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Classification of ”small K-types” for the connected, simply connected split

real form of simple Lie type other than type Cn is obtained via Clifford algebras

which completes the list of all small K-types of dim > 1 for the connected, simply

connected split real form of simple Lie types. An analog, P ξ, of Kostant’s P γ

matrix is defined for a K-type Vξ of principal series admitting a small K-type, and

a product formula of the determinant of P ξ over the rank one subgroups corre-

sponding to the reduced restricted roots is proved. The product formula and the

relationship between P ξ and intertwining operator between the genuine principal

series representations give a method to compute the shift factors of Vogan and

Wallach’s generalization of Leslie Cohn’s determinant formula for the restriction
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of the intertwining operator to a K-isotypic component given in terms of ratios of

classical gamma functions. The determinant of the intertwining operator between

the genuine principal series representations of ˜SL(n,R) (n ≥ 3) is obtained as a

ratio of classical gamma functions.
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Chapter 1

Introduction

1.1 Background

In their 1990 paper, David Vogan and Nolan Wallach proved a difference

equation for intertwining operators for C∞ principal series by tensoring principal

series with a finite dimensional spherical representation of G. This difference equa-

tion was used to prove a meromorphic continuation of the intertwining operators

for C∞ principal series. It was also used to derive a generalization of Leslie Cohn’s

determinant formula for the restriction of the intertwining operator to a K-isotypic

component. This determinant is given in terms of ratios of classical gamma func-

tions with appropriate shifts that are yet unknown in general. In the same year,

Chen-bo Zhu generalized Vogan and Wallach’s work by showing that associated

with each irreducible finite dimensional representation of G, there is a functional

equation relating intertwining operators.

The intertwining operators are also related to Kostant’s 1971 paper in which

he proves irreducibility of spherical principal series and existence of complementary

series. In more detail, let H be the the space of K-harmonics on pC where p is

the -1 eigenspace of the Cartan involution on Lie(G). It is a result of Kostant and

Rallis that spherical principal series is isomorphic with H as a K module. For a

K-type γ, let Eγ = (V ∗γ )
0M , let ε1, ..., εl(γ) be a basis of Eγ, and let v1, ..., vl(γ) be a

basis of V
0M
γ where 0M is the centralizer of a in K. Let Q′ be the projection map

onto the first summand of U(g) = U(a)⊕ nU(g)⊕U(g)k. Kostant defines what he

1



2

calls the P γ matrix by (P γ)i,j = (Q′(εi(vj))). The critical point of the paper is the

explicit determination of the determinant of P γ. Kostant achieves the determinant

in split rank one case, and he derives the general formula for the determinant

by proving a product formula over the rank one subgroups corresponding to the

reduced restricted roots. In their 1977 paper, Kenneth Johnson and Nolan Wallach

proved a formula of the intertwining operator As(ν) for spherical principal series in

terms of Kostant’s P γ matrices that is As(ν)(λ⊗v) = λ◦P γ(ν)−1P γ(s(ν−ρ)+ρ)⊗v
where λ ∈ Eγ, v ∈ Vγ, and s ∈ W (A). In light of this formula and Kostant’s

product formula of the determinant of P γ, one can obtain the appropriate shifts

in the gamma functions that give the determinant of the intertwining operator on

the γ isotypic component.

1.2 Main Results

Similar technique of Kostant’s may be applied to principal series representa-

tions that admit so called ”small K-types”. In the second volume of his book Real

Reductive Groups, Nolan Wallach defines small K-type Vτ to be an irreducible

representation of K whose irreducibility is preserved under restriction to 0M , and

gives examples for all real forms over R of all simple Lie types. Moreover, he proves

that as K modules, IP,σ,ν is isomorphic with U(g)⊗U(k)U(g)K Vτ where IP,σ,ν is the

underlying (g, K)-module of the principal series induced from the 0M irreducible

representation σ = Vτ |0M with minimal parabolic subgroup P , which also covers

Kostant and Rallis’ result because trivial representation is a small K-type.

Based on the results above, for aK-type Vξ that occurs in IP,σ,ν , we define an

analogue of Kostant’s P γ matrix, P ξ, whose definition is as follows. Let T ξ1 , ..., T
ξ
n(ξ)

be a basis of Hom0M(Vτ , Vξ) and εξ1, ..., ε
ξ
n(ξ) be a basis of HomK(Vξ, U(g)⊗U(k)U(g)K

Vτ ). Let Qν : U(g) ⊗U(k)U(g)K Vτ −→ IP,σ,ν be the corresponding isomorphism as

K-modules, and define Rν : U(g)⊗U(k)U(g)K Vτ −→ Vτ by Rν(Z) := Qν(Z)(e). Note

every map defined above intertwines 0M action, hence Rν ◦ εi ◦ Tj does also for

all i and j. Define by P ξ(ν) the n(ξ) by n(ξ) matrix such that (P ξ(ν))i,j is the

polynomial in ν in which Rν ◦ εξi ◦ T
ξ
j acts on Vτ , and define by P ξ the n(ξ) by
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n(ξ) matrix obtained from P ξ(ν) by replacing the entries with the corresponding

elements in U(aC)⊗ End(Vτ ).

Let G be any of the connected, simply connected split real form of simple

Lie type other than type Cn with maximal compact subgroup K. First, by a re-

lationship between 0M and Clifford algebra, we show that the examples of small

K-types given by Nolan Wallach exhaust the list of all small K-types, which com-

pletes the list of all small K-types of dim > 1 for the connected, simply connected

split real form of simple Lie types. If K is a product of two groups, denote by

p1 and p2 the projection onto the first factor and the second factor respectively.

Denote by s the Spin representation of Spin(n) for n odd, and either of the two

half-Spin representations of Spin(n) for n even.

Theorem 3.3.2 Let G be any of the connected, simply connected split real form

of simple Lie type other than type Cn with maximal compact subgroup K. The

following is a complete list of all small K-types.

Type K Small K-type
An (n ≥ 2) Spin(n+ 1) s
Bn (n ≥ 3) Spin(n+ 1)×Spin(n) s◦p1 or s◦p2 for n odd, s◦p2

for n even
Dn (n ≥ 3) Spin(n)× Spin(n) s ◦ p1 or s ◦ p2

E6 Sp(4) standard 8 dimensional rep-
resentation

E7 SU(8) standard 8 dimensional rep-
resentation or its dual rep-
resentation

E8 Spin(16) standard 16 dimensional
representation

F4 Sp(3)× SU(2) standard 2 dimensional rep-
resentation ◦ p2

G2 SU(2)× SU(2) standard 2 dimensional rep-
resentation ◦ p1 or p2

Second, for a K-type Vξ of principal series admitting a small K-type Vτ , a

product formula of the determinant of P ξ over the rank one subgroups correspond-

ing to the reduced restricted roots is proved. In more detail, let φ be a positive

root of Lie(G), and let Gφ be the corresponding rank one subgroup. Gφ has its

semisimple part the group generated by the metaplectic group Mp2(R) and 0M .
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Let Kφ be the maximal compact subgroup of Gφ generated by a torus and 0M .

Let Vξ = ⊕n(ξ)
j=1Vτj ⊕W where Vτj is an irreducible Kφ module such that Vτj

∼= Vτ

as 0M modules for all j = 1, ..., n(ξ) and W is a Kφ submodule of Vξ such that

dimHom0M(Vτ ,W ) = 0. Let pφ = pφτ1 ...p
φ
τn(ξ)

where pφτj is the determinant of P τj

matrix of the rank one case of Gφ with Kφ-type Vτj . Denote by p(φ) = Tρφ−ρ(pφ)

where Tρφ−ρ is translation by ρφ − ρ. The following is a product formula of pξ,

the determinant of P ξ, over the rank one subgroups corresponding to the reduced

restricted roots for the connected, simply connected split real form of simple Lie

type other than type Cn.

Theorem 6.3.1 & Theorem 7.4.1 There exists a nonzero scalar c such that

pξ(ν) = cΠφ∈Φ+p(φ)(ν)

Third, Johnson and Wallach’s formula of the intertwining operator for

spherical principal series in terms of Kostant’s P γ matrix remains true. Let

v ∈ Vτ . We look at P ξ(ν) as a map of
⊕n(ξ)

j=1 T
ξ
j (Vτ ) −→

⊕n(ξ)
j=1 T

ξ
j (Vτ ) by set-

ting P ξ(ν)T ξi (v) = Σ
n(ξ)
j=1T

ξ
j (P ξ

ji(ν)v). If Vξ =
⊕n(ξ)

j=1 T
ξ
j (Vτ )⊕W is a decomposition

of Vξ as a 0M -module, we look at P ξ(ν) as a map on Vξ where P ξ(ν) acts as above

on
⊕n(ξ)

j=1 T
ξ
j (Vτ ) and acts trivially on W . We now look at P ξ(ν) as an operator

on Hom0M(Vξ, Vτ ) where P ξ(ν) · λ = λ ◦ P ξ(ν). With the new definition for P ξ,

the formula of the intertwining operator obtained by Kenneth Johnson and Nolan

Wallach remains true for the underlying (g, K) module IP,σ,ν in general.

Theorem 4.2.3 Given s ∈ W (A) the Weyl group of a, let As(ν) : IP,σ,ν −→
IP,σ,s(ν−ρ)+ρ be such that As(ν)τν = τs(ν−ρ)+ρ and As(ν) ◦ πτ,ν(u) = πτ,s(ν−ρ)+ρ(u) ◦
As(ν) for all u ∈ U(g). Then

As(ν)(λ⊗ v) = λ ◦ P ξ(ν)−1P ξ(s(ν − ρ) + ρ)⊗ v

for λ ∈ Hom0M(Vξ, Vτ ) and v ∈ Vξ, if det P ξ(ν) 6= 0 and det P ξ(s(ν − ρ) + ρ) 6= 0

for all ξ ∈ K̂ that occurs in IP,σ,ν .

The determinant of the intertwining operator between the genuine princi-

pal series representations of ˜SL(n,R) (n ≥ 3) is obtained as a ratio of classical
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gamma functions. ˜SL(n,R) (n ≥ 3) is the connected, simply connected two-fold

covering group of SL(n,R) whose maximal compact subgroup K is Spin(n). Let

Vτ be the spin representation of Spin(n) for n odd and either of the two half-spin

representations of Spin(n) for n even. Denote by η the nontrivial element of the

covering homomorphism p : Spin(n) → SO(n), where we assume −1 action of η.

Then, C[0M ]/ < η + 1 > is isomorphic with the subalgebra of Cliffn spanned by

the even number of products of the generators. Thus, C[0M ]/ < η+ 1 > is isomor-

phic to the simple matrix algebra M
2
n−1

2
(C) for n odd and to a direct sum of two

isomorphic copies of the simple matrix algebra M
2
n−2

2
(C) for n even. Based on

this observation, we have that Vτ is a small K-type, and Weyl dimension formula

implies that above examples of small K-types exhaust the list of all small K-types

for the group ˜SL(n,R).

Define qν : 2N + 1 −→ C[ν] where N = {0, 1, 2, 3, ...} as follows.

qν(m) := Π
m−1

4
l=0 Πl−1

j=0(ν + 2j + 1
2
)(ν + 2j + 3

2
) if 4 | m− 1

qν(m) := Π
m−3

4
l=0 Πl−1

j=0(ν+ 2j+ 1
2
)(ν+ 2j+ 3

2
)× Π

m−3
4

k=0 (ν+ 2k+ 1
2
) if 4 | m− 3

Define Γν(m) : 2N + 1 −→ M where M is the space of meromorphic func-

tions in ν as follows.

Γν(m) := Π
m−1

4
l=0 Πl−1

j=0
Γ(ν−2j+ 1

2
)

Γ(ν−2j− 3
2

)

Γ(ν+2j+ 1
2

)

Γ(ν+2j+ 5
2

)
if 4 | m− 1

Γν(m) := Π
m−3

4
l=0 Πl−1

j=0
Γ(ν−2j+ 1

2
)

Γ(ν−2j− 3
2

)

Γ(ν+2j+ 1
2

)

Γ(ν+2j+ 5
2

)
× Π

m−3
4

k=0

Γ(ν−2k+ 1
2

)

Γ(ν−2k− 3
2

)
if 4 | m− 3

Now, given an irreducible Spin(n)-module Vξ ⊆ IP,σ,ν with highest weight

ξ = ξ1ε1 + ... + ξnεk, branch down to Spin(3) that occurs in the top left corner.

Let { j1
2
, ...,

jmξ
2
} be the set of highest weights of Spin(3)-modules that occur in the

branching counting multiplicity. Denote by A(ν) the intertwining operator As(ν)

with s the longest element of the Weyl group. The following formulas are with

ρ-shifts.

pξ(ν) = Πα∈Φ+Π
mξ
k=1q(ν,α)(jk)
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detA(ν)|IP,σ,ν(ξ) = (
pξ(−ν)

pξ(ν)
)dim(Vξ) = ((Πα∈Φ+Π

mξ
k=1Γ(ν,α)(jk))

2
dim(Vτ ) )dim(Vξ)

where if n = 2k + 1, dim(Vξ) = Π1≤i<j≤k
(ξi+ρi)

2−(ξj+ρj)
2

ρ2
i−ρ2

j
Π1≤i≤k

ξi+ρi
ρi

with ρi =

k − i + 1
2
, dim(Vτ ) = 2k, and if n = 2k, dim(Vξ) = Π1≤i<j≤k

(ξi+ρi)
2−(ξj+ρj)

2

ρ2
i−ρ2

j
with

ρi = k − i, dim(Vτ ) = 2k−1.

Last, cyclicity of a small K-type Vτ in IP,σ,ν is determined by the determi-

nant of P ξ matrix. Vτ is cyclic in IP,σ,ν if and only if pξ(ν) 6= 0 for every K-type

ξ that occurs in IP,σ,ν . By the product formula of pξ(ν), we obtain the following

result and its corollary.

Theorem 8.3.1 Let G be any of the connected, simply connected split real form

of simple Lie type other than type Cn with maximal compact subgroup K. Let Vτ

be a small K-type and let σ = Vτ |0M . If Re(ν, α) ≥ 0 for every α ∈ Φ+, i.e. in the

closed Langlands chamber, Vτ ⊆ IP,σ,ν is cyclic.

Corollary 8.3.2 Let G be any of the connected, simply connected split real form

of simple Lie type other than type Cn with maximal compact subgroup K. Let Vτ

be a small K-type and let σ = Vτ |0M . The unitary principal series (πP,σ,ν , H
P,σ,ν)

(Re ν = 0) is irreducible.



Chapter 2

Principal Series and Intertwining

Operators

2.1 Principal Series Representation and the Un-

derlying (g, K)-module

Let G be a real reductive group with maximal compact subgroup K defined

as the set of fixed elements of a Cartan involution θ. Let g◦ be the Lie algebra

of G with complexification g. Let (P,A) be a standard p-pair with Langlands

decomposition P = 0MAN with Levi factor 0MA and unipotent radical N .

Definition 2.1.1.

• A Hilbert representation of G on a topological vector space V over C is a

homomorphism π of G to GL(V ) such that the map G × V → V given by

(g, v) 7→ π(g)v is continuous.

• A closed subspace W of V is invariant if π(g)W ⊆ W for all g ∈ G. (π, V )

is irreducible if the only invariant subspaces of V are 0 and V .

• A Hilbert representation (π, V ) of G is unitary if π(g) is a unitary operator

for all g ∈ G.

7
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Definition 2.1.2. Let V be a g-module and a K-module. V is a (g, K)-module

if:

1. k.X.v = Ad(k)X.k.v for all v ∈ V, k ∈ K, X ∈ g.

2. If v ∈ V , then K.v spans a finite dimensional vector subspace of V , Wv, such

that the action of K on Wv is continuous.

3. If Y ∈ Lie(K)C and v ∈ V then d
dt
|t=0exp(tY )v = Y.v.

Let (σ,Hσ) be an irreducible Hilbert representation of 0M that is unitary

when restricted to K ∩ 0M , and let ν ∈ (Lie(A)C)∗. Define ∞HP,σ,ν as the space

of all smooth functions f : G −→ Hσ such that f(mang) = σ(m)aν+ρf(g) for

m ∈ 0M , a ∈ A, n ∈ N , and g ∈ G. Define for f, g ∈ ∞HP,σ,ν

< f, g >=

∫
K

< f(k), g(k) > dk

Denote by HP,σ,ν the Hilbert space completion of ∞HP,σ,ν . From 1.5.3 of

[RRG I], we know that the right regular action πP,σ,ν(g)f(x) = f(xg) gives a

Hilbert Representation (πP,σ,ν , H
P,σ,ν) of G.

Definition 2.1.3. The representation (πP,σ,ν , H
P,σ,ν) above is called a principal

series representation of G.

If X ∈ g, then X.f(g) = d
dt
|t=0f(g · exp(tX)) gives a natural action of g

on HP,σ,ν induced from πP,σ,ν . We will also denote this action of g by πP,σ,ν . For

γ ∈ K̂, denote by HP,σ,ν(γ) the sum of all the K-invariant, finite dimensional

subspaces of HP,σ,ν that are in the class of γ. Denote by IP,σ,ν the algebraic direct

sum ⊕γ∈K̂HP,σ,ν(γ) ∩ ∞HP,σ,ν . The following is Lemma 3.3.5 of [RRG I].

Lemma 2.1.4. (πP,σ,ν , IP,σ,ν) is a (g, K)-module.

(πP,σ,ν , IP,σ,ν) is called the underlying (g, K)-module of the principal series

representation (πP,σ,ν , H
P,σ,ν). Consider the following Theorem of Harish-Chandra.

Theorem 2.1.5. There is a bijection between the set of irreducible unitary rep-

resentations of G and the set of irreducible (g, K)-modules admitting a positive

definite (g, K)-invariant Hermitian form.
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R. Langlands has shown that every irreducible (g, K)-module can be real-

ized as a quotient of an underlying (g, K)-module of some principal series repre-

sentation.

Definition 2.1.6. The triple (P, σ, ν) is called a Langlands data if P is a parabolic

subgroup of G, (σ,Hσ) is an irreducible unitary representation of 0M such that

(Hσ)K∩0M is tempered, i.e. the matrix coefficient m 7→ < σ(m)v, w > lies in

L2+ε(0M) for every ε > 0 for all v, w ∈ (Hσ)K∩0M , and ν ∈ (Lie(A)C)∗ such that

Re(ν, α) > 0 for all Φ(P,A).

Definition 2.1.7. Define for ν ∈ (Lie(A)C)∗ the intertwining operator JP |P (ν) :

∞HP,σ,ν −→ ∞HP,σ,ν as (JP |P (ν)f)(k) =
∫
N
fν(nk)dn.

Theorem 2.1.8. (Langlands) Let V be an irreducible (g, K)-module. Then there

exists a Langlands data (P, σ, ν) such that V is (g, K)-isomorphic with the unique

irreducible quotient of IP,σ,ν, which is (g, K) isomorphic to JP |P (IP,σ,ν).

The theorem of Harish-Chandra suggests to classify irreducible unitary rep-

resentations of G, it is enough to study irreducible (g, K)-modules. The theorem of

Langlands realizes an irreducible (g, K)-module as a unique quotient of the under-

lying (g, K)-module of some principal series representation. Hence, the problem

of Unitary Dual reduces down to finding among the underlying (g, K)-modules of

principal series IP,σ,ν with (P, σ, ν) a Langlands data the ones that admit a positive

definite (g, K)-invariant Hermitian form.

2.2 Meromorphic Continuation of Intertwining

Operators

In 1990, David Vogan and Nolan Wallach achieved a meromorphic contin-

uation of the intertwining operators via the difference equation satisfied by the

intertwining operators. The following is Theorem 2.2 of [VW].

Theorem 2.2.1. There exist polynomials bσ,λ and Dσ,λ in ν with values in C and

U(g)K, respectively, with bσ,λ 6= 0 s.t.

bσ,λ(ν)JP |P (ν)f = JP |P (ν + λ)πP,σ,ν+λ(Dσ,λ(ν))f
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for fεI∞σ and Re(ν, α) > cσ for all αεΦ(P,A).

Meromorphic continuation of the intertwining operators has been achieved

in the past for the K-finite space IP,σ,ν . The novelty of the theorem stated above

is that the authors were able to achieve the meromorphic continuation for I∞σ the

space of C∞ vectors by tensoring with a finite dimensional G-module. In addition,

using the two polynomials above, the authors were able to compute a determinant

formula of the intertwining operator on each K-isotypic component that generalizes

Leslie Cohn’s determinant formula. The following is Theorem 4.6 of [VW].

Theorem 2.2.2.

detJP |P (ν)|Iσ(γ) =
∏
αεΣ

∏rα(σ)
i=1 Γ(((ν, α)/4(ρα, α))− ai,α(σ))

(γ:σ)∏rα(σ)(γ:σ)
i=1 Γ(((ν, α)/4(ρα, α))− bi,α(σ,γ))

The determinant formula is important for numerous reasons. First, by

Langlands’ classification theorem, the determinant formula gives the reduction

points of IP,σ,ν . Also, the determinant formula can be used to show existence of

Complementary Series Representations, a subset of the unitary dual of G.

2.3 Harmonics on p and Kostant P γ matrix

LetG be a connected semisimple Lie group with maximal compact subgroup

K defined as the set of fixed elements of a Cartan involution θ. Denote by g◦ the

lie algebra of G and let g◦ = k◦ ⊕ p◦ be its Cartan decomposition where k◦ is

+1 eigenspace and p◦ is −1 eigenspace of the Cartan involution θ of g◦. Let a◦

be a maximal abelian subalgebra of p◦, and let 0m◦ be the centralizer of a◦ in k◦.

We drop the subscript ◦ to denote the complexifications of the subspaces of g◦

introduced above. Let g = a ⊕ 0m ⊕ Σφ∈Φ(g,a)g
φ be the root space decomposition,

and let n = Σφ∈Φ+(g,a)g
φ.

Let S(p) be the space of symmetric polynomials on p and denote by Sj(p)

the space of homogeneous polynomials on p of degree j. K acts on P (p) as K acts

on p, and K acts on Sj(p) for all j ∈ Z≥0. Let S(p)K the space of K invariants on

S(p). S(p)K is graded by degree. Denote by S(p)K+ the subspace of K invariants
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of S(p) of degree strictly greater than 0. Note the subspace S(p)j ∩ (S(p)S(p)K+ )

is K-invariant, and hence there is a K-invariant subspace Hj of Sj(p) such that

Sj(p) = Hj ⊕ {S(p)j ∩ (S(p)S(p)K+ )}.

Definition 2.3.1. H =
⊕

j≥0H
j is the space of harmonics on p.

Theorem 2.3.2. (Kostant-Rallis [KR]) The map h⊗ f 7→ hf from H ⊗S(p)K to

S(p) is a linear bijection, and H ∼= IndK0M(1) as K modules.

Denote by U(g) the universal enveloping algebra of g and consider the

decomposition U(g) = U(a)⊕ U(g)k⊕ nU(g).

Definition 2.3.3. Let Q′ : U(g) −→ U(a)⊕U(g)k⊕nU(g) be the projection onto

the first summand.

Denote by symm : S(g) −→ U(g) the symmetrization map. Let Vγ be an

irreducibleK module that occurs inH hence in symm(H). Denote by V
0M
γ the sub-

space of 0M invariant elements where 0M is the centralizer of a◦ in K. Lie(0M) =

0m◦. Let dimV
0M
γ = l(γ). Let ε1, ..., εl(γ) be a basis of HomK(Vγ, symm(H)),

v1, ..., vl(γ) be a basis of V
0M
γ .

Definition 2.3.4.

• P γ is an l(γ) by l(γ) matrix with P γ
ij = Q′(εi(vj)).

