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A Dynamic Disk Spin-down Technique :for Mobile Computing 

David P. Helmbold, Darrell D. E. Long and Bruce Sherrodt 

Department of Computer Science 

University of California, Santa. Cruz 

Abstract 

We address the problem of deciding when to spin down 
the disk of a mobile computer in order to extend bat­
tery life. Since one of the most critical resources in 
mobile computing environments is battery life, good 
energy conservation methods can dramatically increase 
the utility of mobile systems. We use a simple and ef­
ficient algorithm based on machine learning techniques 
that has excellent performance in practice. Our exper­
imental results are based on traces collected from HP 
C2474s disks. Using this data, the algorithm outper­
forms several algorithms that are theoretically optimal 
in under various worst-case assumptions, as well as the 
best fixed time-out strategy. In particular, the algo­
rithm reduces the power consumption of the disk to 
about half (depending on the disk's properties) of the 
energy consumed by a one minute fixed time-out. Since 
the algorithm adapts to usage patterns, it uses as lit­
tle as 88% of the energy consumed by the best fixed 
time-out computed in retrospect. 

1 Introduction 

Since one of the main limitations on mobile computing 
is battery life, minimizing energy consumption is es­
sential for maximizing the utility of wireless computing 
systems. Adaptive energy conservation algorithms can 
extend the battery life of portable computers by power­
ing down devices when they are not needed. The disk 
drive, the wireless network interface, the display, and 
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other elements of the mobile computer can be turned 
off or plaeed in low power modes to conserve energy. 
Several researchers have even considered dynamically 
changing the speed of the CPU in order to conserve 
energy [7, 22]. We show that a simple algorithm for de­
ciding when to power down the disk drive is even more 
effective in reducing the energy consumed by the disk 
than the best fixed time-out value computed in retro­
spect. 

Douglis et al. [5] show that the disk sub-system on 
portable computers consumes a major portion of the 
available energy (Greenawalt [8] states 30% or more). 
It is well-known that spinning the disk down when it 
is not in use can save energy [5, 6, 15, 23]. Since spin­
ning the disk back up consumes a significant amount of 
energy, spinning the disk down immediately after each 
access is likely to use more energy than is saved. An 
intelligent strategy for deciding when to spin down the 
disk is needed to maximize the energy savings. 

Current mobile computer systems use a fixed time­
out policy. A timer is set when the disk becomes idle 
and if the disk remains idle until the timer expires then 
the disk is spun down. This time-out can be set by the 
user, and typical values range from 30 seconds up to 15 
minutes. Douglis et al. [5], Golding et al. [6], and other 
researchers [8, 14, 15] have proposed algorithms which 
spin the disk down more aggressively, conserving much 
more power than these relatively long time-outs. 

We use a simple algorithm called the share algo­
rithm, a machine learning technique developed by Herb­
ster and 1.Varmuth [10], to determine when to spin the 
disk down. Our implementation of the share algorithm 
dynamically chooses a time-out value as a function of 
the (recent) disk activity. Since the algorithm adapts 
to the recent disk access patterns, it is able to exploit 
the bursty nature of disk activity. 

We show that the share algorithm reduces the power 
consumption of the disk to about one half (from 16% 
to 82% depending on the disk's physical charaeteris­
tics, 54% on average) of the energy consumed by a one 



minute fixed time-out. In other words, the simulations 
indicate that battery life is extended by more than 17% 
when the share algorithm is used instead of a one minute 
fixed time-out. 1 A more dramatic comparison can be 
made by examining the energy wasted (i.e. the energy 
consumed minus the minimum energy required to ser­
vice the disk accesses) by different spin-down policies. 
The share algorithm wastes only about 26% of the en­
ergy wasted by a one minute fixed time-out. 

As noted above, large fixed time-outs are poor spin­
down strategies. One can compute (in retrospect) the 
best fixed time-out value for the actual sequence of ac­
cesses that occurred and then calculate how much en­
ergy is consumed when this best fixed time-out is used. 
On the trace data we analyzed, the share algorithm 
performs better than even this best fixed time-out; on 
average it wastes only about three-quarters (77.3%) of 
the energy wasted by the best fixed time-out. 

The share algorithm is efficient and simple to imple­
ment. It takes constant space and constant time per 
trial. For the results presented in this article, the to­
tal space required by the algorithm is never more than 
about 2400 bytes. Our implementation in C takes only 
about 100 lines of code. This algorithm could be imple­
mented on a disk controller, in the BIOS, or as part of 
the operating system. 

Although we have concentrated primarily on traces 
of disk activity, the principles behind the share algo­
rithm can be applied to the other devices in a mobile 
computing environment. In particular, the algorithm 
could be applied to the wireless interface, the display, 
or other peripherals. Since the algorithm exploits the 
bursty nature of device usage, it can be used to conserve 
energy on any device with irregular use patterns. 

The rest of this article proceeds as follows. Section 2 
contains a brief survey of related work. We formalize 
the problem and define our performance metrics in §3. 
Section 4 describes the share algorithm. We present our 
empirical results in §5, future work in §6, and conclu­
sions in §7. 

2 Related Research 

One of the simplest algorithms for disk spin-down is to 
pick one fixed time-out value and spin-down after the 
disk has remained idle for that period. Most, if not all, 
current mobile computers use this method with a large 

1We assume that the disk with a one minute time-out uses 30% 
of the energy consumed by the entire system. Thus, if t is the time 
the system can operate on a single battery charge with 1 minute 
time-outs, and t' is the time the system can operate using the share 
algorithm, we have t = 0.7t' + 0.15t'. So t' > 1.176t and the battery 
life is extended by more than 17%. 
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fixed time-out, such as several minutes [5].2 It has been 
shown that energy consumption can be improved dra­
matically by picking a shorter fixed time-out, such as 
just a few seconds [5, 6]. For any particular sequence 
of idle times, the best fixed time-out3 is the fixed time­
out that causes the least amount of energy to be con­
sumed over the sequence of idle times. Note that the 
best fixed time-out depends on the particular sequence 
of idle times, and this information about the future is 
unavailable to the spin-down algorithm a priori. 

