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Abstract Simulation estimators (Lerman and Manski 1981; McFadden, Eco-
nometrica 57(5):995–1026, 1989; Pakes and Pollard, Econometrica 57:1027–
1057, 1989) have been of great use to applied economists and marketers.
They are simple and relatively easy to use, even for very complicated empir-
ical models. That said, they can be computationally demanding, since these
complicated models often need to be solved numerically, and these models
need to be solved many times within an estimation procedure. This paper
suggests methods that combine importance sampling techniques with changes-
of-variables to address this caveat. These methods can dramatically reduce
the number of times a particular model needs to be solved in an estimation
procedure, significantly decreasing computational burden. The methods have
other advantages as well, e.g. they can smooth otherwise non-smooth objective
functions and can allow one to compute derivatives analytically. There are also
caveats—if one is not careful, they can magnify simulation error. We illustrate
with examples and a small Monte-Carlo study.

Keywords Simulation estimators · Importance sampling · Monte-Carlo study

JEL Classifications C13 · C16 · C63

1 Introduction

Simulation methods such as Simulated Maximum Likelihood (SML) (Lerman
and Manski 1981) and the Method of Simulated Moments (MSM) (McFadden
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1989; Pakes and Pollard 1989) have great value to applied economists and
marketers estimating structural models. However, use of these methods is
still limited by computational constraints. This is because one often needs
to numerically solve the equilibria of these models many times within an
estimation procedure. Often such numeric procedures are CPU intensive.
Examples include 1) complicated static equilibrium problems, e.g. discrete
games or complicated auction models, and 2) dynamic programming with
large state spaces or significant amounts of heterogeneity. In these estimation
procedures, straightforward simulation involves solving the equilibrium of
such a model numerous times, typically once for every simulation draw; for
every observation; for every parameter vector that is ever evaluated in a
numeric optimization procedure. If one has N observations, performs S sim-
ulation draws per observation, and numeric optimization requires R function
evaluations, estimation requires “solving” the model N ∗ S ∗ R times. This can
be unwieldy for these complicated problems.

We suggest using a change of variables and importance sampling to help
alleviate this problem. Importance sampling (Kloek and Van Dijk 1978) is a
very simple numerical integration technique that has been used for various
purposes in the prior literature, e.g. for reducing levels of simulation error (e.g.
Berry et al. 1995), to smooth (e.g. McFadden 1989, Gasmi et al. 1991) or to aid
in Bayesian estimation (e.g. Geweke 1989). We show that importance sampling
can be also be used to dramatically reduce the number of times a complicated
model needs to be solved within SML and MSM estimation procedures. With
this change of variables and importance sampling one only needs to solve the
model N ∗ S times or S times, instead of N ∗ S ∗ R times. Since R can be quite
large, particularly as the dimension of the parameter vector becomes large, this
can lead to very significant time savings.

There are also a number of additional benefits of our importance sampling
procedure. As illustrated in a simple model by McFadden (1989), importance
sampling procedures can smooth objective functions that would be non-smooth
using straightforward simulation techniques. Second, the objective functions
generated by our procedure will often have analytic first (and second) deriv-
atives. This can also generate time savings and increase accuracy when one is
using derivative-based optimization procedures, because one does not need
to use numerical derivatives. Lastly, the importance sampling technique is
easily parallelizable, which can generate increased time savings with modern
multiprocessor computers.

There is another strand of literature on computational methods in dynamic
structural models, starting with Hotz and Miller (1993), and continuing with
Hotz et al. (1994), Aguirregabiria and Mira (2002, 2007), Jofre-Bonet and
Pesendorfer (2003), Bajari et al. (2007a), Pakes et al. (2007), Pesendorfer and
Schmidt-Dengler (2008), and Bajari et al. (2008). These are useful and popular
techniques, and they can usually reduce computation time by more than our
methods (since they often never require explicit solution of equilibrium strate-
gies). But we believe that our suggested techniques can still be valuable, since
they are very straightforward to use in models that allow for lots of unobserved
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heterogeneity (e.g. consumer or firm-specific, time-invariant unobservables).
In contrast, the HM-related techniques can become considerably harder to
use when there is more unobserved heterogeneity. Our importance sampling
approach is actually more related to the approaches suggested by Keane and
Wolpin (1994) and Rust (1987). We discuss how they relate and how the two
approaches can be complementary.1

Since a prior working paper version of this paper (Ackerberg 2001), a
number of researchers have used our procedure successfully, e.g. Hartmann
(2006), Pantano (2008), Bajari et al. (2009a), Goettler and Clay (2009). Also,
Bajari et al. (2007b) (BFR) (and Bajari et al. 2009a) have suggested a related
set of techniques. Their techniques can reduce computational burden of nu-
merically challenging dynamic programming problems in a way similar to our
importance sampling based techniques. Both their approach and our approach
essentially presolve the dynamic programming model a fixed number of times,
and input these pre-solved solutions into an optimization problem. Deciding
which is preferable for a given situation might depend on whether one prefers
to work with parameterized continuous distributions, or with more discrete
non-parametric approximations. Our suggested techniques/models are more
naturally parametric (of course, these parametric specifications can be chosen
flexibly), while the BFR techniques are more naturally non-parametric. An
advantage of the BFR technique is that in many cases, computation of the para-
meter estimates reduces to a linear programming problem. Numerically, these
are easier and more reliably solved than the non-linear programming problems
generally used in structural estimation (and in our suggested techniques).
One the other hand, because it is naturally non-parametric, one may need
considerable amounts of data to use the BFR approach effectively, especially
with high dimensional unobserved heterogeneity.

While these ideas can potentially be very powerful in reducing computa-
tional burden, the use of importance sampling is not without an important
caveat. Importance sampling can dramatically change variance properties of
simulation based estimators (either increasing or decreasing simulation error).
It has the potential to significantly increase levels of simulation error, par-
ticularly with high dimensional unobserved heterogeneity. This can be much
more dangerous than straightforward simulators that don’t involve importance
sampling. Often, standard simulation estimators have a very useful property—
there is a natural bound on the level of simulation error relative to the level
of sampling error. Importance sampling simulators do not generally have such
a bound. In some cases, the variance of the simulation error can (in theory)

1There are at least two other sets of work that address similar computationally burdensome
equilibrium models. Imai et al. (2009) and Norets (2009) suggest computational techniques
for Bayesian estimation of dynamic programming models. Judd and Su (2008) suggest treating
computationally burdensome functions as the constraints of a numeric nonlinear programming
approach. Computational burden can be decreased with this approach because the equilibrium
constraints and the optimization problem are being solved simultaneously (in contrast to a
“nested” fashion, which is typically computationally inefficient).
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be infinite. Hence, one needs to be very careful in applying this method-
ology. We discuss these issues in depth through the paper, particularly in
Section 5, and these issues are also illustrated in the Monte-Carlo experiments
in Section 6.

2 The basic MSM estimator

Consider a parametric econometric model

yi = f (xi, εi, θ0)

where xi and εi are vectors of predetermined variables, observed and unob-
served to the econometrician respectively. yi is a vector of dependent variables
determined within the model.2 θ0 is a finite-dimensional parameter vector
that the econometrician is trying to estimate. Suppose that the conditional
distribution of unobservables p(εi | xi, θ0) is specified up to a subset of the
parameters. p(εi | xi, θ0) could be a fairly simple parametric distribution (e.g.
normal, exponential, logistic), or a more flexible distribution within a paramet-
ric framework, e.g. a mixture of normals.

Given data {xi, yi}N
i=1 generated at some true θ0, a simple MSM estimator of

θ0 can be formed by examining the generic moment:

E
[
yi − E

[
f (xi, εi, θ) | xi

] | xi
]

Since yi = f (xi, εi, θ0), this moment is identically zero at θ = θ0. So is the
expectation of any function h(xi) of the conditioning variables multiplied by
the difference between y and its expectation, i.e.

E
[(

yi − E
[

f (xi, εi, θ) | xi
]) ⊗ h(xi)

] = 0 at θ = θ0 (1)

As a result, the value of θ , say θ̂ , that sets the sample analog of this moment

GN(θ) = 1

N

∑

i

[(
yi − E

[
f (xi, εi, θ) | xi

]) ⊗ h(xi)
]

equal to zero or as close as possible to zero is a consistent estimator of θ0

(we assume away possible identification problems, which this “computational”
paper ignores). Appropriate regularity conditions ensure asymptotic normality
of θ̂ (Hansen 1982).

Simulation is often used when the function E
[

f (xi, εi, θ) | xi
]

is not easily
computable. The straightforward way of simulating this expectation is by
averaging f (xi, εi, θ) over a set of S random draws (εi1, ......., εiS) from the
distribution p(εi | xi, θ), i.e.

Ê fi(θ) = 1

S

∑

s

f (xi, εis, θ) (2)

2Note that the vector yi can contain higher order moments of the outcome variables (e.g. y2
i , y1i y2i,

etc.).
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Ê f (θ) is trivially an unbiased simulator of the true expectation E
[

f (xi, εi,

θ) | xi
]
. McFadden (1989) and Pakes and Pollard (1989) prove statistical

properties of the MSM estimator that sets the simulated moment vector

ĜN(θ) = 1

N

∑

i

[
(yi − Ê fi(θ)) ⊗ h(xi)

]

as close as possible to zero. Perhaps most important of these statistical
properties is the fact that these estimators are typically consistent for finite
S (in contrast, SML estimators are typically not consistent unless S → ∞ at a
certain rate). The intuition behind this result is that the simulation error (i.e.
the difference between the simulated expectation and the true expectation,
Ê f i(θ) − E

[
f (xi, εi, θ) | xi

]
) averages out over observations as N → ∞.3

Note that this simulation procedure can be thought of as a data generating
procedure. Each draw εis generates simulated dependent variables yis. Mo-
ments of these simulated yis’s are then compared to moments of the observed
yi’s in the data. This illuminates how general this estimation procedure is. To
estimate the model, one only needs to be able to simulate data according to
the model.