• pγ = det P γ.

2.4 Relationship between the P γ matrix and In-

tertwining Operators of Principal Series Rep-

resentations

LetG be a connected semisimple Lie group with maximal compact subgroup

K. Let Vγ be a K-type that occurs in H the space of harmonics on p of G.

Definition 2.4.1. For ν ∈ a∗, P γ(ν) = (P γ
ij(ν)).
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Let ε1, ..., εl(γ) be a basis of HomK(Vγ, symm(H)), v1, ..., vl(γ) be a basis of

V
0M
γ . P γ(ν) is a map of V

0M
γ → V

0M
γ by P γ(ν)vi = ΣP γ

ji(ν)vj. Consider the K-

module isomorphismHomK(Vγ, symm(H))⊗Vγ → IP,triv,ν(γ) given by (λ⊗v)(k) =

λ(k · v) with λ ∈ HomK(Vγ, symm(H)) and v ∈ Vγ where (πν , IP,triv,ν) is the

underlying (g, K)-module of the principal series representation (πP,triv,ν , H
P,triv,ν).

As HomK(Vγ, symm(H)) ∼= (V ∗γ )
0M , we can consider the above map as a K-

module isomorphism (V ∗γ )
0M ⊗ Vγ → IP,triv,ν(γ). For s ∈ W (A) the Weyl group

of a, let As(ν) : IP,triv,ν → IP,triv,s(ν−ρ)+ρ be the map such that As(ν) ◦ πν(u) =

πs(ν−ρ)+ρ(u) ◦ As(ν) for u ∈ U(g) and As(ν) · 1ν = 1s(ν−ρ)+ρ. The following is

Lemma 7.5 of [JW].

Theorem 2.4.2. Let λ ∈ (V ∗γ )
0M , v ∈ Vγ.

As(ν)(λ⊗ v) = λ ◦ P γ(ν)−1P γ(s(ν − ρ) + ρ)⊗ v

if det P γ(ν) 6= 0 and det P γ(s(ν − ρ) + ρ) 6= 0 for all γ ∈ K̂ that occurs in

H.

Let A(ν) = As(ν) with s the longest element of the Weyl group. Then, for

a minimal parabolic subgroup P of G, we have

JP |P (ν)f = (c(ν)A(ν + ρ)f) ◦ k∗

where c(ν) is Harish-Chandra c-function on the trivial K-type and k∗ is a repre-

sentative of s ∈ W (A) = NK(A)/ZK(A). Therefore, determinant of P γ(ν) gives

the shift factors in the classical gamma functions in Theorem 2.2.2 modulo those

from Harish-Chandra c-function on the trivial K-type.

2.5 Product Formula of pγ

Let G be a connected semisimple Lie group with Lie algebra g◦. Denote

by Φ+
1 the set of reduced restricted roots of g◦. If α ∈ Φ+

1 , denote by gα◦ =

a◦⊕ 0m◦+ Σ2
j=−2g

jα
◦ and denote by Gα the analytic subgroup of G with Lie algebra

gα◦ . Let Kα,
0Mα play the roles of K, 0M for the case gα◦ = kα◦ ⊕ pα◦ , and denote
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by Hα the space of harmonics on pα. Let Vγ be a K-type that occurs in the space

of harmonics H of G. For α ∈ Φ+
1 of g◦, let Span Kα · V

0M
γ = ⊕l(γ)

j=1Vγαj be a

decomposition into irreducible Kα modules. For f ∈ a∗, let Tf : U(a) → U(a) be

defined by (Tfp)(g) = p(g − f). Let ρ = 1
2
Σφ∈Φ+φ and let ρα play the role of ρ for

gα◦ .

Definition 2.5.1. Let α ∈ Φ+
1 .

• pα = pγα1 ...pγαl(γ)
.

• p(α) = Tρα−ρpα.

The following is Theorem 2.4.6 of [Kos].

Theorem 2.5.2. There exists a nonzero scalar c such that

pγ = c Πα∈Φ+
1
p(α)



Chapter 3

Small K-types

3.1 Small K-types and Principal Series Admit-

ting Small K-types

Let G be a real reductive Lie group with maximal compact subgroup K =

{g ∈ G|Θ(g) = g}, the subgroup of fixed elements of a Cartan involution θ. Let

(P,A) be a minimal p-pair such that P = 0MAN with 0M the centralizer of A in

K and unipotent radical N .

Definition 3.1.1. An irreducible representation (τ, Vτ ) of K is a small K-type if

irreducibility is preserved under restriction of K to 0M .

Let σ = τ |0M . If IP,σ,ν is the underlying (g, K) module of a principal series

that admits a small K-type (τ, Vτ ), one can describe the set of K-types that occur

in IP,σ,ν and their multiplicities using Frobenius Reciprocity.

Lemma 3.1.2. Let Vξ be an irreducible representation of K. Vξ occurs in IP,σ,ν if

and only if Vξ|0M contains a copy of Vτ |0M , with multiplicity dim Hom0M(Vξ, Vτ ),

the number of copies of Vτ |0M within Vξ|0M .

Proof. We haveHomK(Vξ, IP,σ,ν) ∼= Hom0M(Vξ, Vτ ) by Frobenius Reciprocity. Since

Vτ is a small K-type, Vτ |0M is irreducible. Thus by Schur’s Lemma, Vξ will occur in

IP,σ,ν if Vξ|0M contains a copy of Vτ |0M with multiplicity of dim Hom0M(Vξ, Vτ ).

14
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Consider the decomposition U(g) = U(a)U(k) ⊕ nU(g). Let Q be the

projection onto the first summand. If η is an automorphism of U(a) given by

η(H) = H + ρ(H) for H ∈ a, let η ⊗ τ : U(a) ⊗ U(k) −→ U(a) ⊗ End(Vτ ) be

defined by η ⊗ τ(a ⊗ k) = η(a) ⊗ τ(k). By Lemma 11.3.2 of [RRG II], there is a

homomorphism γτ : U(g)K −→ U(a) such that (η ⊗ τ)(Q(g)) = γτ (g) ⊗ I, which

will give a natural action on Vτ , i.e. the action of U(g)K on Vτ considered as a

subspace of IP,σ,ν .

The following is a theorem in 11.3.6 of [RRG II] that gives another realiza-

tion of IP,σ,ν as a K-module.

Theorem 3.1.3. U(g) ⊗U(k)U(g)k Vτ ∼= IP,σ,ν as K-modules and the two modules

have equivalent semi-simplifications.

3.2 Small K-types for connected, simply connected

split real form of simple Lie types

Let gR be a semisimple Lie algebra over R, and let g be its complexification.

Denote by GC the connected, simply connected Lie group with Lie algebra g and

by GR the connected subgroup of GC with Lie algebra gR. Let G be a covering

group of GR with covering homomorphism p where we denote the kernel by Z. Fix

a maximal compact subgroup K of G and let U be a compact real form of GC such

that GR ∩ U = KR = p(K). Let (P,A) be a minimal p-pair and P = 0MAN be

the Langlands decomposition as before.

The following theorem is from 11.A.2.1 of [RRG II] whose proof is a case

by case argument that gives examples of small K-types for all real forms over R
of all simple Lie types.

Theorem 3.2.1. Let χ ∈ Ẑ. There exists an irreducible representation (τ, V ) of

K such that τ |Z = χI and τ |0M is irreducible.

We also have the following theorem from 11.A.2.11 of [RRG II].

Theorem 3.2.2. If gR is split over R, then GR always has a two-fold covering

group.
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We consider the case gR split over R. If G is simple and not of type C I,

it is also simply connected. Second, the rank one subgroups of G corresponding

to the reduced restricted roots have their semisimple part as the group generated

by the metaplectic group Mp2(R) and 0M , which simplify the product formula of

pξ and the computation. Hence, we assume from now on G is a two-fold covering

group of a split real simple Lie group GR. Let η be the nontrivial element of

Z = µ2. If χ(η) = Id, there is no difference between the representations of G and

GR. Therefore, we assume χ(η) = −Id.

The following are split real simple Lie groups and their examples of small

K-types from chapter 11 of [RRG II].

• Type A I. GR = SL(n,R), n ≥ 3

The universal covering group ˜SL(n,R) of SL(n,R) (n ≥ 3) is a central

µ2-extension with maximal compact subgroup K = Spin(n). 0MSL(n,R) is

isomorphic to (Z/2Z)n−1, and 0M ˜SL(n,R)
is a nonabelian group of order 2n.

1 1 1

↓ ↓ ↓
µ2 µ2 µ2

↓ ↓ ↓
0M ˜SL(n,R)

↪→ Spin(n) ↪→ ˜SL(n,R)

↓ ↓ ↓
0MSL(n,R) ↪→ SO(n) ↪→ SL(n,R)

↓ ↓ ↓
1 1 1

Let η be the nontrivial element in µ2. As discussed above, we assume η

action of −1. C[0M ˜SL(n,R)
]/ < η + 1 > is isomorphic to the subalgebra of

Cliffn spanned by the even number of products of the generators, thus

C[0M ˜SL(n,R)
]/ < η + 1 > is a simple matrix algebra for n odd and a direct

sum of two simple matrix algebras for n even. If we choose for τ the Spin

representation of Spin(n) for n-odd and either of the half-Spin representa-
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tions of Spin(n) for n-even, τ is a small K-type as restriction to 0M ˜SL(n,R)

preserves irreducibility.

• Type BD I. GR = Spin(p, q) with p = q or p = q + 1, q ≥ 3

KR = (Spin(p)×Spin(q))/{1, (−1,−1)} andK = Spin(p)×Spin(q). 0M ˜Spin(p,q)

is isomorphic to 0M ˜SL(q,R)
× µ2 where 0M ˜SL(q,R)

sits inside K diagonally, and

µ2 can be either of (±1, 1) or (1,±1) where either is a subgroup in the center

of K. In the case p = q+1, 0M ˜Spin(p,q)
= {(±diag(g, 1), g) | g ∈ 0M ˜SL(q,R)

, 1 ∈
Spin(p−q) = Spin(1)}. Z = {1, (−1,−1)} ≤ K = Spin(p)×Spin(q). If χ is

nontrivial, choose σ to be the Spin representation and either of the two half-

Spin representations of Spin(q) for q odd and even respectively. Also denote

by σ either of the two half-Spin representations of Spin(p) = Spin(q + 1)

for q odd. Let p1 denote the projection of K onto Spin(p), and let p2 denote

the projection of K onto Spin(q). If q is odd and τ = σ ◦ p1 or τ = σ ◦ p2, τ

is a small K-type as in the example of type A I. If q is even and τ = σ ◦ p2,

τ is a small K-type as in the example of type A I.

• Type C I. GR = Sp(n,R)

KR = U(n). The universal covering group of GR = Sp(n,R) is a central

extension and we have

1 −→ Z −→ ˜Sp(n,R) −→ Sp(n,R) −→ 1

The two fold cover of GR = Sp(n,R) is a central µ2 extension. A character of

U(n) extends to a character of the two-fold covering group of U(n) that gives

us half-integrals. For τ we may choose extension of characters of U(n) to its

two-fold cover. τ is a small K-type as the representation is 1 dimensional.

• Type E V.

KR = SU(8)/±1 and K = SU(8). From the extended dynkin diagram in

chapter 6 of [Bou], there is a nontrivial homomorphism δ from SL(8,R) to

GR. δ is easily seen to be injective by going to the complexification. Hence we

may assume 0MR is contained in the image of δ and δ(SO(8)) ⊆ KR. Let δ̃ be
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the lift of δ to a homomorphism of Spin(8) into SU(8). The corresponding

representation of Spin(8) cannot factor through SO(8), hence it must be one

of the two half-spin representations. Because δ̃ is a homomorphism of the

simply connected covering group of SL(8,R) into G, δ̃ is injective on 0M for

˜SL(8,R). If we choose τ the standard 8-dimensional representation of SU(8)

or its dual representation, τ is a small K-type as in the example for A I.

• Type E I.

K = Sp(4). We embed GR into that of the case of E V as the identity

component of 0MQ where Q is a parabolic subgroup of GR of case E V. This

homomorphism δ maps KR into SU(8)/{±1}. The lift to K must be the

standard eight dimensional representation. Therefore, Z = {±1}. Let η be

the nontrivial element of Z. C[0MẼ6
]/ < η+1 >∼= Cliff 6 using the case of E

V. Therefore, if we choose τ to be the standard 8-dimensional representation

of Sp(4), irreducibility is preserved under restriction of K = Sp(4) to 0MẼ6

as in the example for A I.

• E VIII.

KR = SO(16) and K = Spin(16). The highest weight of K action on p is

−α1. Therefore this action is one of the two half-spin representations, say

s+, and Z = kers+. There is a nontrivial homomorphism δ from SL(9,R) to

GR from the extended dynkin diagram in chapter 6 of [Bou]. δ is injective as

SL(9,R) has trivial center. We may assume again 0MR is contained in the

image of δ and δ(SO(9)) ⊆ KR. Let δ̃ be the lift of δ to a homomorphism of

Spin(9) into Spin(16). Let π be a 16 dimensional representation of Spin(16)

by using the covering homomorphism p : Spin(16) → SO(16) where the

ker(p) is the diagonal µ2 in µ2× µ2 the center of Spin(16). µ = π ◦ δ̃ is a 16

dimensional representation of Spin(9). Weyl dimension formula suggests that

there are exactly three irreducible representations of Spin(9) with dimension

at most 16. They are the trivial representation, σ the 9-dimensional rep-

resentation corresponding to the covering of SO(9), and the 16-dimensional

spin representation. Since µ is nontrivial, either µ = 7 ·1⊕σ or µ = the spin
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representation. In the first case, δ̃ is the standard embedding of Spin(9) into

Spin(16). But it must push down to SO(9) hence it is not possible. Thus µ

must be the spin representation, and 0M is isomorphic with that of ˜SL(9,R).

We choose τ = µ, then the result for ˜SL(9,R) implies τ is a small K-type.

• F I.

K = Sp(3)×SU(2), and the highest weight of K action on p is −α1. (1,−1)

and (−1, 1) both act on p by −I, and hence Z = {Id, (−1,−1)}. 0MR ∼=
(Z/2Z)4. There is a nontrivial homomorphism δ from Spin(5, 4) into GR.

The adjoint representation of g restricted to Spin(5, 4) splits into the adjoint

representation of Spin(5, 4) and the spin representation, hence δ is injective.

We can choose δ so that δ maps (Spin(5) × Spin(4))/{Id, (−1,−1)} into

(Sp(3) × SU(2))/{Id, (−1,−1)}. Spin(5) ∼= Sp(2) and Spin(4) ∼= SU(2) ×
SU(2). The lift δ̃ of δ to (Spin(5)× Spin(4)) must be given by the obvious

map of Sp(2)× Sp(1) into Sp(3). The image of Spin(5, 4) contains the split

Cartan subgroup of GR. Therefore 0M is isomorphic to that of ˜Spin(5, 4),

hence 0M ∼= 0M ˜SL(4,R)
× µ2 from the case of BD I. Let p2 be the projection

of Sp(3)× SU(2) onto the second factor, and σ the standard 2-dimensional

representation of SU(2). If τ = σp2, it is a small K-type as it is for Spin(5, 4).

• G I.

K = SU(2) × SU(2) with GR the split adjoint group of G2. The action of

K is the tensor proudct of 2-dimensional representation with 4-dimensional

representation. KR = (SU(2)×SU(2))/{Id, (−1,−1)}, and 0MR ∼= (Z/2Z)2.

From the extended dynkin diagram in chapter 6 of [Bou], there is a nontrivial

homomorphism δ of SL(3,R) to GR. δ is injective as SL(3,R) has trivial

center. Hence we may assume 0MR is contained in the image of δ. δ(SO(3))

is the diagonal SO(3) in KR as it is the only possibility. Hence the image of

the lift of δ to ˜SL(3,R) contains 0M . Let σ be the standard 2-dimensional

representation of SU(2). Let p1 be the projection of K = SU(2) x SU(2)

onto the first factor and p2 be the projection of K = SU(2) x SU(2) onto

the second factor. Let τ = σp1 or τ = σp2. Then, as in type A I., τ is a
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small K-type.

3.3 Embedding of Metalinear group ˜GL(n,R) or

˜SL(n,R) into G

For purposes of product formula of pξ, we introduce certain embedded sub-

group G0 of G where G is any of the connected, simply connected split real form of

simple Lie type other than type Cn, and G0 is isomorphic to either the metalinear

group ˜GL(n,R) or ˜SL(n,R) for appropriate n.

We first introduce an embbeded subgroup of GR isomorphic to G0/µ2 using

dynkin diagram or extended dynkin diagram from chapter 6 of [Bou] where µ2 is

the kernel of both of the covering homomorphisms G→ GR and G0 → G0/µ2.

• A I.

α1 α2

. . .
αn−1 αn

G0/µ2
∼= GL(n,R).

Let P be the parabolic subgroup with Levi factor L where the simple roots of

Lie(L) are α1, ..., αn−1. L is isomorphic with GL(n,R). Note the µ2 ≤ 0MGR

from the node αn is contained in L.

• BD I.

α1 α2

. . .
αn−1 αn
⇒

α1 α2

. . .
αn−2 αn−1

αn

G0/µ2
∼= SL(n,R).

Let P be the parabolic subgroup with Levi factor L where the simple roots

of Lie(L) are α1, ..., αn−1. The identity component of L is isomorphic with

SL(n,R).
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• E I.

α1 α3 α4 α5 α6

α2

α0

G0/µ2
∼= GL(6,R).

Let P be the parabolic subgroup with Levi factor L where the simple roots

of Lie(L) are α1, α3, α4, α5, α6. The identity component of L is isomorphic

with SL(6,R). The embedded subgroup isomorphic to GL(6,R) is generated

by the SL(6,R), µ2 from the node α2, and R>0 from the node α0.

• E V.

α0 α1 α3 α4 α5 α6 α7

α2

G0/µ2
∼= GL(7,R).

Let P be the parabolic subgroup with Levi factor L where the simple roots

of Lie(L) are α0, α1, α3, α4, α5, α6, α7. The identity component of L is iso-

morphic with SL(8,R), and GL(7,R) ↪→ SL(8,R) ↪→ GR is obtained as in

the case of A I.

• E VIII.

α1 α3 α4 α5 α6 α7 α8 α0

α2

G0/µ2
∼= GL(8,R).

Let P be the parabolic subgroup with Levi factor L where the simple roots

of Lie(L) are α1, α3, α4, α5, α6, α7, α8, α0. The identity component of L is

isomorphic with SL(9,R), and GL(8,R) ↪→ SL(9,R) ↪→ GR is obtained as

in the case of A I.
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• F I.

α0 α1 α2 α3 α4

⇒

G0/µ2
∼= Spin(5, 4).

Let P be the parabolic subgroup with Levi factor L where the simple roots

of Lie(L) are α0, α1, α2, α3. The identity component of L is isomorphic with

Spin(5, 4).

• G I.

α1 α2 α0

W

G0/µ2
∼= SL(3,R).

Let P be the parabolic subgroup with Levi factor L where the simple roots of

Lie(L) are α2, α0. The identity component of L is isomorphic with SL(3,R).

From the discussion of small K = SU(2)× SU(2)-type in 11.A.2.8 of [RRG

II], the embedding lifts to an embedding of ˜SL(3,R) into G such that the

maximal compact subgroup SU(2) of ˜SL(3,R) embeds into the maximal

compact subgroup SU(2)× SU(2) of G diagonally.

Denote by p : G→ GR the covering homomorphism and let i : G0/µ2 ↪→ GR

be the embedding described above. Denote by G0 the embedded subgroup of G

given by p−1(i(G0/µ2)) and denote by K0 the maximal compact subgroup of G0.

G0 is isomorphic to ˜GL(n,R), ˜SL(n,R), ˜GL(6,R), ˜GL(7,R), ˜GL(8,R), ˜Spin(5, 4),

˜SL(3,R) for G of type An, BD I, E6, E7, E8, F4, and G2 respectively.

Lemma 3.3.1. Let H be the space of harmonics on p of G, Vτ a small K-type, Vξ a

K-type that occurs in H⊗Vτ . The restriction of K to K0 preserve 0MG-invariants

of H and the decomposition Vξ|0MG
. Moreover, 0MG is isomorphic to 0M ˜GL(n,R)

or

0M ˜SL(n,R)
× µ2 for appropriate n.

Proof. For G of type BD I., 0MG
∼= 0MG0 × µ2 as discussed in the example of

small K-types for G. The µ2 can either be (±1, 1) or (1,±1) ≤ K = Spin(p) ×
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Spin(q). Any choice of µ2 acts trivially on H as both are central in K. We can

also make a choice of µ2 that will act trivially on Vτ as the small K-type is the

Spin representation or either of the two half Spin representations after projection

onto the first or the second factor of K. Thus we have the statement of the lemma

for G of type BD I.

Now consider G of type An, E6, E7, E8, F4, and G2. As 0MGR is generated by

µ2s from each node of the dynkin diagram, we may assume that i(0MG0/µ2) = 0MGR .

Let p : G→ GR be the covering homomorphism. We have 0MG0 = p−1(i(0MG0/µ2))

and 0MG = p−1(0MGR), hence 0MG = 0MG0 and we have the statement of the lemma

for G of type An, E6, E7, E8, F4, and G2.

Theorem 3.3.2. Let G be any of the connected, simply connected R-split Lie

group of simple Lie type other than type Cn with maximal compact subgroup K.

The above examples of small K-types exhaust the list of all small K-types.

Proof. By Lemma 3.3.1, 0MG is isomorphic to 0M ˜GL(n,R)
or 0M ˜SL(n,R)

× µ2 for ap-

propriate n. Suppose 0MG
∼= 0M ˜GL(n,R)

. If n = 2k + 1, a small K-type must

have dimension 2k. If n = 2k, a small K-type must have dimension 2k. Suppose

0MG
∼= 0M ˜SL(n,R)

× µ2. If n = 2k + 1, a small K-type must have dimension 2k. If

n = 2k, a small K-type must have dimension 2k−1.

For type An−1, a small K = Spin(n)-type must have dimension 2k if n =

2k + 1 and 2k−1 if n = 2k. Weyl dimension formula implies that a small K-

type must be the Spin representation for n odd and either of the two half-Spin

representation for n even.

For type Bn, K = Spin(n+ 1)×Spin(n) and an irreducible representation

of K is an outer tensor product of irreducible representations of Spin(n + 1) and

Spin(n). A small K = Spin(n + 1) × Spin(n)-type must have dimension 2k if

n = 2k + 1 and 2k−1 if n = 2k. Weyl dimension formula implies the following. If

n is odd, a small K-type must be either the Spin representation after projection

onto Spin(n) or either of the two half Spin representations after projection onto

Spin(n + 1). If n is even, a small K-type must be either of the two half Spin

representations after projection onto Spin(n).
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For type Dn, K = Spin(n)×Spin(n) and an irreducible representation of K

is an outer tensor product of irreducible representations of each of the two Spin(n)s.

A small K = Spin(n) × Spin(n)-type must have dimension 2k if n = 2k + 1 and

2k−1 if n = 2k. Weyl dimension formula implies that for n odd, a small K-type

must be the Spin representation after projection onto either of the two Spin(n)s

and for n even, a small K-type must be either of the two half-Spin representations

after projection onto either of the two Spin(n)s.

For type E6, a small K = Sp(4)-type must have dimension 8. By Weyl

dimension formula, the standard 8 dimensional representation of K is the only

irreducible representation of K of dimension 8.

For type E7, a small K = SU(8)-type must have dimension 8. By Weyl

dimension formula, the standard 8 dimensional representation of K and its dual

representation are the only irreducible representations of K of dimension 8.

