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Abstract

Defects in antigen presenting cell function have been implicated in glioma immunosuppression. 

We measured peripheral CCL22, a dendritic cell/macrophage derived T cell trafficking 

chemokine, in sera from 1,208 glioma cases and 976 controls to assess whether it might provide a 

biomarker of glioma risk, survival, and immune dysfunction. Cluster models were used to 

examine the relationship between CCL22 and glioma risk. Patient survival was assessed using 

Cox regression models. We also examined the relationship between CCL22 levels and CD4 cell 

counts, as well as allergy history and IgE levels. CCL22 levels were significantly lower among 

glioma cases compared to controls (Mean±SEM: 1.23±0.03 ng/mL in cases versus 1.60±0.03 

ng/mL in controls, P<0.0001), and this difference remained significant even after controlling for 

other covariates in the cluster models (highest quartile versus lowest Odds Ratio=0.21, P<0.0001). 

CD4 cell counts were positively correlated with CCL22 in glioma cases (Spearman r2=0.51, 

P<0.01) and were significantly lower in cases compared with controls. Higher CCL22 levels were 

associated with longer survival in all cases combined and in GBM cases (hazard ratioallcases=0.81; 

95% CI: 0.72–0.91, P=0.0003). CCL22 levels were not associated with IgE level or self-reported 

allergies. Circulating CCL22 levels are related to both glioma risk and survival duration 

independent of age, histology, grade and IDH mutation status. CCL22 should be considered a 

marker of immune status with potential prognostic value.
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Introduction

Gliomas are the most common form of primary brain tumor with an incidence rate of 

approximately 6.5 individuals diagnosed per 100,000 in the United States1. Traditional 

histopathological criteria, age, and some tumor markers are currently used to assess glioma 

patient prognosis2, 38, 9. Survival for patients diagnosed with glioblastomas (World Health 

Organization (WHO) grade IV) is poor with a median survival of 14.6 months4. The median 

survival of grade III astrocytoma patients is in the range of 2 to 3 years while those with 

grade III oligodendrogliomas have a median survival of 3 to 6 years4. Patients who are 

younger at diagnosis and who have IDH mutated tumors also have a more favorable 

survival4. The standard therapies for high grade glioma, including surgery, temozolomide 

(TMZ) chemotherapy and radiation, have been shown to improve survival, although 

modestly4. Important molecular subsets of glioma also are associated with heritable risk5–7. 

It has also been recognized for many years that glioma patients, particularly GBM patients, 

show peripheral immune defects affecting T cells10, 11. Lymphocyte counts (particularly 

CD4 cells) in glioma patients are reduced and T-cell function is also suppressed, with 

impaired proliferation in response to IL2 and nonspecific mitogens12. A study of patients 

with high-grade gliomas (grades III and IV) treated with radiation and TMZ showed that 

after 2 months of treatment about 40% of patients had CD4 blood counts less than 200 

cells/µL13. These patients continued to have low CD4 counts for the full year of follow-up 

and exhibited early mortality from tumor progression13. Other studies also have reported 

that low CD4 counts were associated with poorer glioma survival times14, 15. More 

generally, CD4 lymphopenia has been shown to be a grave prognostic indicator in multiple 

types of cancers16–21. Although the etiology of depressed T cell immunity in glioma is 

complex; exposures to therapeutic steroids, chemotherapy and ionizing radiation as well as 

tumor generated immune suppression are thought to be involved12, 13. One important aspect 

of glioma related suppression of the immune response is the effect that tumors may have on 

professional antigen presenting cells (APC) and their crosstalk with T cells15, 22, 23. For 

example, circulating peripheral blood monocytes in patients with GBM have increased 

expression of the suppressive B7-H1 protein and promote T cell apoptosis24; this 

suppressive phenotype was induced by exposing monocytes to glioma cell lines and 

supernatants. Glioma cells exposed to direct contact with blood monocytes were shown in 

an earlier study to induce a suppressive phenotype25. A crucial link between macrophage/

dendritic cells (DC) and T cell immunity is the macrophage-derived chemokine CCL2226. 

