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The Infinite Hard-Sphere System 

by 

Roger Keith Alexander 

ABSTRACT 

We construct the time~evolution for the system of infinitely 

many particles in space interacting 

t(x) = 
{ 

+ (Do 

by the hard-sphere potential t: 

lxl < a 

lxl ~a 

Examples abound of configurations of the infinite system having 

more than one solution to the Newtonian equations of motion. We impose 

a regularity condition on the solutions we seek, which limits the growth 

of velocities and of the length of chains of particles close together 

as Jxl + oo; we prove that through any point of the phase space there 

passes at most one regular solution. 

Every point in a subset ~ of the phase space ~ is the initial 

point of a regular solution which is defined for all time. The subset 

~ is of full measure for every Gibbs state and is invariant under 

the one-parameter group Tt of shifts along solution trajectories. More­

over, the flow Tt leaves every Gibbs state invariant. 

The solutions we construct are limits, as R + oo, of motions in 

which particles inside the sphere of radius R are elastically reflected 

from its boundary while those outside remain fixed. For this reason, 

we also study the motion of finite systems. 

For finitely many hard-sphere particles in a region of space 

with piecewise smooth boundary, the set of points of the phase space 

through which solutions exist for all time without triple or grazing 
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collisions, is of full Lebesgue measure and is residual in the sense 

of Baire. Liouville's Theorem holds for the one-parameter group of 

shift-transformations Tt. 

Finally, we give examples in which a single billiard moving in 

the plane is reflected infinitely often from a boundary curve in finite 

time, and we establish necessary conditions for such singularities to 

occur. 
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I. INTRODUCTION 

A. The Problem 

Systems of infinitely many particles are a first approximation to 

realistic systems with a finite but unmanageably large number of parti-

cles. Such systems were first studied extensively by 0. Lanford 

[Lanford 1968, 1969] w:iO proved existence of the time-evolution for one-

dimensional systems of infinitely many particles interacting through 

finite-range; Lipschitz-continuous forces. Sinai constructed the time 

evolution for one-dimensional systems ([Sinai 1972]) and for v-

dimensional systems at low density ([Sinai 1974]) for finite range 

forces with hard cores, by showing that the particles break up into 

finite clusters which do not interact for short times. Lanford's 1974 

Battelle Lectures [Lanford 19741 are in part devoted to his construction 

of time evolution for v-dimensional infinite systems, where the super-

stable potential is allowed to have infinite range. An existence theorem 

for the dynamics for 
. 2 

v-dimensional systems with a finite-range, C 

potential was obtained by Marchioro et al. [Marchioro et al. 197Sa]. 

A summary of all these works is contained in Lanford's 1974 Battelle 

Lectures. 
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The purpose of the present work is to construct the time evolution 

for the infinite hard-sphere system in three-dimensional space. 

Briefly, we have a configuration of the infinite system, that is, 

a sequence {(q., v.} ~ 
1

, the 
1 1 1= 

position and velocity of the i-th particle 

being given by !}? 
3 - vector$ q., v. ~espectively~ Our obJ·ect is to con~ 

1 1 . 

struct the motion of all, or almost all such configurations of particles 

interacting through the hard sphere potential: 

$ (q. - q.) = i + 00 

1 J l 0 

I q. - q.l<a 
1 J 

else 

00 

(We require of the configuration {(q., v.}} . 
1 1 1 1= 

if ilj.) 

that 1 q. - q. 1 
1 J 

> a 

The problems peculiar to infinite systems are described in Lanford's 

survey [Lanford 1974]. In fact one cannot hope to solve the equations of 

motion for all initial configurations, because it is easy to construct 

examples which reach a catastrophe in finite time. With hard spheres it 

is so simple the reader may do it himself, if he likes. Thus to make 

progress one must restrict the set of allowed initial configurations 

but not too severely: what remains should be large enough to support mea-

sures on the phase space which describe interesting statistical states 

of the system. 

As usual, the hard sphere potential leads to some simplifications. 

All Boltzmann factors exp [- S~] are independent of the inverse tempera-

ture S and take only the values 0 and 1, simplifying many estimates. 

Moreover, the hard core condition guarantees that every bounded region 

of space will contain only finitely many particles. 
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On the other hand, there are difficulties peculiar to the hard-

sphere system: the potential ¢ is not differentiable, so there is not an 

honest differential equation to determine the motion. We resort to a pre-

scription based on the elastic reflection law, but it is not clear then what 

to do about triple and higher multiple collisions. 

A further problem is most simply illustrated by an example of a con-

figuration having more than one solution to the equations of motion, which 

is complementary to the example given by Lanford [Lanford 1974]. Place an 

infinite sequence of billiard balls of diameter a in a straight line so 

that l:i .2. 1 . (qi+l - qi - a) < 00 
• All pi = 0. One solution is: all parti-

cles remain at rest forever. For a second solution, let particle i begin 

to move toward particle i - 1 with velocity v at time 

t. 
l. 

1 
v l:. (qJ.+1 - qJ. - a) 

j..?_i 

and come to rest when it collides with particle i - 1 at time 

t. + (q. - q. 1- a)/v. 
l. l. 1.-

This shows that in critical configurations a disturbance can be 

propagated over.arbitrarily large distance in a given finite time. It is 

easy to see that by allowing a moderate growth in the velocity of the 

. th . 1 . . 1. part1.c e as 1 ~ oo one can eliminate the requirements that the 

particles lie in a straight line and that the sum of the interparticle 

distances be f~nite. 

B. The Infinite System Phase Space 

We specify once and for all that the hard sphere diameter is a fixed 

positive number denoted by a, and that the particles have mass m = 1. 
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?"Y> 3 Vectors in~ giving positions, momenta or velocities of particles 

will be denoted by q,p,x,y, etc., subscripted or not. Points of the one­

particle phase space ~3 x~are written as ordered pairs (q,p). Points of 

3N 
~ for N > 1 are written ~·£• and we think of them as N-tuples of points 

of ~3 : ~ = (q 1, q2 , • · · ,qN) with qi r::~3 , 1..s_ i~ N. 

The Euclidean scalar product is written (· , ·) and when the 

dimension is not clear from the context it is given by a subscript: 

<· ·) 
3

N. The scalar product of a vector x with itself is written 
·m 

2 
X • 

For any set ~ and any subset A C ~ , I A denotes the indicator func-

tion of A, that is, the function on ~ which takes the value 1 on A and 

The complement of a set A is written Ac when ~ is understood. In 

a topological space, the interior of A is denoted A0 . When the domain 

of a function is understood, we use the bracket notation for brevity, 

for example, if f: ~ ~~. then [ f > 0] is the set {wE ~:f(w)> 0}. 

For bounded measurable set A c~3 .!AI denotes volume of A. 

The phase space ~of the infinite hard-sphere system may be specified 

in several ways. The most naive way is to take all sequences {(qi,pi)};= 1 

of points of the 1-particle space 3 1 . I · .?17 xgp, for which I q. - q. ~ a 
1 J 

if i # j, and say that two sequences define the same point of ~if 

they differ only by permutation of the indices. 

Alternatively, define ~ to be the set of all functions 

x: ~3 xg?~ {0, 1} such that if x(q,p) 1 x(q',p'), then either 

q = q' and p = p' or lq - q' I > a. 
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We agree to the following abuse of notation: to each x L p£ there 

is associated a unique function, which will also be called x, from ?7? 3 

to {0, 1} giving the positions of the particles of x: that is, 

x(q) = 1 if for some momentum p, x(q,p) 1, otherwise x(q) = 0. 

For any measurable 1 fl. em we obtain the space -gr/1. of configura-

tions of particles in fl. by restricting elements of ~to 

Then ·??f breaks up naturally into a product 

X 

which is just a fancy way of saying that every configuration of the infinite 

system consists of the part inside fl. and the part outside A. 

There is a natural way of defining a topology on T:!l'" which makes it 

into a space with desirable measure-theoretic properties. For a continuous 

function ~: rf/ 3 X~) ~ m whose SUpport has a COmpact projection Onto 

the first factor, define a function E~: ?Jr~ ~ by 

E~(x) = E ~(q,p). 

x(q,p) :f 0 

Because of the hard core condition and the support properties of ~., 

only finitely many summands differ from 0. ·The ~topo·Iogy is the weakest 

topologymaking all functions E~ continuous. 

It can be proved ([Lanford 1969 ]) that rJr with this topology is 

a Polish space, that is, ?Jrhas a countable dense subset and the topology 

is given by a metric in which ?Jr is complete. 

The fact that '!!ris a Polish space gives it very good measure-

theoretic properties. The results we shall need about Borel probability 

measures on Polish spaces are summarized in the following theorem: 
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Theorem I.B.l [Schwartz] 

Every Borel probability measure P on gE is inner regular and T-

continuous at zero. That is, for every Borel set A, 

PA = sup { PK: A ::> K compact}, 

and for every generalized sequence of closed sets F 
a 

we have lim PF = 0. a a 

decreasing to <P 

There is a one-to-one correspondence between Borel probability 

measures on ?!£and positive linear functionals E on the space C (gr) of 
00 

bounded continuous functions such that E(1) = 1 with the continuity 

property lim E(f ) = 0 for every generalized sequence of positive func­a a 

tions f E C (g{jdecreasing to 0. · a oo 

Thus a Borel probability measure on ?!£is determined by the integrals 

of bounded continuous functions with respect to it. 