We can compare the energy used by algorithms to 
the minimum amount of energy required to service a 
sequence of disk accesses. This minimum amount of 
energy is used by the optimal algorithm which "peeks" 
into the future before deciding what to do after each 
disk access. If the disk will remain idle for only a short 
time, then the optimal algorithm keeps the disk spin­
ning. If the disk will be idle for a long time, so that if 
the energy used to spin the disk back up is less than the 
energy needed to keep the disk spinning, then the op­
timal algorithm immediately spins down the disk. In a 
sense the optimal algorithm uses a long time-out when 
the idle time will be short, and uses a time-out of zero 
when the idle time will be long. 

Although both the optimal algorithm and the best 
fixed time-out use information about the future, they 
use it in different ways. The optimal algorithm adapts 
its strategy to each individual idle time, and uses the 
minimum possible energy to service the sequence of disk 
requests. The best fixed time-out is non-adaptive, using 
the same strategy for every idle time. In particular, the 
best fixed time-out always waits some amount of time 
before spinning down the disk, and so uses more energy 
than the optimal algorithm. Since both the best fixed 
time-out and the optimal algorithm require knowledge 
about the future, it is impossible to implement them 
in any real system. Even so, they provide very useful 
measures with which we can compare the performance 
of other algorithms. 

A critical value of the idle period is when the en­
ergy cost of keeping the disk spinning equals the energy 
needed to spin the disk down and then spin it back up. 
If the idle time is exactly this critical value then the op­
timal algorithm can either immediately spin-down the 
disk or keep it spinning since both actions incur the 
same energy cost. Thus the energy cost to spin-down 
and then spin-up the disk can be measured in terms 
of the number of seconds that that amount of energy 

2For example, on a contemporary Macintosh 520C laptop com­
puter, the user can set the time-out to 30 seconds or any whole num­
ber of minutes from 1 to 15. 

3There could be several equally good time-outs, in that case we 
define the best fixed time-out to be the smallest of these equally good 
time-out times. 



would keep the disk spinning. We call this number of 
the seconds the spin-down cost for the disk drive. Ob­
viously, the spin-down cost can be different for different 
makes and models of disk drives. 

One natural algorithm uses a fixed time-out equal to 
the spin-down cost of the disk drive. If the actual idle 
time is shorter than the spin-down cost, then this algo­
rithm keeps the disk spinning and uses the same amount 
of energy as the optimal algorithm on that idle period. 
If the length of the idle time is longer than the time-out, 
then the algorithm will wait until the time-out expires 
and then spin down the disk. This uses exactly twice the 
spin-down cost in total energy (to keep it spinning be­
fore the spin-down, and then to spin it back up again). 
This is also twice the energy used by the optimal algo­
rithm on that idle period, since the optimal algorithm 
would have immediately spun down the disk. For larger 
idle periods, this algorithm never consumes more than 
twice the energy used by the optimal algorithm. 

An algorithm is called c-competitive or has a com­
petitive ratio of c if it never uses more then c times the 
energy used by the optimal algorithm [20, 11]. So this 
natural algorithm is 2-competitive, and we will refer to 
it as the 2-competitive algorithm. It is easy to see that 
the 2-competitive algorithm has the best competitive 
ratio of all constant time-out algorithms. 4 As we will 
see in §5, even this very simple algorithm uses much less 
energy than the large fixed time-outs currently in use. 

Since the 2-competitive algorithm uses a fixed time­
out, its performance never surpasses the best fixed time­
out. In fact, the best fixed time-out for a sequence 
of idle times usually uses much less energy than the 
2-competitive algorithm. Since the 2-competitive algo­
rithm uses one predetermined time-out, it is guaranteed 
to be reasonably good for all sequences of idle times, 
while the best fixed time-out depends on the particular 
sequence of idle times. 

Randomized algorithms can be viewed as selecting 
time-out values from some distribution, and can have 
smaller (expected) competitive ratios. Although we 
still compute the competitive ratio based on a worst­
case idle time between accesses, we average the energy 
used over the algorithm's random choice of time-out. 
Karlin et al. [12] give an (expected) ( e_:l )-competitive 
randomized algorithm. If the spin-down cost is s, their 
algorithm chooses a time-out at random from [0, s] ac­
cording to the density function 

ez/s 
p(time-out = x) = --

1 
. 

e-
4 Any algorithm that uses a larger time-out, say (1 + ~)s, for a 

spin-down cost s, is only 2 + ~-competitive when the idle times are 
large; an algorithm that uses time-out smaller than 8 is less than 
2-competitive when the idle time is between its time-out and 8. 
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They show that this ( e_:l )-competitive randomized al­
gorithm is optimal in the following sense: every other 
distribution of time-outs has an idle time for which 
the distribution's (expected) competitive ratio is larger 
than e.:l. 

Both the 2-competitive algorithm and the (e_:l )­
competitive randomized algorithm are worst case algo­
rithms; that is, these algorithms perform competitively 
even if the idle times are drawn adversarially. With­
out making some assumptions about the nature of the 
data, and thus abandoning this worst case setting, it is 
difficult to improve on these results. 