For type E8, a small K = Spin(16)-type must have dimension 16. By

Weyl dimension formula, the standard 16 dimensional representation of K after

projection onto SO(16) is the only irreducible representation of K of dimension

16.

For type F4, a small K = Sp(3)× SU(2)-type must have dimension 2. An

irreducible representation of K is an outer tensor product of irreducible representa-

tions of Sp(3) and SU(2). By Weyl dimension formula, the standard 6 dimensional

representation of Sp(3) is the smallest-dimensional nontrivial irreducible represen-

tation of Sp(3). Therefore, the 2 dimensional representation after projection onto

SU(2) is the only choice.

For type G2, a small K = SU(2)×SU(2)-type must have dimension 2. An

irreducible representation of K is an outer tensor product of irreducible represen-

tations of each of the two copies of SU(2). Therefore, a small K-type must be

the 2 dimensional representation after projection onto either of the two copies of

SU(2).



Chapter 4

The P ξ matrix

4.1 Definition

Let G be any of the connected, simply connected split real form of simple

Lie type, and denote by K a maximal compact subgroup. Let Vξ be a K-type that

occurs in symm(H)⊗Vτ with a small K-type Vτ and let σ = Vτ |0M . Recall n(ξ) is

the number of copies of Vτ in Vξ restricted to 0M . By Frobenius reciprocity, Vξ has

multiplicity n(ξ) in symm(H) ⊗ Vτ . Let T ξ1 , ..., T
ξ
n(ξ) be a basis of Hom0M(Vτ , Vξ)

and εξ1, ..., ε
ξ
n(ξ) be a basis of HomK(Vξ, symm(H) ⊗ Vτ ). Let Qν : symm(H) ⊗

Vτ −→ IP,σ,ν be the corresponding isomorphism as K-modules, and define Rν :

symm(H)⊗Vτ −→ Vτ by Rν(Z) := Qν(Z)(e). Every map defined in this paragraph

intertwines 0M action, hence Rν ◦ εi ◦ Tj also for all i and j.

Definition 4.1.1.

• Define by P ξ(ν) the n(ξ) by n(ξ) matrix where (P ξ(ν))i,j is the polynomial

in ν in which Rν ◦ εξi ◦ T
ξ
j acts on Vτ , without ρ-shift.

• Define by P ξ the n(ξ) by n(ξ) matrix obtained from P ξ(ν) by replacing

entries with the corresponding elements in U(a).

• Denote by pξ and pξ(ν) the determinants of P ξ and P ξ(ν) respectively.
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4.2 Relationship between P ξ matrix and Inter-

twining Operators of Principal Series Rep-

resentations

P ξ(ν) as a map of
⊕n(ξ)

j=1 T
ξ
j (Vτ ) −→

⊕n(ξ)
j=1 T

ξ
j (Vτ ) by setting P ξ(ν)T ξi (v) =

Σ
n(ξ)
j=1T

ξ
j (P ξ

ji(ν)v) for v ∈ Vτ . If Vξ =
⊕n(ξ)

j=1 T
ξ
j (Vτ ) ⊕W is a decomposition of Vξ

as a 0M -module, we look at P ξ(ν) as a map on Vξ where P ξ(ν) acts as above on⊕n(ξ)
j=1 T

ξ
j (Vτ ) and acts trivially on W . Thus, we may consider P ξ(ν) as an operator

on Hom0M(Vξ, Vτ ) where P ξ(ν).λ = λ ◦ P ξ(ν).

Definition 4.2.1.

• If λ ∈ Hom0M(Vξ, Vτ ) and v ∈ Vξ, define (λ⊗ v)(k) = λ(ρξ(k)v).

• Define for a ∈ HomK(Vξ, symm(H)⊗Vτ ) and v ∈ Vξ, Bξ
ν(a)(v) = πτ,ν(a(v))(e)

where πτ,ν(a(v)) denotes the first factor action on the second factor with πτ,ν

action by an abuse of notation. Then Bξ
ν : HomK(Vξ, symm(H) ⊗ Vτ ) −→

Hom0M(Vξ, Vτ ).

• Let Tν : symm(H)⊗Vτ −→ IP,σ,ν be defined by Tν(Σ(uj⊗vj)) = Σ(πτ,ν(uj)vj).

We have a K-module isomorphism IP,σ,ν(ξ) ∼= Hom0M(Vξ, Vτ ) ⊗ Vξ using

above.

There exists ν0 ∈ a∗ such that Tν0 is a bijection from 11.3.6 of [RRG II].

Lemma 4.2.2. Tν ◦T−1
ν0

(λ⊗v) = λ◦P ξ(ν)⊗v for λ ∈ Hom0M(Vξ, Vτ ) and v ∈ Vξ.

Proof. This proof is almost word for word as the proof of Lemma 7.3 of [JW].

Let δ̂ξ : HomK(Vξ, symm(H)⊗ Vτ ) −→ Hom0M(Vξ, Vτ ) be defined so that

Tν0(a(v)) = δ̂ξ(a)⊗ v for a ∈ HomK(Vξ, symm(H)⊗Vτ ) and v ∈ Vξ. By the above

Bξ
ν0

(a(v)) = δ̂ξ(a). Now Tν ◦ T−1
ν0

(Bξ
ν0

(a)⊗ v) = Bξ
ν(a)⊗ v. But Bξ

ν(ai)(T
ξ
j (Vτ )) =

P ξ
ij(ν) where {ai} is a basis of Hom0M(Vξ, Vτ ) and T ξj (Vτ ) is say for block diagonal

P ξ, or even an identity for P ξ(ν0) because P ξ(ν0) is invertible. Thus Bξ
ν(a) =

Bξ
ν0

(a) ◦ P ξ(ν). Hence if Bξ
ν0

(a) = λ, then Tν ◦ T−1
ν0

(λ⊗ v) = λ ◦ P ξ(ν)⊗ v.
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Theorem 4.2.3. Given s ∈ W (A) the Weyl group of a, let As(ν) : IP,σ,ν −→
IP,sσ,s(ν−ρ)+ρ be such that As(ν)τν = τs(ν−ρ)+ρ and As(ν) ◦ πτ,ν(u) = πτ,s(ν−ρ)+ρ(u) ◦
As(ν) for all u ∈ U(g). Then

As(ν)(λ⊗ v) = λ ◦ P ξ(ν)−1P ξ(s(ν − ρ) + ρ)⊗ v

for λ ∈ Hom0M(Vξ, Vτ ) and v ∈ Vξ, if det P ξ(ν) 6= 0 and det P ξ(s(ν − ρ) + ρ) 6= 0

for all ξ ∈ K̂ that occurs in IP,σ,ν.

Proof. This proof is almost word for word as the proof of Lemma 7.5 of [JW]. If

u⊗ w ∈ β(H)⊗ Vτ is a simple tensor, then

As(ν)Tν(u⊗ w) = As(ν)πτ,ν(u)wν (4.2.1)

= πτ,s(ν−ρ)+ρ(u)As(ν)wν (4.2.2)

= πτ,s(ν−ρ)+ρ(u)ws(ν−ρ)+ρ (4.2.3)

= Ts(ν−ρ)+ρ(u⊗ v) (4.2.4)

Hence As(ν)Tν ◦ T−1
ν0

(λ⊗ v) = Ts(ν−ρ)+ρ ◦ T−1
ν0

(λ⊗ v). Thus,

As(ν)(λ⊗ v) = (Ts(ν−ρ)+ρ ◦ T−1
ν0

) ◦ (Tν ◦ T−1
ν0

)−1(λ⊗ v) (4.2.5)

= λ ◦ P ξ(ν)−1P ξ(s(ν − ρ) + ρ)⊗ v (4.2.6)

by Lemma 4.2.2.

Let A(ν) = As(ν) with s the longest element of the Weyl group. Then, for

a minimal parabolic subgroup P of G, we have

JP |P (ν)f = (cτ (ν)A(ν + ρ)f) ◦ k∗

where cτ (ν) is Harish-Chandra c-function on the small K-type Vτ and k∗ is a

representative of s ∈ W (A) = NK(A)/ZK(A). Therefore, determinant of P ξ(ν)

gives the shift factors in the classical gamma functions in Theorem 2.2.2 modulo

those from Harish-Chandra c-function on the small K-type Vτ .



Chapter 5

˜SL(n,R) and Metalinear Group

˜GL(n,R)

5.1 The Group ˜SL(n,R) and the Metalinear Group

˜GL(n,R)

Let ˜SL(n,R) be the connected, simply connected covering group of SL(n,R)

for n ≥ 3. If θ is the Cartan involution of SL(n,R) defined by θ(g) = (g−1)t, the set

of fixed points of θ is the maximal compact subgroup SO(n) of SL(n,R), and the

set of fixed points of the lift of θ is the maximal compact subgroup K = Spin(n)

of ˜SL(n,R).

Let g◦ = Lie( ˜SL(n,R)) = Lie(SL(n,R)) = sl(n,R), a◦ ⊆ g◦ be the subal-

gebra of diagonal matrices and n◦ ⊆ g◦ the subalgebra of strictly upper triangular

matrices. Let P = 0MAN be a minimal parabolic subgroup of ˜SL(n,R) with

0M = ZK(A), A = exp(a◦), and N = exp(n◦).

For n ≥ 3, ˜SL(n,R) is a two-fold covering group of SL(n,R), and the

group ˜SL(n,R) is a central µ2-extension of the group SL(n,R). Denote by η the

nontrivial element of the group µ2. Then, η ∈ 0M ≤ K as η is central and the

center is in K by Theorem 7.2.5 of [HAHS]. Hence, 0M is a central µ2-extension of

the group 0MSL(n,R) of the diagonal elements of SO(n).

28
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1 1 1

↓ ↓ ↓
µ2 µ2 µ2

↓ ↓ ↓
0M ↪→ Spin(n) ↪→ ˜SL(n,R)

↓ ↓ ↓
0MSL(n,R) ↪→ SO(n) ↪→ SL(n,R)

↓ ↓ ↓
1 1 1

Similarly for n ≥ 3, consider the Metalinear group ˜GL(n,R), the dou-

ble cover of GL(n,R). In this case, O(n) is the maximal compact subgroup of

GL(n,R), and Pin(n) is the maximal compact subgroup of ˜GL(n,R).

1 1 1

↓ ↓ ↓
µ2 µ2 µ2

↓ ↓ ↓
0M ↪→ Pin(n) ↪→ ˜GL(n,R)

↓ ↓ ↓
0MGL(n,R) ↪→ O(n) ↪→ GL(n,R)

↓ ↓ ↓
1 1 1

We now discuss in more detail the embedding described in chapter 3. Con-

sider the standard embedding of i : GL(n− 1,R) ↪→ SL(n,R) by

i(g) =
g 0

0 det(g)−1

Let p : ˜SL(n,R)→ SL(n,R) be the covering homomorphism. Since

p−1(i(GL(n−1,R))) ∼= ˜GL(n− 1,R), there is a natural inclusion ĩ : ˜GL(n− 1,R) ↪→
˜SL(n,R). Under this inclusion, Pin(n− 1) ↪→ Spin(n).
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Lemma 5.1.1. Let n ≥ 4. Given the embedding ĩ : ˜GL(n− 1,R) ↪→ ˜SL(n,R), we

have ĩ(0M ˜GL(n−1,R)
) = 0M ˜SL(n,R)

.

Proof. 0MSL(n,R) = {

(
g

deg(g)−1

)
| g ∈ O(n−1) diagonal}, the image of 0MGL(n−1,R)

under the inclusion map i. Hence i(0MGL(n−1,R))=
0MSL(n,R). Consider the maxi-

mal parabolic subgroup Pmax = {

(
g x

0 det(g)−1

)
| g ∈ GL(n − 1,R), x ∈ Rn−1}

of ˜SL(n,R) with Levi factor MPmax = i(GL(n − 1,R)). P ≤ Pmax where P is

the minimal parabolic subgroup of SL(n,R) consisting of upper triangular ma-

trices. Let p : ˜SL(n,R) → SL(n,R) be the covering homomorphism for n ≥ 4,

and let P̃ = p−1(P ). Then, P̃ = 0M ˜SL(n,R)
AN and M

P̃max
= p−1(MPmax) =

p−1(i(GL(n − 1,R))). Thus 0M ˜SL(n,R)
⊆ p−1(i(GL(n − 1,R))) = ĩ( ˜GL(n− 1,R)).

Therefore, ĩ(0M ˜GL(n−1,R)
) = 0M ˜SL(n,R)

.

5.2 Irreducible Representations of Pin(n) and Small

Pin(n) types relative to the Metalinear Group

We recall two theorems that can be found in section 5.5.5 of [GW] that

describe irreducible regular representations of Pin(n). The theorems are stated in

terms of Orthogonal and Special Orthogonal groups in [GW]; however, the same

statements are true for the pair Pin and Spin groups.

Definition 5.2.1.

• If n = 2k + 1 is odd, let g0 = −I ∈ O(2k + 1). If n = 2k is even, let

g0 ∈ O(2k) be the diagonal matrix whose entries are all 1 except for last

g02k,2k = −1. Let p : Pin(n)→ O(n) be the covering homomorphism and let

ζ be any choice of p−1(g0).

• Let (πλ, Vλ) be the irreducible representation of Spin(n) with highest weight

λ and let (ρλ, Vλ) be the induced representation Ind
Pin(2k)
Spin(2k)(πλ).
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Theorem 5.2.2. The irreducible regular representations of Pin(2k + 1) are of

the form (πελ, V
ε
λ ), where (πελ, V

ε
λ ) restricted to Spin(2k + 1) is the highest weight

representation (πλ, Vλ), and ζ acts on V ε
λ by εI where ε = ±.

Theorem 5.2.3. Let k ≥ 2. The irreducible representation (σ,W ) of Pin(2k) is

one of the following two types.

• Suppose dimW n+
= 1 and h acts by the weight λ on W n+

. (σ,W ) ∼= (πελ, V
ε
λ )

where (πελ, V
ε
λ ) restricted to Spin(2k) is the highest weight representation

(πλ, Vλ), and ζ acts on W n+
by εI where ε = ±.

• Suppose dimW n+
= 2. Then h has two distinct weights λ and ζ · λ on W n+

,

and (σ,W ) ∼= (ρλ, Vλ).

We list the small K = Pin(n)-types for the Metalinear Group ˜GL(n,R) by

Theorem 5.2.2 and 5.2.3.

Definition 5.2.4.

• If n is even, let VT be the Pin-representation.

• If n is odd, let VT be either of the two Pin-representations.

5.3 Structure of irreducible Kα-modules in Hα

and Hα ⊗ Vτ
Recall that for the group ˜SL(n,R) and the maximal compact subgroup

K = Spin(n) we have as the small K-type (τ, Vτ ) the spin representation for n

odd and either of the two half-spin representations for n even. Let α = εi − εj be

a positive root of Lie( ˜SL(n,R)) and denote by Eα an n by n matrix with entry 1

in the position (i,j) and 0 elsewhere.

Definition 5.3.1. tα = i(Eα + θ(Eα)).

Lemma 5.3.2. Ad(0M)|tα = {±1}.
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Proof. 0M = ZK(A), thus 0M acts by a character on nα because it is 1-dimensional.

Since the square of any character of 0M is equal to 1 by 2.2.2 of [RRG I], any element

of 0M must act on Eα by ±1. Therefore, 0M will act by ±1 on Eα + θ(Eα), hence

on tα. If α is a simple root, exp(πitα) ∈ 0M will act by +1 on tα and if β is a simple

root connected to α in the dynkin diagram, exp(πitβ) ∈ 0M will act by −1 on tα.

Since all positive roots of Lie( ˜SL(n,R)) are conjugates by elements of the Weyl

group NK(A)/ZK(A) and NK(A) acts on 0M , for any positive root α there is an

element of 0M that will act by +1 and an element of 0M that will act by −1.

Definition 5.3.3.

• Let 0M+ (resp. 0M
−

) be the set of elements of 0M that act on tα by +1

(resp. − 1).

• Let V +
τ (resp. V −τ ) be the subspace of Vτ consisting of tα weight vectors of

weights +1
2

(resp. − 1
2
).

For a positive root α = εi − εj of Lie( ˜SL(n,R)), let Xα = Eii − Ejj,

Yα = Eα − θ(Eα), Zα = Xα + iYα where Ekk is a diagonal matrix with entry 1 in

the position (k, k) and 0 elsewhere and Eα is a matrix with entry 1 in the position

(i, j) and 0 elsewhere. Then, Eα ∈ nα, θ(Eα) ∈ n−α and tα ∈ k = so(n,C) with

[tα, Z l
α] = 2lZ l

α and [tα, Z
l
α] = −2lZ l

α.

Definition 5.3.4.

• Let gα◦ = a◦ ⊕ nα◦ ⊕ nα◦ and Gα be the rank one subgroup of ˜SL(n,R)

generated by exp(gα◦) and 0M . Gα is the group generated by Mp(2,R)α the

semisimple part of the group generated by exp(gα◦), 0M , and exp(aα◦ ) where

aα◦ =
⊕

β∈Φ+−{α}RXβ.

• Let Kα be the subgroup of K generated by exp(iRtα) and 0M , the maximal

compact subgroup of Gα.

• Let Hα be the space of harmonics on pα = a⊕CYα for the group Gα. Hα as

a space is
⊕

l≥0(CZ l
α ⊕ CZα

l
).
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• Let gα,gl(n,R)◦ = RIn ⊕ gα◦ . Let G
α, ˜GL(n,R)

be the rank one subgroup of

the metalinear group ˜GL(n,R) generated by exp(gα,gl(n,R)◦) and 0M ˜GL(n,R)
.

G
α, ˜GL(n,R)

is the group generated by SL(2,R)α the semisimple part of the

group generated by exp(gα,gl(n,R)◦),
0M ˜GL(n,R)

, and exp(RIn⊕aα◦ ) where aα◦ =⊕
β∈Φ+−{α}RXβ.

• LetK
α, ˜GL(n,R)

be the subgroup of Pin(n) generated by exp(iRtα) and 0M ˜GL(n,R)
,

the maximal compact subgroup of G
α, ˜GL(n,R)

.

• Let Hα,gl(n,R) be the space of harmonics on pα,gl(n,R) = CIn⊕ a⊕CYα for the

group G
α, ˜GL(n,R)

. Hα,gl(n,R) as a space is
⊕

l≥0(CZ l
α ⊕ CZα

l
).

By Lemma 5.1.1, 0M ˜SL(n,R)
∼= 0M ˜GL(n−1,R)

. Therefore, the semisimple parts

of Gα and G
α, ˜GL(n−1,R)

are isomorphic and Kα
∼= K

α, ˜GL(n−1,R)
for α a positive root

of Lie( ˜GL(n− 1,R)) ⊆ Lie( ˜SL(n,R)). Thus the space of harmonics for Gα and

G
α, ˜GL(n−1,R)

is the same with the same Kα
∼= K

α, ˜GL(n−1,R)
action, and the following

Lemmas and Theorems are true for both Gα and G
α, ˜GL(n−1,R)

.

Lemma 5.3.5. Let Vγα be an irreducible nontrivial Kα-module that occurs in Hα.

There exist exactly two tα-weights on Vγα, and they are dual representations.

Proof. Start with the tα weight vector of weight 2l, Z l
α. 0M is a group of finite

order that centralizes a and 0M± act by ±1 on tα. Therefore, 0M+ will fix Z l
α and

0M− will move Z l
α to Z l

α. Hence the weights are 2l and -2l.

Lemma 5.3.6. Let Vξα be an irreducible Kα-module that occurs in Hα⊗Vτ . There

exist exactly two tα-weights on Vξα, and they are dual.

Proof. Let v ∈ Vξα be a tα weight vector of weight c, which is nonzero as it is in

the form of 2j± 1
2
, because the only weights of tα acting on Vτ are ±1

2
. If m ∈ 0M ,

tα.m.v = m.m−1.tα.m.m
−1.m.v = ±m.tα.v = ±c ∗m.v. Since 0M acts irreducibly

on Vξα the result follows.

Theorem 5.3.7. Let Vγα be an irreducible Kα-module that occurs in Hα. Vγα as

a space is the span of {Z l
α, Z

l
α} for some l. Moreover, 0M-invariant elements are

C(Z l
α + Z l

α).
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Proof. This follows from Lemma 5.3.5.

Theorem 5.3.8. Let Vξα be an irreducible Kα-module that occurs in Hα⊗Vτ . Vξα

as a space is either (Z l
α⊗ V +

τ )⊕ (Z l
α⊗ V −τ ) or (Z l

α⊗ V −τ )⊕ (Z l
α⊗ V +

τ ) for some l.

Proof. Consider Z l
α ⊗ v for some l and v ∈ V +

τ . By Lemma 5.3.6, Kα module

generated by this element is contained in (Z l
α ⊗ V +

τ ) ⊕ (Z l
α ⊗ V −τ ). Since the

dimensions of the two spaces are equal the inclusion is an equality. We argue

similarly if we start with a vector in V −τ .

5.4 Frobenius Reciprocity in our Context

Recall H the space of harmonics on p for the group ˜SL(n,R), H ∼= IP,triv,ν

and H ⊗ Vτ ∼= IP,τ,ν as Spin(n)-modules where Vτ is the Spin representation for

n odd and either of the two half-Spin representations for n even. The space of

harmonics H for the metalinear group ˜GL(n,R) is the same as that of the group

˜SL(n,R), and H ⊗ VT
∼= IP,T,ν as Pin(n)-modules where VT is either of the two

Pin representations for n odd and the Pin representation for n even.

Lemma 5.4.1.

• If Vξ is an irreducible Spin(n) module that occurs in H ⊗ Vτ ,

Vξ|0M ˜SL(n,R)
=

dim(Vξ)/dim(Vτ )⊕
j=1

Vτj

where Vτj
∼= Vτ as 0M ˜SL(n,R)

-modules for all j.

• If VΞ is an irreducible Pin(n) module that occurs in H ⊗ VT,

VΞ|0M ˜GL(n,R)
=

dim(VΞ)/dim(VT)⊕
j=1

VTj

where VTj
∼= VT as 0M ˜GL(n,R)

-modules for all j.
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Proof. First consider the statement for the group ˜SL(n,R). C[0M ˜SL(n,R)
]/< η+1 >

is the subalgebra of Cliffn spanned by the even number of elements of the usual

basis elements from 11.A.2.8 of [RRG II]. Hence we have the result if n is odd. If

n is even, Vτj can be either of the half spin representations restricted to 0M ˜SL(n,R)
.

I claim that only Vτ |0M ˜SL(n,R)
is allowed. Let Vτ and Vτ be the two half spin

representation of Spin(n) for n even, and let ω be a choice of p−1(−Id) where

p : Spin(n) → SO(n). ω distinguishes the two representations as 0M ˜SL(n−1,R)

do not. ω acts trivially on H as −Id ∈ 0MSL(n,R) and is central in SO(n).

Therefore, (H ⊗ Vτ )|0M ˜SL(n,R)
=
⊕

Vτj with Vτj
∼= Vτ as 0M ˜SL(n,R)

-modules, and

(H ⊗ Vτ )|0M ˜SL(n,R)
=
⊕

Vτj with Vτj
∼= Vτ as 0M ˜SL(n,R)

-modules.

Consider the statement for the metalinear group ˜GL(n,R). By Lemma

5.1.1, 0M ˜GL(n−1,R)
∼= 0M ˜SL(n,R)

. Therefore, we have the result for n even similarly

as above. If n is odd, we argue similarly as above using ζ defined in 5.2.1.

Lemma 5.4.2.

