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Abstract: Bovine respiratory disease (BRD) is the leading cause of mortality and antimicrobial
drug (AMD) use in weaned dairy heifers. Limited information is available regarding antimicrobial
resistance (AMR) in respiratory bacteria in this population. This study determined AMR gene
presence in 326 respiratory isolates (Pasteurella multocida, Mannheimia haemolytica, and Histophilus
somni) from weaned dairy heifers using whole genome sequencing. Concordance between AMR
genotype and phenotype was determined. Twenty-six AMR genes for 8 broad classes of AMD were
identified. The most prevalent, medically important AMD classes used in calf rearing, to which these
genes predict AMR among study isolates were tetracycline (95%), aminoglycoside (94%), sulfonamide
(94%), beta-lactam (77%), phenicol (50%), and macrolide (44%). The co-occurrence of AMR genes
within an isolate was common; the largest cluster of gene co-occurrence encodes AMR to phenicol,
macrolide, elfamycin, β-lactam (cephalosporin, penam cephamycin), aminoglycoside, tetracycline,
and sulfonamide class AMD. Concordance between genotype and phenotype varied (Matthew’s
Correlation Coefficient ranged from −0.57 to 1) by bacterial species, gene, and AMD tested, and
was particularly poor for fluoroquinolones (no AMR genes detected) and ceftiofur (no phenotypic
AMR classified while AMR genes present). These findings suggest a high genetic potential for
AMR in weaned dairy heifers; preventing BRD and decreasing AMD reliance may be important in
this population.

Keywords: Mannheimia; Pasteurella; Histophilus; bovine; airway; fluoroquinolone; ceftiofur; macrolide;
tetracycline

1. Introduction

Dairy heifer rearing is a significant part of California’s USD 10 billion dairy indus-
try [1]. Bovine respiratory disease (BRD) is the most common cause of mortality and
indication for antimicrobial drug (AMD) use in weaned dairy heifers [2]. Antimicrobial
resistance is highly prevalent in respiratory bacteria from weaned dairy heifers in Cali-
fornia [3]; however, the genomic basis for AMR in respiratory isolates specifically from
weaned dairy heifers has not been described. Weaned dairy heifers represent a unique
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production group, compared to pre-weaned calves or adult cattle, in which to study BRD
and AMR. This population has unique management conditions that may influence BRD
and AMR; they have recently been weaned off milk feeding, which is stressful [4,5], and
many have received prior treatment with AMD during the pre-weaned period for BRD or
diarrhea [3,6–10], and have been moved to group housing where they may be comingled
with calves from other farms, which represents stress and a risk for pathogen and AMR
spread [3,11]. Antimicrobial resistance (AMR) in food animals is an animal health, welfare,
and One Health concern [12–15].

Although the respiratory pasteurellaceae of cattle are not generally considered zoonotic
pathogens in humans, AMR in respiratory bacteria of cattle represents many One Health
risks. The use of AMD for the treatment of BRD affects other bacterial populations in the
animal, including enteric zoonotic pathogens. The transfer of genetic elements that encode
AMR between respiratory and enteric bacteria has been documented in cattle [16]. The CDC
reports that more than 2.8 million AMR infections occur in the United States annually and
that more than 35,000 people die as a result; multiple pathogens listed as AMR threats by
the CDC are enteric pathogens, some of which are zoonotic such as Enterobacteriaceae and
Salmonella spp. [17]. Studies around the globe have documented the transfer of AMR bacte-
ria between cattle or other livestock species and many different human populations [18–22].
Transfer of AMR between livestock operations and the environment, via multiple different
modes of transfer, has likewise been documented [23–25]. Additionally, the spread of
AMR in respiratory pathogens between domestic and wild ruminants has likewise been
documented [26].

The genomic basis of AMR is clinically important because it provides information
about resistance mechanisms across groups of organisms, for many classes of AMD, in a sin-
gle analysis. Whole genome sequencing (WGS) is one method by which AMR genes can be
identified and can be used to determine total genetic diversity and molecular epidemiology
and evaluate mechanistic insights into AMR. The advantage of whole genome sequenc-
ing compared to traditional in vitro susceptibility testing methods that determine AMR
phenotype is that WGS provides data rapidly and examines all known AMR resistance
genes in a single test. In contrast, culture and susceptibility testing methods are applied
to a specific panel of AMD and assess a narrow range of pre-determined AMD dilutions.
The increasing availability of WGS makes it a clinically useful and relevant methodology
for sequence-based assessment of AMR. Workflows that provide reports for clinical con-
sideration can be constructed [27–29], and this approach is becoming routine for AMR
analyses in environmental samples [30]. The use of AMR gene presence to predict resistance
phenotype has not been widely validated in multiple bacteria and within a genus [28].
Genotype predictions of phenotype are emerging with variable results; even within a single
organism, the concordance of AMR genotype with phenotypic is variable [31–33]. Studies
in Salmonella spp. and Staphylococcus aureus reported some agreement between AMR
genotypic and phenotype [31,34,35]. Substantial discrepancies were identified between
AMR phenotype and genotype in Mannheimia haemolytica respiratory isolates from beef
cattle, depending on what drug was being analyzed [36]. Similarly, respiratory isolates M.
haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis from pre-weaned
dairy calves and feedlot cattle demonstrated discordance between genotype and phenotype
based on the drug tested, bacterial species, and time point of sampling [37]. The variation
among genetic AMR determinants in respiratory isolates between different aspects of the
cattle industry, and differences in WGS within species of these organisms, suggest detailed
information is needed to validate the use of WGS for predicting AMR phenotype in bacteria
associated with BRD.

We hypothesized that AMR genes are highly prevalent and that AMR genotype and
phenotype are well correlated in a study population of respiratory bacterial isolates from
weaned dairy heifers in California. The objectives of this study were to (1) determine the
AMR gene presence in respiratory bacterial isolates using WGS, and (2) determine the
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concordance between AMR genotype and AMR phenotype (using broth microdilution
antimicrobial susceptibility testing) in the same isolates.

2. Materials and Methods
2.1. Study Design

A cross-sectional study was performed between June 2019 and February 2020 on a
convenience sample of 6 dairy calf-rearing facilities across California’s Central Valley. A
total of 360 heifers were sampled by deep nasopharyngeal swab (DNPS), as previously
described [3,38]. Bacterial samples were submitted to the California Animal Health and
Food Safety laboratory for culture and susceptibility testing of P. multocida, M. haemolytica,
and H. somni isolates. The culture and susceptibility results were previously published in a
study reporting AMR prevalence in the study population [3]. Banked isolates were then
evaluated by WGS for this study and the results of WGS of P. multocida, M. haemolytica, and
H. somni isolates were compared to the culture and susceptibility results.

2.2. Animals and Sample Sources

Original sample collection for this study population has previously been described [3].
Briefly, 360 heifers from 6 calf-rearing facilities were enrolled for sampling. In total, 3 of
6 calf-rearing facilities were multisource (ranging from 8 to 45 farm sources), 2 dairies
raised their calves on site, and 1 dairy sent calves 1–7 d of age to a multisource calf-rearing
facility (number of sources not reported) until weaning and weaned heifers returned to
the source farm where they were sampled. This study was approved by the UC Davis
Institutional Animal Care and Use Committee (protocol #20114); informed consent from
herd management was obtained verbally prior to commencing study activities. Selection
criteria included weaned dairy heifers in group pens (>3 months old) comingled for at
least 2 weeks prior to sampling and less than 6 months old. Equal numbers of heifers
with and without clinical signs of BRD based on a validated BRD Scoring system for
weaned calves [39] were included. Samples were collected over two seasonal time points to
include warmer (June–early October) and cooler (January–February) seasons. Respiratory
bacterial isolates were collected by DNPS (double-guarded culture swabs, Reproduction
Provisions LLC, Walworth, WI, USA), as previously described [38]. The DNPS were placed
in Amies with charcoal transport media (CultureSwab Plus, BD BBL™, COPAN Italia 114
SpA, Brescia, Italy). Samples were stored in a cooler with wet ice during sampling and
refrigerated at ~4 ◦C up to 48 h before submission. Selective culture and antimicrobial
susceptibility testing for P. multocida, M. haemolytica, and H. somni was performed. A total
of 361 isolates, consisting of 145, 119, and 97 P. multocida, M. haemolytica, and H. somni
isolates, respectively, were collected. A loopful of pure growth was transferred from the
MIC purity plate to the cryovial with treated beads and cryopreservative solution according
to manufacturer instructions (Pro-Lab Diagnostics Microbank Cryovial Storage Systems)
and stored at −70–80 ◦C (Panasonic VIP Plus) until WGS analysis.

2.3. Bacterial Culture and Susceptibility Testing

The methods for culture and susceptibility testing in this study population have
previously been described [3], and are included in Supplementary Materials S1. Briefly,
selective isolation was performed for P. multocida, M. haemolytica, and H. somni, and bacterial
identification was confirmed by matrix-assisted laser desorption–ionization–time-of-flight
(MALDI-TOF) mass spectrometry [40]. Antimicrobial susceptibility testing was performed
using broth microdilution in BO-PO plates. Antimicrobial drugs selected for analysis in
this study were based on the availability of the 2018 Clinical Laboratory Standard Institute
(CLSI) breakpoints [41] that could be meaningfully interpreted with the AMD solution
concentrations used for the respiratory isolates in the study and included tetracycline, tilmi-
cosin, tildipirosin, gamithromycin, enrofloxacin, danofloxacin, florfenicol, spectinomycin,
tulathromycin, penicillin, and ceftiofur. The AMD for which a MIC was obtained through
broth microdilution but no applicable breakpoint was available included ampicillin, clin-
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damycin, neomycin, sulfadimethoxine, tiamulin, trimethoprim–sulfamethoxazole, and
tylosin; these AMD were analyzed separately. For the purposes of AMD class comparisons
and MDR determination, when an isolate was classified as susceptible to all AMD tested
in a class, the isolate was categorized as susceptible to that class; when an isolate was
classified as resistant or intermediate to any drug in the class, the isolate was classified
as resistant.

