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Systems/Circuits

Evidence for an Evolutionarily Conserved Memory Coding
Scheme in the Mammalian Hippocampus
Alexander Thome,1,2* X Diano F. Marrone,1,4* X Timothy M. Ellmore,5 X Monica K. Chawla,1,2 X Peter Lipa,1,2

X Victor Ramirez-Amaya,6,7 Sarah H. Lisanby,8 Bruce L. McNaughton,9,10 and XCarol A. Barnes1,2,3

1Evelyn F. McKnight Brain Institute, 2Division of Neural Systems, Memory and Aging, and 3Department of Psychology, Neurology and Neuroscience,
University of Arizona, Tucson, Arizona 85724, 4Department of Psychology, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada, 5Department of
Psychology, The City College of New York, New York, New York 10031, 6Maestría en Neruometabolismo, Fac. de Medicina, Universidad Autónoma de
Queretaro, 76010 Santiago de Queretaro, QRO, Mexico, 7Instituto de Investigación Médica Mercedes y Martín Ferreyra, 5016 Córdoba, Argentina,
8Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina 27708, 9Department of Neuroscience, Canadian Centre for
Behavioural Neuroscience, The University of Lethbridge, Lethbridge, Alberta T1K 6T5, Canada, and 10Center for the Neurobiology of Learning and
Memory, University of California, Irvine, Irvine, California 92697

Decades of research identify the hippocampal formation as central to memory storage and recall. Events are stored via distributed
population codes, the parameters of which (e.g., sparsity and overlap) determine both storage capacity and fidelity. However, it remains
unclear whether the parameters governing information storage are similar between species. Because episodic memories are rooted in the
space in which they are experienced, the hippocampal response to navigation is often used as a proxy to study memory. Critically, recent
studies in rodents that mimic the conditions typical of navigation studies in humans and nonhuman primates (i.e., virtual reality) show
that reduced sensory input alters hippocampal representations of space. The goal of this study was to quantify this effect and determine
whether there are commonalities in information storage across species. Using functional molecular imaging, we observe that navigation
in virtual environments elicits activity in fewer CA1 neurons relative to real-world conditions. Conversely, comparable neuronal activity
is observed in hippocampus region CA3 and the dentate gyrus under both conditions. Surprisingly, we also find evidence that the absolute
number of neurons used to represent an experience is relatively stable between nonhuman primates and rodents. We propose that this
convergence reflects an optimal ensemble size for episodic memories.

Key words: neural coding; neuroethology; primate; rodent; spatial cognition; virtual reality

Introduction
The hippocampus, situated at the top of the hierarchy of the
association cortices (Marr, 1971; McNaughton and Morris, 1987;

Rolls and Treves, 1990; Buffalo, 2015), is central to both naviga-
tion and episodic memory, reflecting the deep connection be-
tween memory and place (O’Keefe and Nadel, 1978; Burgess et
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Significance Statement

One primary factor constraining memory capacity is the sparsity of the engram, the proportion of neurons that encode a single
experience. Investigating sparsity in humans is hampered by the lack of single-cell resolution and differences in behavioral
protocols. Sparsity can be quantified in freely moving rodents, but extrapolating these data to humans assumes that information
storage is comparable across species and is robust to restraint-induced reduction in sensory input. Here, we test these assump-
tions and show that species differences in brain size build memory capacity without altering the structure of the data being stored.
Furthermore, sparsity in most of the hippocampus is resilient to reduced sensory information. This information is vital to
integrating animal data with human imaging navigation studies.
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al., 2002; Buzsáki and Moser, 2013; Buf-
falo, 2015). Electrophysiological studies
across species demonstrate that hippocampal
activity integrates many features of the
animal’s external surroundings, as well as
internal states and previous experience
(Wilson and McNaughton, 1993; Ono et
al., 1993; Rolls, 1999; Ekstrom et al., 2003;
Wirth et al., 2003; Quiroga et al., 2008;
MacDonald et al., 2011; Mankin et al.,
2012; Thome et al., 2012). The mecha-
nisms underlying hippocampal informa-
tion storage have been the focus of
extensive investigation (Treves and Rolls,
1994; Burgess et al., 2002; Waydo et al.,
2006). Storage capacity depends on the
number of coding units, the selectivity of
individual neurons (population sparsity),
and the pattern of connections between
them (Marr, 1971; McNaughton and
Morris, 1987; Rolls and Treves, 1990).
The hippocampus is hypothesized to use
sparse coding schemes to maximize mem-
ory storage capacity (Marr, 1971; Mc-
Naughton and Morris, 1987). Critically,
although the number of place fields a neu-
ron expresses depends in part on the size
of the environment and the site of record-
ing (Rich et al., 2014; Strange et al., 2014),
functional imaging studies show that ro-
dents reliably activate similar numbers of
neurons across episodes. This stability in en-
semble size suggests a mechanism that con-
strains the number of neurons involved in
hippocampal memory encoding.

Several factors limit the degree to which
these rodent data may generalize to pri-
mates. The vast majority of human and
nonhuman primate (NHP) studies of navi-
gation (and memory more generally) are
performed while participants are physical
restrained due to the requirements of the
particular experimental technique. This is
problematic because restricting self-motion
information reduces the number and speci-
ficity of active neurons in rodent CA1 (Fos-
ter et al., 1989; Terrazas et al., 2005; Rich et
al., 2014). Moreover, whereas electrophysi-
ological studies in humans and NHPs can demonstrate precise spa-
tial tuning of individual neurons (Hori et al., 2005; Waydo et al.,
2006; Quiroga et al., 2008; Thome et al., 2012; Furuya et al., 2014),
this method provides only limited sampling of the total cells required
to represent an episode.

