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SUMMARY

Protein ubiquitination is a dynamic and reversible process of adding single ubiquitin molecules or 

various ubiquitin chains to target proteins. Here, using multidimensional omic data of 9,125 tumor 

samples across 33 cancer types from The Cancer Genome Atlas, we perform comprehensive 

molecular characterization of 929 ubiquitin-related genes and 95 deubiquitinase genes. Among 

them, we systematically identify top somatic driver candidates, including mutated FBXW7 with 

cancer-type-specific patterns and amplified MDM2 showing a mutually exclusive pattern with 

BRAF mutations. Ubiquitin pathway genes tend to be upregulated in cancer mediated by diverse 

mechanisms. By integrating pan-cancer multiomic data, we identify a group of tumor samples that 

exhibit worse prognosis. These samples are consistently associated with the upregulation of cell-

cycle and DNA repair pathways, characterized by mutated TP53, MYC/TERT amplification, and 

APC/PTEN deletion. Our analysis highlights the importance of the ubiquitin pathway in cancer 

development and lays a foundation for developing relevant therapeutic strategies.

In Brief

Ge et al. analyze a cohort of 9,125 TCGA samples across 33 cancer types to provide a 

comprehensive characterization of the ubiquitin pathway. They detect somatic driver candidates in 

the ubiquitin pathway and identify a cluster of patients with poor survival, highlighting the 

importance of this pathway in cancer development.
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INTRODUCTION

The highly conserved ubiquitin pathway serves as a crucial regulator, mediating a myriad of 

cellular events that underlie the development of an assortment of cancer types (Di Fiore et 

al., 2003; Hoeller and Dikic, 2009; Nakayama and Nakayama, 2006). The ubiquitin 

molecule is an 8.5-kDa, 76-amino-acid globular protein with a complex 3-dimensional 

surface topology that is able to form various types of ubiquitin chains, thereby acting as a 

robust, post-translational protein modifier (Weissman, 2001). The canonical addition of 

ubiquitin to a protein substrate involves the consecutive actions of three main families of 

ubiquitination (UBQ) enzymes through a coordinated enzymatic cascade (Fuchs, 2002; Gao 

et al., 2013). In the first step, a thiol-ester bond is formed between a ubiquitin-activating 

enzyme (E1) and the carboxy-terminal glycine of ubiquitin. The next step involves the 

transfer of the activated ubiquitin from the E1 enzyme to a ubiquitin-conjugating enzyme 

(E2) via a trans-thiolation reaction. Finally, a ubiquitin ligase (E3), which functions as a 

scaffold protein binding both the E2 enzyme and the target protein, mediates the transfer of 

ubiquitin from the E2-ubiquitin conjugate, most commonly onto the ε-amino group of a 

lysine residue on the protein substrate, thus forming an isopeptide bond (Hoeller and Dikic, 

2009; Weissman, 2001). Because UBQ is a dynamic and reversible process, deubiquitinating 

enzymes (DUBs) fulfill a converse role in the pathway by deconjugating ubiquitin from 

proteins entirely or trimming poly-ubiquitin chains, thereby enhancing regulation in the 

ability to abrogate or modify ubiquitin protein modifications (Komander et al., 2009; 

Weissman, 2001). Recognition of distinct UBQ patterns by downstream effectors elicits 

various cellular functions: it can mark proteins for degradation via the proteasome, alter their 

subcellular localization, affect their activity, and promote or prevent protein interactions.

In recent years, the role of the ubiquitin pathway in cancer has gained attention for two main 

reasons. First, both basic and translational studies have shown extensive evidence connecting 

the malfunction of the ubiquitin pathway with tumor initiation and progression. For 

Ge et al. Page 3

Cell Rep. Author manuscript; available in PMC 2018 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



example, UBQs have been found to be tightly associated with many cancer-related 

pathways, including cell-cycle progress, p53 activation, DNA damage repair, apoptosis, 

nuclear factor κB (NF-κB), and receptor tyrosine kinase pathways (Hoeller and Dikic, 2009; 

Li et al., 2003; Lind et al., 2006; Massoumi et al., 2006; Meetei et al., 2003; Weissman, 

2001); DUBs are implicated in many of the same cancer pathways as UBQs; in addition, 

they are associated with chromatin remodeling, WNT signaling, and transforming growth 

factor β (TGF-β) signaling (Dey et al., 2012; Dupont et al., 2009; Luise et al., 2011; 

Tauriello et al., 2010; Wicks et al., 2005; Zhao et al., 2009). Second, targeting the ubiquitin 

pathway for regulating target protein levels, rather than for its biological activity, has 

emerged as a promising therapeutic strategy for cancer patients. Because many oncoproteins 

are subject to UBQ-dependent degradation, enhancing UBQ or targeting certain DUBs may 

lead to destabilization or functional inactivation of key oncoproteins, including some 

undruggable targets such as MYC and β-catenin (Salami and Crews, 2017; Xiao et al., 

2016). A few drugs targeting the ubiquitin pathway have been approved by the U.S. Food 

and Drug Administration (FDA) (Huang and Dixit, 2016; Swisher et al., 2017).

Given the pervasive impact and clinical utility of the ubiquitin pathway across many cancer 

types, it is important to curate genomic insights into the role of this pathway in cancer 

development and treatment through a systematic, pan-cancer analysis. The Cancer Genome 

Atlas (TCGA) has generated genomic, transcriptomic, proteomic, epigenomic, and clinical 

data over large patient cohorts, providing an unprecedented opportunity for such an analysis 

(Cancer Genome Atlas Research Network et al., 2013). We performed a molecular 

characterization of UBQ and DUB genes across 9,125 patients from 33 cancer types (Table 

S1). To maximize the chance of making scientific and clinical findings, we compiled a 

comprehensive list of 929 UBQ-related genes (including both validated and computationally 

predicted E1 and E2 enzymes, as well as E3 ligases and their associated adaptor genes, 

termed UBQ genes hereafter for simplicity) and 95 DUB genes (see curation details in 

STAR Methods, Figure S1, and Table S2). Our analysis will not only further elucidate the 

role of the ubiquitin pathway in cancer development but also directly inform researchers and 

clinicians as to possible driver genes and eminently druggable targets for future clinical trials 

and therapeutics.