CCL22 is a CC type chemokine and a potent chemoattractant for CD4 and CD8 T cells, as 

well as for DCs expressing the CCL22 receptor CCR4. It is involved in chronic 

inflammation mediated by the continuous homing of DCs and lymphocytes27, 28. In this 

study, we hypothesized that the chemokine CCL22 may be a biomarker of macrophage/DC 

compartment of immune suppression and provide relevant information about anti-tumor 

responses elicited by the host that may be negatively impacted by tumor cells or 

immunosuppressive treatments. We show that reduced levels of serum CCL22 are common 

in glioma patients and associated with low CD4 cell counts and shorter survival times. This 

suggests CCL22 may be a useful marker of a suppressed immune function.
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Material and methods

Study participants and interview

All cases were adults with newly diagnosed histologically confirmed glioma (International 

Classification of Disease for Oncology, morphology codes 9380–9481). Population-based 

cases residing in the six Bay Area counties were ascertained using the Cancer Prevention 

Institute of California’s early case ascertainment system during three recruitment periods: 

May 1997 to August 1999, November 2001 to September 2005, and September 2006 to 

September 2009. Clinic-based cases diagnosed between 2002–2006, 2006–2010, and 2009–

2012 were recruited from the UCSF Neuro-oncology Clinic, regardless of place of 

residence. Cases enrolled in the 2009–2012 clinic-based recruitment were eligible to 

participate if they were 18 years or older at diagnosis, and cases recruited in the earlier years 

of the study were eligible to participate if they were 20 years and older at diagnosis.

Population-based controls from the same residential area as the population-based cases were 

identified using random digit dialing and were frequency matched to population-based cases 

on age group, gender and ethnicity. Clinic-based controls age 18 years and older were 

recruited from the UCSF phlebotomy clinic between 2010–2012 and frequency matched to 

clinic-based cases on age group, gender and ethnicity. Informed consent was obtained from 

all study participants and study methods were approved by the Committee on Human 

Research at the University of California, San Francisco.

Pathological material was retrieved, when possible, for all resected brain cancers and 

reviewed and classified by one of two neuropathologists (Kenneth Aldape, MD Anderson, 

Houston, TX and Tarik Tihan, UCSF, San Francisco, CA). Blood and serum samples were 

usually collected at the time of interview. Allergy history data were collected in tabular form 

as described in detail in our earlier report37, 38. All participants who provided a blood 

sample were administered an additional questionnaire at the time of blood draw about 

current and recent medications and treatments. IDH mutation was measured in cases with 

tumor tissue available as previously described9.

Measurement of serum CCL22 levels

The Luminex assay was developed using a standard sandwich capture format. Capture 

antibody to human CCL22 (DY336, Part 840498, R&D system, Minneapolis) was coupled 

to magnetic Luminex microspheres by using a two-step carbodiimide reaction. Serum 

samples were diluted 1:100 in sample diluent, which was a mixture of PBS, 10% (vol/vol) 

fetal bovine serum, and 2.5% (vol/vol) CBS-K (Millipore Corporation, Hayward, CA). The 

solution was then incubated at room temperature for 1 hour on a shaker. A standard curve 

was created by diluting human CCL22 (DY336, Part 840500, R&D system, Minneapolis) 

using the same sample diluent. The CCL22 standards or participant serum samples and 

coupled CCL22 microspheres were then incubated for 2 hours at room temperature on a 

shaker using a 96-well flat bottom plate (Bio-Rad Laboratories, Inc., Hercules, CA) and 

subsequently washed with the wash buffer (Bio-Rad Laboratories, Inc.). This step was 

followed by the addition of 25 µL of 1:200 diluted (45ng/mL) biotinylated anti-human 

CCL22 antibody (DY336, Part 840499, R&D system, Minneapolis) to each well and the 
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incubation of the mixture at room temperature for 30 minutes on a shaker. The solution was 

then washed and treated with 50 µL of streptavidin-conjugated R-phycoerythrin 1:100 

diluted stock (Bio-Rad Laboratories, Inc.). After a 10 minutes incubation and final wash, the 

microspheres were resuspended in 105 µL of assay buffer (Bio-Rad Laboratories, Inc.). The 

amount of CCL22 bound to the microspheres by this antibody sandwich technique was 

determined by the median fluorescence intensity (MFI) of the reporter molecules, 

phycoerythrin, using the Bio-plex 200 plate reader system. The MFI of the unknown serum 

sample was then converted into a picograms-per-milliliter value based on the known 

concentrations of the standard curve by using a five-parameter (5PL) regression formula. 

Each sample was run with a replicate. A single serum sample from a person without a brain 

tumor was repeated on some of the assay plates (13 out of 24). We performed standard 

addition experiments that yielded a recovery rate of 80%.

