V¢, be a t, weight vector of weight c, which is nonzero as it is in
the form of 25 + %, because the only weights of t, acting on V. are j:%. If m € °M,
to.mv = mm Lte.mm tmao = £m.t,.v = £c* m.v. Since °M acts irreducibly

on Vg, the result follows. ]

Theorem 5.3.7. Let V, be an irreducible K,-module that occurs in H,. V., as
a space is the span of {Z_é, ZLY for some . Moreover, °M -invariant elements are
C(ZL + 7).
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Proof. This follows from Lemma 5.3.5. O

Theorem 5.3.8. Let Ve, be an irreducible K,-module that occurs in H, @ V. Vg,
as a space is either (ZL@ V)@ (ZL @ V) or (ZLR V)@ (ZL @ Vi) for some L.

Proof. Consider Z! ® v for some 1 and v € V*. By Lemma 5.3.6, K, module
generated by this element is contained in (Z}, ® V') @ (2! ® V7). Since the
dimensions of the two spaces are equal the inclusion is an equality. We argue

similarly if we start with a vector in V. O

5.4 Frobenius Reciprocity in our Context

—_——

Recall H the space of harmonics on p for the group SL(n,R), H = Ipiy.
and H ® V, = Ip,, as Spin(n)-modules where V; is the Spin representation for

n odd and either of the two half-Spin representations for n even. The space of

harmonics H for the metalinear group GL(n,R) is the same as that of the group

—_——

SL(n,R), and H ® Vp = Ipr, as Pin(n)-modules where V7 is either of the two

Pin representations for n odd and the Pin representation for n even.

Lemma 5.4.1.

o If Ve is an irreducible Spin(n) module that occurs in H ® V.,

Vel = Vi,

SL(n,R) J

0 . _ .
where Vo, =2 V. as MSL( ®) modules for all j.

o [fVz is an irreducible Pin(n) module that occurs in H @ Vr,

Ve | OMGf(TJR) - @ VTj

=1

where Vo, = Vr as M ——

CIOR) -modules for all j.
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—_—

Proof. First consider the statement for the group SL(n,R). C[°M SLf(an)] /< n+1>
is the subalgebra of Clif f, spanned by the even number of elements of the usual
basis elements from 11.A.2.8 of [RRG II]. Hence we have the result if n is odd. If

n is even, V. can be either of the half spin representations restricted to M SIOnR)"

I claim that only VT|oMSZ(VR> is allowed. Let V. and V, be the two half spin
representation of Spin(n) for n even, and let w be a choice of p~'(—Id) where

‘ , . . ong
p : Spin(n) — SO(n). w distinguishes the two representations as M SLTLE)

do not. w acts trivially on H as —Id € "Mgp(,r) and is central in SO(n).

Therefore, (H ® VT)‘OMSZ@’R) =@V, with V., =V, as 'M st modules, and

_ B _ T ong
(H® VT)|OMSLTER) =@V, with V,, =V, as MSL(n’R) modules.

Consider the statement for the metalinear group GL(n,R). By Lemma

P

0 . ~ 0 . ..
5.1.1, °M CLGTiR) M SIOnR)" Therefore, we have the result for n even similarly

as above. If n is odd, we argue similarly as above using ¢ defined in 5.2.1. [
Lemma 5.4.2.

o Let Ve be an irreducible Spin(n) module that occurs in H @ V;, and let
Vi oo, Vo be distinct Spin(n)-types that occur in H, with Ve C V., @V, for

OM .
allj. Ifl(v;) = dimV;,, **9 then dim(Ve) /dim (V) = dim Homgpinm)(Ve, H®

e Let V= be an irreducible Pin(n) module that occurs in H ® Vy, and let
Vi, - Vo be distinet Pin(n)-types that occur in H, with V= C Vr, @ Vg for
allj. If (1) = dimv;j%mk’, then dim(Vz)/dim(Vy) = dim Hompinm)(V=, H®
Vi) =X [(Ty).

Proof. Since V; is multiplicity free, by Corollary 3.4 of [Ku], we know Vg occurs in
V, ® V; exactly once if it does. Now each of V,, occurs in H exactly /(;) many
times by Frobenius Reciprocity, hence the multiplicity of V¢ in H ® V; is exactly
Y, 1(v;) which is dim(Vg)/dim(V;) by Lemma 5.4.1 and Frobenius Reciprocity.

—_——

We argue similarly for the statement of the metalinear group G L(n,R). O
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5.5 t,-weights on certain vectors

Recall the definition of t, from 5.3.1. Let V, be an 1rredu01b1e Spm( )-

P

module that occurs in the harmonics H in p of SL(n,R). Let Span K, V Vst _
@é(;q W, be a decomposition into irreducible K,-modules. Let V- be an irreducible

Pin(n)-module that occurs in the harmonics on p of GL(n,R). Let Span K W GLOR)

0

M~
|7 @l(r) X a decomposition into irreducible K -~ -modules where

—_~— 3 0 o
Ka,GL(mR) is the group generated by the torus and M GLR)

Definition 5.5.1.

e Let 6] ; be the dominant t, weight on W; for j = 1,...,(7) given by Lemma
5.3.9.

e Let 55,]- be the dominant t, weight on X, for j = 1,...,{(I") by the remark in

section 5.3.

Let V¢ be an irreducible Spin(n)-module that occurs in H ® V,. Let
Ve = EBT.L(? V., be a decomposition into irreducible K,-modules where V. = V. as
M ST -modules for all j by Lemma 5.4.1.

Let Vz be an irreducible Pin(n)-module that occurs in H ® Vy. Let Vz =

@7(5) Vr, be a decomposition into irreducible Km GﬁR)—modules where Vp, = Vr
as M _—— -modules for all j by the remark after Lemma 5.4.1.

GL(n,R)

Definition 5.5.2.

o Let 53’]- be the dominant t, weight on V;, for j =1,...,n(§) given by Lemma
5.3.6.

o Let 53]- be the dominant t, weight on Vi, for j = 1,...,n(E) by the remark

in section 5.3.
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5.6 Restriction of Pin(n)-modules to Spin(n) and
t,~-weights

Let V, be an irreducible Spin(n)-module that occurs in the harmonics on p

P

of SL(n,R), and Vi be an irreducible Pin(n)-module that occurs in the harmonics

on p of GL(n,R).

Theorem 5.6.1. Let n=2k, (my,...,my) be the highest weight of V.,, and assume

V., occurs in Vi if we restrict to Spin(n) from Pin(n).

OM o OM .
o Ifmy #0, then dim 'V, **™% = dim Vi "% I(y) = I(T) and &) ; = 6},

for all 7 after reordering.

o [fmy =0, let Vp = VI where € = + is the signatzgj\ze of go on the highest
—_— O .
weight vector given to us by Theorem 5.2.3. Then, V., **™% = VF MeTnm @
ong ong ong
V. Motom = Vi Motom @ Vi Moiem | and hence {515, ..., O i)} B8 @ dis-

a,l
. . oM —— M ——
joint union of that of VF "cLtv® and V.~ oL,

Proof. Since we are working with submodules of the harmonics, n acts trivially,
hence we can ignore the tilde and work with "M, g)-invariants of SO(n)-modules
and °Mg(nr)-invariants of O(n)-modules. Also, remember gy € Mer,(n r).-

Let us assume first my, # 0. Then, go swaps the two SO(2k) highest weight
modules of highest weights (my, ..., my) and (mq, ..., —my). Since go commutes with
Msr1nr), 9o Will give us a bijection of °Mgy,, r)-invariants in the SO(2k) highest

weight representation of highest weight (mq,...,my) with OMSL(n,R)—invariants in

the SO(2k) highest weight representation of highest weight (my, ..., —my). Hence,
opf onf ——
it is now clear that dim V, ™% = dim V, “*"% as ‘M Gl generated by

M ST and ¢, a choice of p~!(go). Since gy leaves invariant 2, the statement of

the t,-weights is now also clear with the help of Lemma 5.3.5.

Let us now assume my = 0, v(my,...,my) the highest weight vector, and
0

SL(n,R)

M
U1, ..., Uy(y) & basis of V, such that gy acts on v; by £1 for all j, which is

possible since g2 = Id and gy commutes with Mgy, z). Denote by v, ...,U;Ew

and vy, ..., Uiy above basis thought of being in Vj and V" respectively. Now the
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only difference between V¥ and V= is the action of go. If we denote by e the

action of gy on vy, ... Uz( X I claim that gg will act by —e on vy, ..., Uiy Indeed,
v; = X;.v(my,...,my) where X; € U(n). Since gy acts by different signatures on
v(my, ...,my) for V7 and V7, the statement is now clear. H

Theorem 5.6.2. Let n=2k+1 and assume V., occurs in Vr if we restrict to Spin(n)
from Pin(n). Then, go = —Id will act trivially, and there is no difference between

V., and Vr.

Proof. We have —Id € Z(Pin(n)) and —Id € Mgy, r), hence in order for Vr to
be in the harmonics, it must act trivially. Now we have the result by Theorem
5.2.2. m

Let Vz be an irreducible Pin(n)-module whose restriction to Spin(n) con-
tains a copy of V; where Ve C H® V;. Let Ve = @751) V.. be a decomposition into
irreducible K,-modules. Recall the definition of ¢ from 5.2.1.

Theorem 5.6.3. If n=2k, then Vz|oy g @”SI)(VT]. ® ¢.Vy,) and if n=2k+1,

then V.|0M _ @n(g V... In either case, 65 = 0 ; for all j after reordering.

R)
Proof. Since 0.M TR
along with the help of theorems 5.2.2 and 5.2.3. ]

is generated by °M SR and (, the statement is clear now



Chapter 6

— N—

Product Formula of p; for SL(n,R)

6.1 Comparison of t,-weights

Consider for the group SL(n,R) the small K = Spin(n)-type V, the spin
representation for n odd and either of the half spin representations for n even.
Let V¢ be an irreducible Spin(n)-module that occurs in H @ V; and V,,, ...,V
be distinct K = Spin(n)-types that occur in H such that V; C V,, ® V; for all j.
Let « be a positive root of sl(n,R), {5371, o 5§7n(€)} be the set of t, weights on V

defined in 5.5.2, and let {041, ..., 50172521[(%)} be the ones from V,,, ...,V defined
in 5.5.1 where n(§) = dim Homg(Ve, H® V;) and I(7;) = dim V;JM

Theorem 6.1.1. n(¢) = X, 1(v;) and we can reorder the set {531, 08 )} 50
that 0o ; = 5§7j + % for all j.

We first state and prove a lemma for the theorem.

Lemma 6.1.2. Assume the statement of t,-weights in Theorem 6.1.1 for the mod-
ules of the group Spin(n). Then the statement of t,-weights in Theorem 6.1.1 for

the modules of the group Pin(n) is also true.

Proof. Assume first n is odd. The space of Harmonics on p are the same for both
SL(n,R) and GL(n,R), and the small Pin(n)-type Vr is the small Spin(n)-type
V. if we restrict from Pin(n) to Spin(n). By Theorem 5.6.2, the restriction of

39
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Pin(n) to Spin(n) will not change the assumptions of the modules in Theorem
6.1.1.

Given an irreducible Pin(n)-module that occurs in the Harmonics, the set
of t, weights of interest do not change restricted to Spin(n) by Theorem 5.6.2.
Given an irreducible Pin(n)-module that occurs in H ® Vi, the set of t, weights
of interest do not change restricted to Spin(n) by Theorem 5.6.3. Therefore, once
we restrict Pin(n) to Spin(n), the comparison of t,-weights for the group Pin(n)
is that of t,-weights for the group Spin(n).