RESULTS

Mutation Driver Candidates of UBQ and DUB Genes

Based on TCGA mutation data of whole-exome sequencing, we examined the somatic 

mutation profiles of UBQ and DUB genes in 33 cancer types. Overall, across 8,811 non-

hypermutated cancer samples, the mutation frequency was low for both UBQ and DUB 

genes, with an average mutation number per patient of 4.5 and 0.5, respectively. To identify 

potential cancer drivers, we employed two complementary computational approaches. First, 

we used a ratiometric method for nominating cancer driver genes based on the enrichment of 

hotspot or loss-of-function (LoF) mutations among all mutations observed in a gene (Figure 

1A) (Vogelstein et al., 2013). In this pan-cancer analysis, we identified 19 UBQ/DUB genes 

with >30% hotspot mutations and 29 genes with >30% LoF mutations (FBXW7 was 

identified by both criteria). Second, we used MutSigCV (Lawrence et al., 2013) to pinpoint 
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UBQ/DUB gene drivers whose mutation rates were significantly higher than the background 

expectation within each cancer type. Using a q value cutoff of 0.1, we identified 23 such 

genes in 23 cancer types (Figure 1B). In total, these two methods identified 55 driver 

candidates, and their overall mutation frequency ranged from 0.2% to 7.2% (Figure S2). We 

then mapped these 55 putative cancer drivers to different gene categories in the ubiquitin 

pathway and found no specific enrichment patterns (Figure 1C): there were no E1 enzyme 

driver genes of the driver genes detected, two were E2 enzyme drivers, four were DUB 

drivers, and the rest (49) were E3 ligases and associated adaptors. Among 15 driver genes 

identified by both methods, SPOP, KEAP1, and CHD4 were enriched with hotspot 

mutations, while BAP1, CDH1, CUL3, EP300, KDM5C, MAP3K1, NSD1, RNF43, TLE1, 

VHL, and LZTR1 contained excessive LoF mutations. This analysis provides a systematic 

view of potential mutation drivers among UBQ and DUB genes.

Of particular interest, FBXW7 showed enrichment of both hotspot and LoF mutations 

(Figure 1A). The FBXW7 protein functions as the substrate recognition component of the 

SKP1-CUL1-F-box protein (SCF) ubiquitin ligase complex. As an established tumor 

suppressor gene, it mediates the degradation of cell-cycle promoters or oncoproteins, 

including cyclin E (Koepp et al., 2001; Siu et al., 2012), c-Myc (Yada et al., 2004), c-Jun 

(Wei et al., 2005), Notch (Gupta-Rossi et al., 2001), Mcl1 (Ren et al., 2013), and mTOR 

(Mao et al., 2008). To gain more insight into its mutational profile, we examined the 

mutation distributions of FBXW7 in different cancer types and found three distinct patterns 

(Figure 2A): (1) hotspot mutations were enriched in two uterine cancer types, uterine corpus 

endometrial carcinoma (UCEC), and uterine carcinosarcoma (UCS); (2) LoF mutations were 

enriched in skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), lung 

squamous cell carcinoma (LUSC), lung adenocarcinoma (LUAD), rectum adenocarcinoma 

(READ), and esophageal carcinoma (ESCA); and (3) the proportions of both hotspot and 

LoF mutations were high in head and neck squamous cell carcinoma (HNSC), cervical 

squamous cell carcinoma and endocervical adenocarcinoma (CESC), bladder urothelial 

carcinoma (BLCA), and colon adenocarcinoma (COAD). Consistent with previous studies, 

FBXW7 contains three notable missense mutation hotspots (R465, R479, and R505) in the 

second, third, and fourth WD40 domains that recognize the consensus phospho-motif 

located in its substrate (Figure 2B) (Hao et al., 2007). Figure 2C shows the FBXW7 
mutation distributions for the hotspot mutation-enriched cancer types and the LoF mutation-

enriched cancer types. The three missense hotspots accounted for 49% (38 of 77) of the 

FBXW7 mutations observed in UCEC and UCS. The contrasting mutation patterns of 

FBXW7 mutations may reflect tissue-specific roles of FBXW7 substrates or different 

FBXW7-mediated oncogenic mechanisms in different tumor contexts. We further assessed 

the occurrence of FBXW7 mutations with those in clinically actionable cancer genes and 

revealed that mutations in FBXW7 and PIK3CA showed mutual exclusivity in three cancer 

types: CESC, BLCA, and LUSC (Figure 2D), suggesting that mutations in these two genes 

confer similar functional consequences. Patients with FBXW7 or phosphatidylinositol 3-

kinase (PI3K) pathway mutations (mutations found in PIK3CA, PTEN, and STK11) had 

higher PI3K pathway expression activity than patients without such mutations (Figure 2E).
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Somatic Copy-Number Alteration Patterns of UBQ and DUB Genes

To infer somatic copy-number alteration (SCNA) drivers, we used GISTIC2 (Mermel et al., 

2011) to identify significant focal deletion and amplification peaks in each of 33 cancer 

types. UBQ and DUB genes showed similar overall SCNA profiles in terms of the 

amplification and deletion gene fractions across cancer types (Figures S3A and S3B). To 

more rigorously assess the SCNA significance of UBQ and DUB genes against the cancer-

type-specific background rate, we calculated the enrichment of UBQ and DUB genes that 

reside in the amplification or deletion peaks identified by GISTIC2 (q < 0.25) using Fisher’s 

exact test (Figures 3A, S3C, and S3D). Four cancer types (kidney renal clear cell carcinoma 

[KIRC], SKCM, cholangiocarcinoma [CHOL], and pancreatic adenocarcinoma [PAAD]) 

showed significant deletion peak enrichments, while no cancer types showed significant 

amplification peak enrichment (p < 0.01) (Figure 3A). Figure 3B shows the top 30 

frequently detected UBQ and DUB genes across different cancer types, including ARNT, 

MDM2, and FAM63A (amplification) and PARK2, ING5, and ING2 (deletion).