C. Gibbs states 

Equilibrium states of the infinite system are described by probability 

measures called Gibbs states. This section contains a summary of their 

basic properties, and proofs of some basic estimates which will be needed 

later. Fundamental papers with full details are [Lanford and Ruelle 

1969], [Rue'lle 1970]. [Lanford 1974] gives a thorough account; a 

concise summary is [ Ruelle 1971]. 

Choose real numbers S > 0, z > 0; a Gibbs state for the infinite 

system with inverse temperature S and activity z is a Borel probability 

oeasure 1.1 on ?1l"' which satisfies the Equilibrium Equations: 
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Equilibrium Equations. Let !::. be a bounded Borel set of 

1 
I¥ £ L ~$, 1-0. Then f ll'(x)ll(dx) 

rJe 

[!.j 3n/2 J 

t::.n xgl3n 

IT 
1<;i'01 
y(q)IO 

r s 21 
exp l- -- p J IT 

Zm -- 1~i <j ~n 

ll'(x,y) . 

3 ?J? and let 

Here (x, y) is the decomposition of a configuration of ?Jf into the part 

inside and the part outside. Also, y £ !?f. 1. 
m-,t::. 

has only finitely 

many particles within distance a of !::., so that only finitely many fac~ 

to·rs in the product in the second line differ from 1. Because of the 

hard-core condition, only finitely many terms in·. the sum over n <l n· d:i f-

ferent from zero. 

Here are several properties of Gibbs states which can easily be 

deduced from the definition: 

1) For a bounded Lebesgue measurable set 6 C m3 the random 

variable nt::.(x) =II {w:x(q) 4 0 } is bounded a.e . ..: l.l by a 

constant times the volume of 8 because of the hard-core con-

clition. Therefore the mean number of particles in 

is bounded by const lt::.i. 
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The correlation functions for ]J are defined by I Ruelle 1969] 

pn(~)= z" I p(dy)e-BU(~) - SW(~,y) 
?!r 

n 
z IT I 

l~i<j~n [ I q. -q .I ~ 
1 J 

IT I 
l~i~n [jq.-qJ~ a] 
y(q)#O 1 

Since ]J is a probability measure and the integrand is bounded by one, 

it is easy to see that [Ruelle 1969 Exercise 4.D] 

IT 
lsi<jsn 

I 
{ lq.-q.l ~a] 

1 J 

and we refer to this fact as the basic inequality for correlation func-

tions. 

The correlation functions have the following interpretation: for a 

Lebesgue measurable set E C~n the integral 

is the mean number of n-tuples of particles in E. 

3) The conditional distribution of the momenta given the positions 

is independent Gaussian with mean zero and variance m~. This Maxwellian 

velocity distribution leads to important bounds on the probability of 

occurrence of large velocities. 

For a bounded Lebesgue-measurable set A C ~ 3 
define a random 

variable 
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OV sup lp/ml 
(q,p)£ fl. xg?3 

x(q,p) :/: 0 

The square of the magnitude of the velocity of any particle has a Gamma 

* distribution with parameters V = 3/2, b = mS/2. 

As before, let nil. denote the random variable which counts the 

number of particles in fl.. On the set [nil.= k], v is the square max 

root of the maximum of k independent random variables with this same 

Gamma distribution. Let Pk(A) be the probability that v > A given max 

that there are k particles in fl.. Then for any y < S/(2m): 

* 

= JJl .. v . > A I nil. = k] max - 1 - (S }
312 

1/2 -Bu/2m ~~k --
2 

u e du m . 

2 
S const k exp (-yX ) as A + oo. 

Therefore for each bounded measurable 11.: 

]J ( Vfl. 
max 

> A]~I 
k 

-yX2 
const e I 11.1, 

-yA 2 [ ] const e I k ]J n~= k 
k 

A random variable has the Gamma distribution with parameters v,b if 
it has the probability density function 

[Feller p. 

1 v 
rV,b(x) = f(V) b 

461. 

v-1 -bx 
X e l( X> O] 
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because the last sum in the previous line is 'just the expectation of nfl. . 
2 

It follows that e Yvmax is ~-in~egrable for any y < ~Sm, 

and 

f 
exp(yv

2 
) d~ ~ Mjfl.j 

max 

?Jr 
where M depends on y but not on fl.. 

To conclude this section we use the correlation functions to estimate 

the probability of having a long chain of particles ljned up close to-

gether in some bounded region of space. 

Proposition I.C.1 (Chain estimate) 

Let~ be a Gibbs state for~. Let fl. be a bounded measurable subset 

of ~3 • Let 0 < E < 1 
i 

i = 1, 2, ··· N-1. Let F be the set of configura-

tions in ~in which there is a string of N particles with mutual distances 

E.a, that is 
1 

Then 

F {x E Pr I(*) holds} 

Proof: If Y denotes the integer-valued random variable defined by 

Y(x) =number of·N-tuples of particles of x satisfying(*) 
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then F C [Y ~ 1] , and ~F ~ ~[Y ~ 1] ~ f Yd~ . 
. or 

By the prop~rties of correlation functions, 

N! j 
N 

.s.sll. : 

lqi+l - qil ~ (1 + s.)a 
•1 

Insert the basic estimate for correlation functions, 

~ zN II I p 
N 1~i<j~N [ lq.-q.l > a] 

1 J 

into the integral above to get 

< N! zN J d~ dy 

N 
.9_E:II. :a ~ I qi+ ~-qi I ~ 

a < I q. -q .1, 
1 J 

(1 + c..) a, 
1 

i :f j 

1~i~N-1 

Change to difference variables yi qi+1 - qi (1~ i~N-1); then 

I Yd~ , Nl ZN J dql J dy = N N-l 4 3 ( 3 ) 
N! z 111.1 II j rra . (l+si) -1 . 

i=1 
II. 

Since (1 + s) 3 ~ 1 < 7E if 0 < E < 1, the last expression is less than 

3 ]N-1 
rra 

N-1 
II 

i=1 
c.. 

1 
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and the proof is terminated. 

Subsequently, when this estimate is applied, we put .. 

co 
28 3 N/N-1 
37T a z 

N-1 N-1 
so that \lF ~ N! IAI co IT € .• i=1 1 
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II. FINITELY MANY PARTICLES 

This chapter is devoted to the study of systems consisting of 

finitely many hard sphere particles restricted to a bounded region of 

space by a pi~ce-wise· smooth, elastically reflecting boundary. The 

basic existence result of section B will b~ needed in Chapter III in 

the proof of the existence 'of the motion for the infinite system. A 

result analogous to 'that of our section B, for particles interacting 

by a c2 
potential bounded below, has been obtained b~ Marchioro, 

Pellegrinotti, Presutti and Pulvirenti [ Marchioro et al. 197 Sbl . Tn 

section C we give examples in which a particle undergoes infinitelv 

many reflections from the boundary in a finite time, and establish 

necessary conditions for such singularities to occur. 

A. Phase space 

Let . J\.
1 

be a bounded open region in space. To describe the motion 

of N hard spheres of diameter a in J\ 1, define /\, the set of interior 

positions of a particle in J\.1' by 

J\ is an open set of which, to avoid pathology, we require a few 

simple properties: 

1) J\ is homeomorphic to an open ball. 

2) There is a constant CJ\ such that for o > 0 sufficiently small 

I dq 

d(q,3/\)< 0 



-14-

3) aA is contained in the union of finitely many surfaces for which 

a) there is a constant p
0 

such that at every point of each 

surface the radii of principal curvature are ~ p
0 

or 

Po; 

b) the intersection of two of the surfaces is either empty or 

consists of a smooth rectifiable arc along which the angle 

between the surface normals is bounded away from 0 and+ n. 

Since the particles only see the part of 1\ they can get 

to, namely K, we will mention only Kin what follows. The N-particle 

phase-:space is 

3N 
x g? : I q . -q . I ~ a 

l. J 
ifi#j}~ 

Our goal is to construct the time development which is described 

infor.mally by saying that the particles move freely in A, rebounding 

elastically at collisions with each other or the walls. 

A collision-point is a point X£ r for which some q. £ a A or 
l. 

some lq. - q. I= a . 
. l. J 

To describe the flow somewhat more precisely, suppose first that 

X £ r0 , the interior of r considered as sitting in ~6N; then there is 

a largest open interval about 0 for which ~(=(_g,_p)) ->- ~(t) (=(<i_+t~,_?)) 

is still in r, and this defines the flow for such points, in a neighbor-

hood of t 0. 

When particle j strikes the wall aA, the point (~,£) is to be in-

stantaneously transformed to the point (~.~') given by 

p' i f: j 

n(q.) 
J 

.. 
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where the unit outward normal to the wall at q has been denoted by n(q.). 
j J 

Similarly, when particle i collides with particle j, we inter-

change normal components of their momenta: 

p. - < p. l. . l. 

where~ = (qJ. - q.)/a is the unit vector along the line of centers. l. . 

Notic~ that elastic reflection of particles appears in the motion 

of the phase point~ as elastic reflection from the boundary of f.This is 

imediately obvious when a single particle hits the wall. Let h .. (n) be . lJ ..:l. 