Assume now n is even. The space of Harmonics on p are the same for both

P

SL(n,R) and GL(n,R), and the small Pin(n)-type Vr is a direct sum of the two

half-spin representations V, and V; if we restrict from Pin(n) to Spin(n). Let
Vi, o, Vi, be distinet Pin(n) types that occur in H such that V= C Vr, @ Vp. Let
us restrict Vp, to Spin(n). By Theorem 5.2.3, if dim Vﬁ‘j =2, Vp, is a direct sum
of two irreducible Spin(n) modules with last entries of the highest weights nonzero
and negatives of each other, and if dim Vﬁ‘f = 1, Vr, is irreducible as a Spin(n)
module. For each j, let V., be the choice of the irreducible Spin(n)-module that
occurs in Vp, |spin) with last entry of the highest weight nonnegative, and reorder
so that V,,,...,V,, are distinct Spin(n) modules. N < M as there may be j such
that V. occurs twice with different g signature on Vﬁ/‘f. Let V¢ be the choice of the
irreducible Spin(n)-module that occurs in Vz|gpin(n) with last entry of the highest
weight positive. Without loss of generality, assume Ve C H® V.. V,,,...,V,, are
distinct Spin(n) modules that occur in H such that Ve C V, ® V. Therefore, we
can assume the statement of the t, weights on these Spin(n) modules. But by
Theorem 5.6.1 and Theorem 5.6.3, comparison of t, weights for the modules of the
group Pin(n) is that of Ve, V,,, ..., V,, of Spin(n). Therefore, we have the result
for n even.

]

Proof. (Theorem 6.1.1)
n(&) = X, 1(v;) by Lemma 5.4.2.

—_~—

The Weyl group W (A) of SL(n,R) is the symmetric group on n elements
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—_— —_—

that permute the roots of Lie(SL(n,R)), hence the positive roots of Lie(SL(n,R))
are permuted by elements of W (A). Since SL(n,R) is split, the Weyl group W (A)

—~——

is isomorphic to Ng(A)/Zk(A). Therefore, all positive roots of Lie(SL(n,R)) are

conjugate to each other by elements of K = Spin(n), hence t,s also. Thus the set
of t,-weights of interest is independent of the choice of a.

Let n=3. Denote by A the highest weight of V;. Let A = £ with p odd. If
p = 1, there exists only one V, C H with Ve C V, ® V. the trivial representation,
and the claim is true. If p = 3, there exists only one V, C H with Ve C V, ® V; the
representation with highest weight 2. In this case, the weights are % and % for Ve
and 0 and 2 for V., hence the claim is also true. Suppose p > 3. Then, there exist

exactly two such representations, call them V. —and V, = with highest weights p—l

. The weights of interest on V; are 2,3, . Now, the weights of interest

p+1
and 2= 55 L5
on V. L

S, and Vo are 0,2,4,. 71 and 2,4, . ,pT respectively if 5= is even, and

ffil

2,4, ... —3 and 0,2, .. p“ respectively i is even.

The set of the welghts of interest on V; are % p=2 In the first

1 1 5

3 5 1
21203 3 0 g
case where 221 is even, consider (3 —3), (3+13),(5-3), (3+3

5
» 2
2 2 2 %‘i') (p%Q %)7(5_%)7

which is 0, 2, 2,4,4, ..., T> 7%1. This is exactly the union of the weights on V,

and V., . In the second case where 2L s even, consider (3 — 1), (3 +1),(2 —
DG+, (52 -1, (2+12), which is 0,2,2,4,4, ..., 252, 222 XL This is again

exactly the union of the weights on V. ~and V. Therefore the statement of the

theorem is true for the case n=3.

We now proceed by induction. Assume the statement of the theorem for
S[T(;,/R), and hence for GL(n,R) by Lemma 6.1.2. We prove the statement of
the theorem for SL(n + 1,R). Consider the embedding GL(n,R) < SL(n + 1,R)
with °M the same by Lemma 5.1.1.

We can restate the condition Ve C ij ® V. with V%, C Ve ®V} where VI is

the contragradient representation. Note the statement of the theorem is true with

the restated condition for GL(n,R) by the induction hypothesis.
Let V,,,...,V,, be distinct irreducible Spin(n + 1)-modules that occur in
H such that V,, €V, ® V*, and let @j\;l Span Pz’n(n).ijM = P, Wi, where each

W, is an irreducible Pin(n)-module. As the nontrivial element n € Z = puy < °M
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acts by —1, Velpinm) = @j Ve, where each of V¢, occurs in H ® V; by Lemma
5.4.1, with H that of GL(n,R). We have P, Wy, C P, Vs, ® V" where each of

W, occurs in H of GL(n,R) as i(OMGL(/;/l R)) = OMSL/(;/R) by Lemma 5.1.1 where

i:GL(n —1,R) < SL(n,R) is the inclusion map.
Since the statement of the theorem is true for GL(n,R) with the restated

condition and as the set of t, weights of interest are the same after branching down

—_

to Pin(n) as i : GL(n — 1,R) < SL(n,R) by Lemma 5.1.1, we have the statement

of the theorem for all positive roots « of Lie(GL/(;L,/]R)) C Lie(SL(;;—/l, R)) once
we realize that n(£) = XIL,1(v;). Note Vi, ® V;* decomposes into distinct Pin(n)-
modules by Corollary 3.4 of [Ku| as V* is multiplicity free. Therefore, if W), = W,
with k # [, then W} and W cannot be contained in a single Ve, ® V*, important

—_——

as the statement of the theorem for GL(n,R) also assumes distinct Vrs. As the

set of t,-weights of interest is independent of the choice of v of Lie(SL(n + 1,R)),

we have the statement of the theorem. O

6.2 Divisibility

6.2.1 Definition of the P¢ matrix revisited

Let go = Lie(SL(n,R)) = Lie(SL(n,R)) = sl(n,R) and recall the defi-
nitions of g,€, and p from Chapter 2. H is the space of harmonics on p, J the
subspace of K invariants in S(p), U(g) the universal enveloping algebra of g. Let

symm : S(g) — U(g) be the symmetrization map.

The following is Lemma 1.4.2 of [Kos].

Lemma 6.2.2. U(g) = symm(H)symm(J) @ U(g)t

The following is a Theorem from 11.3.6 of [RRG II].

Theorem 6.2.3. U(g) Queyu(g Ve = Ipr, as K-modules.

symm(S(p)) = symm(H)symm(J) from Lemma 6.2.2. Thus, symm(H) ®
V. = Ip;, as K-modules from Theorem 6.2.3. Let V¢ be a K-type that occurs in
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symm(H) ® V; = Ip,,. From Lemma 5.4.1,

dim(Ve)/dim(V7)

VHOM = @ ‘/;'j

Jj=1
where each V. =V, as O M-modules.

Recall the definition of P¢ matrix in section 4.1. To cut notations a little,

set V., :=T;(V;). Then, P*(v) is an n(§) by n(§) matrix with

(PEW))is = (e:(V7) ()

Each entry of P¢ is an element of U(a), or really an element of U(a) @ End(V;).
Note P*(v) is without p-shift.

We are interested in pg¢(v) and pe, determinants of P*(v) and P respec-
tively, which will not depend on the choice of the bases up to a nonzero scalar

multiple.

6.2.4 Divisibility

Let again a C g be the subalgebra of diagonal elements and n C g the
subalgebra of strictly upper triangular elements. If « is a positive root of g, i.e.
a=¢ —¢; forl <i<j<n,recall £, is an n by n matrix with entry 1 in the
position (i,j) and 0 elsewhere. Let g, be the Lie subalgebra of g generated by E,,
0(E,), and a. Then, g, = CH(E,) ® a® CE, = fn, © a @ n, is the triangular
decomposition, and g, = C(E, + 0(E,)) & (C(E, — 0(E,)) ® a) = £, & p, is the
Cartan decomposition. H,, is the space of harmonics on p,, as discussed in 5.3, and
let Jo = S(pa)te.

For a € A" simple, let n® = Dyco+ (o) g¥. Let £ C £ be spanned by
E, + 0E, with ¢ € ®T — {a} so that ¢ = £, © £*. Then, g = n® @ g, ® £*. Note

n® is a Lie subalgebra of g as « is simple.

Lemma 6.2.5. For a € A" simple,

U(g) = symm(H,)symm(J,)U(8) & nUn®)symm(H,)symm(J,)U(8)
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Proof. From Proposition 2.4.1 of [Kos|, we have
U(g) = U(n*)symm(Hq)symm(Jo) ® U(g)t
Hence, we have

U(g) = Un*)symm(H,)symm(J,)U () (6.2.1)
= symm(H,)symm(J,)U(8) & n“U(n)symm(H,)symm(J,)U(t) (6.2.2)

Hence now by Theorem 6.2.3 and Lemma 6.2.5, we have the following K-

module isomorphisms

Ipry = U(g) Rueyr(g)t Vr (6.2.3)
= symm(Hg)symm(Jo) @upu(ge Vr (6.2.4)
© n*U(n)symm(H,)symm(Jo) @uepu(g: Vr (6.2.5)

Let C[°M] be the group algebra generated by °M, and denote by U (¢, )IIC[° M]
the smash product of U(€,) with C[°M], i.e. U(€,)IIC[°M] has a (U(t,), C[°M])-
action on symm(H,)®V; that is an analog of a (g, K)-action. If I, = U(¢) Nkerr,
U®)/I, = End(V;) = (U(t,)IIC[°M])/(kerT N (U(£,)IIC[°M])) as °M acts irre-
ducibly on V.

Definition 6.2.6.
e For a simple, let
Lo : U(9) @ueyugy Ve = symm(Ha)symm(Jo) Quu ey V

© nU(n®)symm(Hoa)symm(Ja) @uu g Vo

be the projection onto the first summand.

e Denote by Q the projection onto the first summand in U(g) = U(a)U () &
nU(g) followed by the projection onto U(a) ® (U(¢)/1;) = U(a) ® End(V;).
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Theorem 6.2.7. Let o € Ot be a simple root, €1, ..., €5(¢) be a basis of
Hompg (Ve, symm(H)®V;), Ve = @?Sl) Vz, with each V., an irreducible K o-module.
[pr]q denotes the determinant of P77 matriz of the rank one case of Gy with K,-

type V., then pre divides pe.

Proof. This proof follows the method of the proof of Proposition 2.4.3 of [Kos]
very closely.

Let av € ®* be a simple root, €1, ..., €y(¢) be a basis of

Hompg (Ve, symm(H) ® V;), and let Ve = @?Sl) V;, where each V., is an
irreducible K,-module. (P%);; is the action of ¢(V;,)(e) followed by replacement
of elements in C[v] with corresponding elements in S(a), which is same as the
action of Ly(€i(Vr,))(e) as Ly is a K,-map since [go,n%] C n® for a simple, and
elements in n® will not contribute.

Recall V* is the subspace of V; that consist of t,-weights of %, and denote by
VTj the subspace of V., that correspond to positive t,-weight space. Without loss
of generality, assume Lq(&;(V,))) = Z" Ry, @ V. with RY; € symm(J,). This is
possible because of Theorem 5.3.8 which characterizes the irreducible K,-modules
in H, ® V; and L, is a K,-map. We have symm(J,) C U(ga)* with U(g,)t the
subalgebra generated by t,, center of g,, and the Casimir element.

The action of Z_alj R, on V© at the identity is Q(Z_alj R{;), where by 3.5.6

of [RRG 1], we have Q(Za ' R;) = Q(R?)Q(Za") = r%,Q(Z ") with r¢, invariant
under 7, the translated Weyl group element of simple reflection as U(gq)® is the
subalgebra generated by t,, center of g,, and the Casimir element. From the

observation before, we have

Q(Z.") € Ua) @ (U()/1,) = U(a) @ End(V;) (6.2.6)
= U(a) @ (UE)IC[M)])/(kert N (U (¥,)IIC[°M]))
(6.2.7)

We now see that action of Q(Z_alj ) on VF is the determinant pg of P77 matrix for
the rank one subgroup G, with K, type 7;, and o divides pe.
O
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For ¢ € ®*, define p, = PrgDyo where p_o corresponds to the deter-
n(€) j

minant of P/ matrix of the rank one case of Gy with Ky-type V,,. Define now

) = Tp,—ppy, where T, is the translation by ps — p. Note each p s is a poly-
J

nomial in wg = Xy € a defined before. Hence py and p(4) are also. Also, it is clear

that T,

b ¢_p(w¢) = wy for ¢ simple, hence we have py = p(y) for ¢ simple.

Theorem 6.2.8. For any ¢ € T, p(y) divides pe.

Proof. This proof is almost word for word as in Proposition 2.4.5 of [Kos].

