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Abstract

Identifying the mechanism of intercellular feedback regulation is critical for the basic

understanding of tissue growth control in organisms. In this paper, we analyze a tissue growth

model consisting of a single lineage of two cell types regulated by negative feedback signaling

molecules that undergo spatial diffusion. By deriving the fixed points for the uniform steady states

and carrying out linear stability analysis, phase diagrams are obtained analytically for arbitrary

parameters of the model. Two different generic growth modes are found: blow-up growth and

final-state controlled growth which are governed by the nontrivial fixed point and the trivial fixed

point, respectively, and can be sensitively switched by varying the negative feedback regulation on

the proliferation of the stem cells. Analytic expressions for the characteristic timescales for these

two growth modes are also derived. Remarkably, the trivial and nontrivial uniform steady states

can coexist and a sharp transition occurs in the bistable regime as the relevant parameters are

varied. Furthermore, the bistable growth properties allows for the external control to switch

between these two growth modes. In addition, the condition for an early accelerated growth

followed by a retarded growth can be derived. These analytical results are further verified by

numerical simulations and provide insights on the growth behavior of the tissue. Our results are

also discussed in the light of possible realistic biological experiments and tissue growth control

strategy. Furthermore, by external feedback control of the concentration of regulatory molecules, it

is possible to achieve a desired growth mode, as demonstrated with an analysis of boosted growth,

catch-up growth and the design for the target of a linear growth dynamic.

I. INTRODUCTION

Biological functions are carried out by organs composed of tissues of specific architecture

and sizes in high-level multicellular complex organisms. In the developmental stage, the
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growth of tissue is governed by the interplay of cell proliferation, differentiation, and cell

apoptosis [1] and regulated by feedback signals for proliferation and/or differentiation down

the lineage [2] so as to ensure a normal pathway leading to an appropriate tissue size [3].

Such feedback regulations are often achieved by cell-cell communications, such as via

quorum sensing [4–6] in which bacteria are able to sense the cell density and regulate their

proliferation processes accordingly. The ability to detect signaling chemicals is also essential

for cell differentiation in development [7], for example concentration gradients of BMP and

Wnt along two orthogonal axes are responsible for both dorsal-ventral and anterior-posterior

axes formation [8]. Recently, signaling molecules that control the output of multistage cell

lineages have been explored in the olfactory epithelium of mice [9], revealing that the spatial

distribution of diffusive signaling molecules (including GDF11, Activin βB, and Follistatin)

regulate the proliferation of each cell type within the lineage and help to generate tissue

stratification through controlling the spatial distribution of these signaling molecules.

Inhibitory feedback regulation from signaling chemical acting on the proliferating cells in

general will suppress the cell population and hence achieve in the control of the tissue sizes.

Cell lineage is the basic unit of tissue and organ formation. The molecular mechanisms

underlying the control of growth and regeneration of tissues and organs are subjects of

fundamental biological interests as well as medical concerns [2]. Recent experiments have

shown that in the mouse Olfactory Epithelium, a secreted molecule, GDF11, produced by

terminally differentiated (TD) cells, feeds back on intermediate progenitors, and together

with another molecule (Activin βB produced by TD cells) that feeds back on stem cells,

creating a dual feedback loop [3]. Based on the above observations, a logic proliferation

control model has been built (the ODE model in Fig. 1) and the theoretical results indicating

that negative feedback on self-renewal indeed stabilizes the exponentially growth of the cell

system, thus producing a steady-state tissue size. Such feedback regulations are often carried

out through diffusive molecules [6], such as morphogens, growth factors, cytokins, and

chemokines. A spatial model of multistage cell lineage and negative feedback regulation

indicates that tissue stratification can be generated and maintained through controlling the

spatial distribution of diffusive signaling molecules [9,10]. A mathematical model consisting

of a short-range activation of Wnt and a long-range inhibition with modulation of BMP

signals in a growing tissue of cell lineage can account for the formation, regeneration and

stability of intestinal crypts [11]. In addition, a particular feedback architecture in which

both positive and negative diffusible signals act on stem cells can lead to the appearance of

bimodal growth behaviors, and resulting in some kind of self-organizing morphogenesis

[12]. Until now, numerous biological experiments and modeling have been extensively

studied from a mechanistic perspective, but little efforts have been directed toward the

understanding of the logic of control. In this paper, we attempt to address the above

questions through theoretical analysis on a built model and investigate the fundamental

control principles that shape the general architectures of these biological systems.

By incorporating spatial diffusive regulatory molecules, we examine the effects of feedback

regulation via such signaling molecules on the cell growth and tissue size of a simple cell

lineage model. Interesting, in some parameter regime, a bistable regime of two uniform

steady states can coexist. In contrast to previous studies on feedback-driven morphogenesis

which require both positive and negative feedbacks to achieve the bistability, in our model
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mere negative feedback regulation on the proliferation of stem cells can realize the bimodal

growth. While most previous studies relies on numerical solution of the model equations,

here we manage to carrying out a thorough theoretical calculations that lead to analytic

results on the tissue growth dynamics and growth stability. Our theoretical results holds for

rather general negative feedback function and bistability occurs if the feedback suppression

is sufficiently sensitive. In particular, the feedback is modeled by a Hill function and the full

phase diagram can be obtained analytically together with the phase boundaries for arbitrary

values of the Hill coefficient, regulation strengths and other parameters of the model. The

analytical results are further verified by direct numerical solution of the model equations.

Possible applications in tissue growth engineering strategies and control such as switching of

growth modes by external pulse control, engineered linear growth, catch-up growth and the

timing precision in growth boosting, are also proposed and discussed.

II. CELL LINEAGE MODEL WITH NEGATIVE FEEDBACK CONTROL

Cell lineage denotes the developmental history of a tissue or organ from the fertilized

embryo. An unbranched unidirectional cell lineages may be produced by a sequence of

differentiation that begin with a stem cell (SC), progress through some number of self-

renewing progenitor stages, and end with one or more TD cells [3]. On the other hand,

homeostatic control is an important goal for regulation and feedback mechanism to maintain

the stability in biological tissues [13]. Furthermore, negative feedback regulations occur

much more often than positive feedbacks so as to maintain a well-controlled growth and

development in biological systems. For example, negative feedback regulates tissue sizes

and enhances the regeneration. In the model of mammalian olfactory epithelium, the tissue

contains SCs, transit amplifying cells and TD cells. Each cell can potentially secret

regulatory factors and respond to factors secreted by other cell types. With suitable

negatively regulated processes, the regulatory molecules can avoid the fate of uncontrolled

growth and also can achieve the target cell population and tissue size that is biologically

appropriate.

In some cell lineages, the TD cells constantly turn over, as occurs in hematopoietic,

epidermal, and many epithelial lineages. The balance between the turnover and production

of the TD cells is essential to sustain homeostasis, which can be viewed as achieving a

steady state [9] in the cell dynamics. However, not all tissues can reach a dynamically steady

state, in such a case the TD cells last for the entire lifetime of the organism (e.g., in the

nervous system), with the SC either disappearing or becoming quiescent. Such a scenario is

referred as the “final state” of the system [12].

One of the simplest unbranched two-cell lineage systems is depicted schematically in Fig. 1.

The existence and uniqueness as well as local and global stability of steady states in the

corresponding ODE system of multistage cell lineages generalization have been established

[14]. Tissue stratification and regeneration of intestinal crypts can be successfully modeled

by considering spatial advection of cells and regulating molecules, and it is suggested that

the turnover of TD cell is necessary to keep a stable dynamic equilibrium in the system. But

for the case of final-state tissues, the system is not maintained at some dynamical

equilibrium due to the lack of TD cell death [as shown in Fig. 1(b)], but the population of

Wang et al. Page 3

Phys Rev E. Author manuscript; available in PMC 2021 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the TD cell stops due to the extinction of the SC or the SC becomes inactive. Bone,

cartilage, retina, and most of the brain are such final-state tissues. Other organs, such as

liver, the turnover is so slow that it can be taken to be effectively final-state tissues from the

viewpoint of development. Essentially all cases of tight developmental size control over long

distances involve final states. So this mode of growth control is fundamentally different from

the checkpoint control, in which the control occurs only near its target state. For the growing

tissue that is determined by its final state, it is best to take the control early (when the

dimension of tissue is much less than the decay length of diffusible molecules) and employ a

high feedback gain to realize an effective control. For simplicity and the purpose of

illustrating the ideas, we consider a simple model of two-cell lineage to investigate the

strategy of controlling a final-state system.

It has been shown in Refs. [15,16] that in the continuum limit, different cell types in

different stages of a lineage together with the diffusion of regulatory molecules can be

modeled by coupled PDEs of the cell densities and regulatory molecule concentrations. And

for the simple case of a two-stage lineage model with cell and molecule advection, the cell

density and feedback molecule concentration can be modeled as [9]

∂c0
∂t +

∂ Vc0
∂z = vc0[2𝒫(A) − 1]

∂c1
∂t +

∂ Vc1
∂z = 2νc0[1 − 𝒫(A)]

∂A
∂t + ∂(V A)

∂z = D∂2A
∂z2 + μc1 − Ad,

(1)

where 𝒫(A) is the stem cell proliferation probability which is a decreasing function (to

model negative feedback) of the concentration of regulating molecules A. The stem cell

differentiates with probability 1 − 𝒫(A). In this two-stage cell lineage in one dimension, c0

denotes the concentration of stem cell and c1 is the concentration of TD cell. ν is the cell

cycle rate multiplied by ln 2. V represents the tissue growth velocity driven by the

proliferation and differentiation of the cells. μ and d represent the secretion and decay rates

of molecules, respectively. D is the effective diffusion constant of the molecules. Note that

the asymmetric cell division SC → SC + TD, is not included in the model, which can affect

the total stem cell balance mechanism if such a pathway is significant. But actually even if

the above asymmetric division is included, the model can still be reduced [17] to an effective

form represented as in Fig. 1(a) by redefining 𝒫.