. 2 2 
the function (q. - q.) - a : then at a collision of particles i and j the 

l. J 

phase point x strikes a point of the hypersurface h .. (q) = 0 in df. We 
l.J 

have · 

grad h .. 
l.J 

(0,···,0,2 (q.-q.),0,···,0,2 (q.-q.),O,···,O), l. J . . J l. 

so that the unit normal is Q = 1 

a/2 

j th place. 

(O,···,O,q.-q.,O,···,O,q.-q.,O,···,O), 
l. J J l. 

and the exchange of normal components of momenta of particles i and j is 

effected by the transformation 

p »E.' = E. - 2 (£•E.) 3N n. 
·g? 

We look only at i,j components, since the others are obviously un-

changed: 

( p .• p . ) - < p . -p .• l. J l. J [ 
q.-q.. q.-q. l l. J J l. 

a ' a 
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It is easy to see that any number of simultaneous, separated col-

lisions may be performed at once, since the reflection operators 

and I - 2 ( · , E.z) E.z commute in case E-
1
1 E.z, 

which will be true if .!!_
1

, E.z are (parallel to) ~radients of functions de-

pending on distinct coordinates. 

However, there are many cases not covered by our prescription, for 

example collisions involving three particles at once. Moreover grazing 

collisions can occur, after which the motion does not depend smoothly 

on the initial configuration. 

Our approach will be to identify the subset of ar corresponding to 

events such as these, and to discard from r all phase points which ever 

reach it. This will turn out to be no loss, for th~ excluded set is of 

first category and Lebesgue measure zero. On its complement solutions 

are defined for all time. 

We identify the following sets of "bad" collision points: 

u 
i,j 'k 

I qj -qk I = a } (triple collisions) 

u 
i,j 'k 

a } (particle hits wall and second particle simultaneously) 

'~ {q.ES., q. ESk} (particle hits a corner curve in the wall) 
1 J 1 

u 
i,j 

{I q.-q .1 
1 J 

a, 1\ p . -p . , q . -q . ) 
1 J 1 J 

0} (grazing two-body collision) 

* Notice that, if we like, we may leave in points where a particle hits 
a corner curve at an interior point in the curve of the set where the two 
surface normals n. and nk are perpendicular. 

J . 
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t' 0 0 

U { q . t.:S • : ( p . , n. (q . ) ) 
• • 1 J 1. J 1 

O} (grazing collision with wall). 
1,J 

The union of all these sets is a ciosed subset of ar which we call 

D. In fact Dis a finite union of submanifolds of ~6N, each of which has 

codimension at least two. This fact will be useful in section B. 

It is possible to make the phase space into a manifold on which the 

trajectories have no corners. Let M = f\D. In M define an equivalence re-

lation by 

(g_,_E) _ (_q 1 ,.E_ 1 ) if either 

(_q • .£) = <s I , .E. I ) or 

s = _ql 

.•. 

and .E.' = .E. - 2 (.E.· E. (_q) > E. (_s.) 

where E_(_q) is the normal to the boundary of N A at the point _q. 

Define M to be the quotient topological space M/ -, n:M ~ M 

the natural projection. We define an atlas for M in which the trajectories 

of the hard-sphere system have no corners. 

or 

Charts for M are either 

·o r 0 
' the interior of. r 

2) For X£ a f\D: 

a) Suppose first that x = (_q,.E_) lies in a single hypersurface 

of ar, that is, _q lies in a 3N - !~dimensional surface 

in the boundary of the configuration space 
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1Si<jSN }. Choose coordinates in a neighborhood of 

0 € ~JN- 1 so that the hypersurface is given by 

z ~(u) with S = ~(0). Call the unit normal field !(u). 

Define maps 

F_(u,;) = ~(u) - ;!(u) 

F+(u,;) = ~(u) + ;!(u) 

0 > ; > - E 

E 

Denoting the derivative of F+ by DF+ and tangent vectors to 

~JN- 1 
x ~by (k,n ) we have, if n 1 0 

(F_(u,O), DF_(k,n)) - (F+(u,O),DF+(k,n)). 

Thus for (_9.,.E_) € ar \ D a chart in M for a neighborhood of 

TI(_9.,.E_) is given by 

F(u,;,k,n) 
rr(F+(u,;), DF+(k,n)) ; ~ o, n 1 o 

rr(F_(u,~). DF_(k,n)) ~ < o, n 1 o 

b) If q lies in the surface formed by the intersection of k 

mutually orthogonal hypersurfaces, define functions 

F (u,~) = z(u) + I v -

k 
where 1 S v S 2 and 

v. ~- n.(u) 
1 1 -l 

v = - 1 + 2. [ ith digit in binary 
i 

expansion of v] . Again ~- y if and only if for some v, 

(F , DF )-1 (x) = (F , DF )-l (v) and so the F 's define v v - v v .L v 

a chart for some neighborhood of (~,E) Err ((3f\D). 

B. Construction of the Motion 

This section is devoted to the proof of the following theorem: 

Theorem II. B.l (Existence, uniqueness of solutions for finite systems) 

3 Let A C ~ be a bounded open set with piecewise smooth boundary 
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satisfying the conditions of the last section, and let r be the phase 

space for N hard spheres in A, D the singular points of of, and M the 

manifold made from r \ D by identifying incoming and butgoing momenta at 

collision points. 

Let {t } be an increasing sequence diverging to infinity. Then for 
n 

every n there is an open dense subset U of full measure in M such that for: 
n 

every~ £ U
0 

there is a mapping x: [ -tn, tn] -+ M with ~(0) 

the fbllowing .Properties: 

~· enjoying 

a) {~(t)} is a solution of the equations ~f motion with iriitial 

point~; 

b) ~(t) never meets D (that is, there are no triple collisions and 

no grazing collisions); 

c) any mapping x': [-tn' tn] -+ M satisfying a) coincides 

with~; 

d) the shift mappings ~(0) -+ ~(t) are measure-preserving transforma-

tions of M. 

Corollary II.B.l (Consistency) Let m < 

corresponding solution mappings on [ -tm' tm ] , 

Then X r X -n [-t t] -m 
m' m 

n u , x ,x 
n -m -n 

the 

[-t , t] respectively. 
n n 

The above theorem immediately implies that almost all phase points 

have solutions through them which are defined for all time. 

Theorem II.B.2 In M there is a residual subset R, whose complement is a 

Lebesgue null set, such that for any x
0 

£ R there is a unique mapping 

x: .~ -+ R which is a solution of the equations of motion having 

~(0) ~· 
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Moreover the shifts along trajectories 

Stx = x(t) 
- -

define a one-parameter group of measure-preserving tr.:.~nst:nrm<l t .i <llls .in ~1. 

The proof of Theorem 1 is accomplished in essentially two steps. 

First we show that for any t > 0, the set of points X E r which have solu-

tions existing throughout [-t,t] is open. It will be clear from the 

proof that any such solution is unique. The second part of the proof pro-

ceeds by probability arguments: we show that the Lebesgue volume in phase 

space of the set of points which do not have solutions on [-t,t] , is 

zero. 

0 
To begin the proof, let~ E f and let t

0 
be the smallest positive 

time t for which ~(t) = (3n + t~,£o) E 'df. Assume that ~(t0 ) E 'df\D, 

and assume that precisely one pair of particles collides or that exactly 

one particle touches 'dA in ~(t0). Then there isa neighborhood U of 

~ and a time t
1 

> t
0 

such that: 

i) for every~ E U, there is a unique solution trajectory 

{~(t): 0::::; t s t
1

} along which there occurs exactly one collision, 

which involves the pair of particles or the particle touching 

ii) For any t, 0:::; t s t 
1

. the mapping ~ -+ ~ ( t) is a measure-pre­

serving diffeomorphism of U. 

To show the existence of such aU and t
1

, note first that since 

~ (t
0

) E 'df \ D there is a t
1 

> t
0 

to which, by reflecting the momenta 

of colliding particles at t
0

, we can continue the motion of ~ with no 

further collisions. 
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Next, for any pair of particles which do not collide, say qi, qj 

the function 

d .. (t) = lq. + tp.- (q, + tp.) I -a 
l.J l. l. J J 

is_positive on the compact interval [O,t
1

] and thus has a positive mini-

mum. The same goes for the function 

d.(t) = d(q.(t), aA) 
l. l. 

defined for any particle qi which does not meet the wall during [ O,t 1]. 

Thus for any particle q. which does not collide, define 
l. 

and find a 

1 [ inf r. =- < < 1. 2 O_t_t
1 

neighborhood 

sup 

(q,p)E U. 
l. 

d. ( t) 
l. 

u. c g?6 
l. 

A min 
j 

of (qi, 

inf 
o:;t:;t

1 

pi) so that 

< r .. 
l. 

d .• (t)l 
l.J 

For a particle qi which suffers a collision at time t 0 , either t 0 

is the smallest time for which 

d(q. + tp., aA) = o 
l. l. 

or for some particle qj, t
0 

is the smaller of the two positive roots of 

(q. + tp. - (q. '+ tp.) )
2 

l. l. J J 
2 

- a 0. 

In either case, because of the smoothness of the boundary surfaces and 

because the collision time evidently depends smoothly on q., p., q., p. 
l. l. J J 

a neighborhood U. of q., p. may be determined so that if (q,p) E U.: 
l. l. l. . l. 

a) the collision reached by (qi, pi) at time t
0 

is reached by (q,p) 

at some time t < t 
1 

which depends smoothly on (q,p) 
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b) there is nonzero momentum transfer at this collision, which 

also depends smoothly on (q,p) 

c) no further collisions are introduced. 