For ¢ € @, define O(¢p) = Xmy, if ¢ = Bpea+miay. If O(¢) = 1, then
¢ € AT hence the claim is true by Theorem 6.2.7 and above observation. We
proceed by induction on O(¢). Assume O(¢) > 1 and that the claim is true for
all Y € & with O(¢) < O(¢). We use the fact that for some o € At < ¢, w, >
is strictly greater than 0 and find a root ¢ € ®* such that O(¢)) < O(¢) and
¢ = x47) for some o € AT where z,, is the Weyl group element of simple reflection.
Note ¢ # a. But we have that p; = rop,, where r, is invariant under the action
of 7, by Theorem 6.2.7. Also, by induction hypothesis, p(,) divides r,p,. Since
Do 18 a polynomial in w, whereas p(y is a polynomial in wy, and since w, # wy,
Po and p(y) are mutually prime. Hence p(y) divides 7, hence z,p(y) does also.

We now assert Z,p(y) = D(g) up to a nonzero scalar. Since z,9 = ¢, we
have z,9y = 94, Toty = €4, and z,py = pg. Moreover, z,a = a and z,ny = ny.
Therefore, for u € U(gy), 2.Q(u) = Q(zau). Also, oKyt = K,. Furthermore,
if Ve = @V 4 is a decomposition into Ky-irreducibles and if V¢ = 2,V _y, then we
know Vg :]@VT¢ is a decomposition into Ky-irreducibles. Hénce it is] now clear
that zopy = Do ilp to a nonzero scalar.

But, Zop) = T-p2aTpTp,—ppy = T ptaT,, 0y = T_proT),, 2, Tapy =
T ) Tep,Taly = Tp,—pPy = P(g), and this completes the assertion and p(4) divides

De-
[l
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6.3 Product Formula of p; for the group SL(n,R)

Theorem 6.3.1. There exists a non-zero scalar ¢ such that

pe(v) = cllyea+p) (V)

Proof. The right hand side divides the left hand side by Theorem 6.2.8. I claim
the degrees of the two polynomials are the same.

Since our definition of p; was independent of the basis up to a nonzero
scalar, we may assume ¢ (V;,) C symm(H )4 ® V;, i.e. we use a homogeneous
basis. Therefore, the deg of the left hand side, d(§), is at most d(7).
IfV,,,...,V,, are distinct K-types in symm(H) with V; C V,, @V, ¥d(i) =
¥ d(v;) where d(v;) is the sum of degrees in which V., occur in symm/(H).
But, we have d(v;) = E¢eq>+n,¢y’j where nﬁj is the sum of degrees of which the
irreducible Ky-modules in Spaang.V,;j M occur in symm(Hy) by Proposition 2.3.12
and Theorem 2.3.14 of [Kos|. But nfj only depends on the t4-weights in our case,
hence Yd(i) = % d(v;) =S Zgearn? = Sgca+deg(pg)(v)) by Theorem 6.1.1
and the fact that deg(Q(Z})) = | by Theorem 7.6 of [JW]. Therefore the degree
of left hand side < degree of right hand side, and with divisibility we have the
statement of the theorem.

]



Chapter 7

Product formula of p¢ for the
connected, simply connected
R-split Lie group of simple Lie
type other than A, and C),

P P

In this chapter we will apply our results for SL(n,R) and GL(n,R) to derive
a product formula for the groups of the title. Let G be any of the connected, simply
connected R-split Lie group of simple Lie type other than A, and C,, with maximal
compact subgroup K defined as the set of fixed elements of a Cartan involution
6. Denote by 6 the corresponding Cartan involution of Lie(G). As G is split, for
a positive root « of Lie(G), [ga,8a)] = Slo. Let hy € [ga,8a) N a be such that
a(hy) = 2, and let e, € n, be such that [e,, —0(en)] = ha- (ha,€a, —0(eq)) is an
S-triple.

Definition 7.0.2. t, =i * (e, + 6(ea)).

Let H be the space of harmonics on p, and V, be a choice of a small K-type

from chapter 3.

Lemma 7.0.3. Let G be as above for all types but B,,, E7, and Fy. Let Ve be an
irreducible K -module that occurs in HQV,.. Then, Veloy, = @?fl) Vi, with Vo, =V,
as °M modules for all j =1,...,n(§).

48



49

. . . 0 o . . . 0 .
Proof. For D,,, K = Spin(n)xSpin(n) where MSpin(n,n) is isomorphic to MSL(n’R) X

e where °M SIR) sits diagonally in K. V, is the Spin representation or either

of the two half Spin representations after projection onto either the first or the

second factor of K = Spin(n) x Spin(n) depending on the parity of n. By Lemma

3.3.1, (H® Vr)’oMS __decomposes in the same way as (H ® VT)IOMSL,(VR> where
P n,

OMSm) is the on(;n(szfylt)ing diagonally in K = Spin(n) x Spin(n). If n is odd,
there is only one possible V. as in the case of SI//(\nEQ) If n is even, choose
an element w of the set p~'(—Id x —Id) where p is the covering homomorphism
p: Spin(n) x Spin(n) — SO(n) x SO(n). w distinguishes the two half Spin rep-

resentations as M —— ) do not. w acts trivially on H as it is central and is an

SL(n—1,R
element of °M Spmimn)’ Therefore w acts on the entire space H ® V. as it does on
V., and we have the statement of the lemma for D,,.

For Fg, Es, and Go, i : GL(6,R) — Eg, P GL(8,R) — /Eg, and 7 :
P -— . ~0 _ OAf_ ~0 o _ oA _ ~0 o _OAf_
SL(3,R) < Gy with i( MGf(E,/R)> ="Mz, i( MGL(&R)) ="Mz, i( MSL(?)’R)) = Mg,

by the proof of Lemma 3.3.1. Therefore, there can only be one V., Spin-rep|oy,. O

Remark For the connected, simply connected R-split Lie groups of type
B, Er, and Fy, if Ve € H®V;, Velg, = @19V, & @, Vi where V,, =V,
as "M-modules, and V;, = V,_ as °M-modules where V,_is the other half Spin
representation or the other Pin representation restricted to M. Hence the weights

of interest are just those of @;Lfl) V.. from the definition of P* matrix in 4.1.

Lemma 7.0.4. Let G be any of the connected, simply connected R-split Lie group
of simple Lie type other than C,, with maximal compact subgroup K. Let V., , ...,V

be distinct K-types that occur in H such that Ve C V., @ V.. If l(v;) = dimVVOJM,
then n(€) = T3, 1(x).

Proof. Since V; is multiplicity free, by Corollary 3.4 of [Ku], we know Vg occurs in
V, ® V; exactly once if it does. Now each of V,, occurs in H exactly /(;) many
times by Frobenius Reciprocity, hence the multiplicity of V¢ in H ® V; is exactly
¥, 1(v;) which is n(&) defined in the remark above, by Frobenius Reciprocity. [
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7.1 Comparision of t,-weights

Recall the assumptions of Theorem 6.1.1.

Theorem 7.1.1. Let G be as above other than type Fy. Let V., ..., V. be distinct
K -types that occur in H such that Ve C V,, @ V;. n(§) = X,1(v;) and if o is a
positive root of Lie(G) but not short in the case of B, and not short in the case of

Gy , then after reordering, 5i’j = 0o, £ 5 for each j =1,...,n(£).

Proof. n(§) = ¥7,1(v;) is by Lemma 7.0.4.
Recall from chapter 3 the subgroup Gy < G with maximal compact sub-

group Ky where Gg is isomorphic to SL(n,R) or the metalinear group GL(n,R)
for appropriate n. We have Mg, < °Mg where the restriction of K to K preserve
9Mg-invariants of H and the decomposition Veloas, by Lemma 3.3.1.

We can restate the condition Ve C V, @ V; as V,, C V; ® V*. Note the
statement of the theorem is true with the restated condition for GGy by Theorem
6.1.1 and Lemma 6.1.2.

Let V.

Y1t

that V. C V. @ V, and let @;VZI Span KO.VWOJMG = @k W, where each W}, is an

T

., V,y be distinct irreducible K-modules that occur in H such

irreducible Ky-module. The nontrivial element n € s < Mg acts by —1 where
2 is the kernel of the covering homomorphism p : Gy — G/ which is also the
kernel of the covering homomorphism p : G — Gg. Hence V¢|x, = P ; Ve, where
each of V¢, occurs in H ® V; or H® V. with H that of Gy and V, the other half
Spin representation or Pin representation. We have @, Wi, C ; Ve, ® VI where
each of Wy, occurs in H of Gy by Lemma 3.3.1.

We assert that it Wy, C Ve, @ V¥, then V, |OMG0 is equivalent to a multiple of
V:and Ve, € H® V. Indeed, if W, C Ve, @ V¥, then Ve, € W ® V2, hence claim
is true by Lemma 5.4.1. This observation is important because of the following.
First, recall from remark in the beginning of the chapter the decomposition Ve|x, =
@jff V., ® @, Vi where V;, 2V, as “Mg-modules, and V;, = V; as Mg-modules
where V, is the other half Spin representation or the other Pin representation
restricted to °Mg. As Ve C H ® V,, we only consider V,,,...,V; _ in the definition

V(e
of P$ matrix.
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Since the statement of the theorem is true for Gy with the restated condition
and as the set of t, weights of interest are the same after branching down to K
by Lemma 3.3.1, we have the statement of the theorem for all positive roots «
of Lie(Gy) C Lie(G). Note Ve, ® V¥ decomposes into distinct Ky-modules by
Corollary 3.4 of [Ku] as V* is multiplicity free. Therefore, if W, = W, with
k # [, then W}, and W; cannot be contained in a single V¢, ® V*, important as the
statement of the theorem for Gy also assumes distinct V.s.

By Proposition 6.11 of [Bou|, any positive root 8 € Lie(G) must be conju-
gate to some simple root a via an element of the Weyl group W(A) = Nk (A)/Zk(A),
hence tz must be conjugate to t, for some simple root « via an element of K. There-
fore, the set of t,-weights of interest is the same for all positive root as of same

length and we have the statement of the theorem. O]

7.2 Comparison of {,-weights for short roots of

Lie(SO(qg+1,q))

—_ N

7.2.1 The Groups Spin(p, q), Pin(p,q) (p>q¢>3, p=qorp=

g+ 1) and their Small K-types

Denote by Spin(p, q) the connected, simply connected R-split Lie group of
type B, (p =q+1, ¢ > 3) or D, (p = ¢ > 3) with maximal compact subgroup
. . . O . . . . 0 . O .
K = Spin(p) x Spin(q). Mspm(p,q) is isomorphic to MSL(q’R) X [15 where MSL(%R)
sits diagonally in K and the uy can either be (£1,1) or (1,£1) < K.

Spin(q,q) has small K-type V, the Spin-representation or either of the two
half Spin-representations of Spin(q) depending on the parity of ¢, after projection
onto either the first or the second factor of K = Spin(q) x Spin(q).

Ifgisodd, S pz'n/(éjl, ¢q) has small K-type V, the Spin-representation after
projection onto the second factor of K = Spin(q + 1) x Spin(q) or either of the

two half Spin-representations of Spin(q+ 1) after projection onto the first factor of

K = Spin(q+1) x Spin(q). If q is even, Spin(q + 1, ¢) has small K-type V, either

of the two half Spin-representations of Spin(q) after projection onto the second
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factor of K = Spm(q + 1) x Spin(q).

Denote by Pm(p, q) the corresponding covering group of Pin(p,q) with

0

maximal compact subgroup Pin(p) x Pin(q). "M is isomorphic to OM — X

Pin(p,q) GL(¢R)
po where °M ——  sits diagonally in Pin(p) x Pin(q) and the s can either be

GL(q,R)
(£1,1) or (1,£1) € Pin(p)x Pin(q). The following are small K = Pin(p)x Pin(q)-

types for Pin(p,q).

Definition 7.2.2.

—_~—

e Pin(q,q) has small K-type Vi the Pin representation or either of the two
Pin representations of Pin(q) depending on the parity of ¢, after projection

onto either the first or the second factor of K = Pin(q) x Pin(q).

—_——

e If ¢ is odd, Pin(q+ 1,q) has small K-type Vr either of the two Pin repre-

sentations of Pin(q) after projection onto the second factor of K = Pin(q+

1) x Pin(q). If ¢ is even, Pin(q+ 1,q) has small K-type Vi the Pin repre-
sentation of Pin(q) after projection onto the second factor of K = Pin(q +
1) x Pin(q) or either of the two either of the two Pin representations of

Pin(q+ 1) after projection onto the first factor of K = Pin(q¢+ 1) x Pin(q).