Many of these challenges may be overcome by monitoring
the transcription of the immediate-early gene Arc (Guzowski
et al., 1999). Arc expression reliably captures neuronal activity
across the brain, providing a robust estimate of ensemble size.
Importantly, Arc can also be examined in the same manner in
restrained or freely moving animals. We trained six animals to
forage for reward in real or virtual environments (Fig. 1,
Movies 1 and 2). After completion of the task, we performed
fluorescence in situ hybridization for Arc in the right posterior
hippocampus (Fig. 2). This region shows reliable activation

related to spatial/episodic memory in humans and NHPs
(Colombo et al., 1998; Burgess et al., 2002; Engle et al., 2016)
and is homologous to the rodent dorsal hippocampus (Amaral
and Lavenex, 2007).

The aim of the current study was twofold. First, we tested the
hypothesis that the degradation of self-motion signals during vir-
tual navigation alters the composition of hippocampal ensem-
bles. Second, we investigated whether, relative to smaller, well
characterized mammals, the larger NHP hippocampus will re-
cruit proportionately more neurons to represent a single event,
thus keeping relative sparsity constant.

Materials and Methods
Subjects. The present study used 8 adult male (weight, 9 –15 pounds)
rhesus macaques (Macacca mulatta). All procedures were approved
by the Institutional Animal Care and Use Committee at the University

Figure 1. Navigation in real and virtual environments. Monkeys foraging in real-world environments (A) moved freely around
two visually distinct rooms while being followed by the experimenter. Random locations around the room were continuously
baited with food reward by another experimenter. Monkeys foraging in a virtual environment (B) were seated in front of a
wraparound display with access to a joystick (inset) and required to find and collide with large red boxes (visible on center screen)
to receive a juice reward. See Movie 1 and Movie 2.
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of Arizona and followed the guidelines of the National Institutes of
Health.

Behavioral training. Two animals were trained exclusively on the real-
world task, two exclusively on the virtual-foraging task, and an additional
two received training on both the real-world and virtual-foraging tasks. Two
further animals received no training and served as positive and negative
control subjects. Animals in the behavioral groups were placed on fluid re-
striction and received extensive training for several months as described
below.

Each session began with a 25 min rest period during which animals
remained in a restraint chair in a light- and sound-isolating transport

cage. Behavior during this time was moni-
tored by a small infrared camera. This rest
period ensured that all transcription associ-
ated with transport was translated and de-
graded by the time the monkey was killed.
Animals trained on either real or virtual en-
vironments, returned to the transport cham-
ber for 25 min, and then performed a second
round of either real or virtual exploration.

Animals that were assigned to forage in
real-world conditions only were randomly
placed in either room A or room B, whereas
those in the virtual-only condition foraged in
the virtual environment. Animals in the
mixed real-world and virtual condition were
randomly assigned to room A or B, along
with the virtual environment.

In the real-world condition, animals were
trained to calmly forage while being followed by
an experimenter holding a primate restraint poll
(Movie 1) to facilitate the retrieval of the animal
following training. During each training session,
animals were exposed to one of two rooms with
unique geometry and local cues. Experimenters
continuously baited random locations in the
room with small food items (e.g., watermelon,
strawberries) to ensure that monkeys explored
the entire room.

In the virtual navigation condition, animals
were trained to navigate using a joystick to move
around a virtual arena displayed across three 40
by 30 cm screens in search for large red squares
placed randomly in the environment (Fig. 1B,
Movie 2). Reward was delivered via a juice spigot
near the animal’s mouth as the subject collided
with each square. Several cues were placed
throughout the environment (i.e., trees, crates,
and clouds) with a bounding border of a large,
stone-textured wall. Clouds were simulated using
a 512 � 512 sky-box (Terragen; Planetside Soft-
ware). The virtual reality system was custom
written (T.M.E. in OpenGL 1.2) and rendered
using NVIDIA hardware (NVIDIA GeForce2
MX/MX400).

The duration of training trials was gradually
reduced until all behavioral animals were
placed on the following daily schedule: 25 min
rest, 5 min navigation, 25 min rest, and 5 min
navigation. The timing of each behavioral ep-
och was selected to correspond to the spatio-
temporal dynamics of Arc expression.

Two monkeys served as negative and pos-
itive controls. The negative control received
no behavioral exposure and was anesthetized
in its home cage via intramuscular injection
of ketamine (30 mg/kg). Data from the neg-
ative control animal are referred to as caged
control (CC) in the text and figures. The
positive control animal received electrocon-

vulsive stimulation (ECS) using procedures typically used for human
electroconvulsive therapy (Moscrip et al., 2004). The positive control
animal was sedated with a combination of ketamine (15 mg/kg, IM)
and atropine (0.5 mg/kg, IM), transported to the surgical suite, and
then administered methohexital (1 mg/kg, IV) and succinylcholine
(3.5 mg/kg, IV). Vital signs (blood pressure, endtidal CO2, pulse
oximetry, and EKG) were monitored continuously. After full anesthesia,
the monkey received 100% oxygen (positive pressure) and stimulating elec-
trodes (Somatics) were placed in traditional bifrontotemporal configura-
tion. Electrical stimulation was delivered for 1.9 s at 100 mC and the

Movie 1. Real-world navigation in rhesus macaques. This movie depicts a rhesus macaque being guided
through one of the two rooms that were used for navigation. The monkey can be seen traveling to foraging
locations scattered throughout the room where researchers placed preferred foods.