The construction is finished: take the neighborhood u 
N 
11 

i=l 
u .. 
~ 

That the shifts along the trajectories starting at points of U are measure-

preserving follows from the fact that for any (g_,E_) E U, and for any i, 

the map (q.,p.)-+ (q.(t), p.(t)) 0:::; t$ t
1

, is made up of a finite Sl'-
1 1 1 1 

quence of translations 

and reflections 

(q.,p.) 
1 1 

(q.,p.) 
1 1 

~ (q. + tp., p.) 
1 1 1 

I+ 

which depend smoothly on (qi,pi) E Ui'- and all of which have Jacobian 

equal to one. 

From these simple considerations we get immediately the fact that 

trajectories for any interval [O,t] exist on an open set: 

Proposition II.B.l Let ~E f and assume there is a well-defined tra-

j ectory ~ ( t) through ~ having finitely many collisions at times 

t 1< t 2 < •·· < tn. Then there is a neighborhood U of~ and a time 

t' > t so that every x E U has the same collision-history as~ on 
n n -v 

[O,t'}. Moreover for every t E [O,t'] the mapping x-+ x(t) is a diffeo-
n n -

morphism of U onto a neighborhood of ~(t) which leaves Lebesgue measure 

invariant. 

Proof: Apply the results above to obtain a sequence {t~}~=l' 

0 <t
1

< t'<t <t'< •·• <t <t' and neighborhoods Uk of ~(tk'), 
1 2 2 n n 
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1=>: k =>: n, so that every ~ £ Uk has the same collision history on 

[ 0, tk+l - t~] as has ~ on [ tk' tk+l] , and shifts along trajectories 

are measure-preserving diffeomorphisms. Put 

n [k~l -1 l u n s(tj+l-tj) uk where S(t) X ~( t); -
k 1 j=l 

then this U is a neighborhood of ~ and has th~ desired properties. 

We now know that the set of phase points having solutions up to time 

t is open for all t; we do not know whether it is non-empty, and we do 

not know whether any configurations have solutions existing for all time. 

In the remainder of this section we show that the set of initial 

configurations which fail to have solutions for all time is contained in 

a set of Lebesgue measure zero. 

Here we take advantage of the fact that we are working with pure 

hard spheres to simplify the argument: we fixE> 0 and consider rE' 

the set of configurations of energy less than E. fE is just the 

Cartesian product of the configuration ~pace with the ball of radius 

/2EmE /rn in velocity space, and since energy is conserved any trajectory 

which starts out in fE stays there. Moreover, the motion of any point 

(g_,£.) in r can be found by looking at a corresponding point (q, c·p) 

£ fE (for c small enough) and scaling the time appropriately. Thus it 

will suffice to show that the time-development exists almost everywhere 

on fE. 

Pursuing this observation further, we see that the set of points 

which fail to have global solutions is invariant under homothetic trans-

formations in velocity space. Thus our argument will show that in any 

energy surface, the set of phase points which do not have solutions 
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existing for all time has probability zero for the microcanonical 

distribution. 

· For convenience, we choose E so that the maximum velocity any 

particle can have is 1. 
I 

The next four lemmas contain elementary geometrical estimates 

which show that the flow can be puttogether from pieces of trajectories 

along which only single collisions occur. 

By Pis meant Lebesgue measure on rE normalized to l. 

Lemma I I. B • 1 There is a constant c
1 

depending only on A and N, such 

that for all o, 0 <o< a/2, 

p [ some particle will collide with two others within time o] s;: cl o2 . 

Proof: Here and in the lemmas to follow we suppress reference to mo-

mentum space from the notation. Integrals over momentum space contribute 

a fixed factor, namely the volume of the 3N-dimensional ball of radius 

E, to all volume integrals over phase space. 

The set in question is thus contained in the set 

N 
{sEA : for some triple of distinct indices i,j,k, a~lq.-q. 1~ a+2o 

1 J 

whose volume is bounded by 

( 12 2 
l h 1N-2 l2s 3, 4o 
a - na J ·-3 2 

a 

~EAN: a~lq 2-q 1 1~a+2o = a(11~0J 
a:;;lq

3
-q 11:;;a+2o 
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where we have used the estimate of Proposition I.C.l for the volume of 

tpe spherical shell, which is valid because 26 < a. 

Lemma II.B.2 There is a constant c
2

, depending only on !1. and N, such 

that 

P[some particle collides with the wall and with another particle by 

2 
.time 6] 

1 
~ c

2 
o • 

Proof: The 9et in question is con·tained in the· set where 

i) there is a particle within 6 of 3!1. 

and ii) there is a second particle within a+2o of the first. 

A bound for the volume of the latter set is 

N 
~EA :d(q1 ,3!1.) < o 

as;:lql-q21S:a+2o 

in which 2) of section A has been used. 

Lemma II.B.3 There are constants Cj and C} depending only on N and the 

domain !1., such that 

P[Some particle strikes all. twice during time 6 ] .s:: C' 6 2 + C" o2 
3 3 

Proof: 

Case 1: Two impacts on a single surface of all.. (Figure 1) 

Let S be one of the smooth surface components of all. and let q E S. 

The sphere d of radius p
0 

which is tangent to S at q lies entirely 

inside S; therefore, if a particle can hit q and another point of S with-

in time 6 it must be able to hit q and another point of d within time o. 
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A chord of ~whose length is o subtends an angle at the center of 

6 which is given by 

2 2 2 
Po + Po - 2p0p0 cos a = o 

and this chord makes an angle 8 = (rr-a)/2 with the radius. By elementary 

trigonometry compute cos e = o/(2po). 

Thus if a particle is to collide with q and another point of 6 within 

time 
02 

o its distance frotn the tangent plane at q is at most 6 cos 8 = --
2p0 

By the condition 2) a) of section A on the curvature of aA it follows 

that there is a constant c' such that for all o small enough such a parti-

2 cle is within a distance c' o of aA. Again using 2) of section A we get 

as an estimate for the volume of such configurations 

NIAIN-1 I dq 

d(q,aA) < c' o2 

Case 2: Impact with two different surface components (Figure 2). 

Let a> 0 be the infimum of the angles at which two surfaces in aA 

intersect. For sufficiently small 6, then, a particle which is within a 

distance of two surfaces must lie within a distance 46 
sin a of their 

intersection (see Figure 2). Thus, there exists a constant c
4 

such that 

any particle which can collide with two different surfaces in time o must 

lie in the union of cylinders of radius c
4
o about the intersection 

curves. If the total length of these curves is L, the volume in rE of 

configurations having such a particle is less than 
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and this completes the proof. 

Proposition II,B.2 Let F be the set of configurations whose next collision 

point belongs to D. F is a finite union of submanifqlds whose codimension 

is at least 1. 

This Proposition is proved by ~ series of lemmas . 

. .,_, Lemma II.B.4 D is a finite union of submanifolds of codimension at least 

two. 

The proof of this is simple, and uses t~e fact that D is defined by 

constraints involving only one or two coordinates, which specify whether 

a particle is inside or on the boundary of A or whether two particles 

are separated or in contact. 

Define a function 1' on D by 

Thus 1' is the time elapsed since the last collision. 

Lemma II. B. 5 1' is lower semi-continuous. 

Proof: For each pair of particles q., q. define 
1 J 

T. . (_g_,_E) 
1] 

inf {t > o: I Cq.-tp.) - CqJ. -tp.) I 
1 1 . J 

and for each particle qi define 

T. (_g_, _ _E) = inf {t > 0: (q.-tp.)£ Ac}. 
1 1 1 

a} 

Each function 1' •. , 1'. is lower semi-continuous; therefore so is 
1] 1 
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T. (x) A 
]. - inf 

i,j 
T .. (x). 
lJ 

Lemma II. B. 6 Let U be a manifold, T a nonnegative lower semi-continu-

ous function on U, 8 > 0. Then 

U
0 

{(x,t)E U xgpiO <T (x) 1\8} is a manifold. 

Proof: It is sufficient to exhibit a neighborhood of the form 

Nx x (O,t 1) of a given point (x,t) E u0 . If (x,t) E U0 we have 

0 < t < T(x)Ao so there is a such that t < < T (x) 1\8. The 

set [T(x) > t
1

] is open in U, so it contains a neighborhood Nx of x, and 

the proof is complete. 

The proof of Proposition II.B.2 is completed by taking each manifold 

U of D, forming U
0 

, and mapping U
0 

into r E by (_g_,.E_, t) -+ (_g_-t£,.£.). 

We can now construct the flow in fE (and hence in f). Only two 

events can prevent a trajectory from being extended to all times: reaching 

D, or having infinitely many collisions in finite time. These catastrophes 

occur for a set of initial configurations which has measure zero. 

Proposition II.B.3 The set of points which are initial points of trajec-

tories defined for all time is of full measure in fE. 

_Proof: Let t
0 

> 0. For any E > 0, we prove that the set of points of 

rE which fail to have solutions throughout [ O,t
0

] is of outer measure 

less than E. 

Let C 4 max {c
1

, c
2

, cj, c) }, where these are the constants in 

Lemmas II.B 1-3. 
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t
0
c 

M 

enough that Lemmas II.B.l-3 hold for o. 