3 Importance sampling and a change of variables to reduce
computational burden

A significant caveat of the above simulation procedure is that f (xi, εis, θ)

may be time-consuming to compute, often requiring numeric methods. The
problem is that the arguments of f (xi, εis, θ) change across observations (xi),
across simulation draws (εis), and across different parameter vectors (θ).
Hence, in an estimation procedure, f (xi, εis, θ) typically needs to be evaluated
N ∗ S ∗ R times—once for each observation (N), for each simulation draw
(S), for each parameter vector ever evaluated by one’s optimization routine
(R denotes this total number of function evaluations needed for optimization).
This is particularly problematic as the number of parameters increases since
R can increase quickly in the number of parameters. This paper shows how
importance sampling and a change of variables can be used to significantly
reduce the number of times that f (xi, εis, θ) needs to be evaluated.

Importance sampling (Kloek and Van Dijk 1978) addresses the simulation
of E

[
f (xi, εi, θ) | xi

]
. Assume p(εi | xi, θ) is a continuous distribution, and

consider an arbitrary integrable p.d.f. g(εi | xi) which 1) has non-zero density

3Another nice property of these estimators is that the extra variance imparted on the estimates
due to the simulation is relatively small—asymptotically it is 1/S. This means, e.g., that if one uses
just 10 simulation draws, simulation increases the asymptotic variance of the parameter estimates
by just 10%. It is important to note that this property will not hold for the importance sampling
procedure suggested here.
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over the support of ε, and 2) does not depend on θ . Dividing and multiplying
by g(εi | xi) we have:

E
[

f (xi, εi, θ) | xi
] =

∫
f (xi, εi, θ)p(εi | xi, θ)dεi

=
∫

f (xi, εi, θ)
p(εi | xi, θ)

g(εi | xi)
g(εi | xi)dεi

Importance sampling notes that instead of drawing from p(εi | xi, θ) and
forming Eq. 2, one can take random draws from g(εi | xi) and form:

Ef i(θ) = 1

S

∑

s

f (xi, εis, θ)
p(εis | xi, θ)

g(εis | xi)

Like Ê f i(θ), Ef i(θ) is also an unbiased simulator of E
[

f (xi, εi, θ) | xi
]
. Un-

fortunately, using Ef i(θ) in an estimation procedure does not solve the com-
putational problem - it also requires computing f N ∗ S ∗ R times. We need
to combine this importance sampling with a change of variables to solve this
computational issue.

Consider the following property of a parameterized econometric model:

Property (CS)—“Constant Support”: The econometric model yi = f (xi,

εi, θ) can be expressed as yi = f̃ (u(xi, εi, θ)), where the “change-of-
variables” vector-valued function u(xi, εi, θ) satisfies:

I) ∀xi, θ , the function u(xi, εi, θ) and the distribution p(εi | xi, θ) are such
that one can analytically (or quickly) compute the change of variables
density of the random vector ui = u(xi, εi, θ)

II) ∀xi, the support of the random vector ui = u(xi, εi, θ) does not depend
on θ .

For a model to satisfy Property (CS) it needs to be able to be expressed
in a form where the finite set of parameters enter the model only through
functions u which have I) easily computable change-of-variable densities and
II) supports that do not depend on θ . For I) to hold, the u functions will
generally need to have fairly simple structure. In contrast, the f̃ function
will typically be complicated, since we are concerned with cases where the
original function f is complicated or time consuming to evaluate. So in a
sense, rewriting yi = f (xi, εi, θ) as yi = f̃ (u(xi, εi, θ)) divides a complicated
original model f into a model with two components, one simple (u) and one
complicated ( f̃ ).

Note that for II) to hold, one needs a sufficient amount of heterogeneity in
one’s model. For example, one cannot have an element of θ enter u through
an element (recall that u is a vector) that does not depend on some of the
unobservables εi, e.g.. u(xi, θ) and u(θ). The support of such a deterministic
function would necessarily depend on θ , contradicting II).

Many commonly used econometric models satisfy Property (CS)—this is
exhibited in examples later. We will also discuss cases where it may not be
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satisfied and show how one can either 1) still benefit from computational
savings using our technique, or 2) how an econometric model can be perturbed
to satisfy Propert (CS).

Assuming (CS) is satisfied, let p(ui | xi, θ) denote the density of ui obtained
by the change of variables formula. We can then write

E
[

f (xi, εi, θ) | xi
] =

∫
f (xi, εi, θ)p(εi | xi, θ)dεi

=
∫

f̃ (u(xi, εi, θ))p(εi | xi, θ)dεi

=
∫

f̃ (ui)p(ui | xi, θ)dui

Next, combine this change of variables with an importance sampling density
for ui, g(ui | xi), resulting in:

E
[

f (xi, εi, θ) | xi
] =

∫
f̃ (ui)

p(ui | xi, θ)

g(ui | xi)
g(ui | xi)dui

This integral can be simulated using:

Ẽ f i(θ) = 1

S

∑

s

f̃ (uis)
p(uis | xi, θ)

g(uis | xi)
(3)

where the uis’s are draws from g. One can then consider the importance
sampling simulation estimator that sets the sample moment

G̃N(θ) = 1

N

∑

i

[
(yi − Ẽ f i(θ)) ⊗ h(xi)

]

as close as possible to zero.
The most important aspect of Eq. 3 for our purposes is that when θ changes,

the uis’s can be held constant. As a result, f̃ does not need to be recomputed
when θ changes. The only components of Eq. 3 that need to be reevaluated
as θ changes are the numerators of the importance sampling weights, i.e.
p(uis | xi, θ). Unlike recomputing the complicated f (or f̃ ), recomputing this
change of variables density is typically not computationally burdensome.4 In
summary, an estimation procedure using Ẽ f i(θ) only needs to compute the
complicated part of the model N ∗ S times, rather than N ∗ S ∗ R times with
the conventional simulator Ê f i(θ).

Under appropriate regularity conditions, the estimator using the simula-
tor Ẽ f i(θ) can be shown to be consistent and asymptotically normal using,
e.g. Theorems 3.1 and 3.3 of Pakes and Pollard (1989). However, it is very

4For example suppose u(xi, εi, θ) = f (xi, θ) + εi and that εi is multivariate normal. Then the
distribution of ui is also multivariate normal, and computation of p is trivial. Computation of p
is also trivial for more flexible distributions, e.g. mixtures of normals.
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important to note that these regularity conditions will tend to be considerably
stronger than what is necessary when using the conventional simulator Ê f i(θ).
The problem is that importance sampling can dramatically affect the precision
of simulation (both positively and negatively). The variance of the simulator
Ẽ f i(θ) will depend on the variance of the importance sampling weights
p(uis|xi,θ)

g(uis|xi)
. This variance depends on the behavior of p and g in the tails, and can

be infinite even if f̃ is bounded. So, for example, it is possible that to obtain
the theoretical result, one may need to artificially bound the support of ui (e.g.
ui ∈ [−R, R] for some large R) in order to theoretically bound the simulation
error. This is in stark contrast with the conventional simulator Ê f i(θ), for
which the level of simulation error is naturally bounded (if f is bounded)
because the importance sampling weights are implicitly always equal to 1.

These additional regularity conditions are not just a theoretical curiosity.
They have important practical implications. Conventional pure frequency
simulators like Ê f i(θ) often have the property that the simulation inflates the
asymptotic variance of the parameter estimates by proportion 1

S (Pakes and
Pollard 1989; McFadden 1989). Importance sampling simulators do not have
this property—the additional variance imparted by the simulation depends on
the choice of g and can be significantly greater than 1

S . As a result, one needs
to pay particular attention to the issue of simulation error, much more so than
with conventional simulators.5 We discuss this issue in more detail in Section
5.3, including ideas on how to choose g. For more on the general problems
and issues that can arise using importance sampling simulators, see Geweke
(1989).

Additional computational savings are possible if one chooses an importance
sampling density g(ui | xi) that is the same across observations, i.e. g(ui). In this
case, the draws uis’s also can be held constant across observations i. Hence,
in this case h only needs to be computed S times. One caveat here is that
using the same simulation draws across observations may limit the extent to
which simulation error averages out across observations, and may change its
asymptotic properties.

Note that Ẽ f i(θ) is not much harder to program than Ê f i(θ)—one only
needs some additional density calculations. In addition, for a similar reason
as noted by Bajari et al. (2007b), the S necessary calculations of f̃ are done
before the search procedure. Hence, the calculations can easily be parallelized
to take advantage of modern multiprocessor computers.