Movie 2. Virtual navigation in rhesus macaques. This movie depicts a rhesus macaque seated in front of
a wraparound display depicting a virtual environment. Within this environment, red cubes appear in
pseudo-random locations, and the monkey can be seen using a joystick to navigate to several of these cubes
in order to obtain fluid reward.
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duration of the following seizure was monitored on a Spectrum 5000Q
ECT device (MECTA). Manifestation of motor symptoms were moni-
tored using the cuff technique (American Psychiatric Association, 2001).
The monkey was then given an overdose of beuthanasia (sodium pento-
barbital, 10 cc/10 lbs, IV).

Tissue processing. After the behavioral exposure, animals were returned to
the primate restraint chair, anesthetized rapidly via gas anesthesia, and then
administered an overdose of beuthanasia. Their brains were then rapidly
extracted, portioned into 1-cm-thick slices and flash frozen. Blocks from
each animal containing right posterior hippocampus were serially sectioned
at 25 �m and mounted onto 3-triethoxysilylpropylamine slides. Tissue sec-
tions were placed on slides so that each slide contained sections from two
different animals, interleaving animals and conditions. Every fifth section
was separately mounted for Nissl staining to aid in identifying anatomical
landmarks. Slides were dried and stored at �80°C until use.

Fluorescence in situ hybridization was performed as described pre-
viously (Ramirez-Amaya et al., 2013). Deviations from this procedure

are described below. The specificity of the Arc riboprobe (NCBI Gene
ID: 102130416) was confirmed by tissue from the monkey that re-
ceived ECS. Hybridized tissue was imaged using a 40� oil-immersion
objective on a DeltaVision RT Deconvolution Microscope (Applied
Precision). Using a rhesus macaque atlas (Paxinos et al., 1999),
hippocampal subregions (CA1, CA3, and DG) were identified (Fig.
2A). Across all regions of the hippocampus, 265 image stacks were
obtained at 40� (2–3 stacks/region in each of 5 sections/animal).

While the experimental design permits analysis of two behavioral
epochs, the present study focuses on the final behavioral exposure,
which is associated with intranuclear signals (Fig. 2A, inset) to main-
tain adequate statistical power. Arc� neurons were counted using an
unbiased brick (Howard et al., 1985) with 5 �m exclusion edges using
FIJI (Schindelin et al., 2012) by two observers who were blind to the
experimental conditions. To compare the values to similar studies in
rodents, we performed a synthesis of the literature published in the
last 16 years that provide Arc expression data for CA1 (Guzowski et

Figure 2. Functional molecular imaging of behaviorally driven hippocampal activity. A, Representative 10� image showing a section of right posterior hippocampus. Nuclei were labeled with Sytox green.
Coloredboxes(i.e.,panels)demonstratethesamplingscheme(white,dentategyrus;red,CA3;andyellow,CA1). Inset,40� imageshowingaclusterofdentategranulecells.Reddotsindicatesitesofintranuclear
transcription of Arc mRNA. B–D, Box-and-whisker plots of regional proportions of neurons between experimental conditions (RW, real-world; VR, virtual reality). Red line represents sample median, box edges
represent 25th and 75th percentiles, and whiskers extend 2.7 SDs. Red � symbols represent outliers. Only the CA1 region (B) showed significant differences in proportion of cells activated by real and virtual
navigation. All navigation conditions were significantly different from CC.
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al., 1999; Vazdarjanova et al., 2002; Vazdarjanova and Guzowski,
2004; Burke et al., 2005; Ramirez-Amaya et al., 2005; Rosi et al., 2005;
Guzowski et al., 2006; Vazdarjanova et al., 2006; Marrone et al., 2008;
Miyashita et al., 2009; Rosi et al., 2009; Penner et al., 2011; Gheidi et
al., 2012; Marrone et al., 2012a,2012b; Hartzell et al., 2013; Marrone
et al., 2014), CA3 (Vazdarjanova et al., 2002; Vazdarjanova and Gu-
zowski, 2004; Ramirez-Amaya et al., 2005; Rosi et al., 2005; Vazdar-
janova et al., 2006; Miyashita et al., 2009; Rosi et al., 2009; Gheidi et
al., 2012; Marrone et al., 2012a; Marrone et al., 2014), or DG (Chawla
et al., 2005; Ramirez-Amaya et al., 2005; Rosi et al., 2005; Ramirez-
Amaya et al., 2006; Vazdarjanova et al., 2006; Alme et al., 2010;
Penner et al., 2011Marrone et al., 2012a,2012b; Ramirez-Amaya et al.,
2013).