Let M be so large that < £, 

r 
0 

2 
M 

< 

,. 
0 

a, and 6 ·-· 
M 

is small 

Set k +-1, t _+- 0. By Lemmas II.B.l-3 and Proposition ILB.2, there 

is a set of measure less than Co 2 , on whose complement solu"tions having 

only one collision exist from time 0 to time <5. Set k +- k + l, t +- t+o. 

If t ~ t
0 

we are through. If not, another time-step of size o may be 

taken provided we discard another set of measure at most c'6 2• (Unwind 

this set by T-t, which preserves Lebesgue measure, and notice that this 

th 
amounts to throwing away a k set of the same measure originally.) 

Mt
0 

steps we reach t
0 

on the complement of a set of 

measure less than 

c 
Mto -2- < £. 

M 

Finally, take any sequences t ~ oo 
n 

and £ ~ 
k 0 and let Fnk 

be a set of measure less than £k on whose complement it is possible to 

reach t . Then 
n 

F = n 
n k 

is a closed set of measure zero on whose complement solutions are defined 

throughout [O,t ] . Putting U =Fe finishes the proof of Theorem II.B.l. 
n n n 

The proof of Theorem II.B.2 is immediate if we set R = n U , for then R 
n n 

is a residual subset of full measure on which solutions starting at any 

point exist for all time. 

C. Singularities 

This section is devoted to the study of singularities in the tra-

jectory of a single billiard in a two-dimensional domain. We construct 

examples in which infinitely many collisions with the boundary occur in 
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finite time, and then state necessary conditions for such singularities to occur. 

In our first example, the particle gets trapped between converging 

walls in a cul de sac. We first construct the path, lying in the unit square 

[ 0, 1] x [ 0, 1] of the plime. The particle starts at the point (0, l) with 

velocity (1, -2) and reaches a horizontal wall at {~,0). It travels to 

and so on, each time being reflected at an angle n/4 

from a horizontal wall, the distance between successive collisions being 

halved. At time 1 the particle reaches the point (1, }) after infinitely 

many collisions (Figure 3). 
ru 

The walls are constructed by joining together pieces of C func-

tions which have horizontal tangents at the collision points. Take ~· to 

00 

be any C (-E, 1 + E) function such that: 

~ ~ 0, ¢(x) = 0 if x ~ 0, ¢(x) 1 if x > 1, 

¢(n) (0) 0 

th 
At the n bounce, the position of the particle is to be 

(x ,y ) 
n n 

n k -k -n 1 2 1 n 
I (-1) 2 ) =·(1-2 '3+3(2) ). 

k=1 

The even-numbered collisions occur against the upper wall. Put a translated 

magnified ~ between (x2k' y2k) and (x2k+2 ' Y2k+2): 

At the odd-numbered collisions the particle strikes the lower wall. De-

fine functions 

[ 
x-x2k-l l (x) = y + (y -y ) cp I (k2_ 1) ~ 2k-l 2k+ 1 2k-l x2k+ 1 -x2k-1 [ x2k-1, x2k+1] . 

The upper wall is given by g(x) = Ik~ 
0 

gk(x), the lower wall by 

h(x) = Ik~ 1 hk(x); they are C 
00 

because only one summand differs from 
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zero at any point, and suctessive pieces of the wall match to all orders 

where they meet. 

The second example is of a plane region with C
00 

boundary from which 

a properly incident particle is reflected infinitely often in finite time. 

First we construct the trajectory. Let (~)k ~ 
0 

be a strictly in-

creasing sequence with limit X < 00 " let e 00 , 0, (Ek\ :::_ 1 be positive num-

hers such that 

(]() 
I 

(1) 

Let the particle travel from left to right, and be reflected first 

at a point above xo~ its trajectory making an angle eo with the horizontal 

axis. 

Above x
1

, the particle strikes the boundary again. Here the boundary 

is inclined at an angle 

(2) 

to the horizontal, and the incident trajectory makes angle E:
1 

with the 

boundary, so the path of the reflected particle makes an angle 

8 = 
1 

with the horizontal axis. 

(3) 

It should be clear how to continue. Above the point xk the particle, 

whose trajectory has angle of inclination 

ek-1 = eo + 2 
k-1 
~ 

i=1 
E. 

1 
(4) 

strikes the boundary with angle E:k, since the boundary is inclined at 
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the angle 
k-1 

e0 + 2 L Ei + Ek. 
i=l 

After reflection, the particle's trajectory makes the angle 

k 
E 

i=l 
£. = 

1 

with the horizontal. 

and 

We now show that under the assumptions 

lim 
k-+oo 

Ek + Ek+l 
n 

(xk+l - xk) 
0 for every n ~· 1 

[ 
E~+kl J) the sequence "- is bounded away from 0 and 

k:;:: 1 

co 
we can define a function f E c (x

0 
- o, X 

00 
+ o) so that 

f(xk+l) - f(xk) 

xk+1-xk 

co 

' 

(S) 

(6) 

(7) 

(8) 

(9) 

(that is, chords of the graph of f are segments of the trajectory) 

and 

f' (x ) = tan 
·k 

(the function has the right slope at each point of collision). 

(10) 

It is obvious that the values of f and f' at the points xk are de-

termined by the sequences (xk), (ck), and the numbers 

For brevity, we denote these values of f and f' by fk and fk, respec-

tively. 

If such a function f exists, it is possible to define a sequence 

of functions 
00 

gk E: c [ 0' 1] ' k = 1 '2' .. ' by 
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1 
=- 0 :; t:~ 1 

(11) 

Our object will be to reverse this procedure, constructing a se-

quence {gk} which will be used to interpolate the values of f. Simple 

computation shows that the functions 
/ 

gk must satisfy: 

1 
= -- (tan 

£k 

(12) 

(13) 

(14) 

Notice that bk > ck, and because of (8) all_ bk, ck are bounded 

2 
above by some constant times sup sec ~k' and are bounded away from 0. 

k 

The second and higher derivatives of the g's must satisfy a 
k 

compatibility condition at the end points; in particular: 

g"(l) = 
k 

£k+l 
------ gk11+1 (O). 
xk+2..:.xk+1 

(15) 

We shall construct f by defining a sequence (gk)k 2: 
1 

satisfying 

(12) - (16)' 

g (n)(O) = 0 = g(n)(1) f n > 3 k k or - ' 

in such a way that the { g(n)} are uniformly bounded in k for each 
k 

n = 0,1,2,··; . Then f is defined by 

(16) 
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co::; t< 1, k = 1,2,·· ·) 

co 
and f will be C up to xco because for every n ~ 2: 

g(n)(t)-+ 0 ask 
k 

by (7) and the uniform boundedness in k of all sequences 

(17) 

-+ 00 

It should be noted that it is easy to construct an f if we satisfy 

(15) by taking g~(O) = g~(1) = 0 for all k. Then the gk can be taken to 

be translates of a single bump function. What is of interest about our 

construction is that it yields a boundary whose curvature is positive on 

(x
0

, x ), vanishing only at x · We shall see later that it is necessary co co 

that the curvature of the boundary vanish at an accumulation point of 

collisions, and anyhow because of (7) we have 

d 

arc tan fk+1 - arc tan fk 

~+1 - xk 

dx arc tan f'(x)i +t( _ x) 
xk xk+1 k 

To begin the construction, define 

Then (15) will be satisfied if we put 

(O<t<l) 

(18) 

,• 
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(ll)) 

We construct the sequence {gk} by defining a sequence of functipns 

hk E C
00 

(0,1) so that {h(n)} is uniformly bounded for n = 0,1,2,···, 
k !<> 1 

and 

J 
t' 

0 < gk_ ( t) - ak + bk hk ( s) ds, 0 5. t ::; 1, (20) 

0 

where bk was defined in (14). Write down the integrals for gk and gk 

in terms of~· invert the order of integration, and use (12), (13), 

(14) and (19) to arrive after simple computations at the other require-

ments on the hk: 

J: hk(t)dt = (Ok+2 - ok)/bk (21) 

f~ t h (t)dt = -k 
1 + ok+/bk (22) 

f~ t
2 

hk(t)dt = - 2(1 - ck/bk) + ok+/bk. (23) 

By (5), (6), (8), (13), (14) it is easy to see that the ratios 

ck/bk are bounded away from 0 and 1; since ak-+ 0 by (7) and (18), we 

can find an index k
0 

and a positive number o so that for k > k
0

: 

(24) 

~ 2 + 4o < -2 (1 - C/bk) + ok+/bk < -48. (25) 

To define the hk's, let p 
00 

E C (g?) with support in (-!zo , !zo ) 

be such that J p(t)dt = 1 and p(t) = p (-t). We choose parameters 
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jlk £ (0/2, 1 - 3 6/2) and ak E (l/(2o), 2/o) so that by defining 

( 0
k+2 J - [a + ok Jp(x hk(x) = lak + p(x - ]Jk) - ]J - 6) 
bk k bk k 

co:::x~1) 

we get functions which satisfy (22) and (23) (it is easy to see that 

(20),(21) and the uniform boundedness are satisfied automatically). 