It is worthwhile to note that the TD cells in our model will accumulate rather than being

shed and the final state will be a tissue consisting of only the TD cell resulting in practice a

“once in a life-time” growth. For a strict final-state system, the TD cells can never turn over.

However, if the turn over rate of TD cells is slow, then the final state will better describe the

lineage dynamics on timescales that are short relative to the TD cell lifespan. This can serve

to describe the fast growth developmental stage in which the growth rate of TD cells is much

greater than their death rate. Since tissue morphogenesis often occurs much more rapidly
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than the TD cell lifespans, final-state models may thus be inherently better and convenient

for lineage dynamics during morphogenesis, even in self-renewing tissues.

For further explicit theoretical calculations, we shall adopt the following Hill function form

for the stem cell proliferation probability

𝒫(A) = p
1 + (γA)m , (2)

where γ is the regulation strength, m is Hill coefficient which is a positive number and

usually taken to be an integer, and p represents the maximal replication probability. The Hill

function form in (2) is employed to describe a sharp decrease (if m > 1) in 𝒫 as a function of

the concentration of the regulatory agent to model a rapid switching off of proliferation

when A exceeds some characteristic value. It is rather common to model the feedback

regulation by cooperative binding of several regulatory proteins on some binding sites,

which can be treated by statistical mechanical means and will lead to a Hill function form

[18].

Since real tissue must grow outward into physical space, it will displace (advect) both the

cells and diffusible molecules to potentially different extent at different locations. Moreover,

molecules that mediate regulatory feedback will naturally form spatial gradients, and

feedback molecules can be considered to diffuse freely among the cells. In the study of the

regeneration of intestinal crypt in which the combination of positive and negative feedback

is considered, it was suggested a reaction-diffusion mechanism with a short-range activation

plus a long-range inhibition can lead to Turing pattern formation [11]. In the study of

feedback-driven morphogenesis with positive and negative feedback signals, a bimodal

growth behavior was reported [12]. Positive and negative feedback certainly exist in realistic

biological systems, but negative feedback may play a more dominant role for maintaining

homoeostasis. Here we focus on the mechanism in which the stem cell proliferation is only

regulated by negative feedback of different strengths. The effects of the secretion and death

rates of the feedback molecules in realizing different growth behavior and hence in the

control of tissue sizes are also incorporated in our model. As will be described below, the

growth mode can switch merely by changing the negative feedback in the absence of any

positive regulation.

III. ANALYTICAL RESULTS: BISTABILITY AND PHASE DIAGRAMS

By choosing the time and space in units of 1/d and D/d (the characteristic decay length),

respectively, the number of parameters in the governing equations in (1) and (2) can be

reduced to only four: μ ≡ γμ
d , ν ≡ ν

d , m, and p. The numerical results associated with times

and lengths presented in Sec. V are all with the above natural units.

Assuming the two types of cells fill up the whole space in which the tissue is occupying, one

has the constraint c0 + c1 = 1. Thus Eqs. (1) can be simplified to:
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∂c0
∂t +

∂ Vc0
∂z = vc0[2𝒫(A) − 1]

∂A
∂t + ∂(V A)

∂z = D∂2A
∂z2 + μ 1 − c0 − Ad

∂V
∂z = vc0 .

(3)

Equation (3) can be rewritten to give

∂c0
∂t = vc0 2𝒫(A) − 1 − c0 − V(z)

∂c0
∂z , (4)

∂A
∂t = μ 1 − c0 − vc0 + d A − V(z)∂A

∂z + D∂2A
∂z2 , (5)

V(z) = v∫
0

z
c0(x, t)dx . (6)

The spatially homogeneous solution, or the uniform state dynamics of c0(t) and A(t), is
given by putting the spatial gradients in (4) and (5) to zero,

dc0
dt = vc0 2𝒫(A) − 1 − c0 , (7)

dA
dt = μ 1 − c0 − vc0 + d A . (8)

We first find the uniform steady-state (USS) solutions (fixed points) in (3) and then carry out

standard linear stability analysis near the USSs. From (7) and (8), one can see easily that the

trivial USS (c0, A) = (0, μ/d) always exists, and other nontrivial USSs c0* ≠ 0, A*  can also

exist. The number of nontrivial USSs depends on the parameter regimes, and the values of

c0*, A*  depend on μ, ν, and d, and the parameters in 𝒫(A). The details of the calculations of

the fixed points and linear stability analysis for general feedback function 𝒫(A) are shown in

Appendix A1. The condition for the existence of a physical c0* > 0  nontrivial USS is rather

general, it only requires the existence of a root in (A3) which satisfies (A6) (see Appendix A

1). The properties of the uniform steady states and their transitions in the system is

determined by the trivial and nontrivial fixed point(s) and their stabilities.

For the Hill form feedback function in (2), as shown in Appendix A 2, the stabilities of the

USSs are determined only by the following four positive parameters: μ ≡ γμ
d , v ≡ v

d , m and p.

Here m is a positive real number but not necessarily constrained to be an integer. For
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0 < p < 1
2 , only the trivial USS exists and is stable. And for 1

2 ⩽ p ⩽ 1, the stability boundary

of the trivial USS (0, μ/d) is [unstable if μ < μ0(p)]

μ = μ0(p) ≡ (2p − 1)
1
m . (9)

The nontrivial USSs fixed point γA* can be derived from (A3) and is given by the root of

F(X) ≡ (1 − v)Xm + 1 − 2μXm + (1 − v + 2pv)X
− 2μ(1 − p) = 0,

(10)

where X ≡ γA*.

The number of real and positive roots of X depends on the range of values of μ and can be

derived analytically (details are shown in Appendix A2b). The critical value, μt at which the

number of positive roots changes from 1 to 3 (for v < 1) or 0 to 2 (for v ⩾ 1) can be obtained

from the solution of F(Xt ) = 0 and F′(Xt ) = 0, where Xt is the corresponding value of the

root at μt. μt has two branches and are given by

2μt
± =

m(1 − v)Y±
1 + 1

m

(m − 1)Y± − 1 + p , (11)

where

2(1 − v)Y± = [mp(1 + v) + (2 − 3p)v + p − 2]
± [mp(1 + v) + (2 − 3p)v + p − 2]2 + (1 − p)(1 − v + 2pv) .

(12)

The number of roots in X (nontrivial fixed points) (see Table I) and their stability depend on

the regime set by μt
±(p) given by (11) and the stability boundary μ0(p) also. See Appendix A

2 for complete calculations. For physically possible states, both c0 and A have to be real and

non-negative, and the phase diagrams in Fig. 3 summarize regions of stable physical uniform

steady states on the μ ⩾ 0 and 0.5 ⩽ p ⩽ 1 plane. The nature of bifurcation and the phase

diagram can be classified into two types according to v < 1 or v ⩾ 1 as follows.

1.  v < 1

First consider the slow proliferation case of v < 1, in which the stem cell replication rate is

less than the decay rate of the regulating molecules. One can see from Table I that there can

be three nontrivial positive roots for X for μt
+ < μ < μt

− and one positive root otherwise. μt
+

and μt
− approach each other as p decreases and there is a threshold pt(v) [see (A23) in

Appendix A2b] below which the three-root regime vanishes. Detail examination indicates

that at most one (or none) of them is both physical (X ⩽ μ or c0* ⩾ 0) and stable, depending
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on p is greater than or less than some critical value pc, which will be analyzed in details as

follows: The μt
− and μ0 curves cross at some “critical” value of pc, which can be derived

analytically as follows. At pc, μ = μ0 and the corresponding root X satisfies F(X ) = F′(X ) =

0. Therefore, pc(v) can be calculated simply by requiring F′ X = μ0 = 0 and hence pc can be

derived to give

pc(v) = m(1 + v)
2[m(1 + v) − 1] . (13)

Therefore, a stable nontrivial USS exists for

μ <
μt

−(p) if p > pc(v)
μ0(p) if p ⩽ pc(v)

. (14)

Figures 2(a)–2(c) show the typical bifurcations for p in different regimes. The nontrivial

positive roots for X ≡ γA* are shown as a function of μ in Fig. 2 and their stabilities are

denoted by solid (stable) and dashed (unstable) lines. In addition, the nontrivial root is

physical (i.e., c0* ⩾ 0) only for X ⩽ μ. The trivial root γA = μ is also shown (green y = x

straight line) whose stability is also denoted by solid (stable) and dashed (unstable) portions.