Results
Navigation in both real and virtual environments reliably
induce Arc transcription
Relative to the CC condition, navigation (nav) in both real-
world and virtual reality conditions reliably activated more
neurons in CA1 (t(86) � 3.014, p � 0.001; nav � 2.8, CC �
0.499, Cohen’s d � 1.22), CA3 (t(75) � 1.750, p � 0.05; nav �
2.86, CC � 1.48, d � 0.68), and DG (t(98) � 1.67, p � 0.05;
nav � 0.324, CC � 0.103, d � 0.626). A two-way ANOVA
revealed significant main effects of region (i.e., CA1, CA3, and
DG; F(1,2) � 41.98, p � 0.001) and condition (real vs virtual;
F(1,1) � 8.48, p � 0.005), and an interaction (F(1,2) � 6.91, p �
0.001). Tukey’s HSD revealed that real navigation activated
more neurons than did virtual navigation, but only in CA1

( p � 0.001, Fig. 2B), not in CA3 or DG
(Fig. 2C,D). The current protocol suc-
cessfully labeled 42–51% of principal
cells in positive control conditions, sug-
gesting that the differential Arc expres-
sion across hippocampal subregions
result is not due to nonspecific binding
of the riboprobe.

Comparisons with Arc expression in
the rodent
The observed sparseness of activity across
the NHP hippocampus appears to deviate
strongly from what has been reported in
many rodent studies. To facilitate com-
parison of the current data collected from
the NHPs with data collected in rodents,
we conducted a meta-analysis of the exist-
ing rodent literature. Data were obtained
from experiments that used comparable
real-world conditions (i.e., open-field for-
aging) and used identical Arc imaging

techniques (see Materials and Methods for references) to arrive at
an average proportion of neurons activated per region in the rat
(dorsal CA1: 37.0 � 1.1%; dorsal CA3: 20.2 � 1.0%; dorsal su-
prapyramidal DG: 2.7 � 0.2%).

Across hippocampal regions, activity levels were approxi-
mately an order of magnitude smaller in NHPs than in rodents
(DG: t(2) � �8.54, p � 0.013; CA3: t(2) � �29.91, p � 0.001;
CA1: t(2) � �51.33, p � 0.0001; Fig. 3A). We next considered
whether the total number of active neurons is conserved across
species. Using published estimates of the number of principal
cells in the rodent and NHP hippocampus (Amaral and Lavenex,
2007), we calculated the total number of activated neurons per
subregion in both species (Fig. 3B). When quantified in this man-
ner, the total neurons activated by navigation showed no signif-
icant species-related difference in the DG (t(2) � 0.776, p � 0.51)
or CA3 (t(2) � �2.102, p � 0.17). The proportion of behaviorally
driven neurons in CA1, however, was �3-fold lower in NHPs
than in the rodent.

Discussion
In rodents, only CA1 place cells have been examined under im-
poverished motor and vestibular input and, under these condi-
tions (which mimic virtual reality), fewer cells respond and their
place fields are correspondingly larger (Foster et al., 1989; Terra-
zas et al., 2005; Ravassard et al., 2013, Aghajan et al., 2015). Test-
ing whether these same changes can be observed in the NHP is

Figure 3. Comparison of activity patterns in rodents and primates. A, Mean proportion of activated neurons reported in rodents
(blue line, RN, Rattus norvegicus) and observed in individual primates (square, Monkey J; circle, Monkey P; triangle, Monkey I),
highlighting the difference between species. B, Close concordance between the total numbers of neurons activated in the DG and
CA3 regions. In contrast, the number of CA1 neurons activated in rats was significantly higher than in monkeys (*p � 0.05, **p �
0.01, ****p � 0.0001, monkeys vs rats in the same region).

Table 1. Estimated storage capacity of the monkey and rat hippocampus

CA1 CA3 DG

Monkey Rat Ratioe Monkey Rat Ratioe Monkey Rat Ratioe

Total cellsa 1,300 390 3.3 1,270 250 5.1 12,000 1,200 10
Active cellsb 50.1 144.3 0.35 36.2 50.5 0.72 50.4 32.4 1.56
Sparsityc 0.04 0.37 9.25 0.03 0.20 6.67 0.04 0.03 1.33
Storage capacityd 467 5 93.4 854 17 50.24 39294 951 41.32
aEstimates (in thousands) obtained from Amaral and Lavenex (2007).
bEstimates (in thousands) are the product of the proportion of active cells obtained here and the estimate of total cell number.
cRatio of active cells to principal cells.

dStorage capacity estimate for Hebb–Marr memory, Mmax �
ln	0.5


ln	1 � a2

eRatio is presented as monkey/rat except in the case of sparsity, which is presented as rat/monkey to demonstrate more clearly how much sparser the coding in the monkey is.
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important given differences in the importance of different sen-
sory inputs between species. The rat’s sensory input is likely
dominated by vibrissal input and olfactory input, which are dramat-
ically deprived under virtual conditions. In contrast, in macaques,
visual information is far more important. Because this input can be
mimicked much more reliably during virtual navigation, it is possi-
ble that virtual foraging may produce a hippocampal response closer
to real-world conditions in the NHP than in the rodent. The current
data, however, suggest that this is not the case because the size of CA1
neuronal ensembles activated during navigation is reduced in both
NHPs and rodents by the attenuated sensory input experienced in
virtual environments. Moreover, these data are consistent with the
idea that CA1 pyramidal cells in NHPs (and likely humans) exhibit a
comparable expansion in place field size during navigation in virtual
spaces relative to real-world conditions. A potentially important ca-
veat, however, exists in extrapolating these data to the literature ob-
serving NHPs and humans navigating in virtual environments.
Although the foraging conditions selected for behavior in the NHPs
was deliberately made to match the typical conditions under which
rodent place cells are recorded, they differ considerably from the
typical conditions used to test navigation in virtual reality, particu-
larly in humans. These conditions typically involve goal-directed
navigation to one or more fixed locations and therefore require fo-
cused attention, goal-directed behavior, and often explicitly require
episodic memory encoding and retrieval in a way that foraging does
not. It should be noted, however, that although these differences in
task demands are known to alter the dynamics of place cell maps
(Muzzio et al., 2009), they are relatively subtle. Despite this caveat, it
is clear that, when they are tested under the same conditions, cells in
CA1 of both NHPs and rodents react in the same way as the reduced
sensory input inherent in virtual navigation.