Lastly note that there is some intuition behind our alternative simulator
Ẽ f i(θ). As θ changes, rather than holding each of the εis and their implicit

5Obviously, one cannot simply standard errors for the importance sampler by simply multiplying
the normal GMM variance formulas (i.e. ignoring simulation error) by 1 + 1

S . Instead, to adjust
the standard errors, one would need to formally estimate the variance in Ẽ f i(θ). This can be done
using the variation in f̃ (uis)

p(uis|xi,θ)
g(uis|xi)

across simulation draws.
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weights ( 1
S ) constant, this procedure holds the uis constant and varies the

“weights”
(

1
S

p(uis|x,θ)

g(uis)

)
on each of the draws. Put another way, rather than

changing our “simulated observations” when we change θ , we change the
weight which we put on each “simulated observation”. This avoids needing to
recompute the complicated f̃ for new simulated observations. Another way to
think about this estimator is that the estimator uses the simulation draws to in
a sense “span” parameter space. The simulator is approximating the objective
function at different parameter values by reweighting these simulation draws
in different ways.

3.1 Application to simulated maximum likelihood problems

Our importance sampling methodology can also be applied to Simulated Max-
imum Likelihood (SML) estimation procedures. SML estimators are not quite
as general as MSM estimators. One reason is that straightforward SML is often
a bit complicated with continuous outcome variables (although measurement
error methods suggested by Keane and Wolpin 2000 can address this issue).
However, SML is typically more efficient and often easier to use than MSM in
panel settings, and thus has frequently been applied to models with discrete
outcome variables, e.g. dynamic programming discrete choice models (e.g.
Erdem and Keane 1996; Ackerberg 2003; Crawford and Shum 2005; Hendel
and Nevo 2006; and Hartmann 2006).

In these types of models, the likelihood function for observation i typically
has the form of an integral:

Li =
∫

f (yi | xi, εi, θ)p(εi | xi, θ)dεi (4)

where εi represents unobserved heterogeneity and f (yi | xi, εi, θ) is the dis-
tribution of the observed outcome variables conditional on this unobserved
heterogeneity. In panel situations, yi is typically a vector of observations
for i over time. Often these models include unobservables in the form of
analytically integrable i.i.d. choice specific logit errors (following Rust 1987),
in which case f (yi | xi, εi, θ) is the probability (implied by the logit errors)
of the observed outcomes yi, conditional on both xi and the unobserved
heterogeneity εi. Computing f (yi | xi, εi, θ) often requires solving a dynamic
discrete choice optimization problem.

Straightforward simulation involves taking S draws from p(εi | xi, θ) and
forming the simulated likelihood:

L̂i = 1

S

∑
f (yi | xi, εis, θ)

As above, this will generally require resolving the dynamic programming
problems as one searches over θ in the optimization routine.
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Suppose we can find a vector-valued, change-of-variables function ui =
u(xi, εi, θ) such that f (yi | xi, εi, θ) = f̃ (yi | u(xi, εi, θ)) and where u(xi, εi, θ)

satisfies the 2 conditions of Property (CS). Then we can write:

Li =
∫

f̃ (yi | u(xi, εi, θ))p(εi | xi, θ)dεi

=
∫

f̃ (yi | ui)p(ui | xi, θ)dui

=
∫

f̃ (yi | ui)
p(ui | xi, θ)

g(ui | xi)
g(ui | xi)dui

and use the importance sampling simulator:

L̃i = 1

S

∑
f̃ (yi | uis)

p(uis | xi, θ)

g(uis | xi)

where the uis’s are S draws from the distribution g. Again, θ only enters
this simulated likelihood through the density function p, so as θ changes,
one does not need to recompute f̃ .6 With appropriate regularity conditions,
standard results such as those in Gourieroux and Monfort (1991) or Train
(2003) apply, and one obtains consistency, asymptotic normality and efficiency
as long as S increases at a rate faster than

√
N.7,8 However, analogous to

the discussion regarding MSM, these regularity conditions have important
practical implications. Specifically, one needs to be much more careful about
simulation error when using importance sampling simulators (as discussed
further in Section 5.3). Example 1 below provides a more concrete example
of applying our technique to SML estimation.

4 Examples

We next provide 3 simple examples of applications of our importance sampling
simulator. This is useful in that it shows the wide range of problems to which it
can be applied. They also aid in interpreting Property (CS) and help illustrate
important caveats of the simulator described in the next section.

6As with the MSM version, if one uses the same g for all observations, one can use the same
simulation draws for all observations. The only caveat is that in the SML case, f depends on yi.
As a result, one would still need to compute S ∗ N different f ’s. However, it is often the case that
computing f (yi|uis) for different yi (holding uis constant) is relatively easy. In a dynamic discrete
choice problem, the solution to the dynamic programming problem only depends on uis, not the
realization of yi. Thus, computing f (yi|uis) for different yi (holding uis constant) does not require
resolving the dynamic programming problem.
7At this “faster than

√
N” rate, the asymptotic variance of the estimates is the same as the

asymptotic variance of estimates if one could compute the integrals analytically (i.e. without
simulating). Hence, standard MLE variance formulas can be used.
8Gourieroux and Monfort (1991) show that if one uses the same simulation draws across observa-
tion, one needs the S to increase at a faster rate (faster than N).
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4.1 Example 1: a dynamic programming problem

This example is similar to Hartmann (2006), who applies the importance
sampling simulator in his empirical work. We also use this example in our
Monte-Carlo experiments below.

Consider a panel of consumers across time t = 1, ..., T who are choosing
between j = 1, ..., J discrete products (and an outside alternative ( j = 0)) in
each period. We allow for a simple form of state dependence in the utility
function, which makes optimal consumer behavior the solution to a dynamic
programming problem. Suppose the single period utility consumer i obtains
from making choice j in period t is given by:

Uijt = αij + βi I(cit−1 = j ) − γi pijt + νijt

where pijt is the (assumed exogenous) price of product j faced by consumer i in
period t, and cit−1 ∈ {0, ...., J} is i’s choice in period t − 1. The indicator function
I(cit−1 = j) term captures state dependence—i.e., consumers recieve a positive
(or negative) utility value βi from consuming the same product in consecutive
periods. αij represents consumer i’s time-invariant preferences for product j,
and γi captures consumer i’s disutility from price. The νijt are assumed to be
i.i.d. logit errors and the utility from the outside alternative is normalized to
zero in every period, i.e. Ui0t = 0.

If the vector of prices pit = (pi1t, ...., piJt) follows a first order markov
process, the state space of this problem can be thought of as (pit, cit−1, νit)—
i.e. current prices, last period’s choice, and the vector of logit errors. Even
though the dimension of this state space may be large, it is not prohibitively
hard to numerically solve for consumer i’s value function Vi(pit, cit−1, νit) and
optimal policy (choice) function Ci(pit, cit−1, νit).

9 Note, however, that these
value and policy functions are indexed by i. This is because consumers differ
in their unobserved heterogeneity, i.e. the vector (

{
αij
}J

j=1 , βi, γi). Consumers

with different (
{
αij
}J

j=1 , βi, γi) will have different value and policy functions.
To more explicitly illustrate the dependence of the value and policy functions
on the unobserved heterogeneity, we can incorporate this heterogeneity as
direct arguments in the value and policy functions, i.e.

Vi(pit, cit−1, νit) = V
(

pit, cit−1, νit; {αij}J
j=1, βi, γi

)

Ci(pit, cit−1, νit) = C
(

pit, cit−1, νit; {αij}J
j=1, βi, γi

)

For estimation, one needs to specify the distribution of the unobserved
heterogeneity

({
αij
}J

j=1, βi, γi
)

as a function of data and parameters. It is typical

9Using the “alternative specific” value function methodology of Rust (1987), this is made con-
siderably easier by the i.i.d. logit assumption on the νijt . It becomes even easier if one assumes
consumers believe prices follow an i.i.d. process over time.
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to specify the αi’s, βi, and γi as functions of observed consumer characteristics
xi (e.g. income, family size) plus unobservable terms, e.g.

{
αij = x′

ijθ j + εij
}J

j=1

βi = x′
iJ+1θJ+1 + εiJ+1

γi = x′
iJ+2θJ+2 + εiJ+2

where εi is multivariate normal and independent of xi and pit,10 and where each
of xi1, ..., xiJ+2 are ⊆ xi.11

Given this specification, we can write the joint likelihood of consumer i ’s
sequence of choices (ci1, ....., ciT) as:

Li =
∫ ∫

I
(
C
(

pit, cit−1, νit;
{

x′
ijθ j + εij

}J
j=1, x′

iJ+1θJ+1 + εiJ+1, x′
iJ+2θJ+2 + εiJ+2

)

= cit ∀t
)

p(νi)dνi p(εi|θ)dεi

where the inner integral is over the logit errors and the outer integral is over
the unobserved components of the heterogeneity, i.e. εi.12

Following Rust (1987), the i.i.d. logit assumption implies that the integral
over νi is analytically computable, resulting in:

Li =
∫

f
(
ci
∣
∣pi,

{
x′

ijθ j + εij
}J

j=1, x′
iJ+1θJ+1 + εiJ+1, x′

iJ+2θJ+2 + εiJ+2
)

p(εi|θ)

where f is the likelihood of individual i’s observed sequence of choices ci

conditional on the unobserved heterogeneity
({

αij
}J

j=1, βi, γi
)

(and prices faced
pi = (pi1, ..., piT)).

