UC San Diego UC San Diego Electronic Theses and Dissertations

Title

Determinants of intertwining operators between genuine principal series representations of nonlinear real split groups

Permalink https://escholarship.org/uc/item/776664mh

Author Lee, Seung Won

Publication Date 2012

Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Determinants of Intertwining Operators between Genuine Principal Series Representations of Nonlinear Real Split Groups

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy

in

Mathematics

by

Seung Won Lee

Committee in charge:

Professor Nolan Wallach, Chair Professor Kenneth Intriligator Professor Ramamohan Paturi Professor Cristian Popescu Professor Hans Wenzl

2012

Copyright Seung Won Lee, 2012 All rights reserved. The dissertation of Seung Won Lee is approved, and it is acceptable in quality and form for publication on microfilm and electronically:

Chair

University of California, San Diego

2012

DEDICATION

To my parents

TABLE OF CONTENTS

Signature Pa	ge	iii		
Dedication .		iv		
Table of Contents				
Acknowledgements				
Vita and Publications				
Abstract of t	he Dissertation	ix		
Chapter 1	Introduction	1 1 2		
Chapter 2	Principal Series and Intertwining Operators $\ldots \ldots \ldots$ 2.1 Principal Series Representation and the Underlying (\mathfrak{g}, K) -	7		
	module	7 9 10		
	2.4 Relationship between the r^{γ} matrix and intertwining Operators of Principal Series Representations	11 12		
Chapter 3	Small K-types	14		
	types	14		
	form of simple Lie types $\ldots \ldots \ldots$	15		
	into G	20		
Chapter 4	The P^{ξ} matrix4.1Definition4.2Relationship between P^{ξ} matrix and Intertwining Oper-	$\begin{array}{c} 25\\ 25 \end{array}$		
	ators of Principal Series Representations	26		
Chapter 5	$\widetilde{SL(n,\mathbb{R})}$ and Metalinear Group $\widetilde{GL(n,\mathbb{R})}$ 5.1 The Group $\widetilde{SL(n,\mathbb{R})}$ and the Metalinear Group $\widetilde{GL(n,\mathbb{R})}$ 5.2 Irreducible Representations of $Pin(n)$ and Small $Pin(n)$	28 28		
	types relative to the Metalinear Group	30		

	5.3 Structure of irreducible K_{α} -modules in H_{α} and $H_{\alpha} \otimes V_{\tau}$. 31
	5.4 Frobenius Reciprocity in our Context
	5.5 t_{α} -weights on certain vectors
	5.6 Restriction of $Pin(n)$ -modules to $Spin(n)$ and \mathfrak{t}_{α} -weights 37
Chapter 6	Product Formula of p_{ξ} for $\widetilde{SL(n,\mathbb{R})}$
	6.1 Comparison of \mathfrak{t}_{α} -weights
	$6.2 \text{Divisibility} \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	6.2.1 Definition of the P^{ξ} matrix revisited
	$6.2.4 \text{Divisibility} \dots \dots$
	6.3 Product Formula of p_{ξ} for the group $SL(n, \mathbb{R})$ 47
Chapter 7	Product formula of p_{ξ} for the connected, simply connected \mathbb{R} -
	split Lie group of simple Lie type other than A_n and $C_n \ldots 48$
	7.1 Comparision of \mathfrak{t}_{α} -weights $\ldots \ldots \ldots$
	7.2 Comparison of \mathfrak{t}_{α} -weights for short roots of $Lie(SO(q+1,q))$ 51
	7.2.1 The Groups $Spin(p,q), Pin(p,q) \ (p \ge q \ge 3, p =$
	q or p = q + 1) and their Small K-types 51
	7.2.4 Restriction of $Pin(q) \times Pin(q)$ modules to $Spin(q) \times$
	$Spin(q)$ and $\mathfrak{t}_{\epsilon_1}$ -weights
	7.2.13 Comparison of t_{α} -weights for short roots of
	$Lie(SO(q+1,q)) \dots \dots \dots \dots \dots 59$
	(.3 Comparison of t_{α} -weights for type F_4 and Comparison of t_weights for short roots of $Lie(C_2)$ 66
	7.4 Product formula of p_c for the connected simply con-
	nected \mathbb{R} -split Lie group of simple Lie type other than
	A_n and C_n
Chapter 8	Computation of $p_{\xi}(\nu)$ and Determinants of Intertwining Op-
	erators
	8.1 Computation in Rank One Case
	Operators for $\mathcal{L}(\mu, \mathbb{D})$ and Determinants of intertwining
	Operators for $SL(n, \mathbb{R})$
	$8.2.1 SL(3,\mathbb{R}) \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	8.2.2 $SL(4,\mathbb{R})$
	8.2.5 General case of $SL(n, \mathbb{R})$
	8.3 Application: Cyclicity of V_{τ} and Irreducibility of Unitary
	Principal Series
Bibliography	81

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank my family, especially my parents, for their unconditional love and support. They have provided me with so many opportunities and have always been supportive of my decisions. I am truly grateful for their faith in me.

I also would like to thank my fellow graduate students for both mathematical and non-mathematical interactions that were crucial for the completion of my graduate study. I am grateful to Raul Gomez and Oded Yacobi for sharing their knowledge and insights. Numerous discussions with Jon Middleton have also been very helpful in the last couple years. I would like to give special thanks to Mike Gao, Andre Minor, and Ravi Shroff, who have been more of brothers than just friends ever since I came to San Diego.

My advisor, Professor Nolan Wallach, has provided more help than anyone else. It was his guidance and patience that made this thesis possible, which I did not believe would be possible. I would like to thank him for teaching me so many things, especially teaching me what passion towards mathematics is. A few years ago I asked Jeb Willenbring, a former student of Professor Wallach's, what he misses the most from San Diego. I expected his answer to be the great weather, beautiful beaches, etc..., but his answer was the conversations he used to have with Professor Wallach. I certainly understand Jeb now.

VITA

2005	B.A. in Mathematics, Cornell University
2009	M.A. in Mathematics, University of California, San Diego
2012	Ph.D. in Mathematics, University of California, San Diego

ABSTRACT OF THE DISSERTATION

Determinants of Intertwining Operators between Genuine Principal Series Representations of Nonlinear Real Split Groups

by

Seung Won Lee

Doctor of Philosophy in Mathematics

University of California, San Diego, 2012

Professor Nolan Wallach, Chair

Classification of "small K-types" for the connected, simply connected split real form of simple Lie type other than type C_n is obtained via Clifford algebras which completes the list of all small K-types of dim > 1 for the connected, simply connected split real form of simple Lie types. An analog, P^{ξ} , of Kostant's P^{γ} matrix is defined for a K-type V_{ξ} of principal series admitting a small K-type, and a product formula of the determinant of P^{ξ} over the rank one subgroups corresponding to the reduced restricted roots is proved. The product formula and the relationship between P^{ξ} and intertwining operator between the genuine principal series representations give a method to compute the shift factors of Vogan and Wallach's generalization of Leslie Cohn's determinant formula for the restriction of the intertwining operator to a K-isotypic component given in terms of ratios of classical gamma functions. The determinant of the intertwining operator between the genuine principal series representations of $\widetilde{SL(n,\mathbb{R})}$ $(n \geq 3)$ is obtained as a ratio of classical gamma functions.

Chapter 1

Introduction

1.1 Background

In their 1990 paper, David Vogan and Nolan Wallach proved a difference equation for intertwining operators for C^{∞} principal series by tensoring principal series with a finite dimensional spherical representation of G. This difference equation was used to prove a meromorphic continuation of the intertwining operators for C^{∞} principal series. It was also used to derive a generalization of Leslie Cohn's determinant formula for the restriction of the intertwining operator to a K-isotypic component. This determinant is given in terms of ratios of classical gamma functions with appropriate shifts that are yet unknown in general. In the same year, Chen-bo Zhu generalized Vogan and Wallach's work by showing that associated with each irreducible finite dimensional representation of G, there is a functional equation relating intertwining operators.

The intertwining operators are also related to Kostant's 1971 paper in which he proves irreducibility of spherical principal series and existence of complementary series. In more detail, let H be the the space of K-harmonics on $\mathfrak{p}_{\mathbb{C}}$ where \mathfrak{p} is the -1 eigenspace of the Cartan involution on Lie(G). It is a result of Kostant and Rallis that spherical principal series is isomorphic with H as a K module. For a K-type γ , let $E_{\gamma} = (V_{\gamma}^*)^{0M}$, let $\epsilon_1, ..., \epsilon_{l(\gamma)}$ be a basis of E_{γ} , and let $v_1, ..., v_{l(\gamma)}$ be a basis of V_{γ}^{0M} where ${}^{0}M$ is the centralizer of \mathfrak{a} in K. Let Q' be the projection map onto the first summand of $U(\mathfrak{g}) = U(\mathfrak{a}) \oplus \mathfrak{n}U(\mathfrak{g}) \oplus U(\mathfrak{g})\mathfrak{k}$. Kostant defines what he calls the P^{γ} matrix by $(P^{\gamma})_{i,j} = (Q'(\epsilon_i(v_j)))$. The critical point of the paper is the explicit determination of the determinant of P^{γ} . Kostant achieves the determinant in split rank one case, and he derives the general formula for the determinant by proving a product formula over the rank one subgroups corresponding to the reduced restricted roots. In their 1977 paper, Kenneth Johnson and Nolan Wallach proved a formula of the intertwining operator $A_s(\nu)$ for spherical principal series in terms of Kostant's P^{γ} matrices that is $A_s(\nu)(\lambda \otimes \nu) = \lambda \circ P^{\gamma}(\nu)^{-1}P^{\gamma}(s(\nu-\rho)+\rho) \otimes \nu$ where $\lambda \in E_{\gamma}, \nu \in V_{\gamma}$, and $s \in W(A)$. In light of this formula and Kostant's product formula of the determinant of P^{γ} , one can obtain the appropriate shifts in the gamma functions that give the determinant of the intertwining operator on the γ isotypic component.

1.2 Main Results

Similar technique of Kostant's may be applied to principal series representations that admit so called "small K-types". In the second volume of his book Real Reductive Groups, Nolan Wallach defines small K-type V_{τ} to be an irreducible representation of K whose irreducibility is preserved under restriction to ${}^{0}M$, and gives examples for all real forms over \mathbb{R} of all simple Lie types. Moreover, he proves that as K modules, $I_{P,\sigma,\nu}$ is isomorphic with $U(\mathfrak{g}) \otimes_{U(\mathfrak{k})U(\mathfrak{g})^{K}} V_{\tau}$ where $I_{P,\sigma,\nu}$ is the underlying (\mathfrak{g}, K) -module of the principal series induced from the ${}^{0}M$ irreducible representation $\sigma = V_{\tau}|_{{}^{0}M}$ with minimal parabolic subgroup P, which also covers Kostant and Rallis' result because trivial representation is a small K-type.

Based on the results above, for a K-type V_{ξ} that occurs in $I_{P,\sigma,\nu}$, we define an analogue of Kostant's P^{γ} matrix, P^{ξ} , whose definition is as follows. Let $T_1^{\xi}, ..., T_{n(\xi)}^{\xi}$ be a basis of $Hom_{0M}(V_{\tau}, V_{\xi})$ and $\epsilon_1^{\xi}, ..., \epsilon_{n(\xi)}^{\xi}$ be a basis of $Hom_K(V_{\xi}, U(\mathfrak{g}) \otimes_{U(\mathfrak{k})U(\mathfrak{g})^K} V_{\tau} \longrightarrow I_{P,\sigma,\nu}$ be the corresponding isomorphism as K-modules, and define $R_{\nu} : U(\mathfrak{g}) \otimes_{U(\mathfrak{k})U(\mathfrak{g})^K} V_{\tau} \longrightarrow V_{\tau}$ by $R_{\nu}(Z) := Q_{\nu}(Z)(e)$. Note every map defined above intertwines ${}^{0}M$ action, hence $R_{\nu} \circ \epsilon_i \circ T_j$ does also for all i and j. Define by $P^{\xi}(\nu)$ the $n(\xi)$ by $n(\xi)$ matrix such that $(P^{\xi}(\nu))_{i,j}$ is the polynomial in ν in which $R_{\nu} \circ \epsilon_i^{\xi} \circ T_j^{\xi}$ acts on V_{τ} , and define by P^{ξ} the $n(\xi)$ by $n(\xi)$ matrix obtained from $P^{\xi}(\nu)$ by replacing the entries with the corresponding elements in $U(\mathfrak{a}_{\mathbb{C}}) \otimes End(V_{\tau})$.

Let G be any of the connected, simply connected split real form of simple Lie type other than type C_n with maximal compact subgroup K. First, by a relationship between ${}^{0}M$ and Clifford algebra, we show that the examples of small K-types given by Nolan Wallach exhaust the list of all small K-types, which completes the list of all small K-types of dim > 1 for the connected, simply connected split real form of simple Lie types. If K is a product of two groups, denote by p_1 and p_2 the projection onto the first factor and the second factor respectively. Denote by s the Spin representation of Spin(n) for n odd, and either of the two half-Spin representations of Spin(n) for n even.

Theorem 3.3.2 Let G be any of the connected, simply connected split real form of simple Lie type other than type C_n with maximal compact subgroup K. The following is a complete list of all small K-types.

Туре	K	Small K-type
$A_n \ (n \ge 2)$	Spin(n+1)	8
$B_n \ (n \ge 3)$	$Spin(n+1) \times Spin(n)$	$s \circ p_1$ or $s \circ p_2$ for n odd, $s \circ p_2$
		for n even
$D_n \ (n \ge 3)$	$Spin(n) \times Spin(n)$	$s \circ p_1$ or $s \circ p_2$
E_6	Sp(4)	standard 8 dimensional rep-
		resentation
E_7	SU(8)	standard 8 dimensional rep-
		resentation or its dual rep-
		resentation
E_8	Spin(16)	standard 16 dimensional
		representation
F_4	$Sp(3) \times SU(2)$	standard 2 dimensional rep-
		resentation $\circ p_2$
G_2	$SU(2) \times SU(2)$	standard 2 dimensional rep-
		resentation $\circ p_1 \ or \ p_2$

Second, for a K-type V_{ξ} of principal series admitting a small K-type V_{τ} , a product formula of the determinant of P^{ξ} over the rank one subgroups corresponding to the reduced restricted roots is proved. In more detail, let ϕ be a positive root of Lie(G), and let G_{ϕ} be the corresponding rank one subgroup. G_{ϕ} has its semisimple part the group generated by the metaplectic group $Mp_2(\mathbb{R})$ and ${}^{0}M$. Let K_{ϕ} be the maximal compact subgroup of G_{ϕ} generated by a torus and ${}^{0}M$. Let $V_{\xi} = \bigoplus_{j=1}^{n(\xi)} V_{\tau_{j}} \oplus W$ where $V_{\tau_{j}}$ is an irreducible K_{ϕ} module such that $V_{\tau_{j}} \cong V_{\tau}$ as ${}^{0}M$ modules for all $j = 1, ..., n(\xi)$ and W is a K_{ϕ} submodule of V_{ξ} such that $dimHom_{0M}(V_{\tau}, W) = 0$. Let $p_{\phi} = p_{\tau_{1}}^{\phi} ... p_{\tau_{n(\xi)}}^{\phi}$ where $p_{\tau_{j}}^{\phi}$ is the determinant of $P^{\tau_{j}}$ matrix of the rank one case of G_{ϕ} with K_{ϕ} -type $V_{\tau_{j}}$. Denote by $p_{(\phi)} = T_{\rho_{\phi}-\rho}(p_{\phi})$ where $T_{\rho_{\phi}-\rho}$ is translation by $\rho_{\phi} - \rho$. The following is a product formula of p_{ξ} , the determinant of P^{ξ} , over the rank one subgroups corresponding to the reduced restricted roots for the connected, simply connected split real form of simple Lie type other than type C_{n} .

Theorem 6.3.1 & **Theorem 7.4.1** There exists a nonzero scalar c such that

$$p_{\xi}(\nu) = c \prod_{\phi \in \Phi^+} p_{(\phi)}(\nu)$$

Third, Johnson and Wallach's formula of the intertwining operator for spherical principal series in terms of Kostant's P^{γ} matrix remains true. Let $v \in V_{\tau}$. We look at $P^{\xi}(\nu)$ as a map of $\bigoplus_{j=1}^{n(\xi)} T_j^{\xi}(V_{\tau}) \longrightarrow \bigoplus_{j=1}^{n(\xi)} T_j^{\xi}(V_{\tau})$ by setting $P^{\xi}(\nu)T_i^{\xi}(\nu) = \sum_{j=1}^{n(\xi)} T_j^{\xi}(P_{ji}^{\xi}(\nu)\nu)$. If $V_{\xi} = \bigoplus_{j=1}^{n(\xi)} T_j^{\xi}(V_{\tau}) \oplus W$ is a decomposition of V_{ξ} as a ${}^{0}M$ -module, we look at $P^{\xi}(\nu)$ as a map on V_{ξ} where $P^{\xi}(\nu)$ acts as above on $\bigoplus_{j=1}^{n(\xi)} T_j^{\xi}(V_{\tau})$ and acts trivially on W. We now look at $P^{\xi}(\nu)$ as an operator on $Hom_{0M}(V_{\xi}, V_{\tau})$ where $P^{\xi}(\nu) \cdot \lambda = \lambda \circ P^{\xi}(\nu)$. With the new definition for P^{ξ} , the formula of the intertwining operator obtained by Kenneth Johnson and Nolan Wallach remains true for the underlying (\mathfrak{g}, K) module $I_{P,\sigma,\nu}$ in general.

Theorem 4.2.3 Given $s \in W(A)$ the Weyl group of \mathfrak{a} , let $A_s(\nu) : I_{P,\sigma,\nu} \longrightarrow I_{P,\sigma,s(\nu-\rho)+\rho}$ be such that $A_s(\nu)\tau_{\nu} = \tau_{s(\nu-\rho)+\rho}$ and $A_s(\nu) \circ \pi_{\tau,\nu}(u) = \pi_{\tau,s(\nu-\rho)+\rho}(u) \circ A_s(\nu)$ for all $u \in U(\mathfrak{g})$. Then

$$A_s(\nu)(\lambda \otimes v) = \lambda \circ P^{\xi}(\nu)^{-1} P^{\xi}(s(\nu - \rho) + \rho) \otimes v$$

for $\lambda \in Hom_{0_M}(V_{\xi}, V_{\tau})$ and $v \in V_{\xi}$, if $det \ P^{\xi}(\nu) \neq 0$ and $det \ P^{\xi}(s(\nu - \rho) + \rho) \neq 0$ for all $\xi \in \hat{K}$ that occurs in $I_{P,\sigma,\nu}$.

The determinant of the intertwining operator between the genuine principal series representations of $\widetilde{SL(n,\mathbb{R})}$ $(n \geq 3)$ is obtained as a ratio of classical gamma functions. $SL(n, \mathbb{R})$ $(n \geq 3)$ is the connected, simply connected two-fold covering group of $SL(n, \mathbb{R})$ whose maximal compact subgroup K is Spin(n). Let V_{τ} be the spin representation of Spin(n) for n odd and either of the two half-spin representations of Spin(n) for n even. Denote by η the nontrivial element of the covering homomorphism $p: Spin(n) \to SO(n)$, where we assume -1 action of η . Then, $\mathbb{C}[{}^{0}M]/ < \eta + 1 >$ is isomorphic with the subalgebra of $Cliff_n$ spanned by the even number of products of the generators. Thus, $\mathbb{C}[{}^{0}M]/ < \eta + 1 >$ is isomorphic to the simple matrix algebra $M_{2^{\frac{n-1}{2}}}(\mathbb{C})$ for n odd and to a direct sum of two isomorphic copies of the simple matrix algebra $M_{2^{\frac{n-2}{2}}}(\mathbb{C})$ for n even. Based on this observation, we have that V_{τ} is a small K-type, and Weyl dimension formula implies that above examples of small K-types exhaust the list of all small K-types for the group $SL(n, \mathbb{R})$.

Define
$$q_{\nu}: 2\mathbb{N} + 1 \longrightarrow \mathbb{C}[\nu]$$
 where $\mathbb{N} = \{0, 1, 2, 3, ...\}$ as follows.
 $q_{\nu}(m) := \prod_{\substack{l=0\\l=0}}^{\frac{m-1}{4}} \prod_{j=0}^{l-1} (\nu + 2j + \frac{1}{2})(\nu + 2j + \frac{3}{2})$ if $4 \mid m - 1$
 $q_{\nu}(m) := \prod_{\substack{l=0\\l=0}}^{\frac{m-3}{4}} \prod_{j=0}^{l-1} (\nu + 2j + \frac{1}{2})(\nu + 2j + \frac{3}{2}) \times \prod_{\substack{k=0\\k=0}}^{\frac{m-3}{4}} (\nu + 2k + \frac{1}{2})$ if $4 \mid m - 3$

Define $\Gamma_{\nu}(m): 2\mathbb{N} + 1 \longrightarrow M$ where M is the space of meromorphic functions in ν as follows.

$$\Gamma_{\nu}(m) := \Pi_{l=0}^{\frac{m-1}{4}} \Pi_{j=0}^{l-1} \frac{\Gamma(\nu-2j+\frac{1}{2})}{\Gamma(\nu-2j-\frac{3}{2})} \frac{\Gamma(\nu+2j+\frac{1}{2})}{\Gamma(\nu+2j+\frac{5}{2})} \text{ if } 4 \mid m-1$$

$$\Gamma_{\nu}(m) := \Pi_{l=0}^{\frac{m-3}{4}} \Pi_{j=0}^{l-1} \frac{\Gamma(\nu-2j+\frac{1}{2})}{\Gamma(\nu-2j-\frac{3}{2})} \frac{\Gamma(\nu+2j+\frac{1}{2})}{\Gamma(\nu+2j+\frac{5}{2})} \times \Pi_{k=0}^{\frac{m-3}{4}} \frac{\Gamma(\nu-2k+\frac{1}{2})}{\Gamma(\nu-2k-\frac{3}{2})} \text{ if } 4 \mid m-3$$

Now, given an irreducible Spin(n)-module $V_{\xi} \subseteq I_{P,\sigma,\nu}$ with highest weight $\xi = \xi_1 \epsilon_1 + \ldots + \xi_n \epsilon_k$, branch down to Spin(3) that occurs in the top left corner. Let $\{\frac{j_1}{2}, \ldots, \frac{j_{m_{\xi}}}{2}\}$ be the set of highest weights of Spin(3)-modules that occur in the branching counting multiplicity. Denote by $A(\nu)$ the intertwining operator $A_s(\nu)$ with s the longest element of the Weyl group. The following formulas are with ρ -shifts.

$$p_{\xi}(\nu) = \prod_{\alpha \in \Phi^+} \prod_{k=1}^{m_{\xi}} q_{(\nu,\alpha)}(j_k)$$

$$det A(\nu)|_{I_{P,\sigma,\nu}(\xi)} = \left(\frac{p_{\xi}(-\nu)}{p_{\xi}(\nu)}\right)^{dim(V_{\xi})} = \left(\left(\Pi_{\alpha\in\Phi^{+}}\Pi_{k=1}^{m_{\xi}}\Gamma_{(\nu,\alpha)}(j_{k})\right)^{\frac{2}{dim(V_{\tau})}}\right)^{dim(V_{\xi})}$$

where if n = 2k + 1, $dim(V_{\xi}) = \prod_{1 \le i < j \le k} \frac{(\xi_i + \rho_i)^2 - (\xi_j + \rho_j)^2}{\rho_i^2 - \rho_j^2} \prod_{1 \le i \le k} \frac{\xi_i + \rho_i}{\rho_i}$ with $\rho_i = k - i + \frac{1}{2}$, $dim(V_{\tau}) = 2^k$, and if n = 2k, $dim(V_{\xi}) = \prod_{1 \le i < j \le k} \frac{(\xi_i + \rho_i)^2 - (\xi_j + \rho_j)^2}{\rho_i^2 - \rho_j^2}$ with $\rho_i = k - i$, $dim(V_{\tau}) = 2^{k-1}$.

Last, cyclicity of a small K-type V_{τ} in $I_{P,\sigma,\nu}$ is determined by the determinant of P^{ξ} matrix. V_{τ} is cyclic in $I_{P,\sigma,\nu}$ if and only if $p_{\xi}(\nu) \neq 0$ for every K-type ξ that occurs in $I_{P,\sigma,\nu}$. By the product formula of $p_{\xi}(\nu)$, we obtain the following result and its corollary.

Theorem 8.3.1 Let G be any of the connected, simply connected split real form of simple Lie type other than type C_n with maximal compact subgroup K. Let V_{τ} be a small K-type and let $\sigma = V_{\tau}|_{0M}$. If $Re(\nu, \alpha) \ge 0$ for every $\alpha \in \Phi^+$, i.e. in the closed Langlands chamber, $V_{\tau} \subseteq I_{P,\sigma,\nu}$ is cyclic.

Corollary 8.3.2 Let G be any of the connected, simply connected split real form of simple Lie type other than type C_n with maximal compact subgroup K. Let V_{τ} be a small K-type and let $\sigma = V_{\tau}|_{0M}$. The unitary principal series $(\pi_{P,\sigma,\nu}, H^{P,\sigma,\nu})$ $(Re \ \nu = 0)$ is irreducible.

Chapter 2

Principal Series and Intertwining Operators

2.1 Principal Series Representation and the Underlying (\mathfrak{g}, K) -module

Let G be a real reductive group with maximal compact subgroup K defined as the set of fixed elements of a Cartan involution θ . Let \mathfrak{g}_{\circ} be the Lie algebra of G with complexification \mathfrak{g} . Let (P, A) be a standard p-pair with Langlands decomposition $P = {}^{0}MAN$ with Levi factor ${}^{0}MA$ and unipotent radical N.

Definition 2.1.1.

- A Hilbert representation of G on a topological vector space V over \mathbb{C} is a homomorphism π of G to GL(V) such that the map $G \times V \to V$ given by $(g, v) \mapsto \pi(g)v$ is continuous.
- A closed subspace W of V is invariant if $\pi(g)W \subseteq W$ for all $g \in G$. (π, V) is irreducible if the only invariant subspaces of V are 0 and V.
- A Hilbert representation (π, V) of G is unitary if $\pi(g)$ is a unitary operator for all $g \in G$.

Definition 2.1.2. Let V be a \mathfrak{g} -module and a K-module. V is a (\mathfrak{g}, K) -module if:

- 1. k.X.v = Ad(k)X.k.v for all $v \in V, k \in K, X \in \mathfrak{g}$.
- 2. If $v \in V$, then K.v spans a finite dimensional vector subspace of V, W_v , such that the action of K on W_v is continuous.
- 3. If $Y \in Lie(K)_{\mathbb{C}}$ and $v \in V$ then $\frac{d}{dt}|_{t=0}exp(tY)v = Y.v.$

Let (σ, H_{σ}) be an irreducible Hilbert representation of ${}^{0}M$ that is unitary when restricted to $K \cap {}^{0}M$, and let $\nu \in (Lie(A)_{\mathbb{C}})^{*}$. Define ${}^{\infty}H^{P,\sigma,\nu}$ as the space of all smooth functions $f : G \longrightarrow H_{\sigma}$ such that $f(mang) = \sigma(m)a^{\nu+\rho}f(g)$ for $m \in {}^{0}M, a \in A, n \in N$, and $g \in G$. Define for $f, g \in {}^{\infty}H^{P,\sigma,\nu}$

$$< f,g >= \int_K < f(k), g(k) > dk$$

Denote by $H^{P,\sigma,\nu}$ the Hilbert space completion of ${}^{\infty}H^{P,\sigma,\nu}$. From 1.5.3 of [RRG I], we know that the right regular action $\pi_{P,\sigma,\nu}(g)f(x) = f(xg)$ gives a Hilbert Representation $(\pi_{P,\sigma,\nu}, H^{P,\sigma,\nu})$ of G.

Definition 2.1.3. The representation $(\pi_{P,\sigma,\nu}, H^{P,\sigma,\nu})$ above is called a principal series representation of G.

If $X \in \mathfrak{g}$, then $X.f(g) = \frac{d}{dt}|_{t=0}f(g \cdot exp(tX))$ gives a natural action of \mathfrak{g} on $H^{P,\sigma,\nu}$ induced from $\pi_{P,\sigma,\nu}$. We will also denote this action of \mathfrak{g} by $\pi_{P,\sigma,\nu}$. For $\gamma \in \hat{K}$, denote by $H^{P,\sigma,\nu}(\gamma)$ the sum of all the K-invariant, finite dimensional subspaces of $H^{P,\sigma,\nu}$ that are in the class of γ . Denote by $I_{P,\sigma,\nu}$ the algebraic direct sum $\bigoplus_{\gamma \in \hat{K}} H^{P,\sigma,\nu}(\gamma) \cap {}^{\infty}H^{P,\sigma,\nu}$. The following is Lemma 3.3.5 of [RRG I].

Lemma 2.1.4. $(\pi_{P,\sigma,\nu}, I_{P,\sigma,\nu})$ is a (\mathfrak{g}, K) -module.

 $(\pi_{P,\sigma,\nu}, I_{P,\sigma,\nu})$ is called the underlying (\mathfrak{g}, K) -module of the principal series representation $(\pi_{P,\sigma,\nu}, H^{P,\sigma,\nu})$. Consider the following Theorem of Harish-Chandra.

Theorem 2.1.5. There is a bijection between the set of irreducible unitary representations of G and the set of irreducible (\mathfrak{g}, K) -modules admitting a positive definite (\mathfrak{g}, K) -invariant Hermitian form.

R. Langlands has shown that every irreducible (\mathfrak{g}, K) -module can be realized as a quotient of an underlying (\mathfrak{g}, K) -module of some principal series representation.

Definition 2.1.6. The triple (P, σ, ν) is called a Langlands data if P is a parabolic subgroup of G, (σ, H_{σ}) is an irreducible unitary representation of ${}^{0}M$ such that $(H_{\sigma})_{K\cap^{0}M}$ is tempered, i.e. the matrix coefficient $m \mapsto \langle \sigma(m)v, w \rangle$ lies in $L^{2+\epsilon}({}^{0}M)$ for every $\epsilon > 0$ for all $v, w \in (H_{\sigma})_{K\cap^{0}M}$, and $\nu \in (Lie(A)_{\mathbb{C}})^{*}$ such that $Re(\nu, \alpha) > 0$ for all $\Phi(P, A)$.

Definition 2.1.7. Define for $\nu \in (Lie(A)_{\mathbb{C}})^*$ the intertwining operator $J_{\overline{P}|P}(\nu)$: ${}^{\infty}H^{P,\sigma,\nu} \longrightarrow {}^{\infty}H^{P,\sigma,\nu}$ as $(J_{\overline{P}|P}(\nu)f)(k) = \int_{\overline{N}} f_{\nu}(\overline{n}k)d\overline{n}.$

Theorem 2.1.8. (Langlands) Let V be an irreducible (\mathfrak{g}, K) -module. Then there exists a Langlands data (P, σ, ν) such that V is (\mathfrak{g}, K) -isomorphic with the unique irreducible quotient of $I_{P,\sigma,\nu}$, which is (\mathfrak{g}, K) isomorphic to $J_{\overline{P}|P}(I_{P,\sigma,\nu})$.

The theorem of Harish-Chandra suggests to classify irreducible unitary representations of G, it is enough to study irreducible (\mathfrak{g}, K) -modules. The theorem of Langlands realizes an irreducible (\mathfrak{g}, K) -module as a unique quotient of the underlying (\mathfrak{g}, K) -module of some principal series representation. Hence, the problem of Unitary Dual reduces down to finding among the underlying (\mathfrak{g}, K) -modules of principal series $I_{P,\sigma,\nu}$ with (P, σ, ν) a Langlands data the ones that admit a positive definite (\mathfrak{g}, K) -invariant Hermitian form.

2.2 Meromorphic Continuation of Intertwining Operators

In 1990, David Vogan and Nolan Wallach achieved a meromorphic continuation of the intertwining operators via the difference equation satisfied by the intertwining operators. The following is Theorem 2.2 of [VW].

Theorem 2.2.1. There exist polynomials $b_{\sigma,\lambda}$ and $D_{\sigma,\lambda}$ in ν with values in \mathbb{C} and $U(\mathfrak{g})^K$, respectively, with $b_{\sigma,\lambda} \neq 0$ s.t.

$$b_{\sigma,\lambda}(\nu)J_{\overline{P}|P}(\nu)f = J_{\overline{P}|P}(\nu+\lambda)\pi_{P,\sigma,\nu+\lambda}(D_{\sigma,\lambda}(\nu))f$$

for $f \epsilon I_{\sigma}^{\infty}$ and $Re(\nu, \alpha) > c_{\sigma}$ for all $\alpha \epsilon \Phi(P, A)$.

Meromorphic continuation of the intertwining operators has been achieved in the past for the K-finite space $I_{P,\sigma,\nu}$. The novelty of the theorem stated above is that the authors were able to achieve the meromorphic continuation for I_{σ}^{∞} the space of C^{∞} vectors by tensoring with a finite dimensional G-module. In addition, using the two polynomials above, the authors were able to compute a determinant formula of the intertwining operator on each K-isotypic component that generalizes Leslie Cohn's determinant formula. The following is Theorem 4.6 of [VW].

Theorem 2.2.2.

$$det J_{\overline{P}|P(\nu)}|_{I_{\sigma}(\gamma)} = \prod_{\alpha \in \Sigma} \frac{\prod_{i=1}^{r_{\alpha}(\sigma)} \Gamma(((\nu, \alpha)/4(\rho_{\alpha}, \alpha)) - a_{i,\alpha(\sigma)})^{(\gamma:\sigma)}}{\prod_{i=1}^{r_{\alpha}(\sigma)(\gamma:\sigma)} \Gamma(((\nu, \alpha)/4(\rho_{\alpha}, \alpha)) - b_{i,\alpha(\sigma,\gamma)})}$$

The determinant formula is important for numerous reasons. First, by Langlands' classification theorem, the determinant formula gives the reduction points of $I_{P,\sigma,\nu}$. Also, the determinant formula can be used to show existence of Complementary Series Representations, a subset of the unitary dual of G.

2.3 Harmonics on \mathfrak{p} and Kostant P^{γ} matrix

Let G be a connected semisimple Lie group with maximal compact subgroup K defined as the set of fixed elements of a Cartan involution θ . Denote by \mathfrak{g}_{\circ} the lie algebra of G and let $\mathfrak{g}_{\circ} = \mathfrak{k}_{\circ} \oplus \mathfrak{p}_{\circ}$ be its Cartan decomposition where \mathfrak{k}_{\circ} is +1 eigenspace and \mathfrak{p}_{\circ} is -1 eigenspace of the Cartan involution θ of \mathfrak{g}_{\circ} . Let \mathfrak{a}_{\circ} be a maximal abelian subalgebra of \mathfrak{p}_{\circ} , and let \mathfrak{m}_{\circ} be the centralizer of \mathfrak{a}_{\circ} in \mathfrak{k}_{\circ} . We drop the subscript \circ to denote the complexifications of the subspaces of \mathfrak{g}_{\circ} introduced above. Let $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{m} \oplus \Sigma_{\phi \in \Phi(\mathfrak{g},\mathfrak{a})} \mathfrak{g}^{\phi}$ be the root space decomposition, and let $\mathfrak{n} = \Sigma_{\phi \in \Phi^+(\mathfrak{g},\mathfrak{a})} \mathfrak{g}^{\phi}$.