• Let Vξ be an irreducible Spin(n) module that occurs in H ⊗ Vτ , and let

Vγ1 , ..., VγN be distinct Spin(n)-types that occur in H, with Vξ ⊆ Vγj ⊗ Vτ for

all j. If l(γj) = dimV
0M ˜SL(n,R)
γj , then dim(Vξ)/dim(Vτ ) = dim HomSpin(n)(Vξ, H⊗

Vτ ) = ΣN
j=1l(γj).

• Let VΞ be an irreducible Pin(n) module that occurs in H ⊗ VT, and let

VΓ1 , ..., VΓL be distinct Pin(n)-types that occur in H, with VΞ ⊆ VΓj ⊗ VT for

all j. If l(Γj) = dimV
0M ˜GL(n,R)

Γj
, then dim(VΞ)/dim(VT) = dim HomPin(n)(VΞ, H⊗

VT) = ΣL
j=1l(Γj).

Proof. Since Vτ is multiplicity free, by Corollary 3.4 of [Ku], we know Vξ occurs in

Vγ ⊗ Vτ exactly once if it does. Now each of Vγj occurs in H exactly l(γj) many

times by Frobenius Reciprocity, hence the multiplicity of Vξ in H ⊗ Vτ is exactly

ΣN
j=1l(γj) which is dim(Vξ)/dim(Vτ ) by Lemma 5.4.1 and Frobenius Reciprocity.

We argue similarly for the statement of the metalinear group ˜GL(n,R).
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5.5 tα-weights on certain vectors

Recall the definition of tα from 5.3.1. Let Vγ be an irreducible Spin(n)-

module that occurs in the harmonics H in p of ˜SL(n,R). Let Span Kα.V
0M ˜SL(n,R)
γ =⊕l(γ)

j=1Wj be a decomposition into irreducible Kα-modules. Let VΓ be an irreducible

Pin(n)-module that occurs in the harmonics on p of ˜GL(n,R). Let SpanK
α, ˜GL(n,R)

·

V
0M ˜GL(n,R)

Γ =
⊕l(Γ)

j=1 Xj a decomposition into irreducible K
α, ˜GL(n,R)

-modules where

K
α, ˜GL(n,R)

is the group generated by the torus and 0M ˜GL(n,R)
.

Definition 5.5.1.

• Let δγα,j be the dominant tα weight on Wj for j = 1, ..., l(γ) given by Lemma

5.3.5.

• Let δΓ
α,j be the dominant tα weight on Xj for j = 1, ..., l(Γ) by the remark in

section 5.3.

Let Vξ be an irreducible Spin(n)-module that occurs in H ⊗ Vτ . Let

Vξ =
⊕n(ξ)

j=1 Vτj be a decomposition into irreducible Kα-modules where Vτj
∼= Vτ as

0M ˜SL(n,R)
-modules for all j by Lemma 5.4.1.

Let VΞ be an irreducible Pin(n)-module that occurs in H ⊗ VT. Let VΞ =⊕n(Ξ)
j=1 VTj be a decomposition into irreducible K

α, ˜GL(n,R)
-modules where VTj

∼= VT

as 0M ˜GL(n,R)
-modules for all j by the remark after Lemma 5.4.1.

Definition 5.5.2.

• Let δξα,j be the dominant tα weight on Vτj for j = 1, ..., n(ξ) given by Lemma

5.3.6.

• Let δΞ
α,j be the dominant tα weight on VTj for j = 1, ..., n(Ξ) by the remark

in section 5.3.
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5.6 Restriction of Pin(n)-modules to Spin(n) and

tα-weights

Let Vγ be an irreducible Spin(n)-module that occurs in the harmonics on p

of ˜SL(n,R), and VΓ be an irreducible Pin(n)-module that occurs in the harmonics

on p of ˜GL(n,R).

Theorem 5.6.1. Let n=2k, (m1, ...,mk) be the highest weight of Vγ, and assume

Vγ occurs in VΓ if we restrict to Spin(n) from Pin(n).

• If mk 6= 0, then dim V
0M ˜SL(n,R)
γ = dim V

0M ˜GL(n,R)

Γ , l(γ) = l(Γ) and δγα,j = δΓ
α,j

for all j after reordering.

• If mk = 0, let VΓ = V ε
γ where ε = ± is the signature of g0 on the highest

weight vector given to us by Theorem 5.2.3. Then, V
0M ˜SL(n,R)
γ = V +

γ

0M ˜GL(n,R)⊕
V −γ

0M ˜GL(n,R) = V +
Γ

0M ˜GL(n,R) ⊕ V −Γ
0M ˜GL(n,R), and hence {δγα,1, ..., δ

γ
α,l(γ)} is a dis-

joint union of that of V +
γ

0M ˜GL(n,R) and V −γ
0M ˜GL(n,R).

Proof. Since we are working with submodules of the harmonics, η acts trivially,

hence we can ignore the tilde and work with 0MSL(n,R)-invariants of SO(n)-modules

and 0MGL(n,R)-invariants of O(n)-modules. Also, remember g0 ∈ 0MGL(n,R).

Let us assume first mk 6= 0. Then, g0 swaps the two SO(2k) highest weight

modules of highest weights (m1, ...,mk) and (m1, ...,−mk). Since g0 commutes with

0MSL(n,R), g0 will give us a bijection of 0MSL(n,R)-invariants in the SO(2k) highest

weight representation of highest weight (m1, ...,mk) with 0MSL(n,R)-invariants in

the SO(2k) highest weight representation of highest weight (m1, ...,−mk). Hence,

it is now clear that dim V
0M ˜SL(n,R)
γ = dim V

0M ˜GL(n,R)

Γ as 0M ˜GL(n,R)
is generated by

0M ˜SL(n,R)
and ζ, a choice of p−1(g0). Since g0 leaves invariant t2α, the statement of

the tα-weights is now also clear with the help of Lemma 5.3.5.

Let us now assume mk = 0, v(m1, ...,mk) the highest weight vector, and

v1, ..., vl(γ) a basis of V
0M ˜SL(n,R)
γ such that g0 acts on vj by ±1 for all j, which is

possible since g2
0 = Id and g0 commutes with 0MSL(n,R). Denote by v+

1 , ..., v
+
l(γ)

and v−1 , ..., v
−
l(γ) above basis thought of being in V +

γ and V −γ respectively. Now the
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only difference between V +
γ and V −γ is the action of g0. If we denote by ε the

action of g0 on v+
1 , ..., v

+
l(γ), I claim that g0 will act by −ε on v−1 , ..., v

−
l(γ). Indeed,

vj = Xj.v(m1, ...,mk) where Xj ∈ U(n). Since g0 acts by different signatures on

v(m1, ...,mk) for V +
γ and V −γ , the statement is now clear.

Theorem 5.6.2. Let n=2k+1 and assume Vγ occurs in VΓ if we restrict to Spin(n)

from Pin(n). Then, g0 = −Id will act trivially, and there is no difference between

Vγ and VΓ.

Proof. We have −Id ∈ Z(Pin(n)) and −Id ∈ 0MGL(n,R), hence in order for VΓ to

be in the harmonics, it must act trivially. Now we have the result by Theorem

5.2.2.

Let VΞ be an irreducible Pin(n)-module whose restriction to Spin(n) con-

tains a copy of Vξ where Vξ ⊆ H ⊗Vτ . Let Vξ =
⊕n(ξ)

j=1 Vτj be a decomposition into

irreducible Kα-modules. Recall the definition of ζ from 5.2.1.

Theorem 5.6.3. If n=2k, then VΞ|0M ˜GL(n,R)
=
⊕n(ξ)

j=1 (Vτj ⊕ ζ.Vτj) and if n=2k+1,

then VΞ|0M ˜GL(n,R)
=
⊕n(ξ)

j=1 Vτj . In either case, δξα,j = δΞ
α,j for all j after reordering.

Proof. Since 0M ˜GL(n,R)
is generated by 0M ˜SL(n,R)

and ζ, the statement is clear now

along with the help of theorems 5.2.2 and 5.2.3.



Chapter 6

Product Formula of pξ for ˜SL(n,R)

6.1 Comparison of tα-weights

Consider for the group ˜SL(n,R) the small K = Spin(n)-type Vτ the spin

representation for n odd and either of the half spin representations for n even.

Let Vξ be an irreducible Spin(n)-module that occurs in H ⊗ Vτ and Vγ1 , ..., VγN

be distinct K = Spin(n)-types that occur in H such that Vξ ⊆ Vγj ⊗ Vτ for all j.

Let α be a positive root of sl(n,R), {δξα,1, ..., δ
ξ
α,n(ξ)} be the set of tα weights on Vξ

defined in 5.5.2, and let {δα,1, ..., δα,ΣNj=1l(γj)
} be the ones from Vγ1 , ..., VγN defined

in 5.5.1 where n(ξ) = dim HomK(Vξ, H ⊗ Vτ ) and l(γj) = dim V
0M
γj

.

Theorem 6.1.1. n(ξ) = ΣN
j=1l(γj) and we can reorder the set {δξα,1, ..., δ

ξ
α,n(ξ)} so

that δα,j = δξα,j ± 1
2

for all j.

We first state and prove a lemma for the theorem.

Lemma 6.1.2. Assume the statement of tα-weights in Theorem 6.1.1 for the mod-

ules of the group Spin(n). Then the statement of tα-weights in Theorem 6.1.1 for

the modules of the group Pin(n) is also true.

Proof. Assume first n is odd. The space of Harmonics on p are the same for both

˜SL(n,R) and ˜GL(n,R), and the small Pin(n)-type VT is the small Spin(n)-type

Vτ if we restrict from Pin(n) to Spin(n). By Theorem 5.6.2, the restriction of

39
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Pin(n) to Spin(n) will not change the assumptions of the modules in Theorem

6.1.1.

Given an irreducible Pin(n)-module that occurs in the Harmonics, the set

of tα weights of interest do not change restricted to Spin(n) by Theorem 5.6.2.

Given an irreducible Pin(n)-module that occurs in H ⊗ VT, the set of tα weights

of interest do not change restricted to Spin(n) by Theorem 5.6.3. Therefore, once

we restrict Pin(n) to Spin(n), the comparison of tα-weights for the group Pin(n)

is that of tα-weights for the group Spin(n).

Assume now n is even. The space of Harmonics on p are the same for both

˜SL(n,R) and ˜GL(n,R), and the small Pin(n)-type VT is a direct sum of the two

half-spin representations Vτ and Vτ if we restrict from Pin(n) to Spin(n). Let

VΓ1 , ..., VΓM be distinct Pin(n) types that occur in H such that VΞ ⊆ VΓj⊗VT. Let

us restrict VΓj to Spin(n). By Theorem 5.2.3, if dim V n+

Γj
= 2, VΓj is a direct sum

of two irreducible Spin(n) modules with last entries of the highest weights nonzero

and negatives of each other, and if dim V n+

Γj
= 1, VΓj is irreducible as a Spin(n)

module. For each j, let Vγj be the choice of the irreducible Spin(n)-module that

occurs in VΓj |Spin(n) with last entry of the highest weight nonnegative, and reorder

so that Vγ1 , ..., VγN are distinct Spin(n) modules. N ≤ M as there may be j such

that Vγj occurs twice with different g0 signature on V n+

γj
. Let Vξ be the choice of the

irreducible Spin(n)-module that occurs in VΞ|Spin(n) with last entry of the highest

weight positive. Without loss of generality, assume Vξ ⊆ H ⊗ Vτ . Vγ1 , ..., VγN are

distinct Spin(n) modules that occur in H such that Vξ ⊆ Vγj ⊗ Vτ . Therefore, we

can assume the statement of the tα weights on these Spin(n) modules. But by

Theorem 5.6.1 and Theorem 5.6.3, comparison of tα weights for the modules of the

group Pin(n) is that of Vξ, Vγ1 , ..., VγN of Spin(n). Therefore, we have the result

for n even.

Proof. (Theorem 6.1.1)

n(ξ) = ΣN
j=1l(γj) by Lemma 5.4.2.

The Weyl group W (A) of ˜SL(n,R) is the symmetric group on n elements
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that permute the roots of Lie( ˜SL(n,R)), hence the positive roots of Lie( ˜SL(n,R))

are permuted by elements of W (A). Since ˜SL(n,R) is split, the Weyl group W (A)

is isomorphic to NK(A)/ZK(A). Therefore, all positive roots of Lie( ˜SL(n,R)) are

conjugate to each other by elements of K = Spin(n), hence tαs also. Thus the set

of tα-weights of interest is independent of the choice of α.

Let n=3. Denote by λ the highest weight of Vξ. Let λ = p
2

with p odd. If

p = 1, there exists only one Vγ ⊆ H with Vξ ⊆ Vγ ⊗ Vτ the trivial representation,

and the claim is true. If p = 3, there exists only one Vγ ⊆ H with Vξ ⊆ Vγ⊗Vτ the

representation with highest weight 2. In this case, the weights are 1
2

and 3
2

for Vξ

and 0 and 2 for Vγ, hence the claim is also true. Suppose p > 3. Then, there exist

exactly two such representations, call them Vγp1 and Vγp2 with highest weights p−1
2

and p+1
2

. The weights of interest on Vξ are 1
2
, 3

2
, ..., p

2
. Now, the weights of interest

on Vγp1 and Vγp2 are 0, 2, 4, ..., p−1
2

and 2, 4, ..., p−1
2

respectively if p−1
2

is even, and

2, 4, ..., p−3
2

and 0, 2, ..., p+1
2

respectively if p+1
2

is even.

The set of the weights of interest on Vξ are 1
2
, 3

2
, 5

2
, 7

2
..., p−2

2
, p

2
. In the first

case where p−1
2

is even, consider (1
2
− 1

2
), (3

2
+ 1

2
), (5

2
− 1

2
), (7

2
+ 1

2
), ..., (p−2

2
+ 1

2
), (p

2
− 1

2
),

which is 0, 2, 2, 4, 4, ..., p−1
2
, p−1

2
. This is exactly the union of the weights on Vγp1

and Vγp2 . In the second case where p+1
2

is even, consider (1
2
− 1

2
), (3

2
+ 1

2
), (5

2
−

1
2
), (7

2
+ 1

2
), ..., (p−2

2
− 1

2
), (p

2
+ 1

2
), which is 0, 2, 2, 4, 4, ..., p−3

2
, p−3

2
, p+1

2
. This is again

exactly the union of the weights on Vγp1 and Vγp2 . Therefore the statement of the

theorem is true for the case n=3.

We now proceed by induction. Assume the statement of the theorem for

˜SL(n,R), and hence for ˜GL(n,R) by Lemma 6.1.2. We prove the statement of

the theorem for ˜SL(n+ 1,R). Consider the embedding ˜GL(n,R) ↪→ ˜SL(n+ 1,R)

with 0M the same by Lemma 5.1.1.

We can restate the condition Vξ ⊆ Vγj ⊗ Vτ with Vγj ⊆ Vξ ⊗ V ∗τ where V ∗τ is

the contragradient representation. Note the statement of the theorem is true with

the restated condition for ˜GL(n,R) by the induction hypothesis.

Let Vγ1 , ..., VγN be distinct irreducible Spin(n + 1)-modules that occur in

H such that Vγj ⊆ Vξ ⊗ V ∗τ , and let
⊕N

j=1 Span Pin(n).V
0M
γj

=
⊕

kWk where each

Wk is an irreducible Pin(n)-module. As the nontrivial element η ∈ Z = µ2 ≤ 0M



42

acts by −1, Vξ|Pin(n) =
⊕

j Vξj where each of Vξj occurs in H ⊗ Vτ by Lemma

5.4.1, with H that of ˜GL(n,R). We have
⊕

kWk ⊆
⊕

j Vξj ⊗ V ∗τ where each of

Wk occurs in H of ˜GL(n,R) as ĩ(0M ˜GL(n−1,R)
) = 0M ˜SL(n,R)

by Lemma 5.1.1 where

ĩ : ˜GL(n− 1,R) ↪→ ˜SL(n,R) is the inclusion map.

Since the statement of the theorem is true for ˜GL(n,R) with the restated

condition and as the set of tα weights of interest are the same after branching down

to Pin(n) as ĩ : ˜GL(n− 1,R) ↪→ ˜SL(n,R) by Lemma 5.1.1, we have the statement

of the theorem for all positive roots α of Lie( ˜GL(n,R)) ⊆ Lie( ˜SL(n+ 1,R)) once

we realize that n(ξ) = ΣN
j=1l(γj). Note Vξj ⊗ V ∗τ decomposes into distinct Pin(n)-

modules by Corollary 3.4 of [Ku] as V ∗τ is multiplicity free. Therefore, if Wk
∼= Wl

with k 6= l, then Wk and Wl cannot be contained in a single Vξj ⊗ V ∗τ , important

as the statement of the theorem for ˜GL(n,R) also assumes distinct VΓs. As the

set of tα-weights of interest is independent of the choice of α of Lie( ˜SL(n+ 1,R)),

we have the statement of the theorem.

6.2 Divisibility

6.2.1 Definition of the P ξ matrix revisited

Let g◦ = Lie( ˜SL(n,R)) = Lie(SL(n,R)) = sl(n,R) and recall the defi-

nitions of g, k, and p from Chapter 2. H is the space of harmonics on p, J the

subspace of K invariants in S(p), U(g) the universal enveloping algebra of g. Let

symm : S(g) −→ U(g) be the symmetrization map.

The following is Lemma 1.4.2 of [Kos].

Lemma 6.2.2. U(g) = symm(H)symm(J)⊕ U(g)k

The following is a Theorem from 11.3.6 of [RRG II].

Theorem 6.2.3. U(g)⊗U(k)U(g)k Vτ ∼= IP,τ,ν as K-modules.

symm(S(p)) = symm(H)symm(J) from Lemma 6.2.2. Thus, symm(H)⊗
Vτ ∼= IP,τ,ν as K-modules from Theorem 6.2.3. Let Vξ be a K-type that occurs in
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symm(H)⊗ Vτ ∼= IP,τ,ν . From Lemma 5.4.1,

Vξ|0M =

dim(Vξ)/dim(Vτ )⊕
j=1

Vτj

where each Vτj
∼= Vτ as 0M -modules.

Recall the definition of P ξ matrix in section 4.1. To cut notations a little,

set Vτj := Tj(Vτ ). Then, P ξ(ν) is an n(ξ) by n(ξ) matrix with

(P ξ(ν))i,j = (εi(Vτj)(e))

Each entry of P ξ is an element of U(a), or really an element of U(a) ⊗ End(Vτ ).

Note P ξ(ν) is without ρ-shift.

We are interested in pξ(ν) and pξ, determinants of P ξ(ν) and P ξ respec-

tively, which will not depend on the choice of the bases up to a nonzero scalar

multiple.

6.2.4 Divisibility

Let again a ⊆ g be the subalgebra of diagonal elements and n ⊆ g the

subalgebra of strictly upper triangular elements. If α is a positive root of g, i.e.

α = εi − εj for 1 ≤ i < j ≤ n, recall Eα is an n by n matrix with entry 1 in the

position (i,j) and 0 elsewhere. Let gα be the Lie subalgebra of g generated by Eα,

θ(Eα), and a. Then, gα = Cθ(Eα) ⊕ a ⊕ CEα = θnα ⊕ a ⊕ nα is the triangular

decomposition, and gα = C(Eα + θ(Eα)) ⊕ (C(Eα − θ(Eα)) ⊕ a) = kα ⊕ pα is the

Cartan decomposition. Hα is the space of harmonics on pα as discussed in 5.3, and

let Jα = S(pα)kα .

For α ∈ ∆+ simple, let nα =
⊕

ψ∈Φ+−{α} g
ψ. Let kα ⊆ k be spanned by

Eψ + θEψ with ψ ∈ Φ+ − {α} so that k = kα ⊕ kα. Then, g = nα ⊕ gα ⊕ kα. Note

nα is a Lie subalgebra of g as α is simple.

Lemma 6.2.5. For α ∈ ∆+ simple,

U(g) = symm(Hα)symm(Jα)U(k)⊕ nαU(nα)symm(Hα)symm(Jα)U(k)
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Proof. From Proposition 2.4.1 of [Kos], we have

U(g) = U(nα)symm(Hα)symm(Jα)⊕ U(g)k

Hence, we have

U(g) = U(nα)symm(Hα)symm(Jα)U(k) (6.2.1)

= symm(Hα)symm(Jα)U(k)⊕ nαU(nα)symm(Hα)symm(Jα)U(k) (6.2.2)

Hence now by Theorem 6.2.3 and Lemma 6.2.5, we have the following K-

module isomorphisms

IP,τ,ν ∼= U(g)⊗U(k)U(g)k Vτ (6.2.3)

∼= symm(Hα)symm(Jα)⊗U(k)U(g)k Vτ (6.2.4)

⊕ nαU(nα)symm(Hα)symm(Jα)⊗U(k)U(g)k Vτ (6.2.5)

Let C[0M ] be the group algebra generated by 0M , and denote by U(kα)ΠC[0M ]

the smash product of U(kα) with C[0M ], i.e. U(kα)ΠC[0M ] has a (U(kα),C[0M ])-

action on symm(Hα)⊗Vτ that is an analog of a (g, K)-action. If Iτ = U(k)∩kerτ ,

U(k)/Iτ ∼= End(Vτ ) ∼= (U(kα)ΠC[0M ])/(kerτ ∩ (U(kα)ΠC[0M ])) as 0M acts irre-

ducibly on Vτ .

Definition 6.2.6.

• For α simple, let

Lα : U(g)⊗U(k)U(g)k Vτ → symm(Hα)symm(Jα)⊗U(k)U(g)k Vτ

⊕ nαU(nα)symm(Hα)symm(Jα)⊗U(k)U(g)k Vτ

be the projection onto the first summand.

• Denote by Q the projection onto the first summand in U(g) = U(a)U(k) ⊕
nU(g) followed by the projection onto U(a)⊗ (U(k)/Iτ ) = U(a)⊗ End(Vτ ).
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Theorem 6.2.7. Let α ∈ Φ+ be a simple root, ε1, ..., εn(ξ) be a basis of

HomK(Vξ, symm(H)⊗Vτ ), Vξ =
⊕n(ξ)

j=1 Vτj with each Vτj an irreducible Kα-module.

If pταj denotes the determinant of P ταj matrix of the rank one case of Gα with Kα-

type Vτj , then pταj divides pξ.

Proof. This proof follows the method of the proof of Proposition 2.4.3 of [Kos]

very closely.

Let α ∈ Φ+ be a simple root, ε1, ..., εn(ξ) be a basis of

HomK(Vξ, symm(H) ⊗ Vτ ), and let Vξ =
⊕n(ξ)

j=1 Vτj where each Vτj is an

irreducible Kα-module. (P ξ)ij is the action of εi(Vτj)(e) followed by replacement

of elements in C[ν] with corresponding elements in S(a), which is same as the

action of Lα(εi(Vτj))(e) as Lα is a Kα-map since [gα, n
α] ⊆ nα for α simple, and

elements in nα will not contribute.

Recall V +
τ is the subspace of Vτ that consist of tα-weights of 1

2
, and denote by

V +
τj

the subspace of Vτj that correspond to positive tα-weight space. Without loss

of generality, assume Lα(εi(V
+
τj

)) = Zα
lj
Rα
i,j ⊗ V +

τ with Rα
i,j ∈ symm(Jα). This is

possible because of Theorem 5.3.8 which characterizes the irreducible Kα-modules

in Hα ⊗ Vτ and Lα is a Kα-map. We have symm(Jα) ⊆ U(gα)kα with U(gα)kα the

subalgebra generated by tα, center of gα, and the Casimir element.