Straightforward simulated maximum likelihood estimation would proceed
by taking S sets of simulation draws

({
εijs

}J
j=1, εiJ+1s, εiJ+2s

)
from p(εi | θ) and

forming:

L̂i = 1

S

∑

s

f
(
ci
∣
∣pi,

{
x′

ijθ j + εijs
}J

j=1, x′
iJ+1θJ+1 + εiJ+1s, x′

iJ+2θJ+2 + εiJ+2s
)

(5)

Clearly, as the parameters θ change, f needs to be recomputed for every
consumer for every simulation draw. Recomputing f requires resolving the
dynamic programming problem. In other words, to estimate this model based

10This is just a simple example. One can easily use non-linear index functions, or more flexible
distributions, e.g. mixtures of normals.
11As discussed at the end of Section 5.1, our technique has the benefit that one can run many
alternative specifications (more specifically, alternative specifications with different sets of xij’s)
without having to newly resolve dynamic programming problems.
12Note that this likelihood ignores potential initial conditions problems (i.e. ci0 is assumed
constant). Pantano (2008) suggests a clever way to model initial conditions problems while using
this importance sampling simulator.
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on L̂i, one would need to solve for Vi(pit, νit, cit−1) and Ci(pit, νit, cit−1) N ∗ S ∗
R times within the estimation procedure.

The importance sampling simulator can reduce this computational burden.
Consider the change of variables function:

ui = u(xi, εi, θ) =
⎛

⎜
⎝

{
αij
}J

j=1

βi

γi

⎞

⎟
⎠ =

⎛

⎜
⎝

{
x′

ijθ j + εij
}J

j=1

x′
iJ+1θJ+1 + εiJ+1

x′
iJ+2θJ+2 + εiJ+2

⎞

⎟
⎠

noting that the multivariate normal assumption on εi implies that the support
of u does not depend on θ (as long as the variances of the εij’s are bounded
away from 0). Thus, the change of variables function u satisfies Property (CS).
The likelihood can then be rewritten as:

Li =
∫

f̃ (ci | pi, u(xi, εi, θ))p(εi | xi, θ)dεi

=
∫

f̃ (ci | pi, ui)p(ui | xi, θ)dui

=
∫

f̃ (ci | pi, ui)
p(ui | xi, θ)

g(ui | xi)
g(ui | xi)dui

where p(ui | xi, θ) is the density of ui from the standard change-of-variables
formula, and g(ui | xi) is an importance sampling density with the same support
as p(ui | xi, θ). This can be simulated using:

L̃i = 1

S

∑

s

f̃ (ci | pi, uis)
p(uis | xi, θ)

g(uis | xi)
(6)

where the uis’s are draws from g(ui | xi).

As parameters change, the uis’s need not change. As such, the conditional
likelihood function f̃ (ci | pi, uis) (and thus the dynamic programming prob-
lem) only needs to be computed N ∗ S times—once for each simulation draw
for each individual. As described above, one could reduce the number of
needed dynamic programming solutions to S by choosing a g(uis | xi) that is
the same across observations (i.e. does not depend on xi) and using the same
simulation draws uis for each individual (see Section 6 for an example of this).

As discussed further at the end of Section 5.1, our techniques have an
important side benefit in these sorts of problems. Specifically, one can run
many alternative specifications (more specifically, alternative specifications
with different sets of xij’s entering the

({
αij
}J

j=1, βi, γi
)
) without having to

resolve new dynamic programming problems. As long as the g(uis | xi) and the
simulation draws are held constant, one can try alternative sets of xij’s without
having to resolve the f̃ ’s. The only thing that needs to change across the
specifications is the p(uis | xi, θ)’s. This can allow researchers to try alternative
specifications or investigate robustness in a very computationally cheap way.



356 D.A. Ackerberg

4.2 Example 2: a discrete game

Next consider a model of discrete quantity competition similar to that in Davis
(2006), who examines supermarket chains’ decisions of how many stores to
open in a particular market. Suppose one observes a cross section of markets
i = 1, ...., N, each with J firms. Each firm j = 1, ...., J in each market chooses
an integer number of retail stores qij ∈ Z to operate. The total costs of firm j in
market i operating qij stores is given by

c(qij) = (βxij + εij + (αxij + ηij)qij)qij

where xij are observables and εij and ηij are unobservables. Note that this
formulation allows there to be increasing or decreasing returns to scale in qij,
allows these returns to scale to change in qij, and also allows heterogeneity
across firms and markets in these effects.

Because of competition, the total revenue of firm j in market i depends not
only on the number of stores j operates, but also the total number of stores
operated by all competitors in the market, Qi = ∑

j qij. Assume that this total
revenue is given by:

r(qij, Qi) = (δ0 − δ1 Qi + δ2zi + μi) qij

where zi are observables that shift overall demand in market i and μi is an
unobserved market demand shifter. This leads to the profit function:

π(qij, Qi) = (δ0 − δ1 Qi + δ2zi + μi) qij − (βxij + εij + (αxij + ηij)qij)qij

Assume that the unobservables εij, ηij, and μi are joint normal and indepen-
dent of the observables xij and zi.13

Davis (2006) considers a simultaneous move, perfect information, Nash
equilibrium of this game.14 While there are multiple equilibrium in this game,
he shows conditions under which all equilibrium consist of the same total
number of stores Qi. Thus, to avoid explicitly dealing with multiple equilibria
in estimation, he only considers the model’s (unique) prediction of Qi, not the
individual qij’s (this strategy for addressing multiple equilibrium problems is
similar to that of Berry 1992). One can then think of the model as generating
the outcome variable

Qi = f
({xij}Ji

j=1, {εij}Ji
j=1, {ηij}Ji

j=1, zi, μi; θ
)

13If one wanted to ensure that costs are positive, one could use an alternative specification
such as c(qij) = (h1(βxij + εij) + h2(αxij + ηij)qij)qij where the h functions have only positive (but
constant) support, e.g. exponential functions.
14It is a perfect information game in the sense that all firms observe the unobservables of all other
firms (as well as the market specific shock).



A new use of importance sampling in simulation estimation 357

where the function f takes the primitives of the model as inputs and computes
the equilibrium total number of stores. The expected number of stores (condi-
tional on observables) is thus:

EQi(θ) =
∫

f
({xij}Ji

j=1, {εij}Ji
j=1, {ηij}Ji

j=1, zi, μi; θ
)

p
({εij}Ji

j=1, {ηij}Ji
j=1, μi; θ

)

where p({εij}Ji
j=1, {ηij}Ji

j=1, μi; θ) is the parameterized distribution of the unob-
servables.

Suppose one has data (Qi,
{

xij
}Ji

j=1 , zi) for a cross section of markets. Since
underlying profits are not observed, a normalization of profit units is necessary.
We choose the normalization δ1 = 1.15 Assuming identification conditions
hold, straightforward MSM estimation could proceed using the sample analog
of a moment condition such as:

E
[(

Qi − ÊQi(θ)
)

⊗
( {xij}Ji

j=1

zi

)]
= 0 at θ = θ0

where

ÊQi(θ) = 1

S

∑

s

f
({xij}Ji

j=1, {εijs}Ji
j=1, {ηijs}Ji

j=1, zi, μis; θ
)

and where {εijs}Ji
j=1, {ηijs}Ji

j=1, μis are draws from p({εij}Ji
j=1, {ηij}Ji

j=1, μi; θ). How-
ever, this can be time-consuming, as an interative tatonnment procedure is
required to solve the function f , and estimation would require computing this
function N ∗ S ∗ R times.

To apply the importance sampling simulator, consider the change of vari-
ables function:

ui = u
({xij}Ji

j=1, {εij}Ji
j=1, {ηij}Ji

j=1, zi, μi; θ
) =

⎛

⎜
⎝

{
βxij + εi

}Ji

j=1{
αxij + ηi

}Ji

j=1

δ0 + δ2zi + μi

⎞

⎟
⎠

and note that the model can be rexpressed as

Qi = f̃
(
u
({xij}Ji

j=1, {εij}Ji
j=1, {ηij}Ji

j=1, zi, μi; θ
))

This change of variables function u will satisfy Property (SC) if the unobserv-
ables have full support (−∞, ∞).

15This normalization is different than what might typically be used (e.g. that the variance of
one of the unobservables equals one) but is an identical model given that own profits depend
negatively on other firms’ number of stores. Interestingly, this alternative normalization helps the
model satisfy Property (CS). Bajari et al. (2009b) use a similar normalization in their application
of the importance sampling simulator. This illustrates that when using the importance sampling
simulator, it may be beneficial to carefully consider choice of normalization.
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To apply the importance sampling technique, note that we can now write:

EQi(θ) =
∫

f̃
(
u
({xij}Ji

j=1, {εij}Ji
j=1, {ηij}Ji

j=1, zi, μi; θ
))

p
({εij}Ji

j=1, {ηij}Ji
j=1, μi; θ

)

=
∫

f̃ (ui)p
(
ui
∣
∣{xij}Ji

j=1, zi; θ
)

=
∫

f̃ (ui)
p
(
ui
∣
∣{xij}Ji

j=1, zi; θ
)

g
(
ui
∣∣{xij}Ji

j=1, zi
) g

(
ui
∣
∣{xij}Ji

j=1, zi
)

and consider the importance sampling simulator:

ẼQi(θ) = 1

S

∑

s

f̃ (uis)
p
(
uis
∣
∣{xij}Ji

j=1, zi, θ
)

g
(
uis
∣
∣{xij}Ji

j=1, zi
)

where the uis are draws from the importance sampling density g(ui |
{xij}Ji

j=1, zi). As the parameters change, the uis draws can be held constant –
as a result the f̃ functions need not be recomputed as θ changes. With this
simulator, the complicated equilibrium only needs to be computed N ∗ S times
instead of N ∗ S ∗ R times. If one uses a g

(
ui
∣
∣{xij}Ji

j=1, zi
)

that is the same

across markets (i.e. does not depend on {xij}Ji
j=1 and zi), f̃ would need to

be computed only S times. As in the prior example, one can again estimate
some different specifications (i.e. models with different elements in {xij}Ji

j=1, zi)
without needing to resolve the f̃ functions.

