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ABSTRACT OF THE THESIS

Tactile Perception for Growing Robots via Discrete Curvature Measurements

by

Micah Bryant

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2022

Professor Tania Morimoto, Chair

Soft, growing robots have the ability to conform to their environment and traverse highly

curved paths that would typically prove challenging for other robot designs. As they navigate

through these constrained and cluttered environments, there is often significant interaction

between the robot and its surroundings. In this work, we propose a method to enable tactile

perception for growing robots, which utilizes commercially available, flexible sensors that

measure the curvature of the robot shape at multiple locations. Our method consists of both

a pouch design to enable seamless integration of the sensors with the material of the growing

robot, as well as an algorithm for determining the location of point contacts along the robot body.

We validate our proposed approach experimentally and show that we can localize a force applied

ix



to various locations along the length of a growing robot with an average error of 3.44±1.38 cm

when the robot is unactuated and 4.62±0.95 cm when the robot is actuated. Additionally, we

characterize the minimum distance required for our tactile sensing approach to discriminate

between two separate contact points along the robot body. Finally, we apply our method to

a growing robot exploring an unknown environment and show that we are able to effectively

determine when and where the growing robot collides with an unknown obstacle.
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Chapter 1

Introduction

Over the past decade, there has been a significant advancement in the study of soft

robotics. There are several definitions for what a soft robot is, but soft robotics refers typically

to a robot constructed out of materials that can be characterized by a relatively low Young’s

modulus, around the scale of biological tissues. While traditional robotics materials have a

Young’s modulus on the scale of 109 −1012 pascals, biological tissues are typically much less

rigid with a modulus on the scale of 104 − 109 pascals [5]. This decrease in stiffness in the

materials naturally causes an increase in flexibility and adaptability of the overall robot.

Research in soft robotics grew rapidly due to its potential use cases and benefits compared

to more rigid robots. Soft material means it is safer to use around humans. The material acts as

a cushion when colliding with a human thereby decreasing any damage from accidents arising

from interactions around humans [6]. This soft material is also desirable for medical applications.

It can help decrease any damage dealt to the soft tissues inside the human body during surgery

and make direct human interaction safer [7]. Soft robots also have increased flexibility and

adaptability. These properties give the robot the ability to be used in confined spaces and in

some cases even change the shape of its body to squeeze through gaps in the environment [1].

These are desirable properties for use in search and rescue operations [8], archaeological

exploration [9], or underwater observation where the environment is unknown [10]. The

cushioning property is especially desirable in the case where the unknown environment may
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contain objects that can be damaged by a moving rigid body such as an injured person or a coral

reef [10].

However, with these benefits comes a trade-off. An increase in flexibility and adapt-

ability also means an increased number of degrees of freedom, which can pose a challenge

for control and modeling [5]. Many of the actuation methods for soft robots involves bending,

twisting, stretching, or compressing the material of the actuator, which often follows a nonlinear

trend [5]. These challenges are further complicated when the environment is constrained or

highly cluttered which causes significant interaction between the robot and its surroundings [11].

These interactions need to be considered when looking at modeling, planning, and control.

There has been significant work on modeling soft robots’ response to actuation in

free-space and soft robots’ response to interacting with an obstacle [11][2]. These planning

algorithms are used to perform planning of the path a robot can take to reach a specified

configuration or endpoint, however, to our knowledge all these cases to date assume that the

robot knows the locations of all the obstacles in advance. As this is not a feasible assumption

in many use cases where the robot is in an unknown environment, there is a need to develop

methods for touch localization to determine when an obstacle collision has occurred and where

along the robot length it has occurred. Tactile sensing has the potential to enable soft robots

to locate obstacles and support structures, map their environments in real-time, and plan their

movement even in previously unexplored environments. The method for sensing also needs to

be integrated in such a way that it does not sacrifice many of the qualities that are desirable in a

soft robot.

1.1 Everting Robots

This thesis focuses on everting robots. Everting robots, also known as vine or growing

robots, are a form of bio-inspired soft robot that derive their inspiration from the growth

mechanism of vines. This form of growth is called tip-extension where material is added to
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the tip. As the only forward movement occurs locally at the tip there is drastically decreased

movement relative to the environment from the rest of the robot body. There are several methods

for replicating this form of growth such as tip-localized 3D printing [12], unspooling material

at the tip [13], and feeding material from the base to the tip [11]. The method that is focused on

here is the method of storing material at the base of the robot. The material is pushed out of the

tip of the robot to perform growth. This method is performed by creating an invertible tube from

a thin-walled material[11]. The material is inverted, and the inside of the tube is pressurized

either by fluid or air. This pressure applies a force at the tip of the robot which drives additional

material to evert out into the environment (see Fig. 1.1).

This method of growth gives several benefits to the robot, such as increased ability to

travel tortuous paths [14] and reduced friction when moving in the environment [10]. These

robots then have found use cases in minimally-invasive surgery [14], search and rescue [8],

archaeological exploration [9], and ocean exploration [10] due to these properties, in addition to

the flexibility and adaptability that is characteristic of soft robots in general.

Control of everting robots presents a unique challenge as the robot is constantly changing

its overall length. Control of everting robots typically refers to actuating the robot to steer the

direction of tip growth. Furthermore, the actuation preferably would sacrifice as little of the

properties that make using an everting robot desirable, such as adaptability, ability to travel

tortuous paths, and reduced friction when moving in the environment [15]. Typically the way to

actuate an everting robot is by shortening or lengthening one side of the robot by applying a

distributed strain to induce a distributed curvature along the length. In an inextensible everting

robot this distrubuted strain would result in sinusoidal wrinkling along the inner edge of the

bend (see Fig. 1.2a). Actuation can be done multiple ways such as attaching Serial Pneumatic

Artificial Muscles (SPAMs) [16], Inverse Pneumatic Artificial Muscles (IPAMs) [17], fabric

Pneumatic Artificial Muscles (fPAMs) [18], or tendon actuation [19].An alternative is to create a

concentrated curvature along the length by preforming curves in the material [1]. This preformed
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curve will take the form of a single or several strong wrinkles in the desired region to achieve

the desired curvature (see Fig.1.2b).