0 ~ 0 0 — ~0
Remark 7.2.2 M ) M ST R )><,U2 and Mpn(pq) MGL(qR) Ha-

In either case the py acts tr1v1ally on H the space of harmonics as it is central

in K and the ps can be chosen to act trivially on the small K-type described

above. Therefore, in the case of Spin(p,q), (H ® VT)]oMS e decomposes in the
pin(p,q

same way as (H ® VT)|0Msf(IR> where M/ STk is the one sitting diagonally in

K = Spin(p) x Spin(q). In the case of Pin(p,q), (H ® VT)loM __ decomposes
in(p,q)

in the same way as (H ® VT)|OM@Z<VR> where 0]\/[ —— is the one sitting diagonally

GL(g:R)
in K = Pin(p) x Pin(q).

Consider the embedding i : O(q,q) < SO(q¢+1,q+ 1), where the image of
the maximal compact subgroup O(q) x O(q) of O(q, q) under i is contained in the
maximal compact subgroup SO(¢+ 1) x SO(q+ 1) of SO(q+1,q+ 1), such that

if (g,h) € O(q) x O(q),
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. (9 0 h 0
i((g,h)) = (0 det(g)_1> , (0 det(h)_1> € SO(qg+1) x SO(q+1)

e~ —

Let p : Spin(qg+ 1,9+ 1) — SO(q+ 1,9 + 1), be the covering homomor-

e~

phism. We have that p~'(i(O(q,q))) is a Lie subgroup isomorphic to Pin(q, q),

P

hence we have an embedding 7 : Pin(q,q) — Spin(¢+1,q+1).

e~

Lemma 7.2.3. Consider the embedding i : Pin(q,q) — Spin(q+1,q+1) de-

scribed above. We have Z(OMP?@/q)) = OMSpm(;Iqu)'

Proof. We have

0 g 0 .
Mso(gi1.q41)s = {<O det(g)-" ) ; <0 det(g)_1> |9 € Olq) diagonal}

, the image of Moy under the map i. Hence i("Mo.g) = Mso(g+1,4+1).- As

(M) = pH(i(PMoggg))) and "My —or = P (*Mso(g41,441),), We have
the statement of the lemma. O

—_—

Let p : Pin(q,q) — O(q, q) be the covering homomorphism. Pin(q)x Pin(q)
is generated by Spin(q) x Spin(q), p~*(go, Id), and p~'(Id, go) where gq is defined
. 0 s 0 o —1
in 5.2.1. Mpm(q,q) is generated by Mspm(q,q) and p~*(go, 90)-

7.2.4 Restriction of Pin(q) x Pin(q) modules to Spin(q) X
Spin(q) and t.-weights

Irreducible representations of Spin(q) x Spin(q) and Pin(q) x Pin(q) are
outer tensor products of irreducible representations of Spin(q) and Pin(q) respec-

tively, discussed in section 5.2. Recall the definition of ¢ from 5.2.1.
Definition 7.2.5.

o Let ¢ = 2k, and Vp be an irreducible representation of Pin(g). Let V, be an
irreducible representation of Spin(q) that occurs in the restriction of Vr to

Spin(q) with highest weight (A1, ..., \r). If A # 0, denote by V, = ¢ -V, so
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that Vr =V, & V,. If A, = 0, denote by V. (resp. V.7) the Pin(q) module
whose restriction to Spin(q) is V,, with action of ¢ on the highest weight
vector by +1d (resp. — Id).

e Let ¢ =2k+1, and V1 be an irreducible representation of Pin(q). Let V, be
an irreducible representation of Spin(q) that occurs in the restriction of Vr
to Spin(q). Denote by V. (resp. V.7) the Pin(q) module whose restriction
to Spin(q) is V, with action of ¢ by +1d (resp. — Id).

Let V., and Vi be an irreducible Spin(q) x Spin(q)-module and an irreducible
Pin(q) x Pin(q)-module respectively. Let V, = V,, ® V,, and Vp = Vi, ® W,
where V,,, V,, are irreducible Spin(¢q) modules and Vi, Vr, are irreducible Pin(q)

modules.

Lemma 7.2.6. Let ¢ = 2k, (mq,...,my) the highest weight of V., (nq,...,nx) the
highest weight of V.,,, and assume V., occurs in Vr if we restrict to Spin(q) x Spin(q)
from Pin(q) x Pin(q).

.....

77777

vector Of ‘/(ml ..... my_1,0) & ‘/(n1 ..... Ng_1,€2Mk) by +Id.
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..........

Proof. As irreducible representations of Pin(q) x Pin(q) are outer tensor products
of irreducible representations of each of the two Pin(q)s, we have the statements

of the lemma by Theorem 5.2.3. [

Lemma 7.2.7. Let ¢ = 2k+1, (my, ..., my) the highest weight of V.., (n1, ...,ny) the
highest weight of V.,,, and assume V., occurs in Vr if we restrict to Spin(q) x Spin(q)
from Pin(q) x Pin(q). Then, Vi|spin(q)xSping) = Vo @ Vs, where (¢, Id) and (I1d, C)
act by £Id on V,, ® V,,,.

Proof. As irreducible representations of Pin(q) x Pin(q) are outer tensor products
of irreducible representations of each of the two Pin(q)s, we have the statements

of the lemma by Theorem 5.2.2. [

—_—

Consider the short root €; of Lie(Spin(q+ 1,q)). e = 1(a; + o) where

a1 = €1+ €3, ay = €1 — €9 are positive roots of Lie(Spin(q, q)). Recall the definition
of t., from 7.0.2. We have t, = %(ta, + ta,). Note t, € Lie(Spin(q) x Spin(q))c
for all ¢ > 3.

Recall the definition of t., weights ¢} ; and d;, ; from 5.5.1.

Theorem 7.2.8. Let ¢ = 2k, and assume Vi occurs in the harmonics H of

Pin(q,q). Let (mq,...,my) be the highest weight of V., (ni,...,ng) be the high-

est weight of V.,, and assume V, = V, ® V,, occurs in Vp if we restrict to

Spin(q) x Spin(q) from Pin(q) x Pin(q).

oM —— 0 o
o Ifmy #0 and ny # 0, then dim Vi, "™ = dim (V,, @ V,,) Msyintwo + dim
— 0 .
(V,, ® VW)OZsmn(qm, and {0}, , ..;(5%\’;@)} is the disjoint union of those from
(V% ® Vw) svin(a.a) and (VYI ® Vw) Spin(a.0)

OM —
o Ifmy # 0 and ny, = 0 or if my, = 0 and ny, # 0, then dim Vi 7™ = dim
0 0

M —— M
Spin(q,q) r r ; Spin(q,q)
v s and {0, 1, -, 0, yry} 15 the same as the set on 'V, :
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o Ifmy =0 and n, =0, then dim VjMSpm"’) = dim (V.F @ V1) “pinta 4 dim
(Vie VVE)OMP;Z@ = dim (V; ®VV;)OMqu> + dim (V] @VZ)OMP%@, and
{01700 1y} is the disjoint union of those from (V) & VWJg)OM
Vie VVE)OMPmﬁ or the disjoint union of those from (V. @ V.,

and (V; @ V)™

)M

Pin(e.a) qnd
OM .
) Pin(q,q)

Pin(q,q) |

Proof. As we are working with submodules of the harmonics, we can ignore the
tilde and consider “Mo(q,q) and “Mgo(q.q). invariants. Recall that °Mo g is gener-
ated by “Mso(g.9). and (go, go)-

First consider the case my # 0 and ng # 0. From Lemma 7.2.6, we have
Vrlso@xso = (Vo ® V) @ (V, @ V2,) @ (Vs @ V3,) @ (Vs ® V5, ) where (go, go) €
O(q) x O(q) swaps the two highest weight modules V,, ® V, and V,, ® V,,, and
the two highest weight modules V,, ® V., and V,, ® V.,. As (go,g0) commutes
with "Mso (.90, (90, 9o) gives us a bijection of °Mgo(g,q), invariants of V., @ V,, with
those of W@V_W, and a bijection of °M SO(q,q)o iNVariants of V_WI(X) V,, with those of
V,, ®V.,. As Mo(q,q) 18 generated by “Mgso(q.q). and (go, go), and as (go, go) leaves
invariant 2 , we have the first statement of the lemma.

Consider the case my # 0 and ny = 0 or if my = 0 and n; # 0. Without
loss of generality, assume m; # 0 and n; = 0. From Lemma 7.2.6, we have
Velso)xso) = (Vo ®V4,)®(V,, ®V,,) where (go, go) swaps the two highest weight
modules V,, @V, and V,, ®V,,. As (go, go) commutes with Mso (0. (9o, go) gives
us a bijection of ®Mgo(q,). invariants of V,, ®V,, with those of V., @ V,. As Mo,
is generated by °Mgo(q,q), and (go, 90), and as (go, go) leaves invariant ¢? , we have
the second statement of the lemma.

Now consider the case m; = 0 and ny = 0. Let vy,...,vy) a basis of
V;Mso(q’q)" such that (go, go) acts on v; by £Id for all j, which is possible since
(90, 90)* = (Id, Id) and (go, go) commutes with °Mgo(y,q).. Denote by v, ...,v;@)
and vy, ..., v,y above basis thought of being in (V)7 ® V1) and (Vi @ V) re-
spectively. If we denote by e the action of (go, go) on vy, ..., v;(rv), we assert that
(90, 90) will act by —e on vy, ..., v . Indeed, v; = Xj.v where X; € U() and v
is the highest weight vector of V.. Since (go, go) acts by different signatures on v
for (V¥ @ V1) and (V) @ V.)), the statement is now clear. We argue exactly the
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same way for the modules (V.7 @ V) and (V @ V7).
O]

Theorem 7.2.9. Let ¢ = 2k + 1 and assume Vr occurs in the harmonics H

of Pin(q,q). Assume V, occurs in Vo if we restmct to Spin(q) x Spin( ) from

Pin(q) x Pin(q). Then dim V Vet = dim V MspinG 2 and {0}, 1, ..., 0L, l ) 18

exactly those of V7 Spi"(‘””.

Proof. As we are working with submodules of the harmonics, we can ignore the
tilde and consider "Mo (g, and Mgo(q,q). invariants. Recall that °Mo,q) is gener-
ated by OMSO(q,q)O and (go, 90)-

First, Vr =V, as a space by Lemma 7.2.7. Since V1 occurs in the harmonics

and (go, 9o) € "Mo(q,q 1s central, it must act by identity. Therefore, (go, go) acts
0

Pin(q,q)

by elther (+,4) or (—,—). In any case, there is no difference between V.
and V"5, 0

Lemma 7.2.10. Let Vz be an z'rreducible Pin(q) x Pin(q)-module that occurs in
H ® Vy. Then, V"loMpT) = @ VT where Vp, = V1 as M Pilaa )—modules for
all j=1,..,n(2).

Proof. First recall from Remark 7.2.2 that (H ® VT)|0MP — decomposes in the

same way as (H ® Vr)|oy i where °M GTaR) is the one sitting diagonally in

K = Pin(q) x Pin(q). If ¢ is even, there is only one choice of VT|0M . Ifqis

Pin(a,q)

odd, (¢,¢) € OM - dlstmgulshes the two small Pin(q) x Pin(q) types defined

in 7.2.2 as °M Sp;:(t;q) does not. But, (¢, () is also central, hence it must act trivially

on H. Therefore, (¢, () acts by a single sign on H ® Vi and we have the statement

of the lemma. O

Recall the definition of t., weights 55 and 6= ; from 5.5.2. Denote by K,

€1,]

the group generated by exp(i * t.,) and °M Spmtaa)’ and denote by K  Pinlaa) the

group generated by exp(i * t., ) and M piniaa)”

Theorem 7.2.11. Let g = 2k and let V= be an irreducible Pin(q) X Pin(q)-module

that occurs in H ® Vi so that its restriction to Spin(q) x Spin(q) contains a copy
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of Ve where Ve C H_ ——

Spln(

®V or Ve CHspm(q )®77. Let Ve = Ve, @ Ve, with

(myq,...,mg) the highest wezght of Ve, and (nq,...,ny) the highest weight of Vg, .

e Let Vi be the Pin representation of Pin(q) after pmjectz’on onto the first
factor of Pin(q) x Pin(q). If ny # 0, then {0, , ..., 0 (
union of those from the Spin(q) x Spin(q) modules Ve, @ Ve, and Ve, @ Vg, .