Among the top UBQ/DUB genes with frequent SCNAs, MDM2 was significantly amplified 

in 11 cancer types. The protein product of this gene is a negative regulator of TP53 and a 

therapeutic target under intensive clinical investigation. We therefore focused on MDM2 to 

examine its mutually exclusive pattern with (1) amplification of other UBQ/DUB genes and 

(2) somatic mutations of clinically actionable genes. Among UBQ and DUB genes, we 

found a mutually exclusive pattern of MDM2 and SKP2 amplifications in LUAD (Figure 

S3E), suggesting convergence of their functions on the same downstream effectors. In 

agreement with this notion, previous studies have shown that MDM2 prevents the binding of 

the E2F1 protein to its E3 ligase SCFskp2, thus inhibiting E2F1 degradation (Zhang et al., 

2005). For clinically actionable genes, we found that MDM2 amplifications were mutually 

exclusive to BRAF and ATM mutations in SKCM and BLCA, respectively (Figures 3C and 

S3F). BRAF kinase domain mutations, such as V600E, result in a constitutively activated 

form of the protein in around 50% of SKCM patients (45.1% in this study), which then leads 

to stimulated mitogen-activated protein kinase (MAPK) signaling and induces tumor cell 

proliferation. The mechanism through which MDM2 antagonizes p53 functions is acting as 

the p53-specific E3 ligase and promoting p53 degradation, which then leads to reduced cell 

apoptosis. We observed MDM2 amplification in 4.1% of the SKCM samples in this study, in 

which p53 protein levels were significantly lower than in samples with BRAF mutations 

alone or with neither BRAF mutations nor MDM2 amplifications. This pattern was not 

observed at the mRNA expression level (Figure 3D). These results confirmed the function of 

MDM2 acting as an E3 ligase targeting the p53 protein for degradation. Furthermore, the 

mutually exclusive pattern of MDM2 amplification and BRAF mutation suggests that a 

reduced p53 pathway or induced MAPK signaling can serve as an impetus for aberrant 

tumor cell proliferation (Figure 3E). This intriguing pattern implies that restoring p53 

function and blocking the MAPK pathway at the same time could be more beneficial to 

SKCM patients than interfering with either pathway alone. Studies have shown increased 

apoptosis and inhibition of melanoma growth by combining a BRAF inhibitor and p53 

reactivation (Lu et al., 2013; Saiki et al., 2014).
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Upregulated mRNA Expression of UBQ/DUB Genes in Cancer

To investigate the patterns of dysregulation of UBQ and DUB genes in cancer, we examined 

their gene expression using mRNA expression data of paired tumor and normal samples 

from 16 cancer types, because such paired-sample comparisons help reduce the effects of 

potential confounding factors. We identified differentially expressed genes (Wilcoxon signed 

rank test) between tumors and their matched normal samples and performed gene 

enrichment using gene set enrichment analysis (GSEA) (Subramanian et al., 2005). The 

combined set of UBQ and DUB genes showed significant enrichment in genes that were 

upregulated in tumor tissues in 7 of the 16 cancer types examined (CHOL, COAD, liver 

hepatocellular carcinoma [LIHC], LUAD, LUSC, PRAD, and BLCA), and more genes were 

upregulated than downregulated in these diseases (q < 0.1) (Figures 4A, 4B, and S4A). In 

contrast, only thyroid cancer (thyroid carcinoma [THCA]) showed a significant opposite 

pattern (q < 0.1) (Figures 4A and 4B). We obtained similar results for UBQ and DUB genes 

separately (Figure 4A).

To examine the molecular mechanisms underlying the UBQ/DUB mRNA upregulation in 

the seven cancer types, we further integrated SCNA, DNA methylation, and microRNA 

(miRNA) expression data and compared the patterns of upregulated UBQ/DUB genes to 

those of neutral ones (i.e., genes showing no significant differential mRNA expression). 

First, in 6 of the 7 cancer types, upregulated genes showed a significantly higher proportion 

of copy-number amplifications than did neutral genes (chi-square test, q < 0.01) (Figure 4C, 

top), highlighting the significant role of somatic copy-number gain in increasing UBQ/DUB 

gene expression in tumor samples. Second, for four cancer types with miRNA expression 

data and sufficient matched tumor and normal pairs (n > 20), compared to neutral genes, 

upregulated genes showed a significantly higher proportion of their reduced miRNA 

regulators in tumor samples of LIHC and LUAD (chi-square test, q < 0.1) (Figure 4C, 

middle), suggesting that miRNA-mediated gene repression contributes to the increased 

UBQ/DUB mRNA expression. Third, for six cancer types with DNA methylation data and 

sufficient matched tumor and normal pairs (n > 20), compared to neutral genes, upregulated 

genes showed a significantly higher proportion of reduced methylation levels in tumor 

samples of COAD and LUAD (chi-square test, q < 0.01) (Figure 4C, bottom), suggesting 

notable contributions of methylation-mediated gene silencing in these two cancer types. 

Finally, across cancer types, ~71% of upregulated UBQ/DUB genes were affected by these 

mechanisms and ~10% of them were mediated by more than one mechanism (Figures 4C, 

right, and S4B). These results provide a quantitative view of how different mechanisms 

contribute to the dysregulation of UBQ and DUB genes in tumor samples.