J

1 

The integrals x hk(x)dx and 
J

1 2 
x hk(x)dx are easy, if tedious, 

0 0 

to compute explicitly. Change variables to x - Jlk or x - ]Jk - 6 in the 

integrands and use the support and symmetry properties of p which imply 

finds 

J t~(t)dt 0 (27) 

J 
2 

t d/p (t)dt for some 0 < 8 < 1. (28) 

After somewhat lengthy but entirely elementary computation, one 

I~ '\(x)dx 

0 

- a 8 
k + (29) 

(30) 
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and it remains only to show that ak and ~k may be chosen to satisfy (22) 

and (23). For the expression (29) (resp. (30)) write f
1 
(a,~) (resp. 

f
2

(a,l.1)), and denote the quantity in (24) (resp. (25))'by t;k (resp. nk). 

Then our problem is to find in the rectangle 

F {(a,") I 1/(20) <a< 2/0, 0/2 < "< 1- 30/2} 

l 
a solution of the equations 

(3la) 

(3lb) 

for (t;k,nk) in the rectangle determined by (24), (25). 

From the many ways to solve this problem, we choose Newton's method, 

since an initial approximation immediately suggests itself: we take 

ak (O)= - t;kl 6, ~O) = ~(nk/ t;k - 6.), so that equations (3la-b) are sat is-

fied up to terms of order ok + ok+Z' Then the first Newton iterate 

( (l) (l) satisfies 
ak •llk 

with a constant which is independent of k. Now ok -> 0 implies that 

for large enough k the hypotheses of Theorem 3 of [Isaacson and Keller, 

p. 115] are satisfied; the initial guess and all iterates lie in F and 

the iterates converge to a solution of (3la-b). Alternatively, use (3la) 

to eliminate a from (3lb) and solve the resulting quadratic equation 

f . h (O) d P bl 3 [I d K 11 123] or ~ us1ng t e same ~ an ro em saacson an e er, p. . 

The remainder of this section is devoted to showing that the two 

examples given essentially exhaust the possibilities for a single particle 

in a plane region: roughly speaking, the particle must be caught in a 

cul de sac or it must rattle up to a point or" zero curvature. 
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Proposition II.C.l Let A be a region in the plane bounded by a piecewise 

c3 
curve, and let d E 3A be the unique accumulation point of collisions 

over a finite distance for some trajectory in A which is linear in i\ 

and obeys the law "angle of incidence at aA equals angle of reflection." 

If infinitely many collision points of the trajectory lie on each 

side of ~. then the left and right tangents to aA at d make angle 0 with 

each other. 

Proof: (Figure 4) The hypotheses imply that the set of collisions for 

which the next collision occurs on the opposite side of d is cofinal in 

the sequence of all collisions of the given trajectory. Notice also that 

when the trajectory leaves some point of the boundary, making an angle 

8 > 0 with the tangent there, its next collision cannot be on the same side 

unleSS the tangent turns at least through an angle 8. 

Assume that the left and right tangents to 'dA at d make a~gle 

a> 0 with each other. Let E < a/4. 

Let P and Q be consecutive collision points on opposite side-s of o', 

close enough to d that the angle QdP is greater than a - E/2, and the ab­

solute curvature of aA , integrated from Q to ~'or from P to d, is less 

than E/8. This implies that the angle between dP (resp.dQ) and the tan-

gent to aA at P (resp. Q) is less than E/4, and that if the trajec-

tory reaches Q with incidence angle greater than 

must be on the P side. 

a/2 its next collision 

Let R be a point on the extension of dq through Q. 

Then (incidence angle at Q) > L PQR - E/ 4. 

But L PQR = L dPQ + L QdP. 
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Now, L GPQ > (incidence angle at P) - E/4, and L QOP >a - E/2 

by hypothesis. 

Thus (incidence angle at Q) > (incidence angle at P) + a - f, 

and after at mo~t (n/2)/(a/2) collisions on alternate sides of O, and 

particle will be headed out of the corner. 

Proposition II.C.2 r 
Let ~(s) be a smooth (C , r ~ 3) curve in the plane 

parametrized by arc length, along which some trajectory has infinitely 

many reflections in finite time. Assume that after a certain time all 

collisions of this trajectory take place on one side of the accumulation 

point. Denote by k(s) the curvature at the point ~(s). Then dk/ds = 0 

infinitely often in the neighborhood of the accumulation point, and k 

and all its 'derivatives vanish at the accumulation point. 

Proof: We show first that k -+ 0. 

D h . f h . th 11" . b ( ) L enote t e po1nt o t e J co 1s1on y x. = x s. . et 
-J - J 

T. be 
J 

the length of the trajectory (chord) from x. to x.+1 , o. the corre-
J -J J 

spending arc length. Writ~ ~ for the unit tangent, ~ for the unit normal, 

and let ~ be the angle the incident trajectory makes with n(s.) at x .. 
- J -J 

Then 

~j+l X. + T. (sin ~ t + cos ~ ~) -J J -

x. 1 X. + T. 1 (-sin ~ t + cos~~) -J- -J J-

Expand ~j+1 and X. 1 in terms of arc length about x.: 
-]- -J 

~j+l = x. + oj t +_!_k o: n + d(o 3) 
-J 2 J - j 

0. 1 +_!_k 2 d<o~ 1> x. 1 = X. - t 0. 1 n + 
-J- J J- 2 J- J-
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Equate tangent and normal components: 

T. sin¢ 
J 

o. + o(o~) 
J J 

3 
T. 

1 
sin¢= o. 

1 
+ d(o. 

1) 
J- J- J-

T. cos ¢ 
J 

cos ¢ T. 1 J-

_!_ k 0~ + ~(6~) 
2 J J 

l ko 2 
+ dco~ 

1
) 

j-l 2 J-

Now suppose that beyond a certain index j 0 we have k(sj) I 0; 

since we always assume ¢ I 0, ~ we may divide the first of each pair 

of equations in (1) by the second to obtain: 

o. 1 o'co ~) 0~ 1 
1 tl (6.) + T. + --

___.l _j_ __J__ k 
(s . 1 1 d(o~_ 1 ) T. 1 2 1 1 ' ( 0. 1) J- + J- 0. 1 + - tJ' 

J- k J-

(1) 

. 

Our assumption that lim k(s) I 0 implies that 1/k 
S-+S 

0 (1) as j -+ oo • 

This implies 

0. 
___1_ 

0. 1 J-

00 

1 + d(o~) 

1 + de a~ 1) 
J-

1 + e'coj_1) 

1 + <5( 0.) 
J 

so there is a constant B > 0 so that beyond some index j
1 

we have 

But since L:o < 00 

j 

> 1 - B (o. + 
J 

0. 1). 
J-

the next lemma shows this to be impossible. 

I 

The stated result is actually a corollary of a more general fact: 

Lemrnaii.C.1. Let L:ak be a convergent series of positive terms. 

2 
Then (ak+~ - ak)/(ak+1 + ak) is not bounded below. 
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- l ak+1 - ak 
2 

(ak+1 + ak) 

l rk 

2 ' 
so the 

ak 
rk + 

result is obvious unless_ rk ~ 1. In that case it suffices 

- 2 
(ak+1-ak)/ak is not bounded below. If (ak+1 -:-

2 a )/a > -B k k-

we have 

2 
ak - ak+ 1 ~ Bak, or ak+l / ak ~ 1 - Bak. 

Let k be so large that n ~ k =9 a B < ~. Then 
n 

l 

to 

for 

ak+2 ~ ak+1 (1- Bak+1) ~ ak(1- Bak) (1 - Bak+1), 

and for p ~ 2, 

p-1 
IT 

j=l 
( 1 - B ) ak+j • 

show 

all k 
' 

But the infinite product converges if -~ (1 + Bak+j) converges, which it 

does because E Bak+j converges. This implies ak+p~ 0, which is 
j 

absurd, and the Lemma is proven. 

a· 
Return to the proof of Proposition II.C.2. If ~ > 1 - B(o. 1+o.) 

. 1 J- J ]-

for j > j
1

, repeat the argument of the Lemma and deduce from convergence 

of the product IT [ 1 - B(o. _1+k + 8. +k)] the result o. +k-,40, 
~1 Jl ]1 ]1 

which contradicts E 8 < oo j . 

It remains to show that dk/ds has a zero in every neighborhood of 

the accumulation point. Then Rolle's theorem will imply that any higher 

derivatives of k which exist must also vanish at the accumulation point. 

Consider again the jth collision point, and suppose that dk/ds < 0 

for sj_1 .:5 s .:5 sj+1 . Consider the osculating circled of x at -;• i.e. 

1 
the circle of center ~j + k(s.) n (s.) and radius 

- J 
1 
k(s.)' If k and k' 

J J 
have no zeroes between s. 

1 
and 

]-
sj+1, an elementary argument [Stoker 

pp. 29-31] shows that the portion of the curve from x. 1 to x. lies 
-J- J 

inside 0, and the portion from x. to x.+1 lies outside 0. (In fact, un­
-J -J 

der these assumptiQns, no two osculating circles O(s') and O(s") for 

sj_ 1 ::; s' <.s"::; sj+l have a point in common.) , 
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From this we deduce that the chord from x. 
1 

to x has length 
-J- ---j 

and that 

T. 1 < (
2

) cos¢ J- k s. 
J 

T. 
J 

> 2 
k(s.) cos ¢ . 