The action of Zα
lj
Rα
i,j on V +

τ at the identity is Q(Zα
lj
Rα
i,j), where by 3.5.6

of [RRG I], we have Q(Zα
lj
Rα
i,j) = Q(Rα

i,j)Q(Zα
lj

) = rαi,jQ(Zα
lj

) with rαi,j invariant

under x̃α the translated Weyl group element of simple reflection as U(gα)kα is the

subalgebra generated by tα, center of gα, and the Casimir element. From the

observation before, we have

Q(Zα
lj

) ∈ U(a)⊗ (U(k)/Iτ ) = U(a)⊗ End(Vτ ) (6.2.6)

= U(a)⊗ (U(kα)ΠC[0M ])/(kerτ ∩ (U(kα)ΠC[0M ]))

(6.2.7)

We now see that action of Q(Zα
lj

) on V +
τ is the determinant pατj of P τj matrix for

the rank one subgroup Gα with Kα type τj, and pατj divides pξ.
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For φ ∈ Φ+, define pφ = pτφ1
...pτφ

n(ξ)
where pτφj

corresponds to the deter-

minant of P τφj matrix of the rank one case of Gφ with Kφ-type Vτj . Define now

p(φ) = Tρφ−ρpφ, where Tρφ−ρ is the translation by ρφ − ρ. Note each pτφj
is a poly-

nomial in wφ = Xφ ∈ a defined before. Hence pφ and p(φ) are also. Also, it is clear

that Tρφ−ρ(wφ) = wφ for φ simple, hence we have pφ = p(φ) for φ simple.

Theorem 6.2.8. For any φ ∈ Φ+, p(φ) divides pξ.

Proof. This proof is almost word for word as in Proposition 2.4.5 of [Kos].

For φ ∈ Φ+, define O(φ) = Σmi, if φ = Σα∈∆+miαi. If O(φ) = 1, then

φ ∈ ∆+ hence the claim is true by Theorem 6.2.7 and above observation. We

proceed by induction on O(φ). Assume O(φ) > 1 and that the claim is true for

all ψ ∈ Φ+ with O(ψ) < O(φ). We use the fact that for some α ∈ ∆+, < φ,wα >

is strictly greater than 0 and find a root ψ ∈ Φ+ such that O(ψ) < O(φ) and

φ = xαψ for some α ∈ ∆+ where xα is the Weyl group element of simple reflection.

Note ψ 6= α. But we have that pξ = rαpα, where rα is invariant under the action

of x̃α by Theorem 6.2.7. Also, by induction hypothesis, p(ψ) divides rαpα. Since

pα is a polynomial in wα whereas p(ψ) is a polynomial in wψ, and since wα 6= wψ,

pα and p(ψ) are mutually prime. Hence p(ψ) divides rα, hence x̃αp(ψ) does also.

We now assert x̃αp(ψ) = p(φ) up to a nonzero scalar. Since xαψ = φ, we

have xαgψ = gφ, xαkψ = kφ, and xαpψ = pφ. Moreover, xαa = a and xαnψ = nφ.

Therefore, for u ∈ U(gψ), xαQ(u) = Q(xαu). Also, xαKψx
−1
α = Kφ. Furthermore,

if Vξ = ⊕Vτψj is a decomposition into Kψ-irreducibles and if Vτφj
= xαVτψj

, then we

know Vξ = ⊕Vτφj is a decomposition into Kφ-irreducibles. Hence it is now clear

that xαpψ = pφ up to a nonzero scalar.

But, x̃αp(ψ) = T−ρxαTρTρψ−ρpψ = T−ρxαTρψpψ = T−ρxαTρψx
−1
α xαpψ =

T−ρTxαρψxαpψ = Tρφ−ρpφ = p(φ), and this completes the assertion and p(φ) divides

pξ.
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6.3 Product Formula of pξ for the group ˜SL(n,R)

Theorem 6.3.1. There exists a non-zero scalar c such that

pξ(ν) = cΠφ∈Φ+p(φ)(ν)

Proof. The right hand side divides the left hand side by Theorem 6.2.8. I claim

the degrees of the two polynomials are the same.

Since our definition of pξ was independent of the basis up to a nonzero

scalar, we may assume εi(Vτj) ⊆ symm(H)d(i) ⊗ Vτ , i.e. we use a homogeneous

basis. Therefore, the deg of the left hand side, d(ξ), is at most Σd(i).

If Vγ1 , ..., VγN are distinct K-types in symm(H) with Vξ ⊆ Vγj⊗Vτ , Σd(i) =

ΣN
j=1d(γj) where d(γj) is the sum of degrees in which Vγj occur in symm(H).

But, we have d(γj) = Σφ∈Φ+nφγj where nφγj is the sum of degrees of which the

irreducible Kφ-modules in SpanKφ.V
0M
γj

occur in symm(Hφ) by Proposition 2.3.12

and Theorem 2.3.14 of [Kos]. But nφγj only depends on the tφ-weights in our case,

hence Σd(i) = ΣN
j=1d(γj)=ΣN

j=1Σφ∈Φ+nφγj= Σφ∈Φ+deg(p(φ)(ν)) by Theorem 6.1.1

and the fact that deg(Q(Z l
φ)) = l by Theorem 7.6 of [JW]. Therefore the degree

of left hand side ≤ degree of right hand side, and with divisibility we have the

statement of the theorem.



Chapter 7

Product formula of pξ for the

connected, simply connected

R-split Lie group of simple Lie

type other than An and Cn

In this chapter we will apply our results for ˜SL(n,R) and ˜GL(n,R) to derive

a product formula for the groups of the title. Let G be any of the connected, simply

connected R-split Lie group of simple Lie type other than An and Cn with maximal

compact subgroup K defined as the set of fixed elements of a Cartan involution

θ. Denote by θ the corresponding Cartan involution of Lie(G). As G is split, for

a positive root α of Lie(G), [gα, gα] = sl2. Let hα ∈ [gα, gα] ∩ a be such that

α(hα) = 2, and let eα ∈ nα be such that [eα,−θ(eα)] = hα. (hα, eα,−θ(eα)) is an

S-triple.

Definition 7.0.2. tα = i ∗ (eα + θ(eα)).

Let H be the space of harmonics on p, and Vτ be a choice of a small K-type

from chapter 3.

Lemma 7.0.3. Let G be as above for all types but Bn, E7, and F4. Let Vξ be an

irreducible K-module that occurs in H⊗Vτ . Then, Vξ|0M =
⊕n(ξ)

j=1 Vτj with Vτj
∼= Vτ

as 0M modules for all j = 1, ..., n(ξ).

48
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Proof. ForDn, K = Spin(n)×Spin(n) where 0M ˜Spin(n,n)
is isomorphic to 0M ˜SL(n,R)

×
µ2 where 0M ˜SL(n,R)

sits diagonally in K. Vτ is the Spin representation or either

of the two half Spin representations after projection onto either the first or the

second factor of K = Spin(n)×Spin(n) depending on the parity of n. By Lemma

3.3.1, (H ⊗ Vτ )|0M ˜Spin(n,n)
decomposes in the same way as (H ⊗ Vτ )|0M ˜SL(n,R)

where

0M ˜SL(n,R)
is the one sitting diagonally in K = Spin(n) × Spin(n). If n is odd,

there is only one possible Vτ as in the case of ˜SL(n,R). If n is even, choose

an element ω of the set p−1(−Id × −Id) where p is the covering homomorphism

p : Spin(n)× Spin(n)→ SO(n)× SO(n). ω distinguishes the two half Spin rep-

resentations as 0M ˜SL(n−1,R)
do not. ω acts trivially on H as it is central and is an

element of 0M ˜Spin(n,n)
. Therefore ω acts on the entire space H ⊗ Vτ as it does on

Vτ , and we have the statement of the lemma for Dn.

For E6, E8, and G2, ĩ : ˜GL(6,R) ↪→ Ẽ6, ĩ : ˜GL(8,R) ↪→ Ẽ8, and ĩ :

˜SL(3,R) ↪→ G̃2 with ĩ(0M ˜GL(6,R)
) = 0MẼ6

, ĩ(0M ˜GL(8,R)
) = 0MẼ8

, ĩ(0M ˜SL(3,R)
) = 0MG̃2

by the proof of Lemma 3.3.1. Therefore, there can only be one Vτ , Spin-rep|0M .

Remark For the connected, simply connected R-split Lie groups of type

Bn, E7, and F4, if Vξ ⊆ H ⊗ Vτ , Vξ|Kα =
⊕n(ξ)

j=1 Vτj ⊕
⊕

k Vk where Vτj
∼= Vτ

as 0M -modules, and Vk ∼= Vτk as 0M -modules where Vτk is the other half Spin

representation or the other Pin representation restricted to 0M . Hence the weights

of interest are just those of
⊕n(ξ)

j=1 Vτj from the definition of P ξ matrix in 4.1.

Lemma 7.0.4. Let G be any of the connected, simply connected R-split Lie group

of simple Lie type other than Cn with maximal compact subgroup K. Let Vγ1 , ..., VγN

be distinct K-types that occur in H such that Vξ ⊆ Vγj ⊗ Vτ . If l(γj) = dimV
0M
γj

,

then n(ξ) = ΣN
j=1l(γj).

Proof. Since Vτ is multiplicity free, by Corollary 3.4 of [Ku], we know Vξ occurs in

Vγ ⊗ Vτ exactly once if it does. Now each of Vγj occurs in H exactly l(γj) many

times by Frobenius Reciprocity, hence the multiplicity of Vξ in H ⊗ Vτ is exactly

ΣN
j=1l(γj) which is n(ξ) defined in the remark above, by Frobenius Reciprocity.
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7.1 Comparision of tα-weights

Recall the assumptions of Theorem 6.1.1.

Theorem 7.1.1. Let G be as above other than type F4. Let Vγ1 , ..., VγN be distinct

K-types that occur in H such that Vξ ⊆ Vγj ⊗ Vτ . n(ξ) = ΣN
j=1l(γj) and if α is a

positive root of Lie(G) but not short in the case of Bn and not short in the case of

G2 , then after reordering, δξα,j = δα,j ± 1
2

for each j = 1, ..., n(ξ).

Proof. n(ξ) = ΣN
j=1l(γj) is by Lemma 7.0.4.

Recall from chapter 3 the subgroup G0 ≤ G with maximal compact sub-

group K0 where G0 is isomorphic to ˜SL(n,R) or the metalinear group ˜GL(n,R)

for appropriate n. We have 0MG0 ≤ 0MG where the restriction of K to K0 preserve

0MG-invariants of H and the decomposition Vξ|0MG
by Lemma 3.3.1.

We can restate the condition Vξ ⊆ Vγj ⊗ Vτ as Vγj ⊆ Vξ ⊗ V ∗τ . Note the

statement of the theorem is true with the restated condition for G0 by Theorem

6.1.1 and Lemma 6.1.2.

Let Vγ1 , ..., VγN be distinct irreducible K-modules that occur in H such

that Vγj ⊆ Vξ ⊗ V ∗τ , and let
⊕N

j=1 Span K0.V
0MG
γj

=
⊕

kWk where each Wk is an

irreducible K0-module. The nontrivial element η ∈ µ2 ≤ 0MG acts by −1 where

µ2 is the kernel of the covering homomorphism p : G0 → G0/µ2 which is also the

kernel of the covering homomorphism p : G → GR. Hence Vξ|K0 =
⊕

j Vξj where

each of Vξj occurs in H ⊗ Vτ or H ⊗ Vτ with H that of G0 and Vτ the other half

Spin representation or Pin representation. We have
⊕

kWk ⊆
⊕

j Vξj ⊗V ∗τ where

each of Wk occurs in H of G0 by Lemma 3.3.1.

We assert that if Wk ⊆ Vξj ⊗V ∗τ , then Vξj |0MG0
is equivalent to a multiple of

Vτ and Vξj ⊆ H ⊗ Vτ . Indeed, if Wk ⊆ Vξj ⊗ V ∗τ , then Vξj ⊆ Wk ⊗ Vτ , hence claim

is true by Lemma 5.4.1. This observation is important because of the following.

First, recall from remark in the beginning of the chapter the decomposition Vξ|Kα =⊕n(ξ)
j=1 Vτj ⊕

⊕
k Vk where Vτj

∼= Vτ as 0MG-modules, and Vk ∼= Vτ as 0MG-modules

where Vτ is the other half Spin representation or the other Pin representation

restricted to 0MG. As Vξ ⊆ H ⊗ Vτ , we only consider Vτ1 , ..., Vτn(ξ)
in the definition

of P ξ matrix.
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Since the statement of the theorem is true for G0 with the restated condition

and as the set of tα weights of interest are the same after branching down to K0

by Lemma 3.3.1, we have the statement of the theorem for all positive roots α

of Lie(G0) ⊆ Lie(G). Note Vξj ⊗ V ∗τ decomposes into distinct K0-modules by

Corollary 3.4 of [Ku] as V ∗τ is multiplicity free. Therefore, if Wk
∼= Wl with

k 6= l, then Wk and Wl cannot be contained in a single Vξj ⊗ V ∗τ , important as the

statement of the theorem for G0 also assumes distinct Vγs.

By Proposition 6.11 of [Bou], any positive root β ∈ Lie(G) must be conju-

gate to some simple root α via an element of the Weyl groupW (A) = NK(A)/ZK(A),

hence tβ must be conjugate to tα for some simple root α via an element ofK. There-

fore, the set of tα-weights of interest is the same for all positive root αs of same

length and we have the statement of the theorem.

7.2 Comparison of tα-weights for short roots of

Lie( ˜SO(q + 1, q))

7.2.1 The Groups ˜Spin(p, q), ˜Pin(p, q) (p ≥ q ≥ 3, p = q or p =

q + 1) and their Small K-types

Denote by ˜Spin(p, q) the connected, simply connected R-split Lie group of

type Bq (p = q + 1, q ≥ 3) or Dq (p = q ≥ 3) with maximal compact subgroup

K = Spin(p)×Spin(q). 0M ˜Spin(p,q)
is isomorphic to 0M ˜SL(q,R)

× µ2 where 0M ˜SL(q,R)

sits diagonally in K and the µ2 can either be (±1, 1) or (1,±1) ≤ K.

˜Spin(q, q) has small K-type Vτ the Spin-representation or either of the two

half Spin-representations of Spin(q) depending on the parity of q, after projection

onto either the first or the second factor of K = Spin(q)× Spin(q).

If q is odd, ˜Spin(q + 1, q) has small K-type Vτ the Spin-representation after

projection onto the second factor of K = Spin(q + 1) × Spin(q) or either of the

two half Spin-representations of Spin(q+1) after projection onto the first factor of

K = Spin(q+ 1)×Spin(q). If q is even, ˜Spin(q + 1, q) has small K-type Vτ either

of the two half Spin-representations of Spin(q) after projection onto the second
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factor of K = Spin(q + 1)× Spin(q).

Denote by ˜Pin(p, q) the corresponding covering group of Pin(p, q) with

maximal compact subgroup Pin(p)×Pin(q). 0M ˜Pin(p,q)
is isomorphic to 0M ˜GL(q,R)

×
µ2 where 0M ˜GL(q,R)

sits diagonally in Pin(p) × Pin(q) and the µ2 can either be

(±1, 1) or (1,±1) ∈ Pin(p)×Pin(q). The following are smallK = Pin(p)×Pin(q)-

types for ˜Pin(p, q).

Definition 7.2.2.

• ˜Pin(q, q) has small K-type VT the Pin representation or either of the two

Pin representations of Pin(q) depending on the parity of q, after projection

onto either the first or the second factor of K = Pin(q)× Pin(q).

• If q is odd, ˜Pin(q + 1, q) has small K-type VT either of the two Pin repre-

sentations of Pin(q) after projection onto the second factor of K = Pin(q +

1) × Pin(q). If q is even, ˜Pin(q + 1, q) has small K-type VT the Pin repre-

sentation of Pin(q) after projection onto the second factor of K = Pin(q +

1) × Pin(q) or either of the two either of the two Pin representations of

Pin(q+ 1) after projection onto the first factor of K = Pin(q+ 1)×Pin(q).

Remark 7.2.2 0M ˜Spin(p,q)
∼= 0M ˜SL(q,R)

× µ2 and 0M ˜Pin(p,q)
∼= 0M ˜GL(q,R)

× µ2.

In either case the µ2 acts trivially on H the space of harmonics as it is central

in K and the µ2 can be chosen to act trivially on the small K-type described

above. Therefore, in the case of ˜Spin(p, q), (H ⊗ Vτ )|0M ˜Spin(p,q)
decomposes in the

same way as (H ⊗ Vτ )|0M ˜SL(q,R)
where 0M ˜SL(q,R)

is the one sitting diagonally in

K = Spin(p) × Spin(q). In the case of ˜Pin(p, q), (H ⊗ VT)|0M ˜Pin(p,q)
decomposes

in the same way as (H ⊗ VT)|0M ˜GL(q,R)
where 0M ˜GL(q,R)

is the one sitting diagonally

in K = Pin(p)× Pin(q).

Consider the embedding i : O(q, q) ↪→ SO(q+ 1, q+ 1)◦ where the image of

the maximal compact subgroup O(q)×O(q) of O(q, q) under i is contained in the

maximal compact subgroup SO(q + 1)× SO(q + 1) of SO(q + 1, q + 1)◦ such that

if (g, h) ∈ O(q)×O(q),
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i((g, h)) =

(
g 0

0 det(g)−1

)
,

(
h 0

0 det(h)−1

)
∈ SO(q + 1)× SO(q + 1)

Let p : ˜Spin(q + 1, q + 1) → SO(q + 1, q + 1)◦ be the covering homomor-

phism. We have that p−1(i(O(q, q))) is a Lie subgroup isomorphic to ˜Pin(q, q),

hence we have an embedding ĩ : ˜Pin(q, q) ↪→ ˜Spin(q + 1, q + 1).

Lemma 7.2.3. Consider the embedding ĩ : ˜Pin(q, q) ↪→ ˜Spin(q + 1, q + 1) de-

scribed above. We have ĩ(0M ˜Pin(q,q)
) = 0M ˜Spin(q+1,q+1)

.

Proof. We have

0MSO(q+1,q+1)◦ = {

(
g 0

0 det(g)−1

)
,

(
g 0

0 det(g)−1

)
|g ∈ O(q) diagonal}

, the image of 0MO(q,q) under the map i. Hence i(0MO(q,q)) = 0MSO(q+1,q+1)◦ . As

ĩ(0M ˜Pin(q,q)
) = p−1(i(0MO(q,q))) and 0M ˜Spin(q+1,q+1)

= p−1(0MSO(q+1,q+1)◦), we have

the statement of the lemma.

Let p : ˜Pin(q, q)→ O(q, q) be the covering homomorphism. Pin(q)×Pin(q)

is generated by Spin(q)× Spin(q), p−1(g0, Id), and p−1(Id, g0) where g0 is defined

in 5.2.1. 0M ˜Pin(q,q)
is generated by 0M ˜Spin(q,q)

and p−1(g0, g0).

7.2.4 Restriction of Pin(q) × Pin(q) modules to Spin(q) ×

Spin(q) and tε1-weights

Irreducible representations of Spin(q) × Spin(q) and Pin(q) × Pin(q) are

outer tensor products of irreducible representations of Spin(q) and Pin(q) respec-

tively, discussed in section 5.2. Recall the definition of ζ from 5.2.1.

Definition 7.2.5.

• Let q = 2k, and VΓ be an irreducible representation of Pin(q). Let Vγ be an

irreducible representation of Spin(q) that occurs in the restriction of VΓ to

Spin(q) with highest weight (λ1, ..., λk). If λk 6= 0, denote by Vγ = ζ · Vγ so
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that VΓ = Vγ ⊕ Vγ. If λk = 0, denote by V +
γ (resp. V −γ ) the Pin(q) module

whose restriction to Spin(q) is Vγ with action of ζ on the highest weight

vector by +Id (resp. − Id).

• Let q = 2k+ 1, and VΓ be an irreducible representation of Pin(q). Let Vγ be

an irreducible representation of Spin(q) that occurs in the restriction of VΓ

to Spin(q). Denote by V +
γ (resp. V −γ ) the Pin(q) module whose restriction

to Spin(q) is Vγ with action of ζ by +Id (resp. − Id).

Let Vγ and VΓ be an irreducible Spin(q)×Spin(q)-module and an irreducible

Pin(q) × Pin(q)-module respectively. Let Vγ = Vγ1 ⊗ Vγ2 and VΓ = VΓ1 ⊗ VΓ2

where Vγ1 , Vγ2 are irreducible Spin(q) modules and VΓ1 , VΓ2 are irreducible Pin(q)

modules.

Lemma 7.2.6. Let q = 2k, (m1, ...,mk) the highest weight of Vγ1, (n1, ..., nk) the

highest weight of Vγ2, and assume Vγ occurs in VΓ if we restrict to Spin(q)×Spin(q)

from Pin(q)× Pin(q).

• If mk 6= 0 and nk 6= 0, VΓ|Spin(q)×Spin(q) =
⊕

ε1=±,ε2=± V(m1,...,mk−1,ε1mk) ⊗
V(n1,...,nk−1,ε2nk) where (ζ, Id) ∈ Pin(q)×Pin(q) swaps the two highest weight

modules V(m1,...,mk−1,ε1mk)⊗V(n1,...,nk−1,ε2nk) and V(m1,...,mk−1,−ε1mk)⊗V(n1,...,nk−1,ε2nk),

(Id, ζ) swaps the two highest weight modules V(m1,...,mk−1,ε1mk)⊗V(n1,...,nk−1,ε2nk)

and V(m1,...,mk−1,ε1mk) ⊗ V(n1,...,nk−1,−ε2nk).

• If mk 6= 0 and nk = 0, VΓ|Spin(q)×Spin(q) =
⊕

ε1=± V(m1,...,mk−1,ε1mk)⊗V(n1,...,nk−1,0)

where (ζ, Id) swaps the two highest weight modules V(m1,...,mk−1,ε1mk)⊗V(n1,...,nk−1,0)

and V(m1,...,mk−1,−ε1mk) ⊗ V(n1,...,nk−1,0) and (Id, ζ) acts on the highest weight

vector of V(m1,...,mk−1,ε1mk) ⊗ V(n1,...,nk−1,0) by ±Id.

• If mk = 0 and nk 6= 0, VΓ|Spin(q)×Spin(q) =
⊕

ε2=± V(m1,...,mk−1,0)⊗V(n1,...,nk−1,ε2nk)

where (Id, ζ) swaps the two highest weight modules V(m1,...,mk−1,0)⊗V(n1,...,nk−1,ε2nk)

and V(m1,...,mk−1,0) ⊗ V(n1,...,nk−1,−ε2nk) and (ζ, Id) acts on the highest weight

vector of V(m1,...,mk−1,0) ⊗ V(n1,...,nk−1,ε2nk) by ±Id.
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• If mk = 0 and nk = 0, VΓ|Spin(q)×Spin(q) = V(m1,...,mk−1,0) ⊗ V(n1,...,nk−1,0) where

(ζ, Id) and (Id, ζ) act by ±Id on the highest weight vector of V(m1,...,mk−1,0)⊗
V(n1,...,nk−1,0).

Proof. As irreducible representations of Pin(q)×Pin(q) are outer tensor products

of irreducible representations of each of the two Pin(q)s, we have the statements

of the lemma by Theorem 5.2.3.

Lemma 7.2.7. Let q = 2k+1, (m1, ...,mk) the highest weight of Vγ1, (n1, ..., nk) the

highest weight of Vγ2, and assume Vγ occurs in VΓ if we restrict to Spin(q)×Spin(q)

from Pin(q)×Pin(q). Then, VΓ|Spin(q)×Spin(q) = Vγ1⊗Vγ2 where (ζ, Id) and (Id, ζ)

act by ±Id on Vγ1 ⊗ Vγ2.