In addition, we performed an analysis to identify key miRNA regulators of UBQ and DUB 

genes. We inferred coding gene targets of 1,855 miRNAs by integrating both sequence 

information of target genes and the co-expression of the corresponding mRNA-miRNA pairs 

(STAR Methods). Several master miRNA regulators for UBQ and DUB genes emerged from 

this analysis (Figure S5), including the mir-200 family (mir-200a, mir-200b, mir-200c, 

mir-141, and mir-429), the mir-17/92 cluster (mir-17, mir-18a, mir-19a, mir-20a, and 

mir-19b-1), and mir-7-1.
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Integrated Genomic Analysis of UBQ and DUB Genes

In addition to the preceding single-platform-oriented analysis, we integrated the data from 

mRNA expression, SCNA profiles, and DNA methylation to gain a more comprehensive 

picture of UBQ/DUB molecular patterns. We first normalized mRNA expression and DNA 

methylation data by Z scores within each cancer type to minimize tissue effects and then 

clustered the samples based on three data types separately. For each data type, all samples 

were appropriately clustered into four groups (Figure 5A–5C). Using the cluster-of-cluster 

assignment (COCA) strategy (Hoadley et al., 2014), we then represented each platform-

specific cluster as binary vectors and re-clustered all samples across the three data types, 

which revealed three robust clusters (COCA1, COCA2, and COCA3) (Figures 5D and S6A). 

The samples were relatively evenly distributed among different cancers, and overall, 55%, 

25%, and 20% of the samples belonged to COCA1, COCA2, and COCA3, respectively.

We next assessed the clinical relevance of these three clusters. Because patient survival time 

generally reflects the progression of the disease and represents a key clinical variable, we 

performed survival analysis within each cancer type (log-rank test). The COCA clusters 

showed significant association with overall survival for 10 of 30 cancer types with a 

sufficient sample size and follow-up time (Figure 5E). In addition, the COCA clusters 

showed similar significant associations with the disease-specific survival times for nine 

cancer types (Figure 5E). Strikingly, in all these cancer types, COCA2 was always 

associated with worse prognosis (Figures 5F, S6B, and S6C). In addition, we examined the 

correlations of COCA clusters with established tumor subtypes and found significant 

correlations in multiple cancer types (Figure S6D). Altogether, these results highlight the 

potential clinical utility of this UBQ/DUB-driven subtyping.

Biological Pathways and Molecular Drivers Associated with COCA2

To gain biological insights into the intriguing subtype COCA2, we first identified the most 

associated hallmark pathways by GSEA based on mRNA expression data (q < 0.1). Across 

the 33 cancer types, upregulated genes in COCA2 (relative to COCA1 and COCA3) showed 

consistently significant enrichment in the G2M checkpoint and DNA repair pathways; 

COCA2 correlated with other hallmark pathways but did so less consistently (Figure 6A). To 

confirm the preceding strong pathway associations, we further analyzed the pathway scores 

of the cell-cycle and DNA damage pathways derived from TCGA protein expression data for 

19 major cancer types with >100 samples (Akbani et al., 2014). COCA2 showed 

significantly higher cell-cycle and DNA damage response pathway scores in 12 and 9 cancer 

types, respectively (p < 0.05) (Figure 6B).

We next sought to identify somatic alternations that potentially drive the COCA2 subtypes. 

We first focused on significantly mutated genes (identified by MutSigCV) in each cancer 

type and assessed whether their mutation rates were different between the COCA2 samples 

and the remaining samples (Figure 6C). TP53 was differentially mutated in 13 cancer types 

(q < 0.1), including UCEC, LUAD, lower grade glioma (LGG), HNSC, COAD, and LIHC, 

in which significant survival patterns were observed (Figure 5F). Then we examined SCNA 

drivers by focusing on known oncogenes and tumor suppressors residing in amplification or 

deletion peaks (identified by GISTIC2) in each cancer type (Mermel et al., 2011; Zack et al., 

Ge et al. Page 8

Cell Rep. Author manuscript; available in PMC 2018 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2013). We found that COCA2 was associated with the amplifications of MYC and TERT 
and the deletions of PTEN and APC in multiple cancer types (q < 0.001) (Figure 6D). These 

potential SCNA drivers also showed consistent gene expression patterns across cancer types 

(Figure S7).

Low expression or mutated TP53 and MYC amplification are well-established drivers of 

cell-cycle and DNA damage repair response dysregulation (Campaner and Amati, 2012; 

Dang, 2012; Nakayama and Nakayama, 2006; Williams and Schumacher, 2016). Deletion or 

low expression of the tumor suppressor PTEN has been shown to drive cell-cycle 

progression, proliferation, and cell survival (Chalhoub and Baker, 2009; Minami et al., 2014; 

Ming and He, 2012). High expression of TERT, the catalytic subunit of telomerase, 

immortalizes cancer cells by promoting cell-cycle progression and increased survival. 

Furthermore, low expression of anaphase-promoting complex (APC) drives uncontrolled 

cell-cycle progression and proliferation. Therefore, we put forward a model in which 

mutated TP53 and amplified MYC are closely associated with primarily an upregulation of 

key ubiquitin-related enzymes, leading to an uncontrolled cell cycle, elevated DNA damage 

response, and ultimately poor survival for COCA2 patients (Figure 7). For the cell-cycle 

pathway, in addition to the upregulated core backbone components of SCF and the 

anaphase-promoting complex (APC/C), substrate recognition components such as CDH1, 

CDC20, and SKP2 showed upregulation, while FBXW7 and BTRC were downregulated. 

This result is consistent with the nature of the complexes’ substrates. For example, substrates 

of FBXW7 are oncoproteins, such as cyclin E, c-Myc, and Notch, while substrates of SKP2 

are tumor suppressors, such as p21, p27, and p57. For the DNA damage pathway, there was 

increased mRNA expression of RNF8, RNF168, RAD18, BRCA1, and UBE2N; the 

exception was HERC2. Increased DNA damage response intimately integrates with the 

dysregulation of cell-cycle progression and checkpoint control. This can potentially create a 

deleterious feedback loop, in which dysregulation of cell-cycle checkpoints, coupled with 

elevated DNA damage repair, leads to cells with unrepaired DNA damage entering 

replication, thereby amplifying the subsequent DNA damage response.

DISCUSSION

Using the latest TCGA multidimensional molecular profiling data, we performed 

comprehensive molecular characterization of the ubiquitin pathway of 1,024 genes across 

9,125 samples of 33 cancer types. There are three key findings in our study. First, we 

systematically cataloged driver candidates with significant mutation and SCNA patterns. 