For control and planning algorithms used on everting robots, the modeling of the robot

shape change caused by an actuator in free space can be done by assuming a constant-curvature

Figure 1.1. This figure which originally appeared in EW Hawkes et al [1] illustrates the
mechanism for growth in an everting robot when the material is stored at the base. The material
is spooled at the base and the inside of the robot is pressurized by a pump. This material then
is pushed out through the tip by the pressure in the body. The length can be controlled by
controlling the rotation of the spool.
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(a) (b)

Figure 1.2. (a) Effect of applying a distributed strain load along the length of a relatively
non-extensible everting robot body. The length of the material on the outer edge of the bend does
not change in length, but the inside material undergoes wrinkling. (b) The effect of applying a
concentrated strain load to a relatively non-extensible everting robot body. The material forms a
single strong wrinkle and the remainder of the material does not undergo a shape conformation.

deformation model [2] (see Fig. 1.3). The shape is typically estimated by generating a mapping

of curvature to pressure in the actuator for the pneumatic style actuators [20]. Object interaction

when a robot is actuated has been analyzed by utilizing various analytical models such as an

Euler Bernoulli (EB) model [2] or differential kinematics [11].

1.2 Sensor Integration

Sensor feedback about the current robot state and environment is important because

it allows for more precise control in a workspace and understanding of the environment the

robot is traveling into. It allows for active identification of obstacles [4], identification of tip

position [21], and general information about the robot’s surroundings [3].

However for an everting robot, the attachment of a sensor has many difficulties. These

difficulties arise due to the unique form of movement that an everting robot performs. The
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Figure 1.3. This figure which originally appeared in M Selvaggio et al [2] displays a side by
side comparison of an actuated robot (a) and the associated constant curvature deformation (b)
where r respresents the radius of curvature.

deployed material does not move laterally to the environment once deployed, the material at

the tip has to be able to invert and evert, and the tip material constantly changes as the robot

grows [15]. The main attachment areas for sensors to an everting robot is along the wall and at

the tip of the robot.

For attachment at the tip, the unique challenge that the tip material constantly changes

as the robot changes length must be overcome. This property of everting robots means that if

an object wishes to be placed constantly at the tip location, it must be able to move relative

to the material that forms the robot body. Tip attachment is desirable when attempting to

deliver a payload to an object in the environment [22], for sensing using a camera to gain

visual information about the environment [1], or for keeping a permanent magnet at the tip

for localization [21]. There are a few methods that address how to deal with this issue. If the

sensing mechanism is placed outside the robot, the mechanism can be moved forward by the

motion of the material, and it can be constrained from going further than the robot location by
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Figure 1.4. This figure which originally appeared in AM Gruebele et al [3] shows a method of
attaching sensors to the outer wall of an everting robot.

having some constraining element such as applying a tension to the wire of a camera [1]. If the

mechanism is placed inside the robot, the device can be pushed forward by the friction of the

material moving inside the robot, and it will be constrained by the material itself [21].

The final major method for attaching sensors to an everting robot is to attach it along

the body. The method here is to anchor a sensor or sensor package to the wall. They can be

anchored either inside or outside of the robot (see Fig. 1.4). Attaching the sensors outside
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allows for the sensors to interact with the environment, but also exposes the sensors and any

associated wires to the environment as well which may allow them to sustain damage at their

deployed location [3]. To protect the sensors, they can be placed inside of the robot. As this

stops the sensors from being able to measure values outside of the robot, this is used when the

sensors are only going to measuring parameters about the robot itself rather than the outside

environment [15].

One major challenge that is still present in the integration of sensors to an everting

robot lies with attaching sensors to the wall of the robot. Attaching sensors to the wall of

the robot can create stiffness mismatches which can then make it difficult to accurately use a

mechanical model for the robot as well as still allow the robot to move as required. In addition,

if these sensors are used to gather shape estimates, the signal could be significantly reduced in

comparison to the parts of the robot where the sensors are not placed.

1.3 Soft Robot Touch Localization Methods

Touch localization can be used when growing in an unknown environment to determine

potential support structures in a manner similar to biological vines [23] or to map out obstacle

locations to be used in either planning or avoidance algorithms [11] [2]. There are several

methods that are used to perform touch localization. Robots such as continuum and everting

robots have forces acting upon them influence their overall shape due to the force being

distributed down the entire shape [4]. As they are also much longer than they are wide, they can

also be estimated as a thin beam [24]. Touch localization methods have much in common with

force estimation. Typically for force estimation on continuum robots, force is assumed to be

applied at the tip [25][26][27]. There are several methods that relax this constraint by assuming

that both the force and the location are unknown [4][20][28]. However, these methods have

not been used on a growing robot and either constrain the movement to one degree-of-freedom,

require images taken of the robot, or require continuous shape information for the robot.
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Figure 1.5. This figure which originally appeared in VA Aloi et al [4] displays the discrete
shape data collected from the overhead camera and a predicted force distribution and shape
estimate using a Cosserat-rod model.

For the methods that assume that both the force and location of a contact is unknown,

there are several sensing modalities used to find these parameters. The first involves using an

electromagnetic (EM) tracker. This tracker gives information with 5-degrees of freedom (DOF).

Using this information a model can be fit such that the difference between the sensor readings

and the model output are minimized [20]. In this method a joint kinematic model is used to

compare against the sensor information [20].

Another method to determine contact force and location utilizes shape information about

the robot. This can be found using an overhead camera to create a set of discrete data points
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that return robot position [4] (see Fig. 1.5). Another method that has been done to collect

the shape information is to use Fiber-Bragg Grating (FBG) shape sensors to reconstruct the

shape [28]. The FBG generates a series of strain measurements which are converted to curvature

measurements. These curvature measurements are finally integrated together to form a 3D shape

of the robot [28]. For the shape information based estimations, a model is constructed using a

mechanical model, however instead of having a single data point containing position and pose

information, a distributed set of data points is used to compare a model prediction of shape to

the measured shape [4].

However, touch localization has yet to be implemented on a growing robot. In addition,

the methods to use distributed information about robot shape either require a camera to record

robot shape 1.5, which is not feasible in many use cases, or requires an FBG [28], which is

extremely cost prohibitive, can be difficult to incorporate into an everting robot, and occupies

the space in the center of the robot which may need to be used to hold various other tools to be

used depending on the robot application.

1.4 Contributions

Our contributions are as follows. (1) We present a method to localize contact location

on an everting robot using discrete curvature measurements in conjunction with a mechanical

model. This localization is shown to work in a passive, multiple contacts, actuated, and growing

case. (2) We present a method to attach sensors to the walls of an everting robot that give shape

information without disrupting the mechanical and analytical models used in analysis of an

everting robot.
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Chapter 2

System design

2.1 Growing Robot

Our growing robot (Fig. 2.1) is fabricated using a lightweight, silicone-urethane im-

pregnated ripstop fabric (Seattle Fabrics) that is flexible, but relatively inextensible. The main

body of the robot is fabricated by forming this material into an invertible tube. Fabrication is

completed by forming a lap joint with the fabric that is glued together with Sil-poxy Silicone

Figure 2.1. The fully deployed growing robot, along with critical dimensions for both the main
robot body and the fabric pneumatic artificial muscles (fPAMs). The coordinate axes are also
defined, where x points in the direction of the straight robot configuration and y is orthogonal to
x.
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adhesive (Smooth-On). After the lap joint is glued together, the length of the robot is 53 cm.