2.4. Whole Genome Sequencing (WGS)

A single bead from banked bacterial isolates was aseptically transferred to a 5% sheep
blood agar plate (Hardy Diagnostics, Santa Maria, CA, USA). The bead was streaked across
the primary quadrant and then removed. The plate was struck for single colony isolation
with subsequent incubation aerobically at 37 ◦C (+2 ◦C) with 5% CO2 for 18–24 h. A loopful
of pure growth (~10 µL) was transferred to Meuller–Hinton broth and incubated aerobi-
cally overnight at 37 ◦C for 18–24 h. Approximately 1 mL of suspension was transferred
to a microcentrifuge tube in duplicate and the bacteria were pelleted by centrifugation
at 16,000× g for 5 min. The supernatant was aspirated off and pellets were frozen at
−80 ◦C until DNA was extracted, as described previously [42–45]. Briefly, the cell pellet
was lysed with a hydrolytic enzyme cocktail for 30 min with DNA isolation completed
using the Wizard Genomic DNA Purification kit (Promega, Madison, WI, USA), according
to instructions for gram-negative bacteria. Duplicate bacterial pellets were combined with
600 µL Nuclei Lysis Solution and processed as a single sample. The final DNA pellet was
rehydrated in 100 µL of 10 mM Tris-HCl pH 8.0. Genomic DNA quality was evaluated
as described previously [46]. Briefly, purity for protein and organic contamination was
conducted using a Nanodrop One UV-Vis Spectrophotometer (ThermoScientific, Waltham,
MA, USA) using the A260/280 and the A260/230 of >1.5. Genomic DNA integrity was
evaluated by genomic DNA TapeStation (Agilent 4200, Santa Clara, CA, USA) [46,47]. The
DNA was stored at −20 ◦C until used for WGS.

The 361 bacterial isolates were prepared for WGS with the Illumina 2500 (San Diego,
CA, USA), using the paired-end 150 method as previously described [27,42,48–51]. Briefly,
high-quality gDNA was used to construct sequencing libraries with 400–550 bp inserts,
followed by size selection to an average of 450 bp and sequenced to 50× depth per
genome. Raw sequence information is available at the 100K Pathogen Genome Bioproject
(PRJNA203445).

2.5. Informatic Tool Usage

Program packages and their dependencies were managed with Conda (Miniconda Soft-
ware Distribution, Anaconda Inc., available at https://docs.conda.io/projects/miniconda,
versions 4.8 to 23.10). The programs listed in this publication include the repository,
version number, and package ID that are used on anaconda.org. Data organization
was carried out with Python3 using Pandas data frames (version: conda-forge pan-
das=2.0.1=py311hab14417_1). Specific use of each tool is listed by functional need.

2.6. Genome Assembly and Quality Control

Genomic sequence data was processed with Trimmomatic {Ref. [52] Method1} (ver-
sion: bioconda trimmomatic=0.39=1), using settings “trimmomatic PE {input} {output}
ILLUMINACLIP:{adapters}:2:40:15 LEADING:2 TRAILING:2 SLIDINGWINDOW:4:15
MINLEN:50”, to remove low-quality sequence and sequencing adapters. Sequence data
quality was reviewed with FastQC {Ref. [53] Method2} (version: bioconda fastqc=0.11.9=0).
Genome assemblies were constructed with Shovill {Ref. [54]: Method3} (version: bio-
conda shovill=1.0.4=0) using the default options with the SPAdes assembler. Genome
assembly quality was reviewed with CheckM {Ref. [55]: Method4} (version: bioconda
checkm-genome=1.1.2=py_1), using the “lineage_wf” workflow. Each assembly’s depth of
coverage was measured with Mosdepth {Ref. [56]: Method5} (version: bioconda mos-
depth=0.3.1=h4dc83fb_1) using “fast-mode”. Quality control cutoffs for inclusion in

https://docs.conda.io/projects/miniconda
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the analyses were CheckM: >95% estimated completeness, <5% estimated contamina-
tion, within range 2–2.75 Mbases for assembly size, <300 contigs; Mosdepth: >20×
mean coverage.

2.7. Investigating Contamination

Genomes were explored for contamination to identify species of the contaminants [57,58].
Trimmed sequence reads were assigned taxonomic identities with Kraken2 {Ref. [59]:
Method6} (version: bioconda kraken2=2.0.8_beta=pl526hc9558a2_2), using standard set-
tings (k-mer size = 35). Taxonomic assignment used standard Kraken2 database build of
NCBI RefSeq genomes, following the Kraken2 manual protocol (https://github.com/
DerrickWood/kraken2/blob/master/docs/MANUAL.markdown, accessed on 5 May
2021), incorporating the categories archaea, bacteria, viral, fungi, protozoa, and UniVec
Core (built/downloaded 5 May 2021). Taxonomically assigned reads were statistically
proportioned to the respective taxa at the species level with Bracken {Ref. [60]: Method7}
(version: bioconda bracken=2.6.1=py38hed8969a_0). Braken species database was made
from the Kraken2 database by standard protocol, using the parameters of k-mer size = 35
and read size = 150. Resulting assignments were organized into percentage abundance of
sequence reads for each identified species per sample.

2.8. Identifying AMR Genes

Genome assemblies were scanned for AMR genes using the Resistance Gene Identifier
(RGI) software (version: bioconda rgi=5.1.1=py_0) with the Comprehensive Antibiotic
Resistance Database (CARD) (version: 3.1.1 released 29 January 2021) {Ref. [61]: Method8}.
From CARD, identified genes’ information regarding types/classes of drug resistance
conferred and mechanism of action were obtained.

2.9. AMR Gene Distribution Graphs

The prevalence of AMR genes was plotted, by species, in a heat map generated by
Python script using the heat map function of the seaborn package (version: conda-forge
seaborn=0.12.2=hd8ed1ab_0), and category labels were created with the “UpSet” function
of the upsetplot package (version: conda-forge upsetplot=0.8.0=pyhd8ed1ab_0). Gene
distribution by species was also plotted as a Venn diagram using the “venn3” function of
the matplotlib Venn package (version: conda-forge matplotlib-venn=0.11.9=pyhd8ed1ab_0).
Gene pairwise co-occurrence in genomes was presented as a proportion of samples with
both genes relative to total samples with either or both genes (a Jaccard index). The
pairwise gene co-occurrence matrix was clustered by the “squareform” and “linkage”
function (method=‘single’) of the scipy.spatial.distance and scipy.cluster.hierarchy packages,
respectively (version: conda-forge scipy=1.10.1=py311h939689b_1) and graphed with the
clustermap function of the seaborn package.

2.10. Isolate Phenotype and AMR Genotype Classification

Standardized drug class categories were set for comparisons (Table S1). The class
of beta-lactams was split into the sub-classes cephalosporin and penicillin for some com-
parisons where differentiation is relevant for clinical interpretation. The class macrolide+
combines the different chemical drug classes macrolide, lincosamide, and streptogramin as
they are affected by many of the same resistance mechanisms. The AMR phenotype was
determined by classification of MIC values as resistant or sensitive using the 2018 version
of the CLSI breakpoints that were clinically applicable to cattle respiratory isolates for the
respective drugs [3]. Briefly, isolates were classified as having a phenotype of ‘sensitive’ if
their MIC value was within the CLSI range determined as susceptible, and classified as
having a phenotype of resistant if within the CLSI range for resistant or intermediate. For
drugs without a clinically applicable breakpoint, a similar binary phenotype interpretation
was made as ‘low’ or ‘high’. For drugs tested over a range of concentrations, MIC value
distributions were assessed to find distribution breakpoints of ‘low’ and ‘high’ by Jenks
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natural breaks classification [62]. For AMD that were only tested at one concentration, the
phenotype ‘low’ was assigned if the isolate did not grow at the test drug concentration, or
‘high’ if it grew.

Isolates were classified as genotype resistant to each class of AMD for which AMR
genes were identified by CARD in the isolate, and sensitive when no AMR genes
were identified.

2.11. Statistical Analysis

Concordance between AMR phenotype and genotype was assessed. When comparing
genotype predictive to phenotype, results were generated in the following categories: false
positive [genotype(+) & phenotype(−)]; true positive [genotype(+) & phenotype(+)]; true
negative [genotype(−) & phenotype(−)]; and false negative [genotype(−) & phenotype(+)].
The ability of AMR genes to predict AMR phenotypes was assessed from the confusion
matrix style framework using sensitivity and specificity.

Comparisons were made individually for each drug tested against each gene present
for the respective drug class. Comparisons were also made collectively by drug class,
comparing resistance to any drug in the class to the presence of any gene that confers AMR
to that class. Comparisons were made for bacterial species as well as all bacteria combined.

Statistical comparisons with a Python script used Panda’s data frames to sort and orga-
nize respective comparisons. Matthew’s correlation coefficient (MCC) was used to estimate
the correlation between AMR genotype and phenotype. The MCC values range from −1 to
1, where positive correlation estimates represent increasingly agreeing genotype and pheno-
type AMR status classification, with +1 being perfectly in agreement, negative correlation
estimates represent increasingly opposing genotype and phenotype AMR status classifi-
cation, with −1 being perfectly opposing, while 0 implies perfect random genotype and
phenotype pair classification. To test whether a specific MCC was statistically significant,
McNemar’s test was used to account for the dependency between genotype and phenotype
status observed from the same isolate. A McNemar’s exact test was used if the discordant
cell counts (sum of false positives and false negatives) of a specific genotype–phenotype
combination were sparse (n < 24). A 5% level of significance was observed to estimate sig-
nificant correlation coefficients. Analyses were conducted using the SciPy package (version:
conda-forge scipy=1.10.1=py311h939689b_1) to determine the significance of the associa-
tions between susceptibility testing and AMR gene ID from WGS. Additional statistical
values were calculated by Python script with the standard formulas. McNemar’s standard
and exact tests were conducted using the “contingency_tables.mcnemar()” function of the
Statsmodels package (version: conda-forge statsmodels=0.14.1=py311hc9a392d_0). Addi-
tional statistical values were calculated by Python script with the standard formulas as
listed in the column headings of Table S2.

Comparison of multidrug resistance between phenotype and genotype was carried
out at a broad scale; the comparison was restricted to the 6 AMD classes that contain drugs
tested with clinically relevant MIC breakpoints and were assessable from RGI/CARD
genome scans. The set of classes assessed includes aminoglycosides, beta-lactams, flu-
oroquinolones, macrolides, phenicols, and tetracyclines. The cumulative count of drug-
resistant classes by AMR genes increased if a gene was present for a respective class, and
likewise for the cumulative count by MIC phenotype, increasing if an isolate was deter-
mined resistant for any drug in the respective class. Graphical comparisons were produced
using the “histplot” function of the Seaborn package.