One can get better bounds by assuming that the idle 
times are drawn independently from some fixed (but un­
known) probability distribution instead of chosen adver­
sarially. With this assumption, the best fixed time-out 
on the past idle times should closely approximate the 
best fixed time-out for the future idle times. Krishnan 
et al. [14] introduce an algorithm designed to operate 
under this assumption. Their basic algorithm operates 
in two phases. In the first phase it predicts arbitrar­
ily while building a set of candidate time-outs from the 
idle times. After obtaining enough candidate time-outs, 
the algorithm then tracks the energy used by the can­
didates and chooses the best candidate as its time-out. 
Their full algorithm repeatedly restarts this basic al­
gorithm with each restart using more candidates and 
running for exponentially increasing amounts of time. 
When processing the tth idle period the full algorithm 
tracks order .jt candidates and takes order .fi time 
to update its data structure. They essentially prove 
that the energy used by this full algorithm per di.~k ac­
cess quickly approaches that. of the best fixed time-out 
when the idle times are independent and identically dis­
tributed. However, their algorithms may perform very 
poorly while collecting the candidate time-outs and are 
only estimating the best fixed time-out. This makes it 
very unlikely that these algorithms will use less energy 
than the best fixed time-out. 

If the fixed distribution on idle times is known in 
advance, then one can analyze the distribution in or­
der to choose a good fixed time-out time. Greenawalt 
[8] takes this approach using a Poisson distribution to 
model the disk drive idle times. He uses this rather 
strong assumption to solve for the single time-out value 
giving the best expected performance (over the random 
choice of idle times). Note that even if a sequence of 
idle times is drawn from the assumed distribution, the 
best fixed time-out for that particular sequence will be 
at least as good as the time-out value computed from 
the distribution. 

Upon examining disk traces, we observe that idle 
times are not drawn according to some simple fixed dis­
tribution. So, in contrast to the above algorithms, we 



assume that the data is time dependent, having both ex­
tended busy and idle periods. We use a simple adaptive 
algorithm that exploits these different periods by shift­
ing its time-out after each trial. The share algorithm 
uses constant time and space, and is simple to imple­
ment. In trace-driven simulations, it performs better 
than all of the algorithms described above, and even 
conserves more energy than the best fixed time-out. 

Douglis et al. [4] have recently studied some incre­
mentally adaptive disk spin-down policies. The poli­
cies they consider maintains a changing time-out value. 
Whenever the disk access pattern indicates that the cur­
rent time-out value may be either too long or too short, 
the current time-out is modified by an additive or multi­
plicative factor. Whereas we concentrate on the energy 
used by the spin-down algorithm, Douglis et al. pay par­
ticular attention to those spin-downs likely to inconve­
nience the user and analyze the tradeoff between energy 
consumed and these undesirable spin-downs. In Gold­
ing et al. [6], similar incrementally adaptive policies are 
evaluated. We compare the performances of the share 
algorithm and these incrementally adaptive policies in 
§5.4. 

3 Problem Description 

We define the disk spin-down problem as follows. A disk 
spin-down algorithm continually decides whether or not 
to spin down the disk drive based on the patterns of 
previous usage. Alternately, we can view the disk spin­
down algorithm as suggesting, after each disk access, 
a delay or time-out indicating how long an idle disk is 
kept powered up before spinning it down. We can then 
treat the problem as a sequence of trials, where each 
trial represents the idle time between two consecutive 
accesses to the disk. The disk is spun down if and only if 
it remains idle for at least the number of seconds equal 
the time-out. These two views of the disk spin-down 
problem are equivalent when the algorithm is allowed 
to choose a different time-out for each trial. 

We measure the performance of the algorithms in 
terms of "seconds of energy" used, a measure intro­
duced by Douglis et al. [5]. One "second of energy" 
is the difference in energy consumed between a spin­
ning disk and a spun down disk over one second. One 
second of energy corresponds to some number of joules, 
depending on the model of disk drive used. Using sec­
onds of energy allows us to discuss disk drives in general 
while avoiding a joules/second conversion factor. 

We use the term "spin-down cost" to refer to the 
total cost of choosing to spin down the disk. This cost 
equals the energy required to spin the disk down (if 
any), plus the energy needed to spin the disk back up. 
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We measure the spin-down cost in terms of the amount 
of time the disk would have to spin to consume the same 
amount of energy; in other words, a spin-down cost of 
s means that spinning the disk down and starting it 
up again consumes as much energy as keeping the disk 
spinning for s seconds. If we assume that a mobile 
computer user's disk usage is independent of the type 
of disk that they have, then this single parameter, the 
spin-down costs, is the only statistic about the physical 
disk that we need for our simulations. Douglis et al. 
[5] compute this value for two disks, giving spin-down 
costs of 5 seconds and 14.9 seconds. Golding et al. [6] 
gives disk statistics that correspond to a spin-down cost 
of 9 or 10 seconds. We analyze the share algorithm's 
performance for spin-down costs varying from 1 to 20 
seconds. 

We define the following metrics, summarized in Ta­
ble 1, to measure and compare the performance of algo­
rithms. For each trial, the energy used by an algorithm 
is the total amount of energy, measured in seconds, that 
the algorithm uses. The energy use of an algorithm on 
a given trial depends on whether or not the algorithm 
spins down the disk: if the time-out is less than the 
idle time then the algorithm spins down the disk and 
uses a fixed amount of energy (that required to keep 
the disk spinning until the time-out plus that required 
to spin the disk down and then back up) regardless of 
the length of time the disk is idle; if the time-out is 
larger than the idle time then the algorithm keeps the 
disk spinning and uses energy proportional to the length 
of the idle time. The excess energy used by the algo­
rithm is the amount of additional energy used by the 
algorithm over the optimal algorithm. We find it conve­
nient to scale the excess energy, and denote this scaled 
excess energy for a time-out x as Loss(x). 