The diameter of the robot, when inflated, is 3.5 cm, which was chosen to ensure that the selected

sensors, explained in detail in the subsequent section, could be easily everted. The distal end of

the robot is inverted through the center of the robot and connected using a string to a motorized

spool housed inside the pressure vessel. The proximal end of the robot body is attached to an

outlet of a pressure vessel, whose internal pressure can be controlled to induce robot growth.

The robot grows by having an internal pressure that exerts a driving force on the tip of the robot

(see Fig. 1.1). In order for growth to occur, the driving force must overcome friction forces

present in the robot due to various materials moving within the robot such as wires or the robot

material itself.

The pressure vessel consists of a cylindrical plastic housing that contains an air inlet

port connected to a mechanical pressure regulator (SMC AR20K-N02-Z-B) as seen in Fig. 2.2.

A rubber cap is used with a hose clamp to form an airtight seal over the top of the housing. The

length of the robot is controlled by using a motor in coordination with an encoder (Cytron 12V

225RPM DC Geared Motor with Encoder) to determine how much of the string is unspooled.

2.2 Robot Actuation

We chose to use fabric pneumatic artificial muscles (fPAMs) [18] for steering of the

robot. These were chosen due to the ease of attachment, the ability to get adequate curvatures

when activated, and the ability to generate predictable curvatures in the robot body. Two fPAMs

are fabricated with a diameter of 1.6 cm using the same material as the main body. They are

attached on opposite sides of the growing robot body using the same Sil-poxy silicone adhesive

as was used to fabricate the main body (see Fig. 2.1) and are used to bend, or steer, the robot in

the plane, in a manner analogous to tendons.

An fPAM is based off of the working mechanism of a McKibben muscle. There is a

material that has two inextensible threads woven throughout that are orthogonal to the other
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Figure 2.2. The pressure vessel used for length control of the everting robot. A spool connected
to a motor with encoder is controlled in via an Arduino Mega through a motor driver. The vessel
is made airtight with a rubber cap, is pressurized by an inlet port, and is able to pressurize the
main body of the everting robot through an outlet port.
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Figure 2.3. The shape deformation of the material used to fabricate a fabric pneumatic artificial
muscle (fPAMs) when going from unpressurized to pressurized. As the material inflates, the
material expands out radially causing a shift in the inextensible fibers. The inextensible fibers
tie a radial change to a length change. This then causes a contraction of the overall material in
the actuator.

(see Fig. 2.3). The material is cut such that these threads are at a 45 degree angle relative to

the longest and shortest length of the actuator. When the pressure inside an fPAM is increased,

the material expands radially. This radial expansion causes an angular change between the two

threads thereby causing a contraction of the overall actuator. Since the fPAM is coupled to one

side of the robot, a contraction of the fPAM causes a shortening of that side of the robot, which

causes the entire robot body to bend. It is important to note that due to the relatively inextensible

nature of the robot body, the shortening of that side of the robot is primarily caused by wrinkling

in the main body material [29]. The pressure in each fPAM is controlled by a separate NITRA

Current to Pneumatic Transducer (NCP1-20-260N and NCP2-20-260N). The current sent to the

regulators is maintained in a pressure feedback loop established using a PID controller and two

Honeywell pressure sensors (SSC-series 60 PSI). Both the actuator pressures and the motorized

spool position are set by an Arduino Mega 2560, which allows for control of two independent

degrees of freedom — the deployed length of the robot and its tip orientation in the plane.

A mapping was created to determine the robot curvature as a function of actuator

pressure. This mapping is possible because an fPAM applies an approximately constant moment

along the length of the robot [18]. This creates an approximately constant curvature deformation
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Figure 2.4. (a) This is the deformation the robot took when 6 PSI was applied to the actuator
on the right side. (b) This is the deformation that the robot took when 20 PSI was applied to the
actuator on the right side. (c) A graph showing the fit line generated with a sigmoidal function
(hyperbolic tangent) when supplied pressures applied to the actuator on the right side and the
associated measured curvature from analyzing the overhead image.

through uniform wrinkling of the material that the actuator is attached to (see Fig. 1.2). This

allows for a mapping of a single curvature to a single pressure in the actuators [2]. The mapping
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was created by applying 11 different pressures (0 to 20 psi in 2 psi increments) to each actuator

across 3 trials, recording the curvature using an overhead camera, and fitting the data to a

hyperbolic tangent function (see Fig. 2.4).

2.3 Sensor Selection

Integrating sensors onto the flexible, thin-walled body of a growing robot without

adversely affecting the desirable attributes of the robot (e.g. eversion and compliance) is

difficult. Many of these challenges stem from the significant stiffness mismatch that typically

exists between the sensor materials and robot materials. In addition, the robot can experience

uncontrolled wrinkling and the eversion process induces tight curvatures, all of which can lead

to significant stress on any integrated sensors. Further, most of the sensing options that do have

similar mechanical properties to growing robots — such as fabric-based strain sensors [30]

or soft force sensors [31] — are still in the research phase of development, hindering wider

adoption. For these reasons, we seek a solution for tactile perception utilizing sensors that both

have flexibility similar to growing robots and are available for purchase off-the-shelf. We find

that flexible, resistance-based sensors (Spectra Symbol 2.2”) are an appropriate choice given

these design requirements, provided they are properly coupled to the growing robot body. As

seen in Fig. 2.5, the sensor is flexible enough to undergo eversion.

Each sensor is 5.5 cm long and has a resistance that is linearly proportional to the total

change in bending angle across the entire sensor which is represented by the following equation:

Ri =Ci ∗∆θi +Ro,i, (2.1)

Where ∆θi, Ri, Ro,i, and Ci refer to the total change in bending angle, measured resistance,

resistance in sensor at rest, and proportionality constant relating bending angle to resistance

in the sensor respectively. It is important to note that for each sensor there is a different

proportionality constant and resting resistance. Using the EB beam model to relate the bending
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(a) (b) (c)

Figure 2.5. A flex sensor has been attached on to the inside of a clear plastic everting robot
wall and is pictured while (a) inverted, (b) undergoing eversion, and (c) fully everted.

angle to the curvature, the following relationship is achieved:

ki =
dθi

dxi
, (2.2)

where ki and xi refer to the instantaneous curvature and x location along a specific sensor

respectively. Solving for the average curvature along the sensor length yields:

kavg,i =
∆θi

li
, (2.3)

where kavg,i and li refer to the average curvature along a sensor length and total sensor length

respectively. Rearranging 2.3 and substituting into 2.1 allows for a relationship between the

average curvature along a sensor and the resistance reading of the sensor. Combining constants

yields the following relationship which is used to relate resistance to curvature:
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kavg,i =Ci ∗ (Ri −Ro,i), (2.4)

where Ci now represents a new proportionality constant relating resistance of a single sensor to

the average curvature of that sensor.