Let $S(\mathfrak{p})$ be the space of symmetric polynomials on \mathfrak{p} and denote by $S^{j}(\mathfrak{p})$ the space of homogeneous polynomials on \mathfrak{p} of degree j. K acts on $P(\mathfrak{p})$ as K acts on \mathfrak{p} , and K acts on $S^{j}(\mathfrak{p})$ for all $j \in \mathbb{Z}_{\geq 0}$. Let $S(\mathfrak{p})^{K}$ the space of K invariants on $S(\mathfrak{p})$. $S(\mathfrak{p})^{K}$ is graded by degree. Denote by $S(\mathfrak{p})^{K}_{+}$ the subspace of K invariants of $S(\mathfrak{p})$ of degree strictly greater than 0. Note the subspace $S(\mathfrak{p})^j \cap (S(\mathfrak{p})S(\mathfrak{p})^K_+)$ is K-invariant, and hence there is a K-invariant subspace H^j of $S^j(\mathfrak{p})$ such that $S^j(\mathfrak{p}) = H^j \oplus \{S(\mathfrak{p})^j \cap (S(\mathfrak{p})S(\mathfrak{p})^K_+)\}.$

Definition 2.3.1. $H = \bigoplus_{j \ge 0} H^j$ is the space of harmonics on \mathfrak{p} .

Theorem 2.3.2. (Kostant-Rallis [KR]) The map $h \otimes f \mapsto hf$ from $H \otimes S(\mathfrak{p})^K$ to $S(\mathfrak{p})$ is a linear bijection, and $H \cong Ind_{0_M}^K(1)$ as K modules.

Denote by $U(\mathfrak{g})$ the universal enveloping algebra of \mathfrak{g} and consider the decomposition $U(\mathfrak{g}) = U(\mathfrak{a}) \oplus U(\mathfrak{g})\mathfrak{k} \oplus \mathfrak{n}U(\mathfrak{g}).$

Definition 2.3.3. Let $Q' : U(\mathfrak{g}) \longrightarrow U(\mathfrak{a}) \oplus U(\mathfrak{g})\mathfrak{k} \oplus \mathfrak{n}U(\mathfrak{g})$ be the projection onto the first summand.

Denote by $symm : S(\mathfrak{g}) \longrightarrow U(\mathfrak{g})$ the symmetrization map. Let V_{γ} be an irreducible K module that occurs in H hence in symm(H). Denote by V_{γ}^{0M} the subspace of ${}^{0}M$ invariant elements where ${}^{0}M$ is the centralizer of \mathfrak{a}_{\circ} in K. $Lie({}^{0}M) = {}^{0}\mathfrak{m}_{\circ}$. Let $dimV_{\gamma}^{0M} = l(\gamma)$. Let $\epsilon_{1}, ..., \epsilon_{l(\gamma)}$ be a basis of $Hom_{K}(V_{\gamma}, symm(H)), v_{1}, ..., v_{l(\gamma)}$ be a basis of V_{γ}^{0M} .

Definition 2.3.4.

- P^{γ} is an $l(\gamma)$ by $l(\gamma)$ matrix with $P_{ij}^{\gamma} = Q'(\epsilon_i(v_j))$.
- $p_{\gamma} = det P^{\gamma}$.

2.4 Relationship between the P^{γ} matrix and Intertwining Operators of Principal Series Representations

Let G be a connected semisimple Lie group with maximal compact subgroup K. Let V_{γ} be a K-type that occurs in H the space of harmonics on \mathfrak{p} of G.

Definition 2.4.1. For $\nu \in \mathfrak{a}^*$, $P^{\gamma}(\nu) = (P_{ij}^{\gamma}(\nu))$.

Let $\epsilon_1, ..., \epsilon_{l(\gamma)}$ be a basis of $Hom_K(V_{\gamma}, symm(H)), v_1, ..., v_{l(\gamma)}$ be a basis of V_{γ}^{0M} . $P^{\gamma}(\nu)$ is a map of $V_{\gamma}^{0M} \to V_{\gamma}^{0M}$ by $P^{\gamma}(\nu)v_i = \Sigma P_{ji}^{\gamma}(\nu)v_j$. Consider the K-module isomorphism $Hom_K(V_{\gamma}, symm(H)) \otimes V_{\gamma} \to I_{P,triv,\nu}(\gamma)$ given by $(\lambda \otimes v)(k) = \lambda(k \cdot v)$ with $\lambda \in Hom_K(V_{\gamma}, symm(H))$ and $v \in V_{\gamma}$ where $(\pi_{\nu}, I_{P,triv,\nu})$ is the underlying (\mathfrak{g}, K) -module of the principal series representation $(\pi_{P,triv,\nu}, H^{P,triv,\nu})$. As $Hom_K(V_{\gamma}, symm(H)) \cong (V_{\gamma}^*)^{0M}$, we can consider the above map as a K-module isomorphism $(V_{\gamma}^*)^{0M} \otimes V_{\gamma} \to I_{P,triv,\nu}(\gamma)$. For $s \in W(A)$ the Weyl group of \mathfrak{a} , let $A_s(\nu) : I_{P,triv,\nu} \to I_{P,triv,s(\nu-\rho)+\rho}$ be the map such that $A_s(\nu) \circ \pi_{\nu}(u) = \pi_{s(\nu-\rho)+\rho}(u) \circ A_s(\nu)$ for $u \in U(\mathfrak{g})$ and $A_s(\nu) \cdot 1_{\nu} = 1_{s(\nu-\rho)+\rho}$. The following is Lemma 7.5 of [JW].

Theorem 2.4.2. Let $\lambda \in (V_{\gamma}^*)^{o_M}$, $v \in V_{\gamma}$.

$$A_s(\nu)(\lambda \otimes v) = \lambda \circ P^{\gamma}(\nu)^{-1} P^{\gamma}(s(\nu - \rho) + \rho) \otimes v$$

if det $P^{\gamma}(\nu) \neq 0$ and det $P^{\gamma}(s(\nu - \rho) + \rho) \neq 0$ for all $\gamma \in \hat{K}$ that occurs in H .

Let $A(\nu) = A_s(\nu)$ with s the longest element of the Weyl group. Then, for a minimal parabolic subgroup P of G, we have

$$J_{\overline{P}|P}(\nu)f = (c(\nu)A(\nu+\rho)f) \circ k^*$$

where $c(\nu)$ is Harish-Chandra *c*-function on the trivial *K*-type and k^* is a representative of $s \in W(A) = N_K(A)/Z_K(A)$. Therefore, determinant of $P^{\gamma}(\nu)$ gives the shift factors in the classical gamma functions in Theorem 2.2.2 modulo those from Harish-Chandra *c*-function on the trivial *K*-type.

2.5 Product Formula of p_{γ}

Let G be a connected semisimple Lie group with Lie algebra \mathfrak{g}_{\circ} . Denote by Φ_1^+ the set of reduced restricted roots of \mathfrak{g}_{\circ} . If $\alpha \in \Phi_1^+$, denote by $\mathfrak{g}_{\alpha_{\circ}} = \mathfrak{a}_{\circ} \oplus {}^{0}\mathfrak{m}_{\circ} + \Sigma_{j=-2}^{2}\mathfrak{g}_{\circ}^{j\alpha}$ and denote by G_{α} the analytic subgroup of G with Lie algebra $\mathfrak{g}_{\alpha_{\circ}}$. Let K_{α} , ${}^{0}\!M_{\alpha}$ play the roles of K, ${}^{0}\!M$ for the case $\mathfrak{g}_{\alpha_{\circ}} = \mathfrak{k}_{\alpha_{\circ}} \oplus \mathfrak{p}_{\alpha_{\circ}}$, and denote by H_{α} the space of harmonics on \mathfrak{p}_{α} . Let V_{γ} be a K-type that occurs in the space of harmonics H of G. For $\alpha \in \Phi_1^+$ of \mathfrak{g}_{\circ} , let $Span \ K_{\alpha} \cdot V_{\gamma}^{\circ M} = \bigoplus_{j=1}^{l(\gamma)} V_{\gamma_j^{\alpha}}$ be a decomposition into irreducible K_{α} modules. For $f \in \mathfrak{a}^*$, let $T_f : U(\mathfrak{a}) \to U(\mathfrak{a})$ be defined by $(T_f p)(g) = p(g - f)$. Let $\rho = \frac{1}{2} \Sigma_{\phi \in \Phi^+} \phi$ and let ρ_{α} play the role of ρ for $\mathfrak{g}_{\alpha_{\circ}}$.

Definition 2.5.1. Let $\alpha \in \Phi_1^+$.

- $p_{\alpha} = p_{\gamma_1^{\alpha}} \dots p_{\gamma_{l(\gamma)}^{\alpha}}$.
- $p_{(\alpha)} = T_{\rho_{\alpha}-\rho}p_{\alpha}.$

The following is Theorem 2.4.6 of [Kos].

Theorem 2.5.2. There exists a nonzero scalar c such that

$$p_{\gamma} = c \ \Pi_{\alpha \in \Phi_1^+} \ p_{(\alpha)}$$

Chapter 3

Small *K*-types

3.1 Small *K*-types and Principal Series Admitting Small *K*-types

Let G be a real reductive Lie group with maximal compact subgroup $K = \{g \in G | \Theta(g) = g\}$, the subgroup of fixed elements of a Cartan involution θ . Let (P, A) be a minimal p-pair such that $P = {}^{0}MAN$ with ${}^{0}M$ the centralizer of A in K and unipotent radical N.

Definition 3.1.1. An irreducible representation (τ, V_{τ}) of K is a small K-type if irreducibility is preserved under restriction of K to ${}^{0}M$.

Let $\sigma = \tau|_{0_M}$. If $I_{P,\sigma,\nu}$ is the underlying (\mathfrak{g}, K) module of a principal series that admits a small K-type (τ, V_{τ}) , one can describe the set of K-types that occur in $I_{P,\sigma,\nu}$ and their multiplicities using Frobenius Reciprocity.

Lemma 3.1.2. Let V_{ξ} be an irreducible representation of K. V_{ξ} occurs in $I_{P,\sigma,\nu}$ if and only if $V_{\xi}|_{o_M}$ contains a copy of $V_{\tau}|_{o_M}$, with multiplicity dim $Hom_{o_M}(V_{\xi}, V_{\tau})$, the number of copies of $V_{\tau}|_{o_M}$ within $V_{\xi}|_{o_M}$.

Proof. We have $Hom_K(V_{\xi}, I_{P,\sigma,\nu}) \cong Hom_{0_M}(V_{\xi}, V_{\tau})$ by Frobenius Reciprocity. Since V_{τ} is a small K-type, $V_{\tau}|_{0_M}$ is irreducible. Thus by Schur's Lemma, V_{ξ} will occur in $I_{P,\sigma,\nu}$ if $V_{\xi}|_{0_M}$ contains a copy of $V_{\tau}|_{0_M}$ with multiplicity of dim $Hom_{0_M}(V_{\xi}, V_{\tau})$. \Box

Consider the decomposition $U(\mathfrak{g}) = U(\mathfrak{a})U(\mathfrak{k}) \oplus \mathfrak{n}U(\mathfrak{g})$. Let Q be the projection onto the first summand. If η is an automorphism of $U(\mathfrak{a})$ given by $\eta(H) = H + \rho(H)$ for $H \in \mathfrak{a}$, let $\eta \otimes \tau : U(\mathfrak{a}) \otimes U(\mathfrak{k}) \longrightarrow U(\mathfrak{a}) \otimes End(V_{\tau})$ be defined by $\eta \otimes \tau(a \otimes k) = \eta(a) \otimes \tau(k)$. By Lemma 11.3.2 of [RRG II], there is a homomorphism $\gamma_{\tau} : U(\mathfrak{g})^K \longrightarrow U(\mathfrak{a})$ such that $(\eta \otimes \tau)(Q(g)) = \gamma_{\tau}(g) \otimes I$, which will give a natural action on V_{τ} , i.e. the action of $U(\mathfrak{g})^K$ on V_{τ} considered as a subspace of $I_{P,\sigma,\nu}$.

The following is a theorem in 11.3.6 of [RRG II] that gives another realization of $I_{P,\sigma,\nu}$ as a K-module.

Theorem 3.1.3. $U(\mathfrak{g}) \otimes_{U(\mathfrak{k})U(\mathfrak{g})^{\mathfrak{k}}} V_{\tau} \cong I_{P,\sigma,\nu}$ as K-modules and the two modules have equivalent semi-simplifications.

3.2 Small *K*-types for connected, simply connected split real form of simple Lie types

Let $\mathfrak{g}_{\mathbb{R}}$ be a semisimple Lie algebra over \mathbb{R} , and let \mathfrak{g} be its complexification. Denote by $G_{\mathbb{C}}$ the connected, simply connected Lie group with Lie algebra \mathfrak{g} and by $G_{\mathbb{R}}$ the connected subgroup of $G_{\mathbb{C}}$ with Lie algebra $\mathfrak{g}_{\mathbb{R}}$. Let G be a covering group of $G_{\mathbb{R}}$ with covering homomorphism p where we denote the kernel by Z. Fix a maximal compact subgroup K of G and let U be a compact real form of $G_{\mathbb{C}}$ such that $G_{\mathbb{R}} \cap U = K_{\mathbb{R}} = p(K)$. Let (P, A) be a minimal p-pair and $P = {}^{0}MAN$ be the Langlands decomposition as before.

The following theorem is from 11.A.2.1 of [RRG II] whose proof is a case by case argument that gives examples of small K-types for all real forms over \mathbb{R} of all simple Lie types.

Theorem 3.2.1. Let $\chi \in \hat{Z}$. There exists an irreducible representation (τ, V) of K such that $\tau|_Z = \chi I$ and $\tau|_{0_M}$ is irreducible.

We also have the following theorem from 11.A.2.11 of [RRG II].

Theorem 3.2.2. If $\mathfrak{g}_{\mathbb{R}}$ is split over \mathbb{R} , then $G_{\mathbb{R}}$ always has a two-fold covering group.

We consider the case $\mathfrak{g}_{\mathbb{R}}$ split over \mathbb{R} . If G is simple and not of type C I, it is also simply connected. Second, the rank one subgroups of G corresponding to the reduced restricted roots have their semisimple part as the group generated by the metaplectic group $Mp_2(\mathbb{R})$ and ${}^{0}M$, which simplify the product formula of p_{ξ} and the computation. Hence, we assume from now on G is a two-fold covering group of a split real simple Lie group $G_{\mathbb{R}}$. Let η be the nontrivial element of $Z = \mu_2$. If $\chi(\eta) = Id$, there is no difference between the representations of G and $G_{\mathbb{R}}$. Therefore, we assume $\chi(\eta) = -Id$.

The following are split real simple Lie groups and their examples of small K-types from chapter 11 of [RRG II].

• Type A I. $G_{\mathbb{R}} = SL(n, \mathbb{R}), n \geq 3$

The universal covering group $SL(n,\mathbb{R})$ of $SL(n,\mathbb{R})$ $(n \geq 3)$ is a central μ_2 -extension with maximal compact subgroup K = Spin(n). ${}^{0}M_{SL(n,\mathbb{R})}$ is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^{n-1}$, and ${}^{0}M_{\widetilde{SL(n,\mathbb{R})}}$ is a nonabelian group of order 2^n .

Let η be the nontrivial element in μ_2 . As discussed above, we assume η action of -1. $\mathbb{C}[{}^{0}M_{\widetilde{SL(n,\mathbb{R})}}]/ < \eta + 1 >$ is isomorphic to the subalgebra of $Cliff_n$ spanned by the even number of products of the generators, thus $\mathbb{C}[{}^{0}M_{\widetilde{SL(n,\mathbb{R})}}]/ < \eta + 1 >$ is a simple matrix algebra for n odd and a direct sum of two simple matrix algebras for n even. If we choose for τ the Spin representation of Spin(n) for n-odd and either of the half-Spin representation.

tions of Spin(n) for *n*-even, τ is a small *K*-type as restriction to ${}^{0}M_{\widetilde{SL(n,\mathbb{R})}}$ preserves irreducibility.

• Type BD I. $G_{\mathbb{R}} = Spin(p,q)$ with p = q or $p = q + 1, q \ge 3$

$$\begin{split} K_{\mathbb{R}} &= (Spin(p) \times Spin(q)) / \{1, (-1, -1)\} \text{ and } K = Spin(p) \times Spin(q). \ ^{0}M_{Spin(p,q)} \\ \text{is isomorphic to } ^{0}M_{\widetilde{SL(q,\mathbb{R})}} \times \mu_{2} \text{ where } ^{0}M_{\widetilde{SL(q,\mathbb{R})}} \text{ sits inside } K \text{ diagonally, and} \\ \mu_{2} \text{ can be either of } (\pm 1, 1) \text{ or } (1, \pm 1) \text{ where either is a subgroup in the center} \\ \text{ of } K. \text{ In the case } p = q+1, \ ^{0}M_{\widetilde{Spin(p,q)}} = \{(\pm diag(g, 1), g) \mid g \in ^{0}M_{\widetilde{SL(q,\mathbb{R})}}, 1 \in Spin(p-q) = Spin(1)\}. \ Z = \{1, (-1, -1)\} \leq K = Spin(p) \times Spin(q). \text{ If } \chi \text{ is nontrivial, choose } \sigma \text{ to be the } Spin \text{ representation and either of the two half-} Spin \text{ representations of } Spin(q) \text{ for } q \text{ odd and even respectively. Also denote} \\ \text{ by } \sigma \text{ either of the two half-} Spin \text{ representations of } Spin(p) = Spin(q+1) \\ \text{ for } q \text{ odd. Let } p_{1} \text{ denote the projection of } K \text{ onto } Spin(p), \text{ and let } p_{2} \text{ denote} \\ \text{ the projection of } K \text{ onto } Spin(q). \text{ If } q \text{ is odd and } \tau = \sigma \circ p_{1} \text{ or } \tau = \sigma \circ p_{2}, \tau \\ \text{ is a small } K\text{-type as in the example of type } A \text{ I. If } q \text{ is even and } \tau = \sigma \circ p_{2}, \\ \tau \text{ is a small } K\text{-type as in the example of type } A \text{ I.} \end{split}$$

• Type C I. $G_{\mathbb{R}} = Sp(n, \mathbb{R})$

 $K_{\mathbb{R}} = U(n)$. The universal covering group of $G_{\mathbb{R}} = Sp(n, \mathbb{R})$ is a central extension and we have

$$1 \longrightarrow \mathbb{Z} \longrightarrow \widetilde{Sp(n,\mathbb{R})} \longrightarrow Sp(n,\mathbb{R}) \longrightarrow 1$$

The two fold cover of $G_{\mathbb{R}} = Sp(n, \mathbb{R})$ is a central μ_2 extension. A character of U(n) extends to a character of the two-fold covering group of U(n) that gives us half-integrals. For τ we may choose extension of characters of U(n) to its two-fold cover. τ is a small K-type as the representation is 1 dimensional.

• Type E V.

 $K_{\mathbb{R}} = SU(8)/\pm 1$ and K = SU(8). From the extended dynkin diagram in chapter 6 of [Bou], there is a nontrivial homomorphism δ from $SL(8,\mathbb{R})$ to $G_{\mathbb{R}}$. δ is easily seen to be injective by going to the complexification. Hence we may assume ${}^{0}M_{\mathbb{R}}$ is contained in the image of δ and $\delta(SO(8)) \subseteq K_{\mathbb{R}}$. Let $\tilde{\delta}$ be the lift of δ to a homomorphism of Spin(8) into SU(8). The corresponding representation of Spin(8) cannot factor through SO(8), hence it must be one of the two half-spin representations. Because $\tilde{\delta}$ is a homomorphism of the simply connected covering group of $SL(8,\mathbb{R})$ into $G, \tilde{\delta}$ is injective on ${}^{0}M$ for $\widetilde{SL(8,\mathbb{R})}$. If we choose τ the standard 8-dimensional representation of SU(8)or its dual representation, τ is a small K-type as in the example for A I.

• Type E I.

K = Sp(4). We embed $G_{\mathbb{R}}$ into that of the case of E V as the identity component of ${}^{0}M_{Q}$ where Q is a parabolic subgroup of $G_{\mathbb{R}}$ of case E V. This homomorphism δ maps $K_{\mathbb{R}}$ into $SU(8)/\{\pm 1\}$. The lift to K must be the standard eight dimensional representation. Therefore, $Z = \{\pm 1\}$. Let η be the nontrivial element of Z. $\mathbb{C}[{}^{0}M_{\widetilde{E}_{6}}]/ < \eta + 1 > \cong Cliff_{6}$ using the case of EV. Therefore, if we choose τ to be the standard 8-dimensional representation of Sp(4), irreducibility is preserved under restriction of K = Sp(4) to ${}^{0}M_{\widetilde{E}_{6}}$ as in the example for A I.

• E VIII.

 $K_{\mathbb{R}} = SO(16)$ and K = Spin(16). The highest weight of K action on \mathfrak{p} is $-\alpha_1$. Therefore this action is one of the two half-spin representations, say s_+ , and $Z = kers_+$. There is a nontrivial homomorphism δ from $SL(9,\mathbb{R})$ to $G_{\mathbb{R}}$ from the extended dynkin diagram in chapter 6 of [Bou]. δ is injective as $SL(9,\mathbb{R})$ has trivial center. We may assume again ${}^{0}M_{\mathbb{R}}$ is contained in the image of δ and $\delta(SO(9)) \subseteq K_{\mathbb{R}}$. Let $\tilde{\delta}$ be the lift of δ to a homomorphism of Spin(9) into Spin(16). Let π be a 16 dimensional representation of Spin(16) by using the covering homomorphism p : $Spin(16) \rightarrow SO(16)$ where the ker(p) is the diagonal μ_2 in $\mu_2 \times \mu_2$ the center of Spin(16). $\mu = \pi \circ \tilde{\delta}$ is a 16 dimensional representation of Spin(9). Weyl dimension formula suggests that there are exactly three irreducible representations of Spin(9) with dimension at most 16. They are the trivial representation, σ the 9-dimensional representation spin representation. Since μ is nontrivial, either $\mu = 7 \cdot 1 \oplus \sigma$ or $\mu =$ the spin

representation. In the first case, δ is the standard embedding of Spin(9) into Spin(16). But it must push down to SO(9) hence it is not possible. Thus μ must be the spin representation, and ${}^{0}M$ is isomorphic with that of $\widetilde{SL(9,\mathbb{R})}$. We choose $\tau = \mu$, then the result for $\widetilde{SL(9,\mathbb{R})}$ implies τ is a small K-type.

• *F* I.

 $K = Sp(3) \times SU(2)$, and the highest weight of K action on \mathfrak{p} is $-\alpha_1$. (1, -1)and (-1, 1) both act on \mathfrak{p} by -I, and hence $Z = \{Id, (-1, -1)\}$. ${}^{0}M_{\mathbb{R}} \cong (\mathbb{Z}/2\mathbb{Z})^4$. There is a nontrivial homomorphism δ from Spin(5, 4) into $G_{\mathbb{R}}$. The adjoint representation of \mathfrak{g} restricted to Spin(5, 4) splits into the adjoint representation of Spin(5, 4) and the spin representation, hence δ is injective. We can choose δ so that δ maps $(Spin(5) \times Spin(4))/\{Id, (-1, -1)\}$ into $(Sp(3) \times SU(2))/\{Id, (-1, -1)\}$. $Spin(5) \cong Sp(2)$ and $Spin(4) \cong SU(2) \times SU(2)$. The lift $\tilde{\delta}$ of δ to $(Spin(5) \times Spin(4))$ must be given by the obvious map of $Sp(2) \times Sp(1)$ into Sp(3). The image of Spin(5, 4) contains the split Cartan subgroup of $G_{\mathbb{R}}$. Therefore ${}^{0}M$ is isomorphic to that of Spin(5, 4), hence ${}^{0}M \cong {}^{0}M_{\widetilde{SL(4,\mathbb{R})}} \times \mu_2$ from the case of BD I. Let p_2 be the projection of $Sp(3) \times SU(2)$ onto the second factor, and σ the standard 2-dimensional representation of SU(2). If $\tau = \sigma p_2$, it is a small K-type as it is for Spin(5, 4).

• *G* I.

 $K = SU(2) \times SU(2)$ with $G_{\mathbb{R}}$ the split adjoint group of G_2 . The action of K is the tensor proudet of 2-dimensional representation with 4-dimensional representation. $K_{\mathbb{R}} = (SU(2) \times SU(2))/\{Id, (-1, -1)\}$, and ${}^{0}M_{\mathbb{R}} \cong (\mathbb{Z}/2\mathbb{Z})^{2}$. From the extended dynkin diagram in chapter 6 of [Bou], there is a nontrivial homomorphism δ of $SL(3,\mathbb{R})$ to $G_{\mathbb{R}}$. δ is injective as $SL(3,\mathbb{R})$ has trivial center. Hence we may assume ${}^{0}M_{\mathbb{R}}$ is contained in the image of δ . $\delta(SO(3))$ is the diagonal SO(3) in $K_{\mathbb{R}}$ as it is the only possibility. Hence the image of the lift of δ to $\widetilde{SL(3,\mathbb{R})}$ contains ${}^{0}M$. Let σ be the standard 2-dimensional representation of SU(2). Let p_1 be the projection of $K = SU(2) \ge SU(2)$ onto the first factor and p_2 be the projection of $K = SU(2) \ge SU(2)$ onto the second factor. Let $\tau = \sigma p_1$ or $\tau = \sigma p_2$. Then, as in type A I., τ is a

small K-type.

3.3 Embedding of Metalinear group $GL(n,\mathbb{R})$ or $\widetilde{SL(n,\mathbb{R})}$ into G

For purposes of product formula of p_{ξ} , we introduce certain embedded subgroup G_0 of G where G is any of the connected, simply connected split real form of simple Lie type other than type C_n , and G_0 is isomorphic to either the metalinear group $\widetilde{GL(n,\mathbb{R})}$ or $\widetilde{SL(n,\mathbb{R})}$ for appropriate n.

We first introduce an embbedded subgroup of $G_{\mathbb{R}}$ isomorphic to G_0/μ_2 using dynkin diagram or extended dynkin diagram from chapter 6 of [Bou] where μ_2 is the kernel of both of the covering homomorphisms $G \to G_{\mathbb{R}}$ and $G_0 \to G_0/\mu_2$.

• *A* I.

$$\overset{\circ}{\alpha_1} \overset{\circ}{\alpha_2} \overset{\cdots}{\alpha_{n-1}} \overset{\circ}{\alpha_n}$$

 $G_0/\mu_2 \cong GL(n,\mathbb{R}).$

Let *P* be the parabolic subgroup with Levi factor *L* where the simple roots of Lie(L) are $\alpha_1, ..., \alpha_{n-1}$. *L* is isomorphic with $GL(n, \mathbb{R})$. Note the $\mu_2 \leq {}^{0}M_{G_{\mathbb{R}}}$ from the node α_n is contained in *L*.

• *BD* I.

 $G_0/\mu_2 \cong SL(n,\mathbb{R}).$

Let P be the parabolic subgroup with Levi factor L where the simple roots of Lie(L) are $\alpha_1, ..., \alpha_{n-1}$. The identity component of L is isomorphic with $SL(n, \mathbb{R})$.

 $G_0/\mu_2 \cong GL(6,\mathbb{R}).$

Let *P* be the parabolic subgroup with Levi factor *L* where the simple roots of Lie(L) are $\alpha_1, \alpha_3, \alpha_4, \alpha_5, \alpha_6$. The identity component of *L* is isomorphic with $SL(6, \mathbb{R})$. The embedded subgroup isomorphic to $GL(6, \mathbb{R})$ is generated by the $SL(6, \mathbb{R}), \mu_2$ from the node α_2 , and $\mathbb{R}_{>0}$ from the node α_0 .

• E V.

 $G_0/\mu_2 \cong GL(7,\mathbb{R}).$

Let P be the parabolic subgroup with Levi factor L where the simple roots of Lie(L) are $\alpha_0, \alpha_1, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7$. The identity component of L is isomorphic with $SL(8, \mathbb{R})$, and $GL(7, \mathbb{R}) \hookrightarrow SL(8, \mathbb{R}) \hookrightarrow G_{\mathbb{R}}$ is obtained as in the case of A I.

• E VIII.

 $G_0/\mu_2 \cong GL(8,\mathbb{R}).$

Let P be the parabolic subgroup with Levi factor L where the simple roots of Lie(L) are $\alpha_1, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7, \alpha_8, \alpha_0$. The identity component of L is isomorphic with $SL(9, \mathbb{R})$, and $GL(8, \mathbb{R}) \hookrightarrow SL(9, \mathbb{R}) \hookrightarrow G_{\mathbb{R}}$ is obtained as in the case of A I. • *F* I.

$$\begin{array}{c} \circ & - \circ & \circ & \circ \\ \alpha_0 & \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \end{array}$$

 $G_0/\mu_2 \cong Spin(5,4).$

Let P be the parabolic subgroup with Levi factor L where the simple roots of Lie(L) are $\alpha_0, \alpha_1, \alpha_2, \alpha_3$. The identity component of L is isomorphic with Spin(5, 4).

• *G* I.

$$\underset{\alpha_1}{\circ} \Leftarrow \underset{\alpha_2}{\circ} \underset{\alpha_0}{-} \underset{\alpha_0}{\circ}$$

 $G_0/\mu_2 \cong SL(3,\mathbb{R}).$

Let P be the parabolic subgroup with Levi factor L where the simple roots of Lie(L) are α_2, α_0 . The identity component of L is isomorphic with $SL(3, \mathbb{R})$. From the discussion of small $K = SU(2) \times SU(2)$ -type in 11.A.2.8 of [RRG II], the embedding lifts to an embedding of $\widetilde{SL(3, \mathbb{R})}$ into G such that the maximal compact subgroup SU(2) of $\widetilde{SL(3, \mathbb{R})}$ embeds into the maximal compact subgroup $SU(2) \times SU(2)$ of G diagonally.

Denote by $p: G \to G_{\mathbb{R}}$ the covering homomorphism and let $i: G_0/\mu_2 \hookrightarrow G_{\mathbb{R}}$ be the embedding described above. Denote by G_0 the embedded subgroup of Ggiven by $p^{-1}(i(G_0/\mu_2))$ and denote by K_0 the maximal compact subgroup of G_0 . G_0 is isomorphic to $\widetilde{GL(n,\mathbb{R})}, \widetilde{SL(n,\mathbb{R})}, \widetilde{GL(6,\mathbb{R})}, \widetilde{GL(7,\mathbb{R})}, \widetilde{GL(8,\mathbb{R})}, \widetilde{Spin(5,4)}, \widetilde{SL(3,\mathbb{R})}$ for G of type $A_n, BD I$, E_6, E_7, E_8, F_4 , and G_2 respectively.

Lemma 3.3.1. Let H be the space of harmonics on \mathfrak{p} of G, V_{τ} a small K-type, V_{ξ} a K-type that occurs in $H \otimes V_{\tau}$. The restriction of K to K_0 preserve ${}^{0}M_G$ -invariants of H and the decomposition $V_{\xi}|_{{}^{0}M_G}$. Moreover, ${}^{0}M_G$ is isomorphic to ${}^{0}M_{\widetilde{GL(n,\mathbb{R})}}$ or ${}^{0}M_{\widetilde{SL(n,\mathbb{R})}} \times \mu_2$ for appropriate n.

Proof. For G of type BD I., ${}^{0}M_{G} \cong {}^{0}M_{G_{0}} \times \mu_{2}$ as discussed in the example of small K-types for G. The μ_{2} can either be $(\pm 1, 1)$ or $(1, \pm 1) \leq K = Spin(p) \times$

Spin(q). Any choice of μ_2 acts trivially on H as both are central in K. We can also make a choice of μ_2 that will act trivially on V_{τ} as the small K-type is the Spin representation or either of the two half Spin representations after projection onto the first or the second factor of K. Thus we have the statement of the lemma for G of type BD I.

Now consider G of type A_n , E_6 , E_7 , E_8 , F_4 , and G_2 . As ${}^{0}M_{G_{\mathbb{R}}}$ is generated by μ_2 s from each node of the dynkin diagram, we may assume that $i({}^{0}M_{G_0/\mu_2}) = {}^{0}M_{G_{\mathbb{R}}}$. Let $p: G \to G_{\mathbb{R}}$ be the covering homomorphism. We have ${}^{0}M_{G_0} = p^{-1}(i({}^{0}M_{G_0/\mu_2}))$ and ${}^{0}M_G = p^{-1}({}^{0}M_{G_{\mathbb{R}}})$, hence ${}^{0}M_G = {}^{0}M_{G_0}$ and we have the statement of the lemma for G of type A_n, E_6, E_7, E_8, F_4 , and G_2 .

Theorem 3.3.2. Let G be any of the connected, simply connected \mathbb{R} -split Lie group of simple Lie type other than type C_n with maximal compact subgroup K. The above examples of small K-types exhaust the list of all small K-types.

Proof. By Lemma 3.3.1, ${}^{0}M_{G}$ is isomorphic to ${}^{0}M_{\widetilde{GL(n,\mathbb{R})}}$ or ${}^{0}M_{\widetilde{SL(n,\mathbb{R})}} \times \mu_{2}$ for appropriate n. Suppose ${}^{0}M_{G} \cong {}^{0}M_{\widetilde{GL(n,\mathbb{R})}}$. If n = 2k + 1, a small K-type must have dimension 2^{k} . If n = 2k, a small K-type must have dimension 2^{k} . Suppose ${}^{0}M_{G} \cong {}^{0}M_{\widetilde{SL(n,\mathbb{R})}} \times \mu_{2}$. If n = 2k + 1, a small K-type must have dimension 2^{k} . If n = 2k, a small K-type must have dimension 2^{k} . If n = 2k, a small K-type must have dimension 2^{k} . If n = 2k, a small K-type must have dimension 2^{k-1} .

For type A_{n-1} , a small K = Spin(n)-type must have dimension 2^k if n = 2k + 1 and 2^{k-1} if n = 2k. Weyl dimension formula implies that a small K-type must be the *Spin* representation for n odd and either of the two half-*Spin* representation for n even.