4 Algorithm Description 

The share algorithm is a member of the multiplicative­
weight algorithmic family that has been developed by 
the computational learning theory community. This 
family has a long history and excellent performance for 
a wide variety of on-line problems [3, 13, 18, 9, 16, 17, 
21]. Algorithms in this family receive as input a set 
of "experts," other algorithms which make predictions. 
On each trial, each expert makes a prediction. The 
goal of the algorithm is to combine the predictions of 
the experts in a way that minimizes the total error, or 
loss, over the sequence. Algorithms typically keep one 
weight per expert, representing the quality of that ex­
pert's predictions, and predict with a weighted average 
of the experts' predictions. 

After each trial the weights of the experts are up-



Energy used by time-out = { 

= { 

idle time if idle time< time-out (don't spin down) 
time-out + spin-down cost if idle time > time-out (spin down after time-out) 

Energy used by optimal 
idle time if idle time < spin-down cost (don't spin down) 
spin-down cost if idle time > spin-down cost (spin down immediately) 

Excess energy = Energy used by time-out - Energy used by optimal 
Excess energy 

Loss = 
idle time 

Table 1: Energy and loss statistics during each trial. 

dated: the weights of misleading experts are reduced 
(multiplied by some small factor), while the weights 
of good experts are usually not changed. The more 
misleading the expert the more drastically the expert's 
weight is slashed. This method causes the predictions 
of the algorithm to quickly converge to the those of the 
best expert. 

Herbster and Warmuth have recently developed the 
method of a "sharing update" [10]. Briefly stated, this 
update takes some of the weight of each misleading ex­
pert and "shares" it among the other experts. Thus an 
expert whose weight was severely slashed, but is now 
predicting well, can regain its influence on the algo­
rithm's predictions. In essence, the algorithm pays the 
most attention to those experts performing well during 
the recent past. This adaptability allows us to exploit 
the bursty nature of disk accesses, and perform better 
than the best fixed time-out. 

For the disk spin-down problem, we interpret each 
expert as a different fixed time-out, although we could 
substitute an arbitrary algorithm for each expert. In 
our experiments we used 100 evenly spaced time-outs 
between zero and the disk's spin-down cost. Although 
it is easy to construct traces where the best fixed time­
out is larger than the spin-down cost, this does not 
seem to happen in practice. Note that the 2-competitive 
algorithm and the randomized ( e~ 1 )-competitive algo­
rithms also choose time-outs between zero and the spin­
down cost. Reducing the space between experts tends 
to improve the algorithm's performance. On the other 
hand, the running time and memory requirements of 
the algorithm increase as additional experts are added. 

Let us denote the predictions of the experts as x 1 

to Xn (since each expert predicts with a fixed time-out, 
these predictions do not change with time). The current 
weights of the experts are denoted by w 1 to Wn, and 
these weights are initially set to ~· We use Loss(xi) to 
denote the loss of expert i on a given trial (the loss is 
the normalized excess energy described in §3). 

The share algorithm uses two additional parameters. 
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The learning rate, .,.,, is a real number greater than one 
and controls how rapidly the weights of misleading ex­
perts are slashed. The share parameter, a, is a real 
number between zero and one, and governs how rapidly 
a poorly predicting expert's weight recovers when that 
expert begins predicting well. Although these parame­
ters must be chosen carefully to prove good worst-case 
bounds on the learning algorithm, the real-world perfor­
mance of multiplicative weight algorithms appears less 
sensitive to the choice of parameters (for another exam­
ple see Blum [2] on predicting calendar events). In our 
experiments, akin to a train and test regimen, we used 
a small portion of the data (the first day of one trace) 
to find a good setting for 'T/ and a, and then use those 
settings on the rest of the data (the remaining 62 days) 
to collect our results. We chose 'T/ = 4.0 and a = (1.08. 
Small perturbations in these parameters have little ef­
fect on our results. The performance of the algorithm 
changes by less than a factor of 0.0013 as a varies in 
the range 0.05 to 0.1. Similarly, different values of .,., 
between 3.1:i to 4.5 cause the algorithm's performance 
to change by at most a factor of 0.0018. We intend to 
explore methods for self-tuning these parameters in the 
future. 

We can now precisely state the algorithm we use: 
Herbster and Warmuth's [10] variable-share algorithm. 
On each trial the algorithm: 

1. Uses a. time-out equal to the weighted averag;e of 
the experts: 

2. Slashes the weights of poorly performing experts 

W~ = w,·e-'ILoss(z;) . ' 

3. Shares some of the remaining weights 

n 

pool = L w~(l - (1 - a)Loss(z;)) 

i=l 



. 1 w;' = (1 - a)Loss(x,)w; + -pool . 
n 

The new w~' weights are used in the next trial. 
Herbster and Warmuth [10) show that if the loss 

function meets certain properties then this algorithm 
has very good performance, even in the worst case. Al­
though the loss function we use does not have the prop­
erties required for their proof, we show in the next sec­
tion that its empirical performance is excellent. 

The algorithm runs in constant time and space where 
the constants depend linearly on n, the number of ex­
perts chosen by the implementor. However, the algo­
rithm as stated above has the drawback that the weights 
continually shrink towards zero. Our implementation 
avoids underflow problems by bounding the ratio be­
tween weights and periodically rescaling the weights. 

5 Experimental Results 

In this section we present trace-driven simulation results 
showing that our implementation of the share algorithm 
outperforms the best strategies currently available. We 
use the simulation results to compare the energy used 
by our implementation with the energy used by various 
other proposed algorithms, as well as the (impractical) 
best fixed time-out and optimal algorithms. 