Flourescence-activated cell sorting (FACS) analysis of CD4 cells levels and IgE analysis

We measured CD4 cell levels on 47 clinic-based cases and 146 clinic-based controls 

recruited from the 2009–2012 clinic-based series of the study. The blood samples were 

directly stained with anti-human CD4 APC antibody (eBioscience, San Diego, cat 

#17-0048-41), anti-human CD45 PerCP-Cy5.5 antibody (eBioscience, San Diego, cat 

#45-0459-41), and anti-human CD3 FITC antibody (eBioscience, San Diego, cat 

#11-0038-41). CD45 and CD3 were added to provide reference for CD4 values. After 

staining the blood was incubated for 20 minutes in the dark at 4°C. Cal-Lyse Solution 

(Invitrogen, Camarillo, cat #GAS-010) was then added to lyse red blood cells and fix the 

cells. Flow cytometry counting beads were added for absolute quantification of CD4 cells. 

Flow cytometry was performed within 48 hours of blood draw on the FACSCalibur (Becton 

Dickinson, San Jose) flow cytometer using Cell-Quest (Becton Dickinson, San Jose) 

software. Analysis of flow data was done using Flowjo software (TreeStar Inc, Ashland).

IgE levels were assessed using Pharmacia Diagnostics UniCAP fluorescent “sandwich” 

assay as described previously29. IgE levels were determined using serum derived from the 

same blood draw as used for the CCL22 analysis. Total IgE was determined by measuring 

fluorescence against the standard curve with known quantity inputs as previously 

described30.

Statistical methods

Statistical analyses were conducted using SAS v9.3 (SAS Institute, Cary NC). Odds ratios 

for glioma cases versus controls were computed using a multivariable cluster analysis model 

(Proc Genmod) which controlled for variation within the CCL22 batches. Models were 

adjusted for age, gender, ethnicity (white/nonwhite), education (college education yes/no) 

and smoking history (ever/never). Analyses were conducted separately for all gliomas and 

by histological subtype (GBM versus non-GBM). For the case/control comparisons, CCL22 

values were categorized into quartiles based on the distribution among controls. Total IgE 

was analyzed both as a log-transformed continuous variable and for comparison with earlier 

studies, as a categorical variable with groups defined based on clinically relevant cut points 

(IgE > 100 kU/ L = “elevated”, 25–100 kU/L = “borderline” and < 25 kU/L = “normal”). 

Cox proportional hazard models were run to evaluate the association between CCL22 levels 
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and survival in glioma cases. Survival models controlled for age at diagnosis, race (white/

non-white), gender, smoking history (ever/never), college degree, number of days between 

diagnosis and blood draw (continuous), Dexamethasone use at blood draw, and first course 

of treatment (Temozolomide or other chemotherapy use, radiation, and extent of surgery 

(biopsy only vs. any resection)). Survival was measured by calculating the total number of 

days between the date of diagnosis and date of death (if deceased) or last follow-up (if alive 

or lost to follow-up). Cases who were alive at the last follow-up or were lost to follow-up 

were treated as censored in the analysis. For the survival models, we compared the upper 

three quartiles of CCL22 to the lowest quartile since the survival experience for cases in the 

upper three quartiles was very similar (Supplemental Figure 1).

Results

Our study consisted of 1208 newly diagnosed glioma cases and 976 controls; cases and 

controls were comparable in their ethnicity and level of education (Table 1). However, cases 

were more likely than controls to be male, non-smokers, and less likely to report a history of 

allergies. Cases were also younger on average (median=51 years old) than controls 

(median=56 years old). Glioblastomas (GBM) were the most common histological subtype 

of brain tumor, followed by anaplastic astrocytomas, grade 2 astrocytomas, and 

oligodendrogliomas. More than three quarters of GBM cases (>82%) received the current 

standard of care treatment as a first course of treatment, which includes TMZ, radiation, and 

resection. Among GBM patients, 7% had IDH mutant tumors whereas for non-GBM 

patients, 74% of tumors were IDH mutant (Supplemental Table 1).

Serum CCL22 levels are depressed in glioma cases compared to controls

The overall concentration of CCL22 was statistically significantly lower in glioma cases 

compared to controls (mean±SEM: 1.23±0.03 ng/mL versus 1.60±0.03 ng/mL respectively, 

P<0.0001, Table 2). The results from the cluster models showed that after controlling for 

covariates, CCL22 levels were statistically significantly lower in cases than controls (highest 

versus lowest quartile OR: 0.21, 95% CI: 0.14–0.30, P<0.0001). Results were consistent for 

both GBM and non-GBM cases, but the magnitude of the effect was greater for GBM cases. 