For type B_n , $K = Spin(n+1) \times Spin(n)$ and an irreducible representation of K is an outer tensor product of irreducible representations of Spin(n+1) and Spin(n). A small $K = Spin(n+1) \times Spin(n)$ -type must have dimension 2^k if n = 2k + 1 and 2^{k-1} if n = 2k. Weyl dimension formula implies the following. If n is odd, a small K-type must be either the Spin representation after projection onto Spin(n) or either of the two half Spin representations after projection onto Spin(n+1). If n is even, a small K-type must be either of the two half Spin representations after projection onto Spin(n).

For type D_n , $K = Spin(n) \times Spin(n)$ and an irreducible representation of Kis an outer tensor product of irreducible representations of each of the two Spin(n)s. A small $K = Spin(n) \times Spin(n)$ -type must have dimension 2^k if n = 2k + 1 and 2^{k-1} if n = 2k. Weyl dimension formula implies that for n odd, a small K-type must be the *Spin* representation after projection onto either of the two Spin(n)s and for n even, a small K-type must be either of the two half-Spin representations after projection onto either of the two Spin(n)s.

For type E_6 , a small K = Sp(4)-type must have dimension 8. By Weyl dimension formula, the standard 8 dimensional representation of K is the only irreducible representation of K of dimension 8.

For type E_7 , a small K = SU(8)-type must have dimension 8. By Weyl dimension formula, the standard 8 dimensional representation of K and its dual representation are the only irreducible representations of K of dimension 8.

For type E_8 , a small K = Spin(16)-type must have dimension 16. By Weyl dimension formula, the standard 16 dimensional representation of K after projection onto SO(16) is the only irreducible representation of K of dimension 16.

For type F_4 , a small $K = Sp(3) \times SU(2)$ -type must have dimension 2. An irreducible representation of K is an outer tensor product of irreducible representations of Sp(3) and SU(2). By Weyl dimension formula, the standard 6 dimensional representation of Sp(3) is the smallest-dimensional nontrivial irreducible representation of Sp(3). Therefore, the 2 dimensional representation after projection onto SU(2) is the only choice.

For type G_2 , a small $K = SU(2) \times SU(2)$ -type must have dimension 2. An irreducible representation of K is an outer tensor product of irreducible representations of each of the two copies of SU(2). Therefore, a small K-type must be the 2 dimensional representation after projection onto either of the two copies of SU(2).

Chapter 4

The P^{ξ} matrix

4.1 Definition

Let G be any of the connected, simply connected split real form of simple Lie type, and denote by K a maximal compact subgroup. Let V_{ξ} be a K-type that occurs in $symm(H) \otimes V_{\tau}$ with a small K-type V_{τ} and let $\sigma = V_{\tau}|_{0M}$. Recall $n(\xi)$ is the number of copies of V_{τ} in V_{ξ} restricted to ${}^{0}M$. By Frobenius reciprocity, V_{ξ} has multiplicity $n(\xi)$ in $symm(H) \otimes V_{\tau}$. Let $T_{1}^{\xi}, ..., T_{n(\xi)}^{\xi}$ be a basis of $Hom_{0M}(V_{\tau}, V_{\xi})$ and $\epsilon_{1}^{\xi}, ..., \epsilon_{n(\xi)}^{\xi}$ be a basis of $Hom_{K}(V_{\xi}, symm(H) \otimes V_{\tau})$. Let $Q_{\nu} : symm(H) \otimes V_{\tau} \to I_{P,\sigma,\nu}$ be the corresponding isomorphism as K-modules, and define $R_{\nu} :$ $symm(H) \otimes V_{\tau} \longrightarrow V_{\tau}$ by $R_{\nu}(Z) := Q_{\nu}(Z)(e)$. Every map defined in this paragraph intertwines ${}^{0}M$ action, hence $R_{\nu} \circ \epsilon_{i} \circ T_{j}$ also for all i and j.

Definition 4.1.1.

- Define by $P^{\xi}(\nu)$ the $n(\xi)$ by $n(\xi)$ matrix where $(P^{\xi}(\nu))_{i,j}$ is the polynomial in ν in which $R_{\nu} \circ \epsilon_i^{\xi} \circ T_j^{\xi}$ acts on V_{τ} , without ρ -shift.
- Define by P^{ξ} the $n(\xi)$ by $n(\xi)$ matrix obtained from $P^{\xi}(\nu)$ by replacing entries with the corresponding elements in $U(\mathfrak{a})$.
- Denote by p_{ξ} and $p_{\xi}(\nu)$ the determinants of P^{ξ} and $P^{\xi}(\nu)$ respectively.
4.2 Relationship between P^{ξ} matrix and Intertwining Operators of Principal Series Representations

 $P^{\xi}(\nu)$ as a map of $\bigoplus_{j=1}^{n(\xi)} T_j^{\xi}(V_{\tau}) \longrightarrow \bigoplus_{j=1}^{n(\xi)} T_j^{\xi}(V_{\tau})$ by setting $P^{\xi}(\nu)T_i^{\xi}(v) = \sum_{j=1}^{n(\xi)} T_j^{\xi}(P_{ji}^{\xi}(\nu)v)$ for $v \in V_{\tau}$. If $V_{\xi} = \bigoplus_{j=1}^{n(\xi)} T_j^{\xi}(V_{\tau}) \oplus W$ is a decomposition of V_{ξ} as a ${}^{0}M$ -module, we look at $P^{\xi}(\nu)$ as a map on V_{ξ} where $P^{\xi}(\nu)$ acts as above on $\bigoplus_{j=1}^{n(\xi)} T_j^{\xi}(V_{\tau})$ and acts trivially on W. Thus, we may consider $P^{\xi}(\nu)$ as an operator on $Hom_{0M}(V_{\xi}, V_{\tau})$ where $P^{\xi}(\nu).\lambda = \lambda \circ P^{\xi}(\nu)$.

Definition 4.2.1.

- If $\lambda \in Hom_{M}(V_{\xi}, V_{\tau})$ and $v \in V_{\xi}$, define $(\lambda \otimes v)(\mathbf{k}) = \lambda(\rho_{\xi}(k)v)$.
- Define for $a \in Hom_K(V_{\xi}, symm(H) \otimes V_{\tau})$ and $v \in V_{\xi}, B_{\nu}^{\xi}(a)(v) = \pi_{\tau,\nu}(a(v))(e)$ where $\pi_{\tau,\nu}(a(v))$ denotes the first factor action on the second factor with $\pi_{\tau,\nu}$ action by an abuse of notation. Then $B_{\nu}^{\xi} : Hom_K(V_{\xi}, symm(H) \otimes V_{\tau}) \longrightarrow$ $Hom_{0M}(V_{\xi}, V_{\tau}).$
- Let $T_{\nu} : symm(H) \otimes V_{\tau} \longrightarrow I_{P,\sigma,\nu}$ be defined by $T_{\nu}(\Sigma(u_j \otimes v_j)) = \Sigma(\pi_{\tau,\nu}(u_j)v_j)$.

We have a K-module isomorphism $I_{P,\sigma,\nu}(\xi) \cong Hom_{M}(V_{\xi}, V_{\tau}) \otimes V_{\xi}$ using above.

There exists $\nu_0 \in \mathfrak{a}^*$ such that T_{ν_0} is a bijection from 11.3.6 of [RRG II].

Lemma 4.2.2. $T_{\nu} \circ T_{\nu_0}^{-1}(\lambda \otimes v) = \lambda \circ P^{\xi}(\nu) \otimes v \text{ for } \lambda \in Hom_{{}^{0}M}(V_{\xi}, V_{\tau}) \text{ and } v \in V_{\xi}.$

Proof. This proof is almost word for word as the proof of Lemma 7.3 of [JW].

Let $\hat{\delta}_{\xi} : Hom_{K}(V_{\xi}, symm(H) \otimes V_{\tau}) \longrightarrow Hom_{0}_{M}(V_{\xi}, V_{\tau})$ be defined so that $T_{\nu_{0}}(a(v)) = \hat{\delta}_{\xi}(a) \otimes v$ for $a \in Hom_{K}(V_{\xi}, symm(H) \otimes V_{\tau})$ and $v \in V_{\xi}$. By the above $B_{\nu_{0}}^{\xi}(a(v)) = \hat{\delta}_{\xi}(a)$. Now $T_{\nu} \circ T_{\nu_{0}}^{-1}(B_{\nu_{0}}^{\xi}(a) \otimes v) = B_{\nu}^{\xi}(a) \otimes v$. But $B_{\nu}^{\xi}(a_{i})(T_{j}^{\xi}(V_{\tau})) = P_{ij}^{\xi}(\nu)$ where $\{a_{i}\}$ is a basis of $Hom_{0}_{M}(V_{\xi}, V_{\tau})$ and $T_{j}^{\xi}(V_{\tau})$ is say for block diagonal P^{ξ} , or even an identity for $P^{\xi}(\nu_{0})$ because $P^{\xi}(\nu_{0})$ is invertible. Thus $B_{\nu}^{\xi}(a) = B_{\nu_{0}}^{\xi}(a) \circ P^{\xi}(\nu)$. Hence if $B_{\nu_{0}}^{\xi}(a) = \lambda$, then $T_{\nu} \circ T_{\nu_{0}}^{-1}(\lambda \otimes v) = \lambda \circ P^{\xi}(\nu) \otimes v$. \Box **Theorem 4.2.3.** Given $s \in W(A)$ the Weyl group of \mathfrak{a} , let $A_s(\nu) : I_{P,\sigma,\nu} \longrightarrow I_{P,s\sigma,s(\nu-\rho)+\rho}$ be such that $A_s(\nu)\tau_{\nu} = \tau_{s(\nu-\rho)+\rho}$ and $A_s(\nu) \circ \pi_{\tau,\nu}(u) = \pi_{\tau,s(\nu-\rho)+\rho}(u) \circ A_s(\nu)$ for all $u \in U(\mathfrak{g})$. Then

$$A_s(\nu)(\lambda \otimes v) = \lambda \circ P^{\xi}(\nu)^{-1} P^{\xi}(s(\nu - \rho) + \rho) \otimes v$$

for $\lambda \in Hom_{0_M}(V_{\xi}, V_{\tau})$ and $v \in V_{\xi}$, if det $P^{\xi}(\nu) \neq 0$ and det $P^{\xi}(s(\nu - \rho) + \rho) \neq 0$ for all $\xi \in \hat{K}$ that occurs in $I_{P,\sigma,\nu}$.

Proof. This proof is almost word for word as the proof of Lemma 7.5 of [JW]. If $u \otimes w \in \beta(H) \otimes V_{\tau}$ is a simple tensor, then

$$A_s(\nu)T_\nu(u\otimes w) = A_s(\nu)\pi_{\tau,\nu}(u)w_\nu \tag{4.2.1}$$

$$= \pi_{\tau,s(\nu-\rho)+\rho}(u)A_s(\nu)w_{\nu}$$
 (4.2.2)

$$= \pi_{\tau, s(\nu-\rho)+\rho}(u) w_{s(\nu-\rho)+\rho}$$
(4.2.3)

$$=T_{s(\nu-\rho)+\rho}(u\otimes v) \tag{4.2.4}$$

Hence $A_s(\nu)T_{\nu} \circ T_{\nu_0}^{-1}(\lambda \otimes v) = T_{s(\nu-\rho)+\rho} \circ T_{\nu_0}^{-1}(\lambda \otimes v)$. Thus,

$$A_{s}(\nu)(\lambda \otimes v) = (T_{s(\nu-\rho)+\rho} \circ T_{\nu_{0}}^{-1}) \circ (T_{\nu} \circ T_{\nu_{0}}^{-1})^{-1}(\lambda \otimes v)$$
(4.2.5)

$$= \lambda \circ P^{\xi}(\nu)^{-1} P^{\xi}(s(\nu - \rho) + \rho) \otimes v$$
(4.2.6)

by Lemma 4.2.2.

Let $A(\nu) = A_s(\nu)$ with s the longest element of the Weyl group. Then, for a minimal parabolic subgroup P of G, we have

$$J_{\overline{P}|P}(\nu)f = (c_{\tau}(\nu)A(\nu+\rho)f) \circ k^*$$

where $c_{\tau}(\nu)$ is Harish-Chandra *c*-function on the small *K*-type V_{τ} and k^* is a representative of $s \in W(A) = N_K(A)/Z_K(A)$. Therefore, determinant of $P^{\xi}(\nu)$ gives the shift factors in the classical gamma functions in Theorem 2.2.2 modulo those from Harish-Chandra *c*-function on the small *K*-type V_{τ} .

Chapter 5

$\widetilde{SL(n,\mathbb{R})}$ and Metalinear Group $\widetilde{GL(n,\mathbb{R})}$

5.1 The Group $SL(n, \mathbb{R})$ and the Metalinear Group $\widetilde{GL(n, \mathbb{R})}$

Let $SL(n, \mathbb{R})$ be the connected, simply connected covering group of $SL(n, \mathbb{R})$ for $n \geq 3$. If θ is the Cartan involution of $SL(n, \mathbb{R})$ defined by $\theta(g) = (g^{-1})^t$, the set of fixed points of θ is the maximal compact subgroup SO(n) of $SL(n, \mathbb{R})$, and the set of fixed points of the lift of θ is the maximal compact subgroup K = Spin(n)of $\widetilde{SL(n, \mathbb{R})}$.

Let $\mathfrak{g}_{\circ} = Lie(SL(n,\mathbb{R})) = Lie(SL(n,\mathbb{R})) = \mathfrak{sl}(n,\mathbb{R}), \mathfrak{a}_{\circ} \subseteq \mathfrak{g}_{\circ}$ be the subalgebra of diagonal matrices and $\mathfrak{n}_{\circ} \subseteq \mathfrak{g}_{\circ}$ the subalgebra of strictly upper triangular matrices. Let $P = {}^{0}MAN$ be a minimal parabolic subgroup of $\widetilde{SL(n,\mathbb{R})}$ with ${}^{0}M = Z_{K}(A), A = exp(\mathfrak{a}_{\circ}), \text{ and } N = exp(\mathfrak{n}_{\circ}).$

For $n \geq 3$, $SL(n,\mathbb{R})$ is a two-fold covering group of $SL(n,\mathbb{R})$, and the group $\widetilde{SL(n,\mathbb{R})}$ is a central μ_2 -extension of the group $SL(n,\mathbb{R})$. Denote by η the nontrivial element of the group μ_2 . Then, $\eta \in {}^{0}M \leq K$ as η is central and the center is in K by Theorem 7.2.5 of [HAHS]. Hence, ${}^{0}M$ is a central μ_2 -extension of the group ${}^{0}M_{SL(n,\mathbb{R})}$ of the diagonal elements of SO(n).

Similarly for $n \geq 3$, consider the Metalinear group $\widetilde{GL(n,\mathbb{R})}$, the double cover of $GL(n,\mathbb{R})$. In this case, O(n) is the maximal compact subgroup of $GL(n,\mathbb{R})$, and Pin(n) is the maximal compact subgroup of $\widetilde{GL(n,\mathbb{R})}$.

We now discuss in more detail the embedding described in chapter 3. Consider the standard embedding of $i : GL(n-1, \mathbb{R}) \hookrightarrow SL(n, \mathbb{R})$ by

$$i(g) = \begin{array}{c} g & 0\\ 0 & det(g)^{-1} \end{array}$$

Let $p: \widetilde{SL(n,\mathbb{R})} \to SL(n,\mathbb{R})$ be the covering homomorphism. Since $p^{-1}(i(GL(n-1,\mathbb{R}))) \cong GL(n-1,\mathbb{R})$, there is a natural inclusion $\widetilde{i}: GL(n-1,\mathbb{R}) \hookrightarrow \widetilde{SL(n,\mathbb{R})}$. Under this inclusion, $Pin(n-1) \hookrightarrow Spin(n)$.

Lemma 5.1.1. Let $n \ge 4$. Given the embedding $\tilde{i} : GL(n-1,\mathbb{R}) \hookrightarrow \widetilde{SL(n,\mathbb{R})}$, we have $\tilde{i}({}^{0}\!M_{GL(n-1,\mathbb{R})}) = {}^{0}\!M_{\widetilde{SL(n,\mathbb{R})}}$.

 $\begin{array}{l} Proof. \ ^{0}\!M_{SL(n,\mathbb{R})} = \{ \begin{pmatrix} g \\ deg(g)^{-1} \end{pmatrix} \mid g \in O(n-1) \text{ diagonal} \}, \text{ the image of } ^{0}\!M_{GL(n-1,\mathbb{R})} \\ \text{under the inclusion map } i. \ \text{Hence } i(^{0}\!M_{GL(n-1,\mathbb{R})}) = ^{0}\!M_{SL(n,\mathbb{R})}. \ \text{Consider the maximal parabolic subgroup } P_{max} = \{ \begin{pmatrix} g & x \\ 0 & det(g)^{-1} \end{pmatrix} \mid g \in GL(n-1,\mathbb{R}), \ x \in \mathbb{R}^{n-1} \} \\ \text{of } \widetilde{SL(n,\mathbb{R})} \text{ with Levi factor } M_{P_{max}} = i(GL(n-1,\mathbb{R})). \ P \leq P_{max} \text{ where } P \text{ is the minimal parabolic subgroup of } SL(n,\mathbb{R}) \text{ consisting of upper triangular matrices. Let } p : \widetilde{SL(n,\mathbb{R})} \to SL(n,\mathbb{R}) \text{ be the covering homomorphism for } n \geq 4, \\ \text{and let } \widetilde{P} = p^{-1}(P). \ \text{Then, } \widetilde{P} = {}^{0}\!M_{\widetilde{SL(n,\mathbb{R})}}AN \text{ and } M_{\widetilde{P_{max}}} = p^{-1}(M_{P_{max}}) = p^{-1}(i(GL(n-1,\mathbb{R}))). \ \text{Therefore, } \widetilde{i}({}^{0}\!M_{GL(n-1,\mathbb{R})}) = {}^{0}\!M_{\widetilde{SL(n,\mathbb{R})}}. \end{array}$

5.2 Irreducible Representations of Pin(n) and Small Pin(n) types relative to the Metalinear Group

We recall two theorems that can be found in section 5.5.5 of [GW] that describe irreducible regular representations of Pin(n). The theorems are stated in terms of Orthogonal and Special Orthogonal groups in [GW]; however, the same statements are true for the pair Pin and Spin groups.

Definition 5.2.1.

- If n = 2k + 1 is odd, let $g_0 = -I \in O(2k + 1)$. If n = 2k is even, let $g_0 \in O(2k)$ be the diagonal matrix whose entries are all 1 except for last $g_{02k,2k} = -1$. Let $p: Pin(n) \to O(n)$ be the covering homomorphism and let ζ be any choice of $p^{-1}(g_0)$.
- Let $(\pi_{\lambda}, V_{\lambda})$ be the irreducible representation of Spin(n) with highest weight λ and let $(\rho_{\lambda}, V_{\lambda})$ be the induced representation $Ind_{Spin(2k)}^{Pin(2k)}(\pi_{\lambda})$.

Theorem 5.2.2. The irreducible regular representations of Pin(2k + 1) are of the form $(\pi_{\lambda}^{\epsilon}, V_{\lambda}^{\epsilon})$, where $(\pi_{\lambda}^{\epsilon}, V_{\lambda}^{\epsilon})$ restricted to Spin(2k + 1) is the highest weight representation $(\pi_{\lambda}, V_{\lambda})$, and ζ acts on V_{λ}^{ϵ} by ϵI where $\epsilon = \pm$.

Theorem 5.2.3. Let $k \ge 2$. The irreducible representation (σ, W) of Pin(2k) is one of the following two types.

- Suppose dim $W^{\mathfrak{n}^+} = 1$ and \mathfrak{h} acts by the weight λ on $W^{\mathfrak{n}^+}$. $(\sigma, W) \cong (\pi^{\epsilon}_{\lambda}, V^{\epsilon}_{\lambda})$ where $(\pi^{\epsilon}_{\lambda}, V^{\epsilon}_{\lambda})$ restricted to Spin(2k) is the highest weight representation $(\pi_{\lambda}, V_{\lambda})$, and ζ acts on $W^{\mathfrak{n}^+}$ by ϵI where $\epsilon = \pm$.
- Suppose dimWⁿ⁺ = 2. Then 𝔥 has two distinct weights λ and ζ · λ on Wⁿ⁺, and (σ, W) ≅ (ρ_λ, V_λ).

We list the small K = Pin(n)-types for the Metalinear Group $GL(n, \mathbb{R})$ by Theorem 5.2.2 and 5.2.3.

Definition 5.2.4.

- If n is even, let $V_{\rm T}$ be the *Pin*-representation.
- If n is odd, let $V_{\rm T}$ be either of the two *Pin*-representations.

5.3 Structure of irreducible K_{α} -modules in H_{α} and $H_{\alpha} \otimes V_{\tau}$

Recall that for the group $SL(n, \mathbb{R})$ and the maximal compact subgroup K = Spin(n) we have as the small K-type (τ, V_{τ}) the spin representation for n odd and either of the two half-spin representations for n even. Let $\alpha = \epsilon_i - \epsilon_j$ be a positive root of $Lie(\widetilde{SL(n, \mathbb{R})})$ and denote by E_{α} an n by n matrix with entry 1 in the position (i,j) and 0 elsewhere.

Definition 5.3.1. $\mathfrak{t}_{\alpha} = i(E_{\alpha} + \theta(E_{\alpha})).$

Lemma 5.3.2. $Ad({}^{0}M)|_{\mathfrak{t}_{\alpha}} = \{\pm 1\}.$

Proof. ${}^{0}M = Z_{K}(A)$, thus ${}^{0}M$ acts by a character on \mathfrak{n}_{α} because it is 1-dimensional. Since the square of any character of ${}^{0}M$ is equal to 1 by 2.2.2 of [RRG I], any element of ${}^{0}M$ must act on E_{α} by ± 1 . Therefore, ${}^{0}M$ will act by ± 1 on $E_{\alpha} + \theta(E_{\alpha})$, hence on \mathfrak{t}_{α} . If α is a simple root, $exp(\pi i\mathfrak{t}_{\alpha}) \in {}^{0}M$ will act by +1 on \mathfrak{t}_{α} and if β is a simple root connected to α in the dynkin diagram, $exp(\pi i\mathfrak{t}_{\beta}) \in {}^{0}M$ will act by -1 on \mathfrak{t}_{α} . Since all positive roots of $Lie(SL(n,\mathbb{R}))$ are conjugates by elements of the Weyl group $N_{K}(A)/Z_{K}(A)$ and $N_{K}(A)$ acts on ${}^{0}M$, for any positive root α there is an element of ${}^{0}M$ that will act by +1 and an element of ${}^{0}M$ that will act by -1. \Box

Definition 5.3.3.

- Let ${}^{0}M^{+}$ (resp. ${}^{0}M^{-}$) be the set of elements of ${}^{0}M$ that act on \mathfrak{t}_{α} by +1 (resp. -1).
- Let V_{τ}^+ (resp. V_{τ}^-) be the subspace of V_{τ} consisting of \mathfrak{t}_{α} weight vectors of weights $+\frac{1}{2}$ (resp. $-\frac{1}{2}$).

For a positive root $\alpha = \epsilon_i - \epsilon_j$ of $Lie(\widetilde{SL}(n, \mathbb{R}))$, let $X_{\alpha} = E_{ii} - E_{jj}$, $Y_{\alpha} = E_{\alpha} - \theta(E_{\alpha}), Z_{\alpha} = X_{\alpha} + iY_{\alpha}$ where E_{kk} is a diagonal matrix with entry 1 in the position (k, k) and 0 elsewhere and E_{α} is a matrix with entry 1 in the position (i, j) and 0 elsewhere. Then, $E_{\alpha} \in \mathfrak{n}_{\alpha}, \theta(E_{\alpha}) \in \mathfrak{n}_{-\alpha}$ and $\mathfrak{t}_{\alpha} \in \mathfrak{k} = \mathfrak{so}(n, \mathbb{C})$ with $[\mathfrak{t}_{\alpha}, \overline{Z_{\alpha}^{l}}] = 2l\overline{Z_{\alpha}^{l}}$ and $[\mathfrak{t}_{\alpha}, Z_{\alpha}^{l}] = -2lZ_{\alpha}^{l}$.

Definition 5.3.4.

- Let $\mathfrak{g}_{\alpha_{\circ}} = \mathfrak{a}_{\circ} \oplus \mathfrak{n}_{\alpha_{\circ}} \oplus \overline{\mathfrak{n}_{\alpha_{\circ}}}$ and G_{α} be the rank one subgroup of $SL(n,\mathbb{R})$ generated by $exp(\mathfrak{g}_{\alpha_{\circ}})$ and ${}^{0}M$. G_{α} is the group generated by $Mp(2,\mathbb{R})_{\alpha}$ the semisimple part of the group generated by $exp(\mathfrak{g}_{\alpha_{\circ}})$, ${}^{0}M$, and $exp(\mathfrak{a}_{\circ}^{\alpha})$ where $\mathfrak{a}_{\circ}^{\alpha} = \bigoplus_{\beta \in \Phi^{+} - \{\alpha\}} \mathbb{R}X_{\beta}$.
- Let K_{α} be the subgroup of K generated by $exp(i\mathbb{R}\mathfrak{t}_{\alpha})$ and ${}^{0}\!M$, the maximal compact subgroup of G_{α} .
- Let H_{α} be the space of harmonics on $\mathfrak{p}_{\alpha} = \mathfrak{a} \oplus \mathbb{C}Y_{\alpha}$ for the group G_{α} . H_{α} as a space is $\bigoplus_{l>0} (\mathbb{C}Z_{\alpha}^{l} \oplus \mathbb{C}\overline{Z_{\alpha}}^{l})$.

- Let $\mathfrak{g}_{\alpha,\mathfrak{gl}(n,\mathbb{R})_{\circ}} = \mathbb{R}I_n \oplus \mathfrak{g}_{\alpha_{\circ}}$. Let $G_{\alpha,GL(n,\mathbb{R})}$ be the rank one subgroup of the metalinear group $\widetilde{GL(n,\mathbb{R})}$ generated by $exp(\mathfrak{g}_{\alpha,\mathfrak{gl}(n,\mathbb{R})_{\circ}})$ and ${}^{0}M_{\widetilde{GL(n,\mathbb{R})}}$. $G_{\alpha,\widetilde{GL(n,\mathbb{R})}}$ is the group generated by $SL(2,\mathbb{R})_{\alpha}$ the semisimple part of the group generated by $exp(\mathfrak{g}_{\alpha,\mathfrak{gl}(n,\mathbb{R})_{\circ}}), {}^{0}M_{\widetilde{GL(n,\mathbb{R})}}$, and $exp(\mathbb{R}I_n \oplus \mathfrak{a}_{\circ}^{\alpha})$ where $\mathfrak{a}_{\circ}^{\alpha} = \bigoplus_{\beta \in \Phi^+ - \{\alpha\}} \mathbb{R}X_{\beta}$.
- Let $K_{\alpha,\widetilde{GL(n,\mathbb{R})}}$ be the subgroup of Pin(n) generated by $exp(i\mathbb{R}\mathfrak{t}_{\alpha})$ and ${}^{0}M_{\widetilde{GL(n,\mathbb{R})}}$, the maximal compact subgroup of $G_{\alpha,\widetilde{GL(n,\mathbb{R})}}$.
- Let $H_{\alpha,\mathfrak{gl}(n,\mathbb{R})}$ be the space of harmonics on $\mathfrak{p}_{\alpha,\mathfrak{gl}(n,\mathbb{R})} = \mathbb{C}I_n \oplus \mathfrak{a} \oplus \mathbb{C}Y_\alpha$ for the group $G_{\alpha,\widetilde{GL(n,\mathbb{R})}}$. $H_{\alpha,\mathfrak{gl}(n,\mathbb{R})}$ as a space is $\bigoplus_{l\geq 0} (\mathbb{C}Z_\alpha^l \oplus \mathbb{C}\overline{Z_\alpha}^l)$.

By Lemma 5.1.1, ${}^{0}\!M_{\widetilde{SL(n,\mathbb{R})}} \cong {}^{0}\!M_{\widetilde{GL(n-1,\mathbb{R})}}$. Therefore, the semisimple parts of G_{α} and $\widetilde{G_{\alpha,\widetilde{GL(n-1,\mathbb{R})}}}$ are isomorphic and $K_{\alpha} \cong K_{\alpha,\widetilde{GL(n-1,\mathbb{R})}}$ for α a positive root of $Lie(\widetilde{GL(n-1,\mathbb{R})}) \subseteq Lie(\widetilde{SL(n,\mathbb{R})})$. Thus the space of harmonics for G_{α} and $G_{\alpha,\widetilde{GL(n-1,\mathbb{R})}}$ is the same with the same $K_{\alpha} \cong K_{\alpha,\widetilde{GL(n-1,\mathbb{R})}}$ action, and the following Lemmas and Theorems are true for both G_{α} and $\widetilde{G_{\alpha,\widetilde{GL(n-1,\mathbb{R})}}}$.

Lemma 5.3.5. Let $V_{\gamma_{\alpha}}$ be an irreducible nontrivial K_{α} -module that occurs in H_{α} . There exist exactly two \mathfrak{t}_{α} -weights on $V_{\gamma_{\alpha}}$, and they are dual representations.

Proof. Start with the \mathfrak{t}_{α} weight vector of weight 2l, $\overline{Z_{\alpha}^{l}}$. ${}^{0}M$ is a group of finite order that centralizes \mathfrak{a} and ${}^{0}M^{\pm}$ act by ± 1 on \mathfrak{t}_{α} . Therefore, ${}^{0}M^{+}$ will fix $\overline{Z_{\alpha}^{l}}$ and ${}^{0}M^{-}$ will move $\overline{Z_{\alpha}^{l}}$ to Z_{α}^{l} . Hence the weights are 2l and -2l.

Lemma 5.3.6. Let $V_{\xi_{\alpha}}$ be an irreducible K_{α} -module that occurs in $H_{\alpha} \otimes V_{\tau}$. There exist exactly two \mathfrak{t}_{α} -weights on $V_{\xi_{\alpha}}$, and they are dual.

Proof. Let $v \in V_{\xi_{\alpha}}$ be a \mathfrak{t}_{α} weight vector of weight c, which is nonzero as it is in the form of $2j \pm \frac{1}{2}$, because the only weights of \mathfrak{t}_{α} acting on V_{τ} are $\pm \frac{1}{2}$. If $m \in {}^{0}M$, $\mathfrak{t}_{\alpha}.m.v = m.m^{-1}.\mathfrak{t}_{\alpha}.m.m^{-1}.m.v = \pm m.\mathfrak{t}_{\alpha}.v = \pm c * m.v$. Since ${}^{0}M$ acts irreducibly on $V_{\xi_{\alpha}}$ the result follows.

Theorem 5.3.7. Let $V_{\gamma_{\alpha}}$ be an irreducible K_{α} -module that occurs in H_{α} . $V_{\gamma_{\alpha}}$ as a space is the span of $\{\overline{Z_{\alpha}^{l}}, Z_{\alpha}^{l}\}$ for some l. Moreover, ⁰M-invariant elements are $\mathbb{C}(\overline{Z_{\alpha}^{l}} + Z_{\alpha}^{l})$.

Proof. This follows from Lemma 5.3.5.

Theorem 5.3.8. Let $V_{\xi_{\alpha}}$ be an irreducible K_{α} -module that occurs in $H_{\alpha} \otimes V_{\tau}$. $V_{\xi_{\alpha}}$ as a space is either $(\overline{Z_{\alpha}^{l}} \otimes V_{\tau}^{+}) \oplus (Z_{\alpha}^{l} \otimes V_{\tau}^{-})$ or $(\overline{Z_{\alpha}^{l}} \otimes V_{\tau}^{-}) \oplus (Z_{\alpha}^{l} \otimes V_{\tau}^{+})$ for some l.

Proof. Consider $\overline{Z_{\alpha}^{l}} \otimes v$ for some 1 and $v \in V_{\tau}^{+}$. By Lemma 5.3.6, K_{α} module generated by this element is contained in $(\overline{Z_{\alpha}^{l}} \otimes V_{\tau}^{+}) \oplus (Z_{\alpha}^{l} \otimes V_{\tau}^{-})$. Since the dimensions of the two spaces are equal the inclusion is an equality. We argue similarly if we start with a vector in V_{τ}^{-} .

5.4 Frobenius Reciprocity in our Context

Recall H the space of harmonics on \mathfrak{p} for the group $SL(n, \mathbb{R})$, $H \cong I_{P,triv,\nu}$ and $H \otimes V_{\tau} \cong I_{P,\tau,\nu}$ as Spin(n)-modules where V_{τ} is the Spin representation for n odd and either of the two half-Spin representations for n even. The space of harmonics H for the metalinear group $\widetilde{GL(n,\mathbb{R})}$ is the same as that of the group $\widetilde{SL(n,\mathbb{R})}$, and $H \otimes V_{\mathrm{T}} \cong I_{P,\mathrm{T},\nu}$ as Pin(n)-modules where V_{T} is either of the two Pin representations for n odd and the Pin representation for n even.

Lemma 5.4.1.

• If V_{ξ} is an irreducible Spin(n) module that occurs in $H \otimes V_{\tau}$,

$$V_{\xi}|_{{}^{0}\!M_{\widetilde{SL(n,\mathbb{R})}}} = \bigoplus_{j=1}^{\dim(V_{\xi})/\dim(V_{\tau})} V_{\tau_{j}}$$

where $V_{\tau_j} \cong V_{\tau}$ as ${}^{0}\!M_{\widetilde{SL(n,\mathbb{R})}}$ -modules for all j.

• If V_{Ξ} is an irreducible Pin(n) module that occurs in $H \otimes V_{T}$,

$$V_{\Xi}|_{{}^{0}\!M_{\widetilde{GL(n,\mathbb{R})}}} = \bigoplus_{j=1}^{\dim(V_{\Xi})/\dim(V_{\mathrm{T}})} V_{\mathrm{T}_{j}}$$

where $V_{T_j} \cong V_T$ as ${}^0\!M_{\widetilde{GL(n,\mathbb{R})}}$ -modules for all j.

Proof. First consider the statement for the group $SL(n, \mathbb{R})$. $\mathbb{C}[{}^{0}M_{SL(n,\mathbb{R})}]/\langle \eta+1 \rangle$ is the subalgebra of $Cliff_n$ spanned by the even number of elements of the usual basis elements from 11.A.2.8 of [RRG II]. Hence we have the result if n is odd. If n is even, V_{τ_j} can be either of the half spin representations restricted to ${}^{0}M_{SL(n,\mathbb{R})}$. I claim that only $V_{\tau}|_{{}^{0}M_{SL(n,\mathbb{R})}}$ is allowed. Let V_{τ} and $\overline{V_{\tau}}$ be the two half spin representation of Spin(n) for n even, and let ω be a choice of $p^{-1}(-Id)$ where $p : Spin(n) \to SO(n)$. ω distinguishes the two representations as ${}^{0}M_{SL(n-1,\mathbb{R})}$ do not. ω acts trivially on H as $-Id \in {}^{0}M_{SL(n,\mathbb{R})}$ and is central in SO(n). Therefore, $(H \otimes V_{\tau})|_{{}^{0}M_{SL(n,\mathbb{R})}} = \bigoplus V_{\tau_j}$ with $V_{\tau_j} \cong V_{\tau}$ as ${}^{0}M_{SL(n,\mathbb{R})}$ -modules, and $(H \otimes \overline{V_{\tau}})|_{{}^{0}M_{SL(n,\mathbb{R})}} = \bigoplus V_{\tau_j}$ with $V_{\tau_j} \cong \overline{V_{\tau}}$ as ${}^{0}M_{SL(n,\mathbb{R})}$ -modules.