Compared with top SCNA drivers, the profiles of mutation drivers are diverse across 

different cancer types. For example, BAP1 and VHL are frequently mutated in 

mesothelioma (MESO) and KIRC, respectively, whereas FBXW7 is enriched with hotspot 

mutations in UCEC and UCS but enriched with LoF mutations in ESCA, LUAD, LUSC, 

READ, SKCM, and STAD. These results suggest context-dependent oncogenic mechanisms 

of UBQ/DUB mutation drivers, which have been less appreciated in the field. Second, we 

show that compared to matched normal tissues, genes in the ubiquitin pathway tend to be 

overexpressed in a range of cancer types, and collectively, 71% of the upregulated genes are 

contributed by one of three mechanisms: somatic copy-number gain, reduced methylation-

mediated gene silencing, and reduced miRNA-mediated gene regulation in tumors. Finally, 
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the cross-platform integrative analysis reveals a group of patients that is consistently 

correlated with worse prognosis across nine cancer types. These tumor samples are 

associated with differential UBQ/DUB expression underlying the perturbation of many 

fundamental signaling pathways, notably cell-cycle progression and DNA damage repair, 

likely resulting from key molecular drivers such as TP53, MYC, TERT, PTEN, and APC. 

These striking and robust patterns highlight a unique value of the ubiquitin pathway in 

patient classification, conferring potential prognostic utility.

One major motivation for studying UBQs and DUBs is the potential to develop drugs that 

target the ubiquitin system (Salami and Crews, 2017). Thus far, the progress has been 

limited. This could be largely due to the lack of systemic characterization of significant 

driver mutations, SCNA patterns, and dysregulated expression profiles in the ubiquitin 

pathway across cancer types through an integrated genomic analysis that would provide 

clinically relevant drug candidates to the pharmaceutical industry. Another challenge is that 

unlike kinases, many components of the ubiquitin pathway lack a well-defined catalytic 

pocket, which makes them difficult to target by small molecules, although this obstacle 

might be overcome by the development of inhibitors that block specific protein-protein 

interaction. However, given its widespread impact, the potential for targeting some key 

components in the ubiquitin pathway for drug development through the controlled 

proteostasis mechanism is immense. Studies have provided a proof of principle that certain 

E3 ligases and DUBs are potential therapeutic targets that are amenable to inhibition by 

small molecules. For instance, MDM2 and SKP2, two oncogenic E3 ligases overexpressed 

in multiple cancer types, can be inhibited by Nutlins and Compound 25, respectively; these 

compounds have shown promising anti-tumor effects in xenograft tumor models (Chan et 

al., 2013; Vassilev et al., 2004). Moreover, the deubiquitinase USP7 has been shown to 

deubiquitinate several key cancer proteins, and P5091, a highly specific inhibitor of USP7, 

induced apoptosis in multiple myeloma cells (Chauhan et al., 2012). Our study suggests that 

targeting the ubiquitin pathway components involved in cell-cycle progression and DNA 

damage response pathways may offer promising opportunities for drug interventions, 

because these two pathways tightly correlate with the prognostically relevant tumor 

subtypes. In addition, mutually exclusive patterns between ubiquitin pathway genes and 

known actionable cancer genes suggest potential combination therapeutic strategies. This 

focused, systematic analysis of UBQ and DUB genes will lay a critical foundation for 

understanding the dysregulation of UBQ in cancer and provide unique insights into the 

development of related therapeutic approaches.

STAR★METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

TCGA somatic copy number 
alteration thresholded data

Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas
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REAGENT or RESOURCE SOURCE IDENTIFIER

TCGA somatic copy number 
segmentation data by 
Affymetrix SNP 6 array

Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

TCGA somatic mutation data Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

TCGA gene expression data Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

TCGA reverse-phase protein 
array (RPPA) data

Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas.

TCGA DNA methylation 
data

Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

TCGA miRNA-seq data Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

TCGA patient clinic data Genomic Data Commons https://gdc.cancer.gov/about-data/publications/pancanatlas

Software and Algorithms

CoMEt (Leiserson et al., 2015) https://bioconductor.org/packages/release/bioc/html/coMET.html

MutSigCV (Lawrence et al., 2013) http://software.broadinstitute.org/cancer/software/genepattern/modules/docs/MutSigCV

GISTIC2.0 (Mermel et al., 2011) https://software.broadinstitute.org/software/cprg/?q=node/31

Gene Set Enrichment 
Analysis (GSEA)

(Mootha et al., 2003; 
Subramanian et al., 
2005)

http://software.broadinstitute.org/gsea/index.jsp

Cytoscape (Shannon et al., 2003) http://cytoscape.org

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to and will be fulfilled by the 

Lead Contact, Han Liang (hliang1@mdanderson.org).

METHOD DETAILS

Curation of UBQ and DUB gene sets—Given the diverse and integrative nature of the 

ubiquitin pathway, it was difficult to properly curate a definitive UBQ gene list. After an 

initial rigorous literature search, no established consensus was observed in the field beyond 

E1 and E2 enzymes, and the discovery of important E3 enzymes, adapters, and other E3-

associated genes was both escalating and in high debate. We therefore started our curation 

with a centralized, thorough database of UBQ and UBQ-associated genes, the Ubiquitin and 

Ubiquitin-like Conjugation Database (UUCD, http://uucd.biocuckoo.org/), which is 

continually updated and optimized as well as the most detailed and comprehensive available 

(Gao et al., 2013).

The UUCD database uses a multi-fold process to curate its UBQ genes relying on a 

combination of manual and computational methods. The first step in the process is a manual 

literature search using key words related to UBQ and UBQ-associated genes that can 

covalently recognize and modify other molecules, such as “ubiquitin,” “ubiquitination,” etc. 