In particular, for GBM cases versus controls, the OR for the highest versus lowest quartile 

was 0.16 (95% CI=0.10–0.24, p<0.0001); while in the non-GBM comparison it was 0.30 

(95% CI=0.20–0.41, p<0.001) (Table 2). However, further analyses among only the non-

GBM cases revealed that the lowest CCL22 values were among the grade III astrocytomas. 

No overall difference in CCL22 concentrations was noted among grade II 

oligodendroglioma or oligoastrocytoma cases compared to controls (Supplemental Table 1).

Low CCL22 levels are associated with shorter survival

We found that lower CCL22 levels were associated with shorter median survival days 

among all cases (Table 3). Cox regression models using continuous log transformed CCL22 

values showed a significantly lower risk of death as CCL22 levels increased in all cases as 

well as in the GBM only case group (HRallcases=0.81; 95% CI: 0.72–0.91, P<0.001) (Table 

3). Cox regression models comparing the upper three quartiles of CCL22 to the lowest 

quartile in all cases also showed a significantly lower risk of death in cases with higher 
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CCL22 levels (highest quartiles vs. lowest quartile HRallcases=0.80; 95% CI:0.69–0.93, 

P=0.003). However, the highest quartiles versus lowest quartile comparison did not show 

statistical significance in models where GBM and non-GBM cases were run separately. The 

Kaplan Meier (KM) curves comparing the survival of cases in the upper three quartiles (Q2–

Q4) of CCL22 to those in the lowest quartile (Q1) are shown in Figure 1. The KM curves 

show that survival in the Q2–Q4 group (with higher CCL22 levels) is better than that in the 

Q1 group (with lower CCL22 levels) for all cases as well as the GBM and non-GBM case 

groups (Figure 1: A, B, and C).

We found that in GBM cases, the CCL22 levels were higher in cases treated with radiation 

before blood draw (p=0.04), but we did not find any significant differences in CCL22 levels 

when comparing cases who took chemotherapy prior to blood draw to those who did not 

(Supplemental Table 6). However, cases taking dexamethasone use at blood draw had 

significantly lower CCL22 levels than cases not taking dexamethasone at the time of blood 

draw. Dexamethasone use, along with first course of treatment, demographic, and other 

factors were adjusted for in the Cox regression models that show an association between 

CCL22 levels and overall survival in GBMs.

Serum CCL22 levels are associated with CD3 and CD4 cells in glioma cases

For the 47 cases and 146 controls with FACS analysis data, we compared the CCL22 levels 

with CD3 (pan-T cell marker), CD4 and CD45 cell counts as well as the ratio of CD3/CD45 

and CD4/CD45. There were no observed differences in total CD45 cells (total leukocytes) 

among cases and controls. However, we observed a significant positive correlation between 

CCL22 levels and both CD3 and CD4 counts in cases (Table 4). The correlations between 

CCL22 and CD3 and CD4 were stronger in cases than in controls (p<0.01 in cases and 

p>=0.10 in controls for both CD3 and CD4). The mean absolute CD4 cell counts in glioma 

cases also were markedly lower than that in controls (659 cells/µL in all cases and 392 in 

GBM cases versus 813 in controls, p=0.04). Statistically significant case/control differences 

were also observed for the ratios of CD3/CD45 and CD4/CD45, with cases having lower 

ratios (p<0.01 for each).

When we grouped the CD4 counts into three clinically meaningful categories (<200, 200–

499, 500+ CD4 cells/µL), we found that in cases, the mean value of CCL22 increased as 

CD4 levels increased (Figure 2). Cases with the lowest levels of CD4 cells (<200) had a 

mean serum CCL22 level of 0.57 ng/mL, whereas cases with CD4 counts >=500 had a mean 

CCL22 level of 1.20 ng/mL (p=0.002 for difference in means between the CD4 groups). 

However, we did not observe differences in CCL22 levels among the three CD4 groups in 

controls (p=0.65 for difference in mean CCL22 levels across the CD4 groups). In addition, 

we found that the CD4 counts of cases recently treated with radiation or chemotherapy were 

significantly lower than cases who had not yet received treatment (P<0.001, Supplementary 

Table 4b).

CCL22 and Allergies/IgE

We also examined whether CCL22 levels were associated with reported allergy history or 

measured serum IgE levels. Null relationships were observed between CCL22 concentration 
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and any reported allergy, total number of allergies reported, or IgE measurements in both 

cases and controls.