Consider the statement for the metalinear group $GL(n, \mathbb{R})$. By Lemma 5.1.1, ${}^{0}M_{GL(n-1,\mathbb{R})} \cong {}^{0}M_{S\widetilde{L(n,\mathbb{R})}}$. Therefore, we have the result for n even similarly as above. If n is odd, we argue similarly as above using ζ defined in 5.2.1.

Lemma 5.4.2.

- Let V_{ξ} be an irreducible Spin(n) module that occurs in $H \otimes V_{\tau}$, and let $V_{\gamma_1}, ..., V_{\gamma_N}$ be distinct Spin(n)-types that occur in H, with $V_{\xi} \subseteq V_{\gamma_j} \otimes V_{\tau}$ for all j. If $l(\gamma_j) = \dim V_{\gamma_j}^{\circ_M} SL(n,\mathbb{R})$, then $\dim(V_{\xi})/\dim(V_{\tau}) = \dim \operatorname{Hom}_{Spin(n)}(V_{\xi}, H \otimes V_{\tau}) = \sum_{j=1}^N l(\gamma_j)$.
- Let V_{Ξ} be an irreducible Pin(n) module that occurs in $H \otimes V_{T}$, and let $V_{\Gamma_{1}}, ..., V_{\Gamma_{L}}$ be distinct Pin(n)-types that occur in H, with $V_{\Xi} \subseteq V_{\Gamma_{j}} \otimes V_{T}$ for all j. If $l(\Gamma_{j}) = \dim V_{\Gamma_{j}}^{0_{M_{GL(n,\mathbb{R})}}}$, then $\dim(V_{\Xi})/\dim(V_{T}) = \dim \operatorname{Hom}_{Pin(n)}(V_{\Xi}, H \otimes V_{T}) = \sum_{j=1}^{L} l(\Gamma_{j})$.

Proof. Since V_{τ} is multiplicity free, by Corollary 3.4 of [Ku], we know V_{ξ} occurs in $V_{\gamma} \otimes V_{\tau}$ exactly once if it does. Now each of V_{γ_j} occurs in H exactly $l(\gamma_j)$ many times by Frobenius Reciprocity, hence the multiplicity of V_{ξ} in $H \otimes V_{\tau}$ is exactly $\sum_{j=1}^{N} l(\gamma_j)$ which is $dim(V_{\xi})/dim(V_{\tau})$ by Lemma 5.4.1 and Frobenius Reciprocity. We argue similarly for the statement of the metalinear group $\widetilde{GL(n,\mathbb{R})}$.

5.5 t_{α} -weights on certain vectors

Recall the definition of \mathfrak{t}_{α} from 5.3.1. Let V_{γ} be an irreducible Spin(n)module that occurs in the harmonics H in \mathfrak{p} of $\widetilde{SL(n,\mathbb{R})}$. Let $\operatorname{Span} K_{\alpha}.V_{\gamma}^{\circ M_{\widetilde{SL(n,\mathbb{R})}}} = \bigoplus_{j=1}^{l(\gamma)} W_j$ be a decomposition into irreducible K_{α} -modules. Let V_{Γ} be an irreducible Pin(n)-module that occurs in the harmonics on \mathfrak{p} of $\widetilde{GL(n,\mathbb{R})}$. Let $\operatorname{Span} K_{\alpha,\widetilde{GL(n,\mathbb{R})}}$. $V_{\Gamma}^{\circ M_{\widetilde{GL(n,\mathbb{R})}}} = \bigoplus_{j=1}^{l(\Gamma)} X_j$ a decomposition into irreducible $K_{\alpha,\widetilde{GL(n,\mathbb{R})}}$ -modules where $K_{\alpha,\widetilde{GL(n,\mathbb{R})}}$ is the group generated by the torus and ${}^{\circ}M_{\widetilde{GL(n,\mathbb{R})}}$.

Definition 5.5.1.

- Let $\delta_{\alpha,j}^{\gamma}$ be the dominant \mathfrak{t}_{α} weight on W_j for $j = 1, ..., l(\gamma)$ given by Lemma 5.3.5.
- Let $\delta_{\alpha,j}^{\Gamma}$ be the dominant \mathfrak{t}_{α} weight on X_j for $j = 1, ..., l(\Gamma)$ by the remark in section 5.3.

Let V_{ξ} be an irreducible Spin(n)-module that occurs in $H \otimes V_{\tau}$. Let $V_{\xi} = \bigoplus_{j=1}^{n(\xi)} V_{\tau_j}$ be a decomposition into irreducible K_{α} -modules where $V_{\tau_j} \cong V_{\tau}$ as ${}^{0}M_{\widetilde{SL(n,\mathbb{R})}}$ -modules for all j by Lemma 5.4.1.

Let V_{Ξ} be an irreducible Pin(n)-module that occurs in $H \otimes V_{\mathrm{T}}$. Let $V_{\Xi} = \bigoplus_{j=1}^{n(\Xi)} V_{\mathrm{T}_j}$ be a decomposition into irreducible $K_{\alpha,\widetilde{GL(n,\mathbb{R})}}$ -modules where $V_{\mathrm{T}_j} \cong V_{\mathrm{T}}$ as ${}^{0}M_{\widetilde{GL(n,\mathbb{R})}}$ -modules for all j by the remark after Lemma 5.4.1.

Definition 5.5.2.

- Let $\delta_{\alpha,j}^{\xi}$ be the dominant \mathfrak{t}_{α} weight on V_{τ_j} for $j = 1, ..., n(\xi)$ given by Lemma 5.3.6.
- Let $\delta_{\alpha,j}^{\Xi}$ be the dominant \mathfrak{t}_{α} weight on V_{T_j} for $j = 1, ..., n(\Xi)$ by the remark in section 5.3.

5.6 Restriction of Pin(n)-modules to Spin(n) and t_{α}-weights

Let V_{γ} be an irreducible Spin(n)-module that occurs in the harmonics on \mathfrak{p} of $\widetilde{SL(n,\mathbb{R})}$, and V_{Γ} be an irreducible Pin(n)-module that occurs in the harmonics on \mathfrak{p} of $\widetilde{GL(n,\mathbb{R})}$.

Theorem 5.6.1. Let n=2k, $(m_1,...,m_k)$ be the highest weight of V_{γ} , and assume V_{γ} occurs in V_{Γ} if we restrict to Spin(n) from Pin(n).

- If $m_k \neq 0$, then $\dim V_{\gamma}^{^{0}M_{S\widetilde{L(n,\mathbb{R})}}} = \dim V_{\Gamma}^{^{0}M_{G\widetilde{L(n,\mathbb{R})}}}$, $l(\gamma) = l(\Gamma)$ and $\delta_{\alpha,j}^{\gamma} = \delta_{\alpha,j}^{\Gamma}$ for all j after reordering.
- If $m_k = 0$, let $V_{\Gamma} = V_{\gamma}^{\epsilon}$ where $\epsilon = \pm$ is the signature of g_0 on the highest weight vector given to us by Theorem 5.2.3. Then, $V_{\gamma}^{\circ M_{SL(n,\mathbb{R})}} = V_{\gamma}^{+ \circ M_{GL(n,\mathbb{R})}} \oplus V_{\gamma}^{- \circ M_{GL(n,\mathbb{R})}} = V_{\Gamma}^{+ \circ M_{GL(n,\mathbb{R})}} \oplus V_{\Gamma}^{- \circ M_{GL(n,\mathbb{R})}}$, and hence $\{\delta_{\alpha,1}^{\gamma}, ..., \delta_{\alpha,l(\gamma)}^{\gamma}\}$ is a disjoint union of that of $V_{\gamma}^{+ \circ M_{GL(n,\mathbb{R})}}$ and $V_{\gamma}^{- \circ M_{GL(n,\mathbb{R})}}$.

Proof. Since we are working with submodules of the harmonics, η acts trivially, hence we can ignore the tilde and work with ${}^{0}\!M_{SL(n,\mathbb{R})}$ -invariants of SO(n)-modules and ${}^{0}\!M_{GL(n,\mathbb{R})}$ -invariants of O(n)-modules. Also, remember $g_0 \in {}^{0}\!M_{GL(n,\mathbb{R})}$.

Let us assume first $m_k \neq 0$. Then, g_0 swaps the two SO(2k) highest weight modules of highest weights $(m_1, ..., m_k)$ and $(m_1, ..., -m_k)$. Since g_0 commutes with ${}^{0}\!M_{SL(n,\mathbb{R})}$, g_0 will give us a bijection of ${}^{0}\!M_{SL(n,\mathbb{R})}$ -invariants in the SO(2k) highest weight representation of highest weight $(m_1, ..., m_k)$ with ${}^{0}\!M_{SL(n,\mathbb{R})}$ -invariants in the SO(2k) highest weight representation of highest weight $(m_1, ..., -m_k)$. Hence, it is now clear that dim $V_{\gamma}^{{}^{0}\!M_{SL(n,\mathbb{R})}} = \dim V_{\Gamma}^{{}^{0}\!M_{GL(n,\mathbb{R})}}$ as ${}^{0}\!M_{GL(n,\mathbb{R})}$ is generated by ${}^{0}\!M_{SL(n,\mathbb{R})}$ and ζ , a choice of $p^{-1}(g_0)$. Since g_0 leaves invariant \mathfrak{t}^2_{α} , the statement of the \mathfrak{t}_{α} -weights is now also clear with the help of Lemma 5.3.5.

Let us now assume $m_k = 0$, $v(m_1, ..., m_k)$ the highest weight vector, and $v_1, ..., v_{l(\gamma)}$ a basis of $V_{\gamma}^{0M_{SL(n,\mathbb{R})}}$ such that g_0 acts on v_j by ± 1 for all j, which is possible since $g_0^2 = Id$ and g_0 commutes with ${}^{0}M_{SL(n,\mathbb{R})}$. Denote by $v_1^+, ..., v_{l(\gamma)}^+$ and $v_1^-, ..., v_{l(\gamma)}^-$ above basis thought of being in V_{γ}^+ and V_{γ}^- respectively. Now the

only difference between V_{γ}^+ and V_{γ}^- is the action of g_0 . If we denote by ϵ the action of g_0 on $v_1^+, ..., v_{l(\gamma)}^+$, I claim that g_0 will act by $-\epsilon$ on $v_1^-, ..., v_{l(\gamma)}^-$. Indeed, $v_j = X_j . v(m_1, ..., m_k)$ where $X_j \in U(\overline{\mathfrak{n}})$. Since g_0 acts by different signatures on $v(m_1, ..., m_k)$ for V_{γ}^+ and V_{γ}^- , the statement is now clear.

Theorem 5.6.2. Let n=2k+1 and assume V_{γ} occurs in V_{Γ} if we restrict to Spin(n)from Pin(n). Then, $g_0 = -Id$ will act trivially, and there is no difference between V_{γ} and V_{Γ} .

Proof. We have $-Id \in Z(Pin(n))$ and $-Id \in {}^{0}M_{GL(n,\mathbb{R})}$, hence in order for V_{Γ} to be in the harmonics, it must act trivially. Now we have the result by Theorem 5.2.2.

Let V_{Ξ} be an irreducible Pin(n)-module whose restriction to Spin(n) contains a copy of V_{ξ} where $V_{\xi} \subseteq H \otimes V_{\tau}$. Let $V_{\xi} = \bigoplus_{j=1}^{n(\xi)} V_{\tau_j}$ be a decomposition into irreducible K_{α} -modules. Recall the definition of ζ from 5.2.1.

Theorem 5.6.3. If n=2k, then $V_{\Xi}|_{{}^{0}M_{G\widehat{L(n,\mathbb{R})}}} = \bigoplus_{j=1}^{n(\xi)} (V_{\tau_j} \oplus \zeta.V_{\tau_j})$ and if n=2k+1, then $V_{\Xi}|_{{}^{0}M_{G\widehat{L(n,\mathbb{R})}}} = \bigoplus_{j=1}^{n(\xi)} V_{\tau_j}$. In either case, $\delta_{\alpha,j}^{\xi} = \delta_{\alpha,j}^{\Xi}$ for all j after reordering. *Proof.* Since ${}^{0}M_{G\widehat{L(n,\mathbb{R})}}$ is generated by ${}^{0}M_{S\widehat{L(n,\mathbb{R})}}$ and ζ , the statement is clear now along with the help of theorems 5.2.2 and 5.2.3.

Chapter 6

Product Formula of p_{ξ} for $SL(n, \mathbb{R})$

6.1 Comparison of t_{α} -weights

Consider for the group $SL(n, \mathbb{R})$ the small K = Spin(n)-type V_{τ} the spin representation for n odd and either of the half spin representations for n even. Let V_{ξ} be an irreducible Spin(n)-module that occurs in $H \otimes V_{\tau}$ and $V_{\gamma_1}, ..., V_{\gamma_N}$ be distinct K = Spin(n)-types that occur in H such that $V_{\xi} \subseteq V_{\gamma_j} \otimes V_{\tau}$ for all j. Let α be a positive root of $\mathfrak{sl}(n, \mathbb{R})$, $\{\delta_{\alpha,1}^{\xi}, ..., \delta_{\alpha,n(\xi)}^{\xi}\}$ be the set of \mathfrak{t}_{α} weights on V_{ξ} defined in 5.5.2, and let $\{\delta_{\alpha,1}, ..., \delta_{\alpha, \Sigma_{j=1}^N l(\gamma_j)}\}$ be the ones from $V_{\gamma_1}, ..., V_{\gamma_N}$ defined in 5.5.1 where $n(\xi) = \dim Hom_K(V_{\xi}, H \otimes V_{\tau})$ and $l(\gamma_j) = \dim V_{\gamma_j}^{0M}$.

Theorem 6.1.1. $n(\xi) = \sum_{j=1}^{N} l(\gamma_j)$ and we can reorder the set $\{\delta_{\alpha,1}^{\xi}, ..., \delta_{\alpha,n(\xi)}^{\xi}\}$ so that $\delta_{\alpha,j} = \delta_{\alpha,j}^{\xi} \pm \frac{1}{2}$ for all j.

We first state and prove a lemma for the theorem.

Lemma 6.1.2. Assume the statement of \mathfrak{t}_{α} -weights in Theorem 6.1.1 for the modules of the group Spin(n). Then the statement of \mathfrak{t}_{α} -weights in Theorem 6.1.1 for the modules of the group Pin(n) is also true.

Proof. Assume first n is odd. The space of Harmonics on \mathfrak{p} are the same for both $\widetilde{SL(n,\mathbb{R})}$ and $\widetilde{GL(n,\mathbb{R})}$, and the small Pin(n)-type V_{T} is the small Spin(n)-type V_{τ} if we restrict from Pin(n) to Spin(n). By Theorem 5.6.2, the restriction of

Pin(n) to Spin(n) will not change the assumptions of the modules in Theorem 6.1.1.

Given an irreducible Pin(n)-module that occurs in the Harmonics, the set of \mathfrak{t}_{α} weights of interest do not change restricted to Spin(n) by Theorem 5.6.2. Given an irreducible Pin(n)-module that occurs in $H \otimes V_{\mathrm{T}}$, the set of \mathfrak{t}_{α} weights of interest do not change restricted to Spin(n) by Theorem 5.6.3. Therefore, once we restrict Pin(n) to Spin(n), the comparison of \mathfrak{t}_{α} -weights for the group Pin(n)is that of \mathfrak{t}_{α} -weights for the group Spin(n).

Assume now n is even. The space of Harmonics on \mathfrak{p} are the same for both $SL(n,\mathbb{R})$ and $GL(n,\mathbb{R})$, and the small Pin(n)-type V_{T} is a direct sum of the two half-spin representations V_{τ} and $\overline{V_{\tau}}$ if we restrict from Pin(n) to Spin(n). Let $V_{\Gamma_1}, ..., V_{\Gamma_M}$ be distinct Pin(n) types that occur in H such that $V_{\Xi} \subseteq V_{\Gamma_i} \otimes V_{T}$. Let us restrict V_{Γ_j} to Spin(n). By Theorem 5.2.3, if $\dim V_{\Gamma_j}^{\mathfrak{n}^+} = 2$, V_{Γ_j} is a direct sum of two irreducible Spin(n) modules with last entries of the highest weights nonzero and negatives of each other, and if $\dim V_{\Gamma_j}^{\mathfrak{n}^+} = 1$, V_{Γ_j} is irreducible as a Spin(n)module. For each j, let V_{γ_j} be the choice of the irreducible Spin(n)-module that occurs in $V_{\Gamma_j}|_{Spin(n)}$ with last entry of the highest weight nonnegative, and reorder so that $V_{\gamma_1}, ..., V_{\gamma_N}$ are distinct Spin(n) modules. $N \leq M$ as there may be j such that V_{γ_j} occurs twice with different g_0 signature on $V_{\gamma_j}^{\mathfrak{n}^+}$. Let V_{ξ} be the choice of the irreducible Spin(n)-module that occurs in $V_{\Xi}|_{Spin(n)}$ with last entry of the highest weight positive. Without loss of generality, assume $V_{\xi} \subseteq H \otimes V_{\tau}$. $V_{\gamma_1}, ..., V_{\gamma_N}$ are distinct Spin(n) modules that occur in H such that $V_{\xi} \subseteq V_{\gamma_i} \otimes V_{\tau}$. Therefore, we can assume the statement of the \mathfrak{t}_{α} weights on these Spin(n) modules. But by Theorem 5.6.1 and Theorem 5.6.3, comparison of \mathfrak{t}_{α} weights for the modules of the group Pin(n) is that of $V_{\xi}, V_{\gamma_1}, ..., V_{\gamma_N}$ of Spin(n). Therefore, we have the result for n even.

Proof. (Theorem 6.1.1)

 $n(\xi) = \sum_{i=1}^{N} l(\gamma_i)$ by Lemma 5.4.2.

The Weyl group W(A) of $SL(n, \mathbb{R})$ is the symmetric group on n elements

that permute the roots of $Lie(SL(n, \mathbb{R}))$, hence the positive roots of $Lie(SL(n, \mathbb{R}))$ are permuted by elements of W(A). Since $\widetilde{SL(n, \mathbb{R})}$ is split, the Weyl group W(A)is isomorphic to $N_K(A)/Z_K(A)$. Therefore, all positive roots of $Lie(\widetilde{SL(n, \mathbb{R})})$ are conjugate to each other by elements of K = Spin(n), hence $t_{\alpha}s$ also. Thus the set of \mathfrak{t}_{α} -weights of interest is independent of the choice of α .

Let n=3. Denote by λ the highest weight of V_{ξ} . Let $\lambda = \frac{p}{2}$ with p odd. If p = 1, there exists only one $V_{\gamma} \subseteq H$ with $V_{\xi} \subseteq V_{\gamma} \otimes V_{\tau}$ the trivial representation, and the claim is true. If p = 3, there exists only one $V_{\gamma} \subseteq H$ with $V_{\xi} \subseteq V_{\gamma} \otimes V_{\tau}$ the representation with highest weight 2. In this case, the weights are $\frac{1}{2}$ and $\frac{3}{2}$ for V_{ξ} and 0 and 2 for V_{γ} , hence the claim is also true. Suppose p > 3. Then, there exist exactly two such representations, call them $V_{\gamma_{p_1}}$ and $V_{\gamma_{p_2}}$ with highest weights $\frac{p-1}{2}$ and $\frac{p+1}{2}$. The weights of interest on V_{ξ} are $\frac{1}{2}, \frac{3}{2}, ..., \frac{p}{2}$. Now, the weights of interest on $V_{\gamma_{p_1}}$ and $V_{\gamma_{p_2}}$ are 0, 2, 4, ..., $\frac{p-1}{2}$ and 2, 4, ..., $\frac{p-1}{2}$ respectively if $\frac{p-1}{2}$ is even, and 2, 4, ..., $\frac{p-3}{2}$ and 0, 2, ..., $\frac{p+1}{2}$ respectively if $\frac{p+1}{2}$ is even.

The set of the weights of interest on V_{ξ} are $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \dots, \frac{p-2}{2}, \frac{p}{2}$. In the first case where $\frac{p-1}{2}$ is even, consider $(\frac{1}{2}-\frac{1}{2}), (\frac{3}{2}+\frac{1}{2}), (\frac{5}{2}-\frac{1}{2}), (\frac{7}{2}+\frac{1}{2}), \dots, (\frac{p-2}{2}+\frac{1}{2}), (\frac{p}{2}-\frac{1}{2}),$ which is 0, 2, 2, 4, 4, $\dots, \frac{p-1}{2}, \frac{p-1}{2}$. This is exactly the union of the weights on $V_{\gamma_{p_1}}$ and $V_{\gamma_{p_2}}$. In the second case where $\frac{p+1}{2}$ is even, consider $(\frac{1}{2}-\frac{1}{2}), (\frac{3}{2}+\frac{1}{2}), (\frac{5}{2}-\frac{1}{2}), (\frac{7}{2}+\frac{1}{2}), \dots, (\frac{p-2}{2}-\frac{1}{2}), (\frac{p}{2}+\frac{1}{2}), (\frac{p}{2}+\frac{1}{2}), (\frac{p}{2}-\frac{1}{2}), (\frac{p}{2}+\frac{1}{2}), (\frac{p}{2}+\frac{1}{2}), (\frac{p}{2}+\frac{1}{2}), \dots, (\frac{p-2}{2}-\frac{1}{2}), (\frac{p}{2}+\frac{1}{2}), (\frac{p}{2$

We now proceed by induction. Assume the statement of the theorem for $\widetilde{SL(n,\mathbb{R})}$, and hence for $\widetilde{GL(n,\mathbb{R})}$ by Lemma 6.1.2. We prove the statement of the theorem for $\widetilde{SL(n+1,\mathbb{R})}$. Consider the embedding $\widetilde{GL(n,\mathbb{R})} \hookrightarrow \widetilde{SL(n+1,\mathbb{R})}$ with ${}^{0}M$ the same by Lemma 5.1.1.

We can restate the condition $V_{\xi} \subseteq V_{\gamma_j} \otimes V_{\tau}$ with $V_{\gamma_j} \subseteq V_{\xi} \otimes V_{\tau}^*$ where V_{τ}^* is the contragradient representation. Note the statement of the theorem is true with the restated condition for $\widetilde{GL(n, \mathbb{R})}$ by the induction hypothesis.

Let $V_{\gamma_1}, ..., V_{\gamma_N}$ be distinct irreducible Spin(n + 1)-modules that occur in H such that $V_{\gamma_j} \subseteq V_{\xi} \otimes V_{\tau}^*$, and let $\bigoplus_{j=1}^N Span \ Pin(n) \cdot V_{\gamma_j}^{0M} = \bigoplus_k W_k$ where each W_k is an irreducible Pin(n)-module. As the nontrivial element $\eta \in Z = \mu_2 \leq {}^{0}M$

acts by -1, $V_{\xi}|_{Pin(n)} = \bigoplus_{j} V_{\xi_j}$ where each of V_{ξ_j} occurs in $H \otimes V_{\tau}$ by Lemma 5.4.1, with H that of $\widetilde{GL(n,\mathbb{R})}$. We have $\bigoplus_k W_k \subseteq \bigoplus_j V_{\xi_j} \otimes V_{\tau}^*$ where each of W_k occurs in H of $\widetilde{GL(n,\mathbb{R})}$ as $\widetilde{i}({}^{0}M_{GL(n-1,\mathbb{R})}) = {}^{0}M_{\widetilde{SL(n,\mathbb{R})}}$ by Lemma 5.1.1 where $\widetilde{i}: \widetilde{GL(n-1,\mathbb{R})} \hookrightarrow \widetilde{SL(n,\mathbb{R})}$ is the inclusion map.

Since the statement of the theorem is true for $GL(n, \mathbb{R})$ with the restated condition and as the set of \mathfrak{t}_{α} weights of interest are the same after branching down to Pin(n) as $\tilde{i}: GL(n-1, \mathbb{R}) \hookrightarrow \widetilde{SL(n, \mathbb{R})}$ by Lemma 5.1.1, we have the statement of the theorem for all positive roots α of $Lie(\widetilde{GL(n, \mathbb{R})}) \subseteq Lie(SL(n+1, \mathbb{R}))$ once we realize that $n(\xi) = \sum_{j=1}^{N} l(\gamma_j)$. Note $V_{\xi_j} \otimes V_{\tau}^*$ decomposes into distinct Pin(n)modules by Corollary 3.4 of [Ku] as V_{τ}^* is multiplicity free. Therefore, if $W_k \cong W_l$ with $k \neq l$, then W_k and W_l cannot be contained in a single $V_{\xi_j} \otimes V_{\tau}^*$, important as the statement of the theorem for $\widetilde{GL(n, \mathbb{R})}$ also assumes distinct V_{Γ} s. As the set of \mathfrak{t}_{α} -weights of interest is independent of the choice of α of $Lie(SL(n+1, \mathbb{R}))$, we have the statement of the theorem. \Box

6.2 Divisibility

6.2.1 Definition of the P^{ξ} matrix revisited

Let $\mathfrak{g}_{\circ} = Lie(\widetilde{SL(n,\mathbb{R})}) = Lie(SL(n,\mathbb{R})) = \mathfrak{sl}(n,\mathbb{R})$ and recall the definitions of $\mathfrak{g}, \mathfrak{k}$, and \mathfrak{p} from Chapter 2. *H* is the space of harmonics on \mathfrak{p}, J the subspace of *K* invariants in $S(\mathfrak{p}), U(\mathfrak{g})$ the universal enveloping algebra of \mathfrak{g} . Let $symm: S(\mathfrak{g}) \longrightarrow U(\mathfrak{g})$ be the symmetrization map.

The following is Lemma 1.4.2 of [Kos].

Lemma 6.2.2. $U(\mathfrak{g}) = symm(H)symm(J) \oplus U(\mathfrak{g})\mathfrak{k}$

The following is a Theorem from 11.3.6 of [RRG II].

Theorem 6.2.3. $U(\mathfrak{g}) \otimes_{U(\mathfrak{k})U(\mathfrak{g})^{\mathfrak{k}}} V_{\tau} \cong I_{P,\tau,\nu}$ as *K*-modules.

 $symm(S(\mathfrak{p})) = symm(H)symm(J)$ from Lemma 6.2.2. Thus, $symm(H) \otimes V_{\tau} \cong I_{P,\tau,\nu}$ as K-modules from Theorem 6.2.3. Let V_{ξ} be a K-type that occurs in

 $symm(H) \otimes V_{\tau} \cong I_{P,\tau,\nu}$. From Lemma 5.4.1,

$$V_{\xi}|_{{}^{0}\!M} = \bigoplus_{j=1}^{\dim(V_{\xi})/\dim(V_{\tau})} V_{\tau_{j}}$$

where each $V_{\tau_i} \cong V_{\tau}$ as ⁰*M*-modules.

Recall the definition of P^{ξ} matrix in section 4.1. To cut notations a little, set $V_{\tau_j} := T_j(V_{\tau})$. Then, $P^{\xi}(\nu)$ is an $n(\xi)$ by $n(\xi)$ matrix with

$$(P^{\xi}(\nu))_{i,j} = (\epsilon_i(V_{\tau_j})(e))$$

Each entry of P^{ξ} is an element of $U(\mathfrak{a})$, or really an element of $U(\mathfrak{a}) \otimes End(V_{\tau})$. Note $P^{\xi}(\nu)$ is without ρ -shift.

We are interested in $p_{\xi}(\nu)$ and p_{ξ} , determinants of $P^{\xi}(\nu)$ and P^{ξ} respectively, which will not depend on the choice of the bases up to a nonzero scalar multiple.

6.2.4 Divisibility

Let again $\mathfrak{a} \subseteq \mathfrak{g}$ be the subalgebra of diagonal elements and $\mathfrak{n} \subseteq \mathfrak{g}$ the subalgebra of strictly upper triangular elements. If α is a positive root of \mathfrak{g} , i.e. $\alpha = \epsilon_i - \epsilon_j$ for $1 \leq i < j \leq n$, recall E_α is an n by n matrix with entry 1 in the position (i,j) and 0 elsewhere. Let \mathfrak{g}_α be the Lie subalgebra of \mathfrak{g} generated by E_α , $\theta(E_\alpha)$, and \mathfrak{a} . Then, $\mathfrak{g}_\alpha = \mathbb{C}\theta(E_\alpha) \oplus \mathfrak{a} \oplus \mathbb{C}E_\alpha = \theta\mathfrak{n}_\alpha \oplus \mathfrak{a} \oplus \mathfrak{n}_\alpha$ is the triangular decomposition, and $\mathfrak{g}_\alpha = \mathbb{C}(E_\alpha + \theta(E_\alpha)) \oplus (\mathbb{C}(E_\alpha - \theta(E_\alpha)) \oplus \mathfrak{a}) = \mathfrak{k}_\alpha \oplus \mathfrak{p}_\alpha$ is the Cartan decomposition. H_α is the space of harmonics on \mathfrak{p}_α as discussed in 5.3, and let $J_\alpha = S(\mathfrak{p}_\alpha)^{\mathfrak{k}_\alpha}$.

For $\alpha \in \Delta^+$ simple, let $\mathfrak{n}^{\alpha} = \bigoplus_{\psi \in \Phi^+ - \{\alpha\}} \mathfrak{g}^{\psi}$. Let $\mathfrak{k}^{\alpha} \subseteq \mathfrak{k}$ be spanned by $E_{\psi} + \theta E_{\psi}$ with $\psi \in \Phi^+ - \{\alpha\}$ so that $\mathfrak{k} = \mathfrak{k}_{\alpha} \oplus \mathfrak{k}^{\alpha}$. Then, $\mathfrak{g} = \mathfrak{n}^{\alpha} \oplus \mathfrak{g}_{\alpha} \oplus \mathfrak{k}^{\alpha}$. Note \mathfrak{n}^{α} is a Lie subalgebra of \mathfrak{g} as α is simple.

Lemma 6.2.5. For $\alpha \in \Delta^+$ simple,

$$U(\mathfrak{g}) = symm(H_{\alpha})symm(J_{\alpha})U(\mathfrak{k}) \oplus \mathfrak{n}^{\alpha}U(\mathfrak{n}^{\alpha})symm(H_{\alpha})symm(J_{\alpha})U(\mathfrak{k})$$

Proof. From Proposition 2.4.1 of [Kos], we have

$$U(\mathfrak{g}) = U(\mathfrak{n}^{lpha})symm(H_{lpha})symm(J_{lpha}) \oplus U(\mathfrak{g})\mathfrak{k}$$

Hence, we have

$$U(\mathfrak{g}) = U(\mathfrak{n}^{\alpha})symm(H_{\alpha})symm(J_{\alpha})U(\mathfrak{k})$$
(6.2.1)

$$= symm(H_{\alpha})symm(J_{\alpha})U(\mathfrak{k}) \oplus \mathfrak{n}^{\alpha}U(\mathfrak{n}^{\alpha})symm(H_{\alpha})symm(J_{\alpha})U(\mathfrak{k}) \quad (6.2.2)$$

Hence now by Theorem 6.2.3 and Lemma 6.2.5, we have the following K-module isomorphisms

$$I_{P,\tau,\nu} \cong U(\mathfrak{g}) \otimes_{U(\mathfrak{k})U(\mathfrak{g})^{\mathfrak{k}}} V_{\tau}$$
(6.2.3)

$$\cong symm(H_{\alpha})symm(J_{\alpha}) \otimes_{U(\mathfrak{k})U(\mathfrak{g})^{\mathfrak{k}}} V_{\tau}$$
(6.2.4)

$$\oplus \ \mathfrak{n}^{\alpha}U(\mathfrak{n}^{\alpha})symm(H_{\alpha})symm(J_{\alpha}) \otimes_{U(\mathfrak{k})U(\mathfrak{g})^{\mathfrak{k}}} V_{\tau}$$
(6.2.5)

Let $\mathbb{C}[{}^{0}M]$ be the group algebra generated by ${}^{0}M$, and denote by $U(\mathfrak{k}_{\alpha})\Pi\mathbb{C}[{}^{0}M]$ the smash product of $U(\mathfrak{k}_{\alpha})$ with $\mathbb{C}[{}^{0}M]$, i.e. $U(\mathfrak{k}_{\alpha})\Pi\mathbb{C}[{}^{0}M]$ has a $(U(\mathfrak{k}_{\alpha}),\mathbb{C}[{}^{0}M])$ action on $symm(H_{\alpha}) \otimes V_{\tau}$ that is an analog of a (\mathfrak{g}, K) -action. If $I_{\tau} = U(\mathfrak{k}) \cap ker\tau$, $U(\mathfrak{k})/I_{\tau} \cong End(V_{\tau}) \cong (U(\mathfrak{k}_{\alpha})\Pi\mathbb{C}[{}^{0}M])/(ker\tau \cap (U(\mathfrak{k}_{\alpha})\Pi\mathbb{C}[{}^{0}M]))$ as ${}^{0}M$ acts irreducibly on V_{τ} .

Definition 6.2.6.

• For α simple, let

$$L_{\alpha}: U(\mathfrak{g}) \otimes_{U(\mathfrak{k})U(\mathfrak{g})^{\mathfrak{k}}} V_{\tau} \to symm(H_{\alpha})symm(J_{\alpha}) \otimes_{U(\mathfrak{k})U(\mathfrak{g})^{\mathfrak{k}}} V_{\tau}$$

 $\oplus \mathfrak{n}^{\alpha}U(\mathfrak{n}^{\alpha})symm(H_{\alpha})symm(J_{\alpha})\otimes_{U(\mathfrak{k})U(\mathfrak{g})^{\mathfrak{k}}}V_{\tau}$

be the projection onto the first summand.

• Denote by Q the projection onto the first summand in $U(\mathfrak{g}) = U(\mathfrak{a})U(\mathfrak{k}) \oplus \mathfrak{n}U(\mathfrak{g})$ followed by the projection onto $U(\mathfrak{a}) \otimes (U(\mathfrak{k})/I_{\tau}) = U(\mathfrak{a}) \otimes End(V_{\tau})$.