J 

In particular T. > T. 
1

. Evidently we must have T. ~ T. 1 J J- J ]-

infinitely often to obtain convergence; therefore dk/ds must 

vanish infinitely often in the neighborhood of the accumulation point. 
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III. INFINITELY MANY PARTICLES. 

A. The Sequence of Finite Systems 

For all configurations x £ ~and integers R 2 1 define the partial 

flow T~(x) by placing an elastically reflecting wall at jql = R, fixing 

all particles not entirely inside it, and letting the particles inside 

move according to the elastic reflection law. 

Obviously there are initial configurations for which not all TR can 

be defined for all time. That the set of all such configurations is null 

for every Gibbs state follows most simply from a conditional probability 

argument. Fix an integer R 2 1, let 

1\ = { I q I ..$.. R - a/2} 

and let 

be the familiar splitting of configurations into the part inside A and 

the part outside (note that a particle which is "inside" fl. is "entirely 

inside" the sphere of radius R about the origin). Let g/ be the o-alge-

bra generated by the coordinates of and B be the set of 

X£ PL 
t for which TR(x) does not extend to all time. It follows from the 

results of Chapter II that 

0 a.e-].J 

so that ].JB = 0. 

Hence for each R, TR is defined for all time except on a set which 

is null for every Gibbs state. Taking the union over R of these null 

sets proves: 
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Proposition III.A.l. ~= {xE~I T~x exists for all t, for every 

R 1,2, ... } 

has probability one for every Gibbs state. 

Each T~ is evidently a measurable transformation of ~. because 

it affects only finitely many coordinates, and those measurably; the 

partial flows TR have the further important property that l:'Very C ibb::; 

state is invariant under them. 

To see this, let R, !\_ , .¢ be as on the previous page, and let A 

be any measurable set in ~ . Then 

where ll (A j.¢) is the Y-Measurable function 

d_g_ IT 
1_:-;_i<j_:-;_n 

I 
[ q .-q .1 ~a] 

1 J 

IT I 
~~ [ jqi-ql~ 
Y(q)#O 

I A (_g_, y) 
a] 

Now, ITtA(x,Y) 
R 

-t" . 
IA(TRX,Y), and it follows from Liouville's Theorem 
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for the finite system in A that 

~(Aid) a.e. (~) 

. t 
and therefore IJ(TRA) ~A. 

B.· Probability Estimates for the Partial Flo\o.'S. 

Our goal is to construct the flow Tt on a subset gr of Pr to 

which the partial flows TR converge in measure as R ~ ro \~e do this 

by showing that for almost all initial configurations the motion of 

a given particle during a given finite interval of time is indepen-

dnet of R once R is large enough. 

To establish this requires some care. To see the dificulty, 

suppose that the motion of the particles in some configuration in 

1\R under TR is known. In the motion of the same configuration under 

TR" where R' > R, say that a particle in fiR at t = 0 is influenced 

by the removal of the wall and tne motion of the particles in 

AR,\AR if its TR' motion differs from its TR motion. 

A particle is influenced, then, if another particle is knocked 

into its path and the two suffer a collision under TR, which does not 

occur under TR. This influence can be indirect: a particle's tra-

jectory will be changed if one of its TR collision-partners is knocked 

out of its path so that no collision ~akes place. 

The reader can easily invent more complicated schemes. It is 

well known from computer simulation of hard-sphere systems that a 

slight disturbance of the collision history leads very soon to a 

dramatically different motion of the system. 
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The effect of the motion of the particles outside AR can spre:1d 

rapidly in two ways. The first occurs when many particles are lined 

up very close together. The chain estimate implies that very long 

chains occur with small probability. 

The second way in which influence of a particle moves rapidly 

is by the high velocity motion of the particle itself. In a Max-

wellian velocity distribution, arbitrary large velocities occur with 

positive prob:1bility. Here is an estimate of that probability. 

Proposition III.B.l (Free distance estimate) 

Let !\ be a bounded measurable set in 9?3 ," and let Tt be a flow 

on l?r" which leaves Gibbs states invariant. Let f.! be a Gibbs state 

for ~with inverse temperature S. Define 

v (t) 
max 

!\ 
v (t) 

max 
sup 

q. (t)E:f\ 
1 

lv. (t) I 
1 

Then there is a constant M depending only on y < S such that 
2m 

for any T > 0, A > 0 

v (t)dt > AJ < M I A I max ( >/) exp. -y;.2 

Proof: For XE: 1?r let ¢1 (x) 

for some 0 < y s <-
2m 

Since~ is a probability on (O,T] and exp {y(·)
2

} is convex, we 
T 

have by Jensen's inequality 
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Now W2 is ~-integrable, for by Tonelli's theorem, the positive 

function exp [yv2 (t)] (x) is integrable over [O,T]x?Jrif either 
max 

iterated integral is finite. But 

because ~ is invariant un:der Tt _, so that v (t) has the same distri-
max 

but ion as v (0). The last integral is <M lA I for constant M 
max 

depending only on y, by the basic estimates for velocities in Gibbs 

states. 

Therefore, 

Finally, 

I{ T v (t)dt > A}= I' exp{y(_!!T v (t.)dt) 2 \ > cxp(/'~)J. max T max 1·· 

0 0 

1 
so that from the fact that for X;;;;. 0, ~[X> A J < -EX.we deduce 

A 

and the,proof is complete. 
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Fix notatipn for the remainder of Section B: 

R > 2 is an integer. 

~ is a Gibbs state for ~with inverse temperature s. 

y < ~ M, are constants from the free distance estimate. 
2m' 

C0 is the constant in the chain estimate of Chapter I. 

AR = £1ql < R} is the sphere of radius R. 

Now let a > 5/2, c > 0. For .::my such n and c we slt;Jll Lind <1 

set of full measure on which global solutions of the equations of 

motion are defined and enjoy certain regularity properties. 

If,\ is a real number, the symbol f.\1, "ceiling of>.", denotes 

the least integer greater than or equal to ,\. 

Having fixed a and c, we define n and w constants, and NR and 1 

which depend on R, by 

(1) n = 3a/5 

(2) wE (a - n, n - ~) 

(3) NR = r2~ (log R) 2a/ 51 
(4) T = (log R)-n 

It follows from this that 

(5) n - ~ > w > a - n = 2a/5 > 1 

(6) 2(n - w) > 1 

Finally, take R large enough that 

-w 
(7) 4(log R) < a 

2a/s 
(8) (log R) -w < % (log R) 

We are now ready to prove a series of probability estimates which 

not only give strong control on the TR,but also have a more general 

application. 
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For the application, assume that St is a !-parameter group of 

transformations of J?r" leaving every Gibbs state invariant, such that 

for almost every XE~ the trajectory {x(t) = Stx!-oo < t < w} is a 

' solution of the equations of motion. 

t 
Our estimates will show that requiring S to be measure-preserv-

ing leads to very nice regularity properties of its trajectories. 

Lemma III.B.l For TR t consider xcii-; for St take any xc~. 

Put v (t) 
max 

)R) (t) 
max sup lvi(t)j 

qi(t)Ei\R 

Let AR be the event that either 

T 

a) 1 v (t)dt > max 
0 

1 (log R) -w 
2 i 

or b) there are NR particles qi , ... , RiN EAR with 
1 R 

Proof: Immediate from the free distance estimate .and the chain estimate. 

In the free distance estimate we use T = (log R)-n, A = ~(log R)-w. 

In the chain estimate we have Ej 
4 

< 1 by ( 7). 
a(log R)W 

This lemma has an immediate extension. If t
0 

> 0, we let 
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K = Ito (log R) 3a/Sl . 

For fixed k, 0 ~ k < K we define the event BR k by , 

(k+1)T 

a) J v (t)dt max 
kT 

-w 
> !z(log R) 

or b) At time kT there are NR particles qi
1

, ••• , qiNRsAR 

with 

Then by the invariance of fJ under T~ or St, fJBR,k f,IAR. This proves 

Lemma III.B.2. Let BR 

Direct application of these estimates gives the desired regu-

larity property of the trajectories. In the following Proposition, 

where the partial flows TR are considered, each set BR is defined by 

the motion under the corresponding TR of the particles in AR. 

Proposition III.B.2 For either the family of partial flows 

{TR: R = 1,2, ... } or any one parameter group St of transformations 

of ~ which leave all Gibbs states invariant and almost all of whose 

trajectories are solutions of the equations of motion, there is a 

measurable subset gz-- of !?r with the following properties: 

a) fJ ~ = 1 for every Gibbs state fl• 

b) For each xe:Pl"" and t positive there is an R = R (x, t ) such that 
if R, R . o o o o 

/ 0 

i) there is no subinterval IC[-t 0 ,t0 l of length 
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T(R)= (log R)- 3a/S 

for which Jv (t)dt > (log R)-w 
max 

I 

ii) At no time tE[-t0 ,t0 ] is there a chain of N NR 

Ptoof: Let BR be as in the preceeding lemma, with t
0 

= k, and let 

Pr = [ B i.o.] c. We show I )JBR < oo, so by the Borel-Cantelli Lemma 
k . R R 

)ll?lk = 1. 

By Lemmas III.B.l-2 write the upper bound for )JBR as the sum of 

two terms. The first is 

and since 2(n-w) > 1 by equation (6) above this term is summable in R. 