3. Results

A total of 326 genomes and corresponding assemblies passed quality control metrics
and were used for analysis, including 130 P. multocida, 106 M. haemolytica, and 90 H.
somni. Thirty-five samples were removed for quality control including some isolates where
the bacterial identification (ID) provided by MALDI-TOF was in disagreement with the
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bacterial IDs determined using WGS; in some cases, multiple organisms were identified in
a single sample (Tables S3 and S4).

There were 26 AMR genes, encoding resistance to 8 broad classes of AMD, identified
from 326 isolates (Figure 1). The top nine most prevalent individual AMR genes across all
three bacterial species, the percent of samples containing the gene, and the AMD class to
which they predict AMR conference were as follows: tetH (95%, tetracycline), sul2 (94%,
sulfonamide), aph3′-Ia (94%, aminoglycoside), aph3”-Ib (94%, aminoglycoside), aph6-Id
(84%, aminoglycoside), PBP3(ftsI) (72%, beta-lactam), EF-Tu(tuf (72%, elfamycin), floR (45%,
phenicol), and erm42 (44%, macrolide/lincosamide/streptogramin). When the identified
AMR genes are sorted by class of AMD to which they predict conference of AMR, the
most prevalent classes to which AMR would be conferred were as follows: tetracycline
(95%), aminoglycoside (94%), sulfonamide (94%), beta-lactam (77%), elfamycin (72%),
phenicol (50%), macrolide/lincosamide/streptogramin (44%), and diaminopyrimidine
(10%) (Figure 1).
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Figure 1. Prevalence of AMR genes identified by WGS of 326 respiratory isolates of P. multocida,
M. haemolytica, and H. somni from weaned dairy heifers. The AMR gene is on the Y axis, and the
prevalence of each gene is listed by bacterial species on the X axis; heat map with Likert scale
demonstrates relative prevalence of each gene where darker blue corresponds to greater prevalence.
The corresponding dot plot demonstrates which classes of AMD each gene is predicted to confer
AMR (right dot) and the line links to the associated mechanism by which AMR is conferred (left dot).
N = 130, 106, 90 P. multocida, M. haemoltyica, H. somni isolates, respectively.
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Multiple AMR genes co-occurred within isolates from each genus (Figures 2 and 3).
The AMR genes tetH, aph3”-Ib, aph3′-Ia, and sul2 occur together in most isolates (Figure 2).
The largest cluster of gene co-occurrence included floR, erm42, EF-Tu(tuf), PBP3(ftsI), aph6-
Id, aph3”-Ib, aph3”-Ia, tetH, and sul2 (Figure 2). These genes predict AMR to phenicol,
macrolide, elfamycin, β-lactam (cephalosporin, penam cephamycin), aminoglycoside (all
three aph genes listed), tetracycline, and sulfonamide class AMD, respectively.
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M. haemoltyica, H. somni isolates, respectively.
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Figure 3. Venn diagram demonstrating co-occurrence of 26 AMR genes identified in respiratory
bacterial isolates from weaned dairy heifers separated by bacterial species (P. multocida, M. haemolytica,
H. somni). Each species of respiratory isolate is represented by a different circle. Co-occurrence of
AMR genes between different species of bacterial respiratory isolate is represented where circles
overlap. N = 130, 106, 90 P. multocida, M. haemolytica, H. somni isolates, respectively.

The correlation between AMR phenotype, as measured by susceptibility testing, and
AMR gene ID was determined using Matthew’s correlation coefficient (MCC). The overall
correlation between AMR gene ID and AMR phenotype of study isolates was low (median
MCC = 0.15) when measured across all 326 isolates, between all AMR genes identified and
the 11 AMD drugs analyzed for phenotype using susceptibility testing. The MCC ranged
from −0.57 to 1 depending on the drug–gene–bacterial species combination analyzed.
The likelihood that these correlations occurred by chance was tested using McNemar’s
test. When analyzed by each isolate (P. multocida, M. haemolytica, or H. somni) and each
AMR gene independently, the MCC was below 0.7 (the cutoff for excellent correlation) for
most drug–gene–bacterial species combinations analyzed. The MCC was greater than 0.7
with a McNemar p-value < 0.5 for the following limited relationships representing lack
of susceptibility (AMR phenotype): the bla-ROB-1 gene and penicillin AMR phenotype
across all three species, and in M. haemolytica individually (MCC = 0.81, 0.84, respectively),
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the erm42 gene and tulathromycin AMR phenotype in M. haemolytica (MCC = 0.83), and
the floR gene and florfenicol AMR measured across all three species (MCC = 0.80). It
is important to note that when there are no discordant pairs (NDP), the MCC is perfect
at 1 or −1; however, the 0 values in the McNemar equation created by NDP result in a
P value of 1, and thus the significance of the correlation is inestimable. There were five
comparisons where the MCC = 1, including between the floR gene and florfenicol AMR in
both P. multocida and M. haemolytica, the erm42 gene and tildipirosin AMR in P. multocida,
the bla-ROB-1 gene and penicillin AMR in H. somni, and the tetH gene and tetracycline
AMR in M. haemoltyica. No MCC values were calculated for ceftiofur due to a lack of
isolates classified as resistant or intermediate by MIC interpretation. The performance of
AMR gene ID for the determination of respiratory bacterial isolate resistance phenotype is
displayed in Figure 4.

Pathogens 2024, 13, x FOR PEER REVIEW 10 of 21 
 

 

−1; however, the 0 values in the McNemar equation created by NDP result in a P value of 
1, and thus the significance of the correlation is inestimable. There were five comparisons 
where the MCC = 1, including between the floR gene and florfenicol AMR in both P. mul-
tocida and M. haemolytica, the erm42 gene and tildipirosin AMR in P. multocida, the bla-
ROB-1 gene and penicillin AMR in H. somni, and the tetH gene and tetracycline AMR in 
M. haemoltyica. No MCC values were calculated for ceftiofur due to a lack of isolates clas-
sified as resistant or intermediate by MIC interpretation. The performance of AMR gene 
ID for the determination of respiratory bacterial isolate resistance phenotype is displayed 
in Figure 4. 

 
Figure 4. Performance of genotype to predict AMR phenotype. Presence of AMR genes determined 
by WGS compared to phenotype testing using susceptibility testing and breakpoint interpretation, 
in respiratory bacterial isolates (P. multocida, M. haemolytica, and H. somni) from weaned dairy heif-
ers. 

The strength of the association between genotype and phenotype varied widely de-
pending on the bacterial species, the AMD being tested, and the specific AMR gene. For 
example, identification of the erm42 gene was well correlated (MCC of 0.96, 0.92, and 1, 
respectively), highly sensitive (sensitivity of 0.98, 1, and 1, respectively), and specific 
(specificity of 1 for all) for prediction of the AMR phenotype in P. multocida to tilmicosin, 
gamithromycin, and tildipirosin; however, it was less well correlated (MCC of 0.26) and 

Figure 4. Performance of genotype to predict AMR phenotype. Presence of AMR genes determined
by WGS compared to phenotype testing using susceptibility testing and breakpoint interpretation, in
respiratory bacterial isolates (P. multocida, M. haemolytica, and H. somni) from weaned dairy heifers.

The strength of the association between genotype and phenotype varied widely de-
pending on the bacterial species, the AMD being tested, and the specific AMR gene. For
example, identification of the erm42 gene was well correlated (MCC of 0.96, 0.92, and
1, respectively), highly sensitive (sensitivity of 0.98, 1, and 1, respectively), and specific
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(specificity of 1 for all) for prediction of the AMR phenotype in P. multocida to tilmicosin,
gamithromycin, and tildipirosin; however, it was less well correlated (MCC of 0.26) and
less sensitive (sensitivity of 0.31) for predicting phenotypic resistance to tulathromycin.
Inversely, identification of the same erm42 gene in M. haemolytica was less well correlated
(MCC of 0.4, 0.7, and 0.5, respectively) and less sensitive (sensitivity of 0.36, 0.61, and
0.42, respectively) for predicting phenotypic AMR for tilmicosin, gamithromycin, and
tildipirosin and better correlated (MCC of 0.83) with greater sensitivity (sensitivity of
0.76) for the prediction of phenotypic AMR to tulathromycin. Table 1 displays the vari-
ation observed between AMR determined by gene ID and susceptibility testing within
the macrolide sub-class, across the three bacterial species examined in this study. The
MCC values, sensitivity, specificity, and McNemar’s test results comparing genotype to
phenotype for all gene–AMD–bacterial species combinations are listed in Table S2.

Table 1. Matthew’s correlation coefficient values, sensitivity, and specificity of identifying respiratory
bacterial isolate resistance by AMR gene identification using WGS compared to CLSI breakpoint
interpretation in macrolide class AMD. Where discordant cell counts were <24, McNemar’s exact
binomial test was used, demarcated by *. Data from H. somni were excluded from the table due to
MCC values consistently below 0.25. NDP = no discordant pair; both discordant cells (false positives
and false negatives) have zero counts, rendering McNemar’s test statistic inestimable.