4.3 Example 3: an asymmetric auction model

Consider a first-price private values auction model with asymmetric bidders,
similar to that considered in Bajari (1998a). In auction i, bidder j’s reservation
value is given by

Vij = Xijβ + ηij + λij

Xij are auction-bidder specific factors that are common knowledge to all
bidders and observed by the econometrician, ηij is an auction-bidder specific
factor that is common knowledge to all firms but unobserved by the econome-
trician, and λij is bidder j’s private value in auction i, observed only by bidder j.
Suppose that ηij ∼ iid N(0, σ 2

η ), λij ∼ iid N(0, σ 2
λi), and σ 2

λi ∼ iid ln N(μλ, σ
2
λ ).

Note that the across-bidder variance of the private value component, σ 2
λi, is

allowed to vary across different auctions i. A more parsimonious specification
might restrict this variance to be identical across auctions. The additional
heterogeneity has been added to the model to help satisfy Property (CS) (see
Section 5.1 for further discussion).

Most of the empirical auction literature prior to Bajari (1998a) assumes
symmetric, i.e. ex ante identical, bidders. The reason is that when bidders are
heterogeneous, the optimal bidding function

bij = f (Xijβ + ηij + λij, {Xikβ + ηik}J
k=1, σ

2
λi)
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is the solution to a system of non-linear differential equations that can be time
consuming to solve (see Maskin and Riley 1996 and Bajari 1998b). Note that
the bidding function depends the bidder’s own reservation value, the bidder’s
expectations of his/her competitors reservation values, and σ 2

λi. It depends on
σ 2

λi because σ 2
λi affects bidder j’s perceptions about other bidders’ reservation

values.
Straightforward MSM estimation of this model (using moments in the dif-

ference between observed bids and expected bids) requires repeatedly solving
this system of differential equations at different parameter values.. To apply
the importance sampling/change-of-variables technique, consider the change
of variables function:16

ui = u({Xij, ηij, λij}J
j=1, σ

2
λ,i, θ) =

⎛

⎝
uA

i
uB

i
uC

i

⎞

⎠ =
⎛

⎜
⎝

{
Xijβ + ηij + λij

}J
j=1{

Xijβ + ηij
}J

j=1

σ 2
λi

⎞

⎟
⎠

and note that the optimal bidding function of bidder j in market i can be
reexpressed as:

bij = f̃
(
uA

ij , {uB
ij }J

j=1, uC
i

)

i.e. bidder j’s bid depends on his own valuation, what bidder j knows about
the other bidders’ valuations (and what the other bidders know about j’s
valuation), and σ 2

λi
Then an importance sampling simulator of the expected bid vector in market

i can be formed with

ẼBi(θ) = 1

S

∑

s

⎛

⎜
⎜
⎝

f̃ (uA
i1s, {uB

ijs}J
j=1, uC

is)

f̃ (uA
i2s, {uB

ijs}J
j=1, uC

is)

.

f̃ (uA
iJs, {uB

ijs}J
j=1, uC

is)

⎞

⎟
⎟
⎠

p
({uA

ijs}J
j=1, {uB

ijs}J
j=1, uC

is | Xi, θ
)

g
({uA

ijs}J
j=1, {uB

ijs}J
j=1, uC

is | Xi
)

where the u’s are draws from the importance sampling density g. As in the prior
examples, as the parameters change, the uis’s do not change and the optimal
bid functions do not need to be recomputed as the parameters change. Note
that in this example, the elements of ui are by construction correlated—uA

i
and uB

i are correlated through ηij and the distribution of uB
i depends on the

variance term uC
i = σ 2

λi. However, it is easy to construct p and g (as well as
take simulation draws from g) using conditional distributions, i.e.17

p
({

uA
ij

}J
j=1,

{
uB

ij

}J
j=1, uC

i | Xi, θ
)

= pC
(
uC

i | Xi, θ
)

pB
({

uB
ij

}J
j=1 | Xi, θ

)
pA

({
uA

ij

}J
j=1 | {uB

ij

}J
j=1, uC

i , Xi, θ
)

16Note that u satisfies Property (CS). The support of the first two sets of elements is the real line,
the support of the last element is the positive real line. One could also easily restrict the reservation
values to be positive if one was so inclined.
17 pC is a log normal distribution and pA and pB are multivariate normal distributions.
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5 Discussion

5.1 Satisfying or partially satisfying property (CS)

In our three examples, we were able to find change of variables functions u that
satisfied Property (CS). However, in some models this may not be the case.
One common example of this is when there are parameters in one’s model
that 1) do not vary unobservably across the population and 2) do not enter
into “index” functions that have at least one unobservable component that
varies across the population. In Example 1, we did not consider estimation of
the discount factor (it was implicitly assumed to be known). Suppose that one
did want to estimate the discount factor δ, and furthermore wanted to assume
that all consumers have the same discount factor δi = δ. Such a model would
not easily satisfy Property (CS). The problem is that in this case, it will be
hard to find a change of variables function u that summarizes the impact of
the discount factor parameter on the model, that has a constant support, and
that has a easily computable change of variables density. From a more intuitive
perspective, the problem here is that since there is no heterogeneity in δ across
the population, one cannot easily “span” δ space using the simulation draws
(so we cannot learn anything about the likelihood function when, e.g., δ = 0.8
from solutions to the model when, e.g., δ = 0.9).18

A first approach is to apply the importance sampling approach to only a
subset of parameters. Suppose that the parameter vector can be divided into
components θ1 and θ2. Suppose that the model can be expressed in a form
where the θ2 parameters enter through change of variables functions u that
have constant support, but that this cannot be done with the θ1 parameters.
Then f̃ will need to be recomputed as θ1 changes (though not as θ2 changes).
In Example 1 with a homogeneous discount factor parameter that needs to
be estimated, the discount factor would be in θ1, the rest of the parameters
in θ2.19

In these situations where Property (CS) is partially satisfied, a first option is
to use derivative based optimization methods. In computing first derivatives,
f̃ needs to be recomputed only when elements of θ1 are perturbed. This will
reduce the computational time of computing these derivatives by approxi-
mately dim(θ1)

dim(θ)
relative to straightforward simulation using numeric derivatives.

A second alternative is to use a nested search algorithm. On the outside, one
searches over θ1; on the inside, over θ2. During the inside search algorithm,

18A similar situation would arise in Example 2 if, e.g., σ 2
η = 0, or in Example 3 if the variance of

the private values were the same across auctions (i.e. σ 2
λ = 0).

19The simulator in this case would be L̃i = 1
S

∑
s f̃ (ci|pi, uis, θ1)

p(uis|xi,θ2)
g(uis|xi)

, so changes in θ2 are

adjusted for with importance sampling weights, changes in θ1 adjusted for with changes in f̃ .
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one needs not recompute f ’s. As these nested search algorithms are generally
inefficient, this approach may only be reasonable if the dimension of θ1 is small.

A second general approach to satisfying Property (CS) is to note that
if a coefficient is heterogeneous across the population (and has a constant
support, e.g. normals, log-normals, or functions of such variables), it will
automatically satisfy Property (CS). Therefore, if one allows heterogeneity in
the discount factor across the population, e.g. δi = exp(δ+σδμi)

1+exp(δ+σδμi)
where μi has

support (−∞, ∞) (as in an early version of Hartmann 2006),20 Property (CS)
can be satisfied by including ui = exp(δ+σδμi)

1+exp(δ+σδμi)
as an element of the change

of variables function. Strictly speaking, this is not a generalization of the
model with δi = δ, since the variance of μi needs to bounded away from 0 to
apply the importance sampling simulator.21 It is interesting, however, that the
importance sampling method in a sense works better with more unobserved
heterogeneity in one’s model.22 This contrasts with methods for estimating
dynamic programming problems related to HM, which tend to be harder to
apply when there is unobserved heterogeneity (though these methods do have
other advantages, e.g. being able to estimate structural parameters without
even solving a single dynamic programming problem).

Importantly, note that while having all coefficients in one’s model be
heterogeneous across the population (as in the dynamic models considered
by Bajari et al. 2007b) is often is a sufficient condition for Property (CS) to
hold, it is not a necessary condition. In our method, coefficients need not be
heterogeneous across the population as long as they enter the model through
change-of-variables functions that include sufficient heterogeneity. This turns
out to be very useful for introducing new individual level covariates into a
model in a parsimonious way. Moreover, it also allows a researcher to estimate
many alternative specifications (e.g. models with different sets of individual
level covariates) without needing to compute new f̃ ’s.

Example 1 is again illustrative of this. Note that the consumer characteristics
xi enter the model through index functions, x′

ijθ j + εij, where the parameter
vectors θ j are homogeneous across observations i (i.e. the effect of a change
in xij on the mean of the taste distribution is the same across i). What is
crucial is that these fixed parameters enter the model through index functions
that contain at least some unobserved heterogeneity (and that admit a simple
change of variables density).