Discussion

Although systemic defects in APC function have been observed in glioma patients15, 22, 23, 

there are no established biomarkers for assessing this dimension of the immune response for 

clinical prognostication. Here we focused on serum CCL22 as a simple protein assay 

applicable to routinely collected blood sera. A strong rationale for considering CCL22 as a 

biomarker of APC function is that DCs and monocyte derived macrophages are the most 

potent producers of CCL22 in vitro and in vivo31. The maturation of monocyte precursors 

into DCs with a functional APC phenotype leads to a many-fold increased expression and 

secretion of CCL2231. Given our current observation of suppressed CCL22 levels in glioma 

patients and its association with CD4 lymphopenia, it is reasonable to propose that this 

reflects depressed DC function and T cell trafficking.

We did not find a significant association between chemotherapy taken before blood draw 

and CCL22 levels, but found that GBM cases who had radiation before blood draw had 

higher CCL22 levels than those who had not yet had radiation. We explored the time 

elapsed since the last dose of radiation or chemotherapy and the day of the blood draw but 

found no correlation between time since last dose of either radiation or chemotherapy and 

CCL22 concentrations. Medications such as dexamethasone may also influence CCL22 

expression32, 33 and in our data current dexamethasone exposure was associated with 

significantly lower CCL22 levels among glioma cases.

We found a strong correlation between CCL22 values and CD4 counts in cases. We also 

found that cases who received chemotherapy or radiation before blood draw had 

significantly lower CD4 counts than cases who had not yet received these treatments. 

Prospective studies during TMZ and radiation therapy indicate an inhibitory effect on CD4 

and B cells followed by a recovery phase in some but not all exposed patients. Prolonged 

lymphopenia has been associated with the patient’s ability to generate appropriate cytokine 

responses including the production of IL7 and IL1534. Perhaps chemokine directed cell 

trafficking as marked by CCL22 also fails to recover in some patients and could explain our 

observed CD4 lymphopenia. It is interesting that another CCR4 responsive chemokine, 

CCL2, was found to be depressed in sera of GBM patients along with CD4 cells, and both 

appeared to correlate with increases in a CD14+ HLA-DR- subtype of blood monocyte35. 

Our earlier study showed there were similar percentages of cases and controls positive for 

antibodies to three herpes viruses (herpes simplex virus, cytomegalovirus, and Epstein-Barr 

virus)36. In addition, circulating CD14 levels in our past study37 were significantly higher in 

cases compared with controls. Furthermore, in our current study we did not observe 

decreased total leukocyte counts in glioma cases versus controls. These observations argue 

against the hypothesis that lower CCL22 levels in glioma patients might be primarily the 

result of nonspecific effects of advanced tumors or therapies. Taken together, these 

observations implicate monocyte and DC derived trafficking molecules with suppression of 

T cell immunity. Further study is required to identify whether suppression of CCL22 is an 
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intrinsic patient related defect, or a tumor driven effect or some combinations of all these 

possibilities.

IDH mutation, 1p19q codeletion, and MGMT methylation are tumor markers that have been 

shown to be associated with improved prognosis in glioma patients50. We controlled for the 

effect of IDH mutation in most patients and 1p19q codeletion in patients with 

oligodendroglial tumors, but were not able to examine MGMT methylation. However, 

MGMT methylation is highly correlated with IDH status and we have IDH mutation results 

for most cases.

The present study is, to our knowledge, the first to assess the relationship of peripheral 

CCL22 levels in glioma survival, which can be more easily applied as a routine assay for 

prognosis than most tumor markers. Our findings are consistent with two cohort studies on 

metastatic breast cancer showing that low CCL22 levels were associated both with low CD4 

counts and reduced overall survival16. This raises the possibility that in the context of radio-

chemotherapy for cancer, CCL22 might be considered an indicator of DC related immune 

suppression. However, the association of low CCL22 and abnormal CD4 counts was not 

observed in our control group, even though a small number of subjects demonstrated <200 

CD4 cells/µL. In these exceptional control patients, a history of HIV, hepatitis or 

autoimmune disorders were common though their CCL22 values were normal. The 

specificity of chemokine measurements as indicators of DC function in different clinical 

populations requires further study.