Theorem 6.2.7. Let $\alpha \in \Phi^+$ be a simple root, $\epsilon_1, ..., \epsilon_{n(\xi)}$ be a basis of $Hom_K(V_{\xi}, symm(H) \otimes V_{\tau}), V_{\xi} = \bigoplus_{j=1}^{n(\xi)} V_{\tau_j}$ with each V_{τ_j} an irreducible K_{α} -module. If $p_{\tau_j^{\alpha}}$ denotes the determinant of $P^{\tau_j^{\alpha}}$ matrix of the rank one case of G_{α} with K_{α} type V_{τ_j} , then $p_{\tau_j^{\alpha}}$ divides p_{ξ} .

Proof. This proof follows the method of the proof of Proposition 2.4.3 of [Kos] very closely.

Let $\alpha \in \Phi^+$ be a simple root, $\epsilon_1, ..., \epsilon_{n(\xi)}$ be a basis of

 $Hom_K(V_{\xi}, symm(H) \otimes V_{\tau})$, and let $V_{\xi} = \bigoplus_{j=1}^{n(\xi)} V_{\tau_j}$ where each V_{τ_j} is an irreducible K_{α} -module. $(P^{\xi})_{ij}$ is the action of $\epsilon_i(V_{\tau_j})(e)$ followed by replacement of elements in $\mathbb{C}[\nu]$ with corresponding elements in $S(\mathfrak{a})$, which is same as the action of $L_{\alpha}(\epsilon_i(V_{\tau_j}))(e)$ as L_{α} is a K_{α} -map since $[\mathfrak{g}_{\alpha}, \mathfrak{n}^{\alpha}] \subseteq \mathfrak{n}^{\alpha}$ for α simple, and elements in \mathfrak{n}^{α} will not contribute.

Recall V_{τ}^+ is the subspace of V_{τ} that consist of \mathfrak{t}_{α} -weights of $\frac{1}{2}$, and denote by $V_{\tau_j}^+$ the subspace of V_{τ_j} that correspond to positive \mathfrak{t}_{α} -weight space. Without loss of generality, assume $L_{\alpha}(\epsilon_i(V_{\tau_j}^+)) = \overline{Z_{\alpha}}^{l_j} R_{i,j}^{\alpha} \otimes V_{\tau}^+$ with $R_{i,j}^{\alpha} \in symm(J_{\alpha})$. This is possible because of Theorem 5.3.8 which characterizes the irreducible K_{α} -modules in $H_{\alpha} \otimes V_{\tau}$ and L_{α} is a K_{α} -map. We have $symm(J_{\alpha}) \subseteq U(\mathfrak{g}_{\alpha})^{\mathfrak{k}_{\alpha}}$ with $U(\mathfrak{g}_{\alpha})^{\mathfrak{k}_{\alpha}}$ the subalgebra generated by \mathfrak{t}_{α} , center of \mathfrak{g}_{α} , and the Casimir element.

The action of $\overline{Z_{\alpha}}^{l_j} R_{i,j}^{\alpha}$ on V_{τ}^+ at the identity is $Q(\overline{Z_{\alpha}}^{l_j} R_{i,j}^{\alpha})$, where by 3.5.6 of [RRG I], we have $Q(\overline{Z_{\alpha}}^{l_j} R_{i,j}^{\alpha}) = Q(R_{i,j}^{\alpha})Q(\overline{Z_{\alpha}}^{l_j}) = r_{i,j}^{\alpha}Q(\overline{Z_{\alpha}}^{l_j})$ with $r_{i,j}^{\alpha}$ invariant under $\tilde{x_{\alpha}}$ the translated Weyl group element of simple reflection as $U(\mathfrak{g}_{\alpha})^{\mathfrak{k}_{\alpha}}$ is the subalgebra generated by \mathfrak{t}_{α} , center of \mathfrak{g}_{α} , and the Casimir element. From the observation before, we have

$$Q(\overline{Z_{\alpha}}^{l_{j}}) \in U(\mathfrak{a}) \otimes (U(\mathfrak{k})/I_{\tau}) = U(\mathfrak{a}) \otimes End(V_{\tau})$$

$$= U(\mathfrak{a}) \otimes (U(\mathfrak{k}_{\alpha})\Pi\mathbb{C}[^{0}M])/(ker\tau \cap (U(\mathfrak{k}_{\alpha})\Pi\mathbb{C}[^{0}M]))$$

$$(6.2.7)$$

We now see that action of $Q(\overline{Z_{\alpha}}^{l_j})$ on V_{τ}^+ is the determinant $p_{\tau_j}^{\alpha}$ of P^{τ_j} matrix for the rank one subgroup G_{α} with K_{α} type τ_j , and $p_{\tau_j}^{\alpha}$ divides p_{ξ} .

For $\phi \in \Phi^+$, define $p_{\phi} = p_{\tau_1^{\phi}} \dots p_{\tau_{n(\xi)}^{\phi}}$ where $p_{\tau_j^{\phi}}$ corresponds to the determinant of $P^{\tau_j^{\phi}}$ matrix of the rank one case of G_{ϕ} with K_{ϕ} -type V_{τ_j} . Define now $p_{(\phi)} = T_{\rho_{\phi}-\rho}p_{\phi}$, where $T_{\rho_{\phi}-\rho}$ is the translation by $\rho_{\phi} - \rho$. Note each $p_{\tau_j^{\phi}}$ is a polynomial in $w_{\phi} = X_{\phi} \in \mathfrak{a}$ defined before. Hence p_{ϕ} and $p_{(\phi)}$ are also. Also, it is clear that $T_{\rho_{\phi}-\rho}(w_{\phi}) = w_{\phi}$ for ϕ simple, hence we have $p_{\phi} = p_{(\phi)}$ for ϕ simple.

Theorem 6.2.8. For any $\phi \in \Phi^+$, $p_{(\phi)}$ divides p_{ξ} .

Proof. This proof is almost word for word as in Proposition 2.4.5 of [Kos].

For $\phi \in \Phi^+$, define $O(\phi) = \Sigma m_i$, if $\phi = \Sigma_{\alpha \in \Delta^+} m_i \alpha_i$. If $O(\phi) = 1$, then $\phi \in \Delta^+$ hence the claim is true by Theorem 6.2.7 and above observation. We proceed by induction on $O(\phi)$. Assume $O(\phi) > 1$ and that the claim is true for all $\psi \in \Phi^+$ with $O(\psi) < O(\phi)$. We use the fact that for some $\alpha \in \Delta^+$, $\langle \phi, w_\alpha \rangle$ is strictly greater than 0 and find a root $\psi \in \Phi^+$ such that $O(\psi) < O(\phi)$ and $\phi = x_\alpha \psi$ for some $\alpha \in \Delta^+$ where x_α is the Weyl group element of simple reflection. Note $\psi \neq \alpha$. But we have that $p_{\xi} = r_{\alpha} p_{\alpha}$, where r_{α} is invariant under the action of $\tilde{x_\alpha}$ by Theorem 6.2.7. Also, by induction hypothesis, $p_{(\psi)}$ divides $r_\alpha p_\alpha$. Since p_α is a polynomial in w_α whereas $p_{(\psi)}$ is a polynomial in w_ψ , and since $w_\alpha \neq w_\psi$, p_α and $p_{(\psi)}$ are mutually prime. Hence $p_{(\psi)}$ divides r_α , hence $\tilde{x_\alpha} p_{(\psi)}$ does also.

We now assert $\tilde{x_{\alpha}}p_{(\psi)} = p_{(\phi)}$ up to a nonzero scalar. Since $x_{\alpha}\psi = \phi$, we have $x_{\alpha}\mathfrak{g}_{\psi} = \mathfrak{g}_{\phi}$, $x_{\alpha}\mathfrak{k}_{\psi} = \mathfrak{k}_{\phi}$, and $x_{\alpha}\mathfrak{p}_{\psi} = \mathfrak{p}_{\phi}$. Moreover, $x_{\alpha}\mathfrak{a} = \mathfrak{a}$ and $x_{\alpha}\mathfrak{n}_{\psi} = \mathfrak{n}_{\phi}$. Therefore, for $u \in U(\mathfrak{g}_{\psi})$, $x_{\alpha}Q(u) = Q(x_{\alpha}u)$. Also, $x_{\alpha}K_{\psi}x_{\alpha}^{-1} = K_{\phi}$. Furthermore, if $V_{\xi} = \oplus V_{\tau_{j}^{\psi}}$ is a decomposition into K_{ψ} -irreducibles and if $V_{\tau_{j}^{\phi}} = x_{\alpha}V_{\tau_{j}^{\psi}}$, then we know $V_{\xi} = \oplus V_{\tau_{j}^{\phi}}$ is a decomposition into K_{ϕ} -irreducibles. Hence it is now clear that $x_{\alpha}p_{\psi} = p_{\phi}$ up to a nonzero scalar.

But, $\tilde{x_{\alpha}}p_{(\psi)} = T_{-\rho}x_{\alpha}T_{\rho}T_{\rho\psi-\rho}p_{\psi} = T_{-\rho}x_{\alpha}T_{\rho\psi}p_{\psi} = T_{-\rho}x_{\alpha}T_{\rho\psi}x_{\alpha}^{-1}x_{\alpha}p_{\psi} = T_{-\rho}T_{x_{\alpha}\rho_{\psi}}x_{\alpha}p_{\psi} = T_{\rho\phi-\rho}p_{\phi} = p_{(\phi)}$, and this completes the assertion and $p_{(\phi)}$ divides p_{ξ} .

6.3 Product Formula of p_{ξ} for the group $SL(n, \mathbb{R})$

Theorem 6.3.1. There exists a non-zero scalar c such that

$$p_{\xi}(\nu) = c \prod_{\phi \in \Phi^+} p_{(\phi)}(\nu)$$

Proof. The right hand side divides the left hand side by Theorem 6.2.8. I claim the degrees of the two polynomials are the same.

Since our definition of p_{ξ} was independent of the basis up to a nonzero scalar, we may assume $\epsilon_i(V_{\tau_j}) \subseteq symm(H)_{d(i)} \otimes V_{\tau}$, i.e. we use a homogeneous basis. Therefore, the deg of the left hand side, $d(\xi)$, is at most $\Sigma d(i)$.

If $V_{\gamma_1}, ..., V_{\gamma_N}$ are distinct K-types in symm(H) with $V_{\xi} \subseteq V_{\gamma_j} \otimes V_{\tau}$, $\Sigma d(i) = \Sigma_{j=1}^N d(\gamma_j)$ where $d(\gamma_j)$ is the sum of degrees in which V_{γ_j} occur in symm(H). But, we have $d(\gamma_j) = \Sigma_{\phi \in \Phi^+} n_{\gamma_j}^{\phi}$ where $n_{\gamma_j}^{\phi}$ is the sum of degrees of which the irreducible K_{ϕ} -modules in $\operatorname{Span} K_{\phi} \cdot V_{\gamma_j}^{0M}$ occur in $symm(H_{\phi})$ by Proposition 2.3.12 and Theorem 2.3.14 of [Kos]. But $n_{\gamma_j}^{\phi}$ only depends on the t_{ϕ} -weights in our case, hence $\Sigma d(i) = \Sigma_{j=1}^N d(\gamma_j) = \Sigma_{j=1}^N \Sigma_{\phi \in \Phi^+} n_{\gamma_j}^{\phi} = \Sigma_{\phi \in \Phi^+} deg(p_{(\phi)}(\nu))$ by Theorem 6.1.1 and the fact that $deg(Q(Z_{\phi}^l)) = l$ by Theorem 7.6 of [JW]. Therefore the degree of left hand side \leq degree of right hand side, and with divisibility we have the statement of the theorem.

Chapter 7

Product formula of p_{ξ} for the connected, simply connected \mathbb{R} -split Lie group of simple Lie type other than A_n and C_n

In this chapter we will apply our results for $SL(n, \mathbb{R})$ and $GL(n, \mathbb{R})$ to derive a product formula for the groups of the title. Let G be any of the connected, simply connected \mathbb{R} -split Lie group of simple Lie type other than A_n and C_n with maximal compact subgroup K defined as the set of fixed elements of a Cartan involution θ . Denote by θ the corresponding Cartan involution of Lie(G). As G is split, for a positive root α of Lie(G), $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\alpha}] = \mathfrak{sl}_2$. Let $h_{\alpha} \in [\mathfrak{g}_{\alpha}, \mathfrak{g}_{\alpha}] \cap \mathfrak{a}$ be such that $\alpha(h_{\alpha}) = 2$, and let $e_{\alpha} \in \mathfrak{n}_{\alpha}$ be such that $[e_{\alpha}, -\theta(e_{\alpha})] = h_{\alpha}$. $(h_{\alpha}, e_{\alpha}, -\theta(e_{\alpha}))$ is an S-triple.

Definition 7.0.2. $\mathfrak{t}_{\alpha} = i * (e_{\alpha} + \theta(e_{\alpha})).$

Let H be the space of harmonics on \mathfrak{p} , and V_{τ} be a choice of a small K-type from chapter 3.

Lemma 7.0.3. Let G be as above for all types but B_n , E_7 , and F_4 . Let V_{ξ} be an irreducible K-module that occurs in $H \otimes V_{\tau}$. Then, $V_{\xi}|_{0M} = \bigoplus_{j=1}^{n(\xi)} V_{\tau_j}$ with $V_{\tau_j} \cong V_{\tau}$ as ${}^{0}M$ modules for all $j = 1, ..., n(\xi)$.

Proof. For D_n , $K = Spin(n) \times Spin(n)$ where ${}^{0}M_{\widetilde{Spin(n,n)}}$ is isomorphic to ${}^{0}M_{\widetilde{SL(n,\mathbb{R})}} \times \mu_2$ where ${}^{0}M_{\widetilde{SL(n,\mathbb{R})}}$ sits diagonally in K. V_{τ} is the Spin representation or either of the two half Spin representations after projection onto either the first or the second factor of $K = Spin(n) \times Spin(n)$ depending on the parity of n. By Lemma 3.3.1, $(H \otimes V_{\tau})|_{{}^{0}M_{\widetilde{Spin(n,n)}}}$ decomposes in the same way as $(H \otimes V_{\tau})|_{{}^{0}M_{\widetilde{SL(n,\mathbb{R})}}}$ where ${}^{0}M_{\widetilde{SL(n,\mathbb{R})}}$ is the one sitting diagonally in $K = Spin(n) \times Spin(n)$. If n is odd, there is only one possible V_{τ} as in the case of $\widetilde{SL(n,\mathbb{R})}$. If n is even, choose an element ω of the set $p^{-1}(-Id \times -Id)$ where p is the covering homomorphism $p: Spin(n) \times Spin(n) \to SO(n) \times SO(n)$. ω distinguishes the two half Spin representations as ${}^{0}M_{\widetilde{SL(n-1,\mathbb{R})}}$ do not. ω acts trivially on H as it is central and is an element of ${}^{0}M_{\widetilde{Spin(n,n)}}$. Therefore ω acts on the entire space $H \otimes V_{\tau}$ as it does on V_{τ} , and we have the statement of the lemma for D_n .

For E_6 , E_8 , and G_2 , $\tilde{i} : \widetilde{GL(6,\mathbb{R})} \hookrightarrow \widetilde{E_6}$, $\tilde{i} : \widetilde{GL(8,\mathbb{R})} \hookrightarrow \widetilde{E_8}$, and $\tilde{i} : \widetilde{SL(3,\mathbb{R})} \hookrightarrow \widetilde{G_2}$ with $\tilde{i}({}^{0}\!M_{\widetilde{GL(6,\mathbb{R})}}) = {}^{0}\!M_{\widetilde{E_6}}, \tilde{i}({}^{0}\!M_{\widetilde{GL(8,\mathbb{R})}}) = {}^{0}\!M_{\widetilde{E_8}}, \tilde{i}({}^{0}\!M_{\widetilde{SL(3,\mathbb{R})}}) = {}^{0}\!M_{\widetilde{G_2}}$ by the proof of Lemma 3.3.1. Therefore, there can only be one V_{τ} , Spin-rep $|_{^{0}\!M}$. \Box

Remark For the connected, simply connected \mathbb{R} -split Lie groups of type B_n , E_7 , and F_4 , if $V_{\xi} \subseteq H \otimes V_{\tau}$, $V_{\xi}|_{K_{\alpha}} = \bigoplus_{j=1}^{n(\xi)} V_{\tau_j} \oplus \bigoplus_k V_k$ where $V_{\tau_j} \cong V_{\tau}$ as 0M -modules, and $V_k \cong \overline{V_{\tau_k}}$ as 0M -modules where $\overline{V_{\tau_k}}$ is the other half Spin representation or the other Pin representation restricted to 0M . Hence the weights of interest are just those of $\bigoplus_{j=1}^{n(\xi)} V_{\tau_j}$ from the definition of P^{ξ} matrix in 4.1.

Lemma 7.0.4. Let G be any of the connected, simply connected \mathbb{R} -split Lie group of simple Lie type other than C_n with maximal compact subgroup K. Let $V_{\gamma_1}, ..., V_{\gamma_N}$ be distinct K-types that occur in H such that $V_{\xi} \subseteq V_{\gamma_j} \otimes V_{\tau}$. If $l(\gamma_j) = \dim V_{\gamma_j}^{0M}$, then $n(\xi) = \sum_{j=1}^N l(\gamma_j)$.

Proof. Since V_{τ} is multiplicity free, by Corollary 3.4 of [Ku], we know V_{ξ} occurs in $V_{\gamma} \otimes V_{\tau}$ exactly once if it does. Now each of V_{γ_j} occurs in H exactly $l(\gamma_j)$ many times by Frobenius Reciprocity, hence the multiplicity of V_{ξ} in $H \otimes V_{\tau}$ is exactly $\sum_{j=1}^{N} l(\gamma_j)$ which is $n(\xi)$ defined in the remark above, by Frobenius Reciprocity. \Box

7.1 Comparison of t_{α} -weights

Recall the assumptions of Theorem 6.1.1.

Theorem 7.1.1. Let G be as above other than type F_4 . Let $V_{\gamma_1}, ..., V_{\gamma_N}$ be distinct K-types that occur in H such that $V_{\xi} \subseteq V_{\gamma_j} \otimes V_{\tau}$. $n(\xi) = \sum_{j=1}^N l(\gamma_j)$ and if α is a positive root of Lie(G) but not short in the case of B_n and not short in the case of G_2 , then after reordering, $\delta_{\alpha,j}^{\xi} = \delta_{\alpha,j} \pm \frac{1}{2}$ for each $j = 1, ..., n(\xi)$.

Proof. $n(\xi) = \sum_{j=1}^{N} l(\gamma_j)$ is by Lemma 7.0.4.

Recall from chapter 3 the subgroup $G_0 \leq G$ with maximal compact subgroup K_0 where G_0 is isomorphic to $\widetilde{SL(n,\mathbb{R})}$ or the metalinear group $\widetilde{GL(n,\mathbb{R})}$ for appropriate n. We have ${}^{0}M_{G_0} \leq {}^{0}M_G$ where the restriction of K to K_0 preserve ${}^{0}M_G$ -invariants of H and the decomposition $V_{\xi}|_{{}^{0}M_G}$ by Lemma 3.3.1.

We can restate the condition $V_{\xi} \subseteq V_{\gamma_j} \otimes V_{\tau}$ as $V_{\gamma_j} \subseteq V_{\xi} \otimes V_{\tau}^*$. Note the statement of the theorem is true with the restated condition for G_0 by Theorem 6.1.1 and Lemma 6.1.2.

Let $V_{\gamma_1}, ..., V_{\gamma_N}$ be distinct irreducible K-modules that occur in H such that $V_{\gamma_j} \subseteq V_{\xi} \otimes V_{\tau}^*$, and let $\bigoplus_{j=1}^N Span \ K_0.V_{\gamma_j}^{0M_G} = \bigoplus_k W_k$ where each W_k is an irreducible K_0 -module. The nontrivial element $\eta \in \mu_2 \leq {}^{0}M_G$ acts by -1 where μ_2 is the kernel of the covering homomorphism $p: G_0 \to G_0/\mu_2$ which is also the kernel of the covering homomorphism $p: G \to G_{\mathbb{R}}$. Hence $V_{\xi}|_{K_0} = \bigoplus_j V_{\xi_j}$ where each of V_{ξ_j} occurs in $H \otimes V_{\tau}$ or $H \otimes \overline{V_{\tau}}$ with H that of G_0 and $\overline{V_{\tau}}$ the other half Spin representation or Pin representation. We have $\bigoplus_k W_k \subseteq \bigoplus_j V_{\xi_j} \otimes V_{\tau}^*$ where each of W_k occurs in H of G_0 by Lemma 3.3.1.

We assert that if $W_k \subseteq V_{\xi_j} \otimes V_{\tau}^*$, then $V_{\xi_j}|_{{}^{0}M_{G_0}}$ is equivalent to a multiple of V_{τ} and $V_{\xi_j} \subseteq H \otimes V_{\tau}$. Indeed, if $W_k \subseteq V_{\xi_j} \otimes V_{\tau}^*$, then $V_{\xi_j} \subseteq W_k \otimes V_{\tau}$, hence claim is true by Lemma 5.4.1. This observation is important because of the following. First, recall from remark in the beginning of the chapter the decomposition $V_{\xi}|_{K_{\alpha}} = \bigoplus_{j=1}^{n(\xi)} V_{\tau_j} \oplus \bigoplus_k V_k$ where $V_{\tau_j} \cong V_{\tau}$ as ${}^{0}M_G$ -modules, and $V_k \cong \overline{V_{\tau}}$ as ${}^{0}M_G$ -modules where $\overline{V_{\tau}}$ is the other half *Spin* representation or the other *Pin* representation restricted to ${}^{0}M_G$. As $V_{\xi} \subseteq H \otimes V_{\tau}$, we only consider $V_{\tau_1}, ..., V_{\tau_{n(\xi)}}$ in the definition of P^{ξ} matrix. Since the statement of the theorem is true for G_0 with the restated condition and as the set of \mathfrak{t}_{α} weights of interest are the same after branching down to K_0 by Lemma 3.3.1, we have the statement of the theorem for all positive roots α of $Lie(G_0) \subseteq Lie(G)$. Note $V_{\xi_j} \otimes V_{\tau}^*$ decomposes into distinct K_0 -modules by Corollary 3.4 of [Ku] as V_{τ}^* is multiplicity free. Therefore, if $W_k \cong W_l$ with $k \neq l$, then W_k and W_l cannot be contained in a single $V_{\xi_j} \otimes V_{\tau}^*$, important as the statement of the theorem for G_0 also assumes distinct V_{γ} s.

By Proposition 6.11 of [Bou], any positive root $\beta \in Lie(G)$ must be conjugate to some simple root α via an element of the Weyl group $W(A) = N_K(A)/Z_K(A)$, hence \mathfrak{t}_{β} must be conjugate to \mathfrak{t}_{α} for some simple root α via an element of K. Therefore, the set of \mathfrak{t}_{α} -weights of interest is the same for all positive root α s of same length and we have the statement of the theorem. \Box

7.2 Comparison of \mathfrak{t}_{α} -weights for short roots of $Lie(\widetilde{SO(q+1,q)})$

7.2.1 The Groups $\widetilde{Spin(p,q)}$, $\widetilde{Pin(p,q)}$ $(p \ge q \ge 3, p = q \text{ or } p = q + 1)$ and their Small K-types

Denote by $\widetilde{Spin(p,q)}$ the connected, simply connected \mathbb{R} -split Lie group of type B_q $(p = q + 1, q \ge 3)$ or D_q $(p = q \ge 3)$ with maximal compact subgroup $K = Spin(p) \times Spin(q)$. ${}^{0}M_{\widetilde{Spin(p,q)}}$ is isomorphic to ${}^{0}M_{\widetilde{SL(q,\mathbb{R})}} \times \mu_2$ where ${}^{0}M_{\widetilde{SL(q,\mathbb{R})}}$ sits diagonally in K and the μ_2 can either be $(\pm 1, 1)$ or $(1, \pm 1) \le K$.

Spin(q,q) has small K-type V_{τ} the Spin-representation or either of the two half Spin-representations of Spin(q) depending on the parity of q, after projection onto either the first or the second factor of $K = Spin(q) \times Spin(q)$.

If q is odd, Spin(q + 1, q) has small K-type V_{τ} the Spin-representation after projection onto the second factor of $K = Spin(q + 1) \times Spin(q)$ or either of the two half Spin-representations of Spin(q+1) after projection onto the first factor of $K = Spin(q + 1) \times Spin(q)$. If q is even, Spin(q + 1, q) has small K-type V_{τ} either of the two half Spin-representations of Spin(q) after projection onto the second factor of $K = Spin(q+1) \times Spin(q)$.

Denote by Pin(p,q) the corresponding covering group of Pin(p,q) with maximal compact subgroup $Pin(p) \times Pin(q)$. ${}^{0}M_{\widetilde{Pin(p,q)}}$ is isomorphic to ${}^{0}M_{\widetilde{GL(q,\mathbb{R})}} \times \mu_2$ where ${}^{0}M_{\widetilde{GL(q,\mathbb{R})}}$ sits diagonally in $Pin(p) \times Pin(q)$ and the μ_2 can either be $(\pm 1, 1)$ or $(1, \pm 1) \in Pin(p) \times Pin(q)$. The following are small $K = Pin(p) \times Pin(q)$ types for $\widetilde{Pin(p,q)}$.

Definition 7.2.2.

- Pin(q,q) has small K-type $V_{\rm T}$ the Pin representation or either of the two Pin representations of Pin(q) depending on the parity of q, after projection onto either the first or the second factor of $K = Pin(q) \times Pin(q)$.
- If q is odd, Pin(q+1,q) has small K-type V_T either of the two Pin representations of Pin(q) after projection onto the second factor of K = Pin(q + 1) × Pin(q). If q is even, Pin(q+1,q) has small K-type V_T the Pin representation of Pin(q) after projection onto the second factor of K = Pin(q + 1) × Pin(q) or either of the two either of the two Pin representations of Pin(q+1) after projection onto the first factor of K = Pin(q+1) × Pin(q).

Remark 7.2.2 ${}^{0}\!M_{\widetilde{Spin(p,q)}} \cong {}^{0}\!M_{\widetilde{SL(q,\mathbb{R})}} \times \mu_{2}$ and ${}^{0}\!M_{\widetilde{Pin(p,q)}} \cong {}^{0}\!M_{\widetilde{GL(q,\mathbb{R})}} \times \mu_{2}$. In either case the μ_{2} acts trivially on H the space of harmonics as it is central in K and the μ_{2} can be chosen to act trivially on the small K-type described above. Therefore, in the case of $\widetilde{Spin(p,q)}$, $(H \otimes V_{\tau})|_{{}^{0}\!M_{\widetilde{Spin(p,q)}}}$ decomposes in the same way as $(H \otimes V_{\tau})|_{{}^{0}\!M_{\widetilde{SL(q,\mathbb{R})}}}$ where ${}^{0}\!M_{\widetilde{SL(q,\mathbb{R})}}$ is the one sitting diagonally in $K = Spin(p) \times Spin(q)$. In the case of $\widetilde{Pin(p,q)}$, $(H \otimes V_{T})|_{{}^{0}\!M_{\widetilde{Pin(p,q)}}}$ decomposes in the same way as $(H \otimes V_{T})|_{{}^{0}\!M_{\widetilde{GL(q,\mathbb{R})}}}$ where ${}^{0}\!M_{\widetilde{GL(q,\mathbb{R})}}$ is the one sitting diagonally in $K = Pin(p) \times Pin(q)$.

Consider the embedding $i: O(q,q) \hookrightarrow SO(q+1,q+1)_{\circ}$ where the image of the maximal compact subgroup $O(q) \times O(q)$ of O(q,q) under i is contained in the maximal compact subgroup $SO(q+1) \times SO(q+1)$ of $SO(q+1,q+1)_{\circ}$ such that if $(g,h) \in O(q) \times O(q)$,

$$i((g,h)) = \begin{pmatrix} g & 0 \\ 0 & det(g)^{-1} \end{pmatrix}, \begin{pmatrix} h & 0 \\ 0 & det(h)^{-1} \end{pmatrix} \in SO(q+1) \times SO(q+1)$$

Let $p: Spin(q+1, q+1) \to SO(q+1, q+1)_{\circ}$ be the covering homomorphism. We have that $p^{-1}(i(O(q, q)))$ is a Lie subgroup isomorphic to $\widetilde{Pin(q, q)}$, hence we have an embedding $\widetilde{i}: \widetilde{Pin(q, q)} \hookrightarrow Spin(q+1, q+1)$.

Lemma 7.2.3. Consider the embedding $\tilde{i} : \widetilde{Pin(q,q)} \hookrightarrow \widetilde{Spin(q+1,q+1)}$ described above. We have $\tilde{i}({}^{0}M_{\widetilde{Pin(q,q)}}) = {}^{0}M_{\widetilde{Spin(q+1,q+1)}}$.

Proof. We have

$${}^{0}\!M_{SO(q+1,q+1)_{\circ}} = \left\{ \begin{pmatrix} g & 0 \\ 0 & det(g)^{-1} \end{pmatrix}, \begin{pmatrix} g & 0 \\ 0 & det(g)^{-1} \end{pmatrix} | g \in O(q) \ diagonal \right\}$$

, the image of ${}^{0}M_{O(q,q)}$ under the map *i*. Hence $i({}^{0}M_{O(q,q)}) = {}^{0}M_{SO(q+1,q+1)_{\circ}}$. As $\widetilde{i}({}^{0}M_{\widetilde{Pin(q,q)}}) = p^{-1}(i({}^{0}M_{O(q,q)}))$ and ${}^{0}M_{\widetilde{Spin(q+1,q+1)}} = p^{-1}({}^{0}M_{SO(q+1,q+1)_{\circ}})$, we have the statement of the lemma.

Let $p: \widetilde{Pin(q,q)} \to O(q,q)$ be the covering homomorphism. $Pin(q) \times Pin(q)$ is generated by $Spin(q) \times Spin(q)$, $p^{-1}(g_0, Id)$, and $p^{-1}(Id, g_0)$ where g_0 is defined in 5.2.1. ${}^{0}\!M_{\widetilde{Pin(q,q)}}$ is generated by ${}^{0}\!M_{\widetilde{Spin(q,q)}}$ and $p^{-1}(g_0, g_0)$.

7.2.4 Restriction of $Pin(q) \times Pin(q)$ modules to $Spin(q) \times Spin(q)$ and t_{ϵ_1} -weights

Irreducible representations of $Spin(q) \times Spin(q)$ and $Pin(q) \times Pin(q)$ are outer tensor products of irreducible representations of Spin(q) and Pin(q) respectively, discussed in section 5.2. Recall the definition of ζ from 5.2.1.

Definition 7.2.5.

• Let q = 2k, and V_{Γ} be an irreducible representation of Pin(q). Let V_{γ} be an irreducible representation of Spin(q) that occurs in the restriction of V_{Γ} to Spin(q) with highest weight $(\lambda_1, ..., \lambda_k)$. If $\lambda_k \neq 0$, denote by $\overline{V_{\gamma}} = \zeta \cdot V_{\gamma}$ so

that $V_{\Gamma} = V_{\gamma} \oplus \overline{V_{\gamma}}$. If $\lambda_k = 0$, denote by V_{γ}^+ (resp. V_{γ}^-) the Pin(q) module whose restriction to Spin(q) is V_{γ} with action of ζ on the highest weight vector by +Id (resp. -Id).

• Let q = 2k + 1, and V_{Γ} be an irreducible representation of Pin(q). Let V_{γ} be an irreducible representation of Spin(q) that occurs in the restriction of V_{Γ} to Spin(q). Denote by V_{γ}^+ (resp. V_{γ}^-) the Pin(q) module whose restriction to Spin(q) is V_{γ} with action of ζ by +Id (resp. -Id).

Let V_{γ} and V_{Γ} be an irreducible $Spin(q) \times Spin(q)$ -module and an irreducible $Pin(q) \times Pin(q)$ -module respectively. Let $V_{\gamma} = V_{\gamma_1} \otimes V_{\gamma_2}$ and $V_{\Gamma} = V_{\Gamma_1} \otimes V_{\Gamma_2}$ where V_{γ_1} , V_{γ_2} are irreducible Spin(q) modules and V_{Γ_1} , V_{Γ_2} are irreducible Pin(q) modules.

Lemma 7.2.6. Let q = 2k, $(m_1, ..., m_k)$ the highest weight of V_{γ_1} , $(n_1, ..., n_k)$ the highest weight of V_{γ_2} , and assume V_{γ} occurs in V_{Γ} if we restrict to $Spin(q) \times Spin(q)$ from $Pin(q) \times Pin(q)$.

- If $m_k \neq 0$ and $n_k \neq 0$, $V_{\Gamma}|_{Spin(q) \times Spin(q)} = \bigoplus_{\epsilon_1 = \pm, \epsilon_2 = \pm} V_{(m_1, \dots, m_{k-1}, \epsilon_1 m_k)} \otimes V_{(n_1, \dots, n_{k-1}, \epsilon_2 n_k)}$ where $(\zeta, Id) \in Pin(q) \times Pin(q)$ swaps the two highest weight modules $V_{(m_1, \dots, m_{k-1}, \epsilon_1 m_k)} \otimes V_{(n_1, \dots, n_{k-1}, \epsilon_2 n_k)}$ and $V_{(m_1, \dots, m_{k-1}, \epsilon_1 m_k)} \otimes V_{(n_1, \dots, n_{k-1}, \epsilon_2 n_k)}$, (Id, ζ) swaps the two highest weight modules $V_{(m_1, \dots, m_{k-1}, \epsilon_1 m_k)} \otimes V_{(n_1, \dots, n_{k-1}, \epsilon_2 n_k)}$.
- If $m_k \neq 0$ and $n_k = 0$, $V_{\Gamma}|_{Spin(q) \times Spin(q)} = \bigoplus_{\epsilon_1 = \pm} V_{(m_1, \dots, m_{k-1}, \epsilon_1 m_k)} \otimes V_{(n_1, \dots, n_{k-1}, 0)}$ where (ζ, Id) swaps the two highest weight modules $V_{(m_1, \dots, m_{k-1}, \epsilon_1 m_k)} \otimes V_{(n_1, \dots, n_{k-1}, 0)}$ and $V_{(m_1, \dots, m_{k-1}, -\epsilon_1 m_k)} \otimes V_{(n_1, \dots, n_{k-1}, 0)}$ and (Id, ζ) acts on the highest weight vector of $V_{(m_1, \dots, m_{k-1}, \epsilon_1 m_k)} \otimes V_{(n_1, \dots, n_{k-1}, 0)}$ by $\pm Id$.
- If $m_k = 0$ and $n_k \neq 0$, $V_{\Gamma}|_{Spin(q) \times Spin(q)} = \bigoplus_{\epsilon_2 = \pm} V_{(m_1, \dots, m_{k-1}, 0)} \otimes V_{(n_1, \dots, n_{k-1}, \epsilon_2 n_k)}$ where (Id, ζ) swaps the two highest weight modules $V_{(m_1, \dots, m_{k-1}, 0)} \otimes V_{(n_1, \dots, n_{k-1}, \epsilon_2 n_k)}$ and $V_{(m_1, \dots, m_{k-1}, 0)} \otimes V_{(n_1, \dots, n_{k-1}, \epsilon_2 n_k)}$ and (ζ, Id) acts on the highest weight vector of $V_{(m_1, \dots, m_{k-1}, 0)} \otimes V_{(n_1, \dots, n_{k-1}, \epsilon_2 n_k)}$ by $\pm Id$.