Drug Isolate Species AMR Genes Matthew’s Correlation
Coefficient Sensitivity Specificity McNemar’s

p Value

Tilmicosin

P. multocida

erm42 0.96 0.98 1 0.5 *

mphE 0.15 0.09 1 <0.001

msrE 0.15 0.09 1 <0.001

M. haemolytica

erm42 0.40 0.36 1 <0.001

mphE 0.20 0.11 1 <0.001

msrE 0.20 0.11 1 <0.001

Gamithromycin

P. multocida

erm42 0.92 1 0.89 0.125 *

mphE 0.17 0.10 1 <0.001

msrE 0.17 0.10 1 <0.001

M. haemolytica

erm42 0.70 0.61 1 <0.001 *

mphE 0.36 0.20 1 <0.001

msrE 0.36 0.20 1 <0.001

Tulathromycin

P. multocida

erm42 0.26 1 0.31 <0.001

mphE 0.60 0.41 1 <0.001 *

msrE 0.60 0.41 1 <0.001 *

M. haemolytica

erm42 0.83 0.76 1 0.008 *

mphE 0.42 0.24 1 <0.001

msrE 0.42 0.24 1 <0.001

Tildipirosin

P. multocida

erm42 1 1 1 NDP

mphE 0.16 0.09 1 <0.001

msrE 0.16 0.09 1 <0.001

M. haemolytica

erm42 0.50 0.42 1 <0.001

mphE 0.26 0.14 1 <0.001

msrE 0.26 0.14 1 <0.001
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When each method was used to describe MDR, the MDR genotype consistently
overestimated the MDR phenotype by one class. This discrepancy is visualized in Figure 5;
the blue gene ID columns of the histograms are shifted to the right. The most prevalent
patterns of AMR in P. multocida isolates were phenotypic resistance to four AMD classes
(prevalence of 0.49) and genotypic AMR to five classes (0.57); the most prevalent patterns
of AMR in M. haemolytica isolates were phenotypic and genotypic resistance to three AMD
classes (0.25 and 0.36, respectively); the most prevalent patterns of AMR in H. somni isolates
were phenotypic and genotypic resistance to two AMD classes (0.5 and 0.51, respectively).
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Figure 5. Step diagrams demonstrating the number of AMD classes to which an isolate was con-
sidered resistant based on MIC breakpoint interpretation or AMR gene ID. AMR determined by
phenotype is peach, and genotype is blue. The AMD tested were grouped into classes based on AMR
gene drug class-predicted resistance as follows: β-lactam (penicillin, ceftiofur), tetracycline (tetra-
cycline), phenicol (florfenicol), macrolide (tulathromycin, tildipirosin, tilmicosin, gamithromycin),
aminoglycoside (spectinomycin), fluoroquinolone (danofloxacin, enrofloxacin). N = 6 AMD classes.
N = 326 isolates. Diagrams represent all three isolates combined (P. multocida, M. haemolytica, and H.
somni) in panel (A), and separated by species for panels (B–D). CARD = AMR gene ID. MIC = AMR
determined by MIC breakpoint analysis.

Figure 6 depicts the performance of AMR gene ID in predicting AMR (high vs. low
MIC) against drugs with no applicable interpretation breakpoint (ampicillin, clindamycin,
neomycin, sulfadimethoxine, tiamulin, trimethoprim–sulfamethoxazole, and tylosin). Com-
binations with high correlation included the following: the bla-ROB-1 gene was well
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correlated with a high MIC to ampicillin in M. haemolytica (MCC = 1); aph3′-Ia and aph3”-Ib
were well correlated with high MIC to neomycin in P. multocida (MCC = 1); and the aph3′-Ia,
aph3”-Ib, aph6-Id were well correlated with a high MIC to neomycin in M. haemolyt-
ica (MCC = 0.96). All other correlations between genotype and phenotype among AMD
without an applicable breakpoint were moderate to low (MCC < 0.7).
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Figure 6. Performance of genotype to predict AMR phenotype of isolates with no applicable CSLI
MIC breakpoint. Presence of AMR genes determined by WGS compared to phenotype testing using
susceptibility testing and Jenks natural breakpoint classification for ‘high’ vs. ‘low’ MIC, in respiratory
bacterial isolates (P. multocida, M. haemolytica, and H. somni) from weaned dairy heifers.

4. Discussion

As hypothesized, AMR genes are highly prevalent in the study population. However,
AMR genotype and phenotype are only well correlated for a subset of specific gene–bacteria–
drug combinations.
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The WGS of 326 bacterial respiratory isolates from weaned dairy heifers identified 26
known AMR genes associated with resistance to 8 broad classes of AMD. Genes predicted
to confer resistance to medically important AMD commonly used in livestock including
tetracyclines, sulfonamides, β-lactams, phenicols, and macrolides were among the most
prevalent. Genes predicted to confer resistance to aminoglycosides were likewise frequently
identified. There is a voluntary ban on the extra-label use of aminoglycosides in cattle [63];
however, several products containing neomycin sulfate are currently approved for use
in cattle. Genes predicted to confer resistance to diaminopyridine class AMD (example:
trimethoprim) were also commonly identified; there are no drugs from this class labeled
for use in cattle, however, these AMD are used in an extra-label manner in some calf-
rearing facilities, other veterinary species, and human medicine. Genes predicted to confer
resistance to elfamycin class AMD were likewise frequently identified; this class of AMD
has no drugs labeled for use in veterinary medicine; however, some AMD in this class are
used in research. Genes predicted to confer AMR to tetracycline, aminoglycoside, phenicol,
β-lactam, and macrolide class AMD were highly prevalent (>50%, up to 100% prevalence) in
P. multocida isolates, similarly high in M. haemolytica isolates, and less prevalent in H. somni
isolates. These Pasteurellaceae are clinically important respiratory bacteria associated with
BRD in cattle, and P. multocida is particularly clinically important in calves with pneumonia.
The prevalence of AMR genes in our study population raises concerns about the use of the
medically important classes of drugs in this population of calves. Previous investigations
have linked intensive rearing and AMD use in calves with AMR [64]. Although the analysis
of AMD treatment history with AMR gene identification was beyond the scope of this
study, it is reasonable to hypothesize that AMD use in pre-weaned dairy calves creates
selective pressure on the respiratory Pasteurellaceae that may persist into the post-weaning
period. This is problematic because respiratory disease is the primary cause of disease
among weaned dairy heifers in the US [2]; the high prevalence of AMR genes in weaned
dairy heifers reported in our study suggests that many of the drugs used for the treatment
of BRD in this production group may continue to create selective pressure for AMR, and
treatment may not be effective when these AMR genes are expressed. Additionally, there is
a high rate of co-occurrence between AMR genes, which are commonly located in mobile
genetic elements in Pasteurellaceae [65]; this could complicate efforts to decrease AMR
because selective pressure on one class of AMD may also create selective pressure for other
classes of AMD.

Genotype was variably correlated to phenotype and depended on which bacterial
species and what drugs were compared. Concordance between genotype and phenotype
was generally high for most aminoglycosides, macrolides, phenicols, and tetracycline.

Conversely, concordance between genotype and phenotype was poor for fluoro-
quinolones; no fluoroquinolone AMR genes were identified in the sample population,
yet the AMR phenotype was observed. This finding is consistent with another study of
California cattle respiratory isolates in which investigators reported that 20 of 64 isolates
demonstrated resistance to a fluoroquinolone during susceptibility testing; however, no
fluoroquinolone AMR genes were identified [37]. This incongruence may be due to a
lack of representative single nucleotide polymorphism variants for these organisms in
the database, known genes that are not currently classified as conferring AMR to fluoro-
quinolones, previously unrecognized genetic determinants of AMR acting in the study
population, or phenotypic resistance associated with metabolic processes and not necessar-
ily acquired genetic elements. It is also possible that other databases not explored in this
study contain additional gene references; however, it was beyond the scope of our study to
explore multiple AMR gene databases or gene-finding methodologies or to individually
validate gene identities of patrial AMR gene matches.

Concordance was also poor between genotype and phenotype for cephalosporins.
Six AMR genes identified predicted resistance to β-lactam AMD including the subclass
cephalosporins, according to CARD database metadata (PBP3(ftsI), bla-ROB1, bla-ROB2,
bla-ROB5, bla-ROB7 and bla-OXA-2); however, no isolates demonstrated a resistance
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phenotype to ceftiofur, a third generation cephalosporin. Although some bla-OXA genes
confer limited resistance to penam type β-lactam AMD such as oxacillin, bla-OXA-2 is
among those bla-OXA genes listed as extended-spectrum including the conference of
resistance to cephalosporin class AMD. Some of these genes, such as PBP3(ftsI), were
highly prevalent in P. multocida and M. haemolytica isolates (100 and 99%, respectively);
the bla-ROB-1 was identified in 29% of M. haemolytica isolates. Similar findings have
been reported from other respiratory isolates of cattle. One study reported that 0 of 48
respiratory isolates from cattle demonstrated phenotypic AMR to ceftiofur based on MIC
testing; however, the prevalence of the genes bla-OXA-2 and bla-ROB-1 were approximately
100% and 82%, respectively [36]. Another study of respiratory bacterial isolates from
cattle reported 0 of 64 isolates classified as resistant to ceftiofur based on MIC testing,
despite finding the bla-ROB-1 gene in study isolates [37]. This marked difference, which
appears to be present in multiple studies of bovine respiratory bacterial isolates, may
be due to AMR genes not being expressed, AMR genes improperly predicted to confer
resistance to cephalosporins, conference of resistance being limited to older generations
of cephalosporins, or due to laboratory testing conditions that do not reflect biologic
conditions in which resistance may occur. As an example of the latter, if the breakpoint used
for determining resistance from susceptibility testing is much higher than the concentration
that separates wild-type isolates from those with acquired genetic elements that confer
AMR (such as when using an epidemiologic cutoff), a phenotype of resistance based on
the clinical breakpoint may not be determined by this test. The clinical breakpoint values
for ceftiofur for BRD pathogens were set in 1988, prior to the establishment of the CLSI
veterinary antimicrobial susceptibility testing subcommittee, and used peak total serum
drug concentrations (rather than unbound drug) following systemic administration, along
with MIC90 values against BRD pathogens to set susceptible, intermediate, and resistant
breakpoints (personal communication, Mike Sweeney and Jeff Watts, 11/7/23). This legacy
clinical breakpoint was based solely on pharmacokinetic data. Current standards now
integrate the microbiologic, pharmacokinetic, and pharmacodynamic data based on the
approved dosing regimens and clinical outcome data, to establish a clinically relevant
and host-disease-specific clinical breakpoint [66–68]. An epidemiologic breakpoint for
ceftiofur in bovine respiratory bacterial isolates is not available. A 2016 study investigated
the label dose of ceftiofur crystalline-free acid (long-acting formulation of the drug) in
plasma, interstitial fluid (ISF), and pulmonary epithelial lining fluid (PELF) [69]. The mean
maximum concentration reported in plasma was 4.26 µg/mL; however, the mean maximum
concentrations in ISF and PELF reported were 0.2 and 2.09 µg/mL, respectively. An early
study of ceftiofur sodium in 1996 investigated MICs for P. multocida, M. haemolytica, and H.
somni isolates from cattle; the study reports a mode MIC90 of <0.0039, 0.0015, and <0.0019
µg/mL, respectively [70]. Using the data reported in the 2016 study, ISF concentrations do
not reach the breakpoint used to define susceptibility of 2 µg/mL, and only in some animals
does the PELF reach concentrations above 2 µg/mL [69]. Historic MIC90 data demonstrate
relatively low concentrations effective in inhibiting bacterial growth [70]. It is possible that
the CLSI breakpoint of 2 µg/mL may be so high that even with some acquired resistance
mechanisms, the Pasteurellaceae investigated may not survive under in vitro testing of
relatively high drug concentrations. When treating a disease or applying selective pressure
for AMR in vivo, drug concentrations in the tissue or fluid compartment at the site where
bacteria are located are likely more representative of the local environment for the selection
of AMR than serum values. Ceftiofur concentrations are lower in PELF, ISF, and bronchial
secretions than plasma [69,71]. Thus, the AMR genes identified in this study and others
may provide an advantage in vivo with selective pressure from the use of AMD that reaches
lower concentrations at the site of bacterial growth than the in vitro breakpoints reflect.
This mismatch between breakpoint testing and in vivo drug concentrations at the site of
interest is one possible explanation for the discordance identified between phenotypic and
genotypic AMR for ceftiofur in this study, and other studies of bovine respiratory bacteria.
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Discordance was also identified when MDR was compared between phenotype and
genotype. The MDR potential of isolates was underestimated by its phenotype compared
to the genotype. The process of WGS demonstrates all known AMR genes present in the
isolate, even if they are not currently being expressed. In a similar study on Salmonella
from small ruminants in Peru, partial concordance between the genotype and phenotype
was identified. However, investigators also found some AMR was not predicted by the
genotype [31]. A global study of AMR in Salmonella typhoid also found a similar result [28],
suggesting that phenotype determined by MIC is not only conferred by known genes and
may include yet-to-be-discovered regulatory methods.