The corresponding value of c0 for the physical and stable state is also shown (red solid

curve). For p < pc(v) [see Fig. 2(a) for p < pt in the single nontrivial root regime and 2(b) for

pt < p < pc in the three-root regime], there is a continuous transition at μ0(p) from the

nontrivial USS to the trivial USS as μ increases. At μ0(p), the trivial and nontrivial states

exchange their stabilities, signifying a flip bifurcation for the transition between these two

USSs [see Figs. 2(a) and 2(b)]. On the other hand, there is a bistable regime for

μt
−(v, p) > μ > μ0(p) for p > pc(v) in which the trivial and nontrivial USSs coexist. There is a

first-order transition, characterized by a hystersis loop (indicated by the arrows for the c0

curve) from the nontrivial USS to the trivial USS as μ increases.

The properties of the USSs is summarized in the phase diagram of μ vs. p shown in Fig. 3.

The three-root regime of the nontrivial state is bounded by the μt
− and μt

+ curves which

merge together at pt as shown in Fig. 3(a). For p < 1
2 , only region II exists. The stability

boundary for the trivial USS, μ0(p), is also shown. Since the stable trivial USS lies in the

μ ⩾ μ0(p) regime, there is a bistable region with the coexistence of the trivial and nontrivial

USS [denoted by the shaded region in Fig. 3(a)].

2.  v ⩾ 1

For the rapid proliferating case of v ⩾ 1, the stem cell replication rate is faster than the decay

rate of the regulating molecules. From Table I, one can see that there can be two positive

nontrivial roots X ≡ γA*, but careful examination reveals that only one of them is both
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physical (X ⩽ μ) and stable for p > pc. For p ⩽ pc, the two nontrivial positive roots are both

unphysical (X > μ). Thus the nontrivial stable USS again lies in the region given by (14).

Figures 2(d)–2(f) show the typical bifurcations for different regimes of p. For p ⩽ pc(v) [see

Fig. 2(d) for p < pc and Fig. 2(e) for p = pc, both in the two-root regime], there is a

continuous transition at μ0(p) from the nontrivial USS to the trivial USS as μ increases. For p

< pc, the trivial and nontrivial states exchange their stabilities, signifying a flip bifurcation at

μ0(p) [see Fig. 2(d)]. For p > pc(v), the trivial and nontrivial USSs coexist associated with a

hystersis loop in the μ0(p) < μ < μt
− regime as shown in Fig. 2(f). The phase diagram for the

v ⩾ 1 case is shown in Fig. 3(b). Since the stable trivial USS lies in the region μ ⩾ μ0(p),

there is a coexisting bistable region for these two USSs for p > pc(v), as marked by the

hatched region.

The critical value at which the coexistence regime vanishes, pc, is displayed as a function of

v for different values of the Hill coefficient. pc decreases monotonically with v indicating the

coexistence regime increases with v. pc is also smaller for larger values of m suggesting the

coexistence regime is larger for larger m. The size of the coexistence regime can further be

characterized by Δμ ≡ μt
− − μ0. Figures 4(b) and 4(c) show Δμ as a function of p for different

values of m for v = 0.5 and 2, respectively, indicating that the bistable regime increases with

p and is larger for larger values of m. Notice that for v < 1, there is no bistable regime for m
= 1.

Summarizing this section briefly in physical terms: The trivial USS and nontrivial USS

correspond to the final state and blow-up state, respectively. The existence of the latter can

be analytical tracked by the physical root of F(X) in (10). The stability of these two states

can also be calculated analytically to determine their respective stabilities and the condition

of the coexistence of the final state and blow-up state. The full phase diagram of the model

and the corresponding phase boundaries for the stable regimes can be calculated analytically

in terms of the parameters of the model.

IV. ANALYTIC RESULTS: TISSUE SIZE DYNAMICS

Denoting the leading edge of the issue at time t by Lm(t), and consider initially the SC and

TD cells occupy uniformly in 0 ⩽ z ⩽ Lm(0), where Lm(0) is the initial tissue size. The cells

will grow and advect with speed V and hence the tissue size, Lm(t) will increase with time,

whose dynamics can be obtained from our model equations. To determine the evolution

dynamics of the tissue size, it should be noticed that even though the nontrivial USS is stable

theoretically, there is a sharp cell density gradient in the leading edge (z = Lm) of the tissue

in practice. Such a sharp gradient in c0 can destablize the system and lead to the blow-up

growth of the tissue. Such a scenario can be understood theoretically from our model. The

growth rate of the leading edge is given by the advection speed, thus we have from (6)
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dLm
dt = V z = Lm = v∫

0

Lm
c0(x, t)dx . (15)

The tissue growth acceleration can also be calculated by differentiating (15) to be

d2Lm

dt2
= v2∫

0

Lm
dzc0(z, t){2𝒫[A(z, t)] − 1} (16)

and thus it is possible to have an early stage of accelerated growth and then slow down to the

final tissue size, typical of a realistic “S-shape” biological growth curve [19].

Since we are mostly interested in the dynamics of the tissue size, rather on the details of the

spatial density profiles of the cells or regulatory molecules, we can further approximate the

spatial profiles to be step functions and proceed for further analytic results. As can be seen

in the numerical solutions in Sec. IV, the step-function approximation rather good except

very near the leading edge. Under the step-profile approximation, we have c0(z, t) = c0(t) for

0 < z ⩽ Lm(t) and vanishes otherwise. Since A rapidly equilibrated and from (B1), A is also

a step profile with magnitude A = A(t) ≡
μ 1 − c0(t)

d 1 + vc0(t)
 in 0 < z ⩽ Lm(t). Using (16) and take the

initial stem cell profile to be a step function of height c0(0) and size Lm(0), one obtains the

equation of motion for Lm as

d2Lm

dt2
= v2c0(t){2𝒫[A(t)] − 1}Lm, (17)

dLm
dt t = 0

= vc0(0)Lm(0), A(t) ≡
μ 1 − c0(t)
d 1 + vc0(t) . (18)

Lm(t) can be solved together with the equation of motion of c0(t) which is given in (7).

A. Tissue growth timescales

We first analyze in the tissue size dynamical evolution to the final state, and one can see

from (7) that c0(t) is always decreasing and eventually approaches to zero. As shown in

Appendix A 1, the saturation rate of final-state growth tissue is given by the rate of c0

approaching the trivial USS fixed point, with the saturation timescale

τs
−1 = ν 1 − 2𝒫 μ

d . (19)

Moreover, the tissue acceleration can be positive or negative and one can derive the

condition for the tissue dynamics with a S-shape growth curve as follows, even without the

explicit solution of Lm(t). The S-shape growth curve is signified by an early acceleration and

late time deceleration as it approaches the final state. There is an inflexion point at t = τsw at
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which the grow acceleration switches from positive to negative, i.e., 
d2Lm

dt2
t = τsw

= 0. From

(17), one can solve for the corresponding c0 τsw ≡ c0
sw to be

c0
sw =

μ − d𝒫−1 1
2

μ + ν𝒫−1 1
2

. (20)

Since c0(t) is a decreases with t, therefore the inflexion point occurs only if c0(0) > c0
sw, i.e.,

the initial stem-cell profile cannot be too small to have an early acceleration growth.

Now for the case of blow-up dynamics, one can also estimate the explosive growth timescale

as follows. For z ≪ Lm, the stable uniform steady-state nontrivial fixed point dominates and

the cell density c0 ≃ c0*. But for z ≈ Lm, the large negative gradient ∂zc0 dominates over the

first term in (4) and destablizes the leading edge to give rise to blow-up growth in the tissue

size. The tissue size increases exponentially with a timescale τ, which can be estimated as

follows. The growth rate of the leading edge in this case can be estimated by approximating

the SC profile with a step function of height c0* and size Lm, thus we have from (15)

dLm
dt ≃ vc0*Lm . (21)

It then follows that the tissue size grows exponentially with a characteristic timescale of τ
given by

τ = 1
vc0*

, (22)

which can be checked against the values obtained from the fitting of the numerical solutions.

It should be noted that if the initial SC concentration is far from the USS value c0*, then the

system will need a few cycle times to be attracted near the value of c0* and then the tissue

size will grow exponentially with the timescale given by (22).

B. Tissue size of the final state

Here we derive an approximate formula for the ultimate tissue size for the final-state growth,

Lm(t → ∞). We shall focus on the case in which the final state is the only stable state [i.e.,

p < pc(v)] characterized by the trivial fixed point. Since for large t, c0 decays to small values,

expanding (7) to leading order in c0, one gets

dc0
dt = −

c0
τs

+ 𝒪 c0
2 , (23)

where τs is given by (19). Hence
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c0(t) ≃ αe
− t

τs (24)

for some constant α to be determined. Note that the decay timescale τs in (24) agrees with

that in (19). With the same step-profile approximation as in previous subsection, Lm(t) is

still given by (16), but for large t, it has to satisfy the boundary condition of 
dLm
dt

t = ∞
= 0.

For large t and hence small c0, (16) becomes

d2Lm

dt2
≃ v2c0(t) 2𝒫 μ

d − 1 Lm, (25)

≃ − K2e
− t

τsLm, K2 ≡ ν
τs

α, (26)

where (24) was used to obtain (26). The solution of (26) with 
dLm
dt

t = ∞
= 0 is

Lm(t) = Lm(∞)J0 2Kτse
− t

2τs . (27)

Notice that the Bessel function of the first kind has the expansion J0(x) ≃ 1 − x2
4 + 𝒪x4 for

small x, and hence (28) agrees with the saturation approach to Lm(∞) with the timescale of

τs discussed earlier and will be verified by the numerical solution in next section.