Abnormalities in T cell immunity are most extreme in high grade (grades III and IV) glioma 

compared with lower grades. Our observations parallel this grade dependence in the sense 

that CCL22 concentrations were not significantly depressed in grade II glioma irrespective 

of histological subtype. There were individual exceptions, however, with some grade II 

patients demonstrating very low CCL22 and CD4 counts. The survival curve among non-

GBM patients demonstrated a survival advantage among patients with higher CCL22 levels 

although the sample size of non-GBM cases was limited. Tumor grade and histology 

subtype analyses revealed that patients with grade III astrocytoma had the lowest CCL22 

concentrations compared to those with the grade II oligodendroglioma, grade II astrocytoma, 

and oligoastrocytoma. Further work will be necessary to assess whether specific 

morphologies drive the survival associations in non-GBM patients and whether CCL22 may 

be useful in identifying lower grade glioma patients at high risk for early progression.

We, and others, have shown that T helper 2 (a subset of CD4 cells) related phenotypes such 

as atopic allergy are underrepresented in glioma patients38, 39. Atopic conditions have been 

linked to CCL2240. One study41 showed that increased cord blood CCL22 levels were 

associated with development of allergic sensitization and asthma; CCL22 increases preceded 

allergy development during the first 6 years of life. Another group demonstrated that cord 

blood CCL22 levels were associated with elevated total IgE levels during preschool age42. 

Our analyses did not reveal any associations of allergy history or serum IgE concentrations 

with CCL22 among cases or controls. Previous reports linking serum CCL22 with atopic 

conditions concerned children and it is not known whether circulating levels in adulthood 

are expected to signal greater atopic risk. It is also possible that the repertoire of cells 
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responsive to CCL22 is broader than just CD4 Th2 cells. Targeted knock down of CCL22 in 

DCs affected CD8 cytotoxic cells as well as CD4 and CD25+ Foxp3+ regulatory cells43. 

Finally, a limitation of our studies in cases is that serum samples were obtained after glioma 

diagnosis and it would be very interesting to know if CCL22 depression precedes diagnosis 

and may therefore reflect a preexisting alteration in macrophage/DC function.

Our study focused on a peripheral marker of immune suppression and we did not evaluate 

the potential relationship between serum CCL22 and production of this chemokine by the 

tumor. CCL22 and CCL2 are implicated in the trafficking of T cells including T regs into 

the tumor microenvironment44. IFN-γ, IL1β and TNF-α will favor CCL22 overproduction 

by tumor cells, which promotes the recruitment of CCR4+ blood T reg that favors the 

development of a tolerogenic environment45. Trafficking and accumulation of T regs at the 

tumor site may have a negative effect on patient survival46. However, not all studies support 

this view47 and the issue is complicated by the strong correlation of immune infiltrates with 

WHO glioma grade. In any case, it is not clear what effect local tumor related production of 

CCL22 would have on the peripheral blood concentration. Both CCL22 and CCL2, the 

primary chemokines directing T regs, are markedly depressed in sera of glioma patients, at 

least following tumor resection. It will be necessary to characterize the T cell infiltrate in 

glioma tissues and assess the peripheral chemokine profile in the same patients to address 

whether the blood parameter reflects the T cell immune response of the tumor 

microenvironment48.

In conclusion, our observations combined with previous work suggest that monocyte and 

DC produced CCL22 and, possibly, CCL2 may serve as markers in glioma patients that 

signal patients at risk of prolonged CD4 cell suppression and poorer survival. New strategies 

to augment antitumor immunity49 can be adversely affected by persistent defects in APC 

cells and CCL22 may prove a useful marker to assess APC function in patients receiving 

immunotherapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Description of the novelty and impact of the work

Here, we present the novel observation that depressed levels of CCL22 are common in 

glioma patients. We further have found that these depressed CCL22 levels are associated 

with low CD4 cell counts and poorer survival times. Thus, CCL22 could be a useful 

biomarker reflecting the suppressed immunity of glioma patients. It may also serve as a 

significant prognostic factor of gliomas and a possible marker of cancer associated 

suppression of immune function.

Zhou et al. Page 14

Int J Cancer. Author manuscript; available in PMC 2016 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Kaplan-Meier survival curves stratified by CCL22 levels (Quartile 1 vs. Quartiles 2–4) in all 

glioma cases (a); GBM cases (b) and non-GBM cases (c), UCSF Adult Glioma Study 1997–

2012.
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Figure 2. 
CCL22 levels by case/control status within CD4 groupings. Samples were divided into three 

groups according to CD4 counts/µL (<200, 200–499, >=500), CCL22 levels (ng/mL) were 

compared in cases and controls of each group, UCSF Adult Glioma Study 2010–2012. 

[Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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