Proof. As irreducible representations of Pin(q)×Pin(q) are outer tensor products

of irreducible representations of each of the two Pin(q)s, we have the statements

of the lemma by Theorem 5.2.2.

Consider the short root ε1 of Lie( ˜Spin(q + 1, q)). ε1 = 1
2
(α1 + α2) where

α1 = ε1 +ε2, α2 = ε1−ε2 are positive roots of Lie( ˜Spin(q, q)). Recall the definition

of tε1 from 7.0.2. We have tε1 = 1
2
(tα1 + tα2). Note tε1 ∈ Lie(Spin(q) × Spin(q))C

for all q ≥ 3.

Recall the definition of tε1 weights δγε1,j and δΓ
ε1,j

from 5.5.1.

Theorem 7.2.8. Let q = 2k, and assume VΓ occurs in the harmonics H of

˜Pin(q, q). Let (m1, ...,mk) be the highest weight of Vγ1, (n1, ..., nk) be the high-

est weight of Vγ2, and assume Vγ = Vγ1 ⊗ Vγ2 occurs in VΓ if we restrict to

Spin(q)× Spin(q) from Pin(q)× Pin(q).

• If mk 6= 0 and nk 6= 0, then dim V
0M ˜Pin(q,q)

Γ = dim (Vγ1 ⊗ Vγ2)
0M ˜Spin(q,q) + dim

(Vγ1 ⊗ Vγ2)
0M ˜Spin(q,q), and {δΓ

ε1,1
, ..., δΓ

ε1,l(Γ)} is the disjoint union of those from

(Vγ1 ⊗ Vγ2)
0M ˜Spin(q,q) and (Vγ1 ⊗ Vγ2)

0M ˜Spin(q,q).

• If mk 6= 0 and nk = 0 or if mk = 0 and nk 6= 0, then dim V
0M ˜Pin(q,q)

Γ = dim

V
0M ˜Spin(q,q)
γ , and {δΓ

ε1,1
, ..., δΓ

ε1,l(Γ)} is the same as the set on V
0M ˜Spin(q,q)
γ .
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• If mk = 0 and nk = 0, then dim V
0M ˜Spin(q,q)
γ = dim (V +

γ1
⊗V +

γ2
)

0M ˜Pin(q,q) + dim

(V +
γ1
⊗V −γ2

)
0M ˜Pin(q,q) = dim (V −γ1

⊗V −γ2
)

0M ˜Pin(q,q) + dim (V −γ1
⊗V +

γ2
)

0M ˜Pin(q,q), and

{δγε1,1, ..., δ
γ
ε1,l(γ)} is the disjoint union of those from (V +

γ1
⊗ V +

γ2
)

0M ˜Pin(q,q) and

(V +
γ1
⊗ V −γ2

)
0M ˜Pin(q,q) or the disjoint union of those from (V −γ1

⊗ V −γ2
)

0M ˜Pin(q,q)

and (V −γ1
⊗ V +

γ2
)

0M ˜Pin(q,q).

Proof. As we are working with submodules of the harmonics, we can ignore the

tilde and consider 0MO(q,q) and 0MSO(q,q)◦ invariants. Recall that 0MO(q,q) is gener-

ated by 0MSO(q,q)◦ and (g0, g0).

First consider the case mk 6= 0 and nk 6= 0. From Lemma 7.2.6, we have

VΓ|SO(q)×SO(q) = (Vγ1⊗Vγ2)⊕ (Vγ1⊗Vγ2)⊕ (Vγ1⊗Vγ2)⊕ (Vγ1⊗Vγ2) where (g0, g0) ∈
O(q) × O(q) swaps the two highest weight modules Vγ1 ⊗ Vγ2 and Vγ1 ⊗ Vγ2 , and

the two highest weight modules Vγ1 ⊗ Vγ2 and Vγ1 ⊗ Vγ2 . As (g0, g0) commutes

with 0MSO(q,q)◦ , (g0, g0) gives us a bijection of 0MSO(q,q)◦ invariants of Vγ1⊗Vγ2 with

those of Vγ1⊗Vγ2 , and a bijection of 0MSO(q,q)◦ invariants of Vγ1⊗Vγ2 with those of

Vγ1 ⊗ Vγ2 . As 0MO(q,q) is generated by 0MSO(q,q)◦ and (g0, g0), and as (g0, g0) leaves

invariant t2ε1 , we have the first statement of the lemma.

Consider the case mk 6= 0 and nk = 0 or if mk = 0 and nk 6= 0. Without

loss of generality, assume mk 6= 0 and nk = 0. From Lemma 7.2.6, we have

VΓ|SO(q)×SO(q) = (Vγ1⊗Vγ2)⊕(Vγ1⊗Vγ2) where (g0, g0) swaps the two highest weight

modules Vγ1⊗Vγ2 and Vγ1⊗Vγ2 . As (g0, g0) commutes with 0MSO(q,q)◦ , (g0, g0) gives

us a bijection of 0MSO(q,q)◦ invariants of Vγ1⊗Vγ2 with those of Vγ1⊗Vγ2 . As 0MO(q,q)

is generated by 0MSO(q,q)◦ and (g0, g0), and as (g0, g0) leaves invariant t2ε1 , we have

the second statement of the lemma.

Now consider the case mk = 0 and nk = 0. Let v1, ..., vl(γ) a basis of

V
0MSO(q,q)◦
γ such that (g0, g0) acts on vj by ±Id for all j, which is possible since

(g0, g0)2 = (Id, Id) and (g0, g0) commutes with 0MSO(q,q)◦ . Denote by v+
1 , ..., v

+
l(γ)

and v−1 , ..., v
−
l(γ) above basis thought of being in (V +

γ1
⊗ V +

γ2
) and (V +

γ1
⊗ V −γ2

) re-

spectively. If we denote by ε the action of (g0, g0) on v+
1 , ..., v

+
l(γ), we assert that

(g0, g0) will act by −ε on v−1 , ..., v
−
l(γ). Indeed, vj = Xj.v where Xj ∈ U(n) and v

is the highest weight vector of Vγ. Since (g0, g0) acts by different signatures on v

for (V +
γ1
⊗ V +

γ2
) and (V +

γ1
⊗ V −γ2

), the statement is now clear. We argue exactly the
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same way for the modules (V −γ1
⊗ V −γ2

) and (V −γ1
⊗ V +

γ2
).

Theorem 7.2.9. Let q = 2k + 1 and assume VΓ occurs in the harmonics H

of ˜Pin(q, q). Assume Vγ occurs in VΓ if we restrict to Spin(q) × Spin(q) from

Pin(q) × Pin(q). Then dim V
0M ˜Pin(q,q)

Γ = dim V
0M ˜Spin(q,q)
γ , and {δΓ

ε1,1
, ..., δΓ

ε1,l(Γ)} is

exactly those of V
0M ˜Spin(q,q)
γ .

Proof. As we are working with submodules of the harmonics, we can ignore the

tilde and consider 0MO(q,q) and 0MSO(q,q)◦ invariants. Recall that 0MO(q,q) is gener-

ated by 0MSO(q,q)◦ and (g0, g0).

First, VΓ = Vγ as a space by Lemma 7.2.7. Since VΓ occurs in the harmonics

and (g0, g0) ∈ 0MO(q,q) is central, it must act by identity. Therefore, (g0, g0) acts

by either (+,+) or (−,−). In any case, there is no difference between V
0M ˜Pin(q,q)

Γ

and V
0M ˜Spin(q,q)
γ .

Lemma 7.2.10. Let VΞ be an irreducible Pin(q) × Pin(q)-module that occurs in

H ⊗ VT. Then, VΞ|0M ˜Pin(q,q)
=
⊕n(Ξ)

j=1 VTj where VTj
∼= VT as 0M ˜Pin(q,q)

-modules for

all j = 1, ..., n(Ξ).

Proof. First recall from Remark 7.2.2 that (H ⊗ VT)|0M ˜Pin(q,q)
decomposes in the

same way as (H ⊗ VT)|0M ˜GL(q,R)
where 0M ˜GL(q,R)

is the one sitting diagonally in

K = Pin(q)× Pin(q). If q is even, there is only one choice of VT|0M ˜Pin(q,q)
. If q is

odd, (ζ, ζ) ∈ 0M ˜Pin(q,q)
distinguishes the two small Pin(q)× Pin(q) types defined

in 7.2.2 as 0M ˜Spin(q,q)
does not. But, (ζ, ζ) is also central, hence it must act trivially

on H. Therefore, (ζ, ζ) acts by a single sign on H⊗VT and we have the statement

of the lemma.

Recall the definition of tε1 weights δξε1,j and δΞ
ε1,j

from 5.5.2. Denote by Kε1

the group generated by exp(i ∗ tε1) and 0M ˜Spin(q,q)
, and denote by K

ε1, ˜Pin(q,q)
the

group generated by exp(i ∗ tε1) and 0M ˜Pin(q,q)
.

Theorem 7.2.11. Let q = 2k and let VΞ be an irreducible Pin(q)×Pin(q)-module

that occurs in H ⊗ VT so that its restriction to Spin(q)× Spin(q) contains a copy
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of Vξ where Vξ ⊆ H ˜Spin(q,q)
⊗ Vτ or Vξ ⊆ H ˜Spin(q,q)

⊗ Vτ . Let Vξ = Vξ1 ⊗ Vξ2 with

(m1, ...,mk) the highest weight of Vξ1 and (n1, ..., nk) the highest weight of Vξ2.

• Let VT be the Pin representation of Pin(q) after projection onto the first

factor of Pin(q) × Pin(q). If nk 6= 0, then {δΞ
ε1,1
, ..., δΞ

ε1,n(Ξ)} is the disjoint

union of those from the Spin(q)× Spin(q) modules Vξ1 ⊗ Vξ2 and Vξ1 ⊗ Vξ2.

If nk = 0, then {δΞ
ε1,1
, ..., δΞ

ε1,n(Ξ)} is exactly same as those from the Spin(q)×
Spin(q) module Vξ1 ⊗ Vξ2.

• Let VT be the Pin representation of Pin(q) after projection onto the second

factor of Pin(q) × Pin(q). If mk 6= 0, then {δΞ
ε1,1
, ..., δΞ

ε1,n(Ξ)} is the disjoint

union of those from the Spin(q)×Spin(q) modules Vξ1⊗Vξ2 and Vξ1⊗Vξ2. If

mk = 0, then {δΞ
ε1,1
, ..., δΞ

ε1,n(Ξ)} is exactly same as those from the Spin(q) ×
Spin(q) module Vξ1 ⊗ Vξ2.

Proof. Assume VT is the Pin representation of Pin(q) after projection onto the first

factor of Pin(q)× Pin(q). mk 6= 0 as highest weight of Vξ1 must be half-integral.

Consider the case nk 6= 0. From Lemma 7.2.6, we have VΞ|Spin(q)×Spin(q) =

(Vξ1 ⊗Vξ2)⊕ (Vξ1 ⊗Vξ2)⊕ (Vξ1 ⊗Vξ2)⊕ (Vξ1 ⊗Vξ2) where (ζ, ζ) swaps Vξ1 ⊗Vξ2 and

Vξ1 ⊗ Vξ2 , and (ζ, ζ) swaps Vξ1 ⊗ Vξ2 and Vξ1 ⊗ Vξ2 .

Let (Vξ1 ⊗ Vξ2)|Kε1 = ⊕n(ξ1,ξ2)
j=1 Vj where Vj ∼= Vτ as 0M ˜Spin(q,q)

-modules for

all j or Vj ∼= Vτ as 0M ˜Spin(q,q)
-modules for all j with Vτ and Vτ the two small

Spin(q)× Spin(q) types by Lemma 7.0.3. Let (Vξ1 ⊗ Vξ2)|Kε1 = ⊕n(ξ1,ξ2)
k=1 Wk where

Wk
∼= Vτ as 0M ˜Spin(q,q)

-modules for all k or Wk
∼= Vτ as 0M ˜Spin(q,q)

-modules for all

k with Vτ and Vτ the two small Spin(q)× Spin(q) types by Lemma 7.0.3.

We have VΞ|K
ε1,

˜Pin(q,q)
=
⊕n(ξ1,ξ2)

j=1 (Vj⊕(ζ, ζ) ·Vj)⊕
⊕n(ξ1,ξ2)

k=1 (Wk⊕(ζ, ζ) ·Wk)

by Lemma 7.2.10. Therefore we have the first statement of the first case of the

lemma as (ζ, ζ) commutes with t2ε1 .

If nk = 0, we have by Lemma 7.2.6 VΞ|Spin(q)×Spin(q) = (Vξ1⊗Vξ2)⊕(Vξ1⊗Vξ2)

where (ζ, ζ) swaps Vξ1 ⊗ Vξ2 and Vξ1 ⊗ Vξ2 . Let (Vξ1 ⊗ Vξ2)|Kε1 = ⊕n(ξ1,ξ2)
j=1 Vj where

Vj ∼= Vτ as 0M ˜Spin(q,q)
-modules for all j or Vj ∼= Vτ as 0M ˜Spin(q,q)

-modules for all j

with Vτ and Vτ the two small Spin(q)× Spin(q) types by Lemma 7.0.3.
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We have VΞ|K
ε1,

˜Pin(q,q)
=
⊕n(ξ1,ξ2)

j=1 (Vj ⊕ (ζ, ζ) · Vj) by Lemma 7.2.10. There-

fore we have the second statement of the first case of the lemma as (ζ, ζ) commutes

with t2ε1 .

The second case can be shown similarly as in the first case.

Theorem 7.2.12. Let q = 2k + 1 and let VΞ be an irreducible Pin(q) × Pin(q)-

module that occurs in H ⊗ VT so that its restriction to Spin(q) × Spin(q) is an

irreducible module Vξ where Vξ ⊆ H ˜Spin(q,q)
⊗ Vτ . Let VΞ|K

ε1,
˜Pin(q,q)

=
⊕n(Ξ)

j=1 VTj ,

and Vξ|K
ε1,

˜Spin(q,q)
=
⊕n(ξ)

j=1 Vτj . Then, n(Ξ) = n(ξ), and δΞ
ε1,j

= δξε1,j for all j after

reordering.

Proof. 0M ˜Pin(q,q)
is generated by 0M ˜Spin(q,q)

and (ζ, ζ) where (ζ, ζ) acts by a single

sign on the entire space H⊗VT. Therefore, it is clear that n(Ξ) = n(ξ) by Lemma

7.2.7, and hence the statement of the weights is also clear.

7.2.13 Comparison of tα-weights for short roots of

Lie( ˜SO(q + 1, q))

Recall the assumptions of Theorem 6.1.1.

Theorem 7.2.14. Let Vγ1 , ..., VγN be distinct K = Spin(q)×Spin(q)-types that oc-

cur in H ˜Spin(q,q)
such that Vξ ⊆ Vγj⊗Vτ . ΣN

j=1l(γj) = n(ξ). If Vτ is the Spin repre-

sentation or either of the two half-Spin representations of Spin(q) after projection

onto the first factor of K, after reordering, δξε1,j = δε1,j ± 1
2

for each j = 1, ..., n(ξ).

If Vτ is the Spin representation or either of the two half-Spin representations of

Spin(q) after projection onto the second factor of K, after reordering, δξε1,j = δε1,j

for each j = 1, ..., n(ξ).

First we state a lemma for the Theorem.

Lemma 7.2.15. Assume the statement of tε1-weights in Theorem 7.2.14 for the

modules of the group Spin(q) × Spin(q). Then the statement of tε1-weights in

Theorem 7.2.14 for the modules of the group Pin(q)× Pin(q) is also true.

Proof. Assume VT is Pin representation or either of the two Pin representations

of Pin(q) after projection onto the second factor of Pin(q)× Pin(q).



60

Assume first q is odd hence VT is either of the two Pin representations

of Pin(q) after projection onto the second factor of Pin(q) × Pin(q). Let VΞ ⊆
H ˜Pin(q,q)

⊗VT and let VΓ1 , ..., VΓN be distinct Pin(q)×Pin(q) modules that occur in

H ˜Pin(q,q)
such that VΞ ⊆ VΓj⊗VT for all j. Without loss of generality, assume (ζ, ζ)

acts on VT by Id, i.e. (Id, ζ) acts on VT by Id as VT is the Pin representation of

Pin(q) after projection of Pin(q)×Pin(q) onto the second factor. Without loss of

generality, assume (Id, ζ) acts on VΞ by Id. As VΞ ⊆ VΓj⊗VT for all j, (Id, ζ) must

act by Id on VΓj for all j. As (ζ, ζ) ∈ 0M ˜Pin(q,q)
is central, (ζ, ζ) must act by Id on

VΓj for all j. Therefore, we have that the action of (ζ, ζ) on VΓj must be (+,+)

for all j. This observation gives us the following. If VΓj |(Spin(q)×Spin(q)) = Vγj where

Vγ1 , ..., VγN are irreducible Spin(q)×Spin(q) modules by Lemma 7.2.7, Vγ1 , ..., VγN

are distinct.

Now let VΞ|(Spin(q)×Spin(q)) = Vξ where Vξ is irreducible by Lemma 7.2.7. We

have Vξ ⊆ H ˜Spin(q,q)
⊗Vτ , and Vγ1 , ..., VγN are distinct irreducible modules that occur

in H ˜Spin(q,q)
by Theorem 7.2.9, and Vξ ⊆ Vγj ⊗ Vτ for all j = 1, ..., N . By Theorem

7.2.9 and Theorem 7.2.12, this restriction of Pin(q)×Pin(q) to Spin(q)×Spin(q)

do not change the set of tε1 weights of interest. Therefore, by the assumption of

the lemma, we have the result for q odd.

Assume now q = 2k is even hence VT is Pin representation after projec-

tion onto the second factor of Pin(q) × Pin(q). Let VΞ ⊆ H ˜Pin(q,q)
⊗ VT and let

VΓ1 , ..., VΓM be distinct Pin(q)× Pin(q) modules that occur in H ˜Pin(q,q)
such that

VΞ ⊆ VΓj ⊗VT for all j. By Lemma 7.2.6, let Vξ1⊗Vξ2 be a choice of an irreducible

Spin(q)× Spin(q) module that occurs in VΞ|(Spin(q)×Spin(q)) such that (m1, ...,mk)

is the highest weight of Vξ1 and (n1, ..., nk) is the highest weight of Vξ2 with mk,

nk ≥ 0.

Assume first mk = 0. For each j = 1, ...,M , let Vγj,1⊗Vγj,2 be a choice of an

irreducible Spin(q) × Spin(q) module that occurs in VΓj |(Spin(q)×Spin(q)) with last

entries of the highest weights of Vγj,1 and Vγj,2 nonnegative. In fact, Vγj,1 = Vξ1 .

Now, reorder so that Vγ1,1 ⊗ Vγ1,2 , ..., VγN,1 ⊗ VγN,2 are distinct Spin(q) × Spin(q)

modules. N ≤ M as there may be j such that Vγj,1 ⊗ Vγj,2 occurs twice with

different (Id, ζ) signature on the highest weight vector. Vξ1 ⊗ Vξ2 ⊆ H ˜Spin(q,q)
⊗ Vτ
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or Vξ1 ⊗ Vξ2 ⊆ H ˜Spin(q,q)
⊗ Vτ but not both by Lemma 7.0.3. Without loss of

generality, assume Vξ1 ⊗ Vξ2 ⊆ H ˜Spin(q,q)
⊗ Vτ . Vγ1,1 ⊗ Vγ1,2 , ..., VγN,1 ⊗ VγN,2 are

distinct Spin(q) × Spin(q) modules that occur in H ˜Spin(q,q)
by Theorem 7.2.8,

and we have Vξ1 ⊗ Vξ2 ⊆ (Vγj,1 ⊗ Vγj,2) ⊗ Vτ for all j = 1, ..., N . Therefore, we

can assume the statement of the tε1 weights on these Spin(q) × Spin(q) modules

by the assumption of the lemma. But by Theorem 7.2.8 and Theorem 7.2.11,

comparison of tε1 weights for the modules of the group Pin(q)× Pin(q) is that of

Vξ1⊗Vξ2 , Vγ1,1⊗Vγ1,2 , ..., VγN,1⊗VγN,2 of Spin(q)×Spin(q). Therefore, we have the

result for q = 2k where mk = 0.

Assume now mk 6= 0. For each j = 1, ...,M , let Vγj,1 ⊗ Vγj,2 be a choice

of an irreducible Spin(q)× Spin(q) module that occurs in VΓj |(Spin(q)×Spin(q)) with

last entry of the highest weight of Vγj,2 nonnegative. We have Vγj,1 = Vξ1 for all j.

Now, reorder so that Vγ1,1 ⊗ Vγ1,2 , ..., VγN,1 ⊗ VγN,2 are distinct Spin(q) × Spin(q)

modules. N ≤ M as there may be j such that Vγj,1 ⊗ Vγj,2 occurs twice with

different (Id, ζ) signature on the highest weight vector. Vξ1⊗Vξ2 ⊆ H ˜Spin(q,q)
⊗Vτ or

Vξ1⊗Vξ2 ⊆ H ˜Spin(q,q)
⊗Vτ but not both by Lemma 7.0.3. Without loss of generality,

assume Vξ1 ⊗ Vξ2 ⊆ H ˜Spin(q,q)
⊗ Vτ . We have Vξ1 ⊗ Vξ2 ⊆ (Vγj,1 ⊗ Vγj,2)⊗ Vτ for all

j = 1, ..., N . Therefore, we can assume the statement of the tε1 weights on these

Spin(q) × Spin(q) modules by the assumption of the lemma. Note for some j,

dim (Vγj,1 ⊗ Vγj,2)
0M ˜Spin(q,q) may be zero because of the first statement of Theorem

7.2.8. In this case, we just ignore (Vγj,1 ⊗ Vγj,2) in the comparison of tε1 weights.

Now, Vγ1,1 ⊗ Vγ1,2 , ..., VγN,1 ⊗ VγN,2 are distinct Spin(q) × Spin(q) modules

such that Vξ1 ⊗Vξ2 ⊆ (Vγj,1 ⊗Vγj,2)⊗Vτ for all j = 1, ..., N . Therefore, we can also

assume the statement of the tε1 weights on these Spin(q) × Spin(q) modules by

the assumption of the lemma. Note for some j, dim (Vγj,1 ⊗ Vγj,2)
0M ˜Spin(q,q) may be

zero because of the first statement of Theorem 7.2.8. In this case, we just ignore

(Vγj,1 ⊗ Vγj,2) in the comparison of tε1 weights.

By Theorem 7.2.8 and Theorem 7.2.11, comparison of tε1 weights for the

modules of the group Pin(q)×Pin(q) is that of Vξ1⊗Vξ2 , Vγ1,1⊗Vγ1,2 , ..., VγN,1⊗VγN,2
of Spin(q)×Spin(q) and Vξ1⊗Vξ2 , Vγ1,1⊗Vγ1,2 , ..., VγN,1⊗VγN,2 of Spin(q)×Spin(q).

Therefore, we have the result for q = 2k where mk 6= 0.
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The case where VT is Pin representation or either of the two Pin represen-

tations of Pin(q) after projection onto the first factor of Pin(q) × Pin(q) can be

shown similarly as above.

Proof. (Theorem 7.2.14)

ΣN
j=1l(γj) = n(ξ) by Lemma 7.0.4.