The constants α and Lm(∞) can be estimated by matching their corresponding values at

some (earlier) fixed time, say, t = fτs (for some constant fraction f ), to the extrapolated

values from the initial slopes of c0(t) and Lm(t). After some algebra, one finally gets

Lm(∞) ≃
1 + f vτsc0(0)

J0 2 vτsc0(0)[1 + f vτs(2𝒫
μ 1 − c0(0)

d 1 + vc0(0)
− 1 − c0(0))]

Lm(0),
(28)

for an initial SC step profile of height c0 and size Lm (0); f ≃ 0.5 will be shown to be a

reasonable choice in practice.

Summarizing this section briefly: The equation of motion governing the tissue size growth

dynamics is derived and can be solved analytically to obtain the precise time-dependence,

Lm(t) for both the blow-up and final states. Analytic expression for Lm(t) would be very

useful to implement appropriate external control (as illustrated in Sec. VI) or designing

upstream regulatory pathways in a timely manner.
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V. NUMERICAL SOLUTIONS

The model equations (3) in one spatial dimension can be numerically solved to investigate in

details the dynamics of the tissue growth. The numerical results can provide valuable

quantitative information on the time evolution of the tissue size and cell density profiles.

Since the regulatory feedback molecules diffuse with a timescale much faster than that of the

cell growth dynamics, one can exploit this separation of timescale to solve for the quasistatic

spatial distribution of A(z) first and then obtain the cell/tissue dynamics. The details of the

numerical method is given in Appendix B.

A. Blow-up state, final state, and their coexistence

The time evolution of the profiles of c0(z) and A(z) for m = 2, v = 0.5, and p = 0.6 for μ = 0.2
and μ = 2 are shown in Fig. 5 [regions I and II, respectively, in the phase diagram Fig. 3(a)].

As predicted by the analytic result of the phase diagram, region I corresponds to the blow-up

growth case as the profile of c0(z) expands rapidly in space and at the same time the value of

c0 also grows and approaches the theoretical nontrivial fixed point value c0* [shown by the

horizontal dashed line in Fig. 5(a)]. The corresponding tissue size growing dynamics is

shown in Fig. 9(b). The dynamical behavior of the blow-up state can be understood

qualitatively in terms of the phase space flow as depicted in Fig. 8(b) where the system is

attracted to the only stable (nontrivial) fixed point (c0* > 0, A*). And for the dynamics in

region II, the profile of c0(z) increases very slowly in space and at the same time c0

approaches to zero (trivial fixed point) and the growth stops as c0 becomes extinct,

characterizing the behavior of a final state. The corresponding tissue growth dynamics is

shown in Fig. 9(a). Again the asymptotic dynamics is governed by the flow toward the stable

(trivial) fixed point (0, μ/d) as qualitatively shown in Fig. 8(a). For the case of v = 2, the time

evolution of the profiles of c0(z) and A(z) are shown in Fig. 6 for μ = 0.2 and μ = 2
corresponding to region I and II, respectively, in the phase diagram Fig. 3(b). Compared

with Fig. 5 for v = 0.5, the growth dynamics is similar qualitatively but is about 4 times

faster corresponding to a 4 times larger v.

We now turn to the more interesting bistable situation as predicted in previous section. From

the phase diagrams in Fig. 3, we compute the numerical solutions for the case of μ = 1, p =

0.9 and v = 0.5. The time evolution of the profiles of c0(z) and A(z) are shown in Fig. 7 for

two different initial values of the step-function profiles of c0 = 0.1 and c0 = 0.5 (both are of

the same initial spatial extend of 5). The corresponding tissue size growing dynamics is

shown in Fig. 10(a). The fates of the two different initial profiles are totally different and are

governed by the trivial and nontrivial fixed points corresponding to final-state and blow-up

growth, respectively. As shown in Fig. 8(c) for this bistable regime, there are two stable

fixed points (c0, A) = (0, 1) and (0.735,0.194) separated by an unstable fixed point

(0.261,0.654). The dynamics in the bistable region can be understood in terms of the flow in

the phase plane showing the two stable fixed points and an unstable one separating their

basins of attraction. The ultimate fate of the system depends on the initial SC density that

lies in the corresponding attractive basin of one of the two stable fixed point. As shown in

Figs. 7(a) and 7(b), the initial profile with c0 = 0.1 is close to the trivial fixed point and the

subsequent dynamics shows the attraction toward the final state. On the other hand, the
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initial profile with c0 = 0.5 lies in the basin of attraction of the nontrivial stable fixed point

and the dynamics evolves toward this fixed point [see Fig. 7(c) and the horizontal dashed

line] resulting in blow-up growth. The dynamics of the system is very sensitive near the

unstable fixed point, even small perturbations can alter the fate of the system.

B. Tissue size dynamics and different growth modes

The tissue size, which is an experimentally convenient observable, is also calculated from

the numerical solution. Figure 9(a) displays the saturation dynamics of the tissue size to the

final state. On the other hand, the tissue size grows exponentially fast for the case of blow-up

growth as shown in Fig. 9(b).

Figure 10(a) shows the tissue size growth dynamics in the bistable regime for different

values of initial c0. For initial c0 = 0.1, the Lm increases and saturates to the final tissue size

at which the stem cell will extinct and the tissue growth then stopped. On the other hand, for

initial c0 = 0.5, Lm shows a rapid exponential increase. More interestingly, for initial c0 =

0.2, Lm displays a pronounced early stage of accelerated growth and later on switched to a

retarded growth before it eventually approaches to the final state, which was observed in a

broad class of biological growths. Such S-shape growth is characterized by the existence of

an inflexion point in Lm(t) or equivalently there is a maximum of the instantaneous tissue

growth speed as shown in the numerical results in Fig. 10(b). Furthermore, it should be

noted that ultimate fate of the tissue growth depends only on the initial value of c0, but is

independent of the initial tissue size Lm(0) since the dynamics is governed by the phase flow

as depicted in Fig. 8(c).

C. Tissue growth timescales and final-state tissue size

The growth modes of the tissue to the final state is governed by the presence of the stable

trivial fixed point and the characteristic dynamics is determined by the approach rate to this

stable fixed point which is predicted by (19). The saturation timescale of the final-state

growth of the tissue is then given by

τs
−1 = v 1 − 2p

1 + μm , (29)

which can be checked against the values obtained from the fitting of the numerical solutions.

Figure 9(a) displays the saturation dynamics of the tissue size to the final state. The tissue

size is well fitted with the functional form Lm(t) = a0 + a1e
− t

τs  (solid curves) from which the

predicted timescale τs can be extracted (a0 and a1 are also fitting parameters). The extracted

final-state growth timescales are obtained as a function of p for two different values of v, and

the results are shown in Fig. 11(a); τs increases slowly with p and is inversely proportional

to v. The theoretical predictions Eq. (29) (curves) are also displayed showing very good

agreement.

For the case of blow-up growth, our theory indicates that the growth dynamics is governed

by (15) giving rise to exponential growth. This is verified from the numerical results of Lm(t)
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in Fig. 9(b) from which the growth timescale τ can be extracted by fitting of the tissue

dynamics in the long-time data. The extracted exponential growth timescales are obtained as

a function of p for two different values of v are displayed in Fig. 11(b), showing very good

agreement as well; τ decreases with p and is inversely proportional to v.

As shown in previous section that it is possible for the approach to the final state via an early

acceleration and then follow by retarded growth. The condition for such a scenario to occur

is given by (20) for the initial SC cell concentration to exceed some threshold value. For the

Hill function regulation (2), the above condition reads

c0(0) > c0
sw ≡ μ − (2p − 1)

1
m

μ + v(2p − 1)
1
m

. (30)

Figure 12(a) shows the numerical results for the tissue size growth dynamics for such cases.

The instantaneous leading edge speed displays a maximum at t = τsw signifying the switch

from accelerated growth to retarded growth [see the veritcal dashed lines in Fig. 12(b)]. The

dynamics of the SC concentration is also shown and the corresponding value at t = τsw is

marked by a horizontal dot-dashed line at a value c0
sw ≃ 0.05, which is in reasonable

agreement from the theoretical value of 0.047 from (30).

The ultimate tissue size can be achieved for the final-state growth is of practical interest.

From the numerical solutions, the tissue size saturates at long times and the ultimate size,

Lm(t → ∞), can be measured. The time evolution of the tissue size is displayed in Fig.

13(a), showing the saturation approach to the ultimate tissue size. The result indicates that

Lm(∞) is not sensitive to the value of v. The theoretical approximation of Lm(t) for the final-

state dynamics given by (27) is also plotted, showing reasonable agreement. The ultimate

tissue size of the final state as a function of μ is shown in Fig. 13(b), showing a decrease in

ultimate size for increasing μ. The theoretical estimations for Lm(∞) from (28) also show

good agreement with the numerical results.

The numerical solutions can provide detail quantitative results such as the detail

concentration profiles of the leading edge of the growth, which is not easily obtainable

analytically. In addition, the basin of attraction in the phase space (which can only be

obtained numerically) can provide valuable information in the evolution dynamics of the

growth and the sensitivity of external influences to alter the fate of the growth.