• If $m_k = 0$ and $n_k = 0$, $V_{\Gamma}|_{Spin(q) \times Spin(q)} = V_{(m_1,...,m_{k-1},0)} \otimes V_{(n_1,...,n_{k-1},0)}$ where (ζ, Id) and (Id, ζ) act by $\pm Id$ on the highest weight vector of $V_{(m_1,...,m_{k-1},0)} \otimes V_{(n_1,...,n_{k-1},0)}$.

Proof. As irreducible representations of $Pin(q) \times Pin(q)$ are outer tensor products of irreducible representations of each of the two Pin(q)s, we have the statements of the lemma by Theorem 5.2.3.

Lemma 7.2.7. Let q = 2k+1, $(m_1, ..., m_k)$ the highest weight of V_{γ_1} , $(n_1, ..., n_k)$ the highest weight of V_{γ_2} , and assume V_{γ} occurs in V_{Γ} if we restrict to $Spin(q) \times Spin(q)$ from $Pin(q) \times Pin(q)$. Then, $V_{\Gamma}|_{Spin(q) \times Spin(q)} = V_{\gamma_1} \otimes V_{\gamma_2}$ where (ζ, Id) and (Id, ζ) act by $\pm Id$ on $V_{\gamma_1} \otimes V_{\gamma_2}$.

Proof. As irreducible representations of $Pin(q) \times Pin(q)$ are outer tensor products of irreducible representations of each of the two Pin(q)s, we have the statements of the lemma by Theorem 5.2.2.

Consider the short root ϵ_1 of Lie(Spin(q+1,q)). $\epsilon_1 = \frac{1}{2}(\alpha_1 + \alpha_2)$ where $\alpha_1 = \epsilon_1 + \epsilon_2, \alpha_2 = \epsilon_1 - \epsilon_2$ are positive roots of Lie(Spin(q,q)). Recall the definition of $\mathfrak{t}_{\epsilon_1}$ from 7.0.2. We have $\mathfrak{t}_{\epsilon_1} = \frac{1}{2}(\mathfrak{t}_{\alpha_1} + \mathfrak{t}_{\alpha_2})$. Note $t_{\epsilon_1} \in Lie(Spin(q) \times Spin(q))_{\mathbb{C}}$ for all $q \geq 3$.

Recall the definition of $\mathfrak{t}_{\epsilon_1}$ weights $\delta^{\gamma}_{\epsilon_1,j}$ and $\delta^{\Gamma}_{\epsilon_1,j}$ from 5.5.1.

Theorem 7.2.8. Let q = 2k, and assume V_{Γ} occurs in the harmonics H of $\widetilde{Pin(q,q)}$. Let $(m_1, ..., m_k)$ be the highest weight of V_{γ_1} , $(n_1, ..., n_k)$ be the highest weight of V_{γ_2} , and assume $V_{\gamma} = V_{\gamma_1} \otimes V_{\gamma_2}$ occurs in V_{Γ} if we restrict to $Spin(q) \times Spin(q)$ from $Pin(q) \times Pin(q)$.

- If $m_k \neq 0$ and $n_k \neq 0$, then $\dim V_{\Gamma}^{{}^{0}\!M_{\widetilde{Pin(q,q)}}} = \dim (V_{\gamma_1} \otimes V_{\gamma_2})^{{}^{0}\!M_{\widetilde{Spin(q,q)}}} + \dim (V_{\gamma_1} \otimes \overline{V_{\gamma_2}})^{{}^{0}\!M_{\widetilde{Spin(q,q)}}}$, and $\{\delta_{\epsilon_1,1}^{\Gamma}, \dots, \delta_{\epsilon_1,l(\Gamma)}^{\Gamma}\}$ is the disjoint union of those from $(V_{\gamma_1} \otimes V_{\gamma_2})^{{}^{0}\!M_{\widetilde{Spin(q,q)}}}$ and $(V_{\gamma_1} \otimes \overline{V_{\gamma_2}})^{{}^{0}\!M_{\widetilde{Spin(q,q)}}}$.
- If $m_k \neq 0$ and $n_k = 0$ or if $m_k = 0$ and $n_k \neq 0$, then $\dim V_{\Gamma}^{0M_{Pin(q,q)}} = \dim V_{\gamma}^{0M_{Spin(q,q)}}$, and $\{\delta_{\epsilon_1,1}^{\Gamma}, ..., \delta_{\epsilon_1,l(\Gamma)}^{\Gamma}\}$ is the same as the set on $V_{\gamma}^{0M_{Spin(q,q)}}$.

• If $m_k = 0$ and $n_k = 0$, then $\dim V_{\gamma}^{0M_{Spin(q,q)}} = \dim (V_{\gamma_1}^+ \otimes V_{\gamma_2}^+)^{0M_{Pin(q,q)}} + \dim (V_{\gamma_1}^+ \otimes V_{\gamma_2}^-)^{0M_{Pin(q,q)}} = \dim (V_{\gamma_1}^- \otimes V_{\gamma_2}^-)^{0M_{Pin(q,q)}} + \dim (V_{\gamma_1}^- \otimes V_{\gamma_2}^+)^{0M_{Pin(q,q)}}$, and $\{\delta_{\epsilon_1,1}^{\gamma}, \dots, \delta_{\epsilon_1,l(\gamma)}^{\gamma}\}$ is the disjoint union of those from $(V_{\gamma_1}^+ \otimes V_{\gamma_2}^+)^{0M_{Pin(q,q)}}$ and $(V_{\gamma_1}^+ \otimes V_{\gamma_2}^-)^{0M_{Pin(q,q)}}$ or the disjoint union of those from $(V_{\gamma_1}^- \otimes V_{\gamma_2}^-)^{0M_{Pin(q,q)}}$ and $(V_{\gamma_1}^- \otimes V_{\gamma_2}^+)^{0M_{Pin(q,q)}}$.

Proof. As we are working with submodules of the harmonics, we can ignore the tilde and consider ${}^{0}M_{O(q,q)}$ and ${}^{0}M_{SO(q,q)_{\circ}}$ invariants. Recall that ${}^{0}M_{O(q,q)}$ is generated by ${}^{0}M_{SO(q,q)_{\circ}}$ and (g_{0}, g_{0}) .

First consider the case $m_k \neq 0$ and $n_k \neq 0$. From Lemma 7.2.6, we have $V_{\Gamma}|_{SO(q)\times SO(q)} = (V_{\gamma_1} \otimes V_{\gamma_2}) \oplus (\overline{V_{\gamma_1}} \otimes \overline{V_{\gamma_2}}) \oplus (\overline{V_{\gamma_1}} \otimes V_{\gamma_2}) \oplus (V_{\gamma_1} \otimes \overline{V_{\gamma_2}})$ where $(g_0, g_0) \in O(q) \times O(q)$ swaps the two highest weight modules $V_{\gamma_1} \otimes V_{\gamma_2}$ and $\overline{V_{\gamma_1}} \otimes \overline{V_{\gamma_2}}$, and the two highest weight modules $\overline{V_{\gamma_1}} \otimes V_{\gamma_2}$ and $V_{\gamma_1} \otimes \overline{V_{\gamma_2}}$. As (g_0, g_0) commutes with ${}^{0}\!M_{SO(q,q)_{\circ}}$, (g_0, g_0) gives us a bijection of ${}^{0}\!M_{SO(q,q)_{\circ}}$ invariants of $V_{\gamma_1} \otimes V_{\gamma_2}$ with those of $\overline{V_{\gamma_1}} \otimes \overline{V_{\gamma_2}}$, and a bijection of ${}^{0}\!M_{SO(q,q)_{\circ}}$ invariants of $\overline{V_{\gamma_1}} \otimes V_{\gamma_2}$ with those of $V_{\gamma_1} \otimes \overline{V_{\gamma_2}}$. As ${}^{0}\!M_{O(q,q)}$ is generated by ${}^{0}\!M_{SO(q,q)_{\circ}}$ and (g_0, g_0) , and as (g_0, g_0) leaves invariant $t^2_{\epsilon_1}$, we have the first statement of the lemma.

Consider the case $m_k \neq 0$ and $n_k = 0$ or if $m_k = 0$ and $n_k \neq 0$. Without loss of generality, assume $m_k \neq 0$ and $n_k = 0$. From Lemma 7.2.6, we have $V_{\Gamma}|_{SO(q)\times SO(q)} = (V_{\gamma_1} \otimes V_{\gamma_2}) \oplus (\overline{V_{\gamma_1}} \otimes V_{\gamma_2})$ where (g_0, g_0) swaps the two highest weight modules $V_{\gamma_1} \otimes V_{\gamma_2}$ and $\overline{V_{\gamma_1}} \otimes V_{\gamma_2}$. As (g_0, g_0) commutes with ${}^0\!M_{SO(q,q)\circ}$, (g_0, g_0) gives us a bijection of ${}^0\!M_{SO(q,q)\circ}$ invariants of $V_{\gamma_1} \otimes V_{\gamma_2}$ with those of $\overline{V_{\gamma_1}} \otimes V_{\gamma_2}$. As ${}^0\!M_{O(q,q)}$ is generated by ${}^0\!M_{SO(q,q)\circ}$ and (g_0, g_0) , and as (g_0, g_0) leaves invariant $t_{\epsilon_1}^2$, we have the second statement of the lemma.

Now consider the case $m_k = 0$ and $n_k = 0$. Let $v_1, ..., v_{l(\gamma)}$ a basis of $V_{\gamma}^{0M_{SO(q,q)\circ}}$ such that (g_0, g_0) acts on v_j by $\pm Id$ for all j, which is possible since $(g_0, g_0)^2 = (Id, Id)$ and (g_0, g_0) commutes with ${}^{0}M_{SO(q,q)\circ}$. Denote by $v_1^+, ..., v_{l(\gamma)}^+$ and $v_1^-, ..., v_{l(\gamma)}^-$ above basis thought of being in $(V_{\gamma_1}^+ \otimes V_{\gamma_2}^+)$ and $(V_{\gamma_1}^+ \otimes V_{\gamma_2}^-)$ respectively. If we denote by ϵ the action of (g_0, g_0) on $v_1^+, ..., v_{l(\gamma)}^+$, we assert that (g_0, g_0) will act by $-\epsilon$ on $v_1^-, ..., v_{l(\gamma)}^-$. Indeed, $v_j = X_j . v$ where $X_j \in U(\bar{\mathbf{n}})$ and v is the highest weight vector of V_{γ} . Since (g_0, g_0) acts by different signatures on v for $(V_{\gamma_1}^+ \otimes V_{\gamma_2}^+)$ and $(V_{\gamma_1}^+ \otimes V_{\gamma_2}^-)$, the statement is now clear. We argue exactly the

same way for the modules $(V_{\gamma_1}^- \otimes V_{\gamma_2}^-)$ and $(V_{\gamma_1}^- \otimes V_{\gamma_2}^+)$.

Theorem 7.2.9. Let q = 2k + 1 and assume V_{Γ} occurs in the harmonics Hof $\widetilde{Pin(q,q)}$. Assume V_{γ} occurs in V_{Γ} if we restrict to $Spin(q) \times Spin(q)$ from $Pin(q) \times Pin(q)$. Then $\dim V_{\Gamma}^{^{0}M_{\widetilde{Pin(q,q)}}} = \dim V_{\gamma}^{^{0}M_{\widetilde{Spin(q,q)}}}$, and $\{\delta_{\epsilon_{1},1}^{\Gamma}, ..., \delta_{\epsilon_{1},l(\Gamma)}^{\Gamma}\}$ is exactly those of $V_{\gamma}^{^{0}M_{\widetilde{Spin(q,q)}}}$.

Proof. As we are working with submodules of the harmonics, we can ignore the tilde and consider ${}^{0}\!M_{O(q,q)}$ and ${}^{0}\!M_{SO(q,q)_{\circ}}$ invariants. Recall that ${}^{0}\!M_{O(q,q)}$ is generated by ${}^{0}\!M_{SO(q,q)_{\circ}}$ and (g_0, g_0) .

First, $V_{\Gamma} = V_{\gamma}$ as a space by Lemma 7.2.7. Since V_{Γ} occurs in the harmonics and $(g_0, g_0) \in {}^{0}\!M_{O(q,q)}$ is central, it must act by identity. Therefore, (g_0, g_0) acts by either (+, +) or (-, -). In any case, there is no difference between $V_{\Gamma}^{{}^{0}\!M_{Pin(q,q)}}$ and $V_{\gamma}^{{}^{0}\!M_{Spin(q,q)}}$.

Lemma 7.2.10. Let V_{Ξ} be an irreducible $Pin(q) \times Pin(q)$ -module that occurs in $H \otimes V_{\mathrm{T}}$. Then, $V_{\Xi}|_{^{0}M_{Pin(q,q)}} = \bigoplus_{j=1}^{n(\Xi)} V_{\mathrm{T}_{j}}$ where $V_{\mathrm{T}_{j}} \cong V_{\mathrm{T}}$ as ${}^{0}M_{Pin(q,q)}$ -modules for all $j = 1, ..., n(\Xi)$.

Proof. First recall from Remark 7.2.2 that $(H \otimes V_{\rm T})|_{{}^{0}\!M_{Pin(q,q)}}$ decomposes in the same way as $(H \otimes V_{\rm T})|_{{}^{0}\!M_{G\widetilde{L}(q,\mathbb{R})}}$ where ${}^{0}\!M_{\widetilde{GL}(q,\mathbb{R})}$ is the one sitting diagonally in $K = Pin(q) \times Pin(q)$. If q is even, there is only one choice of $V_{\rm T}|_{{}^{0}\!M_{Pin(q,q)}}$. If q is odd, $(\zeta, \zeta) \in {}^{0}\!M_{\widetilde{Pin(q,q)}}$ distinguishes the two small $Pin(q) \times Pin(q)$ types defined in 7.2.2 as ${}^{0}\!M_{\widetilde{Spin(q,q)}}$ does not. But, (ζ, ζ) is also central, hence it must act trivially on H. Therefore, (ζ, ζ) acts by a single sign on $H \otimes V_{\rm T}$ and we have the statement of the lemma.

Recall the definition of t_{ϵ_1} weights $\delta_{\epsilon_1,j}^{\xi}$ and $\delta_{\epsilon_1,j}^{\Xi}$ from 5.5.2. Denote by K_{ϵ_1} the group generated by $exp(i * \mathfrak{t}_{\epsilon_1})$ and ${}^{0}M_{\widetilde{Spin(q,q)}}$, and denote by $K_{\epsilon_1,\widetilde{Pin(q,q)}}$ the group generated by $exp(i * \mathfrak{t}_{\epsilon_1})$ and ${}^{0}M_{\widetilde{Pin(q,q)}}$.

Theorem 7.2.11. Let q = 2k and let V_{Ξ} be an irreducible $Pin(q) \times Pin(q)$ -module that occurs in $H \otimes V_{T}$ so that its restriction to $Spin(q) \times Spin(q)$ contains a copy

of V_{ξ} where $V_{\xi} \subseteq H_{\widetilde{Spin(q,q)}} \otimes V_{\tau}$ or $V_{\xi} \subseteq H_{\widetilde{Spin(q,q)}} \otimes \overline{V_{\tau}}$. Let $V_{\xi} = V_{\xi_1} \otimes V_{\xi_2}$ with $(m_1, ..., m_k)$ the highest weight of V_{ξ_1} and $(n_1, ..., n_k)$ the highest weight of V_{ξ_2} .

- Let V_T be the Pin representation of Pin(q) after projection onto the first factor of Pin(q) × Pin(q). If n_k ≠ 0, then {δ^Ξ_{ε1,1},...,δ^Ξ_{ε1,n(Ξ)}} is the disjoint union of those from the Spin(q) × Spin(q) modules V_{ξ1} ⊗ V_{ξ2} and V_{ξ1} ⊗ V_{ξ2}. If n_k = 0, then {δ^Ξ_{ε1,1},...,δ^Ξ_{ε1,n(Ξ)}} is exactly same as those from the Spin(q) × Spin(q) module V_{ξ1} ⊗ V_{ξ2}.
- Let V_T be the Pin representation of Pin(q) after projection onto the second factor of Pin(q) × Pin(q). If m_k ≠ 0, then {δ^Ξ_{ϵ1,1},...,δ^Ξ_{ϵ1,n(Ξ)}} is the disjoint union of those from the Spin(q) × Spin(q) modules V_{ξ1} ⊗ V_{ξ2} and V_{ξ1} ⊗ V_{ξ2}. If m_k = 0, then {δ^Ξ_{ϵ1,1},...,δ^Ξ_{ϵ1,n(Ξ)}} is exactly same as those from the Spin(q) × Spin(q) module V_{ξ1} ⊗ V_{ξ2}.

Proof. Assume $V_{\rm T}$ is the *Pin* representation of Pin(q) after projection onto the first factor of $Pin(q) \times Pin(q)$. $m_k \neq 0$ as highest weight of V_{ξ_1} must be half-integral.

Consider the case $n_k \neq 0$. From Lemma 7.2.6, we have $V_{\Xi}|_{Spin(q)\times Spin(q)} = (V_{\xi_1} \otimes V_{\xi_2}) \oplus (\overline{V_{\xi_1}} \otimes \overline{V_{\xi_2}}) \oplus (\overline{V_{\xi_1}} \otimes V_{\xi_2}) \oplus (V_{\xi_1} \otimes \overline{V_{\xi_2}})$ where (ζ, ζ) swaps $V_{\xi_1} \otimes V_{\xi_2}$ and $\overline{V_{\xi_1}} \otimes \overline{V_{\xi_2}}$, and (ζ, ζ) swaps $\overline{V_{\xi_1}} \otimes V_{\xi_2}$ and $V_{\xi_1} \otimes \overline{V_{\xi_2}}$.

Let $(V_{\xi_1} \otimes V_{\xi_2})|_{K_{\epsilon_1}} = \bigoplus_{j=1}^{n(\xi_1,\xi_2)} V_j$ where $V_j \cong V_{\tau}$ as ${}^{0}M_{\widetilde{Spin(q,q)}}$ -modules for all j or $V_j \cong \overline{V_{\tau}}$ as ${}^{0}M_{\widetilde{Spin(q,q)}}$ -modules for all j with V_{τ} and $\overline{V_{\tau}}$ the two small $Spin(q) \times Spin(q)$ types by Lemma 7.0.3. Let $(\overline{V_{\xi_1}} \otimes V_{\xi_2})|_{K_{\epsilon_1}} = \bigoplus_{k=1}^{n(\overline{\xi_1},\xi_2)} W_k$ where $W_k \cong V_{\tau}$ as ${}^{0}M_{\widetilde{Spin(q,q)}}$ -modules for all k or $W_k \cong \overline{V_{\tau}}$ as ${}^{0}M_{\widetilde{Spin(q,q)}}$ -modules for all k with V_{τ} and $\overline{V_{\tau}}$ the two small $Spin(q) \times Spin(q)$ types by Lemma 7.0.3.

We have $V_{\Xi}|_{K_{\epsilon_1,\widetilde{Pin(q,q)}}} = \bigoplus_{j=1}^{n(\xi_1,\xi_2)} (V_j \oplus (\zeta,\zeta) \cdot V_j) \oplus \bigoplus_{k=1}^{n(\overline{\xi_1},\xi_2)} (W_k \oplus (\zeta,\zeta) \cdot W_k)$ by Lemma 7.2.10. Therefore we have the first statement of the first case of the lemma as (ζ,ζ) commutes with $\mathfrak{t}^2_{\epsilon_1}$.

If $n_k = 0$, we have by Lemma 7.2.6 $V_{\Xi}|_{Spin(q) \times Spin(q)} = (V_{\xi_1} \otimes V_{\xi_2}) \oplus (\overline{V_{\xi_1}} \otimes V_{\xi_2})$ where (ζ, ζ) swaps $V_{\xi_1} \otimes V_{\xi_2}$ and $\overline{V_{\xi_1}} \otimes V_{\xi_2}$. Let $(V_{\xi_1} \otimes V_{\xi_2})|_{K_{\epsilon_1}} = \bigoplus_{j=1}^{n(\xi_1, \xi_2)} V_j$ where $V_j \cong V_{\tau}$ as ${}^{0}M_{Spin(q,q)}$ -modules for all j or $V_j \cong \overline{V_{\tau}}$ as ${}^{0}M_{Spin(q,q)}$ -modules for all j with V_{τ} and $\overline{V_{\tau}}$ the two small $Spin(q) \times Spin(q)$ types by Lemma 7.0.3. We have $V_{\Xi}|_{K_{\epsilon_1,P\widetilde{in}(q,q)}} = \bigoplus_{j=1}^{n(\xi_1,\xi_2)} (V_j \oplus (\zeta,\zeta) \cdot V_j)$ by Lemma 7.2.10. Therefore we have the second statement of the first case of the lemma as (ζ,ζ) commutes with $\mathfrak{t}^2_{\epsilon_1}$.

The second case can be shown similarly as in the first case.

Theorem 7.2.12. Let q = 2k + 1 and let V_{Ξ} be an irreducible $Pin(q) \times Pin(q)$ module that occurs in $H \otimes V_{T}$ so that its restriction to $Spin(q) \times Spin(q)$ is an irreducible module V_{ξ} where $V_{\xi} \subseteq H_{\widetilde{Spin(q,q)}} \otimes V_{\tau}$. Let $V_{\Xi}|_{K_{\epsilon_{1},\widetilde{Pin(q,q)}}} = \bigoplus_{j=1}^{n(\Xi)} V_{T_{j}}$, and $V_{\xi}|_{K_{\epsilon_{1},\widetilde{Spin(q,q)}}} = \bigoplus_{j=1}^{n(\xi)} V_{\tau_{j}}$. Then, $n(\Xi) = n(\xi)$, and $\delta_{\epsilon_{1},j}^{\Xi} = \delta_{\epsilon_{1},j}^{\xi}$ for all j after reordering.

Proof. ${}^{0}M_{\widetilde{Pin(q,q)}}$ is generated by ${}^{0}M_{\widetilde{Spin(q,q)}}$ and (ζ, ζ) where (ζ, ζ) acts by a single sign on the entire space $H \otimes V_{\mathrm{T}}$. Therefore, it is clear that $n(\Xi) = n(\xi)$ by Lemma 7.2.7, and hence the statement of the weights is also clear.

7.2.13 Comparison of \mathfrak{t}_{α} -weights for short roots of Lie(SO(q+1,q))

Recall the assumptions of Theorem 6.1.1.

Theorem 7.2.14. Let $V_{\gamma_1}, ..., V_{\gamma_N}$ be distinct $K = Spin(q) \times Spin(q)$ -types that occur in $H_{Spin(q,q)}$ such that $V_{\xi} \subseteq V_{\gamma_j} \otimes V_{\tau}$. $\sum_{j=1}^N l(\gamma_j) = n(\xi)$. If V_{τ} is the Spin representation or either of the two half-Spin representations of Spin(q) after projection onto the first factor of K, after reordering, $\delta_{\epsilon_1,j}^{\xi} = \delta_{\epsilon_1,j} \pm \frac{1}{2}$ for each $j = 1, ..., n(\xi)$. If V_{τ} is the Spin representation or either of the two half-Spin representations of Spin(q) after projection onto the second factor of K, after reordering, $\delta_{\epsilon_1,j}^{\xi} = \delta_{\epsilon_1,j}$ for each $j = 1, ..., n(\xi)$.

First we state a lemma for the Theorem.

Lemma 7.2.15. Assume the statement of $\mathfrak{t}_{\epsilon_1}$ -weights in Theorem 7.2.14 for the modules of the group $Spin(q) \times Spin(q)$. Then the statement of $\mathfrak{t}_{\epsilon_1}$ -weights in Theorem 7.2.14 for the modules of the group $Pin(q) \times Pin(q)$ is also true.

Proof. Assume $V_{\rm T}$ is *Pin* representation or either of the two *Pin* representations of Pin(q) after projection onto the second factor of $Pin(q) \times Pin(q)$.

Assume first q is odd hence $V_{\rm T}$ is either of the two Pin representations of Pin(q) after projection onto the second factor of $Pin(q) \times Pin(q)$. Let $V_{\Xi} \subseteq H_{\widetilde{Pin(q,q)}} \otimes V_{\rm T}$ and let $V_{\Gamma_1}, ..., V_{\Gamma_N}$ be distinct $Pin(q) \times Pin(q)$ modules that occur in $H_{\widetilde{Pin(q,q)}}$ such that $V_{\Xi} \subseteq V_{\Gamma_j} \otimes V_{\rm T}$ for all j. Without loss of generality, assume (ζ, ζ) acts on $V_{\rm T}$ by Id, i.e. (Id, ζ) acts on $V_{\rm T}$ by Id as $V_{\rm T}$ is the Pin representation of Pin(q) after projection of $Pin(q) \times Pin(q)$ onto the second factor. Without loss of generality, assume (Id, ζ) acts on V_{Ξ} by Id. As $V_{\Xi} \subseteq V_{\Gamma_j} \otimes V_{\rm T}$ for all j, (Id, ζ) must act by Id on V_{Γ_j} for all j. As $(\zeta, \zeta) \in {}^0M_{\widetilde{Pin(q,q)}}$ is central, (ζ, ζ) must act by Id on V_{Γ_j} for all j. Therefore, we have that the action of (ζ, ζ) on V_{Γ_j} must be (+, +)for all j. This observation gives us the following. If $V_{\Gamma_j}|_{(Spin(q) \times Spin(q))} = V_{\gamma_j}$ where $V_{\gamma_1}, ..., V_{\gamma_N}$ are irreducible $Spin(q) \times Spin(q)$ modules by Lemma 7.2.7, $V_{\gamma_1}, ..., V_{\gamma_N}$ are distinct.

Now let $V_{\Xi}|_{(Spin(q)\times Spin(q))} = V_{\xi}$ where V_{ξ} is irreducible by Lemma 7.2.7. We have $V_{\xi} \subseteq H_{\widetilde{Spin(q,q)}} \otimes V_{\tau}$, and $V_{\gamma_1}, ..., V_{\gamma_N}$ are distinct irreducible modules that occur in $H_{\widetilde{Spin(q,q)}}$ by Theorem 7.2.9, and $V_{\xi} \subseteq V_{\gamma_j} \otimes V_{\tau}$ for all j = 1, ..., N. By Theorem 7.2.9 and Theorem 7.2.12, this restriction of $Pin(q) \times Pin(q)$ to $Spin(q) \times Spin(q)$ do not change the set of $\mathfrak{t}_{\epsilon_1}$ weights of interest. Therefore, by the assumption of the lemma, we have the result for q odd.

Assume now q = 2k is even hence V_{T} is Pin representation after projection onto the second factor of $Pin(q) \times Pin(q)$. Let $V_{\Xi} \subseteq H_{\widetilde{Pin(q,q)}} \otimes V_{\mathrm{T}}$ and let $V_{\Gamma_1}, ..., V_{\Gamma_M}$ be distinct $Pin(q) \times Pin(q)$ modules that occur in $H_{\widetilde{Pin(q,q)}}$ such that $V_{\Xi} \subseteq V_{\Gamma_j} \otimes V_{\mathrm{T}}$ for all j. By Lemma 7.2.6, let $V_{\xi_1} \otimes V_{\xi_2}$ be a choice of an irreducible $Spin(q) \times Spin(q)$ module that occurs in $V_{\Xi}|_{(Spin(q) \times Spin(q))}$ such that $(m_1, ..., m_k)$ is the highest weight of V_{ξ_1} and $(n_1, ..., n_k)$ is the highest weight of V_{ξ_2} with m_k , $n_k \geq 0$.

Assume first $m_k = 0$. For each j = 1, ..., M, let $V_{\gamma_{j,1}} \otimes V_{\gamma_{j,2}}$ be a choice of an irreducible $Spin(q) \times Spin(q)$ module that occurs in $V_{\Gamma_j}|_{(Spin(q) \times Spin(q))}$ with last entries of the highest weights of $V_{\gamma_{j,1}}$ and $V_{\gamma_{j,2}}$ nonnegative. In fact, $V_{\gamma_{j,1}} = V_{\xi_1}$. Now, reorder so that $V_{\gamma_{1,1}} \otimes V_{\gamma_{1,2}}, ..., V_{\gamma_{N,1}} \otimes V_{\gamma_{N,2}}$ are distinct $Spin(q) \times Spin(q)$ modules. $N \leq M$ as there may be j such that $V_{\gamma_{j,1}} \otimes V_{\gamma_{j,2}}$ occurs twice with different (Id, ζ) signature on the highest weight vector. $V_{\xi_1} \otimes V_{\xi_2} \subseteq H_{Spin(q,q)} \otimes V_{\tau}$ or $V_{\xi_1} \otimes V_{\xi_2} \subseteq H_{Spin(q,q)} \otimes \overline{V_{\tau}}$ but not both by Lemma 7.0.3. Without loss of generality, assume $V_{\xi_1} \otimes V_{\xi_2} \subseteq H_{Spin(q,q)} \otimes V_{\tau}$. $V_{\gamma_{1,1}} \otimes V_{\gamma_{1,2}}, ..., V_{\gamma_{N,1}} \otimes V_{\gamma_{N,2}}$ are distinct $Spin(q) \times Spin(q)$ modules that occur in $H_{Spin(q,q)}$ by Theorem 7.2.8, and we have $V_{\xi_1} \otimes V_{\xi_2} \subseteq (V_{\gamma_{j,1}} \otimes V_{\gamma_{j,2}}) \otimes V_{\tau}$ for all j = 1, ..., N. Therefore, we can assume the statement of the $\mathfrak{t}_{\epsilon_1}$ weights on these $Spin(q) \times Spin(q)$ modules by the assumption of the lemma. But by Theorem 7.2.8 and Theorem 7.2.11, comparison of $\mathfrak{t}_{\epsilon_1}$ weights for the modules of the group $Pin(q) \times Pin(q)$ is that of $V_{\xi_1} \otimes V_{\xi_2}, V_{\gamma_{1,1}} \otimes V_{\gamma_{1,2}}, ..., V_{\gamma_{N,1}} \otimes V_{\gamma_{N,2}}$ of $Spin(q) \times Spin(q)$. Therefore, we have the result for q = 2k where $m_k = 0$.

Assume now $m_k \neq 0$. For each j = 1, ..., M, let $V_{\gamma_{j,1}} \otimes V_{\gamma_{j,2}}$ be a choice of an irreducible $Spin(q) \times Spin(q)$ module that occurs in $V_{\Gamma_j}|_{(Spin(q) \times Spin(q))}$ with last entry of the highest weight of $V_{\gamma_{j,2}}$ nonnegative. We have $V_{\gamma_{j,1}} = V_{\xi_1}$ for all j. Now, reorder so that $V_{\gamma_{1,1}} \otimes V_{\gamma_{1,2}}, ..., V_{\gamma_{N,1}} \otimes V_{\gamma_{N,2}}$ are distinct $Spin(q) \times Spin(q)$ modules. $N \leq M$ as there may be j such that $V_{\gamma_{j,1}} \otimes V_{\gamma_{j,2}}$ occurs twice with different (Id, ζ) signature on the highest weight vector. $V_{\xi_1} \otimes V_{\xi_2} \subseteq H_{Spin(q,q)} \otimes V_{\tau}$ or $V_{\xi_1} \otimes V_{\xi_2} \subseteq H_{Spin(q,q)} \otimes \overline{V_{\tau}}$ but not both by Lemma 7.0.3. Without loss of generality, assume $V_{\xi_1} \otimes V_{\xi_2} \subseteq H_{Spin(q,q)} \otimes V_{\tau}$. We have $V_{\xi_1} \otimes V_{\xi_2} \subseteq (V_{\gamma_{j,1}} \otimes V_{\gamma_{j,2}}) \otimes V_{\tau}$ for all j = 1, ..., N. Therefore, we can assume the statement of the $\mathfrak{t}_{\epsilon_1}$ weights on these $Spin(q) \times Spin(q)$ modules by the assumption of the lemma. Note for some j, $dim (V_{\gamma_{j,1}} \otimes V_{\gamma_{j,2}})^{^{0}M_{Spin(q,q)}}$ may be zero because of the first statement of Theorem 7.2.8. In this case, we just ignore $(V_{\gamma_{j,1}} \otimes V_{\gamma_{j,2}})$ in the comparison of $\mathfrak{t}_{\epsilon_1}$ weights.

Now, $V_{\gamma_{1,1}} \otimes \overline{V_{\gamma_{1,2}}}, ..., V_{\gamma_{N,1}} \otimes \overline{V_{\gamma_{N,2}}}$ are distinct $Spin(q) \times Spin(q)$ modules such that $V_{\xi_1} \otimes \overline{V_{\xi_2}} \subseteq (V_{\gamma_{j,1}} \otimes \overline{V_{\gamma_{j,2}}}) \otimes \overline{V_{\tau}}$ for all j = 1, ..., N. Therefore, we can also assume the statement of the $\mathfrak{t}_{\epsilon_1}$ weights on these $Spin(q) \times Spin(q)$ modules by the assumption of the lemma. Note for some j, $dim (V_{\gamma_{j,1}} \otimes \overline{V_{\gamma_{j,2}}})^{\circ M_{Spin(q,q)}}$ may be zero because of the first statement of Theorem 7.2.8. In this case, we just ignore $(V_{\gamma_{j,1}} \otimes \overline{V_{\gamma_{j,2}}})$ in the comparison of $\mathfrak{t}_{\epsilon_1}$ weights.

By Theorem 7.2.8 and Theorem 7.2.11, comparison of $\mathfrak{t}_{\epsilon_1}$ weights for the modules of the group $Pin(q) \times Pin(q)$ is that of $V_{\xi_1} \otimes V_{\xi_2}, V_{\gamma_{1,1}} \otimes V_{\gamma_{1,2}}, ..., V_{\gamma_{N,1}} \otimes V_{\gamma_{N,2}}$ of $Spin(q) \times Spin(q)$ and $V_{\xi_1} \otimes \overline{V_{\xi_2}}, V_{\gamma_{1,1}} \otimes \overline{V_{\gamma_{1,2}}}, ..., V_{\gamma_{N,1}} \otimes \overline{V_{\gamma_{N,2}}}$ of $Spin(q) \times Spin(q)$. Therefore, we have the result for q = 2k where $m_k \neq 0$.
The case where $V_{\rm T}$ is *Pin* representation or either of the two *Pin* representations of Pin(q) after projection onto the first factor of $Pin(q) \times Pin(q)$ can be shown similarly as above.