20Obviously, the functional form is chosen to restrict the discount factor between 0 and 1.
21And as noted previously, there may be large amounts of simulation error if the variance
approaches 0. In practice, one should be careful to watch for these variances (e.g. σδ) approaching
zero during estimation. If they do, it may be best to switch to the alternative approach suggested
next, i.e. applying the importance sampling approach to only a subset of the parameters.
22This statement ignores two important caveats. First, additional unobserved heterogeneity might
create identification problems (we ignore these in this paper by simply assuming identification).
Second, increased dimensionality of the unobserved heterogeneity may generate higher levels of
simulation error.
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This property of our estimator makes it very convenient to add new xij ’s to
the model, e.g. when an empirical researcher is trying alternative specifications.
First, one can add a new xij to the model by just introducing a single new
parameter, not an entire new distribution. Second, one can add (or subtract)
xij’s to the model and re-estimate the new model without having to recompute
the f̃ ’s (as long as one continues to use the same importance sampling density
and same simulation draws). We feel that this is a very important benefit, as it
may allow researchers to experiment with more alternative specifications than
they otherwise would.

5.2 Smoothness and analytic derivatives

As noted in the introduction, there are additional benefits of the importance
sampling estimator. As McFadden (1989) originally noted in the case of
a multinomial probit model, importance sampling can be used to smooth
simulated objective functions. In many cases, f (xi, εis, θ) is discontinuous in
θ due to discreteness in one’s model. As a result, standard simulated objective
functions have flats (areas with zero derivatives w.r.t. θ) and discontinuous
jumps. In contrast, for distributions that are commonly used, p(uis | xi, θ)

is typically smooth in θ . The change of variables and importance sampling
technique essentially moves θ from inside f to inside p. Thus, it can convert
an objective function that is discontinuous in θ to one that is continuous in
θ .23 The discrete quantity game discussed above is an example one of these
cases—note that ÊQi(θ) is discontinuous in θ , while ẼQi(θ) is continuous
in θ .24 Smoothness can be a big advantage in estimation. First, it allows one
to use derivative based search algorithms, which are often faster than non-
derivative based routines. Second, even non-derivative based routines can
have significant problems trying to optimize discontinuous functions with flats
and jumps.

A related advantage of importance sampling objective functions concerns
derivatives with respect to θ . When f is complicated, the objective functions
of most standard simulation estimators often do not have analytic derivatives.
If one is using a derivative based optimization routine, this lack of analytic
derivatives necessitates use of numerical methods to obtain derivative informa-
tion. This can be time-consuming and is potentially imprecise. In contrast, our
importance sampling objective functions often do have analytic derivatives.

To see this point, compare the straightforward simulator of Efi(θ) ,

Ê fi(θ) = 1

S

∑

s

f (xi, εis, θ) (7)

23The 1999 working paper version of this work contained a number of more elaborate examples
of how importance sampling can be used to smooth even very complicated economic models. For
a copy please consult the author.
24Note that Example 1 is not a good example of this smoothing property because the likelihood
function there is already smooth due to the analytically integrated logit errors.
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to the importance sampling simulator:

Ẽ f i(θ) = 1

S

∑

s

f̃ (uis)
p(uis | xi, θ)

g(uis | xi)

Clearly, ∂ Ê fi(θ)

∂θ
depends on ∂ f (xi,εis,θ)

∂θ
. As f (xi, εis, θ) typically cannot be com-

puted analytically, ∂ f (xi,εis,θ)

∂θ
will typically also not be analytically computable.

In contrast,

∂ Ẽ f i(θ)

∂θ
= 1

S

∑

s

f̃ (uis)

g(uis | xi)

∂p(uis | xi, θ)

∂θ

depends on ∂p(uis|xi,θ)

∂θ
, which is analytically computable in many cases, e.g.

when p is multivariate normal and linear in xi. These analytic derivatives can
generate increased time-savings and precision in estimation.

Note that these properties suggest that importance sampling can also be
helpful in computing the derivatives necessary to estimate standard errors.
With discontinuous objective functions (especially those with flats), calculating
these derivatives can be unreliable. This is not a problem using an importance
sampled simulator

5.3 Choice of g and simulation error

As mentioned earlier, one traditional use of importance sampling is to re-
duce the variance of simulation estimators. An appropriate choice of g can
accomplish this goal. Unfortunately, if one is not careful, importance sampling
can also dramatically increase the variance of simulation estimators. When
performing the above change of variables and importance sampling procedure,
one needs to be very aware of this issue. Unlike standard pure frequency sim-
ulators, where the simulation error is naturally bounded, this is not necessarily
the case with importance sampling simulators. This can result in large amounts
of simulation error if one is not careful.

Perhaps the most obvious choice for g is p itself at some arbitrary initial
parameter vector θ init, i.e. g(ui | xi) = p(ui | xi, θ

init). This importance sampling
simulator is then identical to the pure frequency simulator when evaluated at
θ = θ init. Of course, θ init is generally not going to equal the true parameter
vector θ0. And with g based on θ init, the effect of simulation error on estimates
can be quite large if θ0 is far away from θ init. This can be a significant issue
in practice, both for efficiency, and for the reliability of the non-linear search
over θ . We have a few informal suggestions for minimizing these problems,
but a general point to remember is that one needs to be much more careful
with importance sampling simulators than with standard simulators because of
these issues.

A first suggestion is to iterate the entire importance sampling estimation
procedure multiple times. In other words, set g1(ui | xi) = p(ui | xi, θ

init) at
some exogenously chosen θ init, use the resulting simulator to form a simulated
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objective function, and optimize to obtain an estimate θ̂1. Then iterate the en-
tire estimation procedure by creating a new importance sampling distribution,
g2(ui | xi) = p(ui | xi, θ̂

1), taking new simulation draws, and re-estimating to
obtain a new estimate θ̂2.25 This iterating can obviously be continued. Each
of θ̂1, θ̂2, θ̂3,... is a consistent estimator of θ0. But the hope is that after one
(or multiple) iterations, the g distribution will be closer to p(ui | xi, θ0), and
the simulation error in the estimates will be smaller. Of course, there is a
computational cost to iterating, as the “complicated” functions f̃ need to be
recomputed each time g is “reinitialized” and new draws are taken. But as we
show in our Monte-Carlo experiments, computational burden is still far less
than that with a straightforward simulator.

There are some unanswered questions regarding such a iteration process
that are beyond the scope of this paper, e.g. Is this iteration process guaranteed
to converge starting at any θ init?; Does it converge to the same θ̂∞ regardless
of θ init?;26 What are the asymptotic properties of θ̂∞? Another question is how
to appropriately compute standard errors of such an estimator. Note that an
estimated variance of θ̂n based on standard SML or MSM formulas is not
exactly right, since it ignores the variation in the importance sampling density
gn due to the estimation of θ̂n−1 from the prior iteration.

One may want to update the g density quicker than the above. In other
words, if an optimization procedure moves θ far from θ init, one may want
to update g even if the procedure has not converged (due to concern about
increased simulation error). One normalized statistic that might be useful for
this is

ISstat =
1
S

(
1
S

∑
s

(
f̃ (us)

p(us|xi;θ)

g(us|xi)
− 1

S

∑
s f̃ (us)

p(us|xi,θ)

g(us|xi)

)2
)

1
S

(
1
S

∑
s

(
f̃ (us) − 1

S

∑
s f̃ (us)

)2
)

This statistic is related to Geweke’s (1989) “Relative Numeric Efficiency”
(RNE) statistic. The numerator is an estimate, for observation i, of the
simulation variance in the importance sampled Ẽ f i(θ) at θ . The denominator is
an estimate of the simulation variance in the standard simulator Ê f i(θ) at θ init.
This statistic is simple to compute (it does not require resolving f̃ ), and gives
a somewhat standardized measure of the amount of simulation error in Ẽ f i(θ)

relative to straightforward simulators.27 If the average value of this statistic

25To make full use of past solutions of f̃ , one could actually use both the old draws (from g1(ui |
xi)) and the new draws (from g2(ui | xi)) when the estimation procedure is iterated. In this case,
the g for the full set of draws would be a mixture of g1 and g2. More generally, at the tth, iteration,
one could use draws (and f̃ solutions) from all past iterations.
26In our Monte-Carlo experiments, we (very) casually investigated this and did find that the
iterations always converged to the same parameter vector for a wide range of θ init . But this is
obviously far from a proof, this is only one example, and Monte-Carlo generated data may be
better behaved than actual data.
27Of course, one would prefer to evaluate the denominator at θ rather than θ init . But doing this
would require resolving f̃ .
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(across observations) gets high, it suggests high levels of simulation error. So
if an optimization procedure moves θ into an area where this is high, one may
want to change g (probably to p at the current θ) and take new simulation
draws. In any case, this is easy to compute and probably a useful statistic to
monitor if one is using the importance sampling approach.

A second approach is to use derivative based search procedures, and only
use the importance sampling method for derivative calculations. Consider the
objective function based on the pure frequency simulator, i.e.

Ê fi(θ) = 1

S

∑

s

f (xi, εi,s, θ) (8)

Derivatives of this objective function generally require using numeric dif-
ferentiation, and repeatedly recomputing the complicated f function as one
perturbs θ .

Alternatively, one could use the importance sampling objective function
(with g(ui | xi) = p(ui | xi, θ)) to compute these derivatives. As noted in the
prior section, we have

∂ Ẽ f i(θ)

∂θ
= 1

S

∑

s

f̃ (uis)

g(uis | xi)

∂p(uis | xi, θ)

∂θ

which can always be done without recomputing f̃ , and can usually be done
analytically.