VI. SOME POSSIBLE APPLICATIONS

Although the model considered in previous section is rather simple, it can be applied to

various experimental or clinical scenarios to provide insights for practical purposes. A few

cases are considered below.
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A. Growth mode switching with regulatory pulse control

The two major growth modes in our model are blow-up growth and final-state growth,

whose properties are governed respectively by the corresponding nontrivial and trivial stable

fixed points. Moreover, in the bistable regime in which these two growth modes can coexist,

one can externally perturb the system and drive one mode to the other and vice versa. This

can be achieved by controlling the concentration of the regulatory molecules externally. We

demonstrate this in the bistable regime as that in Fig. 7. Figure 14 shows that different

growth modes can be switched to one another in the bistable regime. In Fig. 14(a), the

original final-state mode (dashed curve) is switched to the blow-up mode when a pulse

control, which keeps the concentration A to a low level for a fixed duration, is applied.

Carefully examination of the evolution of the values of c0 and A after the pulse control

indicates that the dynamics indeed flows to the nontrivial fixed point. Conversely, as shown

in Fig. 14(b), the explosive size increase in an original blow-up growth can be suppressed by

a similar pulse control that keeps A to a high level to suppress the subsequent growth to a

final state. Quantitative knowledge on the characteristic timescales of the blow-up and final-

state growth dynamics as described in Sec. IV B is essential in designing the pulse control

duration and the timing to applied for a successful growth mode switching.

B. Controlability and engineered linear growth

Understanding the growth dynamics of the system enable one to design the desired tissue

growth mode by controlling the concentration of the regulatory molecule with external

feedback, i.e., adjusting A by adding or depleting regulatory molecules with real-time

feedback according to the instantaneous stem cell population. Here we demonstrate such an

external feedback control design to achieve a linear growth mode. For the tissue to grow

linear with time, one requires 
d2Lm

d2t
= 0 and (16) tells us that this can be achieved by

adjusting A such that 2𝒫(A) = 1 at all times. For 𝒫(A) given by (2), to achieve a linear

growth, one simply designs the feedback to maintain the value of A = μ0(p)/γ at all times.

One first needs to know the intrinsic concentration of regulatory molecules, Aintrin secreted

by the cell. Aintrin can be estimated by assuming step-function profiles for both c0 and

Aintrin. Using (4) for USS, one has Aintrin ≃
μ 1 − c0
d 1 + vc0

, thus one needs to increase the

concentration of the regulatory molecule externally by an amount Aext = μ0(p) −
μ 1 − c0
1 + vc0

/γ.

The above feedback control is implemented in numerical simulations and the results are

displayed in Fig. 15 showing the success of achieving the linear growing tissue size. It

should be noted that under the linear control, the growing speed is proportional to vLm(0), but

is independent of μ and p.

C. Catch-up growth

Catch-up growth is often observed in child development [20]. After a period of growth

retardation caused by severe illness, subsequent acceleration of the growth rate can occur
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which involves rapid increase in weight or length in infants until the normal individual

growth pattern is resumed. This phenomenon has been studied for hundred of years, but the

mechanism of growth transition is not very clear, and strategy in applying external growth

stimulations (by hormones or growth factors) to achieve effective catch-up will be desirable.

Using our theory, we can model the catch-up growth phenomenon and give some insight for

the strategic implementation. We model the catch-up growth by a transient duration of

increase in the progenitor cell cycle speed, i.e., the proliferation rate parameter v in our

model, while all other parameters remain unchanged. The analytic phase diagram in Fig. 3

can provide valuable insights to determine whether a catch-up growth is possible by merely

increasing v. For catch-up growth, one looks for a final state on which an increase in v can

change it to the blow-up state. Careful examination of the two phase diagrams in Fig. 3

reveals that switching from a final state (region II) to a pure blow-up state (region I) is

impossible because the phase boundary separating these two states is μ0(p) = (2p − 1)
1
m  (the

dotted curve) which is independent of v. However, the phase boundary between the final

state (region II) and the bistable coexistence state (region III) does depend on v. For instance,

if one chooses the original final state with p = 0.8, then μ = 1 and v = 0.5 [see Fig. 3(a)].

Then with an increase of v to 2 during the catch-up period, the system is switched to the

bistable growth state [see Fig. 3(b)] and hence allowing the possibility of a blow-up growth

for catching up. In addition, the stem cell concentration c0 cannot be too small so that blow-

up growth will occur in the bistable state. Figure 16(a) demonstrates the success of a catch-

up growth with the original final state of p = 0.8, μ = 1, c0 = 0.3, and v = 0.5; followed by a

short catch-up duration of two time units during which v is switched to 2. As shown in Fig.

16(a), if the catch-up period occurs at an early stage (5 ⩽ t ⩽ 7), then the catching up is

rather successful with a final tissue more than twice as the of the original growth. On the

other hand, if the catch-up occurs later (10 ⩽ t ⩽ 12), then the effect of catch-up growth is

much less pronounced.

D. Timing in growth boosting

Here we assume the boosted growth is initiated by some upstream regulation or external

stimulations that suppress the secretion rate of the regulatory molecules from the TD cells,

i.e., a decrease in μ, for a period of time so that the growth can be faster to catch up. To

model such a catch-up period, we impose a pulse control of a small value of μ for some

period of time in the original final-state growth. Figure 16 shows the tissue size dynamics

for an initial final-state growth [region II of the phase diagram in Fig. 3(a)], the boosted

growth is applied at an early and a later times. During the boosted period, the value of μ is

kept at a low value such that the system is pushed to region I of the phase diagram in Fig.

3(a) for blow-up growth. In practice, to lower the value of μ can be achieved by decreasing

the production rate μ or by increasing the decay rate d of A, or by decreasing the regulation

strength γ. Furthermore, Fig. 16 also suggests that effective boosted growth can be achieved

if it is applied at an early stage (solid curve); otherwise, if the system has already grown near

to its final state, then the same boosting duration has little effects on the final size of the

tissue (dot-dashed curve). In other word, the timing, duration, and strength of the boosted

pulse are all essential in determining the ultimate mature size after the boosted period.
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VII. CONCLUSION AND OUTLOOK

A two-stage lineage cell model with spatially diffusive negative feedback signaling

molecules, focusing on the tissue growth dynamics, is investigated analytically and

numerically. By deriving the fixed points for the uniform steady states and carrying out

linear stability analysis, the phase diagrams are obtained analytically for arbitrary

parameters of the model for Hill function form of the negative feedback. Different growth

modes, including saturation dynamics to a final state of finite tissue size and blow-up growth

in which the tissue size become exponentially diverging, are obtained in the model. The rich

growth dynamics is summarized in terms of the tissue size Lm as follows: the final-state

growth mode occurs in region II of the phase diagram, characterized with retarded growth,

d2Lm

d2t
< 0, at late times. And blow-up growth mode occurs in region I of the phase diagram

with accelerated growth 
d2Lm

d2t
> 0. And in the bistable regime III of the phase diagram,

depending on the initial c0 concentration, the ultimate dynamics can approach a final-state

tissue size or grow exponentially. On top of the above, it is possible to have a typical

biological growth mode of an accelerated early growth and a retarded growth at late stage (a

a S-shape tissue growth curve), characterized by the presence of a switching time τsw at

which 
d2Lm

d2t
= 0 (inflexion point) with a maximal instantaneous growth speed [see Fig.

10(c)], if the system lies in region above the phase boundary μ > μ0(p) and the initial stem

cell density is sufficiently high [as given by (20)]. Furthermore, the existence of a bistable

regime for a wide range of parameters would provide a buffered regime for the controlled

growth to finite tissue size against possible stochastic fluctuations that could otherwise lead

to uncontrolled blow-up growth. It is worth to compare our model with some similar model

such as in Ref. [12] in which both positive and negative feedback are consider in a two-

lineage model but without the explicit dynamics of a regulatory molecule (A in our model).

For the special case of only negative feedback with Hill coefficient m = 1 in Ref. [12],

bistable regime will not exist, in agreement with the prediction in our model. In addition, our

model also gives the explicit result of pc(v) [Eq. (13)] quantifying the termination of the

bistable region for p < pc(v), and also predict the final-state tissue size Lm(∞) in (28).

Several illustrative studies are also carried out to demonstrate the possibility of applying our

model to the growth control strategy, including the controlled switching between final-state

growth and blow-up growth, the appropriate timing for effective boosted growth and catch-

up growth, and the design to achieve a target growth dynamics such as the engineered linear

growth. It is demonstrated that the knowledge of the analytic phase diagrams such as those

in Fig. 3 is very valuable for the success of implementing the growth control.

It is worth to note that in other studies of feedback-driven morphogenesis, both positive and

negative feedbacks are required to achieve the bistability. But in our model, mere negative

feedback regulation on the proliferation of stem cells can realize the bimodal growth. In

support of our finding that just negative feedback is sufficient for achieving growth
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bimodality, we note the following phenomenon was reported in experiments. In the mouse

olfactory epithelium (OE), a reduction in the strength of FGF signaling (due to loss of Fgf8

[21]), can lead to not just a smaller OE, but even to a complete absence of tissues (agenesis).