=)} is the disjoint

If g, = 0, then {6Z, 4, ..., 0 (=)} s ezactly same as those from the Spin(q) X

o 61n:

Spin(q) module Ve, @ V,.

e Let Vi be the Pin representation of Pin(q) after pmjectz’on onto the second
factor of Pin(q) x Pin(q). If my # 0, then {0Z ,, ..., 07 n(
union of those from the Spin(q) x Spin(q) modules V¢, @ Ve, and Ve, @ Vg,. If

=)} is the disjoint

my = 0, then {02 ,,...,0Z )} is exactly same as those from the Spin(q) x

2 Yer,n(E)

Spin(q) module Ve, @ Ve,.

Proof. Assume V7 is the Pin representation of Pin(q) after projection onto the first
factor of Pin(q) x Pin(q). my # 0 as highest weight of V¢, must be half-integral.

Consider the case n, # 0. From Lemma 7.2.6, we have Vz|gpin(g)xSpin(q) =
(Ve @ Vo) @ (Ve @ Viy) @ (Ve, @ V) © (Ve @ V) where (¢, () swaps Ve, ® Vg, and
Ve, ® Ve, and (¢, ¢) swaps Vg, @ Vg, and Ve, @ V.

Let (Ve, ® Ve,)|k., = @?ff’&’)‘/} where V; =2V, as ‘M Sp%q)—modules for
all j or V; = V, as ‘M Sp%q)—modules for all j with V, and V; the two small
Spin(q) x Spin(q) types by Lemma 7.0.3. Let (Ve, ® Vg, )|k, = @Z(fll )W, where

W, =2 V. as M —— -modules for all k or W, 2 V. as OM —— -modules for all

Spin(g,q) Spin(g,q)
k with V. and V, the two small Spin(q) x Spin(q) types by Lemma 7.0.3.
We have V5]K61 e @ (&, 52)<V (¢, 0V, )@@n(él 52)(Wk@ (¢,¢)-Wy)

by Lemma 7.2.10. Therefore we have the first statement of the first case of the
lemma as (¢, () commutes with 2 .

If nj, = 0, we have by Lemma 7.2.6 V| spin(g)x spin(g) = (Ve @ Ve, ) B (Ve, @V, )
where (¢, () swaps Ve, ® Vg, and Ve, ® Vg,. Let (Ve ® V&)
V; 2V, as 'M —— -modules for all j or Vj = V. as ‘M —

 Spin(q,q) Spin(g,q)
with V. and V. the two small Spin(q) x Spin(q) types by Lemma 7.0.3.

K = @ 51 2) V; where

-modules for all j
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We have Vel = @j" ME8) (Vo (¢, ¢) - V;) by Lemma 7.2.10. There-
€1,Pin(q,q
fore we have the second statement of the first case of the lemma as ({, () commutes
with ¢ .

The second case can be shown similarly as in the first case. O]

Theorem 7.2.12. Let ¢ = 2k + 1 and let Vz be an irreducible Pin(q) x Pin(q)-

module that occurs in H ® Vi so that its restriction to Spin(q) x Spin(q ) is an

irreducible module Ve where Ve C HSan\(; ® V,. Let Vz|k e @] ; VTJ,
and ‘/5|K51,sp%,q> = @jzl Ve, Then, n(Z) = n(€), and o, ; = 5651 ;j for all j after
reordering.

Proof. °M Pinlaa)

sign on the entire space H ® Vir. Therefore, it is clear that n(Z) = n(§) by Lemma

is generated by °M SoTad and (¢, ¢) where (¢, () acts by a single
7.2.7, and hence the statement of the weights is also clear. O

7.2.13 Comparison of {,-weights for short roots of

Lie(SO(qg+1,q))

Recall the assumptions of Theorem 6.1.1.

Theorem 7.2.14. LetV,,, ..., V., be distinct K = Spin(q) x Spin(q)-types that oc-

VYN

cur in Hsp%q) such that Ve CV, @V, SN 1(y;) = n(€). If V; is the Spin repre-
sentation or either of the two half-Spin representations of Spin(q) after projection
onto the first factor of K, after reordering, (551 = 0ey % for each j =1,...,n(§).
If V. is the Spin representation or either of the two half-Spin representations of
Spin(q) after projection onto the second factor of K, after reordering, 6t = ¢, j

€1,]
for each j =1,...,n(§).
First we state a lemma for the Theorem.

Lemma 7.2.15. Assume the statement of t., -weights in Theorem 7.2.14 for the
modules of the group Spin(q) x Spin(q). Then the statement of t. -weights in
Theorem 7.2.14 for the modules of the group Pin(q) x Pin(q) is also true.

Proof. Assume V7 is Pin representation or either of the two Pin representations

of Pin(q) after projection onto the second factor of Pin(q) x Pin(q).
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Assume first ¢ is odd hence Vr is either of the two Pin representations
of Pin(q) after projection onto the second factor of Pin(q) x Pin(q). Let Vz C

HPi/Jq/q) ®@Vr and let Vp,, ..., Vo, be distinct Pin(q) x Pin(q) modules that occur in

H Pintad) such that V= C Vr, ® Vr for all j. Without loss of generality, assume ((, ¢)

acts on Vp by Id, i.e. (Id,() acts on Vi by Id as Vr is the Pin representation of
Pin(q) after projection of Pin(q) x Pin(q) onto the second factor. Without loss of
generality, assume (Id, () acts on Vz by Id. As V= C Vp, @ Vr for all j, (Id, () must

act by Id on Vr, for all j. As ((,() € UMP%C]) is central, (¢, ) must act by Id on

Vr, for all j. Therefore, we have that the action of (¢,() on V¢, must be (+,+)
for all j. This observation gives us the following. If VI |(spin(q)xspin(q)) = V~; Where

Vi, ...y Vo are irreducible Spin(q) x Spin(q) modules by Lemma 7.2.7, V., ..., V.

o Vw

are distinct.
Now let Vz|(spin(q)xSpin(q)) = Ve Where V¢ is irreducible by Lemma 7.2.7. We

have Ve C H_ —— ®V.,and V,,, ...,V are distinct irreducible modules that occur
Spin(q,q9) m N

in HSp;T((;q) by Theorem 7.2.9, and Ve C V), ® V, for all j =1,..., N. By Theorem

7.2.9 and Theorem 7.2.12, this restriction of Pin(q) x Pin(q) to Spin(q) x Spin(q)
do not change the set of t., weights of interest. Therefore, by the assumption of
the lemma, we have the result for ¢ odd.

Assume now ¢ = 2k is even hence Vi is Pin representation after projec-
tion onto the second factor of Pin(q) x Pin(q). Let V= C H —— @ Vr and let

in(q,q)

Vryy e Vo, be distinet Pin(q) x Pin(q) modules that occur in prq) such that

Vz C Vr, ® Vr for all j. By Lemma 7.2.6, let Ve, ® Vg, be a choice of an irreducible
Spin(q) x Spin(q) module that occurs in Vz|(spin(g)xspin(q)) Such that (mq,...,my)
is the highest weight of Vg, and (ny,...,nx) is the highest weight of Vg, with my,
ng > 0.

Assume first my, = 0. For each j =1,..., M, let V.., ®V,. , be a choice of an
irreducible Spin(q) x Spin(q) module that occurs in Vr,|(spin(g)xSpin(q)) With last

2

entries of the highest weights of V,,, and V. , nonnegative. In fact, V., , = V.

Now, reorder so that V., , @ V,,,,..., Vo, ® V,, are distinct Spin(q) x Spin(q)
modules. N < M as there may be j such that V.. ® V. , occurs twice with

different (Id, ¢) signature on the highest weight vector. Ve, @ Ve, € H sontaa ® 78
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or Ve, ® Ve, C Semaa) ® V, but not both by Lemma 7.0.3. Without loss of
generality, assume V; ® Vg, C HS'pm(q 2 QVr Vi ®Vya s Vin, ®V,y, a
distinct Spin(q) x Spin(q) modules that occur in H ey by Theorem 7.2.8,
and we have V;, ® Vg, € (V,,, ® V,,,) ® V; for all j = 1, ..., N. Therefore, we
can assume the statement of the t., weights on these Spin(q) x Spin(q) modules
by the assumption of the lemma. But by Theorem 7.2.8 and Theorem 7.2.11,
comparison of t., weights for the modules of the group Pin(q) x Pin(q) is that of
Ve, @ Ve, Vo, @V 4y, Vi, @V, of Spin(q) x Spin(q). Therefore, we have the
result for ¢ = 2k where my, = 0.

Assume now my # 0. For each j = 1,..,M, let V.., ® V., be a choice
of an irreducible Spin(q) x Spin(q) module that occurs in Vr, |(spin(g)x Spin(q)) With
last entry of the highest weight of V. , nonnegative. We have V., = V¢, for all j.
Now, reorder so that V,,, @ V,, ,,..., Vo, ® V,,, are distinct Spin(q) x Spin(q)
modules. N < M as there may be j such that V.., ® V.., occurs twice with
different (Id, ¢) signature on the highest weight vector. Ve, @V, C H_ —— Somiad) ®V or
Ve, @ Ve, C H e ®V but not both by Lemma 7.0.3. Without loss of generality,
assume Vg, ® V& Hspm(qq ® Vr. We have Ve, @ Vg, € (V,,, ® V,,,) ® V; for all

j =1,..., N. Therefore, we can assume the statement of the t., weights on these

Spin(q) x Spin(q ) modules by the assumption of the lemma. Note for some j,

dim (V,,, ® V., 2) Mspinta.a may be zero because of the first statement of Theorem

7.2.8. In this case, we just ignore (V,,, ® V,,) in the comparison of t., weights.
Now, V,, ® VW’Q,. o Vins ® VVNQ

such that Ve, @ Vg, € (Vo,, ®V;,,) @V for all j = 1,..., N. Therefore, we can also

are distinct Spin(q) x Spin(q) modules

assume the statement of the t., weights on these Spin(q) x Spin(q) modules by
the assumption of the lemma. Note for some j, dim (V,,, ® m)OMSpﬁG,q) may be
zero because of the first statement of Theorem 7.2.8. In this case, we just ignore
(Vi ® m in the comparison of t., weights.

By Theorem 7.2.8 and Theorem 7.2.11, comparison of t., weights for the
modules of the group Pin(q)x Pin(q) is that of Ve, @Ve,, V,, @V, 4,0, Vo @Vo,

of Spin(q) x Spin(q) and Vg, @ Ve,, V. , @V, o, Vo, @V, of Spin(q) x Spin(q).

Therefore, we have the result for ¢ = 2k where my, # 0.
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The case where Vi is Pin representation or either of the two Pin represen-
tations of Pin(q) after projection onto the first factor of Pin(q) x Pin(q) can be
shown similarly as above.

]

Proof. (Theorem 7.2.14)

¥ 1(vy;) = n(§) by Lemma 7.0.4.
We first prove the statement of the theorem for ¢ = 3. In this case, K =
Spin(3) x Spin(3) = SU(2) x SU(2) where °M is isomorphic to OMSZ(E/R) X 13 With

oM SIGR) sitting in K diagonally and pus central in K. Again, by Remark 7.2.2

this po acts trivially on H and V. We have t.,, = (t3,0) € suy @ sus where [ is that
of Lie(SL/(E),/R)). An irreducible representation of K = SU(2) x SU(2) is an outer
tensor product of that of each of the two SU(2)s. Let V, and W; be irreducible
representations of each of SU(2) with highest weights r and s respectively. Note
the weights of V. are —r, —r + 1,...,7 — 1,r and similarly for W,. Denote these
weight vectors by v_,,v_,11,...,v,_1, v, and similarly for W.

Assume first V; is the Spin representation of Spin(3) after projection onto
the second factor of K = Spin(3) x Spin(3).

Let Ve € H®V, with Ve = V, @ W,. There is at most two V,, C H such that
VeCV, @V, V,, =V, W, and V,, =V, @ W, with s; :S—i-% and 5223—%.
Consider v; ® w; € V, ® Wy, and v; ® w; € V, ® Wy,. In order for them to be
candidates for dominant t. -weight vectors from °M invariant vectors, i + j must
be even, and 7 > 0.