Suppose one starts their non-linear search at θ init. One could use impor-
tance sampling (with importance sampling density g(ui | xi) = p(ui | xi, θ

init))
to compute the derivatives of the objective function without resolving f̃ . Then
for the “step” of the derivative based procedure, one could use standard
simulators (this would require resolving f̃ ). After the step, at the new θ ′,
importance sampling could again be used to compute derivatives (using g(ui |
xi) = p(ui | xi, θ

′) ). This could then be repeated. This is probably the most
conservative way to use the importance sampling idea, since at every θ , one
is using an importance sampling density g that is identical to p at that θ .
Of course, there is also higher computation burden, as the time savings only
applies to the derivative calculations.28 There is also an important caveat that
such a search is not guaranteed to converge. The reason is that the derivative
information is not exactly right. More precisely, in this procedure, one is
optimizing the objective function based on Ê fi(θ), but derivative information
is coming from the objective function based on Ẽ f i(θ). These derivatives will
be similar (they both converge to the true derivative of Efi(θ) as S → ∞), but
are not numerically equivalent.

A third set of possibilities comes from the importance sampling literature.
As noted by Geweke (1989), among others, it can help for an importance

28This method is also convenient when a subset of the parameters do not satisfy Property (CS).
One simply needs to recompute the f functions for numeric perturbations of the parameters in
the subset.
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sampling density to have thick tails. This can prevent high levels of simulation
error. Intuitively, a wide g means that the initial set of us points are spread out
- thus they can be weighted to approximate behavior at a wider range of θ .
One way to pick a wide g is to base g on a θ init where the variance parameters
are set relatively large. In the iterative procedures above, one might want to
artificially inflate the variance related parameters when choosing g’s

Another possibility suggested by the importance sampling literature is to
normalize the importance sampling weights to sum to one. Formally, this
involves the alternative importance sampling simulator

˜̃Ef i(θ) = 1

S

∑

s

f̃ (uis)
p(uis | xi, θ)

g(uis | xi)

(
∑

s

p(uis | xi, θ)

g(uis | xi)

)−1

This restricts the importance sampling weights to be between 0 and 1, and thus
could be more numerically stable in practice. One caveat is that ˜̃Ef i(θ) is no
longer an unbiased simulator. Hence, the MSM result of consistency for finite
S will not hold.

Lastly, note that if one is particularly concerned with these issues, one
can alternatively use “importance sampled objective functions” simply as a
numeric tool to get “close” to the parameter estimates. The idea is to start
by optimizing an objective function based on Ẽ f i(θ) that is easy to compute
(perhaps updating g occasionally as suggested above), but eventually switch to
an objective function based on a more standard simulator, e.g. Ê fi(θ). Note
that there are no implications of doing this on estimated standard errors, since
the results using Ẽ f i(θ) are only used as starting values for optimizing based
on Ê fi(θ).

5.4 Comparison to discretation/randomization approaches

An alternative strategy for estimating the dynamic programming problem of
Example 1 would be to explicitly solve for the value and policy functions as
depending on the individual specific heterogeneity, i.e. consider

V(pit, νit, cit−1,
{
αij
}J

j=1 , βi, γi) and C(pit, νit, cit−1,
{
αij
}J

j=1 , βi, γi)

If one could solve for these functions at all possible values of their arguments,
one would only need to solve them once. Then, when simulating a particular
individual at a particular parameter vector, one could just plug the resulting
(
{
αijs

}J
j=1 , βis, γis) into V or C to compute the simulated likelihood function.

However, the time required to do this to a given degree of accuracy will gener-
ally increase exponentially in the dimension of the unobserved heterogeneity,
i.e. there is a “curse of dimensionality”. Moreover, since (

{
αij
}J

j=1 , βi, γi)

are often continuous variables, such a procedure would also require some
discretization and approximation, as V can only be numerically solved at a
finite number of points and because the simulation draws (

{
αijs

}J
j=1 , βis, γis)
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encountered in simulating the likelihood will generally not equal the finite set
of points at which V has been computed.

Keane and Wolpin (1994) and Rust (1997) (KW/R) suggest using random-
ization techniques to approximate V(pit, νit, cit−1,

{
αij
}J

j=1 , βi, γi). Instead of
discretizing the arguments of V in a deterministic way, one randomly chooses
K points at which to approximate the value function (or alternative-specific
value functions). After using such an approach to approximate V, simulation
estimation can proceed by taking simulation draws (

{
αijs

}J
j=1 , βis, γis) (condi-

tional on θ) to simulate the likelihood. Again, since these simulation draws
will generally not equal the random points at which the value function has been
approximated, one needs to use additional approximation (e.g. interpolation,
polynomial approximation) in (

{
αij
}J

j=1 , βi, γi) space to calculate the simulated
likelihood.

Note that there are two sources of simulation error in the KW/R approach.
One source comes from the random draws of the K points at which to
solve V, and one source comes from the random draws of (

{
αijs

}J
j=1 , βis, γis)

in computing the simulated likelihood function. One can think about the
importance sampling approach as a modification of the KW/R approach that
1) only has one source of simulation error, and 2) doesn’t require additional
approximation in (

{
αij
}J

j=1 , βi, γi) space. The importance sampling approach

does this because it allows one to hold the draws (
{
αijs

}J
j=1 , βis, γis) constant

regardless of the value of θ . Hence, the importance sampling approach can use

the same set of simulation draws
{
(
{
αijs

}J
j=1 , βis, γis)

}S

s=1
both to solve for V

and to simulate the likelihood. Thus, there is only one source of simulation
error. This also implies there is no additional approximation necessary in
(
{
αij
}J

j=1 , βi, γi) space, since the points used in simulating the likelihood are

exactly the points where V has been solved.29 Lastly, note that with the impor-
tance sampling approach, standard results on Monte-Carlo integration imply
that the importance sampling approach breaks the “curse of dimensionality”
in the dimension of (

{
αij
}J

j=1 , βi, γi).30

29If the other state variables (e.g. pit, νit, and cit−1) are continuous, either approach would
generally need approximations in these dimensions. Of course, if the vit’s (or pit) are i.i.d., they can
be removed from the “effective” state space by working with alternative specific value functions
(Rust 1987).
30In contrast, it is not clear that the standard KW/R approach breaks the curse of dimensionality
in (

{
αij
}J

j=1 , βi, γi) space. Because (
{
αij
}J

j=1 , βi, γi) are constant over time, their transition density
does not satisfy Rust’s (1997) Assumption (A4). Of course, as proven by Rust, the KW/R approach
can break the curse of dimensionality in state variables that evolve stochastically (and smoothly)
over time. So, for example, if the KW/R approach is used for the state variable pit , and if the
importance sampling simulator is used for (

{
αij
}J

j=1 , βi, γi); then Example 1 has no curse of
dimensionality as the number of products J increases (since cit−1 takes a finite set of values and
vijt’s are i.i.d. logit errors).
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5.5 Relation to Keane and Wolpin (2000, 2001)

Independently, in two empirical papers, Keane and Wolpin use an importance
sampling procedure that is related to ours in order to solve problems of unob-
served state variables. These papers analyze dynamic programming problems
of educational choice (Keane and Wolpin 2001) and fertility/marriage choice
(Keane and Wolpin 2000). In the first paper, where individuals schooling,
work, and savings decisions are analyzed over a lifetime, a significant problem
is that assets (a state variable) are not observed in some years of the data (there
are other state variables, choice variables, and initial conditions, e.g. schooling
and hours worked, that are also occasionally unobserved). To estimate this
using standard methods would be exceedingly complex, as one would need to
integrate out over very complicated conditional distributions of the missing
data.

Their approach starts by simulating S unconditional (i.e. there are no prede-
termined variables) outcome paths—these are what they call their “simulated
paths”. To create each of these paths, one needs to solve the simulated agent’s
dynamic programming problem. If all outcome variables were discrete, one
could in theory compute the likelihood for observation i by the proportion
of “simulated paths” that match observation i’s path. Practically, since there
are so many possible paths (and since some of the outcome variables are
continuous), this would result in likelihood zero events. To mitigate this
problem, Keane and Wolpin add measurement error to all outcome variables.
This gives any observed path a positive likelihood and allows for estimation
using SML.

What is similar to our paper is the fact that Keane and Wolpin use impor-
tance sampling while searching over θ . This means that as they change θ , there
is no need to draw new simulated paths. Instead, one only needs to compute
the likelihood of the original simulated paths at the new θ . This likelihood
is much simpler that the original problem since the simulated paths have no
missing data. The importance sampling also smooths the likelihood function
in θ . However, unlike our procedure, it generally does require re-solving S
dynamic programming problems when θ changes.

Formally, and in our notation, Keane and Wolpin are computing
L( f (εi, θ) + ηi = yi), the likelihood of the observed data yi , where ηi is
measurement error and f (εi, θ) are outcomes of the dynamic programming
problem. Integrating out over the density of f (εi, θ) gives:

L( f (εi, θ) + ηi = yi) =
∫

L( fi + ηi = yi | fi)p( fi | θ)

The inner likelihood is over the measurement error process conditional on the
dynamic programming outcomes, while p( fi | θ) is the distribution of dynamic
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programming outcomes (without measurement error). Importance sampling
these dynamic programming outcomes with distribution g gives:

L( f (εi, θ) + ηi = yi) =
∫

L( fi + ηi = yi | fi)
p( fi | θ)

g( fi)
g( fi)

Keane and Wolpin use g = p( fi | θ ′) at some initial θ ′ and form the importance
sampling simulator:

1

S

∑

s

L( fs + ηi = yi | fs)
p( fs | θ)

g( fs)

where the fs’s are simulated paths generated at θ ′. As θ changes, only p( fs | θ)

needs to be recomputed. This is analogous to the likelihood of a standard
dynamic programming problem where there is no missing state variable data.
However, unlike our procedure, it does generally require resolving the dy-
namic programming problems of the simulated agents (there are some para-
meters of the Keane and Wolpin model, e.g. those determining the proportion
of each simulated “type” in the population, where the DP problem does not
need resolving as these parameters change.)