This substantial, amassed list of genes was then distinguished into E1 gene (ThiF/MoeB), E2 

gene (UBC, UEV), and E3 gene categories based on the classification of their functional 

domains in the literature, thereby establishing a dual publication (PMID - Table S2) and 

UBQ domain correlation criterion for curation (Gao et al., 2013). Since a significant number 

of integral proteins participate in the function of E3 ligase complexes as adapters/receptors, 
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UUCD further categorized the E3-associated genes into two classifications based on domain 

sequence and associated function: E3 activity and E3 adaptor, where E3 activity refers to a 

functioning E3 enzyme in contrast to E3 adapters (E3-complex adaptor, substrate receptor, 

etc.) integrally participating in E3 enzymatic function (Gao et al., 2013). After properly 

categorizing the manually curated UBQ genes from the literature, UUCD applied a 

computational approach using UBQ protein sequences and hidden Markov models (HMM) 

to predict other possible UBQ enzymes and adapters yet to be discovered (HMM –Table S2). 

After aligning the protein sequences by MUSCLE, HMMER 3.0 was utilized to create 

hidden Markov model profiles of 1, 1, and 15 (http://uucd.biocuckoo.org/download/HMM) 

for E1, E2, and E3 UBQ genes, respectively. Moreover, these HMM models were further 

utilized along with hmmsearch to search all protein sequences to identify unknown UBQ 

genes and adapters, thus providing a much more expanded gene list of possible UBQ 

functionality (Eddy, 1998; Edgar, 2004; Gao et al., 2013). In this study, we chose to cast a 

wide net for potential E3 adapters/receptors in order for the most comprehensive analysis 

available.

Our final UBQ gene list was based on extracting the UBQ genes from the UUCD database 

(downloaded in March 2017) and then adding a filtering step to remove ubiquitin-like genes 

(enzymes and adapters) not directly associated with UBQ pathway function, such as 

sumoylation and ISGylation associated genes. As a result, our UBQ gene set included 929 

genes in total, including pre-established UUCD gene categories of E1 (8 genes, 1 predicted), 

E2 (39 genes, 2 predicted), and E3 (882 genes, 368 predicted). For E3 UBQ genes, they 

were further divided into E3 activity (387 genes, 78 predicted) and E3 adaptor (495 genes, 

290 predicted) (Figure S1A, Table S2).

In contrast to the complexity of the UBQ gene curation, DUB genes are far fewer in number 

and much easier to curate. A general consensus has been reached on their classification, thus 

a simple mining of the literature detailing an inventory of DUB genes leads to 

comprehensive gene coverage. In this study, we intersected 3 major DUB review articles and 

found a substantial overlap of DUB genes, where 80 of 91 total DUB genes were found in 

all 3 articles (Fraile et al., 2012; Komander et al., 2009; Nijman et al., 2005) (Figure S1B, 

Table S2). Notably, 4 genes from the MCPIP family, originally reported as DUB genes in 

Fraile et al., 2012, were later shown to exhibit no DUB activity and therefore filtered first 

before generating the final union of 91 DUB genes (Niu et al., 2013). In addition, we 

included four DUB genes recently discovered (Abdul Rehman et al., 2016). As a result, we 

created a final list of 95 DUB genes comprised of six major classes, including ubiquitin C-

terminal hydrolase (UCH), ubiquitin-specific protease (USP), Machado-Joseph domain 

(MJD), ovarian tumor (OTU), JAB1/MPN/Mov34 metalloprotease (JAMM), and motif 

interacting with Ub-containing DUB family (MINDY) (Table S2).

Somatic mutation analysis—We obtained TCGA pan-cancer somatic mutation data 

from Genomic Data Commons. Further filtering steps were used to eliminate artifacts and 

reduce false-positive calls. A) Only mutations with “PASS” in the “FILTER” column were 

retained for all cancer types except for ovarian serous cystadenocarcinoma (OV) and acute 

myeloid leukemia (LAML), for which we allowed “wga.” B) Hypermutated samples with > 

1,000 somatic mutations were removed, resulting in somatic mutation data for 8,811 
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samples for further analyses. Only non-silent somatic mutations were used to calculate 

mutation frequency. For each cancer type, MutSigCV (v1.4) was used to identify 

significantly mutated genes in each cancer cohort at a q value of 0.1. Across the pan-cancer 

cohort, hotspot mutations were defined as missense or in-frame mutations at the same 

protein amino acid in > 2 patient samples. The fraction of hotspot mutations per gene was 

calculated as the total number of hotspot mutations over the total number of non-silent 

mutations found in that gene. The fraction of LoF mutations (defined as Frame_Shift_Ins, 

Frame_Shift_Del, Nonsense_Mutation, Nonstop_Mutation, Splice_Site, and 

Tanslation_Start_Site) per gene was calculated as the total number of LoF mutations over 

the total number of non-silent mutations in that gene. Genes with > 30% hotspot mutations, 

< 20% LoF mutations, and ≥ 5 unique hotspot mutation positions were identified as enriched 

with hotspot mutations, while genes containing > 30% LoF mutations, < 30% hotspot 

mutations, and ≥ 10 LoF mutations were identified as enriched with LoF mutations. Mutual 

exclusivity for FBXW7 mutations and mutations in clinically actionable genes (annotated as 

in OncoKB, http://oncokb.org) was performed with the R package “cometExactTest.” To 

study the effects of FBXW7 mutations, PI3K pathway expression was calculated from 

protein levels of the PI3K/Akt pathway components as measured by RPPA with the 

following formula where E means expression:

EPI3K/Akt pathway = EAKTP473 + EAKTPT308 + EGSK3ALPHABETAPS21S9 + EGSK3PS9 + EP27PT157
+ EP27PT198 + EPRAS40PT246 + ETUBERINPT1462 − EINPP4B − EPTEN

Somatic copy-number alteration analysis—We obtained SCNA data of 9,125 patient 

samples from Genomic Data Commons and applied GISTIC2. For each cancer type, genes 

were considered to be amplified or deleted if they were located in the amplification peak or 

deletion peak at a q value of 0.25. The SCNA mutual exclusivity test was performed by 

employing the R package cometExactTest using the integer copy number data. Mutual 

exclusivity for MDM2 amplification and non-silent mutations in clinically actionable genes 

was carried out using the R package “cometExactTest.” For the pan-cancer SCNA clustering 

analysis, the integer copy numbers of UBQ and DUB genes were used with Ward’s method 

for consensus clustering.