First, if ¢ 4+ s1 is even and ¢ > 0, then cover v; ® w,, with v; ® wy and
v; @ w_g, with v; ® w_s. Now assume ¢ + j is even with ¢ > 0 and j # s;. We use
v; ®wji% €V, ® W, to cover the two v; @ w; € V, ® Wy, and v; @ w; € V,, @ W,

The only ambiguity is when ¢ = j = 0, since we can’t use both vy ® Wyl €
V., ® Wy as the two come from a single V.. But exactly one of the two sets {r, s;}
and {r, s} must consist of two numbers that are of different parity. Without loss

of generality assume r and s; are of different parity. Then vy ® wy € V, ® Wy, is

not %M invariant, hence the ambiguity is now cleared.
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Now assume V. is the Spin representation of Spin(3) after projection onto
the first factor of K = Spin(3) x Spin(3).

Let Ve € H®V, with Ve = V, @ W,. There is at most two V,, C H such that
VeCV, @V, V,, =V, @ Wyand V,, = V,, ® W, with r; :7"+§ andrgzr—%.
Consider v; @ w; € V;;, ® W, and v; ® w; € V,, ® W. In order for them to be
candidates for dominant t. -weight vectors from M invariant vectors, i + j must
be even, and 7 > 0.

First, if 7 + j is even, then cover v,, ® w; with v, ® w; and v, ® w_; with
v,®@w_;. Now assume i+ is even with ¢ > 0 and ¢ # r,. We use Vip 1 QWj € V,@W;
to cover the two v; ® w; € V;, @ Wy and v; @ w; € V,,, @ Wi,

The only ambiguity is when ¢ = j = 0, since we can’t use both v 1®wp €
V., @ W, as v_1 ® wy is not a dominant t.-weight vector. But exactly one of
the two sets {ry, s} and {ry, s} must consist of two numbers that are of different
parity. Without loss of generality assume r; and s are of different parity. Then
v ® wy € V,., ® Wy is not M invariant, hence the ambiguity is now cleared.

We now proceed with induction. Assume the statement of the theorem
for Sp%?q/,q), hence the statement of the theorem for P;z_a[,/q) with maximal
compact subgroup Pin(q) x Pin(q) by Lemma 7.2.15. We prove the statement of

~ 0Nf )0 .
the theorem for Spin(q+1,q+ 1). Eﬁe/z( MPzn(q q)) Msmn(q+1,q+1)

7.2.3 where 7 is the embedding 7 : Pin(q, q) < Spin(qg+1,q+1).
The condition Ve C V. ® V, can be restated as V,, C Ve ® V*. Note the

by Lemma

statement of the theorem is true for Pin(q,q) with the restated condition. Let

Vi, -ory Vo be distinet irreducible Spin(g+ 1) x Spin(q+ 1)-modules that occur in

VN

o
H such that V,, C Ve®@V, and let @jzl Span (Pin(q) x Pin(q)).Vs, Spin{atlatl) _

T

D, Wi where each W}, is an irreducible Pin(q) x Pin(g)-module. As the nontrivial

element 1 € py < °M acts by —1 where us is the kernel of the covering

Spin%l)
homomorphism p : Spin(q + 1,q + 1) = Spin(g+1, g+1), Vel pin(g)x Pin(a) = B; Ve,
) ® V: by Lemma 7.0.3. We have @k Wy C

0 —_ =
in(q,) Slicfi( MPm(q Q))

by Lemma 7.2.3 where i : Pin(q,q) — Spin(q+1,q+ 1) is the

where each of Vg occurs in H Pintaa

@D, Ve, ® V' where we also know each of Wy occurs in H ——

0
Spin(g+1,q+1)

embeding.
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Since the statement of the theorem is true for Pin(q,q) with the restated
condition and as the set of t., weights of interest are the same after branching
down to Pin(q) x Pin(q) because Z(OMP%(I)) =0 Spintaigry DY Lemma 7.2.3,
we have the statement of the theorem for t.,. Note V¢, ® V* decomposes into
distinct Pin(q) x Pin(g)-modules by Corollary 3.4 of [Ku] as V* is multiplicity
free. Therefore, if W), &2 W, with k # [, then W) and W, cannot be contained in

a single Ve, ® V¥, important as the statement of the theorem for Pin(q,q) also

assumes distinct Vfs. O

Remark For the connected, simply connected R-split Lie groups of type
B, if Ve CHRV,, Vel = @@(g) V., @@, Vi where V,, =V, as “M-modules, and

7=1
Vi 2V, as "M-modules. Hence the weights of interest are just that of @?g Va

from the definition of P¢ matrix in 4.1.

Theorem 7.2.16. Let « be a short root of Lie(Spin(q +1,q)). Let V,,,...,V,, be

distinct K = Spin(q + 1) x Spin(q)-types that occur in H of Spin(q+ 1,q) such
that Ve C V.. @ V.. Zévzll(%-) =n(§). If V; is a small K-type after projection onto
the first factor of K = Spin(q+ 1) x Spin(q), after reordering, (ng = 0o, £ 1 for
each j =1,...,n(§). If V; is a small K-type after projection onto the second factor
of K = Spin(q+ 1) x Spin(q), after reordering, (52’j =04, for each j =1,...,n(§).

We first need a lemma for the theorem. Consider the embedding @ :
SO(q,q)o <= SO(q + 1,q), where the image of the maximal compact subgroup
SO(q) x SO(q) of SO(q,q). under i is contained in the maximal compact sub-
group SO(q+ 1) x SO(q) of SO(q+ 1,q), such that if (g,h) € SO(q) x SO(q),

9

i((g,h)) = (o

P

Let p: Spin(q+1,q9) = SO(q+ 1,q), be the covering homomorphism. We

P

have that p~1(i(SO(q, q),)) is a Lie subgroup isomorphic to Spin(q,q), hence we

?) ,h € SO(q+1) x SO(q)

have an embedding i : Spin(q,q) — Spin(q+1,q).

Lemma 7.2.17. Consider the embedding i : Spin(q,q) < Spin(q+ 1,q) described

above. We have i(OMSp;;(;q)) = OMspz';(cﬁLq)'
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Proof. We have

"Mso(g+1,0)0 = {< ) .91 g€ Mspr}

, the image of Mso(qq under the map . Hence i(° Mso(q 00) = Mso(g1,90.- As
statement of the lemma. n

Proof. (Theorem 7.2.16)
S 1(v;) = n(€) is Lemma 7.0.4.

We first show the statement for oo = €.

—_—

Consider the embedding 7 : Spin(q,q) < Spin(q+ 1, q) where i(°M_—— ) =

Spin(q,q)
0
Mspm(q+1 2 by Lemma 7.2.17.

We can restate the condition Ve C V, @ V. as V), C V; ® V*. Note the

statement of the theorem is true with the restated condition for Spin(q,q) by
Theorem 7.2.14.
Let V,,,...,V,, be distinct irreducible K-modules that occur in H such

o Vo
OM )

that V,, € Ve @V}, and let @jzl Span (Spin(q) x Spin(q)).V5, spin(atla) D, Wi

where each Wy, is an irreducible Spin(q) x Spin(q)-module. As the nontrivial

0 o _ . .
element n € py < "M SpinaTLa) acts by —1 where ps is the kernel of the covering

homomorphism p : Spin(q+1,q) — Spin(q + 1,q), Ve|(spin(g)xSpin(q @ Ve,
where each of V¢, occursin H®V; or H ® V, with H that of Spin(q, q) and V; the
other half Spin representation. We have @, Wi, C P, Ve, ® V¥ where each of Wy,

occurs in H of Spin(q,q) as i(OMSp%q)) =0 SpintatLa)

is the embedding 7 : Spin(q,q) <= Spin(q+1,q).

by Lemma 7.2.17 where i

We assert that if Wi, C Ve, @V, then V, |0M __isequivalent to a multiple

Spin(q,q)

of V; and Vg, C Hspm( )® V,. Indeed, if Wy C V, ® V7, then V;, C W} ®

V., hence claim is true by Lemma 7.0.3. This observation is important because
of the following. First, recall from remark in the beginning of the chapter the
143 — n(§) ~ 0 o
decomposition Ve|x,, = D)5 Vo, &€D,, Vi where V, =V, as MSpin(qul,q) modules,

and Vi, =2 V. as ‘M Spin(at q)—modules where V is the other half Spin representation.

As Ve € H ® V;, we only consider V;,, ..., V,

e 0 the definition of P¢ matrix.
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Since the statement of the theorem is true for Spin(q, q) with the restated

condition and as the set of t., weights of interest are the same after branching

down to Spin(q) x Spin(q) because i(OMSp%q)) = OMszﬁ(}ﬁ,q) by Lemma 7.2.17,

we have the statement of the theorem for a@ = ¢;. Note V¢, ® V' decomposes into
distinct Spin(q) x Spin(q)-modules by Corollary 3.4 of [Ku] as V* is multiplicity

free. Therefore, if W), &2 W, with k # [, then W) and W, cannot be contained in

a single Ve, ® V*, important as the statement of the theorem for Spin(q,q) also

assumes distinct V,s.

By Proposition 6.11 of [Bou], any positive short root « of Lie(Spin(q + 1, q))
must be conjugate to €; via an element of the Weyl group W(A) = Nk (A)/Zk(A)
Therefore, the set of t,-weights of interest is the same as that of t,, and we have

the statement of the theorem.

]

7.3 Comparison of t,-weights for type F, and Com-
parison of t,-weights for short roots of Lie(G,)

Recall the assumptions of Theorem 6.1.1.

Theorem 7.3.1. Let G be the connected, simply connected R-split Lie group of
type Fy. Let V,,,...,V,, be distinct K = Sp(3) x SU(2)-types that occur in H of
G such that Ve CV,, @ V. B, 1(v;) = n(€). If a is a short root of Lie(G), after
reordering, 55” = 0 for each j =1,...,n(§). If a is a long root of Lie(G), after
reordering, O° ;= 0aj* % for each j =1,...,n(§).

Q,

Proof. XI,1(~;) = n(¢) by Lemma 7.0.4.
Recall from chapter 3 the embedded subgroup i : Spin(5,4) — G with

maximal compact subgroup Spin(5) x Spin(4). We have #(°M ooy 4)) = Mg

where the restriction of K = Sp(3) x SU(2) to Spin(5) x Spin(4) preserve *Mg-
invariants of H and the decomposition V¢|oy, by Lemma 3.3.1. But we also have

the embedding i : Spin(4,4) — Spin(5,4) with Z<OMsp§E(Z4)) = OMSp%ZL) by

Lemma 7.2.17. Hence we also have the embedding i : Spin(4,4) — G where
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i(OM sonld 4)) = Mg and restriction of K = Sp(3) x SU(2) to the maximal compact

subgroup Spin(4) x Spin(4) of Spin(4,4) preserve °Mg-invariants of H and the
decomposition Vg|oy,.

If « is a positive long root of Lie(G), by Proposition 6.11 of [Bou], t, must
be conjugate to tz via an element of K = Sp(3) x SU(2) where § is a positive
root of Lz’e(SpM@) C Lie(G). If a is a positive short root of Lie(G), t, must

be conjugate to t., where ¢ is a positive short root of Lie(Spin(5,4)) C Lie(G).
We have t., € Lie(Spin(4) x Spin(4))c. Therefore, it will be enough to show the

statement for a a positive root of Lie(Spin(4,4)) C Lie(G) and €; a positive root
of Lie(Spin(5,4)) C Lie(G) where t., € Lie(Spin(4) x Spin(4))c.
We can restate the condition Ve C Vw ® V. as V%. C Ve ® V. Note the

—_—

statement of the theorem is true with the restated condition for Spin(4,4) by
Theorem 7.1.1 and Theorem 7.2.14.