These resistances are read in using a voltage divider circuit created using a single 22

kOhm resistor for each sensor and an analog output sent to the Arduino Mega 2560. Using

multiple of these sensors, we can determine local curvature measurements at discrete locations

along the growing robot backbone.

2.4 Sensor Integration

Simply adhering the sensors directly to the growing robot is problematic because the

robot behaves mechanically as an inflatable beam [24]. Therefore, if stiffer locations exist along

the robot body — caused by something such as a flex sensor adhered directly to the robot fabric,

for example — the robot will buckle around these locations when the robot encounters a contact

force, rather than forming a smooth curve [32] [11]. Because buckling causes a discrete change

in the curvature between sensors, it is not measured, making the contact force unobservable.

Another situation is that the wrinkling, which is the mechanism for bending of an everting robot,

may occur uniformly everywhere besides at the sensor locations due to the stiffness mismatch

between the sensor and the robot body [29]. The wrinkling in this case would occur at a much

lower frequency and magnitude at the sensor locations or even not at all causing lower or no

signals from the sensors.

To solve this issue, we introduce a pouch device (Fig. 2.6) to house and fasten the

curvature sensors to the growing robot. The pouch is made out of the same material as the robot

body, sewn closed on three sides and sized such that the sensor can slide inside, while being

constrained from unwanted movement (10 cm long, 0.75 cm wide). The pouches are then glued

onto the inside body of the robot, using the same Sil-poxy Silicone adhesive, and the sensor is
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(a) (b)

Figure 2.6. (a) Example off-the-shelf, flexible sensor used to measure local robot curvature,
along with its dimensions. (b) To integrate the sensors with the growing robot, they are sealed
inside individual sensor pouches with dimensions as shown.

locked in place by gluing another small piece of fabric over the open entrance.

This pouch allows the robot to bend, while avoiding the non-uniform wrinkling and

buckling issues that can be caused by stiffness mismatches. Specifically, for a growing robot

made from a relatively inextensible material to bend in a given direction, the length of the inner

side of the curve must shorten. However, as this material is relatively inextensible the main

mechanism that the fabric uses to shorten on the inside curve is by wrinkling. The pouch enables

the material to act in a way that we would expect from a robot body with no sensors attached.

As the sensor is no longer directly adhered but is simply constrained, the robot material can act

in a predictable way that can follow analytical models. This allows for the sensors to be used

to model contact and actuator interactions. This design makes the combined stiffness of the

sensorized robot more uniform and more effectively transmits applied forces to the sensors so

that changes in curvature can be measured. For our robot, we place five, 10 cm long pouches

into a single column along each side of the robot.
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2.5 Touch Localization Algorithm

We consider a planar robot, which we assume to behave as a cantilever beam and can be

described using an EB beam model [24] as

EI
d4y
dx4 = q(x), (2.5)

where E is the Young’s modulus of the robot, I is it’s area moment of inertia, and y is the

deflection of the robot due to applied load q at length x. For Nc point contacts, the function

describing the applied load is

q(x) =
Nc

∑
i=1

Fiδ (ai − x), (2.6)

where δ (·) is the Dirac delta function, Fi is the magnitude of the ith point contact force, and ai

is the contact location along the robot body. The position and orientation of the robot is fixed at

its base, which imposes boundary conditions

y(x)
∣∣∣∣
x=0

= 0,
dy
dx

∣∣∣∣
x=0

= 0. (2.7)

As is common for growing robots with pneumatic artificial muscles, we further assume that

actuation causes constant curvature deformation of the robot shape [2], leading to another

boundary condition
d2y
dx2

∣∣∣∣
x=L

= g(p), (2.8)

which states that the curvature of the robot at the free end is a function of the actuator pressure,

g(p). If the robot is unactuated, then g(0) = 0. In the case where the robot is actuated, we can

empirically fit a function that relates the constant curvature of the robot to the actuator pressure,

as described in Section 2.2. Integrating Eq. (2.5) twice with these boundary conditions gives a
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closed-form expression for the robot curvature,

d2y
dx2 = k̂(x) = g(p)+

Nc

∑
i=1

Fi

EI
(ai − x)H(ai − x), (2.9)

where H(·) is the Heaviside step function.

In order to determine the location of the point contact forces applied to the robot, we

can pose an optimization problem to minimize the difference between the curvature sensor

measurements and the curvature predicted by model (as in Eq. (2.9)) at the location of each

sensor,

min
a,f

Ns

∑
i=1

||ksensor,i − k̂(xi)||1, (2.10)

where a = [a1, ...aNc ] is a vector of point contact locations, f = 1
EI [F1, ...FNc ] is a vector of the

magnitudes of each contact force normalized by the robot bending stiffness, xi is the position of

the ith sensor on the robot body, and || · ||1 is the 1-norm. We choose to minimize the 1-norm

to mitigate the impact of outliers due to sensor noise [33]. We solve this problem using an

interior point method implemented by MATLAB’s fmincon routine and impose the constraint

that ai ∈ [0,L]. Additionally, we find that solving for both a and f simultaneously, typically finds

poor locally optimal solutions for the point contact locations, a, due to the magnitude of the

gradients with respect to each variable. The force term has a gradient that is on a scale of 109

larger than the gradient from the location term which causes the force term to be fit relatively

well while very little change occurs in the location term.

Therefore, we iteratively optimize for either a or f, one at a time, while holding the other

constant until the difference between successive solutions for all of the point contact locations

is less than a tolerance (0.5 cm). This is similar to performing a nonlinear conjugate gradient

descent but with interior-point as the optimization algorithm rather than gradient descent, as

we are forcing each successive step to be perpendicular to the next since the force and location

term are perpendicular to each other in their contribution to the residuals. For initialization
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Figure 2.7. The surface plot of the residuals is shown for the case where a high force is applied
to a fully deployed robot at 3

4 of the length. The value of the residuals is developed by comparing
the curvature sensor readings to what the curvature would be generated by applying a relative
force (y-axis) at a specified distance from the base (x-axis). As can be seen there is a ravine
generated in the residuals with two visible local minima. One around 130 cm and one at 350 cm.
The true contact for this trial occurred at 380 cm

of each term, we initialize the force term at 0 and the position term to be at the tip. The

force initialization can begin at any point, but initializing at zero ensures we do not bias the

optimization towards assuming a right or left contact. The position initialization makes sense
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for two reasons. The first is that when growing and actuating into an environment we would

expect a contact to occur closer to the tip so initializing at the tip makes logical sense for the use

case of this optimization. The second is that the the residuals form a ravine when optimizing

over the terms as seen in Figure 2.7. This is because of the piece-wise nature of the residuals

function. A lower contact position initialization allows for overfitting to the sensors nearest to

the base while ignoring the sensors that may have relatively low signals that can be discounted

thereby finding a local minima that is not accurate. This can be seen in Fig. 2.7 where two local

minima can be seen. One minima finds a good fit to only the two sensors closest to the base

while ignoring all other sensor information. The other minima finds the actual contact location.