5.1 Methodology 

We used traces of HP C2474s disks collected from April 
18, 1992 through June 19, 1992 (63 days) (19). 

We compare the share algorithm with several algo­
rithms, including the 2-competitive algorithm, the ran­
domized ( e_:l )-competitive algorithm, (an approxima­
tion to) the best fixed time-out, and the optimal al­
gorithm. These other algorithms are described in §2. 
Although no practical algorithm can do as well as the 
optimal algorithm, the optimal algorithm's performance 
provides an indication of how far we have come and how 
much room is left for improvement. 

There are two minor differences between the best 
fixed time-out we plot and the actual best fixed time­
out for the 63 day trace. First, since it is computation­
ally expensive to compute the exact best fixed time­
out (quadratic in the number of disk accesses), we used 
a close approximation. We evaluated 10,000 different 
time-out points evenly spaced from 0 to 100 seconds 
on each day's trace data, and plot the best of these 
values as the best fixed time-out. Note that the best 
fixed time-out is guaranteed to be within 1 ~0 th of a 
second of the value we use and Figure 1 shows how lit­
tle the energy used varies near the best fixed time-out. 
Furthermore, we can use the number of spin-downs to 
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bound the difference in energy used by the best fixed 
time-out and our approximation. In all cases we found 
that the energy used by the best fixed time-out is within 
0.4% of the numbers we report. Second, we estimate the 
best fixed time-out on each individual day's trace data. 
Thus instead of using the best fixed time-out for the 
entire 63 day trace, we use a series of daily best fixed 
time-outs computed from just that day's disk activity. 
This will tend to underestimate the energy use of the 
best fixed time-out since consecutive days are no longer 
constrained to use the same time-out. 

As in all trace-driven simulations, it is difficult to 
model the interaction between the spin-down decisions 
of the algorithm and the sequences of disk accesses. If 
an algorithm spins down the disk then the following disk 
request must wait until the disk spins up again. It is 
impossible to know what effect this would have on the 
future disk accesses. Furthermore, these delays may ad­
versely impact the computer's performance as perceived 
by the user. Although we are unable to explicitly ac­
count for these effects, we do provide the number of 
spin-downs done by the various algorithms in §5.5 as 
an indication of the trace reliability and the intrusive­
ness of the spin-down policy on the user. 

Since the implementation of the share algorithm has 
several parameters (number and predictions of the ex­
perts, learning rate, and share rate) we used a train­
and-test regimen. One disk was selected and its trace 
data for the first day was used to find reasonable set­
tings for the parameters. The values determined from 
this partial trace are 100 experts, TJ = 4, and a: = 0.08, 
and these are the defaults used in our experiments. The 
rest of that trace as well as traces from other disks were 
used to validate that these settings do in fact tend to 
perform well. Although the TJ and a: parameters must 
be carefully chosen for the worst-case bound proofs, for 
practical purposes the choice of these parameters tends 
to have little impact on the algorithm's performance. 
As mentioned in §3, the performance varies by less than 
one-fifth of one percent as the share rate varies from 0.5 
to 1 or the learning rate varies from 3.5 to 4.5. This ob­
servation is in agreement with other empirical work on 
multiplicative weight algorithms (2). The number of ex­
perts and distribution of the experts appears to have 
more impact on the algorithm's performance. 

Before presenting our main results, we discuss the 
differences between various fixed time-outs on a typi­
cal day's trace data. Figure 1 illustrates how the fixed 
time-outs perform on the trace data for a Monday us­
ing a spin-down cost of 10. The figure shows fixed 
time-outs in the range 0 to 10 seconds. This figure 
shows that very small fixed time-outs are very expen­
sive, the best fixed time-out is around 2.52 seconds, 
and the energy cost slowly rises for larger time-outs. 
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Figure I: Energy cost of fixed time-outs, Monday, April 
20 using a spin-down cost of 10. 

Table 2 shows that almost all of the idle times are very 
small, so very small time-outs spin down the disk too 
aggressively and pay too many spin-up costs. As the 
best fixed time-out becomes larger, fewer spin-downs 
occur so fewer spin-down costs are paid. On the other 
hand, the disk remains spinning longer before it spins 
down, and more energy is spent keeping the disk spin­
ning. The best fixed time-out tends to be on the border 
between a clump of slightly smaller idle times, and a 
region with few idle times. Increasing the spin-down 
cost makes the spin-ups relatively more expensive, and 
thus the best fixed time-out shifts to the right. Figure 2 
shows how the best fixed time-out grows as a function 
of the spin-down cost. At a spin-down cost of 19, we 
see a large increase in the best fixed time-out. This is 
caused by a cluster of idle times around 30 seconds. 

5.2 Main Results 

Table 2: Frequencies of idle time ranges in a typical day 
of the trace. There are 142,694 idle times in this day. 