No experiments to date have investigated whether spatial repre-
sentations in the DG or CA3 region are similarly degraded under
reduced sensory input. The present data, however, suggest that (un-
like in CA1) representations in these regions are robust under these
conditions. That is, the size of neuronal ensembles activated during
navigation is not changed in either the DG or area CA3 by the altered
sensory conditions experienced in virtual environments (Fig. 2B–
D). This resilience may have developed as a means to maximize the
number of patterns that can be stored in the DG and CA3 networks.

By providing a robust estimate of population sparsity, these data
can be combined with previous estimates of single neuron sparsity
(Rolls and Treves, 1990; Strange et al., 2014) and synaptic connec-
tivity (Amaral and Lavenex, 2007) to estimate storage capacity. As-
suming that the activity in a single spatial context approximates the
activity inherent in the encoding of a single event, the total number
of events that can be stored within the neuronal network of each
species can be determined using the estimate for binary Hebb–Marr
memory (Marr, 1971; McNaughton and Morris, 1987; Rolls and
Treves, 1990). These data show that the disparity in memory capac-
ity between species increases dramatically at each stage of informa-
tion processing along the trisynaptic loop (Table 1). That is, the DG
networks have comparable capacity across species, but in CA1, the
NHP network has nearly 100 times the capacity of the rodent net-
work. Although these numbers are crude approximations, they
demonstrate that the increase in both cell number and sparsity in the
NHP hippocampus results in memory capacity that is at least an
order of magnitude greater than in the rodent counterpart. This
increased sparsity cannot be the result of repeated exposure to the
contexts because hippocampal representations in NHPs do not un-
dergo experience-dependent tuning or habituation (Thome et al.,
2012) and thus are likely a stable species-related difference in hip-
pocampal information processing.

The most intriguing observation from this experiment is that the
size of hippocampal neural ensembles engaged by navigation is not a
fixed proportion of the population, but rather an absolute number
(Fig. 3). The interpretation that rats and monkeys have different
capacity for episodes of foraging experience, yet equivalent (or at
least comparable) information content within each episode of expe-
rience is the most parsimonious one. It remains possible, however,
that, although the hippocampus plays a similar role as an index to
bind together disparate cortical representations in different species,
the individual cortical targets may be quite different. If this is the
case, then the cortical representations must negotiate the same
trade-off between information content and storage capacity, but the
large species difference in cortical size relative to hippocampal size
does make it possible for this balance to be achieved differently in
the neocortex than in the hippocampus. The absence of an increase
in the hippocampal index, however, would place serious limitations
on the size and distribution of a cortical ensemble that could be
reliably recruited.

Despite these open questions, the current data support the
novel hypothesis that, as mammals evolved and brains grew, evo-
lutionary processes determined an optimal number of neurons
necessary to establish stable episodic representations in the hip-
pocampus and this region enlarged to build memory capacity.
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Buzsáki G, Moser EI (2013) Memory, navigation and theta rhythm in the
hippocampal-entorhinal system. Nat Neurosci 16:130 –138. CrossRef
Medline

Chawla MK, Guzowski JF, Ramirez-Amaya V, Lipa P, Hoffman KL, Marriott
LK, Worley PF, McNaughton BL, Barnes CA (2005) Sparse, environ-
mentally selective expression of Arc RNA in the upper blade of the rodent
fascia dentata by brief spatial experience. Hippocampus 15:579 –586.
CrossRef Medline

Colombo M, Fernandez T, Nakamura K, Gross CG (1998) Functional dif-
ferentiation along the anterior-posterior axis of the hippocampus in
monkeys. J Neurophysiol 80:1002–1005. Medline

Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, Fried
I (2003) Cellular networks underlying human spatial navigation. Nature
425:184 –188. CrossRef Medline

Engle JR, Machado CJ, Permenter MR, Vogt JA, Maurer AP, Bulleri AM,
Barnes CA (2016) Network patterns associated with navigation behav-
ior are altered in aged nonhuman primates. J Neurosci 36:12217–12227.
CrossRef Medline

Foster TC, Castro CA, McNaughton BL (1989) Spatial selectivity of rat hip-
pocampal neurons: dependence on preparedness for movement. Science
244:1580 –1582. CrossRef Medline