RNA-seq analysis—We obtained normalized gene expression data from Genomic Data 

Commons. For the tumor-normal comparison, we performed a differential expression 

analysis between tumor and their matched normal samples for each of 16 cancer types using 

the Wilcoxon signed rank test and built the pre-ranked gene lists based on signed −log10 p 

values. For GSEA, the pre-ranked gene lists were then run against the UBQ, DUB and 

UBQ/DUB gene sets using GSEA Java GUI (version 2.3.3), respectively. For the pan-cancer 

expression-level clustering analysis, the normalized values from the root squared error 

method were log2-transformed and Z-normalized within each cancer type. Then, Pearson’s 

correlation and hierarchical average linkage clustering were applied to the top 800 most 

variable UBQ/DUB genes for consensus clustering.

MiRNA expression analysis—We obtained normalized miRNA expression data from 

Genomic Data Commons. To study the mechanisms underlying dysregulated UBQ/DUB 
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genes in cancer, based on the miRNA expression data of paired tumor–normal samples from 

562 patients, a paired t test was performed for each gene within each cancer type (5 cancer 

types with a sample size of > 20 pairs), where genes with significantly high or low 

expression in tumor samples were determined using a p-value cutoff of 0.05. We identified 

master miRNA regulators for UBQ and DUB genes based on two criteria. First, a miRNA 

has at least one seed region (2–8-mer) matched to the 3′UTR of any UBQ/DUB gene. 

Second, the Spearmen correlation of miRNA with the expression of the target gene was 

statistically significant (q < 10−5 and rho < −0.5). Cytoscape was used to visualize miRNA 

and the UBQ/DUB gene network.

DNA methylation analysis—We obtained DNA methylation 450K data from Genomic 

Data Commons. For each gene, one DNA methylation probe was selected based on the 

correlation with its mRNA expression level, and if multiple probes for a gene were available, 

the probe that had the most negative correlation value was selected. To study the 

mechanisms underlying dysregulated UBQ/DUB genes in cancer, based on the DNA 

methylation data of paired tumor–normal samples from 624 patients, a paired t test was 

performed for each gene within each cancer type (6 cancer types with a sample size of > 20 

pairs), where genes significantly hypermethylated or hypomethylated were determined using 

a p-value cutoff of 0.05. For the pan-cancer methylation-based clustering, consensus 

clustering was performed for the top 1,000 most variable probes for the UBQ/DUB genes, 

using the Euclidean distance and partitioning around medoids method.

Integrative clustering and patient survival analysis—We obtained TCGA patient 

clinical data from Genomic Data Commons. Clusters defined from individual platforms 

(SCNA, mRNA and DNA methylation) were coded into binary variables for each platform-

specific cluster. The matrix of 0 s and 1 s was then used as the input data matrix in the 

ConsensusClusterPlus R package to identify integrated relationships for the 9,125 patient 

samples. Pearson’s correlation and hierarchical clustering were used. Overall survival or 

disease-specific survival curves were compared using log-rank tests in the R package 

“survival.” To detect biological pathways associated with COCA clusters, for each cancer 

type, we performed a differential expression analysis between COCA2 and COCA1/COCA3 

samples using a t test and built the pre-ranked gene lists based on signed −log10 p values. 

For GSEA, the pre-ranked gene lists were then run against the seven cancer hallmark gene 

sets (MSigDB Collections: H) using GSEA Java GUI (version 2.3.3).

RPPA pathway score calculation—We obtained the normalized RPPA data from 

Genomic Data Commons and Z-normalized the data within each cancer type. Pathway 

scores for the cell cycle and DNA damage response pathways were calculated for each 

patient (total of 6,441 patients). To detect biological pathways associated with COCA 

clusters, RPPA pathway scores were used to test the pathway perturbations between COCA2 

and COCA1/COCA3 samples using a t test.

QUANTIFICATION AND STATISTICAL ANALYSES

Somatic mutation, SCNA, and RNA-seq analyses were based on 9,125 tumor samples; and 

miRNA expression, DNA methylation, and RPPA analyses were respectively based on 
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7,939, 8,058, and 6,441 tumor samples due to limited data availability. Definitions of 

significance for various statistical tests are described and referenced in their respective 

sections in Methods.

DATA AND SOFTWARE AVAILABILITY

The raw data, processed data, and clinical data can be found at the legacy archive of the 

GDC (https://portal.gdc.cancer.gov/legacy-archive/search/f) and the PancanAtlas publication 

page (https://gdc.cancer.gov/about-data/publications/pancanatlas). The mutation data can be 

found here (https://gdc.cancer.gov/about-data/publications/mc3-2017). TCGA data can also 

be explored through the Broad Institute FireBrowse portal (http://gdac.broadinstitute.org) 

and the Memorial Sloan Kettering Cancer Center cBioPortal (http://www.cbioportal.org). 

Details for software availability are in the Key Resources Table.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Full molecular characterization of 1,024 ubiquitin pathway genes in 33 cancer 

types

• Systematically identify somatic driver candidates in the ubiquitin pathway

• Consistent prognostic patterns of tumor subtypes defined by ubiquitin 

pathway genes

• Propose a ubiquitin pathway mechanistic model underlying poor patient 

survival
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Figure 1. Frequently Mutated UBQ and DUB Genes as Potential Cancer Drivers
(A) UBQ and DUB genes are plotted as fractions of hotspot versus LoF mutations among all 

non-silent mutations across cancer types. Genes enriched with hotspot mutations are shown 

in red, genes enriched with LoF mutations are in blue, and FBXW7 is shown in orange, 

because it is enriched with both hotspot and LoF mutations. The circles represent UBQs, and 

the squares represent DUBs.

(B) Significantly mutated genes identified by MutSigCV in each cancer type are shown. The 

circles represent UBQs, and the squares represent DUBs; the circle or square size is 

proportional to the significance level. The fraction of patients harboring non-silent mutations 

in each gene is shown by color scale.