Idle time Frequency 
(seconds) count 

0 37,252 
0- 1 102,146 
1- 10 1,747 
10-30 917 
31- 100 498 
100-600 131 

> 600 3 

Figure 3 summarizes the main experimental results 
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Figure 2: Best fixed time-out, as a function of the spin­
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Figure 3: Average energy use per day as a function of 
the spin-down cost. 

of this article. For each value of the spin-down cost, we 
show the daily energy use (averaged over the 62 day ·:est 
period) for all the algorithms described in this sect':on: 
the 2-competitive algorithm, the ( e.:_l )-competitive ran­
domized algorithm, the approximate best fixed time­
out, and the share algorithm. We also include the en­
ergy use of the one minute and 30-second fixed time­
outs for comparison (we believe that these are indica­
tive of what is commonly used in portable computers 
today). We also show the energy used by the optimal 
algorithm to give some idea of scale and the limits on 
possible improvements (although no practical algorithm 
is likely to approach this theoretical best performance). 
The figure shows that the share algorithm is better than 
the other practical algorithms, and even outperforms 
the best fixed time-out. Our implementation uses be-
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Figure 4: Average excess energy per day as a function 
of the spin-down cost. 

tween 88% (at spin-down cost 1) and 96% (at spin-down 
cost 20) of the energy used by the best fixed time-out. 
When averaged over the 20 time-outs, our implemen­
tation uses only 93% of the energy consumed by the 
best fixed time-out. Figure 4 plots the excess energy 
used by each algorithm, essentially subtracting off the 
energy used by the optimal algorithm from Figure 3. 
This indicates how much more energy was used by the 
algorithm than the theoretical minimum energy needed 
to complete the requested sequence of disk accesses. 

Compared to the performance of a one minute fixed 
time-out, we see a dramatic performance improvement. 
Over the twenty spin-down costs, the share algorithm 
averages an excess energy of merely 26.3% the excess 
energy of the one minute time-out. In terms of total 
energy, the new algorithm uses 54.6% of the total energy 
used by the one minute fixed time-out (averaged over 
the different spin-down costs). Stated another way, if 
the battery is expected to last 4 hours with a one minute 
time-out (where 1/3 of the energy is used by the disk) 
then almost 45 minutes of extra life can be expected 
when the share algorithm is used. 

Notice that the ( e~l )-competitive randomized algo­
rithm performs slightly worse than the 2-competitive 
algorithm (recall that ( e~l) :::::: 1.58, so we would expect 
it to do better). Although this result seems surprising 
at first, it is easily explained when we consider the dis­
tribution of idle times in our traces. Most idle times 
are short - much shorter than the spin-down cost, and 
the 2-competitive algorithm will perform optimally on 
the short idle times. Only when the disk stays idle for 
longer than the spin-down cost will the 2-competitive 
algorithm be suboptimal. The ( e~l )-competitive ran­
domized algorithm performs ( e~l )-competitively for all 
idle times, including those shorter than the spin-down 
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Figure 5: Time-outs suggested by the algorithm, on 
each successive trial during a 24 hour trace, with a spin­
down cost of 10. 

cost. While the 2-competitive algorithm does worse on 
the longer idle times, it does much better on the more 
frequent short idle times. 

This comparison illustrates a disadvantage of worst 
case analysis. Good worst-case algorithms spread their 
performance evenly across all possible inputs. While 
the ( e~l )-competitive algorithm has a better worst case 
bound, it does not perform as well under realistic work­
loads as algorithms with weaker worst-case bounds but 
better performance on the likely cases. In practice, it 
is desirable for algorithms to perform best on the likely 
input values. 

One class of algorithms adapts to the input patterns, 
deducing from the past which values are likely to oc­
cur in the future. This approach was taken by Krish­
nan et al. [14] (see §2). Their algorithm keeps infor­
mation which allows it to approximate the best fixed 
time-out for the entire sequence, and thus its perfor­
mance is about that of the best fixed time-out. We use 
an algorithm that takes this approach a step further. 
Rather than looking for a time-out that has done well 
on the entire past, the share algorithm attempts to find 
a time-out that has done well on the recent past. 

As Figure 4 shows, the share algorithm consistently 
outperforms the best fixed time-out, consuming an av­
erage of 79% of the excess energy consumed by the best 
fixed time-out. If the data is truly drawn according to a 
fixed probability distribution, then the best on-line pol­
icy will be some fixed time-out whose value depends on 
the distribution. Since the share algorithm outperforms 
the best fixed time-out, it is exploiting time dependen­
cies in the input values. Of course, it is not surprising 
that there are time dependencies as it is well-known 
that user access patterns exhibit bursty behavior [1]. 
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Figure 6: Performance of fixed time-outs in the interval 
from 360 to 370 minutes of Figure 5. 

5.3 Predictions of the Share Algorithm 

Figure 5 shows the predictions of the algorithm during 
a portion of a typical day (Monday, April 20), using a 
spin-down cost of 10. The figure also shows the fixed 
time-out that would have minimized the energy use on 
each five minute interval of that period. Note that these 
minimizing time-outs require knowledge of the future, 
and as the interval size shrinks, the time-outs minimiz­
ing the energy on the interval approach the time-outs 
used by the optimal algorithm. Therefore it is unrea­
sonable to expect any practical algorithm to perform as 
well as the best fixed time-outs on small intervals. How­
ever, this figure does illustrate some interesting aspects 
of the share algorithm. We can see that the time-outs 
used by the share algorithm vary dramatically through­
out the day, by at least an order of magnitude. While 
the disk is idle, the predictions slowly become smaller 
(smaller than the best fixed time-out), and the algo­
rithm spins the disk down more aggressively. When the 
disk becomes busy, the algorithm quickly jumps to a 
much longer time-out. These kinds of shifts occur of­
ten throughout the trace, sometimes every few minutes. 
The time-outs issued by the share algorithm tend to fol­
low the best fixed time-outs over five minute intervals, 
which in turn reflects the bursty nature of disk accesses. 

Figure 6 shows the performance of many fixed time­
outs over the ten minute interval from 360 to 370 min­
utes shown in Figure 5. Due to our choice of experts, 
the share algorithm can only make predictions less than 
or equal to the spin-down cost (10 in this example). 
However, as Figure 5 shows, sometimes the best fixed 
time-out is not in this range. Yet, our performance re­
mains good overall. The explanation for this is that 
when the best fixed time-out is large there is a large 
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region which is nearly flat, with all time-outs in the 
region usin1~ similar amounts of energy. For example, 
Figure 6 shows that time-out values between 9 and 10 
(within the range considered by the share algorithm) 
perform almost as well as the best fixed time-out. In 
particular, although the best fixed time-out is 16.115, 
the energy used by the 9.34 time-out is within 5% of the 
energy used by the 16.115 time-out over this 10 minute 
interval. 