While agenesis due to loss of Foxg1 can be rescued by inactivation of Gdf11 [22],

interestingly, inactivation of even a single allele of Gdf11 in Foxg1 mutant animals can

restore the OE to full thickness. Such experimental findings were consistent with idea that

growth modes can be switched sensitively by negative feedback. In our model, the properties

of the negative feedback can be varied by changing the parameters γ, μ, or d, i.e., the

regulation strength, feedback production and death are all closely related to effectiveness of

the feedback and takes parts in the switching of the growth modes. Our findings can give

further inspirations on biological experiments that there may be more diverse channels for

the control of the growth of cell lineages and tissue sizes.

In the theoretical analysis of the stability of the spatially homogeneous solution, we focus on

the interior region of the tissue which is far away from the leading edge. For a steadily

growing tissue, the length scale of the leading edge with significant concentration gradient is

small compare to the bulk tissue, and hence we only focus on the stability of the bulk tissue

in the theoretical analysis. In reality or in the numerical solution, the concentration gradient

near the leading edge will lead to deviation from the uniform concentration profile, as seen

in the numerical plots. Also in Sec. IV, the spatial profiles are assumed to be step functions

to allow for the analytic results on the tissue size dynamics. Since the tissue size is mainly

dominated by the growth in the bulk (which depends on the bulk concentration), the

assumption of a step-function profile (neglecting the shape profile of the leading edge) is

reasonable. Such assumptions in the theoretical analysis can be justified from the fact that

the results of the tissue growth dynamics measured from the numerical solutions agree well

with the analytic predictions. On the other hand, one needs to resort to the numerical

solution for the detail concentration profile of the leading edge.

In our model, the stem cell might become extinct in the parameter regime of the final-state

growth. On the other hand, due to changes in environmental stimuli or changes in internal/

external conditions, the biological system might need to adapt and to re-start to grow again,

such as in the case of fast tissue regeneration. Then the system needs to be regulated by

other upstream pathways that would lead to the revival of the stem cell production, together

with the regulations that cause the change or switch of the parameters in the current status.

Such a possibility of adaptability to change the growth pattern can be extended in the present

framework by including possible upstream regulatory pathways.

One spatial dimension is considered in this work in the theoretical model (1), which can be

extended to higher dimensions by ∂z Vc0 ∇ ⋅ (V c0) and ∂z
2 ∇2, with a growth velocity

vector V . For higher spatial dimensions, the same USS solutions hold as in the one-

dimensional case, i.e., the same trivial and nontrivial fixed points will govern the growth fate

of the system, and hence one expects the conclusion in the present work is expected to hold

qualitatively also. For the simple case that V  is along the (outward) normal direction of the

tissue boundary, similar numerical schemes (as outline in Appendix B) can be applied as in

the one-dimensional case with the extra complication of updating a moving domain
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boundary, and the resulting dynamics is qualitatively similar. In general, the growth velocity

(direction and magnitude) is determined by the tissue mechanics and constitutive equations

of the cells niches and tissues. For instance, V can be assumed to be the passive velocity

governed by some generalized Darcy’s law as a result of the pressure induced by cell

proliferations as well as determined by the fluxes due to the interactions among the cells.

The resulting growth of the tissue, cell concentration and pressure field can also be solved

numerically. However, due to the complex interactions and the interplay of soft-tissue

mechanics, new spatial instabilities might arise that could lead to spatial patterns which is an

interesting problem to be explored in details.

The present work focused on a simple two-stage lineage cell model, it can also be extended

to include lineage of multiple stages [3] or branched lineages [23] with cross-regulations

across different lineages. The interplay among self-proliferation, differentiation and

dedifferentiation [15,24], and cell-cell interactions [25,26] can be incorporated to investigate

the effects on the growth dynamics. With the present theoretical basis, more sophisticated

clinical situations can be modeled with appropriate extension of the present model. For

example in cell transplantation, the growth dynamics for a transplanted new growing bud in

a mature tissue is the focus of regenerative medicine. The transplantation experiments in

mouse muscle showed that the myofiber associated satellite cells are allowed to repopulate

injured muscle [27]. In such experiments the transplanted cells, which are FGF2-treated

prior to transplantation, trigger an abnormally high rate of myoblast proliferation and

differentiation, which can be sustained without further intervention for years. Our model can

be extended to include two types of stem cells with different parameters corresponding to

the (original) final state and blow-up state (for the transplanted cells). The above

transplantation growth dynamics can be modelled by coupled partial differential equations of

the two stem cell concentrations and the feedback molecular concentrations.
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APPENDIX A: UNIFORM STEADY STATES AND THEIR STABILITY

1. General 𝒫(A) and linear stability analysis

First, we consider general negative feedback regulatory function 𝒫(A), which is assumed to

be a monotonic decreasing function. The USS is given by the equations for the fixed points

c0
2 = (2𝒫(A) − 1)c0, (A1)

vc0A = μ 1 − c0 − Ad . (A2)

Wang et al. Page 20

Phys Rev E. Author manuscript; available in PMC 2021 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



One can see easily that the trivial fixed point (c0, A) = (0, μ/d) always exists, and the

nontrivial fixed point(s) c0 * ≠ 0, A*  may exist which is given by the root of the following

equation for A*:

2(μ + vA)𝒫(A) = 2μ + (v − d)A, (A3)

and c0* is given by

c0* = 2𝒫 A* − 1, (A4)

= μ − A*d
μ + νA* . (A5)

It follows that for physical nontrivial solution of 1 ⩾ c0* > 0, one has 𝒫 A* > 1
2 , and using

(A3), it is also equivalent to

0 ⩽ A* < μ
d . (A6)

Notice that although in general the nontrivial fixed point c0* ≠ 0, it can be seen from (A3) and

(A5) that c0* = 0 at the specific value of (𝒫−1 always exists since 𝒫(A) is a monotonic

decreasing function)

μ = μ0 ≡ 𝒫−1 1
2 d . (A7)

The stability of the fixed point can be analyzed by considering small deviations from the

USS c0
(u), A(u)  with c0 ≃ c0

(u) + δc0 and A ≃ A(u) + δA. Then (3) is linearized to give

∂
∂t

δc0
δA

= −
vc0

(u) 1 + z∂z − v 2𝒫 A(u) − 1 −2vc0
(u)𝒫′ A(u)

μ + vA(u) vc0
(u) 1 + z∂z + d − D∂z

2
δc0
δA

. (A8)

For the trivial fixed point of (0, μ
d ), and deviation with spatial wave number q, i.e., δA eiqz,

the eigenvalues of the Jacobian matrix in (A8) can be calculated to be −(d + Dq2) and

ν(2𝒫( μ
d ) − 1). Hence the trivial fixed point will be stable for all wavelengths if 𝒫( μ

d ) < 1
2  and

becomes unstable for 𝒫( μ
d ) > 1

2 . Since 𝒫(A) is a monotonic decreasing function, this implies

that the trivial state is unstable for small values of μ
d  but becomes stable for sufficiently large

μ
d . In addition, a stable trivial fixed point of c0 = 0 corresponds to the controlled growth of

the tissue whose size approach a final-state saturated value. The saturation rate of final-state

growth tissue is given by the rate of c0 approaching the trivial USS fixed point and can be
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estimated from the corresponding Jacobian matrix whose eigenvalues and eigenvectors can

be calculated to give

λ = − d, (0, 1), (A9)

λ = − v 1 − 2𝒫 μ
d ,

ν 1 − 2𝒫 μ
d − 1

μ
d (1 + v)

, 1 . (A10)

Since the eigenvector corresponding to λ = −d has no component along the c0 axis, thus the

asymptotic dynamics of c0 relaxing to the stable c0 = 0 final state is governed by the other

eigenvalue. Hence the corresponding saturation timescale (τs) for the final-state growth is

then given by

τs
−1 = ν 1 − 2𝒫 μ

d . (A11)

For the nontrivial fixed point of c0* ≠ 0, A* , with δc0 and δA ~ eiqz, the Jacobian matrix

from (A8) is

J* =
−vc0*(1 + iqz) 2vc0*𝒫′ A*

−μ − vA* −vc0*(1 + iqz) − d − Dq2 . (A12)

Careful analysis reveals that the real part of the eigenvalue of J* is independent of the

imaginary term iqz, and hence the stability of the nontrivial USS is determined by J*|iqz=0,

whose trace and determinant are given by

Tr = − 2vc0* − d − Dq2, (A13)

det = vc0* vc0* + d + Dq2 + 2 μ + vA* 𝒫′ A* . (A14)

Since Tr < 0 and hence the nontrivial USS is stable (unstable) if det > 0 (<0). From (A7) and

(A14), it follows that at μ = μ0 is always a stability boundary since c0* (and hence the

determinant also) changes sign on it.