6 Monte-Carlo results

To informally investigate how this importance sampling procedure might work
in practice, we ran some monte-carlo experiments. These are inspired by the
model in of Hartmann (2006), as detailed in Example 1 of the current paper.
Given concerns about how well these methods might work with more than a
few dimensions of unobserved heterogeneity, we chose the number of products
(J) to equal 8. This means that time-invariant heterogeneity across consumers
is 10 dimensional—i.e. consumers are characterized by mean preferences for
the 8 products (αi1, ...., αiJ), a state dependence parameter (βi), and marginal
utility of price (γi). As detailed in Example 1, these consumer specific tastes
are modelled as:

{
αij = x′

ijθ j + σ jεij
}J

j=1

βi = x′
iJ+1θJ+1 + σJ+1εiJ+1

γi = x′
iJ+2θJ+2 + σJ+2εiJ+2

where the xij’s each contain a constant term and one observed exogenous vari-
able (distributed iid N(0, 1)). The (εi1, ...., εi10) are joint normal, independent
of x’s and p’s, and have an identity covariance matrix. The σ j parameters are
all set to 1. As for the θ parameters, the constant terms (i.e. θ0

1 , ...., θ0
J+2) are all

set to 0, and the slope terms (i.e. θ1
1 , ...., θ1

J+2) are all set to 1. The prices pijt are
distributed iid N(0, 1).
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We chose N = 500 and T = 20. We consider the discount factor to be
known. In fact, for computational reasons, we set the discount factor equal
to 0, i.e. we assume consumers are myopic. Because this implies that there
is no dynamic programming problem, it allows us to do more Monte-Carlo
repetitions than would otherwise be possible. Of course, this implies that actual
measures of computational time are not particularly relevant. So the way we
compare computational time across different procedures is by a simple count
of the number of times the dynamic programming problem would need to have
been solved within an estimation procedure (if in fact there was one to be
solved). Given we are using this metric, we see no obvious reason why the
relative performance of the various estimation algorithms would differ if the
discount factor was non-zero, but it is certainly possible.

For our importance sampling densities g, we use p’s evaluated at some

initial θ init =
({

θ0
j

}J+2

j=1
,
{
θ1

j

}J+2

j=1
,
{
σ j

}J+2

j=1

)
. As discussed above, choice of this

θ init may be quite important. We do two separate experiments. In the first
experiment, we use “good” starting values. Across monte-carlo replications,
starting values are randomly drawn from U(0, 1) distributions centered at the
true parameters. In this experiment, we only run the importance sampling
estimation routine once for each replication.

In the second experiment, we use “bad” starting values. The θ0 and θ1

parameters are drawn from U(−5, 5), and the σ parameters are drawn from
U(0.5, 10.5)31 In this experiment, we iterate the importance sampling esti-
mation routine as described in Section 5.3. At the end of each estimation
routine iteration, we construct a new importance sampling density g, based
on p at the current estimations, for use in the next estimation routine. Thus
at each restart, we need to resolve the “dynamic programming problems”.
We iterated the estimation routine in this way until it “converged” up to a
numeric tolerance. Interestingly, it always converged, and the average number
of estimation iterations was 17.24.

We compare our importance sampling routine to SML simulation based
on a standard simulated likelihood Eq. 5. In the standard SML routine,
we set S = 30, i.e. 30 simulation draws per observation i. This means that
there are a total of N ∗ S = 15000 simulation draws and that the “dynamic
programming problem” needs to be solved 15000 times for each likelihood
function evaluation. In the importance sampling routine, we also use a total
of 15000 draws. However, recall that with the importance sampling routine, if
one chooses the same importance sampling density g across observations, the
same simulation draws can be used for all observations. Since this seems to be
the most efficient use of the draws, we do this—i.e. we use the same g(ui) and

31The choice for the σ parameters was governed by 1) the fact that σ must be ≥ 0, and 2) the
discussion above suggesting that in practice, it probably better to choose larger values for the
importance sampling densities of variance related parameters.
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the same 15000 draws for all observations.32 This also requires 15000 “dynamic
programming problem” solutions, but unlike the standard SML routine, these
solutions do not have to be recalculated as θ changes.

Table 1 contains the results. 100 monte-carlo replications were run for each
specification. In the first column are results from the standard SML procedure.
On average, estimation here required 45.6 million “dynamic programming
solutions”. Each function evaluation required 15000 evaluations, and on av-
erage 3040 function evaluations were necessary to find the maximum in 30-
dimensional space.33 One can see that there are some very clear biases in the
estimates, presumably due to the low number of simulation draws. Particular
strong biases are evident in σ1, ..., σ8, which are estimated to be about half of
the true parameters.

In the second column are results from the importance sampling routine
using the “good” starting values. In this case we do not iterate the estima-
tion routine, so each estimation only requires 15000 “dynamic programming
solutions” (which compared to 45.6 million is a speed improvement of over
3000 times). The parameter results also illustrate some small sample biases,
though in most cases not nearly as big as in Column 1. Interestingly, the
comparison of standard deviations of the estimated parameters across monte-
carlo repetitions is ambiguous between Columns 1 and 2. There is no clear
winner—in some cases the Column 1 estimates are less variable, while in other
cases the Column 2 estimates are.

The last row of the table computes the average (across monte-carlo rep-
etitions) “true” likelihood, evaluated at the point estimates from the two
procedures. To compute the “true” likelihood, we simply used a standard
simulator with far more simulation draws, i.e. 10000 per observation. Less
negative values of this imply that the estimation procedure has found a
“better” parameter vector according to the “true” likelihood. On average, the
standard SML procedure generates a point estimate with a “true” likelihood
of −15303.5, while the importance sampling procedure on average generates
a point estimate with a “true” likelihood of −15120.62. So the importance

32The way we construct a reasonable g that is the same across observations is to define g(ui) to
be a mixture (with equal probabilities) of the 500 p

(
ui
∣
∣xi, θ

init
)

distributions (i.e. each of these
500 distributions depends on one of the xi’s in the sample). More precisely we use the mixture
distribution:

g(ui) = 1

500

∑

i

p
(
ui
∣
∣xi, θ

init)

A simple way to take 15000 draws from this mixture distribution is to simply take 30 draws from
p(ui|xi, θ

init) for each of the 500 xi’s observed in the dataset.
33The 3040 includes those function evaluations necessary for derivative calculations. We used
derivative based methods for all the optimization. Starting values for optimization with the
standard SML routine were the “good” starting values—this number of function evaluations
necessary would be slightly higher than 3040 using the “bad” starting values.
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sampling procedure is not only far quicker, but by using far more draws also
seems to be producing better estimates.

Columns 3 through 5 run the importance sampling estimator using the “bad”
starting values. Here we iterated the estimation routine until convergence. In
Column 3 we present results after the first iteration, in Column 4 we present
results after the third iteration, and in Column 5 we present results after
convergence (which took an average of 17.24 iterations). Since the “dynamic
programming solutions” need to be resolved at each iteration, the number
of “dynamic programming solutions” necessary for each column is just the
number of estimation iterations times 15000.

Column 3 indicates how important starting values are if one is only going
to run the importance sampling routine only once. The estimates are very
imprecise and highly biased in comparison to even Column 1. The average
“true” likelihood at the estimates is also much worse, −16862.99. One needs
to keep this in mind when using this procedure.

However, iterating seems to make these biases disappear quite quickly. In
Column 4, after the 3rd iteration, the biases seem approximately the same level
as the biases in Column 1, and the average “true” likelihood is considerable
better, −15133.09. At convergence in Column 5, the biases seem quite low.
The average “true” likelihood at convergence is −15081.79, better than all the
other results, including the importance sampled estimates using the “good”
starting values (though it interesting that in some dimensions, Column 1
or Column 2 perform better). Compared to the standard SML approach in
Column 1, the converged results in Column 5 require approximately 0.006
times the number of the “dynamic programming solutions”. So even at the
bad starting values, the iterated importance sampling method is both quicker
and produces what are arguably better estimates.

7 Conclusion

This paper suggests a new use of importance sampling to reduce computational
burden in simulation estimation of complicated models in economics and
marketing. We show that combining a change of variables with importance
sampling can reduce computational time by dramatically reducing the number
of times that a complicated model needs to be solved or simulated in an
estimation procedure. The technique is applicable to a wide range of mod-
els, including single or multiple agent dynamic programming problems, and
complicated equilibrium problems such as discrete games or auction models.
The technique is particularly amenable to allowing considerable amounts of
unobserved heterogeneity in one’s model. We hope that this technique allows
researchers to estimate models that allow for more unobserved heterogeneity,
and, more generally, more realistic models. The technique is not without
caveats though. In particular, special care must be taken, since misuse of
importance sampling can potentially generate high levels of simulation error.
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