As we expect the contact locations to occur near the tip as the robot grows through an unknown

environment we desire to find the minima in this ravine that is nearest to the tip. In the case

of multiple contacts we split the length into uniform sections for initialization (e.g. for 2 point

contacts we initialize the contacts at L
2 and L).

2.6 Algorithm Implementation

As described above, the sensors used in our experiments have a resistance that changes

proportionally with their curvature. In order to determine the proportionality constant for each

sensor integrated into the robot, we collect resistance measurements from all sensors as the tip

of the unactuated robot is deflected to 10 different locations, and we record the tip positions

using an overhead camera. Each of these tip position measurements, ytip, is used as a boundary

condition,

y(x)
∣∣∣∣
x=L

= ytip, (2.11)

together with the conditions in Eq. (2.7) and Eq. (2.8) to integrate Eq. (2.5) and solve for the

force of the contact.
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F
EI

=
3ytip

x3
tip

(2.12)

The force and location of the contact can then be plugged into Eq. (2.5) to find the instantaneous

curvature at the center of each sensor.

For each deflection location, the sensor that is being analyzed is first set to 0 when

there is no curvature present in the robot. This is done by subtracting the resistance in the

sensor at zero curvature from the current curvature reading. This is equivalent to setting Ro,i in

Eq. (2.4) to 0. We then make the approximation that the average curvature along a sensor length

is approximately equal to the instantaneous curvature found at the center of the sensor location.

This allows us to use the curvature measurements determined from the camera data to find the

proportionality constant for each sensor in the Eq. (2.4).

We compute a linear regression to fit each of the proportionality constants. Once these

constants are computed, they can be used to determine the curvature of each sensor from its

resistance measurement at any given time.

In addition to using the sensor curvatures to find the location of applied point contacts, we

also use the sensor measurements to detect when the robot comes into contact with an unknown

force. When the robot is not experiencing a contact force, it should have a constant curvature

that depends on its actuator pressure, g(p). If the average curvature measured by the sensors at

the base of the robot deviates beyond an empirically determined threshold (0.005 cm-1), then the

robot is determined to be in contact with an obstacle and optimization can be used to determine

the location of the contact. The base sensors are chosen for this as the moment exerted by a

contact is maximized at the base. This causes the discrepancy between the predicted model and

the measured value to be maximized at the base sensor.
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Chapter 3

Experimental Results

We validate our proposed method for tactile sensing in growing robots through four

different experiments. First, we characterize the localization accuracy of our method for a

single point contact at different forces and locations on an unactuated robot body. Second, we

determine conditions under which our method can discriminate between two contacts on an

unactuated robot. Third, we assess contact localization accuracy for an actuated robot. Finally,

we demonstrate an application of our method, wherein a growing robot uses our proposed tactile

sensing to determine when it is in contact with obstacles as it explores an unknown environment.

3.1 Experimental Setup

A test environment was fabricated to assess our sensing methodology (Fig. 3.1). Metal

dowels were placed at specified locations in the workspace and served as contacts with which

the robot could interact. Their positions, relative to the robot base, were determined from

1920x1080 resolution images taken with an overhead camera (Nexigo N980P). The x and y

axes of the coordinate frame of the growing robot are defined as in Fig. 2.1. In all experiments,

localization error is defined as the absolute difference between the x position of the obstacle

contact, as estimated by the localization algorithm, and the true obstacle position, as determined

by the overhead camera.
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Figure 3.1. The experimental setup includes the growing robot and associated control hardware,
along with the workspace into which it extends.

3.2 Single Contact

In this experiment, we look to assess how accurately we can localize an applied force of

different magnitudes at various locations along the length of an unactuated robot. Specifically,

we consider a low magnitude force and a high magnitude force, each applied to the following

three locations along the robot body: at the tip, 3
4L, and 1

2L, where L is the total deployable

length of the robot (see Fig. 3.2a). For this experiment, we apply 0.49 psi to the main body

of the robot and collect data (curvature sensor measurements and an overhead camera image)

from 5 trials for each of the six loading conditions to determine the repeatability of our results.

For each loading condition, Fig. 3.2c shows the mean error between the position of the contact
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Figure 3.2. (a) Schematic illustrating the locations at which point contact forces are applied to
the robot body. (b) An image of a low magnitude force applied to the growing robot at location
x = L. (c) Contact position localization errors after optimization. The mean localization error is
3.44±1.38 cm and 4.59±6.78 cm for high and low magnitude forces, respectively.

force on the robot body as determined by our optimization and the position as determined by

the overhead camera.

In general, high contact forces result in consistent localization error (3.44± 1.38 cm

on average) regardless of the location at which they are applied to the robot (see Fig. 3.2c).

Low magnitude contact forces, on the other hand, tend to result in increasing localization error

(4.59±6.78 cm on average) the further away from the tip the force is applied. This difference

is likely because lower magnitude forces applied closer to the base of the robot do not induce
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large changes in the curvature of the robot shape compared to those applied closer to the tip.

Smaller changes in robot curvature correspond to smaller magnitude signals from each of the

sensor measurements used for optimization, in turn making the optimization more sensitive

to sensor noise. This causes poor optimization results where the localization overfits to noisy

readings (Fig. 3.3b). High magnitude forces, however, induce consistently larger changes in

robot curvature resulting in more consistent localization regardless of where the force is applied

(Fig. 3.3a). We note that when the high magnitude forces are applied, the sensors at the base

have significantly higher curvature measurements relative to the other sensors (see Fig. 3.3a),

which can likely be attributed to the robot buckling at this location.

When the robot experiences a local moment that is greater than the maximum moment

that the material can handle then the robot will buckle at the location that experiences this

moment first. In the case where a point force is applied in an EB model, the moment is

equivalent to the force of the contact multiplied by the distance from the base. This would then

be maximized at the base of the robot which leads to the buckling occurring at this location.