We first prove the statement of the theorem for q = 3. In this case, K =

Spin(3)×Spin(3) ∼= SU(2)×SU(2) where 0M is isomorphic to 0M ˜SL(3,R)
×µ2 with

0M ˜SL(3,R)
sitting in K diagonally and µ2 central in K. Again, by Remark 7.2.2,

this µ2 acts trivially on H and Vτ . We have tε1 = (tβ, 0) ∈ su2⊕su2 where β is that

of Lie( ˜SL(3,R)). An irreducible representation of K = SU(2)×SU(2) is an outer

tensor product of that of each of the two SU(2)s. Let Vr and Ws be irreducible

representations of each of SU(2) with highest weights r and s respectively. Note

the weights of Vr are −r,−r + 1, ..., r − 1, r and similarly for Ws. Denote these

weight vectors by v−r, v−r+1, ..., vr−1, vr and similarly for Ws.

Assume first Vτ is the Spin representation of Spin(3) after projection onto

the second factor of K = Spin(3)× Spin(3).

Let Vξ ⊆ H⊗Vτ with Vξ ∼= Vr⊗Ws. There is at most two Vγ ⊆ H such that

Vξ ⊆ Vγ ⊗ Vτ , Vγ1 = Vr ⊗Ws1 and Vγ2 = Vr ⊗Ws2 with s1 = s+ 1
2

and s2 = s− 1
2
.

Consider vi ⊗ wj ∈ Vr ⊗Ws1 and vi ⊗ wj ∈ Vr ⊗Ws2 . In order for them to be

candidates for dominant tε1-weight vectors from 0M invariant vectors, i + j must

be even, and i ≥ 0.

First, if i + s1 is even and i ≥ 0, then cover vi ⊗ ws1 with vi ⊗ ws and

vi ⊗ w−s1 with vi ⊗ w−s. Now assume i+ j is even with i ≥ 0 and j 6= s1. We use

vi ⊗ wj± 1
2
∈ Vr ⊗Ws to cover the two vi ⊗ wj ∈ Vr ⊗Ws1 and vi ⊗ wj ∈ Vr ⊗Ws2 .

The only ambiguity is when i = j = 0, since we can’t use both v0 ⊗ w± 1
2
∈

Vr ⊗Ws as the two come from a single Vτ . But exactly one of the two sets {r, s1}
and {r, s2} must consist of two numbers that are of different parity. Without loss

of generality assume r and s1 are of different parity. Then v0 ⊗ w0 ∈ Vr ⊗Ws1 is

not 0M invariant, hence the ambiguity is now cleared.
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Now assume Vτ is the Spin representation of Spin(3) after projection onto

the first factor of K = Spin(3)× Spin(3).

Let Vξ ⊆ H⊗Vτ with Vξ ∼= Vr⊗Ws. There is at most two Vγ ⊆ H such that

Vξ ⊆ Vγ ⊗ Vτ , Vγ1 = Vr1 ⊗Ws and Vγ2 = Vr2 ⊗Ws with r1 = r + 1
2

and r2 = r − 1
2
.

Consider vi ⊗ wj ∈ Vr1 ⊗Ws and vi ⊗ wj ∈ Vr2 ⊗Ws. In order for them to be

candidates for dominant tε1-weight vectors from 0M invariant vectors, i + j must

be even, and i ≥ 0.

First, if r1 + j is even, then cover vr1 ⊗wj with vr ⊗wj and vr1 ⊗w−j with

vr⊗w−j. Now assume i+j is even with i ≥ 0 and i 6= r1. We use vi± 1
2
⊗wj ∈ Vr⊗Ws

to cover the two vi ⊗ wj ∈ Vr1 ⊗Ws and vi ⊗ wj ∈ Vr2 ⊗Ws.

The only ambiguity is when i = j = 0, since we can’t use both v± 1
2
⊗ w0 ∈

Vr ⊗ Ws as v− 1
2
⊗ w0 is not a dominant tε1-weight vector. But exactly one of

the two sets {r1, s} and {r2, s} must consist of two numbers that are of different

parity. Without loss of generality assume r1 and s are of different parity. Then

v0 ⊗ w0 ∈ Vr1 ⊗Ws is not 0M invariant, hence the ambiguity is now cleared.

We now proceed with induction. Assume the statement of the theorem

for ˜Spin(q, q), hence the statement of the theorem for ˜Pin(q, q) with maximal

compact subgroup Pin(q)× Pin(q) by Lemma 7.2.15. We prove the statement of

the theorem for ˜Spin(q + 1, q + 1). Note ĩ(0M ˜Pin(q,q)
) = 0M ˜Spin(q+1,q+1)

by Lemma

7.2.3 where ĩ is the embedding ĩ : ˜Pin(q, q) ↪→ ˜Spin(q + 1, q + 1).

The condition Vξ ⊆ Vγj ⊗ Vτ can be restated as Vγj ⊆ Vξ ⊗ V ∗τ . Note the

statement of the theorem is true for ˜Pin(q, q) with the restated condition. Let

Vγ1 , ..., VγN be distinct irreducible Spin(q+ 1)×Spin(q+ 1)-modules that occur in

H such that Vγj ⊆ Vξ⊗V ∗τ , and let
⊕N

j=1 Span (Pin(q)×Pin(q)).V
0M ˜Spin(q+1,q+1)
γj =⊕

kWk where each Wk is an irreducible Pin(q)×Pin(q)-module. As the nontrivial

element η ∈ µ2 ≤ 0M ˜Spin(q+1,q+1)
acts by −1 where µ2 is the kernel of the covering

homomorphism p : ˜Spin(q + 1, q + 1)→ Spin(q+1, q+1), Vξ|Pin(q)×Pin(q) =
⊕

j Vξj

where each of Vξj occurs in H ˜Pin(q,q)
⊗ Vτ by Lemma 7.0.3. We have

⊕
kWk ⊆⊕

j Vξj⊗V ∗τ where we also know each of Wk occurs in H ˜Pin(q,q)
since ĩ(0M ˜Pin(q,q)

) =

0M ˜Spin(q+1,q+1)
by Lemma 7.2.3 where ĩ : ˜Pin(q, q) ↪→ ˜Spin(q + 1, q + 1) is the

embeding.
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Since the statement of the theorem is true for ˜Pin(q, q) with the restated

condition and as the set of tε1 weights of interest are the same after branching

down to Pin(q) × Pin(q) because ĩ(0M ˜Pin(q,q)
) = 0M ˜Spin(q+1,q+1)

by Lemma 7.2.3,

we have the statement of the theorem for tε1 . Note Vξj ⊗ V ∗τ decomposes into

distinct Pin(q) × Pin(q)-modules by Corollary 3.4 of [Ku] as V ∗τ is multiplicity

free. Therefore, if Wk
∼= Wl with k 6= l, then Wk and Wl cannot be contained in

a single Vξj ⊗ V ∗τ , important as the statement of the theorem for ˜Pin(q, q) also

assumes distinct VΓs.

Remark For the connected, simply connected R-split Lie groups of type

Bq, if Vξ ⊆ H⊗Vτ , Vξ|0M =
⊕n(ξ)

j=1 Vτj ⊕
⊕

k Vk where Vτj
∼= Vτ as 0M -modules, and

Vk ∼= Vτ as 0M -modules. Hence the weights of interest are just that of
⊕n(ξ)

j=1 Vτj

from the definition of P ξ matrix in 4.1.

Theorem 7.2.16. Let α be a short root of Lie( ˜Spin(q + 1, q)). Let Vγ1 , ..., VγN be

distinct K = Spin(q + 1) × Spin(q)-types that occur in H of ˜Spin(q + 1, q) such

that Vξ ⊆ Vγj ⊗Vτ . ΣN
j=1l(γj) = n(ξ). If Vτ is a small K-type after projection onto

the first factor of K = Spin(q + 1)× Spin(q), after reordering, δξα,j = δα,j ± 1
2

for

each j = 1, ..., n(ξ). If Vτ is a small K-type after projection onto the second factor

of K = Spin(q+ 1)×Spin(q), after reordering, δξα,j = δα,j for each j = 1, ..., n(ξ).

We first need a lemma for the theorem. Consider the embedding i :

SO(q, q)◦ ↪→ SO(q + 1, q)◦ where the image of the maximal compact subgroup

SO(q)× SO(q) of SO(q, q)◦ under i is contained in the maximal compact sub-

group SO(q + 1)× SO(q) of SO(q + 1, q)◦ such that if (g, h) ∈ SO(q)× SO(q),

i((g, h)) =

(
g 0

0 1

)
, h ∈ SO(q + 1)× SO(q)

Let p : ˜Spin(q + 1, q)→ SO(q + 1, q)◦ be the covering homomorphism. We

have that p−1(i(SO(q, q)◦)) is a Lie subgroup isomorphic to ˜Spin(q, q), hence we

have an embedding ĩ : ˜Spin(q, q) ↪→ ˜Spin(q + 1, q).

Lemma 7.2.17. Consider the embedding ĩ : ˜Spin(q, q) ↪→ ˜Spin(q + 1, q) described

above. We have ĩ(0M ˜Spin(q,q)
) = 0M ˜Spin(q+1,q)

.
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Proof. We have

0MSO(q+1,q)◦ = {

(
g 0

0 1

)
, g | g ∈ 0MSL(q,R)}

, the image of 0MSO(q,q)◦ under the map i. Hence i(0MSO(q,q)◦) = 0MSO(q+1,q)◦ . As

ĩ(0M ˜Spin(q,q)
) = p−1(i(0MSO(q,q)◦)) and 0M ˜Spin(q+1,q)

= p−1(0MSO(q+1,q)◦), we have the

statement of the lemma.

Proof. (Theorem 7.2.16)

ΣN
j=1l(γj) = n(ξ) is Lemma 7.0.4.

We first show the statement for α = ε1.

Consider the embedding ĩ : ˜Spin(q, q) ↪→ ˜Spin(q + 1, q) where ĩ(0M ˜Spin(q,q)
) =

0M ˜Spin(q+1,q)
by Lemma 7.2.17.

We can restate the condition Vξ ⊆ Vγj ⊗ Vτ as Vγj ⊆ Vξ ⊗ V ∗τ . Note the

statement of the theorem is true with the restated condition for ˜Spin(q, q) by

Theorem 7.2.14.

Let Vγ1 , ..., VγN be distinct irreducible K-modules that occur in H such

that Vγj ⊆ Vξ⊗V ∗τ , and let
⊕N

j=1 Span (Spin(q)×Spin(q)).V
0M ˜Spin(q+1,q)
γj =

⊕
kWk

where each Wk is an irreducible Spin(q) × Spin(q)-module. As the nontrivial

element η ∈ µ2 ≤ 0M ˜Spin(q+1,q)
acts by −1 where µ2 is the kernel of the covering

homomorphism p : ˜Spin(q + 1, q) → Spin(q + 1, q), Vξ|(Spin(q)×Spin(q)) =
⊕

j Vξj

where each of Vξj occurs in H⊗Vτ or H⊗Vτ with H that of ˜Spin(q, q) and Vτ the

other half Spin representation. We have
⊕

kWk ⊆
⊕

j Vξj ⊗ V ∗τ where each of Wk

occurs in H of ˜Spin(q, q) as ĩ(0M ˜Spin(q,q)
) = 0M ˜Spin(q+1,q)

by Lemma 7.2.17 where ĩ

is the embedding ĩ : ˜Spin(q, q) ↪→ ˜Spin(q + 1, q).

We assert that if Wk ⊆ Vξj⊗V ∗τ , then Vξj |0M ˜Spin(q,q)
is equivalent to a multiple

of Vτ and Vξj ⊆ H ˜Spin(q,q)
⊗ Vτ . Indeed, if Wk ⊆ Vξj ⊗ V ∗τ , then Vξj ⊆ Wk ⊗

Vτ , hence claim is true by Lemma 7.0.3. This observation is important because

of the following. First, recall from remark in the beginning of the chapter the

decomposition Vξ|Kε1 =
⊕n(ξ)

j=1 Vτj⊕
⊕

k Vk where Vτj
∼= Vτ as 0M ˜Spin(q+1,q)

-modules,

and Vk ∼= Vτ as 0M ˜Spin(q+1,q)
-modules where Vτ is the other half Spin representation.

As Vξ ⊆ H ⊗ Vτ , we only consider Vτ1 , ..., Vτn(ξ)
in the definition of P ξ matrix.
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Since the statement of the theorem is true for ˜Spin(q, q) with the restated

condition and as the set of tε1 weights of interest are the same after branching

down to Spin(q)× Spin(q) because ĩ(0M ˜Spin(q,q)
) = 0M ˜Spin(q+1,q)

by Lemma 7.2.17,

we have the statement of the theorem for α = ε1. Note Vξj ⊗ V ∗τ decomposes into

distinct Spin(q) × Spin(q)-modules by Corollary 3.4 of [Ku] as V ∗τ is multiplicity

free. Therefore, if Wk
∼= Wl with k 6= l, then Wk and Wl cannot be contained in

a single Vξj ⊗ V ∗τ , important as the statement of the theorem for ˜Spin(q, q) also

assumes distinct Vγs.

By Proposition 6.11 of [Bou], any positive short root α of Lie( ˜Spin(q + 1, q))

must be conjugate to ε1 via an element of the Weyl group W (A) = NK(A)/ZK(A)

Therefore, the set of tα-weights of interest is the same as that of tε1 and we have

the statement of the theorem.

7.3 Comparison of tα-weights for type F4 and Com-

parison of tα-weights for short roots of Lie(G2)

Recall the assumptions of Theorem 6.1.1.

Theorem 7.3.1. Let G be the connected, simply connected R-split Lie group of

type F4. Let Vγ1 , ..., VγN be distinct K = Sp(3) × SU(2)-types that occur in H of

G such that Vξ ⊆ Vγj ⊗ Vτ . ΣN
j=1l(γj) = n(ξ). If α is a short root of Lie(G), after

reordering, δξα,j = δα,j for each j = 1, ..., n(ξ). If α is a long root of Lie(G), after

reordering, δξα,j = δα,j ± 1
2

for each j = 1, ..., n(ξ).

Proof. ΣN
j=1l(γj) = n(ξ) by Lemma 7.0.4.

Recall from chapter 3 the embedded subgroup ĩ : ˜Spin(5, 4) ↪→ G with

maximal compact subgroup Spin(5) × Spin(4). We have ĩ(0M ˜Spin(5,4)
) = 0MG

where the restriction of K = Sp(3) × SU(2) to Spin(5) × Spin(4) preserve 0MG-

invariants of H and the decomposition Vξ|0MG
by Lemma 3.3.1. But we also have

the embedding ĩ : ˜Spin(4, 4) ↪→ ˜Spin(5, 4) with ĩ(0M ˜Spin(4,4)
) = 0M ˜Spin(5,4)

by

Lemma 7.2.17. Hence we also have the embedding ĩ : ˜Spin(4, 4) ↪→ G where
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ĩ(0M ˜Spin(4,4)
) = 0MG and restriction of K = Sp(3)×SU(2) to the maximal compact

subgroup Spin(4) × Spin(4) of ˜Spin(4, 4) preserve 0MG-invariants of H and the

decomposition Vξ|0MG
.

If α is a positive long root of Lie(G), by Proposition 6.11 of [Bou], tα must

be conjugate to tβ via an element of K = Sp(3) × SU(2) where β is a positive

root of Lie( ˜Spin(4, 4)) ⊆ Lie(G). If α is a positive short root of Lie(G), tα must

be conjugate to tε1 where ε1 is a positive short root of Lie( ˜Spin(5, 4)) ⊆ Lie(G).

We have tε1 ∈ Lie(Spin(4)× Spin(4))C. Therefore, it will be enough to show the

statement for α a positive root of Lie( ˜Spin(4, 4)) ⊆ Lie(G) and ε1 a positive root

of Lie( ˜Spin(5, 4)) ⊆ Lie(G) where tε1 ∈ Lie(Spin(4)× Spin(4))C.

We can restate the condition Vξ ⊆ Vγj ⊗ Vτ as Vγj ⊆ Vξ ⊗ V ∗τ . Note the

statement of the theorem is true with the restated condition for ˜Spin(4, 4) by

Theorem 7.1.1 and Theorem 7.2.14.

Let Vγ1 , ..., VγN be distinct irreducible K-modules that occur in H such

that Vγj ⊆ Vξ ⊗ V ∗τ , and let
⊕N

j=1 Span (Spin(4) × Spin(4)).V
0MG
γj

=
⊕

kWk

where each Wk is an irreducible Spin(4)×Spin(4)-module. The nontrivial element

η ∈ µ2 ≤ 0MG acts by −1 where µ2 is the kernel of the covering homomorphism

p : ˜Spin(4, 4)→ Spin(4, 4) which is also the kernel of the covering homomorphism

p : G→ GR. Hence Vξ|Spin(4)×Spin(4) =
⊕

j Vξj where each of Vξj occurs in H ⊗ Vτ
or H ⊗ Vτ with H that of ˜Spin(4, 4) and Vτ the other half Spin representation

after projection onto the second factor of Spin(4) × Spin(4). We have
⊕

kWk ⊆⊕
j Vξj ⊗ V ∗τ where each of Wk occurs in H of ˜Spin(4, 4) as ĩ(0M ˜Spin(4,4)

) = 0MG.

We assert that if Wk ⊆ Vξj⊗V ∗τ , then Vξj |0M ˜Spin(4,4)
is equivalent to a multiple

of Vτ and Vξj ⊆ H ˜Spin(4,4)
⊗ Vτ . Indeed, if Wk ⊆ Vξj ⊗ V ∗τ , then Vξj ⊆ Wk ⊗

Vτ , hence claim is true by Lemma 7.0.3. This observation is important because

of the following. First, recall from remark in the beginning of the chapter the

decomposition Vξ|Kα =
⊕n(ξ)

j=1 Vτj ⊕
⊕

k Vk where Vτj
∼= Vτ as 0MG-modules, and

Vk ∼= Vτ as 0MG-modules where Vτ is the other half Spin representation restricted

to 0MG. As Vξ ⊆ H ⊗ Vτ , we only consider Vτ1 , ..., Vτn(ξ)
in the definition of P ξ

matrix.

Since the statement of the theorem is true for ˜Spin(4, 4) with the restated
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condition by Theorem 7.1.1 and Theorem 7.2.14 and as the set of tα weights of

interest and the set of tε1 weights of interest remain the same after branching down

to Spin(4) × Spin(4) because ĩ(0M ˜Spin(4,4)
) = 0M ˜Spin(5,4)

, we have the statement

of the theorem for all positive roots α of Lie( ˜Spin(4, 4)) ⊆ Lie(G) and tε1 ∈
Lie(Sp(3)× SU(2))C. Note Vξj ⊗ V ∗τ decomposes into distinct Spin(4)× Spin(4)-

modules by Corollary 3.4 of [Ku] as V ∗τ is multiplicity free. Therefore, if Wk
∼= Wl

with k 6= l, then Wk and Wl cannot be contained in a single Vξj ⊗ V ∗τ , important

as the statement of the theorem for ˜Spin(4, 4) also assumes distinct Vγs.

Theorem 7.3.2. Let G be the connected, simply connected R-split Lie group of

type G2. Let Vγ1 , ..., VγN be distinct K = SU(2)× SU(2)-types that occur in H of

G such that Vξ ⊆ Vγj ⊗ Vτ . ΣN
j=1l(γj) = n(ξ). Let α be a short root of Lie(G). If

Vτ is the standard 2 dimensional representation of SU(2) after projection onto the

first factor of K, after reordering, δξα,j = δα,j for each j = 1, ..., n(ξ). If Vτ is the

standard 2 dimensional representation of SU(2) after projection onto the second

factor of K, after reordering, δξα,j = δα,j ± 1
2

for each j = 1, ..., n(ξ).

Proof. ΣN
j=1l(γj) = n(ξ) by Lemma 7.0.4.

The maximal compact subgroup K of G is SU(2)× SU(2) where the first

SU(2) comes from α0 the long root in the extended dynkin diagram of G2 in section

3.3 and the second SU(2) comes from α1 the short simple root. By the definition of

tα1 from 7.0.2, we see that tα1 must be (0, tβ) ∈ su(2)⊕ su(2) where β is a positive

root of Lie(SL(3,R)). We have that 0MG
∼= 0M ˜SL(3,R)

sitting in SU(2) × SU(2)

diagonally.

Vτ is the standard 2 dimensional representation of SU(2) after projection

onto either the first factor or the second factor of K. Therefore, our situation is

exactly that of the two comparisons of tε1 weights for ˜Spin(3, 3) in the proof of

Theorem 7.2.14, hence we have the statement of the theorem for α1. By Proposition

6.11 of [Bou], any positive short root α ∈ Lie(G) must be conjugate to α1 via an

element of the Weyl group W (A) = NK(A)/ZK(A), hence tα must be conjugate to

tα1 via an element of K. Therefore, the set of tα-weights of interest is the same as

that of tα1 and we have the statement of the theorem.
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7.4 Product formula of pξ for the connected, sim-

ply connected R-split Lie group of simple Lie

type other than An and Cn

Recall the notations from chapter 6. The following is Theorem 6.3.1 for the

connected, simply connected R-split Lie type other than An and Cn.

Theorem 7.4.1. There exists a non-zero scalar c such that

pξ(ν) = cΠφ∈Φ+p(φ)(ν)

Proof. The proof of Theorem 6.3.1 was completed with divisibility and degree

argument. First consider α a positive root of Lie(G) other than the short roots

of type Bn, F4, and G2. The semisimple part of Gα is the group generated by

Mp(2,R) and 0M , and the Kα module Hα ⊗ Vτ is exactly that of ˜SL(n,R) case

from section 5.3. Therefore, divisibility argument is exactly that of ˜SL(n,R).

Now consider α a positive short root of type Bn, F4, and G2.

If the small K-type is after projection onto the first factor Spin(n + 1) of

K = Spin(n+ 1)× Spin(n) for type Bn or if the small K-type is after projection

onto the second factor SU(2) of K = SU(2)× SU(2) for type G2, the situation is

exactly the same as above. Now assume otherwise. The semisimple part of Gα is

the group generated by Mp(2,R) and 0M . Let Vξα be an irreducible Kα module

that occurs in Hα ⊗ Vτ . The weights of tα on Vξα are even integers as tα acts

trivially on Vτ . Vξα is isomorphic as a Kα module to an irreducible Kα submodule

of (Z l
α ⊗ Vτ )⊕ (Z l

α ⊗ Vτ ) for some l.

Let Vξ ⊆ H ⊗ Vτ , ε1, ..., εn(ξ) be a basis of HomK(Vξ, H ⊗ Vτ ). Let Vξ|Kα =⊕n(ξ)
j=1 Vτj ⊕ W where Vτj is an irreducible Kα module isomorphic to Vτ as 0M

modules for all j, and W is a multiple of Vτ |0M .

Without loss of generality, let vj ∈ Vτj be a dominant tα weight vector.

Lα(εi(vj)) ∈ Z l
αsymm(Jα)⊗ Vτ for some l ∈ Z≥0 where Lα is defined in 6.2.6 and

symm(Jα) ⊆ U(gα)kα with U(gα)kα the subalgebra generated by tα, center of gα,

and the Casimir element. Recall the projection map Q : U(g)→ U(a)U(k)⊕nU(g)

onto the first factor. As tα acts trivially on Vτ , we still have that the action of
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Z l
αsymm(Jα) on Vτ at the identity is given by Q(Z l

αsymm(Jα)), and hence the

rest of the argument is exactly that of ˜SL(n,R).

The degree argument is exactly that of the proof of Theorem 6.3.1, using

Theorem 7.1.1, Theorem 7.2.16, Theorem 7.3.1, and Theorem 7.3.2.



Chapter 8

Computation of pξ(ν) and

Determinants of Intertwining

Operators

In this chapter we derive a general formula of pξ(ν) for the group ˜SL(n,R)

(n ≥ 3) as a product over those of rank one subgroups corresponding to the positive

roots. In addition, for G any of the connected, simply connected split real form of

simple Lie type other than type Cn, we prove cyclicity of a small K-type Vτ ⊆ IP,σ,ν

in the closed Langlands chamber, and use this to prove irreducibility of unitary

principal series admitting a small K-type.