Furuya Y, Matsumoto J, Hori E, Boas CV, Tran AH, Shimada Y, Ono T,

2800 • J. Neurosci., March 8, 2017 • 37(10):2795–2801 Thome, Marrone et al. • Conserved Hippocampal Sparsity in Mammals

http://www.ncbi.nlm.nih.gov/pubmed/25420065
http://dx.doi.org/10.1002/hipo.20810
http://www.ncbi.nlm.nih.gov/pubmed/20872737
http://dx.doi.org/10.1002/hipo.22444
http://www.ncbi.nlm.nih.gov/pubmed/25787704
http://dx.doi.org/10.1016/S0896-6273(02)00830-9
http://www.ncbi.nlm.nih.gov/pubmed/12194864
http://dx.doi.org/10.1016/j.neuron.2005.01.042
http://www.ncbi.nlm.nih.gov/pubmed/15748843
http://dx.doi.org/10.1038/nn.3304
http://www.ncbi.nlm.nih.gov/pubmed/23354386
http://dx.doi.org/10.1002/hipo.20091
http://www.ncbi.nlm.nih.gov/pubmed/15920719
http://www.ncbi.nlm.nih.gov/pubmed/9705488
http://dx.doi.org/10.1038/nature01964
http://www.ncbi.nlm.nih.gov/pubmed/12968182
http://dx.doi.org/10.1523/JNEUROSCI.4116-15.2016
http://www.ncbi.nlm.nih.gov/pubmed/27903730
http://dx.doi.org/10.1126/science.2740902
http://www.ncbi.nlm.nih.gov/pubmed/2740902


Nishijo H (2014) Place-related neuronal activity in the monkey para-
hippocampal gyrus and hippocampal formation during virtual naviga-
tion. Hippocampus 24:113–130. CrossRef Medline

Gheidi A, Satvat E, Marrone DF (2012) Experience-dependent recruitment
of Arc expression in multiple systems during rest. J Neurosci Res 90:
1820 –1829. CrossRef Medline

Guzowski JF, McNaughton BL, Barnes CA, Worley PF (1999) Envi-
ronment-specific expression of the immediate-early gene Arc in hip-
pocampal neuronal ensembles. Nat Neurosci 2:1120 –1124. CrossRef
Medline

Guzowski JF, Miyashita T, Chawla MK, Sanderson J, Maes LI, Houston FP,
Lipa P, McNaughton BL, Worley PF, Barnes CA (2006) Recent behav-
ioral history modifies coupling between cell activity and Arc gene tran-
scription in hippocampal CA1 neurons. Proc Natl Acad Sci U S A 103:
1077–1082. CrossRef Medline

Hartzell AL, Burke SN, Hoang LT, Lister JP, Rodriguez CN, Barnes CA
(2013) Transcription of the immediate-early gene Arc in CA1 of the
hippocampus reveals activity differences along the proximodistal axis that
are attenuated by advanced age. J Neurosci 33:3424 –3433. CrossRef
Medline

Hori E, Nishio Y, Kazui K, Umeno K, Tabuchi E, Sasaki K, Endo S, Ono T,
Nishijo H (2005) Place-related neural responses in the monkey hip-
pocampal formation in a virtual space. Hippocampus 15:991–996.
CrossRef Medline

Howard V, Reid S, Baddeley A, Boyde A (1985) Unbiased estimation of
particle density in the tandem scanning reflected light microscope. J Mi-
crosc 138:203–212. CrossRef Medline

MacDonald CJ, Lepage KQ, Eden UT, Eichenbaum H (2011) Hippocampal
‘time cells’ bridge the gap in memory for discontiguous events. Neuron
71:737–749. CrossRef Medline

Mankin EA, Sparks FT, Slayyeh B, Sutherland RJ, Leutgeb S, Leutgeb JK
(2012) Neuronal code for extended time in the hippocampus. Proc Natl
Acad Sci U S A 109:19462–19467. CrossRef Medline

Marr D (1971) Simple memory: a theory for archicortex. Philos Trans R Soc
Lond B Biol Sci 262:23– 81. CrossRef Medline

Marrone DF, Schaner MJ, McNaughton BL, Worley PF, Barnes CA (2008)
Immediate-early gene expression at rest recapitulates recent experience.
J Neurosci 28:1030 –1033. CrossRef Medline

Marrone DF, Satvat E, Shaner MJ, Worley PF, Barnes CA (2012a) Attenu-
ated long-term Arc expression in the aged fascia dentata. Neurobiol Aging
33:979 –990. CrossRef Medline

Marrone DF, Ramirez-Amaya V, Barnes CA (2012b) Neurons generated in
senescence maintain capacity for functional integration. Hippocampus
22:1134 –1142. CrossRef Medline

Marrone DF, Satvat E, Odintsova IV, Gheidi A (2014) Dissociation of spa-
tial representations within hippocampal region CA3. Hippocampus 24:
1417–1420. CrossRef Medline

McNaughton BL, Morris RGM (1987) Hippocampal synaptic enhancement
and information storage within a distributed memory system. Trends
Neurosci 10:408 – 415. CrossRef

Miyashita T, Kubik S, Haghighi N, Steward O, Guzowski JF (2009) Rapid
activation of plasticity-associated gene transcription in hippocampal neu-
rons provides a mechanism for encoding of one-trial experience. J Neu-
rosci 29:898 –906. CrossRef Medline

Moscrip TD, Terrace HS, Sackeim HA, Lisanby SH (2004) A primate model
of anterograde and retrograde amnesia produced by convulsive treat-
ment. J ECT 20:26 –36. CrossRef Medline

Muzzio IA, Kentros C, Kandel E (2009) What is remembered? Role of atten-
tion on the encoding and retrieval of hippocampal representations.
J Physiol 587:2837–2854. CrossRef Medline

O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. New York:
OUP.