2. Fixed points of the uniform steady states and stability analysis for

P(A) = p

1 + (γA)m

Hereafter, we shall consider the case with 𝒫(A) = p

1 + (γA)m
, where m > 0 and is usually

taken to be positive integer as a Hill coefficient. First, for p < 1
2 , the trivial USS of 0, μ

d  is

the only fixed and there is no nontrivial fixed point of c0* > 0. Notice that for nontrivial
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uniform state with c0* > 0 [hence 1 ⩾ 𝒫 A* > 1
2 ], 1 ⩾ p > 1

2 . Equations (A3) and (A5) reveal

that c0* and γA* are determined only by the following four positive parameters: μ ≡ γμ
d ,

v ≡ v
d , m > 0, and p > 1

2 . In fact, it is also clear that the behavior of the dynamical system (1)

(by choosing the time and space in units of 1/d and D/d, respectively) is also governed

solely by these four dimensionless parameters. In particular, varying the parameter μ leads to

interesting bifurcation behavior as will be shown in Fig. 2.

a. Trivial uniform steady state and its stability

The trivial fixed point (c0, A) = (0, μ/d) always exists and is independent of the form of

𝒫(A), but the Jacobian matrix depends on 𝒫(A) and in this case is simply

J0 = d
v 2p

1 + μm − 1 0

−γμ(1 + v) −1
. (A15)

Hence for p < 1
2 , the trivial fixed point is always stable. And for 1

2 ⩽ p ⩽ 1, the trivial USS

will be stable (unstable) if 1 + μm > 2p( < 2p), or the stability boundary of the trivial USS is

μ = μ0(p) ≡ (2p − 1)
1
m . (A16)

b. Number of nontrivial uniform steady states

For 𝒫(A) = p

1 + (γA)m
 it is convenient to define X ≡ γA*, and from (A3) the nontrivial fixed

point γA* is given by the root of

F(X) ≡ (1 − v)Xm + 1 − 2μXm + (1 − v + 2pv)X
− 2μ(1 − p) = 0.

(A17)

For positive integer values of m, F(X) is a polynomial of degree m + 1 (or degree m if v = 1),

and we shall examine the possible number of positive roots below. Direct calculations give

F(0) = − 2μ(1 − p) ⩽ 0 and F′(0) = 1 + (2p − 1)v > 1 (since p > 1
2 ). Furthermore, one has

F′(X) = (1 − v)(m + 1)Xm − 2mμXm − 1 + 1 − v + 2pv, (A18)

F′′(X) = mXm − 2[(m + 1)(1 − v)X − 2(m − 1)μ] . (A19)

There will be an inflexion point (i.e., F′′ = 0) for X at X = 2(m − 1)μ
(m + 1)(1 − v) . Hence there is a

single inflexion point on the positive x axis for v < 1, while there is no inflexion point for

v ⩾ 1. Therefore it follows that there can only be one or three nontrivial positive root(s) for

v < 1 and none or 2 nontrivial positive root(s) for v ⩾ 1. Remarkably, the number of positive
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roots depends on the range of values of μ and can be calculated analytically as follows. The

critical value, μt at which the number of positive roots changes from 1 to 3 (for v < 1) or 0 to

2 (for v ⩾ 1) can be obtained from the solution of F(Xt ) = 0 and F′(Xt ) = 0, where Xt is the

corresponding value of the root at μt. Using (10) and (A18), with Y ≡ Xt
m and after some

algebra, one can show that Y satisfies a quadratic equation

(1 − v)Y2 − [mp(1 + v) + (2 − 3p)v + p − 2]Y
+ (1 − p)(1 − v + 2pv) = 0,

(A20)

whose solution Y± is given by

2(1 − v)Y± = [mp(1 + v) + (2 − 3p)v + p − 2]
± [mp(1 + v) + (2 − 3p)v + p − 2]2 + (1 − p)(1 − v + 2pv)

(A21)

with the corresponding μt given by

2μt
± =

m(1 − v)Y±
1 + 1

m

(m − 1)Y± − 1 + p . (A22)

Further analysis reveals that for the case of v < 1, there are three positive roots for

μt
+ < μ < μt

− and one positive root otherwise. μt
+ and μt

− approach each other as p decreases

and there is a threshold pt(v) below which the three-root regime vanishes. pt(v) can be

calculated by setting the square root in (12) to zero to give

pt(v) = 4m(1 − v)
1 + m2 (1 + v) + 2m(1 − 3v)

. (A23)

For v ⩾ 1, there are two positive roots for μ < μt
−, and no positive root otherwise. The

number of positive roots for the special case of m = 1 can also be figured out directly. The

results for the number of positive roots in F(X) with the corresponding conditions on the

values of μ are summarized in Table I.

It should be noted the nontrivial states given by the positive roots in Table I need to comply

with the physical requirement of c0* > 0, namely X < μ. As the value of μ changes, the

possibility of the emergence of new fixed points in pairs (via saddle-node bifurcations) can

lead to interesting transition for new states, as will be explored below.

c. Stability of the nontrivial uniform steady states

Next, we examine the stability of the uniform nontrivial states which is governed by the

determinant of the Jacobian J*|q=0 in (A12)
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det = vc0* d + vc0* + 2 μ + vA* 𝒫′ A* . (A24)

With 𝒫(A) given by (2), c0* = 2𝒫 A* − 1 and X ≡ γA*, one has

det = d2vc0* 1 + vc0* − 2mp(μ + vX) Xm − 1

1 + Xm 2 (A25)

X satisfies F(X) = 0 from which one can express X in terms of Y ≡ Xm as

X = 2μ(1 − p + Y)
(1 − v)Y + 1 − v + 2pv (A26)

On substituting (A26) in (A25) and after some algebra, the determinant can be written as

det =
d2vc0*(Y + 1)

1 − p + Y {(1 − v)Y2 − [mp(1 + v) + (2 − 3p)v

+ p − 2]Y + (1 − p)(1 − v + 2pv)} .
(A27)

It is clear that det contains the same quadratic factor in Y as in (A20) and hence the

boundaries for the emergence of new pair of roots, μt
± in (11) are also the stability

boundaries det = 0.

In addition, for the special value of μ = μ0(p) ≡ (2p − 1)
1
m  [which is the stability boundary of

the trivial USS (9)], F(X) in (10) becomes

F(X) = (1 − v)Xm + 1 − 2μXm + 1 + vμm X − μ 1 − μm (A28)

It is easy to verify directly in (A28) that F(X = μ) = 0, and hence X = μ is always a nontrivial

root on the μ = μ0(p) curve for arbitrary values of v. Furthermore, since

c0* = 2p/ 1 + Xm − 1 = 0, thus the corresponding det vanishes [see Eq. (A8)] on the μ0(p)

line, regardless of the values of v. This result also agrees with (A7). Hence the μ0(p) line is

also the stability boundary for one of the nontrivial roots.

APPENDIX B: NUMERICAL METHODS

Since the dynamics of the regulatory molecules is much faster than that of the tissue growth

rate, it is reasonable to assume the quasistatic condition (with V = 0 and ∂tA = 0, but ∂zV ≠

0) for the dynamics of A in the numerical computation. By choosing the time and space in

units of 1/d and D/d, respectively, from (3) the steady-state distribution of A in a fixed

spatial domain of [0, Lm] obeys
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∂z
2 − 1 + vc0(z) A + s(z) = 0 (B1)

where s(z) = μ
d 1 − c0(z) , together with the no flux boundary conditions at z = 0 and z = Lm,

∂zA 0 = ∂zA
Lm

= 0 (B2)

Equation (B1) with boundary conditions (B2) can be solved using the Green’s function

approach. In particular, for the case of c0 → 0 or v = 0, the Green’s function can be derived

analytical to be

G z, z′ =
coshz<cosh Lm − z>

sinhLm
, (B3)

where z> (z<) denotes the greater (lesser) of z and z′. The quasistatic solution of A is then

given by

Av 0(z) = μ/d
sinhLm

∫
0

z
dz′coshz′cosh Lm − z 1 − c0 z′

+∫
z

Lm
dz′coshzcosh Lm − z′ 1 − c0 z′ .

(B4)

For v > 0 and c0 > 0, (B1) with boundary conditions (B2) are solved numerically for given

c0(z). Space is discretized into grid points of mesh size Δx in the range of 0.1 to 0.2. Since

(B1) is a linear ordinary differential equation and hence using the finite different method, the

discretized system can be solved conveniently by linear algebra with a home-made code

using the LAPACK package [28]. For given initial profile of c0(z) and A(z), which are

usually taken to be step functions, time is marched forward with a fixed time step δt = 10−3–

10−4. At a given time t with given c0(z, t) and Lm(t), A(z) is numerically solved from (B1)

on the grid points. Then Lm(t + δt) at the next time step is advanced forward using (6) and

(15), and c0(z, t + δt) computed from (4). From the initial c0(z, 0), the above calculations are

repeated for each forward time step and hence the numerical solutions for the dynamics can

be obtained.
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FIG. 1.
Schematic picture showing a two-stage cell lineage model with negative feedback. c0 and c1

are the concentration of SC and TD cell, respectively. (a) SC replicates with a rate of ν and

has a probability 𝒫 are of duplicating itself and 1 − 𝒫 of differentiating into two TD cells.

(b) The molecule A, which negative regulates 𝒫, is produced by the TD cells at a rate μ, and

decays with a rate d.
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FIG. 2.

The trivial (green curve) and nontrivial (blue curve) fixed points γA as a function of μ ≡ γμ
d

or m = 2. The solid lines show the stable states and the dashed lines show the unstable states.

The corresponding physical (c0 ⩾ 0) and stable c0 states are also shown by the red curve. (a)

v ≡ v
d = 0.5, p = 0.6; (b) v = 0.5, p = 0.74; and (c) v = 0.5, p = 0.9. The red vertical dotted

lines shows the hysteresis behavior and the bistable phase region lies between them. (d)

v = 2, p = 0.52; (e) v = 2, p = 0.6; and (f) v = 2, p = 0.9.
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FIG. 3.