Various factors [72,73] are important for the expression of AMR genes, which may
not be accurately reflected in culture and susceptibility testing conditions. Susceptibility
testing may determine the in vitro susceptibility of the isolate at the time of sampling, but
does not demonstrate the full AMR potential of the isolate. The clinical implication of these
differences between testing modalities depends on the clinical question being investigated
by testing. If clinicians or investigators are more interested in the AMR potential of an
isolate or sample, WGS will likely yield more information, with the possible current
exception of fluoroquinolones. If clinicians are more interested in the active expression of
AMR in vitro, susceptibility, and MIC breakpoint interpretation testing may be more useful.
Methods to determine AMR gene expression in samples using RNA are more recently
available, however, due to some sample handling requirements, are not widely used yet.

Statistical models for assessing the likelihood that correlations between genotype and
phenotype occurred by chance, have limitations. Comparisons with a perfect positive
correlation (MCC = 1) between genotype and phenotype for a specific combination of AMR
gene and AMR phenotype could not be assessed for significance using McNemar’s test
due to lack of discordant data (sum of genotype positive phenotype negative and genotype
negative phenotype positive is zero), rendering the test statistic inestimable. Alternative
tests of homogeneity were not appropriate for use due to the violation of their assumption
of independence, which may result in biased interpretations. Exploring novel methods to
compare genotypic and phenotypic AMR traits on a continuous scale rather than as the
presence or absence dichotomy may reduce inestimable test statistics and better reflect the
biological complexity of drug resistance in bacterial pathogens.

The use of MALDI-TOF for bacterial ID has previously shown limited concordance
with WGS in Campylobacter isolates [40]; the present study identified a small number of
isolates with evidence of contamination from other respiratory isolates on WGS that were
identified by MALDI-TOF as pure cultures. Although this was infrequent, clinicians and
researchers should be aware of occasional contamination from morphologically similar
bacterial isolates that may not always be detected by MALDI-TOF.

The DNPS samples upper airway bacteria and, although it has been demonstrated to
correlate with bacteria found in the lower airways, it is not a direct test of lower airway
bacteria identification. This study selectively isolated P. multocida, M. haemolytica, and H.
somni from the upper airway; these three Pasteurellaceae are only a fraction of the bacteria
that make up the upper respiratory microbiome and thus do not necessarily represent all
species or resistance genes present in this biologic niche.

Prevalence data should be interpreted in light of sample size, which was broken
down by species. However, with nearly 100 isolates for each species, this appears to be
an adequate survey of the target organisms from the sample site when compared with
other studies using WGS in bovine respiratory bacteria [36,37]. Quality control allows for
population-level analyses, so it is also possible that some individual isolate genomes may
have a small probability of a gene going undetected by WGS. The use of MIC testing as the
in vitro assay used to determine phenotypic AMR also has limitations, including limited
test ranges and breakpoints that may or may not match up well with the environment
where bacteria live in the host, and the lack of breakpoints for some AMD. Additionally,
there are many factors that influence the expression of AMR genes in bacterial isolates, and
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specific testing and control of all factors known to affect gene expression was outside the
scope of this study.

The high prevalence and frequent co-occurrence of AMR genes in this population
suggest that the genetic potential for AMR is high; the previous MIC testing results demon-
strate that AMR phenotypes are common. Frequent co-occurrence of AMR genes suggests
that efforts to simply change drug use from one class to another class may not decrease
AMR as intended. Thus, efforts to prevent BRD, and to decrease reliance on AMD may be
particularly valuable in this population of animals. Technologic advances that increase the
accessibility of genomic methods of AMR identification and improvements in phenotypic
tests of AMD susceptibility may help inform AMR research and judicious AMD use.

5. Conclusions

This study aimed to determine the prevalence of AMR genes in Pasteurellaceae sam-
pled from the upper airway of weaned dairy heifers and to determine the concordance
between AMR genotype and phenotype in study isolates. Genes that predict the conference
of AMR to multiple medically important AMD, which are also used in calf rearing, were
highly prevalent in the study population. Concordance between phenotype and genotype
of AMR varied depending on the AMD and species tested. Concordance between genotype
and phenotype was particularly poor for fluoroquinolone class AMD (enrofloxacin and
danofloxacin) and the drug ceftiofur. The lack of excellent concordance suggests these tests
cannot be interpreted interchangeably for all AMD in these three respiratory Pasteurel-
laceae. It is unlikely that either method (WGS or susceptibility testing) of testing for AMR
in select isolates represents a perfect prediction of AMR in vivo.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens13040300/s1, Material S1: Methods for Culture and
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Summary Statistics for AMR Gene ID vs. Culture and Susceptibility Testing for Identification of AMR;
Table S3: QC Metrics; Table S4: MALDI vs. culture ID. MALDI-TOF bacterial isolate identification
(ID) compared to genomic ID from WGS.

Author Contributions: S.D.: Conceptualization, Funding Acquisition, Investigation, Methodology,
Project Administration, Visualization, and Writing—Original Draft Preparation. C.S.: Data Curation,
Formal Analysis, Software, Visualization, and Writing—Review and Editing. S.A.: Conceptualization,
Formal Analysis, Investigation, and Writing—Review and Editing. D.W.: Investigation, Methodology,
and Resources. W.E.: Investigation, Resources, and Writing—Review and Editing. G.M.: Investi-
gation and Resources. K.C.: Investigation, Methodology, and Resources. J.W.: Data Curation and
Writing—Review and Editing. H.F.: Bacterial Isolation and Genomic DNA Preparation, Generation
and Curation of Phenotypic Antimicrobial Susceptibility Test Data, and Manuscript Review. M.C.:
Funding Acquisition, Methodology, and Writing—Review and Editing. B.W.: Experimental Planning,
Data Curation, Formal Analysis, Software, Visualization, and Writing—Review and Editing. All
authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by the Antimicrobial Use and Stewardship (AUS) Program of the
California Department of Food and Agriculture (CDFA).

Institutional Review Board Statement: This study was approved by the UC Davis Institutional
Animal Care and Use Committee (protocol #20114).

Informed Consent Statement: Informed consent from herd management was obtained verbally prior
to commencing study activities.

Data Availability Statement: Genomic and antimicrobial susceptibility data used in the data analysis
of this manuscript have been made publicly available, including genome sequences uploaded to the
Sequence Read Archive, with no confidential metadata included in the study analysis or the public
data files. This study was funded by the Antimicrobial Use and Stewardship (AUS) Program of
the California Department of Food and Agriculture (CDFA) and is subject to California Food and
Agricultural Code (FAC) Sections 14400 to 14408. FAC Section 14407 requires that data collected be
held confidential to prevent the individual identification of a farm or business.

https://www.mdpi.com/article/10.3390/pathogens13040300/s1
https://www.mdpi.com/article/10.3390/pathogens13040300/s1


Pathogens 2024, 13, 300 18 of 21

Acknowledgments: The authors would like to thank the producers who participated in the original
study from which the sample isolates were obtained; without their generous participation, this study
would not have been possible. The authors would also like to acknowledge the California Animal
Health and Food Safety laboratory for processing all samples and isolates, performing the original
culture and susceptibility analysis, and preparing samples for WGS.

Conflicts of Interest: The authors do not believe there are any competing interests in this work. The
authors disclose that one author, G.M., has a commercial affiliation with a veterinary practice; this
veterinary practice was financially compensated for G.M.’s participation in the study. However,
the veterinary practice had no role in the study design and analysis, the decision to publish, or
manuscript preparation.

References
1. CDFA—Statistics. Available online: https://www.cdfa.ca.gov/Statistics/ (accessed on 18 December 2023).
2. United States Department of Agriculture; Animal and Plant Inspection Service; Veterinary Services; National Animal Health

Monitoring System. Dairy 2007. Heifer Calf Health and Management Practices on U.S. Operations, 2007. USDA APHIS VS CEAH
Fort Collins CO. 2010.

3. Depenbrock, S.; Aly, S.; Wenz, J.; Williams, D.; ElAshmawy, W.; Clothier, K.; Chigerwe, M. In-vitro antibiotic resistance phenotypes
of respiratory and enteric bacterial isolates from weaned dairy heifers in California. PLoS ONE 2021, 16, e0260292. [CrossRef]
[PubMed]

4. Weary, D.M.; Jasper, J.; Hötzel, M.J. Understanding weaning distress. Appl. Anim. Behav. Sci. 2008, 110, 24–41. [CrossRef]
5. Gorden, P.J.; Plummer, P. Control, management, and prevention of bovine respiratory disease in dairy calves and cows. Vet. Clin.