Proof. (Theorem 7.2.14)

 $\Sigma_{j=1}^{N} l(\gamma_j) = n(\xi)$ by Lemma 7.0.4.

We first prove the statement of the theorem for q = 3. In this case, $K = Spin(3) \times Spin(3) \cong SU(2) \times SU(2)$ where ${}^{0}M$ is isomorphic to ${}^{0}M_{\widetilde{SL(3,\mathbb{R})}} \times \mu_{2}$ with ${}^{0}M_{\widetilde{SL(3,\mathbb{R})}}$ sitting in K diagonally and μ_{2} central in K. Again, by Remark 7.2.2, this μ_{2} acts trivially on H and V_{τ} . We have $\mathfrak{t}_{\epsilon_{1}} = (\mathfrak{t}_{\beta}, 0) \in \mathfrak{su}_{2} \oplus \mathfrak{su}_{2}$ where β is that of $Lie(\widetilde{SL(3,\mathbb{R})})$. An irreducible representation of $K = SU(2) \times SU(2)$ is an outer tensor product of that of each of the two SU(2)s. Let V_{r} and W_{s} be irreducible representations of each of SU(2) with highest weights r and s respectively. Note the weights of V_{r} are -r, -r + 1, ..., r - 1, r and similarly for W_{s} .

Assume first V_{τ} is the *Spin* representation of *Spin*(3) after projection onto the second factor of $K = Spin(3) \times Spin(3)$.

Let $V_{\xi} \subseteq H \otimes V_{\tau}$ with $V_{\xi} \cong V_r \otimes W_s$. There is at most two $V_{\gamma} \subseteq H$ such that $V_{\xi} \subseteq V_{\gamma} \otimes V_{\tau}, V_{\gamma_1} = V_r \otimes W_{s_1}$ and $V_{\gamma_2} = V_r \otimes W_{s_2}$ with $s_1 = s + \frac{1}{2}$ and $s_2 = s - \frac{1}{2}$. Consider $v_i \otimes w_j \in V_r \otimes W_{s_1}$ and $v_i \otimes w_j \in V_r \otimes W_{s_2}$. In order for them to be candidates for dominant $\mathfrak{t}_{\epsilon_1}$ -weight vectors from ${}^{0}M$ invariant vectors, i + j must be even, and $i \geq 0$.

First, if $i + s_1$ is even and $i \ge 0$, then cover $v_i \otimes w_{s_1}$ with $v_i \otimes w_s$ and $v_i \otimes w_{-s_1}$ with $v_i \otimes w_{-s}$. Now assume i + j is even with $i \ge 0$ and $j \ne s_1$. We use $v_i \otimes w_{j\pm\frac{1}{2}} \in V_r \otimes W_s$ to cover the two $v_i \otimes w_j \in V_r \otimes W_{s_1}$ and $v_i \otimes w_j \in V_r \otimes W_{s_2}$.

The only ambiguity is when i = j = 0, since we can't use both $v_0 \otimes w_{\pm \frac{1}{2}} \in V_r \otimes W_s$ as the two come from a single V_{τ} . But exactly one of the two sets $\{r, s_1\}$ and $\{r, s_2\}$ must consist of two numbers that are of different parity. Without loss of generality assume r and s_1 are of different parity. Then $v_0 \otimes w_0 \in V_r \otimes W_{s_1}$ is not ${}^{0}M$ invariant, hence the ambiguity is now cleared.

Now assume V_{τ} is the *Spin* representation of *Spin*(3) after projection onto the first factor of $K = Spin(3) \times Spin(3)$.

Let $V_{\xi} \subseteq H \otimes V_{\tau}$ with $V_{\xi} \cong V_r \otimes W_s$. There is at most two $V_{\gamma} \subseteq H$ such that $V_{\xi} \subseteq V_{\gamma} \otimes V_{\tau}, V_{\gamma_1} = V_{r_1} \otimes W_s$ and $V_{\gamma_2} = V_{r_2} \otimes W_s$ with $r_1 = r + \frac{1}{2}$ and $r_2 = r - \frac{1}{2}$. Consider $v_i \otimes w_j \in V_{r_1} \otimes W_s$ and $v_i \otimes w_j \in V_{r_2} \otimes W_s$. In order for them to be candidates for dominant $\mathfrak{t}_{\epsilon_1}$ -weight vectors from ${}^{0}M$ invariant vectors, i + j must be even, and $i \geq 0$.

First, if $r_1 + j$ is even, then cover $v_{r_1} \otimes w_j$ with $v_r \otimes w_j$ and $v_{r_1} \otimes w_{-j}$ with $v_r \otimes w_{-j}$. Now assume i+j is even with $i \ge 0$ and $i \ne r_1$. We use $v_{i\pm\frac{1}{2}} \otimes w_j \in V_r \otimes W_s$ to cover the two $v_i \otimes w_j \in V_{r_1} \otimes W_s$ and $v_i \otimes w_j \in V_{r_2} \otimes W_s$.

The only ambiguity is when i = j = 0, since we can't use both $v_{\pm \frac{1}{2}} \otimes w_0 \in V_r \otimes W_s$ as $v_{-\frac{1}{2}} \otimes w_0$ is not a dominant $\mathfrak{t}_{\epsilon_1}$ -weight vector. But exactly one of the two sets $\{r_1, s\}$ and $\{r_2, s\}$ must consist of two numbers that are of different parity. Without loss of generality assume r_1 and s are of different parity. Then $v_0 \otimes w_0 \in V_{r_1} \otimes W_s$ is not ${}^{0}M$ invariant, hence the ambiguity is now cleared.

We now proceed with induction. Assume the statement of the theorem for $\widetilde{Spin(q,q)}$, hence the statement of the theorem for $\widetilde{Pin(q,q)}$ with maximal compact subgroup $Pin(q) \times Pin(q)$ by Lemma 7.2.15. We prove the statement of the theorem for Spin(q+1,q+1). Note $\widetilde{i}({}^{0}M_{\widetilde{Pin(q,q)}}) = {}^{0}M_{Spin(q+1,q+1)}$ by Lemma 7.2.3 where \widetilde{i} is the embedding $\widetilde{i} : \widetilde{Pin(q,q)} \hookrightarrow Spin(q+1,q+1)$.

The condition $V_{\xi} \subseteq V_{\gamma_j} \otimes V_{\tau}$ can be restated as $V_{\gamma_j} \subseteq V_{\xi} \otimes V_{\tau}^*$. Note the statement of the theorem is true for $\widetilde{Pin(q,q)}$ with the restated condition. Let $V_{\gamma_1}, ..., V_{\gamma_N}$ be distinct irreducible $Spin(q+1) \times Spin(q+1)$ -modules that occur in H such that $V_{\gamma_j} \subseteq V_{\xi} \otimes V_{\tau}^*$, and let $\bigoplus_{j=1}^N Span (Pin(q) \times Pin(q)) \cdot V_{\gamma_j}^{0M_{Spin(q+1,q+1)}} = \bigoplus_k W_k$ where each W_k is an irreducible $Pin(q) \times Pin(q)$ -module. As the nontrivial element $\eta \in \mu_2 \leq {}^{0}M_{Spin(q+1,q+1)}$ acts by -1 where μ_2 is the kernel of the covering homomorphism $p: Spin(q+1,q+1) \to Spin(q+1,q+1), V_{\xi}|_{Pin(q) \times Pin(q)} = \bigoplus_j V_{\xi_j}$ where each of V_{ξ_j} occurs in $H_{\widetilde{Pin(q,q)}} \otimes V_{\tau}$ by Lemma 7.0.3. We have $\bigoplus_k W_k \subseteq \bigoplus_j V_{\xi_j} \otimes V_{\tau}^*$ where we also know each of W_k occurs in $H_{\widetilde{Pin(q,q)}}$ since $\widetilde{i}({}^{0}M_{\widetilde{Pin(q,q)}}) = {}^{0}M_{Spin(q+1,q+1)}$ by Lemma 7.2.3 where $\widetilde{i}: \widetilde{Pin(q,q)} \hookrightarrow Spin(q+1,q+1)$ is the embeding.

Since the statement of the theorem is true for Pin(q,q) with the restated condition and as the set of $\mathfrak{t}_{\epsilon_1}$ weights of interest are the same after branching down to $Pin(q) \times Pin(q)$ because $\tilde{i}({}^{0}M_{Pin(q,q)}) = {}^{0}M_{Spin(q+1,q+1)}$ by Lemma 7.2.3, we have the statement of the theorem for $\mathfrak{t}_{\epsilon_1}$. Note $V_{\xi_j} \otimes V_{\tau}^*$ decomposes into distinct $Pin(q) \times Pin(q)$ -modules by Corollary 3.4 of [Ku] as V_{τ}^* is multiplicity free. Therefore, if $W_k \cong W_l$ with $k \neq l$, then W_k and W_l cannot be contained in a single $V_{\xi_j} \otimes V_{\tau}^*$, important as the statement of the theorem for Pin(q,q) also assumes distinct V_{Γ} s.

Remark For the connected, simply connected \mathbb{R} -split Lie groups of type B_q , if $V_{\xi} \subseteq H \otimes V_{\tau}$, $V_{\xi}|_{0_M} = \bigoplus_{j=1}^{n(\xi)} V_{\tau_j} \oplus \bigoplus_k V_k$ where $V_{\tau_j} \cong V_{\tau}$ as 0M -modules, and $V_k \cong \overline{V_{\tau}}$ as 0M -modules. Hence the weights of interest are just that of $\bigoplus_{j=1}^{n(\xi)} V_{\tau_j}$ from the definition of P^{ξ} matrix in 4.1.

Theorem 7.2.16. Let α be a short root of Lie(Spin(q+1,q)). Let $V_{\gamma_1}, ..., V_{\gamma_N}$ be distinct $K = Spin(q+1) \times Spin(q)$ -types that occur in H of Spin(q+1,q) such that $V_{\xi} \subseteq V_{\gamma_j} \otimes V_{\tau}$. $\sum_{j=1}^N l(\gamma_j) = n(\xi)$. If V_{τ} is a small K-type after projection onto the first factor of $K = Spin(q+1) \times Spin(q)$, after reordering, $\delta_{\alpha,j}^{\xi} = \delta_{\alpha,j} \pm \frac{1}{2}$ for each $j = 1, ..., n(\xi)$. If V_{τ} is a small K-type after projection onto the second factor of $K = Spin(q+1) \times Spin(q)$, after reordering, $\delta_{\alpha,j}^{\xi} = \delta_{\alpha,j}$ for each $j = 1, ..., n(\xi)$.

We first need a lemma for the theorem. Consider the embedding i: $SO(q,q)_{\circ} \hookrightarrow SO(q+1,q)_{\circ}$ where the image of the maximal compact subgroup $SO(q) \times SO(q)$ of $SO(q,q)_{\circ}$ under i is contained in the maximal compact subgroup $SO(q+1) \times SO(q)$ of $SO(q+1,q)_{\circ}$ such that if $(g,h) \in SO(q) \times SO(q)$,

$$i((g,h)) = \begin{pmatrix} g & 0 \\ 0 & 1 \end{pmatrix}, h \in SO(q+1) \times SO(q)$$

Let $p: \widetilde{Spin(q+1,q)} \to SO(q+1,q)_{\circ}$ be the covering homomorphism. We have that $p^{-1}(i(SO(q,q)_{\circ}))$ is a Lie subgroup isomorphic to $\widetilde{Spin(q,q)}$, hence we have an embedding $\widetilde{i}: \widetilde{Spin(q,q)} \hookrightarrow \widetilde{Spin(q+1,q)}$.

Lemma 7.2.17. Consider the embedding $\widetilde{i}: \widetilde{Spin(q,q)} \hookrightarrow \widetilde{Spin(q+1,q)}$ described above. We have $\widetilde{i}({}^{0}\!M_{\widetilde{Spin(q,q)}}) = {}^{0}\!M_{\widetilde{Spin(q+1,q)}}.$

Proof. We have

$${}^{0}M_{SO(q+1,q)\circ} = \left\{ \begin{pmatrix} g & 0 \\ 0 & 1 \end{pmatrix}, g \mid g \in {}^{0}M_{SL(q,\mathbb{R})} \right\}$$

, the image of ${}^{0}\!M_{SO(q,q)_{\circ}}$ under the map *i*. Hence $i({}^{0}\!M_{SO(q,q)_{\circ}}) = {}^{0}\!M_{SO(q+1,q)_{\circ}}$. As $\widetilde{i}({}^{0}\!M_{\widetilde{Spin(q,q)}}) = p^{-1}(i({}^{0}\!M_{SO(q,q)_{\circ}}))$ and ${}^{0}\!M_{\widetilde{Spin(q+1,q)}} = p^{-1}({}^{0}\!M_{SO(q+1,q)_{\circ}})$, we have the statement of the lemma.

Proof. (Theorem 7.2.16)

 $\sum_{j=1}^{N} l(\gamma_j) = n(\xi)$ is Lemma 7.0.4.

We first show the statement for $\alpha = \epsilon_1$.

Consider the embedding $\widetilde{i}: \widetilde{Spin(q,q)} \hookrightarrow \widetilde{Spin(q+1,q)}$ where $\widetilde{i}({}^{0}\!M_{\widetilde{Spin(q,q)}}) = {}^{0}\!M_{\widetilde{Spin(q+1,q)}}$ by Lemma 7.2.17.

We can restate the condition $V_{\xi} \subseteq V_{\gamma_j} \otimes V_{\tau}$ as $V_{\gamma_j} \subseteq V_{\xi} \otimes V_{\tau}^*$. Note the statement of the theorem is true with the restated condition for $\widetilde{Spin(q,q)}$ by Theorem 7.2.14.

Let $V_{\gamma_1}, ..., V_{\gamma_N}$ be distinct irreducible K-modules that occur in H such that $V_{\gamma_j} \subseteq V_{\xi} \otimes V_{\tau}^*$, and let $\bigoplus_{j=1}^N Span \left(Spin(q) \times Spin(q)\right) \cdot V_{\gamma_j}^{\circ_M} Spin(q+1,q)} = \bigoplus_k W_k$ where each W_k is an irreducible $Spin(q) \times Spin(q)$ -module. As the nontrivial element $\eta \in \mu_2 \leq {}^{0}M_{Spin(q+1,q)}$ acts by -1 where μ_2 is the kernel of the covering homomorphism $p: Spin(q+1,q) \to Spin(q+1,q), V_{\xi}|_{(Spin(q) \times Spin(q))} = \bigoplus_j V_{\xi_j}$ where each of V_{ξ_j} occurs in $H \otimes V_{\tau}$ or $H \otimes \overline{V_{\tau}}$ with H that of Spin(q,q) and $\overline{V_{\tau}}$ the other half Spin representation. We have $\bigoplus_k W_k \subseteq \bigoplus_j V_{\xi_j} \otimes V_{\tau}^*$ where each of W_k occurs in H of $\widetilde{Spin(q,q)}$ as $\widetilde{i}({}^{0}M_{Spin(q,q)}) = {}^{0}M_{Spin(q+1,q)}$ by Lemma 7.2.17 where \widetilde{i} is the embedding $\widetilde{i}: Spin(q,q) \hookrightarrow Spin(q+1,q)$.

We assert that if $W_k \subseteq V_{\xi_j} \otimes V_{\tau}^*$, then $V_{\xi_j}|_{{}^{0}M_{Spin(q,q)}}$ is equivalent to a multiple of V_{τ} and $V_{\xi_j} \subseteq H_{Spin(q,q)} \otimes V_{\tau}$. Indeed, if $W_k \subseteq V_{\xi_j} \otimes V_{\tau}^*$, then $V_{\xi_j} \subseteq W_k \otimes$ V_{τ} , hence claim is true by Lemma 7.0.3. This observation is important because of the following. First, recall from remark in the beginning of the chapter the decomposition $V_{\xi}|_{K_{\epsilon_1}} = \bigoplus_{j=1}^{n(\xi)} V_{\tau_j} \oplus \bigoplus_k V_k$ where $V_{\tau_j} \cong V_{\tau}$ as ${}^{0}M_{Spin(q+1,q)}$ -modules, and $V_k \cong \overline{V_{\tau}}$ as ${}^{0}M_{Spin(q+1,q)}$ -modules where $\overline{V_{\tau}}$ is the other half Spin representation. As $V_{\xi} \subseteq H \otimes V_{\tau}$, we only consider $V_{\tau_1}, ..., V_{\tau_{n(\xi)}}$ in the definition of P^{ξ} matrix. Since the statement of the theorem is true for Spin(q, q) with the restated condition and as the set of $\mathfrak{t}_{\epsilon_1}$ weights of interest are the same after branching down to $Spin(q) \times Spin(q)$ because $\tilde{i}({}^{0}M_{Spin(q,q)}) = {}^{0}M_{Spin(q+1,q)}$ by Lemma 7.2.17, we have the statement of the theorem for $\alpha = \epsilon_1$. Note $V_{\xi_j} \otimes V_{\tau}^*$ decomposes into distinct $Spin(q) \times Spin(q)$ -modules by Corollary 3.4 of [Ku] as V_{τ}^* is multiplicity free. Therefore, if $W_k \cong W_l$ with $k \neq l$, then W_k and W_l cannot be contained in a single $V_{\xi_j} \otimes V_{\tau}^*$, important as the statement of the theorem for Spin(q,q) also assumes distinct V_{γ} s.

By Proposition 6.11 of [Bou], any positive short root α of Lie(Spin(q+1,q))must be conjugate to ϵ_1 via an element of the Weyl group $W(A) = N_K(A)/Z_K(A)$ Therefore, the set of \mathfrak{t}_{α} -weights of interest is the same as that of $\mathfrak{t}_{\epsilon_1}$ and we have the statement of the theorem.

7.3 Comparison of \mathfrak{t}_{α} -weights for type F_4 and Comparison of \mathfrak{t}_{α} -weights for short roots of $Lie(G_2)$

Recall the assumptions of Theorem 6.1.1.

Theorem 7.3.1. Let G be the connected, simply connected \mathbb{R} -split Lie group of type F₄. Let $V_{\gamma_1}, ..., V_{\gamma_N}$ be distinct $K = Sp(3) \times SU(2)$ -types that occur in H of G such that $V_{\xi} \subseteq V_{\gamma_j} \otimes V_{\tau}$. $\sum_{j=1}^N l(\gamma_j) = n(\xi)$. If α is a short root of Lie(G), after reordering, $\delta_{\alpha,j}^{\xi} = \delta_{\alpha,j}$ for each $j = 1, ..., n(\xi)$. If α is a long root of Lie(G), after reordering, $\delta_{\alpha,j}^{\xi} = \delta_{\alpha,j} \pm \frac{1}{2}$ for each $j = 1, ..., n(\xi)$.

Proof. $\sum_{j=1}^{N} l(\gamma_j) = n(\xi)$ by Lemma 7.0.4.

Recall from chapter 3 the embedded subgroup $\tilde{i} : Spin(5,4) \hookrightarrow G$ with maximal compact subgroup $Spin(5) \times Spin(4)$. We have $\tilde{i}({}^{0}M_{Spin(5,4)}) = {}^{0}M_{G}$ where the restriction of $K = Sp(3) \times SU(2)$ to $Spin(5) \times Spin(4)$ preserve ${}^{0}M_{G}$ invariants of H and the decomposition $V_{\xi}|_{{}^{0}M_{G}}$ by Lemma 3.3.1. But we also have the embedding $\tilde{i} : Spin(4,4) \hookrightarrow Spin(5,4)$ with $\tilde{i}({}^{0}M_{Spin(4,4)}) = {}^{0}M_{Spin(5,4)}$ by Lemma 7.2.17. Hence we also have the embedding $\tilde{i} : Spin(4,4) \hookrightarrow G$ where $\widetilde{i}({}^{0}M_{\widetilde{Spin(4,4)}}) = {}^{0}M_{G}$ and restriction of $K = Sp(3) \times SU(2)$ to the maximal compact subgroup $Spin(4) \times Spin(4)$ of $\widetilde{Spin(4,4)}$ preserve ${}^{0}M_{G}$ -invariants of H and the decomposition $V_{\xi}|_{{}^{0}M_{G}}$.

If α is a positive long root of Lie(G), by Proposition 6.11 of [Bou], \mathfrak{t}_{α} must be conjugate to \mathfrak{t}_{β} via an element of $K = Sp(3) \times SU(2)$ where β is a positive root of $Lie(Spin(4, 4)) \subseteq Lie(G)$. If α is a positive short root of Lie(G), \mathfrak{t}_{α} must be conjugate to $\mathfrak{t}_{\epsilon_1}$ where ϵ_1 is a positive short root of $Lie(Spin(5, 4)) \subseteq Lie(G)$. We have $\mathfrak{t}_{\epsilon_1} \in Lie(Spin(4) \times Spin(4))_{\mathbb{C}}$. Therefore, it will be enough to show the statement for α a positive root of $Lie(Spin(4, 4)) \subseteq Lie(G)$ and ϵ_1 a positive root of $Lie(Spin(5, 4)) \subseteq Lie(G)$ where $\mathfrak{t}_{\epsilon_1} \in Lie(Spin(4) \times Spin(4))_{\mathbb{C}}$.

We can restate the condition $V_{\xi} \subseteq V_{\gamma_j} \otimes V_{\tau}$ as $V_{\gamma_j} \subseteq V_{\xi} \otimes V_{\tau}^*$. Note the statement of the theorem is true with the restated condition for $\widetilde{Spin(4, 4)}$ by Theorem 7.1.1 and Theorem 7.2.14.

Let $V_{\gamma_1}, ..., V_{\gamma_N}$ be distinct irreducible *K*-modules that occur in *H* such that $V_{\gamma_j} \subseteq V_{\xi} \otimes V_{\tau}^*$, and let $\bigoplus_{j=1}^N Span \ (Spin(4) \times Spin(4)).V_{\gamma_j}^{0M_G} = \bigoplus_k W_k$ where each W_k is an irreducible $Spin(4) \times Spin(4)$ -module. The nontrivial element $\eta \in \mu_2 \leq {}^{0}M_G$ acts by -1 where μ_2 is the kernel of the covering homomorphism $p: \widetilde{Spin(4, 4)} \to Spin(4, 4)$ which is also the kernel of the covering homomorphism $p: G \to G_{\mathbb{R}}$. Hence $V_{\xi}|_{Spin(4) \times Spin(4)} = \bigoplus_j V_{\xi_j}$ where each of V_{ξ_j} occurs in $H \otimes V_{\tau}$ or $H \otimes \overline{V_{\tau}}$ with H that of $\widetilde{Spin(4, 4)}$ and $\overline{V_{\tau}}$ the other half Spin representation after projection onto the second factor of $Spin(4) \times Spin(4)$. We have $\bigoplus_k W_k \subseteq \bigoplus_j V_{\xi_j} \otimes V_{\tau}^*$ where each of W_k occurs in H of $\widetilde{Spin(4, 4)} = {}^{0}M_G$.

We assert that if $W_k \subseteq V_{\xi_j} \otimes V_{\tau}^*$, then $V_{\xi_j}|_{^{OM}Spin(4,4)}$ is equivalent to a multiple of V_{τ} and $V_{\xi_j} \subseteq H_{Spin(4,4)} \otimes V_{\tau}$. Indeed, if $W_k \subseteq V_{\xi_j} \otimes V_{\tau}^*$, then $V_{\xi_j} \subseteq W_k \otimes V_{\tau}$, hence claim is true by Lemma 7.0.3. This observation is important because of the following. First, recall from remark in the beginning of the chapter the decomposition $V_{\xi}|_{K_{\alpha}} = \bigoplus_{j=1}^{n(\xi)} V_{\tau_j} \oplus \bigoplus_k V_k$ where $V_{\tau_j} \cong V_{\tau}$ as ${}^{O}M_G$ -modules, and $V_k \cong \overline{V_{\tau}}$ as ${}^{O}M_G$ -modules where $\overline{V_{\tau}}$ is the other half *Spin* representation restricted to ${}^{O}M_G$. As $V_{\xi} \subseteq H \otimes V_{\tau}$, we only consider $V_{\tau_1}, ..., V_{\tau_{n(\xi)}}$ in the definition of P^{ξ} matrix.

Since the statement of the theorem is true for Spin(4,4) with the restated

condition by Theorem 7.1.1 and Theorem 7.2.14 and as the set of \mathfrak{t}_{α} weights of interest and the set of $\mathfrak{t}_{\epsilon_1}$ weights of interest remain the same after branching down to $Spin(4) \times Spin(4)$ because $\tilde{i}({}^{0}M_{Spin(4,4)}) = {}^{0}M_{Spin(5,4)}$, we have the statement of the theorem for all positive roots α of $Lie(Spin(4,4)) \subseteq Lie(G)$ and $\mathfrak{t}_{\epsilon_1} \in$ $Lie(Sp(3) \times SU(2))_{\mathbb{C}}$. Note $V_{\xi_j} \otimes V_{\tau}^*$ decomposes into distinct $Spin(4) \times Spin(4)$ modules by Corollary 3.4 of [Ku] as V_{τ}^* is multiplicity free. Therefore, if $W_k \cong W_l$ with $k \neq l$, then W_k and W_l cannot be contained in a single $V_{\xi_j} \otimes V_{\tau}^*$, important as the statement of the theorem for $\widetilde{Spin(4, 4)}$ also assumes distinct V_{γ} s. \Box

Theorem 7.3.2. Let G be the connected, simply connected \mathbb{R} -split Lie group of type G₂. Let $V_{\gamma_1}, ..., V_{\gamma_N}$ be distinct $K = SU(2) \times SU(2)$ -types that occur in H of G such that $V_{\xi} \subseteq V_{\gamma_j} \otimes V_{\tau}$. $\sum_{j=1}^N l(\gamma_j) = n(\xi)$. Let α be a short root of Lie(G). If V_{τ} is the standard 2 dimensional representation of SU(2) after projection onto the first factor of K, after reordering, $\delta_{\alpha,j}^{\xi} = \delta_{\alpha,j}$ for each $j = 1, ..., n(\xi)$. If V_{τ} is the standard 2 dimensional representation of SU(2) after projection onto the second factor of K, after reordering, $\delta_{\alpha,j}^{\xi} = \delta_{\alpha,j} \pm \frac{1}{2}$ for each $j = 1, ..., n(\xi)$.

Proof. $\sum_{j=1}^{N} l(\gamma_j) = n(\xi)$ by Lemma 7.0.4.

The maximal compact subgroup K of G is $SU(2) \times SU(2)$ where the first SU(2) comes from α_0 the long root in the extended dynkin diagram of G_2 in section 3.3 and the second SU(2) comes from α_1 the short simple root. By the definition of \mathfrak{t}_{α_1} from 7.0.2, we see that \mathfrak{t}_{α_1} must be $(0, \mathfrak{t}_{\beta}) \in \mathfrak{su}(2) \oplus \mathfrak{su}(2)$ where β is a positive root of $Lie(SL(3,\mathbb{R}))$. We have that ${}^{0}M_{G} \cong {}^{0}M_{\widetilde{SL(3,\mathbb{R})}}$ sitting in $SU(2) \times SU(2)$ diagonally.

 V_{τ} is the standard 2 dimensional representation of SU(2) after projection onto either the first factor or the second factor of K. Therefore, our situation is exactly that of the two comparisons of $\mathfrak{t}_{\epsilon_1}$ weights for $\widetilde{Spin(3,3)}$ in the proof of Theorem 7.2.14, hence we have the statement of the theorem for α_1 . By Proposition 6.11 of [Bou], any positive short root $\alpha \in Lie(G)$ must be conjugate to α_1 via an element of the Weyl group $W(A) = N_K(A)/Z_K(A)$, hence \mathfrak{t}_{α} must be conjugate to \mathfrak{t}_{α_1} via an element of K. Therefore, the set of \mathfrak{t}_{α} -weights of interest is the same as that of \mathfrak{t}_{α_1} and we have the statement of the theorem.

7.4 Product formula of p_{ξ} for the connected, simply connected \mathbb{R} -split Lie group of simple Lie type other than A_n and C_n

Recall the notations from chapter 6. The following is Theorem 6.3.1 for the connected, simply connected \mathbb{R} -split Lie type other than A_n and C_n .

Theorem 7.4.1. There exists a non-zero scalar c such that

$$p_{\xi}(\nu) = c \prod_{\phi \in \Phi^+} p_{(\phi)}(\nu)$$

Proof. The proof of Theorem 6.3.1 was completed with divisibility and degree argument. First consider α a positive root of Lie(G) other than the short roots of type B_n , F_4 , and G_2 . The semisimple part of G_α is the group generated by $Mp(2,\mathbb{R})$ and ${}^{0}M$, and the K_α module $H_\alpha \otimes V_\tau$ is exactly that of $\widetilde{SL(n,\mathbb{R})}$ case from section 5.3. Therefore, divisibility argument is exactly that of $\widetilde{SL(n,\mathbb{R})}$.

Now consider α a positive short root of type B_n , F_4 , and G_2 .

If the small K-type is after projection onto the first factor Spin(n + 1) of $K = Spin(n + 1) \times Spin(n)$ for type B_n or if the small K-type is after projection onto the second factor SU(2) of $K = SU(2) \times SU(2)$ for type G_2 , the situation is exactly the same as above. Now assume otherwise. The semisimple part of G_α is the group generated by $Mp(2, \mathbb{R})$ and ${}^{0}M$. Let V_{ξ_α} be an irreducible K_α module that occurs in $H_\alpha \otimes V_\tau$. The weights of \mathfrak{t}_α on V_{ξ_α} are even integers as \mathfrak{t}_α acts trivially on V_τ . V_{ξ_α} is isomorphic as a K_α module to an irreducible K_α submodule of $(\overline{Z^l_\alpha} \otimes V_\tau) \oplus (Z^l_\alpha \otimes V_\tau)$ for some l.

Let $V_{\xi} \subseteq H \otimes V_{\tau}$, $\epsilon_1, ..., \epsilon_{n(\xi)}$ be a basis of $Hom_K(V_{\xi}, H \otimes V_{\tau})$. Let $V_{\xi}|_{K_{\alpha}} = \bigoplus_{j=1}^{n(\xi)} V_{\tau_j} \oplus W$ where V_{τ_j} is an irreducible K_{α} module isomorphic to V_{τ} as 0M modules for all j, and W is a multiple of $\overline{V_{\tau}}|_{{}^0M}$.

Without loss of generality, let $v_j \in V_{\tau_j}$ be a dominant \mathfrak{t}_{α} weight vector. $L_{\alpha}(\epsilon_i(v_j)) \in \overline{Z_{\alpha}^l} symm(J_{\alpha}) \otimes V_{\tau}$ for some $l \in \mathbb{Z}_{\geq 0}$ where L_{α} is defined in 6.2.6 and $symm(J_{\alpha}) \subseteq U(\mathfrak{g}_{\alpha})^{\mathfrak{k}_{\alpha}}$ with $U(\mathfrak{g}_{\alpha})^{\mathfrak{k}_{\alpha}}$ the subalgebra generated by \mathfrak{t}_{α} , center of \mathfrak{g}_{α} , and the Casimir element. Recall the projection map $Q: U(\mathfrak{g}) \to U(\mathfrak{a})U(\mathfrak{k}) \oplus \mathfrak{n}U(\mathfrak{g})$ onto the first factor. As \mathfrak{t}_{α} acts trivially on V_{τ} , we still have that the action of $\overline{Z_{\alpha}^{l}}symm(J_{\alpha})$ on V_{τ} at the identity is given by $Q(\overline{Z_{\alpha}^{l}}symm(J_{\alpha}))$, and hence the rest of the argument is exactly that of $\widetilde{SL(n,\mathbb{R})}$.

The degree argument is exactly that of the proof of Theorem 6.3.1, using Theorem 7.1.1, Theorem 7.2.16, Theorem 7.3.1, and Theorem 7.3.2. $\hfill \Box$

Chapter 8

Computation of $p_{\xi}(\nu)$ and Determinants of Intertwining Operators

In this chapter we derive a general formula of $p_{\xi}(\nu)$ for the group $SL(n, \mathbb{R})$ $(n \geq 3)$ as a product over those of rank one subgroups corresponding to the positive roots. In addition, for G any of the connected, simply connected split real form of simple Lie type other than type C_n , we prove cyclicity of a small K-type $V_{\tau} \subseteq I_{P,\sigma,\nu}$ in the closed Langlands chamber, and use this to prove irreducibility of unitary principal series admitting a small K-type.

8.1 Computation in Rank One Case

Let G be any of the connected, simply connected split real form of simple Lie type other than type C_n . For any positive root α , $Lie(G_\alpha) \cong \mathfrak{sl}(\mathfrak{2}, \mathbb{R}) \oplus Z(\mathfrak{g}_\alpha)$. Recall for G_α ,

$$H = \bigoplus_{l \ge 0} Z^l \oplus \bigoplus_{l > 0} \overline{Z}^l$$

where Z = X + iY is discussed in chapter 5, and we drop the notation α . Recall the projection map $Q: U(\mathfrak{g}) \longrightarrow U(\mathfrak{a})U(\mathfrak{k}) \oplus \mathfrak{n}U(\mathfrak{g})$ onto the first summand. To compute $p_{\xi}(\nu)$ for a K-type V_{ξ} that occurs in $H \otimes V_{\tau}$, we compute $Q(Z^l)$ and $Q(\overline{Z}^l)$ with \mathfrak{t} weight $\pm \frac{1}{2}$ or 0. To do this, we use $Q'(Z^l)$ and $Q'(\overline{Z}^l)$ already computed in [JW] where $Q' : U(\mathfrak{g}) \longrightarrow U(\mathfrak{a}) \oplus \mathfrak{n}U(\mathfrak{g}) \oplus U(\mathfrak{g})\mathfrak{k}$ is the projection onto the first summand. This is because $Q(Z^l)$ and $Q(\overline{Z}^l)$ can be written as a sum of two different parts, one in $U(\mathfrak{a})$, and the other in $U(\mathfrak{a})U(\mathfrak{k})\mathfrak{k}$, where the former is exactly $Q'(Z^l)$ and $Q'(\overline{Z}^l)$ respectively.

Theorem 8.1.1. $Q(Z^l) = \prod_{j=0}^{l-1} (X + 2j - t)$ and $Q(\overline{Z}^l) = \prod_{j=0}^{l-1} (X + 2j + t)$, where *t* is a weight of *t*.

Proof. We prove the first formula.