5.4 Adaptive Results 

Douglis et al. (4] consider a family of incrementally 
adaptive spin-down schemes. This family of algorithms 
has been shown to save significant amounts of energy. 
These schemes change the time-out after each idle time 
by either an additive or multiplicative factor. When 
an idle time is "long" the time-out is decreased so that 
the algorithm spins down the disk more aggressively, 
wasting less energy waiting for the time-out. When an 
idle time is "short" the time-out is increased to reduce 
the chance of an inappropriate spin-down. We compare 
the share algorithm with several of these schemes for a 
spin-down cost of 10 seconds. 

Since the traces are composed mostly of short idle 
times, there is the danger that an adaptive algorithm's 
time-out value will quickly become too large to be ef­
fective (see Figure 1). To prevent this problem we pre­
vent the time-out from exceeding 10 seconds, the same 
value as the largest expert used by the share algorithm. 
Without this bound on the time-out, the incrementally 
adaptive algorithms perform poorly. We also used 10 
seconds as the definition of "long" idle times: treating 
idle times less than 10 seconds as "short" and idle times 
longer than 10 seconds as "long." 

We considered three ways of increasing the time-out: 
doubling it,. by adding 1 second, and adding 0.1 sec­
onds. Similarly, we considered three ways of decreasing 
the time-out: halving it, decreasing it by 1 second, and 
decreasing it by 0.1 seconds. This gives us nine varia­
tions in the incrementally adaptive family. These values 
were also used in Douglis et al. (4] and the long version 
of Golding et al.[6]. The time-out should never become 
negative, we constrained the time-out to be at least one 
decrement amount above zero. 

We compared each of these nine algorithms with the 
share algorithm and the daily best time-outs on three 
different traces. The results are in Table 5.4. 

Since each day contains 86400 seconds, all of these 
algorithms .are saving significantly over a no-spin-down 
policy. Only the share algorithm can beat the daily best 
fixed time-outs, which it does on two of the traces. In 
addition the share algorithm is less intrusive than the 
daily best fixed time-out, with fewer spin-up delays. 



Table 3: Spin-downs and energy costs in seconds of the adaptive algorithms, averaged over the two-month traces. 

Trace 1 Trace 2 Trace 3 
Algorithm SDs cost SDs cost SDs cost 

Daily best fixed 2065 33007 710 11646 409 4886 
Share algorithm 1889 31017 689 11707 373 4808 

10 second time-out 1378 37426 493 13774 294 6613 
+ 0.1 - 0.1 1378 37411 495 13792 294 6376 
+ 0.1 - 1.0 1471 34924 649 12963 312 5630 
+ 0.1 -;- 2.0 1775 31424 788 12550 356 4923 
+ 1.0 - 0.1 1378 37417 494 13812 294 6576 
+ 1.0 - 1.0 1378 37260 504 13478 294 6444 
+ 1.0 -;- 2.0 1440 35589 563 12666 503 5742 
X 2.0 - 0.1 1381 37395 499 13782 294 6594 
X 2.0 - 1.0 1378 37431 549 13430 294 6604 
X 2.0 -;- 2.0 1564 36047 494 13832 320 6157 

Of the nine algorithms in the incrementally adaptive 
family, the "add 0.1 second and divide by 2.0" algorithm 
saved the most energy. However, even this algorithm 
uses up to 7.2% more energy than the share algorithm 
and does worse than the the daily fixed time-out on all 
three traces. 

It appears that the better incrementally adaptive 
algorithms decrease the time-out rapidly but increase 
it only slowly. Decreasing the time-out rapidly allows 
greater savings if the next idle time is long. The dis­
advantage of a rapid decrease is that an inappropriate 
spin-down may occur if the next idle time had an inter­
mediate duration. However, the preponderance of small 
idle times (see Table 2) makes this relatively unlikely. 
A slow increase in the threshold allows the algorithm 
to perform well when two nearby long idle times are 
separated by one or two short idle times. 

It appears from Table 5.4 that some of the incremen­
tally adaptive algorithms are primarily exploiting the 
10 second bound on their time-outs. Since any spin­
down done by the 10 second time-out is also done by 
all of the other algorithms, we can infer that some of 
the add/subtract algorithms do exactly the same spin­
downs as the 10 second time-out, although sometimes 
they may do these spin-downs with a slightly smaller 
time-out. 

An interesting property of Table 5.4 is that the daily 
best fixed time-out uses slightly less energy than the 
share algorithm on trace 2. This is due in part to the 
fact that the best fixed time-out is recalculated for each 
day's data. On trace 2, it varies from about 1 second to 
about 6 seconds depending on the day. If the same time­
out was used every day then energy consumed would 
certainly be larger than that used by the share algo­
rithm. 
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Figure 7: Average spin-downs for each algorithm as a 
function of spin-down cost. 

5.5 Spin-downs 

Figure 7 shows the average number of spin-downs 
used per day as a function of the spin-down cost for 
the share algorithm, the best fixed time-out, the opti­
mal algorithm, and the one minute fixed time-out. We 
can see from this figure that the share algorithm rec­
ommends spinning the disk down less often than the 
(daily) best fixed time-outs. Our simulations show that 
the share algorithm tends to predict when the disk will 
be idle more accurately than the best fixed time-out, al­
lowing it to spin the disk down more quickly when both 
algorithms spin down the disk. In addition, the share 
algorithm more accurately predicts when the disk will 
be needed, enabling it to avoid disk spin-downs ordered 
by the best fixed time-out. Thus, in addition to using 
less energy than the best fixed time-out, the share al-



gorithm also spins the disk down less often, minimizing 
wear and tear on the disk and inconvenience to the user. 