Food Anim. Pract. 2010, 26, 243–259. [CrossRef]
6. Dubrovsky, S.; Van Eenennaam, A.; Aly, S.; Karle, B.; Rossitto, P.V.; Overton, M.; Fadel, J.G. Preweaning cost of bovine respiratory

disease (BRD) and cost-benefit of implementation of preventative measures in calves on California dairies: The BRD 10K study.
J. Dairy Sci. 2020, 103, 1583–1597. [CrossRef] [PubMed]

7. Dubrovsky, S.A.; Van Eenennaam, A.L.; Karle, B.M.; Rossitto, P.V.; Lehenbauer, T.W.; Aly, S.S. Epidemiology of bovine respiratory
disease (BRD) in preweaned calves on California dairies: The BRD 10K study. J. Dairy Sci. 2019, 102, 7306–7319. [CrossRef]
[PubMed]

8. Zhang, X.; Yi, X.; Zhuang, H.; Deng, Z.; Ma, C. Invited Review: Antimicrobial Use and Antimicrobial Resistance in Pathogens
Associated with Diarrhea and Pneumonia in Dairy Calves. Animals 2022, 12, 771. [CrossRef] [PubMed]

9. National Animal Health Monitoring System USD of A Animal and Plant Health Inspection Services; Veterinary Services. Dairy
2014 Health and Management Practices on U.S. Dairy Operations. 2014.

10. Morgan Bustamante, B.L.; Chigerwe, M.; Martínez-López, B.; Aly, S.S.; McArthur, G.; ElAshmawy, W.R.; Depenbrock, S.
Antimicrobial Susceptibility in Respiratory Pathogens and Farm and Animal Variables in Weaned California Dairy Heifers:
Logistic Regression and Bayesian Network Analyses. Antibiotics 2024, 13, 50. [CrossRef] [PubMed]

11. EFSA Panel on Biological Hazards (BIOHAZ); Koutsoumanis, K.; Allende, A.; Álvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.;
Peixe, L. Transmission of antimicrobial resistance (AMR) during animal transport. EFSA J. 2022, 20, e07586. [PubMed]

12. World Health Organization. Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/
antimicrobial-resistance (accessed on 2 December 2022).

13. FVE Guidelines Responsible use of Antibiotics—FVE—Federation of Veterinarians of Europe. Available online: https://fve.org/
publications/fve-guidelines-responsible-use-of-antibiotics/ (accessed on 14 April 2023).

14. Public Health Agency of Canada. Responsible use of Medically Important Antimicrobials in Animals. 2017. Available on-
line: https://www.canada.ca/en/public-health/services/antibiotic-antimicrobial-resistance/animals/actions/responsible-
use-antimicrobials.html (accessed on 14 April 2023).

15. US Food and Drug Administration Center for Veterinary Medicine. Timeline of FDA Action on Antimicrobial Resistance. FDA.
2023. Available online: https://www.fda.gov/animal-veterinary/antimicrobial-resistance/timeline-fda-action-antimicrobial-
resistance (accessed on 14 April 2023).

16. Klima, C.L.; Zaheer, R.; Cook, S.R.; Booker, C.W.; Hendrick, S.; Alexander, T.W.; McAllister, T.A. Pathogens of bovine respiratory
disease in North American feedlots conferring multidrug resistance via integrative conjugative elements. J. Clin. Microbiol. 2014,
52, 438–448. [CrossRef]

17. Centers for Disease Control and Prevention (U.S.). Antibiotic Resistance Threats in the United States, 2019. Centers for Disease
Control and Prevention (U.S.). 2019. Available online: https://stacks.cdc.gov/view/cdc/82532 (accessed on 20 March 2024).

18. Gharieb, R.; Fawzi, E.; Elsohaby, I. Antibiogram, virulotyping and genetic diversity of Escherichia coli and Salmonella serovars
isolated from diarrheic calves and calf handlers. Comp. Immunol. Microbiol. Infect. Dis. 2019, 67, 101367. [CrossRef]

19. Gwida, M.; Awad, A.; El-Ashker, M.; Hotzel, H.; Monecke, S.; Ehricht, R.; Braun, S.D. Microarray-based detection of resistance
and virulence factors in commensal Escherichia coli from livestock and farmers in Egypt. Vet. Microbiol. 2020, 240, 108539.
[CrossRef] [PubMed]

https://www.cdfa.ca.gov/Statistics/
https://doi.org/10.1371/journal.pone.0260292
https://www.ncbi.nlm.nih.gov/pubmed/34818352
https://doi.org/10.1016/j.applanim.2007.03.025
https://doi.org/10.1016/j.cvfa.2010.03.004
https://doi.org/10.3168/jds.2018-15501
https://www.ncbi.nlm.nih.gov/pubmed/31759608
https://doi.org/10.3168/jds.2018-14774
https://www.ncbi.nlm.nih.gov/pubmed/31202655
https://doi.org/10.3390/ani12060771
https://www.ncbi.nlm.nih.gov/pubmed/35327168
https://doi.org/10.3390/antibiotics13010050
https://www.ncbi.nlm.nih.gov/pubmed/38247609
https://www.ncbi.nlm.nih.gov/pubmed/36304831
https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
https://fve.org/publications/fve-guidelines-responsible-use-of-antibiotics/
https://fve.org/publications/fve-guidelines-responsible-use-of-antibiotics/
https://www.canada.ca/en/public-health/services/antibiotic-antimicrobial-resistance/animals/actions/responsible-use-antimicrobials.html
https://www.canada.ca/en/public-health/services/antibiotic-antimicrobial-resistance/animals/actions/responsible-use-antimicrobials.html
https://www.fda.gov/animal-veterinary/antimicrobial-resistance/timeline-fda-action-antimicrobial-resistance
https://www.fda.gov/animal-veterinary/antimicrobial-resistance/timeline-fda-action-antimicrobial-resistance
https://doi.org/10.1128/JCM.02485-13
https://stacks.cdc.gov/view/cdc/82532
https://doi.org/10.1016/j.cimid.2019.101367
https://doi.org/10.1016/j.vetmic.2019.108539
https://www.ncbi.nlm.nih.gov/pubmed/31902492


Pathogens 2024, 13, 300 19 of 21

20. Locatelli, C.; Cremonesi, P.; Caprioli, A.; Carfora, V.; Ianzano, A.; Barberio, A.; Moroni, P. Occurrence of methicillin-resistant
Staphylococcus aureus in dairy cattle herds, related swine farms, and humans in contact with herds. J. Dairy Sci. 2017, 100,
608–619. [CrossRef] [PubMed]

21. Roug, A.; Byrne, B.A.; Conrad, P.A.; Miller, W.A. Zoonotic fecal pathogens and antimicrobial resistance in county fair animals.
Comp. Immunol. Microbiol. Infect. Dis. 2013, 36, 303–308. [CrossRef] [PubMed]

22. Sharma, C.; Rokana, N.; Chandra, M.; Singh, B.P.; Gulhane, R.D.; Gill, J.P.S.; Panwar, H. Antimicrobial Resistance: Its Surveillance,
Impact, and Alternative Management Strategies in Dairy Animals. Front. Vet. Sci. 2017, 4, 237. [CrossRef] [PubMed]

23. Wepking, C.; Avera, B.; Badgley, B.; Barrett, J.E.; Franklin, J.; Knowlton, K.F.; Strickland, M.S. Exposure to dairy manure leads to
greater antibiotic resistance and increased mass-specific respiration in soil microbial communities. Proc. R. Soc. B Biol. Sci. 2017,
284, 20162233. [CrossRef] [PubMed]

24. Ruuskanen, M.; Muurinen, J.; Meierjohan, A.; Pärnänen, K.; Tamminen, M.; Lyra, C.; Virta, M. Fertilizing with Animal Manure
Disseminates Antibiotic Resistance Genes to the Farm Environment. J. Environ. Qual. 2016, 45, 488–493. [CrossRef] [PubMed]

25. Mohammed, A.N.; Abdel-Latef, G.K.; Abdel-Azeem, N.M.; El-Dakhly, K.M. Ecological study on antimicrobial-resistant zoonotic
bacteria transmitted by flies in cattle farms. Parasitol. Res. 2016, 115, 3889–3896. [CrossRef] [PubMed]

26. Torres-Blas, I.; Fernández Aguilar, X.; Cabezón, O.; Aragon, V.; Migura-García, L. Antimicrobial Resistance in Pasteurellaceae
Isolates from Pyrenean Chamois (Rupicapra pyrenaica) and Domestic Sheep in an Alpine Ecosystem. Animals 2021, 11, 1686.
[CrossRef] [PubMed]

27. Aguilar-Zamora, E.; Weimer, B.C.; Torres, R.C.; Gómez-Delgado, A.; Ortiz-Olvera, N.; Aparicio-Ozores, G.; Camorlinga-Ponce, M.
Molecular Epidemiology and Antimicrobial Resistance of Clostridioides difficile in Hospitalized Patients From Mexico. Front.
Microbiol. 2021, 12, 787451. [CrossRef]

28. Carey, M.E.; Dyson, Z.A.; Ingle, D.J.; Amir, A.; Aworh, M.K.; Chattaway, M.A.; Holt, K.E. Global diversity and antimicrobial
resistance of typhoid fever pathogens: Insights from a meta-analysis of 13,000 Salmonella Typhi genomes. eLife 2023, 12, e85867.
[CrossRef]

29. Sherry, N.L.; Horan, K.A.; Ballard, S.A.; Gonçalves da Silva, A.; Gorrie, C.L.; Schultz, M.B.; Seemann, T. An ISO-certified genomics
workflow for identification and surveillance of antimicrobial resistance. Nat. Commun. 2023, 14, 60. [CrossRef] [PubMed]

30. Wang, Y.; Pandey, P.; Chiu, C.; Jeannotte, R.; Kuppu, S.; Zhang, R.; Aly, S.S. Quantification of antibiotic resistance genes and
mobile genetic in dairy manure. PeerJ 2021, 9, e12408. [CrossRef]

31. Hurtado, R.; Barh, D.; Weimer, B.C.; Viana, M.V.C.; Profeta, R.; Sousa, T.J.; Mestanza, O. WGS-Based Lineage and Antimicrobial
Resistance Pattern of Salmonella Typhimurium Isolated during 2000–2017 in Peru. Antibiotics 2022, 11, 1170. [CrossRef]