From Theorem 7.6 of [JW], we have $Q'(Z^l) = \prod_{j=0}^{l-1}(X+2j)$. We wish to find the shift from $U(\mathfrak{a})U(\mathfrak{k})\mathfrak{k}$ part as it is the only difference between Q and Q'. If l = 1, then $Z = X + iY = X + i(2E + i\mathfrak{k})$. Hence the statement is true. Now we proceed with the method of induction. Assume the statement for l - 1and we show the statement for l. We have $Z^l = ZZ^{l-1} = (X + 2iE - \mathfrak{k})Z^{l-1}$. After dropping the \mathfrak{n} part E, we have $(X - \mathfrak{k})Z^{l-1}$ left. There will be exactly two $U(\mathfrak{a})U(\mathfrak{k})\mathfrak{k}$ shifts, one from $X(U(\mathfrak{a})U(\mathfrak{k})\mathfrak{k}$ part of $Z^{l-1})$ and the other from $-\mathfrak{k}(Z^{l-1}) = -Z^{l-1}(\mathfrak{k} - 2(l-1))$ by the commutation relation. Hence, the overall shift is $(X + 2(l-1))(Q(Z^{l-1}) - Q'(Z^{l-1})) - tQ(Z^{l-1})$. But, since $Q'(Z^l) = (X + 2(l-1))Q'(Z^{l-1})$, we have

$$Q(Z^{l}) = Q'(Z^{l}) + shift = (X + 2(l - 1))Q'(Z^{l-1})$$

$$+ (X + 2(l - 1))(Q(Z^{l-1}) - Q'(Z^{l-1})) - tQ(Z^{l-1})$$

$$(8.1.2)$$

$$= (X + 2(l-1))Q(Z^{l-1}) - tQ(Z^{l-1})$$
(8.1.3)

$$= (X + 2(l-1) - t)Q(Z^{l-1})$$
(8.1.4)

Hence we have the first formula, and second can be shown similarly. \Box

If \mathfrak{t} acts nontrivially on V_{τ} , we have the following. For the ξ -type $\overline{Z}^l \otimes V_{\tau}^+ \oplus Z^l \otimes V_{\tau}^-$,

$$p_{\xi}(\nu) = \prod_{j=0}^{l-1} (\nu + 2j + \frac{1}{2})$$

and for the ξ -type $\overline{Z}^l \otimes V_{\tau}^- \oplus Z^l \otimes V_{\tau}^+$,

$$p_{\xi}(\nu) = \prod_{j=0}^{l-1} (\nu + 2j - \frac{1}{2})$$

If \mathfrak{t} acts trivially on V_{τ} , for any of the ξ -type that occurs in $(\overline{Z}^l \otimes V_{\tau}) \oplus (Z^l \otimes V_{\tau})$,

$$p_{\xi}(\nu) = \prod_{j=0}^{l-1} (\nu + 2j)$$

8.2 Computation of $p_{\xi}(\nu)$ and Determinants of Intertwining Operators for $\widetilde{SL(n,\mathbb{R})}$

Computations are with ρ -shifts.

8.2.1 $\widetilde{SL}(3,\mathbb{R})$

For $\widetilde{SL}(3,\mathbb{R})$, the set of positive roots of $\operatorname{Lie}(\widetilde{SL}(3,\mathbb{R})) \otimes \mathbb{C} = \mathfrak{sl}_3$ consists of $\alpha_1 = \epsilon_1 - \epsilon_2$, $\alpha_2 = \epsilon_2 - \epsilon_3$, and $\alpha_3 = \epsilon_1 - \epsilon_3$. As α_j s are conjugates by elements in K = Spin(3) for all $j \in \{1, 2, 3\}$, the set of dominant weights that determine $p_{\xi}(\nu)$ will be exactly the same for all three \mathfrak{t}_{α_1} , \mathfrak{t}_{α_2} , and \mathfrak{t}_{α_3} .

Consider an irreducible representation of $K = Spin(3) \cong SU(2)$ with highest weight $\frac{p}{2}$ with p odd. The dominant \mathfrak{t}_{α} -weights of interest are $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, ..., \frac{p}{2}$, all with multiplicity one. We have the following using the product formula and the computation in rank one case from section 8.1.

Let $\xi = \frac{p}{2}$ with (p-1) divisible by 4. Then, up to a nonzero scalar,

$$p_{\xi}(\nu) = \prod_{l=0}^{\frac{p-1}{4}} \prod_{j=0}^{l-1} (\nu_1 + 2j + \frac{1}{2})(\nu_1 + 2j + \frac{3}{2})(\nu_2 + 2j + \frac{1}{2})$$

× $(\nu_2 + 2j + \frac{3}{2})(\nu_1 + \nu_2 + 2j + \frac{1}{2})(\nu_1 + \nu_2 + 2j + \frac{3}{2})$

Let $\xi = \frac{p}{2}$ with (p-3) divisible by 4. Then, up to a nonzero scalar,

$$p_{\xi}(\nu) = \prod_{l=0}^{\frac{p-3}{4}} \prod_{j=0}^{l-1} (\nu_1 + 2j + \frac{1}{2})(\nu_1 + 2j + \frac{3}{2})(\nu_2 + 2j + \frac{1}{2})$$
$$\times (\nu_2 + 2j + \frac{3}{2})(\nu_1 + \nu_2 + 2j + \frac{1}{2})(\nu_1 + \nu_2 + 2j + \frac{3}{2})$$

$$\times \Pi_{k=0}^{\frac{p-3}{4}} (\nu_1 + 2k + \frac{1}{2})(\nu_2 + 2k + \frac{1}{2})(\nu_1 + \nu_2 + 2k + \frac{1}{2})$$

Let $\sigma = V_{\tau}|_{0M}$. By Theorem 4.2.3, the determinant of the intertwiner $A(\nu) : I_{P,\sigma,\nu} \longrightarrow I_{\overline{P},\sigma,\nu}$ on ξ -type is the following.

Let $\xi = \frac{p}{2}$ with (p-1) divisible by 4. Then, determinant of $A(\nu)|_{(I_{P,\sigma,\nu}(\xi))}$ up to a nonzero scalar is

$$\Pi_{l=0}^{\frac{p-1}{4}} \Pi_{j=0}^{l-1} \left(\frac{(\nu_1 - 2j - \frac{1}{2})}{(\nu_1 + 2j + \frac{1}{2})} \frac{(\nu_1 - 2j - \frac{3}{2})}{(\nu_1 + 2j + \frac{3}{2})} \frac{(\nu_2 - 2j - \frac{1}{2})}{(\nu_2 + 2j + \frac{1}{2})} \right)^{p+1} \times \left(\frac{(\nu_2 - 2j - \frac{3}{2})}{(\nu_2 + 2j + \frac{3}{2})} \frac{(\nu_1 + \nu_2 - 2j - \frac{1}{2})}{(\nu_1 + \nu_2 + 2j + \frac{1}{2})} \frac{(\nu_1 + \nu_2 - 2j - \frac{3}{2})}{(\nu_1 + \nu_2 + 2j + \frac{3}{2})} \right)^{p+1}$$

In terms of gamma functions, this is

$$\Pi_{l=0}^{\frac{p-1}{4}} \Pi_{j=0}^{l-1} \left(\frac{\Gamma(\nu_1 - 2j + \frac{1}{2})}{\Gamma(\nu_1 - 2j - \frac{3}{2})} \frac{\Gamma(\nu_1 + 2j + \frac{1}{2})}{\Gamma(\nu_1 + 2j + \frac{5}{2})} \frac{\Gamma(\nu_2 - 2j + \frac{1}{2})}{\Gamma(\nu_2 - 2j - \frac{3}{2})} \frac{\Gamma(\nu_2 + 2j + \frac{1}{2})}{\Gamma(\nu_2 + 2j + \frac{5}{2})} \right)^{p+1} \times \left(\frac{\Gamma(\nu_1 + \nu_2 - 2j + \frac{1}{2})^2}{\Gamma(\nu_1 + \nu_2 - 2j - \frac{3}{2})} \frac{\Gamma(\nu_1 + \nu_2 + 2j + \frac{1}{2})}{\Gamma(\nu_1 + \nu_2 + 2j + \frac{5}{2})} \right)^{p+1}$$

Let $\xi = \frac{p}{2}$ with (p-3) divisible by 4. Then, determinant of $A(\nu)|_{(I_{P,\sigma,\nu}(\xi))}$ up to a nonzero scalar is

$$\Pi_{l=0}^{\frac{p-3}{4}} \Pi_{j=0}^{l-1} \left(\frac{(\nu_1 - 2j - \frac{1}{2})}{(\nu_1 + 2j + \frac{1}{2})} \frac{(\nu_1 - 2j - \frac{3}{2})}{(\nu_1 + 2j + \frac{3}{2})} \frac{(\nu_2 - 2j - \frac{1}{2})}{(\nu_2 + 2j + \frac{1}{2})} \right)^{p+1} \\ \times \left(\frac{(\nu_2 - 2j - \frac{3}{2})}{(\nu_2 + 2j + \frac{3}{2})} \frac{(\nu_1 + \nu_2 - 2j - \frac{1}{2})}{(\nu_1 + \nu_2 + 2j + \frac{1}{2})} \frac{(\nu_1 + \nu_2 - 2j - \frac{3}{2})}{(\nu_1 + \nu_2 + 2j + \frac{3}{2})} \right)^{p+1} \\ \times \Pi_{k=0}^{\frac{p-3}{4}} \left(\frac{(\nu_1 - 2k - \frac{1}{2})}{(\nu_1 + 2k + \frac{1}{2})} \frac{(\nu_2 - 2k - \frac{1}{2})}{(\nu_2 + 2k + \frac{1}{2})} \frac{(\nu_1 + \nu_2 - 2k - \frac{1}{2})}{(\nu_1 + \nu_2 + 2k + \frac{1}{2})} \right)^{p+1}$$

In terms of gamma functions, this is

$$\Pi_{l=0}^{\frac{p-3}{4}} \Pi_{j=0}^{l-1} \left(\frac{\Gamma(\nu_{1}-2j+\frac{1}{2})}{\Gamma(\nu_{1}-2j-\frac{3}{2})} \frac{\Gamma(\nu_{1}+2j+\frac{1}{2})}{\Gamma(\nu_{1}+2j+\frac{5}{2})} \frac{\Gamma(\nu_{2}-2j+\frac{1}{2})}{\Gamma(\nu_{2}-2j-\frac{3}{2})} \frac{\Gamma(\nu_{2}+2j+\frac{1}{2})}{\Gamma(\nu_{2}+2j+\frac{5}{2})} \right)^{p+1} \\ \times \left(\frac{\Gamma(\nu_{1}+\nu_{2}-2j+\frac{1}{2})}{\Gamma(\nu_{1}+\nu_{2}-2j-\frac{3}{2})} \frac{\Gamma(\nu_{1}+\nu_{2}+2j+\frac{1}{2})}{\Gamma(\nu_{1}+\nu_{2}+2j+\frac{5}{2})} \right)^{p+1} \\ \times \Pi_{k=0}^{\frac{p-3}{4}} \left(\frac{\Gamma(\nu_{1}-2k+\frac{1}{2})}{\Gamma(\nu_{1}-2k-\frac{3}{2})} \frac{\Gamma(\nu_{2}-2k+\frac{1}{2})}{\Gamma(\nu_{2}-2k-\frac{3}{2})} \frac{\Gamma(\nu_{1}+\nu_{2}-2k+\frac{1}{2})}{\Gamma(\nu_{1}+\nu_{2}-2k-\frac{3}{2})} \right)^{p+1}$$

8.2.2 $\widetilde{SL(4,\mathbb{R})}$

For $\widetilde{SL(4,\mathbb{R})}$, the set of positive roots of $\operatorname{Lie}(\widetilde{SL(4,\mathbb{R})}) \otimes \mathbb{C} = \mathfrak{sl}_4$ consists of $\alpha_1 = \epsilon_1 - \epsilon_2$, $\alpha_2 = \epsilon_2 - \epsilon_3$, $\alpha_3 = \epsilon_3 - \epsilon_4$, $\alpha_4 = \epsilon_1 - \epsilon_3$, $\alpha_5 = \epsilon_1 - \epsilon_4$, $\alpha_6 = \epsilon_2 - \epsilon_4$. $K = Spin(4) \cong SU(2) \times SU(2)$, hence $\operatorname{Lie}(K) \otimes \mathbb{C} \cong \mathfrak{sl}_2 \oplus \mathfrak{sl}_2$. In this

isomorphism, we have the following

$$\begin{aligned} \mathbf{t}_{\alpha_{1}} \longrightarrow \begin{bmatrix} \frac{1}{2} & 0\\ 0 & -\frac{1}{2} \end{bmatrix} \oplus \begin{bmatrix} \frac{1}{2} & 0\\ 0 & -\frac{1}{2} \end{bmatrix} \\ \mathbf{t}_{\alpha_{2}} \longrightarrow \begin{bmatrix} 0 & -\frac{1}{2}\\ -\frac{1}{2} & 0 \end{bmatrix} \oplus \begin{bmatrix} 0 & -\frac{1}{2}\\ -\frac{1}{2} & 0 \end{bmatrix} \\ \mathbf{t}_{\alpha_{3}} \longrightarrow \begin{bmatrix} -\frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{bmatrix} \oplus \begin{bmatrix} \frac{1}{2} & 0\\ 0 & -\frac{1}{2} \end{bmatrix} \\ \mathbf{t}_{\alpha_{4}} \longrightarrow \begin{bmatrix} 0 & \frac{1}{2}i\\ -\frac{1}{2}i & 0 \end{bmatrix} \oplus \begin{bmatrix} 0 & \frac{1}{2}i\\ -\frac{1}{2}i & 0 \end{bmatrix} \\ \mathbf{t}_{\alpha_{5}} \longrightarrow \begin{bmatrix} 0 & \frac{1}{2}\\ \frac{1}{2} & 0 \end{bmatrix} \oplus \begin{bmatrix} 0 & -\frac{1}{2}\\ -\frac{1}{2} & 0 \end{bmatrix} \\ \mathbf{t}_{\alpha_{4}} \longrightarrow \begin{bmatrix} 0 & \frac{1}{2}i\\ -\frac{1}{2}i & 0 \end{bmatrix} \oplus \begin{bmatrix} 0 & -\frac{1}{2}i\\ -\frac{1}{2}i & 0 \end{bmatrix} \end{aligned}$$

 $\mathfrak{t}_{\alpha}s$ are all conjugates by elements in $K = Spin(4) \cong SU(2) \times SU(2)$ for all $\alpha \in \{\alpha_1, ..., \alpha_6\}$, hence given an irreducible representation of K, the set of dominant \mathfrak{t}_{α} -weights counting multiplicity will be independent of $\alpha \in \{\alpha_1, ..., \alpha_6\}$.

We have the following correspondence of highest weights.

$$(\epsilon_1, \epsilon_2) \text{ of } Spin(4) \longrightarrow (\frac{\epsilon_1 - \epsilon_2}{2}, \frac{\epsilon_1 + \epsilon_2}{2}) \text{ of } SU(2) \times SU(2)$$

 $(r + s, s - r) \text{ of } Spin(4) \longleftarrow (r, s) \text{ of } SU(2) \times SU(2)$

Let $\tau_1 = \mathbb{C}^2 \otimes triv$ and $\tau_2 = triv \otimes \mathbb{C}^2$ be the two half spin representations of $K = Spin(4) \cong SU(2) \times SU(2)$. Let $\sigma_1 = V_{\tau_1}|_{\mathcal{O}_M}$ and $\sigma_2 = V_{\tau_2}|_{\mathcal{O}_M}$. If (r, s) is a highest weight of $SU(2) \times SU(2)$ with r half-integral and s integral, $(r, s) \subseteq I_{P,\sigma_1,\nu}$. If (r, s) is a highest weight of $SU(2) \times SU(2)$ with r integral and s half-integral, $(r, s) \subseteq I_{P,\sigma_2,\nu}$.

Consider the highest weight module of $SU(2) \times SU(2)$ of highest weight (r, s) that occurs in either $I_{P,\sigma_1,\nu}$ or $I_{P,\sigma_2,\nu}$. Assume without loss of generality r > s. Note $r \neq s$ because one of r, s has to be half integral and the other has to be an integral. The set of dominant \mathfrak{t}_{α} -weights that occur in the highest weight module of highest weight (r, s) counting multiplicity is the following.

$$\{\frac{1}{2}, \frac{3}{2}, ..., r+s, \frac{1}{2}, \frac{3}{2}, ..., r+s-1, \frac{1}{2}, \frac{3}{2}, ..., r+s-2, ..., \frac{1}{2}, \frac{3}{2}, ..., r-s\}$$

Definition 8.2.3. Define $q_{\nu}^{\pm} : 2\mathbb{N} + 1 \longrightarrow \mathbb{C}[\nu]$ as follows.

$$\begin{split} q_{\nu}^{+}(m) &:= \Pi_{l=0}^{\frac{m-1}{4}} \Pi_{j=0}^{l-1} (\nu + 2j + \frac{1}{2}) (\nu + 2j + \frac{3}{2}) \text{ if } 4 \mid m - 1 \\ q_{\nu}^{+}(m) &:= \Pi_{l=0}^{\frac{m-3}{4}} \Pi_{j=0}^{l-1} (\nu + 2j + \frac{1}{2}) (\nu + 2j + \frac{3}{2}) \times \Pi_{k=0}^{\frac{m-3}{4}} (\nu + 2k + \frac{1}{2}) \text{ if } 4 \mid m - 3 \\ q_{\nu}^{-}(m) &:= \Pi_{l=0}^{\frac{m-1}{4}} \Pi_{j=0}^{l-1} (\nu - 2j - \frac{1}{2}) (\nu - 2j - \frac{3}{2}) \text{ if } 4 \mid m - 1 \\ q_{\nu}^{-}(m) &:= \Pi_{l=0}^{\frac{m-3}{4}} \Pi_{j=0}^{l-1} (\nu - 2j - \frac{1}{2}) (\nu - 2j - \frac{3}{2}) \times \Pi_{k=0}^{\frac{m-3}{4}} (\nu - 2k - \frac{1}{2}) \text{ if } 4 \mid m - 3 \end{split}$$

Definition 8.2.4. Define $G_{\nu}(m) : 2\mathbb{N} + 1 \longrightarrow M$ where M is the space of meromorphic functions, as follows.

$$\Gamma_{\nu}(m) := \Pi_{l=0}^{\frac{m-1}{4}} \Pi_{j=0}^{l-1} \frac{\Gamma(\nu-2j+\frac{1}{2})}{\Gamma(\nu-2j-\frac{3}{2})} \frac{\Gamma(\nu+2j+\frac{1}{2})}{\Gamma(\nu+2j+\frac{5}{2})} \text{ if } 4 \mid m-1$$

$$\Gamma_{\nu}(m) := \Pi_{l=0}^{\frac{m-3}{4}} \Pi_{j=0}^{l-1} \frac{\Gamma(\nu-2j+\frac{1}{2})}{\Gamma(\nu-2j-\frac{3}{2})} \frac{\Gamma(\nu+2j+\frac{1}{2})}{\Gamma(\nu+2j+\frac{5}{2})} \times \Pi_{k=0}^{\frac{m-3}{4}} \frac{\Gamma(\nu-2k+\frac{1}{2})}{\Gamma(\nu-2k-\frac{3}{2})} \text{ if } 4 \mid m-3$$

From the above analysis of the dominant \mathfrak{t}_{α} -weights and the above functions we have the following. In the products below, indices of $\prod_{r=s}^{r+s}$ are r-s, r-s+1, r-s+2, ..., r+s, all half integrals. Let V_{τ} be any of V_{τ_1} or V_{τ_2} , and let $\sigma = V_{\tau}|_{\mathfrak{o}_M}$.

$$p_{\xi}(\nu) = p_{(r,s)} = \prod_{m=r-s}^{r+s} q_{\nu_1}^+(2m)q_{\nu_2}^+(2m)q_{\nu_3}^+(2m)q_{\nu_1+\nu_2}^+(2m)q_{\nu_2+\nu_3}^+(2m)q_{\nu_1+\nu_2+\nu_3}^+(2m)q_{\nu_1+\nu_2+\nu_3}^+(2m)q_{\nu_1+\nu_2+\nu_3}^+(2m)q_{\nu_1+\nu_2+\nu_3}^+(2m)q_{\nu_2+\nu_3}^+(2m)q_{\nu_1+\nu_2+\nu_3}^+(2m)q_{\nu_3+\nu_3}^+(2m)q_{\nu_3+\nu_3+\nu_3}^+(2m)q_{\nu_3+\nu_3}^+(2m)q_{\nu_3+\nu_3}^+(2m)q_{\nu_3+\nu_3+\nu_3}^+(2m)$$

$$det A(\nu)|_{(I_{P,\sigma,\nu}(\xi))} = det A(\nu)|_{(I_{P,\sigma,\nu}((r,s)))}$$
$$= \prod_{m=r-s}^{r+s} \left(\frac{q_{\nu_1}^-(2m)}{q_{\nu_1}^+(2m)} \frac{q_{\nu_2}^-(2m)}{q_{\nu_3}^+(2m)} \frac{q_{\nu_1+\nu_2}^-(2m)}{q_{\nu_1+\nu_2}^+(2m)} \frac{q_{\nu_2+\nu_3}^-(2m)}{q_{\nu_2+\nu_3}^+(2m)} \frac{q_{\nu_1+\nu_2+\nu_3}^-(2m)}{q_{\nu_1+\nu_2+\nu_3}^+(2m)}\right)^{dim(V_\xi)}$$

In terms of Gamma Functions,

$$det A(\nu)|_{(I_{P,\sigma,\nu}(\xi))} = det A(\nu)|_{(I_{P,\sigma,\nu}((r,s)))}$$
$$= \prod_{m=r-s}^{r+s} (\Gamma_{\nu_1}(2m)\Gamma_{\nu_2}(2m)\Gamma_{\nu_3}(2m)\Gamma_{\nu_1+\nu_2}(2m)\Gamma_{\nu_2+\nu_3}(2m)\Gamma_{\nu_1+\nu_2+\nu_3}(2m))^{dim(V_{\xi})}$$

If r < s, the only difference is that the parameters for the products will start from s - r instead of r - s. The formula of $dim(V_{\xi})$ is given in the next subsection.

8.2.5 General case of $SL(n, \mathbb{R})$

In this subsection, we give a formula of $p_{\xi}(\nu)$ and the determinant of $A(\nu)$ the intertwiner for $\widetilde{SL(n,\mathbb{R})}$. First, consider the following lemma.

Lemma 8.2.6. Let Φ^+ be the set of positive roots of $Lie(SL(n,\mathbb{R}))$. If $\alpha_1, \alpha_2 \in \Phi^+$, then \mathfrak{t}_{α_1} and \mathfrak{t}_{α_2} are conjugates of each other by an element in Spin(n).

Proof. $Lie(SL(n, \mathbb{R}))$ is simply laced. Therefore, by Proposition 6.11 [Bou], all positive roots are conjugates by an element of the Weyl group, $N_K(A)/Z_K(A)$. Therefore, \mathfrak{t}_{α_1} and \mathfrak{t}_{α_2} are conjugates of each other by an element in Spin(n). \Box

By the lemma, given an irreducible representation V_{ξ} that occurs in $I_{P,\sigma,\nu}$, the set of dominant \mathfrak{t}_{α} -weights of V_{ξ} counting multiplicity is independent of $\alpha \in \Phi^+$. Hence, we just need the set of dominant \mathfrak{t}_{α} -weights of V_{ξ} counting multiplicity for some α . We choose $\alpha = \epsilon_1 - \epsilon_2$.

Recall that given $V_{\xi} = \bigoplus_{j=1}^{\dim(V_{\xi})/\dim(V_{\tau})} V_{\tau_j}$ with each V_{τ_j} an irreducible K_{α} module, there is a unique dominant \mathfrak{t}_{α} -weight on each V_{τ_j} . This fact along with the formula in rank one case given in section 8.1 allows us to compute the factors of $p_{\xi}(\nu)$ coming from $\alpha = \epsilon_1 - \epsilon_2$ by branching V_{ξ} down to $\widetilde{SO(2)} \subseteq Spin(n)$ where $\widetilde{SO(2)}$ denotes double cover of SO(2) and SO(2) is that occurring in the top left corner such that $\mathfrak{t}_{\epsilon_1-\epsilon_2} \subseteq Lie(\widetilde{SO(2)})$. However, we will branch down to $\widetilde{SO(2)}$ to simplify notations. Given an irreducible Spin(n)-module $V_{\xi} \subseteq I_{P,\sigma,\nu}$ with highest weight $\xi = \xi_1 \epsilon_1 + \ldots + \xi_k \epsilon_k$, branch down to Spin(3) where Spin(3) is as in above. Let $\{\frac{j_1}{2}, \ldots, \frac{j_{m_{\xi}}}{2}\}$ be the set of highest weights of Spin(3)-modules that occur in the branching counting multiplicity. We have

$$p_{\xi}(\nu) = \Pi_{\alpha \in \Phi^{+}} \Pi_{k=1}^{m_{\xi}} q^{+}_{(\nu,\alpha)}(j_{k})$$
$$det A(\nu)|_{I_{P,\tau,\nu}(\xi)} = \left(\frac{p_{\xi}(-\nu)}{p_{\xi}(\nu)}\right)^{dim(V_{\xi})} = \left(\left(\Pi_{\alpha \in \Phi^{+}} \Pi_{k=1}^{m_{\xi}} \Gamma_{(\nu,\alpha)}(j_{k})\right)^{\frac{2}{dim(V_{\tau})}}\right)^{dim(V_{\xi})}$$

where if n = 2k + 1, $\dim(V_{\xi}) = \prod_{1 \le i < j \le k} \frac{(\xi_i + \rho_i)^2 - (\xi_j + \rho_j)^2}{\rho_i^2 - \rho_j^2} \prod_{1 \le i \le k} \frac{\xi_i + \rho_i}{\rho_i}$ with $\rho_i = k - i + \frac{1}{2}$, $\dim(V_{\tau}) = 2^k$, and if n = 2k, $\dim(V_{\xi}) = \prod_{1 \le i < j \le k} \frac{(\xi_i + \rho_i)^2 - (\xi_j + \rho_j)^2}{\rho_i^2 - \rho_j^2}$ with $\rho_i = k - i$, $\dim(V_{\tau}) = 2^{k-1}$.

8.3 Application: Cyclicity of V_{τ} and Irreducibility of Unitary Principal Series

Recall the computation of $p_{\xi}(\nu)$ in rank one case, now with ρ -shift. If t acts nontrivially on V_{τ} , we have the following.

For the ξ -type $\overline{Z}^l \otimes V_{\tau}^+ \oplus Z^l \otimes V_{\tau}^-$,

$$p_{\xi}(\nu) = \prod_{j=0}^{l-1} (\nu + 2j + \frac{3}{2})$$

and for the ξ -type $\overline{Z}^l \otimes V_{\tau}^- \oplus Z^l \otimes V_{\tau}^+$,

$$p_{\xi}(\nu) = \prod_{j=0}^{l-1} (\nu + 2j + \frac{1}{2})$$

If \mathfrak{t} acts trivially on V_{τ} , for any of the ξ -type that occurs in $(\overline{Z}^l \otimes V_{\tau}) \oplus (Z^l \otimes V_{\tau})$,

$$p_{\xi}(\nu) = \prod_{j=0}^{l-1} (\nu + 2j + 1)$$

 ρ -shift simplifies determinant formula of P^{ξ} for the following reason. Let α be a simple root, and β be a non-simple root of \mathfrak{sl}_n , τ_{α} and τ_{β} be K_{α} and K_{β} types respectively such that τ_{α} and τ_{β} are the same types. In general, $p_{\delta_{\alpha}}(\nu) \neq p_{\delta_{\beta}}(\nu)$

without the ρ -shift. However, with ρ -shift, we have $p_{\delta_{\alpha}}(\nu) = p_{\delta_{\beta}}(\nu)$, which is built into the proof of Theorem 6.2.8. Consider the following example of the case $\widetilde{SL(3,\mathbb{R})}$. Let ξ be the 4-dimensional K = Spin(3)-type. We have $p_{\xi}(\nu) =$ $(\nu_1 - \frac{1}{2})(\nu_2 - \frac{1}{2})(\nu_1 + \nu_2 - \frac{3}{2})$ before ρ -shift and $p_{\xi}(\nu) = (\nu_1 + \frac{1}{2})(\nu_2 + \frac{1}{2})(\nu_1 + \nu_2 + \frac{1}{2})$ after ρ -shift.

The following discussion is from 11.3.6 of [RRG II].

Let G be a real semisimple Lie group with maximal compact subgroup K. Let V_{τ} be a small K-type and let $\sigma = V_{\tau}|_{0M}$. From chapter 10 of [RRG II], we know there exists $c \geq 0$ such that if $Re(\nu, \alpha) \geq c$ for all $\alpha \in \Phi^+$, then det $J_{\overline{P}|P}(\nu)|_{I_{P,\sigma,\nu}(\tau)} \neq 0$. Hence we have $\pi_{P,\sigma,\nu}(U(\mathfrak{g}))I_{\sigma}(\tau) = I_{P,\sigma,\nu}$ for these ν s. This induces a surjective (\mathfrak{g}, K) -module homomorphism

$$\mu_{\tau,\nu}: U(\mathfrak{g}) \otimes_{U(\mathfrak{g})^{\mathfrak{k}}U(\mathfrak{k})} V_{\tau,\nu} \longrightarrow I_{P,\sigma,\nu}$$

where the map is the action of the first factor on the second, which gives cyclicity of V_{τ} for above ν s.

Moreover, it is also shown in 11.3.6 of [RRG II] that $U(\mathfrak{g}) \otimes_{U(\mathfrak{g})^{\mathfrak{k}}U(\mathfrak{k})} V_{\tau,\nu} \cong I_{P,\sigma,\nu}$ as K-modules independent of ν . This result implies that the K-isotypic components of $U(\mathfrak{g}) \otimes_{U(\mathfrak{g})^{\mathfrak{k}}U(\mathfrak{k})} V_{\tau,\nu}$ and $I_{P,\sigma,\nu}$ are exactly the same. Hence if V_{τ} is cyclic in $I_{P,\sigma,\nu}$, then $\mu_{\tau,\nu}$ is a (\mathfrak{g}, K) -module isomorphism.

Theorem 8.3.1. Let G be any of the connected, simply connected split real form of simple Lie type other than type C_n with maximal compact subgroup K. Let V_{τ} be a small K-type and let $\sigma = V_{\tau}|_{0M}$. If $Re(\nu, \alpha) \ge 0$ for every $\alpha \in \Phi^+$, i.e. in the closed Langlands chamber, $V_{\tau} \subseteq I_{P,\sigma,\nu}$ is cyclic.

Proof. By the definition of $P^{\xi}(\nu)$ and above discussion, V_{τ} is cyclic if and only if $p_{\xi}(\nu) \neq 0$ for every K-type ξ that occurs in $I_{P,\sigma,\nu}$. By Theorem 6.3.1 and Theorem 7.4.1, $p_{\xi}(\nu)$ is a product of those of rank one subgroups G_{α} of G where $\alpha \in \Phi^+$. As G is split, the semisimple part of $Lie(G_{\alpha})$ is isomorphic to $\mathfrak{sl}(2,\mathbb{R})$. Let $n(\xi) = \dim Hom_K(V_{\tau}, V_{\xi})$. The product formula of p_{ξ} and the formulas in the rank one case given in the beginning of the section suggest that for a K-type ξ that occurs in $I_{P,\sigma,\nu}$, $\alpha \in \Phi^+$, and $j = 1, ..., n(\xi)$, there exist $l_{\alpha,j}^{\xi}$, $m_{\alpha,j}^{\xi}$, $n_{\alpha,j}^{\xi} \in \mathbb{Z}_{\geq 0}$ such that $p_{\xi}(\nu)$ is equal to

$$\Pi_{\alpha \in \Phi^{+}} \Pi_{j=1}^{n(\xi)} \Pi_{p=0}^{l_{\alpha,j}^{\xi}-1} \Pi_{q=0}^{m_{\alpha,j}^{\xi}-1} \Pi_{r=0}^{n_{\alpha,j}^{\xi}-1} (\frac{2(\nu,\alpha)}{(\alpha,\alpha)} + 2p + \frac{1}{2}) (\frac{2(\nu,\alpha)}{(\alpha,\alpha)} + 2q + 1) (\frac{2(\nu,\alpha)}{(\alpha,\alpha)} + 2r + \frac{3}{2})$$

up to a nonzero scalar multiple. Hence, if $Re(\nu, \alpha) \ge 0$ for every $\alpha \in \Phi^+$, $p_{\xi}(\nu) \ne 0$ for every K-type ξ that occurs in $I_{P,\sigma,\nu}$ and $V_{\tau} \subseteq I_{P,\sigma,\nu}$ is cyclic.

Corollary 8.3.2. Let G be any of the connected, simply connected split real form of simple Lie type other than type C_n with maximal compact subgroup K. Let V_{τ} be a small K-type and let $\sigma = V_{\tau}|_{0M}$. The unitary principal series $(\pi_{P,\sigma,\nu}, H^{P,\sigma,\nu})$ (Re $\nu = 0$) is irreducible.

Proof. Suppose $H^{P,\sigma,\nu}$ with $Re \ \nu = 0$ is reducible. By Theorem 3.4.11 of [RRG I], the underlying (\mathfrak{g}, K) -module $I_{P,\sigma,\nu}$ is reducible. Therefore, there is a proper, nontrivial, closed (\mathfrak{g}, K) -invariant subspace W of $I_{P,\sigma,\nu}$ that does not contain V_{τ} . Unitarity implies that the orthogonal complement of W, W^{\perp} , is a nontrivial, closed (\mathfrak{g}, K) -invariant subspace that contains V_{τ} , which is a contradiction as V_{τ} is cyclic by Theorem 8.3.1.

Bibliography

- [Bou] Bourbaki, N. Lie Groups and Lie Algebras Chapters 4-6, Springer, 1968.
- [GW] Goodman, R. and Wallach, N., Symmetry, Representations, and Invariants, Graduate Texts in Mathematics, Springer, 2009.
- [HAHS] Wallach, N. R., Harmonic Analysis on Homogeneous Spaces, Marcel Dekker, New York, 1973.
- [JW] Johnson, K. and Wallach, N., Composition Series and Intertwining Operators for the Spherical Principal Series I, Transactions of the American Mathematical Society, Vol. 229, (May, 1977), pp.137-173.
- [Kos] Kostant, B., On the existence and irreducibility of certain series of representations, Lie Groups and their Representations ed. by I. M. Gelfand, Halsted, New York, 1975, pp.231-329.
- [KR] Kostant, B. and Rallis, S., Orbits and Lie group representations associated to symmetric spaces, Amer. J. Math. 93 (1971), pp. 753-809.
- [Ku] Kumar, S., Tensor Product Decomposition, Proceedings of the International Congress of Mathematicians, Hyderabad, India, 2010.
- [RRG I] Wallach, N. R., *Real Reductive Groups I*, Academic Press, San Diego, 1988.
- [RRG II] Wallach, N. R., *Real Reductive Groups II*, Academic Press, San Diego, 1992.
- [VW] Vogan, D. and Wallach, N. R., *Intertwining Operators for Real Reductive Groups*, Advances in Mathematics 82 (1990), pp.203-243.