Let V,,,...,V,, be distinct irreducible K-modules that occur in H such

VYN

that V,, € Ve ® V7, and let @j:l Span (Spin(4) x Spin(4)).V, OMG = D, Wi

where each Wy, is an irreducible Spin(4) x Spin(4)-module. The nontr1v1al element
n € py < °Mg acts by —1 where y5 is the kernel of the covering homomorphism

—_——

p: Spin(4,4) — Spin(4,4) which is also the kernel of the covering homomorphism
p: G — Gr. Hence Ve|gpin(a)xspin1) = @ ; Ve; where each of Vg, occurs in H @ V;
or H® V. with H that of Spin(4,4) and V, the other half Spin representation
after projection onto the second factor of Spin(4) x Spin(4). We have @, W, C
@, Ve, ® V¥ where each of W, occurs in H of Spin(4,4) as z(OMS m4)) = WMg.
We assert that if W, C Ve, @V, then Vg, |oy e is equivalent to a multiple
of V. and V¢, C HspET(ZA) ® V;. Indeed, if W, C V,, @ V7, then Vg, € Wy ®

V., hence claim is true by Lemma 7.0.3. This observation is important because

of the following. First, recall from remark in the beginning of the chapter the
decomposition Ve|gk, = EB;‘SB V., @ D,. Vi where Vo, 2V, as ‘Mg-modules, and
Vi 2 V. as ‘Mg-modules where V; is the other half Spin representation restricted

to Mg. As Ve € H ® V;, we only consider V..., V:e in the definition of Pt

matrix.

e~

Since the statement of the theorem is true for Spin(4,4) with the restated
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condition by Theorem 7.1.1 and Theorem 7.2.14 and as the set of t, weights of

interest and the set of t., weights of interest remain the same after branching down

. . <0 — 0 —

to Spin(4) x Spin(4) because i( Mspm4)) = Mspm(5,4)’
of the theorem for all positive roots a of Lie(Spin(4,4)) C Lie(G) and t., €
Lie(Sp(3) x SU(2))c. Note Ve, ® V¥ decomposes into distinct Spin(4) x Spin(4)-

modules by Corollary 3.4 of [Ku| as V* is multiplicity free. Therefore, if W, = W,

we have the statement

with k # [, then W}, and W, cannot be contained in a single Ve, ® V*, important

as the statement of the theorem for Spin(4,4) also assumes distinct V,s. [

Theorem 7.3.2. Let G be the connected, simply connected R-split Lie group of
type Ga. Let V., ..., V., be distinct K = SU(2) x SU(2)-types that occur in H of
G such that Ve €V, @ V;. B3 1(y;) = n(§). Let a be a short root of Lie(G). If
V. is the standard 2 dimensional representation of SU(2) after projection onto the
first factor of K, after reordering, 52]- = 04, for each j =1,...n(). If V; is the
standard 2 dimensional representation of SU(2) after projection onto the second

factor of K, after reordering, 5i,j =04, £ % for each j =1,...,n(&).

Proof. XI,1(~;) = n(§) by Lemma 7.0.4.

The maximal compact subgroup K of G is SU(2) x SU(2) where the first
SU(2) comes from ag the long root in the extended dynkin diagram of G5 in section
3.3 and the second SU(2) comes from a; the short simple root. By the definition of
t,, from 7.0.2, we see that t,, must be (0, t3) € su(2) @& su(2) where [ is a positive
root of Lie(SL(3,R)). We have that Mg = OMSm) sitting in SU(2) x SU(2)
diagonally.

V. is the standard 2 dimensional representation of SU(2) after projection

onto either the first factor or the second factor of K. Therefore, our situation is

exactly that of the two comparisons of t., weights for Spin(3,3) in the proof of
Theorem 7.2.14, hence we have the statement of the theorem for o;. By Proposition
6.11 of [Bou], any positive short root o € Lie(G) must be conjugate to oy via an
element of the Weyl group W(A) = Nk (A)/Zk(A), hence t, must be conjugate to
to, via an element of K. Therefore, the set of t,-weights of interest is the same as
that of t,, and we have the statement of the theorem.

O
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7.4 Product formula of p¢ for the connected, sim-
ply connected R-split Lie group of simple Lie
type other than A, and C,

Recall the notations from chapter 6. The following is Theorem 6.3.1 for the
connected, simply connected R-split Lie type other than A, and C,.

Theorem 7.4.1. There exists a non-zero scalar ¢ such that

pe(v) = cllyca+pip) (V)

Proof. The proof of Theorem 6.3.1 was completed with divisibility and degree
argument. First consider a a positive root of Lie(G) other than the short roots
of type B,,, Fy, and GG5. The semisimple part of GG, is the group generated by
Mp(2,R) and °M, and the K, module H, ® V; is exactly that of SL(n,R) case
from section 5.3. Therefore, divisibility argument is exactly that of SL(n,R).

Now consider « a positive short root of type B, Fy, and Gs.

If the small K-type is after projection onto the first factor Spin(n + 1) of
K = Spin(n + 1) x Spin(n) for type B, or if the small K-type is after projection
onto the second factor SU(2) of K = SU(2) x SU(2) for type G, the situation is
exactly the same as above. Now assume otherwise. The semisimple part of G, is
the group generated by Mp(2,R) and °M. Let Vg, be an irreducible K, module
that occurs in H, ® V;. The weights of t, on V, are even integers as t, acts
trivially on V;. V¢, is isomorphic as a K, module to an irreducible K, submodule
of (ZL @ V) @ (Z, @ V) for some I.

Let Ve C H®V,, €1, ..., € be a basis of Homg(Ve, H® V;). Let Ve|g, =
@751) V., @ W where V., is an irreducible K, module isomorphic to V; as M
modules for all j, and W is a multiple of V;|oy;.

Without loss of generality, let v; € V,, be a dominant t, weight vector.
Lo(€i(v;)) € ZLsymm(J,) @ V. for some | € Zsq where Ly, is defined in 6.2.6 and
symm(Jy) C U(ga)t™ with U(ga)® the subalgebra generated by t,, center of g,,
and the Casimir element. Recall the projection map @ : U(g) — U(a)U(¢)®nU(g)

onto the first factor. As t, acts trivially on V,, we still have that the action of
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ZLsymm(J,) on V. at the identity is given by Q(Z!symm(J,)), and hence the
rest of the argument is exactly that of SL(n,R).
The degree argument is exactly that of the proof of Theorem 6.3.1, using

Theorem 7.1.1, Theorem 7.2.16, Theorem 7.3.1, and Theorem 7.3.2. O



Chapter 8

Computation of p¢(r) and
Determinants of Intertwining

Operators

—_——

In this chapter we derive a general formula of p¢(rv) for the group SL(n,R)
(n > 3) as a product over those of rank one subgroups corresponding to the positive
roots. In addition, for G any of the connected, simply connected split real form of
simple Lie type other than type C,,, we prove cyclicity of a small K-type V, C Ip,,
in the closed Langlands chamber, and use this to prove irreducibility of unitary

principal series admitting a small K-type.

8.1 Computation in Rank One Case

Let G be any of the connected, simply connected split real form of simple

Lie type other than type C,,. For any positive root «, Lie(G,) = sl(2,R) ® Z(ga).

Recall for G,
H=P7oPZ

>0 >0

where Z = X + 1Y is discussed in chapter 5, and we drop the notation «. Recall
the projection map @ : U(g) — U(a)U(¢) @& nU(g) onto the first summand. To
compute pg(v) for a K-type Vg that occurs in H®V,, we compute Q(Z') and Q(?Z)

71
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with t weight +1 or 0. To do this, we use ’(Z') and @’ (71) already computed
in [JW] where Q' : U(g) — U(a) ® nU(g) ¢ U(g)t is the projection onto the
first summand. This is because Q(Z') and Q(?l) can be written as a sum of two

different parts, one in U(a), and the other in U(a)U (£)€, where the former is exactly
Q'(Z") and Q' (Zl) respectively.

Theorem 8.1.1. Q(Z') = II'_{,(X +2j —t) and Q7)) = Z6(X +2j +1t), where
t is a weight of t.

Proof. We prove the first formula.

From Theorem 7.6 of [JW], we have Q'(Z!) = H;;B(X + 27). We wish
to find the shift from U(a)U ()¢ part as it is the only difference between @) and
Q. Ifl =1, then Z = X +iY = X +i(2F +it). Hence the statement is true.
Now we proceed with the method of induction. Assume the statement for [ — 1
and we show the statement for I. We have Z! = ZZ'"! = (X + 2F — )21
After dropping the n part E, we have (X — t)Z!~! left. There will be exactly
two U(a)U(B)€ shifts, one from X (U(a)U(€)t part of Z'~!) and the other from
—t(Z!71) = = ZY(t — 2(1 — 1)) by the commutation relation. Hence, the overall
shift is (X + 2(1 — 1))(Q(Z'Y) — Q'(Z"7Y)) — tQ(Z'1). But, since Q'(Z') =
(X +2(1-1)Q'(Z'71), we have

Q(Z') = Q(Z") + shift = (X +2(1—1))Q'(Z"") (8.1.1)
+(X 20 -))QZTH - Q(Z7) —tQ(Z2'™)

(8.1.2)

= (X +2(1-1))Q(Z"Y) =tz (8.1.3)

=(X+20-1)-1)Q(Z™ (8.1.4)

Hence we have the first formula, and second can be shown similarly. O

If t acts nontrivially on V,, we have the following.

For the &-type Z @ V@ ZL @ V-,

_ 1
pe(v) = Wiso(v +2j + 3)
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and for the &-type Z' @ Vo @ 2L @ V+,

_ o1
pe(v) = G (v +2j — 3)

If t acts trivially on V,, for any of the &-type that occurs in (7 @V, ®
(Z'e V),
pe(v) = MiZp(v + 25)

8.2 Computation of p:(r) and Determinants of

Intertwining Operators for SL(n,R)

Computations are with p-shifts.

8.2.1 SL(3,R)

—_— —_~—

For SL(3,R), the set of positive roots of Lie(SL(3,R)) ® C = sl; consists
of oy = €1 — €, g = €3 — €3, and a3 = €1 — €3. As s are conjugates by elements
in K = Spin(3) for all j € {1,2,3}, the set of dominant weights that determine
pe(v) will be exactly the same for all three t,,, ta,, and t,,.

Consider an irreducible representation of K = Spin(3) = SU(2) with high-
est weight £ with p odd. The dominant t,-weights of interest are %, %, g, .y By all

with multiplicity one. We have the following using the product formula and the

computation in rank one case from section 8.1.

Let ¢ = £ with (p — 1) divisible by 4. Then, up to a nonzero scalar,

el o1 .3 o1
pe(v) = A T2y +2) 4 5) (0 + 2+ )2 + 2 + 5)

o3 o1 .3
x (V2+2J+§>(V1+V2+QJ+§)(V1+V2+2j+§)
Let £ = £ with (p — 3) divisible by 4. Then, up to a nonzero scalar,

B3 o1 .3 o1
pe(v) = A o+ 2) + 5) (0 + 2+ 5) (1 + 2 + 5)

.3 o1 3
X (I/2+2]—|—§>(V1+V2+2)+§)<I/1+I/2+2]+§>
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p=3 1 1 1
X HkiO(Vl + 2k + 5)(1/2 + 2k + 5)(V1 + vy + 2k + 5)

Let 0 = V;|opy. By Theorem 4.2.3, the determinant of the intertwiner

A(v) : Ips, — I, on &-type is the following.