The phase diagram of μ ≡ γμ
d  vs p with m = 2. The phase boundaries for the number of roots

from equation (11), μt
+ and μt

− are denoted by blue dashed and red dot-dashed curves,

respectively. The μ = μ0(p) ≡ (2p − 1)
1
m  curve is denoted by a green dotted curve separating

the blow-up growth (region I) and final-state growth (region II). The bistable regime

(hatched region III) in which the c0 = 0 (trivial state) and c0 > 0 (nontrivial state) uniform

steady states coexist is marked by the shaded region between the μt
− and μ0 curves. (a)

v ≡ v
d = 0.5. The critical pt(ν) given by (A23) and pc(ν) given by (13) are shown by the

vertical dot-dashed arrow and solid arrow, respectively. (b) Similar phase diagram for v = 2.
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FIG. 4.
(a) The critical value at which the coexistence regime vanishes, pc [given by (13) as a

function of ˜ν for different values of the Hill coefficient], m = 1 (dashed black), m = 2 (solid

blue), and m = 4 (dot-dashed red). (b) The size of the coexistence regime Δμ ≡ μt
− − μ0

[given by (11) and (9)] as a function of p for different values of m for v = 0.5 and (c) for

v = 2.
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FIG. 5.
Numerical solution of the lineage model with m = 2, v = 0.5, and p = 0.6 for μ = 0.2 inside

region I of the phase diagram in Fig. 3(a) corresponding to the case of blow-up tissue

growth. Time evolution of the (a) SC distributions c0(z) and (b) feedback molecule

concentrations A(z). The nontrivial USS value c0* is marked by the horizontal dashed line in

(a). Panels (c) and (d) are similar to (a) and (b) for μ = 2 inside region II of the phase

diagram in Fig. 3(a) corresponding to the case of saturated tissue growth to the final state.

Time and space are in units of 1/d and D/d, respectively. Distribution curves in (a) and (b)

as well as (c) and (d) are separated by a time of 10 and 5 units, respectively.
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FIG. 6.
Numerical solution of the lineage model with m = 2, v = 2 and p = 0.6 for μ = 0.2 inside

region I of the phase diagram in Fig. 3(b) corresponding to the case of blow-up tissue

growth. Time evolution of the (a) SC distributions c0(z), (b) feedback molecule

concentrations A(z). Panels (c) and (d) are similar to panels (a) and (b) for μ = 2 inside

region II of the phase diagram in Fig. 3(a) corresponding to the case of saturated tissue

growth to the final state. Time and space are in units of 1/d and D/d, respectively.

Distribution curves in (a) and (b) as well as (c) and (d) are separated by a time of 3 and 0.5

units, respectively.
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FIG. 7.
Numerical solution of the lineage model with m = 2, v = 0.5, and p = 0.9 for μ = 1 inside the

bistable region of the phase diagram in Fig. 3(a). Time evolution of the (a) SC distributions

c0(z), (b) feedback molecule concentrations A(z), for initial concentration of c0 = 0.1. Panels

(c) and (d) are similar to panels (a) and (b) but for initial concentration of c0 = 0.5.

Distribution curves in (a) and (b) as well as (c) and (d) are separated by time intervals of 10

and 2, respectively. Time and space are in units of 1/d and D/d, respectively.
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FIG. 8.
The A vs c0 phase plane portrait obtained from (7) and (8) showing (a) the case of final state

with p = 0.6, μ = 0.8; (b) the case of blow-up state with p = 0.6, μ = 0.2; and (c) in the

bistable regime with p = 0.9, μ = 1. In all cases, v = 0.5 and γ = 1. The stable and unstable

fixed points are denoted by a filled and open circles, respectively.
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FIG. 9.
Numerical results on the tissue size dynamics of the lineage model with m = 2 for (a) μ = 2
corresponding to the case of the tissue size is governed by the final state for v = 0.5 and 2.

The solid curves are fitting of results of the form Lm(t) = a0 + a1e
− t

τs . (b) Semilog plot of the

tissue size as a function of time for μ = 0.2 corresponds to the case of the blow-up growth.

The straight lines in the large time regimes are fitting using an exponential form from which

the exponential growth timescales τ are obtained. Time and Lm are in units of 1/d and D/d
respectively.
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FIG. 10.
Different tissue growth modes in the bistable region. (a) The tissue size Lm(t ) for the

system in Fig. 7 under three different initial values of c0. Time and Lm are in units of 1/d and

D/d, respectively. (b) The growth speed of the leading edge of the tissue as a function time

in (a) for the initial c0 = 0.2, showing a peak at a time τsw (marked by vertical dashed line)

the accelerated growth is switched to retarded growth.
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FIG. 11.
Characteristic timescales (in unit of 1/d) for the controlled growth and blow-up growth, for

m = 2. Symbols are timescales obtained from fitting of the tissue size from the numerical

solutions. Curves are the corresponding theoretical predictions. (a) μ = 2 for the case of

controlled growth to the final state. Theoretical predictions are from (29). (b) μ = 0.2 for the

case of blow-up growth. Theoretical predictions are from (22).

Wang et al. Page 38

Phys Rev E. Author manuscript; available in PMC 2021 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 12.
Numerical results on the tissue size dynamics of the lineage model showing the S-shape

growth curve, with m = 2 for (a) leading edge tissue size as a function of t for μ = 0.48, p =

0.6, and v = 0.5 and 2. (b) The instantaneous growth speed of the leading edge of the tissue

in (a) for v = 0.5 and initial SC cell density c0(0) = 0.1 and 0.2. The maximum of the speed is

marked by a vertical dashed line, which occurs at t = τsw with the corresponding SC cell

density decay to c0
sw ≃ 0.05 (marked by dashed horizontal arrow), which agree reasonably

well with the theoretical prediction [from (30)] of 0.047 and is independent of the values of

v. Time and Lm are in units of 1/d and D/d, respectively.
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FIG. 13.
(a) Tissue size time evolution to the final state from numerical solutions for v = 0.5 and 2

(symbols) with c0(0) = 0.1 and p = 0.4. The theoretical approximations from (27) (with f =
0.5) for v = 0.5 (solid curve) v = 2(dashed curve) are also shown. Time and Lm are in units of

1/d and D/d, respectively. (b) Normalized Lm(∞) as a function of μ measured from the

numerical solutions at long times. The theoretical results from (28) are also shown.
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FIG. 14.
Switching of growth modes by pulse control of the regulatory molecular concentration. (a)

Tissue size growth dynamics with the initial growth condition as in Fig. 7(a). Pulse control

of A is applied for 5 ⩽ t ⩽ 15 (between the vertical dotted lines) by keeping A = 0.2 in this

period. The original final-state growth is boosted to the blow-up mode. (b) Tissue size

growth dynamics with the initial growth condition as in Fig. 7(c). Pulse control of A is

applied for 5 ⩽ t ⩽ 15 by keeping A = 1 in this period. The original blow-up growth is

suppressed to the final-state mode. Time and Lm are in units of 1/d and D/d, respectively.
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FIG. 15.
Tissue designed to grow linearly by feedback control of the concentration of the regulatory

molecules. m = 2. (a) Time evolution of the c0(z) profiles for v = 0.5, each curve is separated

by time intervals of 60 units. Time and space are in units of 1/d and D/d, respectively. (b)

Tissue size as a function of time showing the linear growth behavior for v = 0.5 and 2. Time

and Lm are in units of 1/d and D/d, respectively.

Wang et al. Page 42

Phys Rev E. Author manuscript; available in PMC 2021 November 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 16.
(a) Catch-up growth modeled by a short duration of increase in the progenitor cell

proliferation rate parameter v. The original final state grows with p = 0.8, μ = 1, c0 = 0.3, and

v = 0.5 (dashed curve). A catch-up growth occurs at an early stage (solid curve) in 5 ⩽ t ⩽ 7

(between two vertical solid lines) during which v = 2. Another similar catch-up growth

occurs at a later stage (dot-dashed curve) in 10 ⩽ t ⩽ 12 (between two vertical dot-dashed

lines) during which v = 2. (b) Boosted growth modeled by a pulse control of the secretion

rate parameter of the regulatory molecules, μ. The original growth of the tissue is with

parameters m = 2, v = 0.5, μ = 2, and p = 0.6. The tissue size growth curves are shown for the

original (dashed curve), early boosted (solid curve), and late boosted (dot-dashed curve)

growths. An early pulse control of μ is applied for 5 ⩽ t ⩽ 15 with the change μ = 0.1 in this

period. Another similar boosted pulse control is also applied but at a later time in 10 ⩽ t ⩽
20. The vertical lines show the corresponding boosted periods during which μ is changed.

Time and Lm are in units of 1/d and D/d, respectively.
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TABLE I.

Table for the number of real and positive roots of F(X) in (10). μt
± are given by (12) and (11).

m > 1 m = 1

v < 1 3 if μt
+ < μ < μt

−
, 1 otherwise 1

v > 1 2 if μ < μt
−

, 0 otherwise 2 if μ < μt
−

, 0 otherwise

v = 1 2 if μ < μt
−

, 0 otherwise 1 if μ < p, 0 otherwise
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