Any additional force after this critical moment is passed does not change the curvature along the

length of the robot but instead only adds to the buckling angle at the base [2] as seen in Fig. 3.4.

These higher curvature measurements from the sensors at the base do contribute some amount to

the error, but the increased signal from a higher force overcomes this error contribution overall.

In order to verify this hypothesis that the buckling is a contribution to the error, we

empirically fit a critical curvature that is caused by the critical moment in the robot by performing

a linear regression on the sensors that do not buckle to predict the curvature that we would read

at the base when applying a high force at the tip without buckling. We can employ this method

of finding the critical curvature as the robot shape stays constant once the critical curvature is

achieved at the base. Any moment exerted after the critical curvature is achieved at the base

only changes the buckling angle. By averaging the critical curvature over 5 trials, we find a

critical curvature value of 0.01108 1
cm . We then perform a correction to the data read from the
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Figure 3.3. Representative example of the optimization results for (a) a high magnitude force
and (b) a low magnitude force applied to the growing robot at x = L

2 . Note the poor estimate
of the point contact location in (b) due to the optimization over-fitting to noise in the sensors
located on the more proximal half of the robot.

sensors at the base to limit their value from going over this critical curvature value.

After constraining the sensor curvature measurements from exceeding this empirically

determined value, we find that the error in the high force case reduces to an overall average

of 2.98± 1.38 cm which is a reduction of error by 13.45%. Recognizing that in a buckling

conformation the robot has a critical curvature value, which is a constant, we can couple the

force and position term when undergoing buckling. This allows us to perform a search in

1-dimension. To test this we used the Nelder-Mead Simplex method and received overall high

force accuracy of 1.93±1.04 cm.
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(a) (b)

Figure 3.4. (a) A configuration of an everting robot when a critical moment is exerted to the
robot body. The robot is at the maximum shape deformation for this current flexural rigidity. (b)
A configuration of an everting robot when a moment greater than the critical moment is exerted
to the robot body. The robot reaches the maximum shape deformation for this current flexural
rigidity and begins to buckle at the base forming a bending angle Φ.

It is important to note as well that there are several reasons for the error beyond the

issue of buckling. There are several assumptions that are made in the EB model that may not

necessarily hold true such as the assumption that any planes perpendicular to the neutral axis

remain perpendicular when shape deformation occurs. Furthermore the sensor mapping used

the assumption that the deformed angles are relatively small in order to draw a relationship

between the bending angle and the curvature. While we use this assumption for the sake of

staying with the EB model it is noted that it may cause a higher error.

3.3 Two Point Discrimination

In the case where the growing robot is subjected to two contact forces from opposite

sides, we seek to determine the distance that the forces must be separated in order to discriminate

between them. To determine this distance empirically, we apply one distal contact at the tip

of the robot and a second proximal contact at 6 different locations (see Fig. 3.5a), moving

incrementally closer to the distal contact (39 cm, 34 cm, 29 cm, 23.5 cm, 18.5 cm, and 13 cm

apart). Again, we apply 0.49 psi to the main body of the robot and collect image and sensor
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Figure 3.5. (a) Schematic illustrating the locations where point contacts are applied to the robot
body. A distal contact (in purple) is held constant at the tip for all cases, while an opposing
proximal contact is moved incrementally closer to the distal contact location. (b) An image of
the robot when the proximal contact is 29 cm away from the distal contact. (c) Contact force
localization errors after optimization.

data 5 times for each loading condition. An example image is shown in Fig. 3.5b, where the

proximal contact is located 29 cm away from the distal contact.

Results in Fig. 3.5c indicate that when the point contacts are separated by a distance of

23.5 cm or greater, our proposed optimization approach can effectively determine the location of

both points with an average error of 4.49±2.79 cm. Below this threshold however, localization

error is much higher, 16.94±2.55 cm on average, suggesting that this is the minimum distance

at which our method can effectively discriminate between applied point contacts.
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Figure 3.6. Example graph of an optimization result from the two point discrimination
experiment when the two contacts are below the discrimination threshold (contacts 18.5 cm
apart). The localization algorithm correctly localizes the proximal contact and finds another
local minima closer to the base.

There are several reasons for the errors in our localization. As the distance between

point forces, which are applied in opposite directions, decreases, the effect each force has on

the overall robot shape begins to cancel out that of the other force. This phenomenon leads

to smaller measured changes in curvature and increases the impact of sensor noise on the

optimization result.
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There are also a few important trends to point out. The error for the distal contact is

minimized when the contacts are the furthest away. Furthermore, while the error appears to spike

for the proximal contact prediction at 18.5 cm distance between the contacts, the optimization

is actually finding the correct location for the proximal contact. The localization found two

minima: one at the true proximal contact and one at a local minima found nearby the base (see

Fig. 3.6). This means that the error for the proximal contact is actually minimized when the

contacts are closest together. These two trends make sense when analyzing how the function is

split. There are 3 essential regions of the piecewise function: the region from the base to the first

contact, the region from the first contact to the second contact, and the region from the second

contact to the tip of the robot. As we do not have any sensor information in the last region we

can reduce the regions we are essentially looking at down to two.

When the contacts are the furthest away, the region that stretches from the base to the

first contact is minimized which means we also have the fewest amount of sensors placed in that

region. However the amount of sensors in the region between the contacts is maximized. This

explains why we have the most accuracy for the distal contact but the lowest for the proximal

contact. While our sensors are giving us good information about where the contacts are, more

sensors helps to reign in the noise from the sensors allowing for a more accurate prediction.

This trend continues when the contacts are the closest. The proximal contact has the lowest

error while the distal contact not only has the highest error but is never found. It instead finds

the local minima close to the base. These results are consistent with the reasoning for the error

and also helps to explain why our method can only find contacts that are separated by 23.5 cm

as this is about two sensor lengths. This essentially says that in conjunction with the forces

cancelling the other out and lowering the signals of our sensors, we need 2 good sensor readings

between the contacts before we can differentiate between two contacts.
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3.4 Single Contact with Active Bending

Here we consider contact localization for a single contact, similar to Section 3.2, but this

time for an actuated robot. When an fPAM is actuated, its length decreases, causing the robot

body to wrinkle where it is attached to the actuator in order to accommodate this length change

and leading to bending of the robot body. While this approach is an effective means of actuation,

the wrinkling of the material of the robot body induces hard-to-model responses in the sensors

attached to an activated actuator. We believe this is due to the sensor being sensitive to forces

applied along its length. The changes in the material shape due to wrinkling that it is laying

along causes a change in the forces applied along the length. This makes the sensor readings

along the side of the actuated side hard to model without taking these changes into account.