Let ¢ = & with (p — 1) divisible by 4. Then, determinant of A(v)|(z,. ., ()

up to a nonzero scalar is
(=2 =2 -2}

p—1
T, %, T : : — )P
=0 ]_0((V1 +2j+2) (n+27+32) (o +25 + %))

" ((I/Q—Zj_%) (V1+V2—2j—%) (V1+V2_2j_%))p+l
o+ 2+ )+ +2j+ 1) (1 + 1o +2j+3)

In terms of gamma functions, this is
(2 =2j+5) T(va + 25 + %))pﬂ

p1 INOA —2j+%)1“(u1+2j+%)1“
DT(ve— 25 — )T (ve + 25+ 2)

I, 2t
=0 ]_O(F(Vl — 2] — g) F(l/l -+ 2j +

y (F(Vl + vy — 2] + %)2 F<V1 + vy + 2] + %))erl
F(V1—|—l/2—2j—%) F(Vl—f—yg—f-z]—f—g)
Let ¢ = & with (p — 3) divisible by 4. Then, determinant of A(v)|(1,. ., ()

up to a nonzero scalar is
s =2 =) =2 =) a2 -
FUER 42+ 5) (i +2)+3) (e + 25+

) \pi1
)

N D =

[SY

y (1/2—2j—%)(V1+V2—2j—%)<1/1+y2—2j—2))p+1
(ra+2j+3) (n+re+2j+2) (n+r+2j+32)
s (g — 2k — 1) (v — 2% — 1) (u1+u2—2k:—§))p+l

x II,%
k*°<(vl+2k:+§) (vo+ 2k +3) (1 +va + 2k + 3)

In terms of gamma functions, this is
ps o P =2+ 5)T(h +27+3) Dte =25+ 3) Do + 25 + 3) s
I 20 115 3 5 3 —5)"
I(v —25 — 5) C(vy + 25 + 5) D(vy — 25 — 5) D(vo+ 25 + 5)

F(Vl + Vo — 2] + %) F(Vl + vy + 2] + %))p-‘,—l
(i +1e—2j — )T+ vy + 25+ 2)
) Hp%s(r(yl — 2%k + ) T(wy — 2k + 5) T(vy + 15 — 2k + %))p+1
=D — 2k — ) T(vy — 2k — )T — 9%k —3
(vt 5) T 5) T(v + 10 5)
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8.2.2 SL(4,R)

—_~— P

For SL(4,R), the set of positive roots of Lie(SL(4,R)) ® C = s, consists
of iy = €1 — €2, iy = €3 — €3, 3 = €3 — €4, Qg = €1 — €3, A5 = €1 — €4, Qg = €3 — €4.
K = Spin(4) = SU(2) x SU(2), hence Lie(K) ® C = sly @ sly. In this

isomorphism, we have the following

1 7 (1
to, — [5 01 o |2 01]
0 —3] [0 —3
o -] [o =1
tas — | 2l ) 2
-5 0] |=3 0
1 7 (1
tocg — [_5 ? @ 2 01
0 3] [0 —3
1] i 1
¢ . O §Z @ 0 52
! —%z O_ _—%z 0
0 1 0o -1
ta, — [1 lo | | 2]
3 0 -5 0
1 1:
¢ O 5'& @ 0 —52
’ ~Lio] koo

t,s are all conjugates by elements in K = Spin(4) = SU(2) x SU(2) for
all @ € {aq,...,a5}, hence given an irreducible representation of K, the set of

dominant t,-weights counting multiplicity will be independent of o € {a, ..., ag}.
We have the following correspondence of highest weights.

€1 — €2 €1+€2

(€1,€2) of Spin(4) — ( 5y

) of SU(2) x SU(2)

(r+s,s—r)of Spin(4) «— (r,s) of SU(2) x SU(2)

Let 7 = C? ® triv and 7 = triv ® C? be the two half spin representations

of K = Spin(4) = SU(2) x SU(2). Let o1 = Vy,|oar and o9 = V,, |ops. If (1, 8) is a
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highest weight of SU(2) x SU(2) with r half-integral and s integral, (r,s) C Ipg, ..
If (r,s) is a highest weight of SU(2) x SU(2) with r integral and s half-integral,
(1,8) € Ipoyu-

Consider the highest weight module of SU(2) x SU(2) of highest weight
(r,s) that occurs in either Ip,, , or Ip,,,. Assume without loss of generality
r > s. Note r # s because one of r, s has to be half integral and the other has
to be an integral. The set of dominant t,-weights that occur in the highest weight
module of highest weight (7, s) counting multiplicity is the following.

13 13 13
{=,=,.r+s,=,=,..,r+s—1= T+ s—2, ...,

3
.. =y — S}
2°2 279’ 2 2 2

N —

Definition 8.2.3. Define ¢ : 2N + 1 — C[v] as follows.
m—1
gf(m) =102 (v + 2+ ) (v +2j+ 3) if 4 | m— 1

m—3
() = 0 (04 2)+ D+ 2+ 3) x T (v+2k+1) i 4 m—3
q, (m) :—Hl?oﬂi (v =2 —3)(v-2j-3) ifdfm—1

m—3
gy (m) =T, 12 (v —2j — L) (v =2 — ) x T (v—2k—1) if 4| m—3

Definition 8.2.4. Define G, (m) : 2N + 1 — M where M is the space of mero-
morphic functions, as follows.

_ 1—1 T(v—=2j+3) T(v+2j+3) .
r,(m):= Hz % HJ 0T 2]_7) (V+2j+§) ifd|m-—1

_ 1—1 T(v—2j+7%) D(v+2j+3) m=3 P(y—2k4-1
T,(m) =11, % H] B ey s By s R Oﬁlf4|m 3

From the above analysis of the dominant t,-weights and the above functions
we have the following. In the products below, indices of II'*% are r —s,r —s+1,7—

s+2,...,r+ s, all half integrals. Let V. be any of V, or V,,, and let 0 = V,|oy;.

pe(v) = sy = 2, q), (2m) gy, (2m) gy, (2m) gy, 1, (2m) G5, 40 (2) G5 4 40, (20)

detA(V)|(1p,,.,¢)) = detAW) (15,5, ((r9)))

_ Hr+s (qul (2m) q;g (2m) qug (Zm) Qljl +vo (Qm) QZ72+V3 (Qm) ql/_1 +v2+v3 (2m) )dlm(Vg)
e ql/+1 (2m) q;; (2m> qlJ/r3 <2m) qlJ/r1+V2 (Qm) q;r2+V3 (2m> q;+V2+V3 (2m)
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In terms of Gamma Functions,

detA(V)|(1p,,.,¢) = detAW)|(1p,.,((r)))

= HH_S (Fm (2m)FV2 <2m)FV3 (2m)F,,1 +v2 (2m>FV2+V3 (2m)FV1 +v2+v3 (2m))dim(\/5)

m=r—s

If » < s, the only difference is that the parameters for the products will
start from s — r instead of r — s. The formula of dim(V) is given in the next

subsection.

——

8.2.5 General case of SL(n,R)

In this subsection, we give a formula of p¢(r) and the determinant of A(v)

the intertwiner for SL(n,R). First, consider the following lemma.

Lemma 8.2.6. Let ®T be the set of positive roots of Lie(SL(n,R)). If ay, ag €

Ot then to, and t,, are conjugates of each other by an element in Spin(n).

P

Proof. Lie(SL(n,R)) is simply laced. Therefore, by Proposition 6.11 [Bou], all
positive roots are conjugates by an element of the Weyl group, Nk (A)/Zk(A).

Therefore, t,, and t,, are conjugates of each other by an element in Spin(n). O

By the lemma, given an irreducible representation V, that occurs in Ip,,,
the set of dominant t,-weights of V¢ counting multiplicity is independent of o € ®*.
Hence, we just need the set of dominant t,-weights of V; counting multiplicity for
some «. We choose o = €; — €5.

Recall that given Ve = @@

module, there is a unique dominant t,-weight on each V. This fact along with

(ﬁm(Vg)/dim(VT

=1 ) V., with each V.. an irreducible K-

the formula in rank one case given in section 8.1 allows us to compute the factors

—~——

of pe(v) coming from a = €; — €3 by branching Ve down to SO(2) C Spin(n) where

—_—

SO(2) denotes double cover of SO(2) and SO(2) is that occurring in the top left

—_——

corner such that t.,_., C Lie(SO(2)). However, we will branch down to Spin(3)

P

that occurs in the top left corner instead of going a step further down to SO(2) to

simplify notations.
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Given an irreducible Spin(n)-module V; C Ip,, with highest weight { =

&1 + ... + &g, branch down to Spin(3) where Spin(3) is as in above. Let

€., ]%} be the set of highest weights of Spin(3)-modules that occur in the
branching counting multiplicity. We have

pe(v) = Macar 15 4, 0y ()

Pe\—=V)\dim m N\ 2o \dim
detA(V)|IP,T,I/(£) - ( ;E(I/)))d (Vo) = ((Hae<1>+Hk:€1F(u,a)(]k>)dlm(vﬂ)d (Vo)

i J v

pi =k —i+ i dim(V;) = 2% and if n = 2k, dim(V¢) = nlgkjgk<fi+pi;:;%+pj>2
with p; = k — i, dim(V,) = 2~1.

8.3 Application: Cyclicity of V. and Irreducibil-
ity of Unitary Principal Series

Recall the computation of p¢(v) in rank one case, now with p-shift. If t acts
nontrivially on V., we have the following.

For the &-type 7'® VieZle V-,

- .3
pe(v) =WZo(v +2j + 3)

and for the &-type 7'® V- Z'o VT,

_ 1
pe(v) = Wiso(v +2j + 3)

If t acts trivially on V,, for any of the {-type that occurs in (7l ® V) ®
(Z'e V),
pe(v) =TIZh(v + 25 + 1)

p-shift simplifies determinant formula of P¢ for the following reason. Let «
be a simple root, and 3 be a non-simple root of sl,,, 7, and 73 be K, and Kz types

respectively such that 7, and 75 are the same types. In general, ps, (v) # ps, (V)
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without the p-shift. However, with p-shift, we have ps,(v) = ps,(v), which is
built into the proof of Theorem 6.2.8. Consider the following example of the
case Sf(?’),/R) Let ¢ be the 4-dimensional K = Spin(3)-type. We have p¢(v) =
(11 — 3)(va — 3)(v1 + 12 — 2) before p-shift and pe(v) = (11 +3) (o + 3) (1 + 10+ 3)
after p-shift.

The following discussion is from 11.3.6 of [RRG II].

Let G be a real semisimple Lie group with maximal compact subgroup
K. Let V; be a small K-type and let o = V,|oy;. From chapter 10 of [RRG II],
we know there exists ¢ > 0 such that if Re(v,a) > ¢ for all &« € ®T, then det
J5pW)|1p, .-y # 0. Hence we have mp,,(U(9))I,(T) = Ip,, for these vs. This

induces a surjective (g, K)-module homomorphism

trw 2 U(8) @ugrtoe Vew — Ipow

where the map is the action of the first factor on the second, which gives cyclicity
of V. for above vs.

Moreover, it is also shown in 11.3.6 of [RRG II] that U(g) ®ugve Ve =
Ip,, as K-modules independent of v. This result implies that the K-isotypic
components of U(g) ®ugrv ) Vrp and Ipg, are exactly the same. Hence if V. is

cyclic in Ip,,, then p,, is a (g, K)-module isomorphism.

Theorem 8.3.1. Let G be any of the connected, simply connected split real form
of simple Lie type other than type C, with mazximal compact subgroup K. Let V,
be a small K-type and let o0 = V,|opr. If Re(v, ) > 0 for every a € T, i.e. in the

closed Langlands chamber, V. C Ip,, 1s cyclic.

Proof. By the definition of P%(v) and above discussion, V; is cyclic if and only
if pe(v) # 0 for every K-type ¢ that occurs in Ip,,. By Theorem 6.3.1 and
Theorem 7.4.1, pe(v) is a product of those of rank one subgroups G, of G where
a € . As G is split, the semisimple part of Lie(G,) is isomorphic to sl(2,R).
Let n(&) = dim Homg (V;, V). The product formula of pe and the formulas in the

rank one case given in the beginning of the section suggest that for a K-type &

3 3

that occurs in Ip,,, a € ¥, and j = 1,...,n(§), there exist [, ;, my, ;, ni,j € Z>o
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such that pe(v) is equal to

(&) ls —1mb 1 af 1, 2(v, ) 1.,2(v,«a)
HaG@*'Hjigl)Hp;O Hq:d Hr:b ( (Oé,Oé) +2p+§)( (Oé,Oé) +QQ+1)(W+2T+§>

up to a nonzero scalar multiple. Hence, if Re(v, ) > 0 for every aw € &, pe(v) # 0

2(v, «) 3

for every K-type £ that occurs in Ip,, and V; C Ip,, is cyclic. ]

Corollary 8.3.2. Let G be any of the connected, simply connected split real form
of simple Lie type other than type C, with mazimal compact subgroup K. Let V.
be a small K-type and let o = Vi |ops. The unitary principal series (7py,,, H?"V)

(Re v =0) is irreducible.

Proof. Suppose HP?" with Re v = 0 is reducible. By Theorem 3.4.11 of [RRG
I], the underlying (g, K')-module Ip,, is reducible. Therefore, there is a proper,
nontrivial, closed (g, K)-invariant subspace W of Ip,, that does not contain V;.
Unitarity implies that the orthogonal complement of W, W+ is a nontrivial, closed
(g, K)-invariant subspace that contains V,, which is a contradiction as V; is cyclic
by Theorem 8.3.1.

O
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