8.1 Computation in Rank One Case

Let G be any of the connected, simply connected split real form of simple

Lie type other than type Cn. For any positive root α, Lie(Gα) ∼= sl(2,R)⊕Z(gα).

Recall for Gα,

H =
⊕
l≥0

Z l ⊕
⊕
l>0

Z
l

where Z = X + iY is discussed in chapter 5, and we drop the notation α. Recall

the projection map Q : U(g) −→ U(a)U(k) ⊕ nU(g) onto the first summand. To

compute pξ(ν) for a K-type Vξ that occurs in H⊗Vτ , we compute Q(Z l) and Q(Z
l
)

71
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with t weight ±1
2

or 0. To do this, we use Q′(Z l) and Q′(Z
l
) already computed

in [JW] where Q′ : U(g) −→ U(a) ⊕ nU(g) ⊕ U(g)k is the projection onto the

first summand. This is because Q(Z l) and Q(Z
l
) can be written as a sum of two

different parts, one in U(a), and the other in U(a)U(k)k, where the former is exactly

Q′(Z l) and Q′(Z
l
) respectively.

Theorem 8.1.1. Q(Z l) = Πl−1
j=0(X+ 2j− t) and Q(Z

l
) = Πl−1

j=0(X+ 2j+ t), where

t is a weight of t.

Proof. We prove the first formula.

From Theorem 7.6 of [JW], we have Q′(Z l) = Πl−1
j=0(X + 2j). We wish

to find the shift from U(a)U(k)k part as it is the only difference between Q and

Q′. If l = 1, then Z = X + iY = X + i(2E + it). Hence the statement is true.

Now we proceed with the method of induction. Assume the statement for l − 1

and we show the statement for l. We have Z l = ZZ l−1 = (X + 2iE − t)Z l−1.

After dropping the n part E, we have (X − t)Z l−1 left. There will be exactly

two U(a)U(k)k shifts, one from X(U(a)U(k)k part of Z l−1) and the other from

−t(Z l−1) = −Z l−1(t − 2(l − 1)) by the commutation relation. Hence, the overall

shift is (X + 2(l − 1))(Q(Z l−1) − Q′(Z l−1)) − tQ(Z l−1). But, since Q′(Z l) =

(X + 2(l − 1))Q′(Z l−1), we have

Q(Z l) = Q′(Z l) + shift = (X + 2(l − 1))Q′(Z l−1) (8.1.1)

+ (X + 2(l − 1))(Q(Z l−1)−Q′(Z l−1))− tQ(Z l−1)

(8.1.2)

= (X + 2(l − 1))Q(Z l−1)− tQ(Z l−1) (8.1.3)

= (X + 2(l − 1)− t)Q(Z l−1) (8.1.4)

Hence we have the first formula, and second can be shown similarly.

If t acts nontrivially on Vτ , we have the following.

For the ξ-type Z
l ⊗ V +

τ ⊕ Z l ⊗ V −τ ,

pξ(ν) = Πl−1
j=0(ν + 2j +

1

2
)
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and for the ξ-type Z
l ⊗ V −τ ⊕ Z l ⊗ V +

τ ,

pξ(ν) = Πl−1
j=0(ν + 2j − 1

2
)

If t acts trivially on Vτ , for any of the ξ-type that occurs in (Z
l ⊗ Vτ ) ⊕

(Z l ⊗ Vτ ),
pξ(ν) = Πl−1

j=0(ν + 2j)

8.2 Computation of pξ(ν) and Determinants of

Intertwining Operators for ˜SL(n,R)

Computations are with ρ-shifts.

8.2.1 ˜SL(3,R)

For ˜SL(3,R), the set of positive roots of Lie( ˜SL(3,R)) ⊗ C = sl3 consists

of α1 = ε1 − ε2, α2 = ε2 − ε3, and α3 = ε1 − ε3. As αjs are conjugates by elements

in K = Spin(3) for all j ∈ {1, 2, 3}, the set of dominant weights that determine

pξ(ν) will be exactly the same for all three tα1 , tα2 , and tα3 .

Consider an irreducible representation of K = Spin(3) ∼= SU(2) with high-

est weight p
2

with p odd. The dominant tα-weights of interest are 1
2
, 3

2
, 5

2
, ..., p

2
, all

with multiplicity one. We have the following using the product formula and the

computation in rank one case from section 8.1.

Let ξ = p
2

with (p− 1) divisible by 4. Then, up to a nonzero scalar,

pξ(ν) = Π
p−1

4
l=0 Πl−1

j=0(ν1 + 2j +
1

2
)(ν1 + 2j +

3

2
)(ν2 + 2j +

1

2
)

× (ν2 + 2j +
3

2
)(ν1 + ν2 + 2j +

1

2
)(ν1 + ν2 + 2j +

3

2
)

Let ξ = p
2

with (p− 3) divisible by 4. Then, up to a nonzero scalar,

pξ(ν) = Π
p−3

4
l=0 Πl−1

j=0(ν1 + 2j +
1

2
)(ν1 + 2j +

3

2
)(ν2 + 2j +

1

2
)

× (ν2 + 2j +
3

2
)(ν1 + ν2 + 2j +

1

2
)(ν1 + ν2 + 2j +

3

2
)
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× Π
p−3

4
k=0(ν1 + 2k +

1

2
)(ν2 + 2k +

1

2
)(ν1 + ν2 + 2k +

1

2
)

Let σ = Vτ |0M . By Theorem 4.2.3, the determinant of the intertwiner

A(ν) : IP,σ,ν −→ IP ,σ,ν on ξ-type is the following.

Let ξ = p
2

with (p − 1) divisible by 4. Then, determinant of A(ν)|(IP,σ,ν(ξ))

up to a nonzero scalar is

Π
p−1

4
l=0 Πl−1

j=0(
(ν1 − 2j − 1

2
)

(ν1 + 2j + 1
2
)

(ν1 − 2j − 3
2
)

(ν1 + 2j + 3
2
)

(ν2 − 2j − 1
2
)

(ν2 + 2j + 1
2
)
)p+1

× (
(ν2 − 2j − 3

2
)

(ν2 + 2j + 3
2
)

(ν1 + ν2 − 2j − 1
2
)

(ν1 + ν2 + 2j + 1
2
)

(ν1 + ν2 − 2j − 3
2
)

(ν1 + ν2 + 2j + 3
2
)
)p+1

In terms of gamma functions, this is

Π
p−1

4
l=0 Πl−1

j=0(
Γ(ν1 − 2j + 1

2
)

Γ(ν1 − 2j − 3
2
)

Γ(ν1 + 2j + 1
2
)

Γ(ν1 + 2j + 5
2
)

Γ(ν2 − 2j + 1
2
)

Γ(ν2 − 2j − 3
2
)

Γ(ν2 + 2j + 1
2
)

Γ(ν2 + 2j + 5
2
)
)p+1

× (
Γ(ν1 + ν2 − 2j + 1

2
)2

Γ(ν1 + ν2 − 2j − 3
2
)

Γ(ν1 + ν2 + 2j + 1
2
)

Γ(ν1 + ν2 + 2j + 5
2
)
)p+1

Let ξ = p
2

with (p − 3) divisible by 4. Then, determinant of A(ν)|(IP,σ,ν(ξ))

up to a nonzero scalar is

Π
p−3

4
l=0 Πl−1

j=0(
(ν1 − 2j − 1

2
)

(ν1 + 2j + 1
2
)

(ν1 − 2j − 3
2
)

(ν1 + 2j + 3
2
)

(ν2 − 2j − 1
2
)

(ν2 + 2j + 1
2
)
)p+1

×(
(ν2 − 2j − 3

2
)

(ν2 + 2j + 3
2
)

(ν1 + ν2 − 2j − 1
2
)

(ν1 + ν2 + 2j + 1
2
)

(ν1 + ν2 − 2j − 3
2
)

(ν1 + ν2 + 2j + 3
2
)
)p+1

× Π
p−3

4
k=0(

(ν1 − 2k − 1
2
)

(ν1 + 2k + 1
2
)

(ν2 − 2k − 1
2
)

(ν2 + 2k + 1
2
)

(ν1 + ν2 − 2k − 1
2
)

(ν1 + ν2 + 2k + 1
2
)
)p+1

In terms of gamma functions, this is

Π
p−3

4
l=0 Πl−1

j=0(
Γ(ν1 − 2j + 1

2
)

Γ(ν1 − 2j − 3
2
)

Γ(ν1 + 2j + 1
2
)

Γ(ν1 + 2j + 5
2
)

Γ(ν2 − 2j + 1
2
)

Γ(ν2 − 2j − 3
2
)

Γ(ν2 + 2j + 1
2
)

Γ(ν2 + 2j + 5
2
)
)p+1

× (
Γ(ν1 + ν2 − 2j + 1

2
)

Γ(ν1 + ν2 − 2j − 3
2
)

Γ(ν1 + ν2 + 2j + 1
2
)

Γ(ν1 + ν2 + 2j + 5
2
)
)p+1

× Π
p−3

4
k=0(

Γ(ν1 − 2k + 1
2
)

Γ(ν1 − 2k − 3
2
)

Γ(ν2 − 2k + 1
2
)

Γ(ν2 − 2k − 3
2
)

Γ(ν1 + ν2 − 2k + 1
2
)

Γ(ν1 + ν2 − 2k − 3
2
)
)p+1
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8.2.2 ˜SL(4,R)

For ˜SL(4,R), the set of positive roots of Lie( ˜SL(4,R)) ⊗ C = sl4 consists

of α1 = ε1 − ε2, α2 = ε2 − ε3, α3 = ε3 − ε4, α4 = ε1 − ε3, α5 = ε1 − ε4, α6 = ε2 − ε4.

K = Spin(4) ∼= SU(2) × SU(2), hence Lie(K) ⊗ C ∼= sl2 ⊕ sl2. In this

isomorphism, we have the following

tα1 −→

[
1
2

0

0 −1
2

]
⊕

[
1
2

0

0 −1
2

]

tα2 −→

[
0 −1

2

−1
2

0

]
⊕

[
0 −1

2

−1
2

0

]

tα3 −→

[
−1

2
0

0 1
2

]
⊕

[
1
2

0

0 −1
2

]

tα4 −→

[
0 1

2
i

−1
2
i 0

]
⊕

[
0 1

2
i

−1
2
i 0

]

tα5 −→

[
0 1

2

1
2

0

]
⊕

[
0 −1

2

−1
2

0

]

tα4 −→

[
0 1

2
i

−1
2
i 0

]
⊕

[
0 −1

2
i

1
2
i 0

]
tαs are all conjugates by elements in K = Spin(4) ∼= SU(2) × SU(2) for

all α ∈ {α1, ..., α6}, hence given an irreducible representation of K, the set of

dominant tα-weights counting multiplicity will be independent of α ∈ {α1, ..., α6}.

We have the following correspondence of highest weights.

(ε1, ε2) of Spin(4) −→ (
ε1 − ε2

2
,
ε1 + ε2

2
) of SU(2)× SU(2)

(r + s, s− r) of Spin(4)←− (r, s) of SU(2)× SU(2)

Let τ1 = C2 ⊗ triv and τ2 = triv ⊗ C2 be the two half spin representations

of K = Spin(4) ∼= SU(2)× SU(2). Let σ1 = Vτ1|0M and σ2 = Vτ2|0M . If (r, s) is a



76

highest weight of SU(2)×SU(2) with r half-integral and s integral, (r, s) ⊆ IP,σ1,ν .

If (r, s) is a highest weight of SU(2) × SU(2) with r integral and s half-integral,

(r, s) ⊆ IP,σ2,ν .

Consider the highest weight module of SU(2) × SU(2) of highest weight

(r, s) that occurs in either IP,σ1,ν or IP,σ2,ν . Assume without loss of generality

r > s. Note r 6= s because one of r, s has to be half integral and the other has

to be an integral. The set of dominant tα-weights that occur in the highest weight

module of highest weight (r, s) counting multiplicity is the following.

{1

2
,
3

2
, ..., r + s,

1

2
,
3

2
, ..., r + s− 1,

1

2
,
3

2
, ..., r + s− 2, ....,

1

2
,
3

2
, ..., r − s}

Definition 8.2.3. Define q±ν : 2N + 1 −→ C[ν] as follows.

q+
ν (m) := Π

m−1
4

l=0 Πl−1
j=0(ν + 2j + 1

2
)(ν + 2j + 3

2
) if 4 | m− 1

q+
ν (m) := Π

m−3
4

l=0 Πl−1
j=0(ν+ 2j+ 1

2
)(ν+ 2j+ 3

2
)× Π

m−3
4

k=0 (ν+ 2k+ 1
2
) if 4 | m−3

q−ν (m) := Π
m−1

4
l=0 Πl−1

j=0(ν − 2j − 1
2
)(ν − 2j − 3

2
) if 4 | m− 1

q−ν (m) := Π
m−3

4
l=0 Πl−1

j=0(ν−2j− 1
2
)(ν−2j− 3

2
)× Π

m−3
4

k=0 (ν−2k− 1
2
) if 4 | m−3

Definition 8.2.4. Define Gν(m) : 2N + 1 −→ M where M is the space of mero-

morphic functions, as follows.

Γν(m) := Π
m−1

4
l=0 Πl−1

j=0
Γ(ν−2j+ 1

2
)

Γ(ν−2j− 3
2

)

Γ(ν+2j+ 1
2

)

Γ(ν+2j+ 5
2

)
if 4 | m− 1

Γν(m) := Π
m−3

4
l=0 Πl−1

j=0
Γ(ν−2j+ 1

2
)

Γ(ν−2j− 3
2

)

Γ(ν+2j+ 1
2

)

Γ(ν+2j+ 5
2

)
× Π

m−3
4

k=0

Γ(ν−2k+ 1
2

)

Γ(ν−2k− 3
2

)
if 4 | m− 3

From the above analysis of the dominant tα-weights and the above functions

we have the following. In the products below, indices of Πr+s
r−s are r−s, r−s+1, r−

s+ 2, ..., r + s, all half integrals. Let Vτ be any of Vτ1 or Vτ2 , and let σ = Vτ |0M .

pξ(ν) = p(r,s) = Πr+s
m=r−sq

+
ν1

(2m)q+
ν2

(2m)q+
ν3

(2m)q+
ν1+ν2

(2m)q+
ν2+ν3

(2m)q+
ν1+ν2+ν3

(2m)

detA(ν)|(IP,σ,ν(ξ)) = detA(ν)|(IP,σ,ν((r,s)))

= Πr+s
m=r−s(

q−ν1
(2m)

q+
ν1

(2m)

q−ν2
(2m)

q+
ν2

(2m)

q−ν3
(2m)

q+
ν3

(2m)

q−ν1+ν2
(2m)

q+
ν1+ν2

(2m)

q−ν2+ν3
(2m)

q+
ν2+ν3

(2m)

q−ν1+ν2+ν3
(2m)

q+
ν1+ν2+ν3

(2m)
)dim(Vξ)
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In terms of Gamma Functions,

detA(ν)|(IP,σ,ν(ξ)) = detA(ν)|(IP,σ,ν((r,s)))

= Πr+s
m=r−s(Γν1(2m)Γν2(2m)Γν3(2m)Γν1+ν2(2m)Γν2+ν3(2m)Γν1+ν2+ν3(2m))dim(Vξ)

If r < s, the only difference is that the parameters for the products will

start from s − r instead of r − s. The formula of dim(Vξ) is given in the next

subsection.

8.2.5 General case of ˜SL(n,R)

In this subsection, we give a formula of pξ(ν) and the determinant of A(ν)

the intertwiner for ˜SL(n,R). First, consider the following lemma.

Lemma 8.2.6. Let Φ+ be the set of positive roots of Lie( ˜SL(n,R)). If α1, α2 ∈
Φ+, then tα1 and tα2 are conjugates of each other by an element in Spin(n).

Proof. Lie( ˜SL(n,R)) is simply laced. Therefore, by Proposition 6.11 [Bou], all

positive roots are conjugates by an element of the Weyl group, NK(A)/ZK(A).

Therefore, tα1 and tα2 are conjugates of each other by an element in Spin(n).

By the lemma, given an irreducible representation Vξ that occurs in IP,σ,ν ,

the set of dominant tα-weights of Vξ counting multiplicity is independent of α ∈ Φ+.

Hence, we just need the set of dominant tα-weights of Vξ counting multiplicity for

some α. We choose α = ε1 − ε2.

Recall that given Vξ =
⊕dim(Vξ)/dim(Vτ )

j=1 Vτj with each Vτj an irreducible Kα-

module, there is a unique dominant tα-weight on each Vτj . This fact along with

the formula in rank one case given in section 8.1 allows us to compute the factors

of pξ(ν) coming from α = ε1− ε2 by branching Vξ down to S̃O(2) ⊆ Spin(n) where

S̃O(2) denotes double cover of SO(2) and SO(2) is that occurring in the top left

corner such that tε1−ε2 ⊆ Lie(S̃O(2)). However, we will branch down to Spin(3)

that occurs in the top left corner instead of going a step further down to S̃O(2) to

simplify notations.
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Given an irreducible Spin(n)-module Vξ ⊆ IP,σ,ν with highest weight ξ =

ξ1ε1 + ... + ξkεk, branch down to Spin(3) where Spin(3) is as in above. Let

{ j1
2
, ...,

jmξ
2
} be the set of highest weights of Spin(3)-modules that occur in the

branching counting multiplicity. We have

pξ(ν) = Πα∈Φ+Π
mξ
k=1q

+
(ν,α)(jk)

detA(ν)|IP,τ,ν(ξ) = (
pξ(−ν)

pξ(ν)
)dim(Vξ) = ((Πα∈Φ+Π

mξ
k=1Γ(ν,α)(jk))

2
dim(Vτ ) )dim(Vξ)

where if n = 2k + 1, dim(Vξ) = Π1≤i<j≤k
(ξi+ρi)

2−(ξj+ρj)
2

ρ2
i−ρ2

j
Π1≤i≤k

ξi+ρi
ρi

with

ρi = k − i + 1
2
, dim(Vτ ) = 2k, and if n = 2k, dim(Vξ) = Π1≤i<j≤k

(ξi+ρi)
2−(ξj+ρj)

2

ρ2
i−ρ2

j

with ρi = k − i, dim(Vτ ) = 2k−1.

8.3 Application: Cyclicity of Vτ and Irreducibil-

ity of Unitary Principal Series

Recall the computation of pξ(ν) in rank one case, now with ρ-shift. If t acts

nontrivially on Vτ , we have the following.

For the ξ-type Z
l ⊗ V +

τ ⊕ Z l ⊗ V −τ ,

pξ(ν) = Πl−1
j=0(ν + 2j +

3

2
)

and for the ξ-type Z
l ⊗ V −τ ⊕ Z l ⊗ V +

τ ,

pξ(ν) = Πl−1
j=0(ν + 2j +

1

2
)

If t acts trivially on Vτ , for any of the ξ-type that occurs in (Z
l ⊗ Vτ ) ⊕

(Z l ⊗ Vτ ),
pξ(ν) = Πl−1

j=0(ν + 2j + 1)

ρ-shift simplifies determinant formula of P ξ for the following reason. Let α

be a simple root, and β be a non-simple root of sln, τα and τβ be Kα and Kβ types

respectively such that τα and τβ are the same types. In general, pδα(ν) 6= pδβ(ν)
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without the ρ-shift. However, with ρ-shift, we have pδα(ν) = pδβ(ν), which is

built into the proof of Theorem 6.2.8. Consider the following example of the

case ˜SL(3,R). Let ξ be the 4-dimensional K = Spin(3)-type. We have pξ(ν) =

(ν1− 1
2
)(ν2− 1

2
)(ν1 +ν2− 3

2
) before ρ-shift and pξ(ν) = (ν1 + 1

2
)(ν2 + 1

2
)(ν1 +ν2 + 1

2
)

after ρ-shift.

The following discussion is from 11.3.6 of [RRG II].

Let G be a real semisimple Lie group with maximal compact subgroup

K. Let Vτ be a small K-type and let σ = Vτ |0M . From chapter 10 of [RRG II],

we know there exists c ≥ 0 such that if Re(ν, α) ≥ c for all α ∈ Φ+, then det

JP |P (ν)|IP,σ,ν(τ) 6= 0. Hence we have πP,σ,ν(U(g))Iσ(τ) = IP,σ,ν for these νs. This

induces a surjective (g, K)-module homomorphism

µτ,ν : U(g)⊗U(g)kU(k) Vτ,ν −→ IP,σ,ν

where the map is the action of the first factor on the second, which gives cyclicity

of Vτ for above νs.

Moreover, it is also shown in 11.3.6 of [RRG II] that U(g)⊗U(g)kU(k) Vτ,ν ∼=
IP,σ,ν as K-modules independent of ν. This result implies that the K-isotypic

components of U(g) ⊗U(g)kU(k) Vτ,ν and IP,σ,ν are exactly the same. Hence if Vτ is

cyclic in IP,σ,ν , then µτ,ν is a (g, K)-module isomorphism.

Theorem 8.3.1. Let G be any of the connected, simply connected split real form

of simple Lie type other than type Cn with maximal compact subgroup K. Let Vτ

be a small K-type and let σ = Vτ |0M . If Re(ν, α) ≥ 0 for every α ∈ Φ+, i.e. in the

closed Langlands chamber, Vτ ⊆ IP,σ,ν is cyclic.

Proof. By the definition of P ξ(ν) and above discussion, Vτ is cyclic if and only

if pξ(ν) 6= 0 for every K-type ξ that occurs in IP,σ,ν . By Theorem 6.3.1 and

Theorem 7.4.1, pξ(ν) is a product of those of rank one subgroups Gα of G where

α ∈ Φ+. As G is split, the semisimple part of Lie(Gα) is isomorphic to sl(2,R).

Let n(ξ) = dim HomK(Vτ , Vξ). The product formula of pξ and the formulas in the

rank one case given in the beginning of the section suggest that for a K-type ξ

that occurs in IP,σ,ν , α ∈ Φ+, and j = 1, ..., n(ξ), there exist lξα,j, m
ξ
α,j, n

ξ
α,j ∈ Z≥0
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such that pξ(ν) is equal to

Πα∈Φ+Π
n(ξ)
j=1 Π

lξα,j−1

p=0 Π
mξα,j−1

q=0 Π
nξα,j−1

r=0 (
2(ν, α)

(α, α)
+2p+

1

2
)(

2(ν, α)

(α, α)
+2q+1)(

2(ν, α)

(α, α)
+2r+

3

2
)

up to a nonzero scalar multiple. Hence, if Re(ν, α) ≥ 0 for every α ∈ Φ+, pξ(ν) 6= 0

for every K-type ξ that occurs in IP,σ,ν and Vτ ⊆ IP,σ,ν is cyclic.

Corollary 8.3.2. Let G be any of the connected, simply connected split real form

of simple Lie type other than type Cn with maximal compact subgroup K. Let Vτ

be a small K-type and let σ = Vτ |0M . The unitary principal series (πP,σ,ν , H
P,σ,ν)

(Re ν = 0) is irreducible.

Proof. Suppose HP,σ,ν with Re ν = 0 is reducible. By Theorem 3.4.11 of [RRG

I], the underlying (g, K)-module IP,σ,ν is reducible. Therefore, there is a proper,

nontrivial, closed (g, K)-invariant subspace W of IP,σ,ν that does not contain Vτ .

Unitarity implies that the orthogonal complement of W , W⊥, is a nontrivial, closed

(g, K)-invariant subspace that contains Vτ , which is a contradiction as Vτ is cyclic

by Theorem 8.3.1.
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