Therefore, for contact localization with actuated growing robots, we only use measurements

from the curvature sensors attached to the currently inactive actuator, which is on the outer edge

of the curved robot.

As in Section 3.2, we consider contacts occurring at 3 different locations along the

robot body at 2 different force magnitudes. We now use the robot’s own actuation to initiate

contact with the obstacle, as would be the case when the robot is exploring a static, unknown

environment, as shown in Fig. 3.7a. Obstacle locations are chosen such that they are barely

touching the robot body at the 1
2L, 3

4L, and L lengths when the fPAM actuator pressure is set to

6 psi. For the low and high magnitude force loading cases, we set the actuator pressure to 10 psi

and 14 psi respectively. Again, we apply 0.49 psi to the main body of the robot and collect data

from 5 trials for each of the 6 loading conditions, the results of which are shown in Fig. 3.7c.

First, it is important to note that our optimization routine localizes the point contact with

low error for all applied locations in the high magnitude force case. The average localization

error for these trials is 4.62±0.95 cm, which is only slightly higher than it was for the unactuated

case. The slight increase in error is to be expected for the actuated case because the localization

algorithm only uses measurements from sensors attached to the inactive actuator, making it
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Figure 3.7. (a) Schematic illustrating the locations at which the robot collided with point
contacts during active bending. (b) An image of a low force collision that occurs at location
x = L

2 . (c) Contact position localization errors after optimization. The mean localization error is
4.62±0.95 cm and 15.21±9.72 cm for the high and low magnitude forces, respectively.

more susceptible to noisy measurements from any one sensor. For the low magnitude force

case, however, the average error across all trials, 15.21±9.72 cm, is much higher than the error

for high magnitude forces. This large error indicates that the optimization fails to effectively

determine the location of the point contact at low forces, and we note that all errors for actuated

contact at low forces, are higher than the maximum error from the unactuated case (Section 3.2).

It is important to note as well that the amount of force applied in this experiment are lower

than the forces applied in the unactuated case as it is now the robot itself pushing against the
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Figure 3.8. The process that the robot takes during the active and growing test for the contact
localization is shown above in a flowchart. It will have the pressure in the actuator increase and
decrease in a sinusoidal wave. During this process, the true pressure in the actuator will be read
in and passed into the EB model to predict curvature of the robot. In parallel, the robot will
read curvature from the flex sensors located on the robot body. The predicted values and sensor
values will be compared for a discrepancy. If the discrepancy exceeds an empirical threshold
then a contact has occurred and the algorithm will optimize over the force and location of the
contact. In both cases where a contact is detected and where a contact is not detected the robot
will determine if it is fully deployed. If not then the robot will grow one full sensor length
(10 cm) and start over from the beginning. If the robot is fully deployed then the robot will
cease operation.

object. This decreased force could also be a reason for the lower accuracy from the algorithm.

Therefore, in order to determine the location of smaller forces on an actuated growing robot,

more sensor measurements are necessary.

3.5 Single Contact with Active Bending and Growing

Finally, we consider a scenario where a growing robot is exploring an unknown environ-

ment. We make use of tactile perception to determine when and where an obstacle is in contact

with the robot. Such information could be valuable for use in a planning algorithm (e.g. [2]) or

to identify a support structure the robot could anchor itself to, as proposed in [34].

We place the unknown obstacle for the robot to encounter at the same location as that of

the furthest obstacle used in Section 3.4. This location is chosen because we have found that
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using fewer than 5 sensor measurements — which is the number of available measurements

when our current robot is actuated and fully everted — for optimization, leads to less reliable

localization. We discuss this current limitation of our method and robot hardware, along with

future approaches that can address this challenge, in Section 4.

In order to explore the workspace, the robot first grows one sensor length and then

executes a sweeping motion generated by sending a sine wave to the fPAM actuators with an

amplitude equal to the maximum pressure the actuator can reliably hold (18 psi). If a contact

is detected during the sweeping motion (as described in Section 2.5), we average 10 sensor

measurements recorded at the peak of the sine wave to use to localize the contact. We choose to

use the sensor readings collected when the actuator is at maximum pressure based on the results

of Section 3.4, which show consistently lower point contact localization errors for higher forces

applied to the obstacle (for a visualization of the process used in this demonstration see Fig. 3.8).

To achieve robot growth, we use the minimum possible body pressure at all times, which keeps

the bending stiffness of the robot low and allows it to achieve higher curvature configurations.

For growth lengths from zero to L
2 , growth is achieved with a pressure of 1.47 psi. For lengths L

2

to 2L
3 we apply 1.01 psi, and from 2L

3 to L we apply 0.49 psi. Pressure to curvature mappings

are created for each body pressure following the same method detailed in Section 2.2. In order

to minimize the noise from each sensor we zero the sensor readings at the end of each sweep

and after each growth cycle. This is done simply by recording what the reading is at when the

actuators are both inactive and subtracting that amount from the current reading.

Results of the experiment are shown in Fig. 3.9. Our method successfully identifies

when the robot is in contact with an obstacle and localizes the contact with 6.82 cm error which

is approximately 2
3 of the length of one sensor. It is worthwhile to note that this error is higher

than the average of the previous experiment in Section 3.4. This increased error is likely due to

additional noise in the sensor readings caused by the rapid change in curvature of the eversion

process that facilitates robot growth. When the sensors are in a straight configuration, as they
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Figure 3.9. (a)-(d) Images of the robot growing and bending over time, exploring an environ-
ment containing an obstacle with unknown location. (e) The robot collides with the unknown
obstacle, triggering the localization algorithm, which returns an estimate of the location of the
contact force applied to the robot. The error between the predicted point contact and actual
point contact is 6.82 cm.

are immediately after robot growth, they should measure zero curvature. In reality, however, we

find that there is a delay in the sensor response as it goes from a highly bent configuration to a

straighter configuration, which contributes to the increased localization error. This hysteresis in

the sensor seems to follow an exponential decay curve that on average reaches stability within

30 seconds after eversion. To combat this we currently zero the sensors as stated after each

sweep. We also do not use any readings from a sensor until a minimum of 30 seconds has passed

after the sensor was everted. In the future, this delay could be modeled and compensated for so

as to mitigate its impact on the optimization.
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Chapter 4

Conclusions and Future Work

In this work, we have presented an approach to enable tactile sensing for growing robots.

Our approach consists of a method to integrate flexible, off-the-shelf sensors into the body of a

growing robot via a pouch design, along with an optimization routine to deduce the locations

of point contacts on the robot body based on these sensor measurements. We experimentally

characterized the error of this approach in localizing a single contact applied to both an actuated

and unactuated robot and determined a threshold beyond which it was possible to distinguish

between two separate contact forces applied to the unactuated robot. Finally, we showed that

this method was able to detect and localize an obstacle that came into contact with a growing

robot as it explored unknown surroundings.