Ono T, Nakamura K, Nishijo H, Eifuku S (1993) Monkey hippocampal
neurons related to spatial and nonspatial functions. J Neurophysiol 70:
1516 –1529. Medline

Paxinos G, Huang XF, Toga AW (1999) The rhesus monkey brain in stereo-
taxic coordinates. San Diego: Academic.

Penner MR, Roth TL, Chawla MK, Hoang LT, Roth ED, Lubin FD, Sweatt JD,
Worley PF, Barnes CA (2011) Age-related changes in Arc transcription
and DNA methylation within the hippocampus. Neurobiol Aging 32:
2198 –2210. CrossRef Medline

Quiroga RQ, Kreiman G, Koch C, Fried I (2008) Sparse but not
‘grandmother-cell’ coding in the medial temporal lobe. Trends Cogn Sci
12:87–91. CrossRef Medline

Ramírez-Amaya V, Vazdarjanova A, Mikhael D, Rosi S, Worley PF, Barnes
CA (2005) Spatial exploration-induced Arc mRNA and protein expres-
sion: evidence for selective, network-specific reactivation. J Neurosci 25:
1761–1768. CrossRef Medline

Ramirez-Amaya V, Marrone DF, Gage FH, Worley PF, Barnes CA (2006)
Integration of new neurons into functional neural networks. J Neurosci
26:12237–12241. CrossRef Medline

Ramirez-Amaya V, Angulo-Perkins A, Chawla MK, Barnes CA, Rosi S (2013) Sus-
tained transcription of the immediate early gene Arc in the dentate gyrus after
spatial exploration. J Neurosci 33:1631–1639. CrossRef Medline

Ravassard P, Kees A, Willers B, Ho D, Aharoni D, Cushman J, Aghajan ZM,
Mehta MR (2013) Multisensory control of hippocampal spatiotemporal
selectivity. Science 340:1342–1346. CrossRef Medline

Rich PD, Liaw HP, Lee AK (2014) Large environments reveal the statistical
structure governing hippocampal representations. Science 345:814 – 817.
CrossRef Medline

Rolls ET (1999) Spatial view cells and the representation of place in the
primate hippocampus. Hippocampus 9:467– 480. Medline

Rolls ET, Treves A (1990) The relative advantages of sparse versus distrib-
uted encoding for associative neuronal networks in the brain. Network
1:407– 421. CrossRef

Rosi S, Ramirez-Amaya V, Vazdarjanova A, Worley PF, Barnes CA, Wenk GL
(2005) Neuroinflammation alters the hippocampal pattern of behavior-
ally induced Arc expression. J Neurosci 25:723–731. CrossRef Medline

Rosi S, Ramirez-Amaya V, Vazdarjanova A, Esparza EE, Larkin PB, Fike JR,
Wenk GL, Barnes CA (2009) Accuracy of hippocampal network activity
is disrupted by neuroinflammation: rescue by memantine. Brain 132:
2464 –2477. CrossRef Medline

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T,
Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ,
Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) FIJI: an open-
source platform for biological-image analysis. Nat Methods 9:676 – 682.
CrossRef Medline

Strange BA, Witter MP, Lein ES, Moser EI (2014) Functional organization
of the hippocampal longitudinal axis. Nat Rev Neurosci 15:655– 669.
CrossRef Medline

Terrazas A, Krause M, Lipa P, Gothard KM, Barnes CA, McNaughton BL
(2005) Self-motion and the hippocampal spatial metric. J Neurosci 25:
8085– 8096. CrossRef Medline

Thome A, Erickson CA, Lipa P, Barnes CA (2012) Differential effects of
experience on tuning properties of macaque MTL neurons in a passive
viewing task. Hippocampus 22:2000 –2011. CrossRef Medline

Treves A, Rolls ET (1994) Computational analysis of the role of the hip-
pocampus in memory. Hippocampus 4:374 –391. CrossRef Medline

Vazdarjanova A, Guzowski JF (2004) Differences in hippocampal neuronal
population responses to modifications of an environmental context: evi-
dence for distinct, yet complementary, functions of CA3 and CA1 ensem-
bles. J Neurosci 24:6489 – 6496. CrossRef Medline

Vazdarjanova A, McNaughton BL, Barnes CA, Worley PF, Guzowski JF
(2002) Experience-dependent coincident expression of the effector
immediate-early genes arc and Homer 1a in hippocampal and neocortical
neuronal networks. J Neurosci 22:10067–10071. Medline

Vazdarjanova A, Ramirez-Amaya V, Insel N, Plummer TK, Rosi S, Chowd-
hury S, Mikhael D, Worley PF, Guzowski JF, Barnes CA (2006) Spatial
exploration induces ARC, a plasticity-related immediate-early gene, only
in calcium/calmodulin-dependent protein kinase II-positive principal ex-
citatory and inhibitory neurons of the rat forebrain. J Comp Neurol 498:
317–329. CrossRef Medline

Waydo S, Kraskov A, Quiroga Quiroga R, Fried I, Koch C (2006) Sparse
representation in the human medial temporal lobe. J Neurosci 26:10232–
10234. CrossRef Medline