(C) UBQ and DUB genes enriched with hotspot and LoF mutations are mapped to different 

gene categories in the ubiquitin pathway. See also Figure S2.
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Figure 2. FBXW7 Is Enriched with Both Hotspot and Loss-of-Function Mutations
(A) Fractions of hotspot mutations versus LoF mutations among all non-silent mutations in 

FBXW7 are plotted for different cancer types. Cancer types enriched with hotspot mutations 

are shown in red, those enriched with LoF mutations are in blue, and those enriched with 

both hotspot and LoF mutations are in gray.

(B) WD40 domain structure of FBXW7 protein in which three arginines (R465, R479, and 

R505) are mutation hotspots and located at the substrate binding surface.

(C) Distributions of FBXW7 non-silent mutations in cancer types enriched with hotspot 

mutations (UCEC and UCS) and cancer types enriched with LoF mutations (ESCA, LUAD, 

LUSC, READ, SKCM, and STAD).

(D) FBXW7 mutations show mutually exclusive patterns with PIK3CA mutations in BLCA, 

CESC, and LUSC.

(E) Compared to tumors without mutations in FBXW7 or PI3K pathway genes, tumors with 

either FBXW7 or PI3K pathway mutations show elevated PI3K-Akt pathway activity, with 

*, p < 0.05.

The bottom and top of the box are the first and third quartiles, and the whiskers extend to 1.5 

IQR of the lower quartile and the upper quartile, respectively.

Ge et al. Page 21

Cell Rep. Author manuscript; available in PMC 2018 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Somatic Copy-Number Alterations of UBQ and DUB Genes
(A) Fractions of UBQ and DUB genes residing in the amplification or deletion peaks 

(identified by GISTIC2, q < 0.25) compared to non-UBQ/DUB genes in different cancer 

types. Significant deletion enrichments are detected with *p < 0.01.

(B) Most frequently amplified or deleted UBQ and DUB genes in multiple cancer types. The 

circle size is proportional to the significance level of GISTIC2 results.

(C) MDM2 amplification shows a mutually exclusive pattern with BRAF mutations in 

SKCM. TP53 mutations are shown for comparison. Each bar represents one patient; 

significance was assessed by Fisher’s exact test.

(D) TP53 protein and mRNA expression of tumor samples with MDM2 amplification versus 

those with BRAF mutations or wild-type (WT) samples, with *p < 0.05.

The bottom and top of the box are the first and third quartiles, and the whiskers extend to 1.5 

IQR of the lower quartile and the upper quartile, respectively.

(E) Graphical model showing the synergistic effect of MDM2 inhibitor and BRAF inhibitor.

See also Figure S3.
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Figure 4. Multiple Mechanisms Contribute to Upregulation of UBQ and DUB Genes in Cancer
(A) UBQ and DUB genes showed upregulation in tumor samples in seven cancer types 

(GSEA, q < 0.1).

(B) Proportions of upregulated, neutral, and downregulated UBQ/DUB genes in the seven 

cancer types (Wilcoxon signed rank test, q < 0.1).

(C) Top: proportions of copy-number amplification, neutral level, and deletions in 

upregulated and neutral UBQ/DUB gene groups in each cancer type. Middle: proportions of 

significantly decreased (paired t test, p < 0.05), decreased, and other expression of miRNA 

regulators in tumor samples relative to matched normal samples in upregulated and neutral 

UBQ/DUB gene groups. Bottom: proportions of significantly decreased (paired t test, p < 

0.05), decreased, and otherwise DNA methylation level in tumor samples relative to matched 

normal samples in upregulated and neutral UBQ/DUB gene groups. The asterisks indicate 

the significant proportion difference between the two groups (chi-square test, *q < 0.01). 

Right: Venn diagram showing the proportions of upregulated UBQ/DUB genes affected by 

different regulatory mechanisms.

See also Figures S4 and S5.
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Figure 5. Integrative Genomic Clustering and Patient Survival Analysis
(A–C) Heatmaps of consensus clustering for three platforms: RNA sequencing (RNA-seq)-

based mRNA expression (A), somatic copy-number alterations (B), and DNA methylation 

(C).

(D) Consensus matrix of integrative clustering showing three robust clusters (COCA1, 

COCA2, and COCA3).

(E) COCA clusters correlate with patient overall survival and disease-specific survival times 

in 10 and 9 cancer types, respectively.

(F) Kaplan-Meier plots of nine cancer types showing overall survival curves for three 

clusters of patients with log-rank p values.

See also Figure S6.
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Figure 6. Biological Pathways and Somatic Drivers Associated with the Poor Prognostic Tumor 
Subtypes (COCA2)
(A) Association of COCA2 with GSEA hallmark gene sets. Significant positive associations 

are shown in red, significant negative associations are shown in blue, and non-significant 

ones are shown in gray.

(B) Reverse-phase protein array (RPPA)-based pathway scores of cell-cycle and DNA repair 

between COCA2 samples (red box) and other samples (blue box).

The bottom and top of the box are the first and third quartiles, and the whiskers extend to 1.5 

IQR of the lower quartile and the upper quartile, respectively.

(C) Significantly mutated genes identified by MutSigCV, in which the mutations are 

significantly enriched (red) or depleted (blue) in COCA2 compared to COCA1 and COCA3 

in different cancer types (q < 0.1).

(D) SCNA drivers identified by GISTIC2, in which amplifications (for oncogenes) and 

deletions (for tumor suppressors) are significantly enriched in COCA2 compared to COCA1 

and COCA3 in different cancer types (q < 0.001).
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Figure 7. Mechanistic Model Describing the Biological Process Underlying COCA2 Subtypes
Somatic drivers identified for COCA2 subtypes (top) cause the expression-level changes of 

key UBQ and DUB genes in SCF complex, APC/C complex, and DNA damage response 

that underlie the aberrant activities of cell-cycle and DNA damage pathways (middle), 

thereby leading to poor patient survival of COCA2 subtypes (bottom). See also Figure S7.
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