Our system has significant benefits when it comes to localizing a contact location. It

takes very little computational power to analyze, has the potential to be an online method,

and can sense anywhere along the robot. This method can be implemented with an actuated

or unactuated version of the robot and only needs a model for the curvature to generate a

comparison between the sensor values and the model of the robot. We used an EB model,

however this method can be used with any robot or model whose curvature can be solved for. It

is important to note that the model chosen does contribute to the error. The assumptions of the

EB model do not necessarily hold true in the curvature analysis of the robot.

As expected in the experimentation, the high force experiments resulted in higher
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accuracy and lower variation in the results. This makes sense due to the increased signal

received from the sensors in the high force case that can make overcoming sensor noise much

easier. This trend holds true in both the actuated and unactuated case. For the two contact

discrimination, our method cannot discriminate between the two contacts when they are less

than 23.5 cm away, but it can still find the proximal contact. Interestingly, while it can find the

proximal contact, it predicts it to be the distal contact and finds another local minima caused by

sensor noise close to the base of the robot. This makes sense as the sensor that overlaps with

the base experiences buckling in the two contact discrimination experiment as high forces are

applied to each contact. This buckling likely causes a local minima to be present in this location,

but the minima is believed to be relatively small as it is not found by the localization algorithm

in any of the other cases.

The pouch employed is believed to fix most of the issues due to a stiffness mismatch

by allowing the stiffness of the robot where there is a sensor attached to become similar

to the stiffness where there is no sensor attached. However, this hypothesis has only been

confirmed qualitatively and indirectly by evaluating the wrinkling visually and confirming that

the analytical models can be used on the robot when the sensors are integrated. It is desirable to

quantify the difference in stiffness for these areas where the sensors are integrated. This could

be done by applying a known moment to the robot and comparing the curvature over the section

with the sensor and the curvature over the section without the sensor.

There are several limitations of the method outlined in this paper. The first and most

important is that our method requires 5 sensor readings before the localization can be conducted.

After performing a sensitivity analysis that analyzes how sensitive our algorithm is to noise

(modeled as a Gaussian distribution with a varying standard deviation) and to the number of

sensors attached to the length of the robot, we determined that this actually does not arise

from noise, but it instead comes from the cost function we used. Specifically, this constraint

arises from using the 1-norm over the 2-norm. Our algorithm operates very similarly to a
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conjugate gradient descent algorithm which is designed to minimize over a smooth, nonconvex

function. When using a 2-norm cost function our sensitivity analysis shows that we should be

able to achieve minimization results with as few as 2-3 sensors in the absence of noise. When

performing that same sensitivity analysis over a 1-norm cost function, we are not able to perform

minimization until we incorporate 5 sensors. This is because a 2-norm cost function creates a

smooth, nonconvex function which is what allows our algorithm to perform as expected, but a

1-norm cost function changes the function to become a nonsmooth, nonconvex function. We

believe, given these results, that the number of sensors is not a requirement to cancel out sensor

noise, but rather to increase the geometric density of the sensors which essentially is smoothing

our function the more sensors we place.

To solve this problem there are two methods that can be taken. The first is to use a

sensor that potentially has lower noise thereby allowing the usage of a 2-norm cost function.

The reasoning for the usage of a 1-norm cost function is because it makes our function much

more robust to sensor noise and outliers. Using a sensor with less noise, we can use the 2-norm

which will automatically smooth out our function. Instead of swapping out the sensor altogether,

we could use a model or a correction term to allow for the noise to be reduced thereby also

allowing the usage of a 2-norm function. The second method would be to increase the number

of sensors altogether along the length of the robot. This method could be done by either stacking

the sensors on one location to decrease the sensor noise by averaging over the sensor readings,

or by increasing the geometric density of the sensors to allow the 1-norm function to essentially

become smooth.

There is another limitation in the selection at which points we can conduct sweeps by

activating the actuators. These sensors are flexible enough to evert and bend with the robot, but

they are not flexible enough to be in a partially everted state when the actuator begins activating.

If half of the sensor is inverted and the other half is everted when the robot begins bending

with the actuator, then the sensor begins to plastically deform. Ensuring that the sensors are not
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in a partially everted state is a relatively easy workaround for this issue. When more flexible

sensors such as the fabric based stress sensor become more commercially available, they can be

swapped out to make this limitation no longer relevant.

Furthermore, this method has clear areas where immediate improvement could be found.

Using a sensor with a higher signal to noise ratio could allow for the usage of an analytical

gradient to significantly increase the speed with which the algorithm performs localization.

Additionally, the usage of machine learning algorithms could significantly speed up the process

as well as decrease the amount of error involved. Currently the algorithm used does not take

into account any historical data and any trials collected to perform the localization. With proper

preprocessing of the data, fitting a machine learning model would improve this accuracy. A

decision tree based regression to solve for contact location has the potential to do particularly

well, especially an ensemble method. This is because the function currently used is piecewise

both due to the mechanical model and the 1-norm used to perform the optimization. A decision

tree by its nature is a piecewise process and potentially the usage of an ensemble of trees could

allow the trees to capture the effect that a varying force could have on the sensor readings.

Combining this with a mechanical model has the potential to increase the accuracy even further.

The sensors could also be used to measured more than a single curvature measurement. By

soldering wires in between the segmented conductors, the resistance change between each

conductor could be measured thereby giving several curvature measurements to be used rather

than a single measurement.

This method of localization has many use cases. It can be used when growing inside of

an unknown environment in order to map obstacles to be used in planning algorithms later or to

find support structures to grow around. The technology could also be combined with other types

of sensing modalities such as an electromagnetic sensor to combine measurements and achieve

better estimates of contact locations. Furthermore allowing for more complex analyses of the

obstacles could ease the constraint of a point contact. Using a method such as that used in [4]
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where the contact is estimated as a series of sliding dirac deltas could allow for more complex

shapes to be analyzed. In addition the estimation could be combined with a prior estimate of

the shape given an understanding of the environment such as that of a CT-scan in order to give

active feedback on current location compared to predicted location in the human body. It could

also be used with a tip-mounted camera to perform feedback on camera estimations of contact

locations and give feedback if an obstacle was missed during growth as the camera can only

look forward. Any missed contacts can be picked up by this method and allow for a backup

sensing method due to its attachment method and the low amount of processing power needed

to compute it.

This thesis, in part, has been submitted to the IROS 2022 Conference, Micah Bryant;

Connor Watson; Tania K. Morimoto. The thesis author was the primary investigator and author

of this paper.
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