Wilson MA, McNaughton BL (1993) Dynamics of the hippocampal ensem-
ble code for space. Science 261:1055–1058. CrossRef Medline

Wirth S, Yanike M, Frank LM, Smith AC, Brown EN, Suzuki WA (2003)
Single neurons in the monkey hippocampus and learning of new associ-
ations. Science 300:1578 –1581. CrossRef Medline

Thome, Marrone et al. • Conserved Hippocampal Sparsity in Mammals J. Neurosci., March 8, 2017 • 37(10):2795–2801 • 2801

http://dx.doi.org/10.1002/hipo.22209
http://www.ncbi.nlm.nih.gov/pubmed/24123569
http://dx.doi.org/10.1002/jnr.23057
http://www.ncbi.nlm.nih.gov/pubmed/22535445
http://dx.doi.org/10.1038/16046
http://www.ncbi.nlm.nih.gov/pubmed/10570490
http://dx.doi.org/10.1073/pnas.0505519103
http://www.ncbi.nlm.nih.gov/pubmed/16415163
http://dx.doi.org/10.1523/JNEUROSCI.4727-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23426670
http://dx.doi.org/10.1002/hipo.20108
http://www.ncbi.nlm.nih.gov/pubmed/16108028
http://dx.doi.org/10.1111/j.1365-2818.1985.tb02613.x
http://www.ncbi.nlm.nih.gov/pubmed/4020859
http://dx.doi.org/10.1016/j.neuron.2011.07.012
http://www.ncbi.nlm.nih.gov/pubmed/21867888
http://dx.doi.org/10.1073/pnas.1214107109
http://www.ncbi.nlm.nih.gov/pubmed/23132944
http://dx.doi.org/10.1098/rstb.1971.0078
http://www.ncbi.nlm.nih.gov/pubmed/4399412
http://dx.doi.org/10.1523/JNEUROSCI.4235-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18234881
http://dx.doi.org/10.1016/j.neurobiolaging.2010.07.022
http://www.ncbi.nlm.nih.gov/pubmed/20850902
http://dx.doi.org/10.1002/hipo.20959
http://www.ncbi.nlm.nih.gov/pubmed/21695743
http://dx.doi.org/10.1002/hipo.22367
http://www.ncbi.nlm.nih.gov/pubmed/25220839
http://dx.doi.org/10.1016/0166-2236(87)90011-7
http://dx.doi.org/10.1523/JNEUROSCI.4588-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19176799
http://dx.doi.org/10.1097/00124509-200403000-00007
http://www.ncbi.nlm.nih.gov/pubmed/15087994
http://dx.doi.org/10.1113/jphysiol.2009.172445
http://www.ncbi.nlm.nih.gov/pubmed/19525568
http://www.ncbi.nlm.nih.gov/pubmed/8283212
http://dx.doi.org/10.1016/j.neurobiolaging.2010.01.009
http://www.ncbi.nlm.nih.gov/pubmed/20189687
http://dx.doi.org/10.1016/j.tics.2007.12.003
http://www.ncbi.nlm.nih.gov/pubmed/18262826
http://dx.doi.org/10.1523/JNEUROSCI.4342-04.2005
http://www.ncbi.nlm.nih.gov/pubmed/15716412
http://dx.doi.org/10.1523/JNEUROSCI.2195-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/17122048
http://dx.doi.org/10.1523/JNEUROSCI.2916-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23345235
http://dx.doi.org/10.1126/science.1232655
http://www.ncbi.nlm.nih.gov/pubmed/23641063
http://dx.doi.org/10.1126/science.1255635
http://www.ncbi.nlm.nih.gov/pubmed/25124440
http://www.ncbi.nlm.nih.gov/pubmed/10495028
http://dx.doi.org/10.1088/0954-898X_1_4_002
http://dx.doi.org/10.1523/JNEUROSCI.4469-04.2005
http://www.ncbi.nlm.nih.gov/pubmed/15659610
http://dx.doi.org/10.1093/brain/awp148
http://www.ncbi.nlm.nih.gov/pubmed/19531533
http://dx.doi.org/10.1038/nmeth.2019
http://www.ncbi.nlm.nih.gov/pubmed/22743772
http://dx.doi.org/10.1038/nrn3785
http://www.ncbi.nlm.nih.gov/pubmed/25234264
http://dx.doi.org/10.1523/JNEUROSCI.0693-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/16135766
http://dx.doi.org/10.1002/hipo.22070
http://www.ncbi.nlm.nih.gov/pubmed/22987678
http://dx.doi.org/10.1002/hipo.450040319
http://www.ncbi.nlm.nih.gov/pubmed/7842058
http://dx.doi.org/10.1523/JNEUROSCI.0350-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15269259
http://www.ncbi.nlm.nih.gov/pubmed/12451105
http://dx.doi.org/10.1002/cne.21003
http://www.ncbi.nlm.nih.gov/pubmed/16871537
http://dx.doi.org/10.1523/JNEUROSCI.2101-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/17021178
http://dx.doi.org/10.1126/science.8351520
http://www.ncbi.nlm.nih.gov/pubmed/8351520
http://dx.doi.org/10.1126/science.1084324
http://www.ncbi.nlm.nih.gov/pubmed/12791995

	Evidence for an Evolutionarily Conserved Memory Coding Scheme in the Mammalian Hippocampus
	Introduction
	Materials and Methods
	Results
	Discussion