32. Woerde, D.J.; Reagan, K.L.; Byrne, B.A.; Weimer, B.C.; Epstein, S.E.; Schlesener, C.; Sykes, J.E. Characteristics of Extended-
Spectrum β-Lactamase Producing Enterobacterales Isolated from Dogs and Cats, 2011-2021. Vet. Sci. 2023, 10, 178. [CrossRef]
[PubMed]

33. Carney, G.; Weimer, B.C.; Clyne, M.; Ó Cróinín, T. Different stages of the infection cycle are enriched for Campylobacter strains
with distinct phenotypes and levels of fluoroquinolone resistance. Microbiology 2023, 169, 001349. [CrossRef]

34. McDermott, P.F.; Tyson, G.H.; Kabera, C.; Chen, Y.; Li, C.; Folster, J.P.; Zhao, S. Whole-Genome Sequencing for Detecting
Antimicrobial Resistance in Nontyphoidal Salmonella. Antimicrob. Agents Chemother. 2016, 60, 5515–5520. [CrossRef]

35. Mason, A.; Foster, D.; Bradley, P.; Golubchik, T.; Doumith, M.; Gordon, N.C.; Peto, T. Accuracy of Different Bioinformatics
Methods in Detecting Antibiotic Resistance and Virulence Factors from Staphylococcus aureus Whole-Genome Sequences. J. Clin.
Microbiol. 2018, 56, e01815-17. [CrossRef]

36. Snyder, E.R.; Savitske, B.J.; Credille, B.C. Concordance of disk diffusion, broth microdilution, and whole-genome sequencing
for determination of in vitro antimicrobial susceptibility of Mannheimia haemolytica. J. Vet. Intern. Med. 2020, 34, 2158–2168.
[CrossRef]

37. Owen, J.R.; Noyes, N.; Young, A.E.; Prince, D.J.; Blanchard, P.C.; Lehenbauer, T.W.; Van Eenennaam, A.L. Whole-Genome
Sequencing and Concordance Between Antimicrobial Susceptibility Genotypes and Phenotypes of Bacterial Isolates Associated
with Bovine Respiratory Disease. G3 Genes Genomes Genet. 2017, 7, 3059–3071. [CrossRef]

38. Doyle, D.; Credille, B.; Lehenbauer, T.W.; Berghaus, R.; Aly, S.S.; Champagne, J.; Woolums, A. Agreement Among 4 Sampling
Methods to Identify Respiratory Pathogens in Dairy Calves with Acute Bovine Respiratory Disease. J. Vet. Intern. Med. 2017, 31,
954–959. [CrossRef]

39. Maier, G.U.; Rowe, J.D.; Lehenbauer, T.W.; Karle, B.M.; Williams, D.R.; Champagne, J.D.; Aly, S.S. Development of a clinical
scoring system for bovine respiratory disease in weaned dairy calves. J. Dairy Sci. 2019, 102, 7329–7344. [CrossRef] [PubMed]

40. Lawton, S.J.; Weis, A.M.; Byrne, B.A.; Fritz, H.; Taff, C.C.; Townsend, A.K.; Boyce, W.M. Comparative analysis of Campylobacter
isolates from wild birds and chickens using MALDI-TOF MS, biochemical testing, and DNA sequencing. J. Vet. Diagn. Investig.
2018, 30, 354–361. [CrossRef]

41. Clinical Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for
Bacteria Isolated from Animals, 4th ed.; CLSI Supplement VET08; Clinical and Laboratory Standards Institute: Wayne, PA, USA,
2018.

42. Chen, P.; Kong, N.; Huang, B.; Thao, K.; Ng, W.; Storey, D.B.; Weimer, B.C. 100K Pathogen Genome Project: 306 Listeria Draft
Genome Sequences for Food Safety and Public Health. Genome Announc. 2017, 5, e00967–16. [CrossRef]

https://doi.org/10.3168/jds.2016-11797
https://www.ncbi.nlm.nih.gov/pubmed/27865508
https://doi.org/10.1016/j.cimid.2012.11.006
https://www.ncbi.nlm.nih.gov/pubmed/23260373
https://doi.org/10.3389/fvets.2017.00237
https://www.ncbi.nlm.nih.gov/pubmed/29359135
https://doi.org/10.1098/rspb.2016.2233
https://www.ncbi.nlm.nih.gov/pubmed/28356447
https://doi.org/10.2134/jeq2015.05.0250
https://www.ncbi.nlm.nih.gov/pubmed/27065395
https://doi.org/10.1007/s00436-016-5154-7
https://www.ncbi.nlm.nih.gov/pubmed/27245073
https://doi.org/10.3390/ani11061686
https://www.ncbi.nlm.nih.gov/pubmed/34198883
https://doi.org/10.3389/fmicb.2021.787451
https://doi.org/10.7554/eLife.85867
https://doi.org/10.1038/s41467-022-35713-4
https://www.ncbi.nlm.nih.gov/pubmed/36599823
https://doi.org/10.7717/peerj.12408
https://doi.org/10.3390/antibiotics11091170
https://doi.org/10.3390/vetsci10030178
https://www.ncbi.nlm.nih.gov/pubmed/36977217
https://doi.org/10.1099/mic.0.001349
https://doi.org/10.1128/AAC.01030-16
https://doi.org/10.1128/JCM.01815-17
https://doi.org/10.1111/jvim.15883
https://doi.org/10.1534/g3.117.1137
https://doi.org/10.1111/jvim.14683
https://doi.org/10.3168/jds.2018-15474
https://www.ncbi.nlm.nih.gov/pubmed/31202651
https://doi.org/10.1177/1040638718762562
https://doi.org/10.1128/genomeA.00967-16


Pathogens 2024, 13, 300 20 of 21

43. Arabyan, N.; Weis, A.M.; Huang, B.C.; Weimer, B.C. Implication of Sialidases in Salmonella Infection: Genome Release of Sialidase
Knockout Strains from Salmonella enterica Serovar Typhimurium LT2. Genome Announc. 2017, 5, e00341-17. [CrossRef]

44. Weis, A.M.; Clothier, K.A.; Huang, B.C.; Kong, N.; Weimer, B.C. Draft Genome Sequences of Campylobacter jejuni Strains That
Cause Abortion in Livestock. Genome Announc. 2016, 4, e01324–16. [CrossRef]

45. Chen, P.; den Bakker, H.C.; Korlach, J.; Kong, N.; Storey, D.B.; Paxinos, E.E.; Weimer, B.C. Comparative Genomics Reveals the
Diversity of Restriction-Modification Systems and DNA Methylation Sites in Listeria monocytogenes. Appl. Environ. Microbiol.
2017, 83, e02091-16. [CrossRef] [PubMed]

46. (PDF) Integrating the DNA Integrity Number (DIN) to Assess Genomic DNA (gDNA) Quality Control Using the Agilent 2200
TapeStation System. Available online: https://www.researchgate.net/publication/282612460_Integrating_the_DNA_Integrity_
Number_DIN_to_Assess_Genomic_DNA_gDNA_Quality_Control_Using_the_Agilent_2200_TapeStation_System (accessed on 4
December 2023).

47. (PDF) High-Throughput Analysis of Foodborne Bacterial Genomic DNA Using Agilent 2200 TapeStation and Genomic DNA
ScreenTape System. Available online: https://www.researchgate.net/publication/282614078_High-Throughput_Analysis_of_
Foodborne_Bacterial_Genomic_DNA_Using_Agilent_2200_TapeStation_and_Genomic_DNA_ScreenTape_System?_sg=ab_77
4uwiOxoYKyaxu5MiZYZSSESprwsrLX7gr145SLPOySIfsmsqdCjQIwfg9bfkMkrm3F3deItxNBAUJdn2ZHZ3zunb0KLPNJuF6
y3.6QyRC6RksxJuywoRN8uPgjuZe35PNcjXstnulXcr-_LsnY3GohisMGgMgihHV--H9fEILNKLCk7peaNJeTvACA (accessed on 4
December 2023).

48. Weimer, B.C. 100K Pathogen Genome Project. Genome Announc. 2017, 5, e00594-17. [CrossRef] [PubMed]
49. Bandoy, D.D.R.; Weimer, B.C. Biological Machine Learning Combined with Campylobacter Population Genomics Reveals

Virulence Gene Allelic Variants Cause Disease. Microorganisms 2020, 8, 549. [CrossRef]
50. Miller, J.J.; Weimer, B.C.; Timme, R.; Lüdeke, C.H.M.; Pettengill, J.B.; Bandoy, D.D.; Jones, J.L. Phylogenetic and Biogeographic

Patterns of Vibrio parahaemolyticus Strains from North America Inferred from Whole-Genome Sequence Data. Appl. Environ.
Microbiol. 2021, 87, e01403-20. [CrossRef]

51. Flores-Valdez, M.; Ares, M.A.; Rosales-Reyes, R.; Torres, J.; Girón, J.A.; Weimer, B.C.; De la Cruz, M.A. Whole Genome Sequencing
of Pediatric Klebsiella pneumoniae Strains Reveals Important Insights Into Their Virulence-Associated Traits. Front. Microbiol.
2021, 12, 711577. [CrossRef]

52. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120.
[CrossRef]

53. Andrews, S. Babraham Bioinformatics—FastQC A Quality Control Tool for High Throughput Sequence Data. 2010. Available
online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 3 November 2023).

54. Seemann, T. Shovill. 2023. Available online: https://github.com/tseemann/shovill (accessed on 3 November 2023).
55. Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes

recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [CrossRef] [PubMed]
56. Pedersen, B.S.; Quinlan, A.R. Mosdepth: Quick coverage calculation for genomes and exomes. Bioinformatics 2018, 34, 867–868.

[CrossRef] [PubMed]
57. Higdon, S.M.; Pozzo, T.; Tibbett, E.J.; Chiu, C.; Jeannotte, R.; Weimer, B.C.; Bennett, A.B. Diazotrophic bacteria from maize exhibit

multifaceted plant growth promotion traits in multiple hosts. PLoS ONE 2020, 15, e0239081. [CrossRef]
58. Higdon, S.M.; Pozzo, T.; Kong, N.; Huang, B.C.; Yang, M.L.; Jeannotte, R.; Weimer, B.C. Genomic characterization of a diazotrophic

microbiota associated with maize aerial root mucilage. PLoS ONE 2020, 15, e0239677. [CrossRef]
59. Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [CrossRef] [PubMed]
60. Lu, J.; Breitwieser, F.P.; Thielen, P.; Salzberg, S.L. Bracken: Estimating species abundance in metagenomics data. PeerJ Comput. Sci.