6 Future work 

Many avenues of further exploration exist. Several vari­
ations on the share algorithm have the potential to dra­
matically improve its performance. A "self tuning" ver­
sion of the share algorithm that requires no (or fewer) 
parameters would be useful. It would be comforting to 
have a good worst case analysis of the share algorithm in 
this setting. One issue that cries out for further study is 
how the additional latency imposed by disk spin-down 
effects the user and their applications. Another issue of 
critical importance is studying how algorithms like the 
share algorithm perform on other power management 
and systems utilization problems. 

6.1 Extensions to the Share Algorithm 

There are a number of improvements to the share algo­
rithm that we are exploring. One promising approach 
is to modify the set of experts used by the algorithm. 
There is no reason that the experts have to be fixed 
time-outs. They could be previous idle times, a second­
order estimate of the next idle time, or any function 
of the past disk accesses. In principle, any other spin­
down algorithm could be used as an expert - when the 
algorithm performs well it will have high weight and the 
share algorithm would mimic its predictions. Similarly, 
when several prediction methods are used as experts, 
the share algorithm can exploit the strengths of each of 
method. 

We are interested in better methods for selecting the 
algorithms learning rate and share rate. It may be pos­
sible to derive simple heuristics that provide reasonable 
values for these parameters. A more ambitious goal is 
to have the algorithm self-tune these parameters based 
on its past performance. Although cross validation and 
structural risk minimization techniques can be used for 
some parameter optimization problems, the on-line and 
time-critical nature of this problem makes it difficult to 
apply these techniques. 

Although the scaled excess energy used in this article 
is an attractive loss function, other loss functions may 
prove even more beneficial. There is a version of the 
share update which shares a fixed amount from each 
expert per trial, instead of an amount proportional to 
the loss of that expert [10]. While the worst case bounds 
proven for the fixed share version of the algorithm are 
not as good as the version we use, we have not yet fully 
explored this variant's empirical behavior. 
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6.2 Related Problems 

The power management problem can be viewed as a 
type of rent-to-buy problem [14]. A single rent-to-buy 
decision can be described as follows: we need a resource 
for an unknown amount of time, and we have the option 
to rent it for $1 per unit time, or to buy it once and for 
all for $c. For how long do we rent the resource before 
buying it? 

Many interesting problems can be modeled as a se­
quence of rent-to-buy decisions. This is called the se­
quential rent-to-buy problem, or just the rent-to-buy 
problem [1·1]. For example, the disk spin-down scenario 
can be modeled as a rent-to-buy problem as follows. A 
round is the time between any two requests for data on 
the disk. For each round, we need to solve the disk .spin­
down problem. Keeping the disk spinning is viewed as 
renting, since energy is continuously expended to keep 
the disk spinning. Spinning down the disk is viewed 
as a buy, since the energy to spin-down the disk and 
spin it back up upon the next request is independent of 
the remaining amount of idle time until the next disk 
access. 

Many other systems problems can be viewed as rent­
to-buy problems. The power conservation problem for 
any mobile computer component which can be powered 
down for a fixed cost, such as disk drives, wireless inter­
faces, or displays, can be viewed as a rent-to-buy prob­
lems. A thread trying to acquire a lock on a shared de­
vice can either busy-wait or block (and context switch). 
This spin/block problem can also be viewed as a rent­
to-buy problem. Deciding virtual circuit holding times 
in an IP-over-ATM network is yet another example of 
a rent-to-buy problem. 

Since the share algorithm is relatively simple and 
effective for the disk spin-down problem, it is natural to 
consider its application to other rent-to-buy situations. 

7 Conclusions 

We have shown that a simple machine learning algo­
rithm is an effective solution to the disk spin-down prob­
lem. This algorithm performs better than all other al­
gorithms that we are aware of, often using less than half 
the energy consumed by a standard one minute time­
out. The algorithm even outperforms the impraetical 
best fixed time-out. The algorithm's excellent perfor­
mance is due to the way it adapts to the pattern of re­
cent disk activity, exploiting the bursty nature of user 
activity. 

The existing algorithms for the disk spin-down prob­
lem that we are aware of make either worst-case as­
sumptions or attempt to approximate the best fixed 
time-out over an entire sequence. We discuss why algo-



rithms with good worst case bounds do not necessarily 
perform well in practice. Our simulations show that the 
new algorithm outperforms worst-case algorithms by a 
significant amount. 

We believe that the disk spin-down problem is just 
one example of a wide class of rent-to-buy problems 
for which the new algorithm is well suited. In addition 
to disk spin-down, other problems in this class are of 
importance to mobile computing, such as: power man­
agement of a wireless interface, admission control on 
shared channels, and a variety of other power manage­
ment problems. Other rent-to-buy problems where the 
algorithm can be applied include applications such as 
deciding when a thread that is trying to acquire a lock 
should busy-wait or context switch or computing virtual 
circuit holding times in IP-over-ATM networks [14]. 

Our implementation of the share algorithm is effi­
cient, taking taking constant space and constant time 
per trial. This constant is adjustable, and adjusts the 
accuracy of the algorithm. For the results presented in 
this article, the total space required by the algorithm is 
never more than about 2400 bytes, and our implemen­
tation in C requires only about 100 lines of code. This 
algorithm could be implemented on a disk controller, in 
the BIOS, or in the operating system. 
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