2017, 3, e104. [CrossRef]
61. Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; McArthur, A.G. CARD 2020: Antibiotic

resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [CrossRef]
62. Viry, M. Fast Fisher-Jenks Breaks for Python. 2023. Available online: https://github.com/mthh/jenkspy (accessed on 3 November

2023).
63. FDA Warns Against Aminoglycoside Residue in Cattle. American Veterinary Medical Association. Available online: https:

//www.avma.org/javma-news/2001-08-15/fda-warns-against-aminoglycoside-residue-cattle (accessed on 13 November 2023).
64. Catry, B.; Dewulf, J.; Maes, D.; Pardon, B.; Callens, B.; Vanrobaeys, M.; Haesebrouck, F. Effect of Antimicrobial Consumption

and Production Type on Antibacterial Resistance in the Bovine Respiratory and Digestive Tract. PLoS ONE 2016, 11, e0146488.
[CrossRef]

65. da Silva, G.C.; Gonçalves, O.S.; Rosa, J.N.; França, K.C.; Bossé, J.T.; Santana, M.F.; Langford, P.R.; Bazzolli, D.M.S. Mobile Genetic
Elements Drive Antimicrobial Resistance Gene Spread in Pasteurellaceae Species. Front. Microbiol. 2022, 12. Available online:
https://www.frontiersin.org/articles/10.3389/fmicb.2021.773284 (accessed on 18 December 2023). [CrossRef]

66. Rodríguez-Gascón, A.; Solinís, M.Á.; Isla, A. The Role of PK/PD Analysis in the Development and Evaluation of Antimicrobials.
Pharmaceutics 2021, 13, 833. [CrossRef] [PubMed]

67. Feßler, A.T.; Wang, Y.; Burbick, C.R.; Diaz-Campos, D.; Fajt, V.R.; Lawhon, S.D.; Schwarz, S. Antimicrobial susceptibility testing in
veterinary medicine: Performance, interpretation of results, best practices and pitfalls. One Health Adv. 2023, 1, 26. [CrossRef]

https://doi.org/10.1128/genomeA.00341-17
https://doi.org/10.1128/genomeA.01324-16
https://doi.org/10.1128/AEM.02091-16
https://www.ncbi.nlm.nih.gov/pubmed/27836852
https://www.researchgate.net/publication/282612460_Integrating_the_DNA_Integrity_Number_DIN_to_Assess_Genomic_DNA_gDNA_Quality_Control_Using_the_Agilent_2200_TapeStation_System
https://www.researchgate.net/publication/282612460_Integrating_the_DNA_Integrity_Number_DIN_to_Assess_Genomic_DNA_gDNA_Quality_Control_Using_the_Agilent_2200_TapeStation_System
https://www.researchgate.net/publication/282614078_High-Throughput_Analysis_of_Foodborne_Bacterial_Genomic_DNA_Using_Agilent_2200_TapeStation_and_Genomic_DNA_ScreenTape_System?_sg=ab_774uwiOxoYKyaxu5MiZYZSSESprwsrLX7gr145SLPOySIfsmsqdCjQIwfg9bfkMkrm3F3deItxNBAUJdn2ZHZ3zunb0KLPNJuF6y3.6QyRC6RksxJuywoRN8uPgjuZe35PNcjXstnulXcr-_LsnY3GohisMGgMgihHV--H9fEILNKLCk7peaNJeTvACA
https://www.researchgate.net/publication/282614078_High-Throughput_Analysis_of_Foodborne_Bacterial_Genomic_DNA_Using_Agilent_2200_TapeStation_and_Genomic_DNA_ScreenTape_System?_sg=ab_774uwiOxoYKyaxu5MiZYZSSESprwsrLX7gr145SLPOySIfsmsqdCjQIwfg9bfkMkrm3F3deItxNBAUJdn2ZHZ3zunb0KLPNJuF6y3.6QyRC6RksxJuywoRN8uPgjuZe35PNcjXstnulXcr-_LsnY3GohisMGgMgihHV--H9fEILNKLCk7peaNJeTvACA
https://www.researchgate.net/publication/282614078_High-Throughput_Analysis_of_Foodborne_Bacterial_Genomic_DNA_Using_Agilent_2200_TapeStation_and_Genomic_DNA_ScreenTape_System?_sg=ab_774uwiOxoYKyaxu5MiZYZSSESprwsrLX7gr145SLPOySIfsmsqdCjQIwfg9bfkMkrm3F3deItxNBAUJdn2ZHZ3zunb0KLPNJuF6y3.6QyRC6RksxJuywoRN8uPgjuZe35PNcjXstnulXcr-_LsnY3GohisMGgMgihHV--H9fEILNKLCk7peaNJeTvACA
https://www.researchgate.net/publication/282614078_High-Throughput_Analysis_of_Foodborne_Bacterial_Genomic_DNA_Using_Agilent_2200_TapeStation_and_Genomic_DNA_ScreenTape_System?_sg=ab_774uwiOxoYKyaxu5MiZYZSSESprwsrLX7gr145SLPOySIfsmsqdCjQIwfg9bfkMkrm3F3deItxNBAUJdn2ZHZ3zunb0KLPNJuF6y3.6QyRC6RksxJuywoRN8uPgjuZe35PNcjXstnulXcr-_LsnY3GohisMGgMgihHV--H9fEILNKLCk7peaNJeTvACA
https://doi.org/10.1128/genomeA.00594-17
https://www.ncbi.nlm.nih.gov/pubmed/28705971
https://doi.org/10.3390/microorganisms8040549
https://doi.org/10.1128/AEM.01403-20
https://doi.org/10.3389/fmicb.2021.711577
https://doi.org/10.1093/bioinformatics/btu170
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/tseemann/shovill
https://doi.org/10.1101/gr.186072.114
https://www.ncbi.nlm.nih.gov/pubmed/25977477
https://doi.org/10.1093/bioinformatics/btx699
https://www.ncbi.nlm.nih.gov/pubmed/29096012
https://doi.org/10.1371/journal.pone.0239081
https://doi.org/10.1371/journal.pone.0239677
https://doi.org/10.1186/s13059-019-1891-0
https://www.ncbi.nlm.nih.gov/pubmed/31779668
https://doi.org/10.7717/peerj-cs.104
https://doi.org/10.1093/nar/gkz935
https://github.com/mthh/jenkspy
https://www.avma.org/javma-news/2001-08-15/fda-warns-against-aminoglycoside-residue-cattle
https://www.avma.org/javma-news/2001-08-15/fda-warns-against-aminoglycoside-residue-cattle
https://doi.org/10.1371/journal.pone.0146488
https://www.frontiersin.org/articles/10.3389/fmicb.2021.773284
https://doi.org/10.3389/fmicb.2021.773284
https://doi.org/10.3390/pharmaceutics13060833
https://www.ncbi.nlm.nih.gov/pubmed/34205113
https://doi.org/10.1186/s44280-023-00024-w


Pathogens 2024, 13, 300 21 of 21

68. Martinez, M.N.; Papich, M.G.; Hunter, R.P.; Li, X.-Z.; Rose, M.; Silley, P.; VET02 Development of Quality Control Ranges,
Breakpoints, and Interpretive Categories for Antimicrobial Agents Used in Veterinary Medicine. Clinical and Laboratory
Standards Institute. 2021. Available online: https://clsi.org/standards/products/veterinary-medicine/documents/vet02/
(accessed on 1 January 2022).

69. Foster, D.M.; Martin, L.G.; Papich, M.G. Comparison of Active Drug Concentrations in the Pulmonary Epithelial Lining Fluid
and Interstitial Fluid of Calves Injected with Enrofloxacin, Florfenicol, Ceftiofur, or Tulathromycin. 2016. Available online:
http://animalhealth.bayer.com/ah/ (accessed on 1 January 2021).

70. Salmon, S.A.; Watts, J.L.; Yancey, R.J. In Vitro Activity of Ceftiofur and its Primary Metabolite, Desfuroylceftiofur, against
Organisms of Veterinary Importance. J. Vet. Diagn. Investig. 1996, 8, 332–336. [CrossRef] [PubMed]

71. Halstead, S.L.; Walker, R.D.; Baker, J.C.; Holland, R.E.; Stein, G.E.; Hauptman, J.G. Pharmacokinetic evaluation of ceftiofur in
serum, tissue chamber fluid and bronchial secretions from healthy beef-bred calves. Can. J. Vet. Res. 1992, 56, 269–274. [PubMed]

72. Darby, E.M.; Trampari, E.; Siasat, P.; Gaya, M.S.; Alav, I.; Webber, M.A.; Blair, J.M. Molecular mechanisms of antibiotic resistance
revisited. Nat. Rev. Microbiol. 2023, 21, 280–295. [CrossRef]

73. Ramamurthy, T.; Ghosh, A.; Chowdhury, G.; Mukhopadhyay, A.K.; Dutta, S.; Miyoshi, S.I. Deciphering the genetic network and
programmed regulation of antimicrobial resistance in bacterial pathogens. Front. Cell. Infect. Microbiol. 2022, 12, 952491. Available
online: https://www.frontiersin.org/articles/10.3389/fcimb.2022.952491 (accessed on 28 December 2023). [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://clsi.org/standards/products/veterinary-medicine/documents/vet02/
http://animalhealth.bayer.com/ah/
https://doi.org/10.1177/104063879600800309
https://www.ncbi.nlm.nih.gov/pubmed/8844576
https://www.ncbi.nlm.nih.gov/pubmed/1477795
https://doi.org/10.1038/s41579-022-00820-y
https://www.frontiersin.org/articles/10.3389/fcimb.2022.952491
https://doi.org/10.3389/fcimb.2022.952491

	Introduction 
	Materials and Methods 
	Study Design 
	Animals and Sample Sources 
	Bacterial Culture and Susceptibility Testing 
	Whole Genome Sequencing (WGS) 
	Informatic Tool Usage 
	Genome Assembly and Quality Control 
	Investigating Contamination 
	Identifying AMR Genes 
	AMR Gene Distribution Graphs 
	Isolate Phenotype and AMR Genotype Classification 
	Statistical Analysis 

	Results 
	Discussion 
	Conclusions 
	References