The second term is 

Since Nl{ r 2~ (log R)a-nl , we have from Stirling's formula: 
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exp{NR (a-n) log log R + O(NR)}, 

so the term in question is 

[k(log R)3a/SJ% 1rR3 exp{(a-n-w) 2~(log R)a-n log log R+O(log R)a-n} 

and the exponential goes to zero more rapidly than any inverse power 

of R because a - n - w < 0 and a - n > 1 by (5) above. 

This completes the proof that I: ~BR < oo 

c Next, if xEBR, there is no interval I of length T(R) in [O,k] 

for which the free distance J( VmaxCt)dt exceeds (log R)-w. For if 
I 

there were, we could choose j so that 

J
(j+l)T 

vmaxCt)dt ~ 
JT 

~vmax(t)dt ~ ~(log R)-" 

In [ jT, (j+l)T I 

c 
which is impossible because X€ BR. 

Moreover, if at any time t, 0 ~ t ~ k, there were a chain of 

NR particles qi 1 (t), ... , qiNR(t) EAR with /qij(t)- qij+l(t) I <a 

+ 2(log R)-w for 1 < j < NR- 1, then by taking the nearest time to 

t of the form nT we would derive jqij(nT)- qij+l(nT)/ ~ 

< (log R)-w +a+ 2(log R)-w + (log R)-w 

c 
which again is not possible since Xl~ BR . 

a + 4(log R)-w 
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Finally, we put ?Jr = () PI':" • Then 11 ~ 
k k 

I and ;ll_l xd?Y 

satisfy b) i) and ii). The proof i.s compl('tc. 

C. Construction of the Motion for the Infinite System. 

The next lemma is the crucial one for our construction. It says 

that deep inside AR the particles for some time do not notice the 

difference between TR and TR' if R' > Rr 

We preserve the notations of (l) - (8) in the last section. 

Lemma III.C.l. Let XE~ , t > 0; number the particles of x in the 

order of their distance from the origin, and for q. let R > -Ro (x, t 0 ) 
1 

be so large that 

Then for R' R + j, l ~ j ~ R, and for all t, 0 ~ t ~ t 0 

q~R)(t) 
1 

Proof: Say that a particle is marked at the infimum of the times for 

which its TR' motion differs from its TR motion. 

Then obviously all particles in 1\R'\.AR (except those for which 

p O)are marked at time 0. 

Take any particle of x \-lhich is inside 1\R at t 0, and which 



-54-

is marked at some time t1, 0.:;;;; t1.:;;;; t 0 • Call this particle 1. We 

show that particle 1 cannot be too far from JAR by constructing a 

chain of particles reaching from particle 1 to aAR. 

Set k + 1 

(*) If particle k gets marked by reaching aAR .the chain terminates 

with particle k. 

If particle k is inside AR at time tk, it gets marked because 

it collides under either TR or TR' (or possibly in both, with distinct 

particles) with a particle which is already marked. Choose a marked 

particle with which particle k collides in either TR or TR, -motion 

at' time tk. Call this particle k+l. It was .marked at time tk+1, 

where 0 .:;;;; t < tk. k+l 

Set k + k+l and return to (*). 

In this construction, the return to (*) is possible only finitely 

many times because only finitely many collisions occur under TR, and 

TR during [ 0, t 0 ] 

A chain of, say, N particles has now been constructed, with 

lqN(tN) I = R. 

Suppose that R- lq1(t1)i > cl1+t~ (log 2R)a. Notice that 

Divide the interval [O,t 1 ] into sub-intervals of length 

<(2R) = (log 2R)-n = (log 2R)-3a/s. 

During each of these sub-intervals [ kT, (k+l) T I ( 0 .:;;;; k .:;;;; ~~l) 
no particle travels a distance greater than (log R)-w in either the 
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TR or TR, motion; however, there must be an index k with the following 

property: 

Denote by qik_the first particle tb be marked after time kr, 

Gik+l the first particle to be marked after (k+l)T. Then 

This is because 

and 

But if we suppose (log R)-w < %<log 2R) 2a/s, this shows that we must 

have at least_£_ (log 2R) 2a/S > _£_ (log R) 2a/S = NR particles in fiR 
2a . 2a • 

. -w 
with mutual distance at most 2 (log R) , which by the Propbsition of 

the last Section is impossible. 

This shows that a particle which gets marked by time t
0 

lies 

within cll+t~ (log 2R)a of afiR. The proof is complete. 

Theorem III. C. 1 (Existence) Let xd?r , t 0 E fJi?. 

exists in the ~-topology. 

Then lim 
R -+ co 

Proof: Number the particles of x in the order of ··their distance from 

the origin. For each i, take Ri to be the R of the previous lemma: 

repeated application of that lemma shows that if R' > Ri, 
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lim 
R -+ "" 

q~R)(t) 
~ . 0 

(At a collision point, we agree that all momenta shall be incoming.) 

Let ~¢ be any function among those which define the ¥-topology, 

that is, ¢ is a function on J;J;> 3 x £!1?3 whose support has compact pro-

jection on the first factor, and ~cj>(x) = ~<P(q,p) . Let K C gp 3 be 
x(q,p)=¥=0 

compact such. that ¢(q,p) = 0 if q j K. Take R > R(x, t
0

) so large 

that all translates. of K by distances less than cll+tb (log R)cr 

lie inside /\1 R" 
'4 

Then all particles of x which could reach K by time t 0 are inside 

!:.:a_ , hence have the correct motion under TR up to time t 0 . 
4R 

. t 
in fact x(t 0 )l K = TR? x IK for any R' :;;;, R, so R' :;;;, R implies 

~¢ (x(t
0

)) = Z:<P(T~? x), and this finishes the proof. 

The mapping from ,g;> into .?Y" given by t -+ x( t) = lim 
r-roo~ 

Therefore, 

evidently a solution of the equations of motion for any x~ .• and the 

trajectories enjoy an important regularity property. 

To state this property explicitly, we continue to preserve the 

notations of {1) - (8) for the numbers a, c, w, and for positive 

integers R: 

T (R) (log R)- 3a./s 

r-2ca (log R) 20./51 
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Definition: Let xEPr": A map ~: £1?-+Pris called a regular sol.ution 

of the equations of motion with initial point x if 

i) f1S(t): - 00 < t < oo} is a solution (if the l'qu;Jtions llf 

motion and ~(0) = x; 

ii) only finitely many collisions, each involving only two par-

ticles, occur durin~ any interval [ -t, t] in any_.AR; 

iii) given any t > 0, there is an R1(x,t) such that if R > R1 then 

a) there is no subinterval I ,of [ -t, t] of length T (R) for 

which f v~~ (t)dt >(log R)-w''; 
I 

and b) at no time sE:[ -t,t] is there a chain of NR particles in 

1\R with mutual distances less than a+ (log R)-w. 

In terms of this definition, we can reformulate the result of 

Proposition III.B.2: 

Proposition III.C.l~ 
t 

Let S be a !-parameter group of Gibbs-state-

preserving transformations of gr- whose trajectories are solutions of the 

equations of motion. The set of xE:Pr"whose trajectories are regular 

solutions has probability one for every Gibbs state. 

We mentioned in the introduction examples of configurations which 

are initial points of mor~ than.one solution of the equations of motion. 

If we allow only regu~ar solutions, however, it is possible to establish 

a uniqueness result: 

Theorem III. C. 2 (Uniqueness) For any xEPr there is at most one 

regular solution of the equations of motion with initial point x. 



-58-

/ 

Proof: Let x'(t), x"(t) be any regular solutions with x'(O) = x"(O) 

= x. If x' is not· identical to~~~. there is ;1 partici.L.' ql and :1 t".illl<' 

t 1 > 0 so t ha t t 1 = in f { t > 0 I q i ( t ) * q i' ( t ) J. 

Let R be any number larger than the maximum of R'1 (x, t 1 ), R;' (x, t 1 ), 

As in the proof of Lemma III.C.l, say that a particle q of xis 

marked at time t if e~ther 

i) t = 0 and lql > R 

or ii) t 1 ~ t > 0 and t = inf {s I q' (s) * q "(s) or I q '(s) I~ R} 

In particular, ql is marked at time t1. 

Now u~e the fact that ~· and ~, have only finitely many collisions 

in AR during [O,t 1 ] to construct a chain of particles q 1 ,qL>···qn and 

corresponding times t1 > t2 > t 0 ~ 0 so that qi is marked at time 

(If this construction did not reach the boundary we would have 

a particle which before its first collision moved differently for X 

and~, which is impossible because both are solutions.) 

Next, supposing that R- Jq 1 (t 1) I > cll+tf (log R)a, we argue 

exactly as in Lemma III.C.l that, because of the velocity bound (condition 

(iii)(a) for a regular solution), the chain condition (iii)(d) must 

be violated. 

Therefore, since x and x" are regular solutions, we must have 

or, by the velocity bound, 
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I I I ') n t L -111 
q 1 (0) > R- c l+t·i (log R). - -

1
(H.>" (log 1\) . 

but R >max {R{(xltl), R{'(z,tl), lq1(0) I} was arbitrary. The proof 

is complete. 

Let ?Jr be the set of xE?Jr which are initial points of regular 

solutions. The existence theorem shows ?Jr ·~ ~. so regular solutions 

exist almost surely in every Gibbs state. 

The first remark to make about ?Jr is that if xE~ so is 

x(t 0 ) for any t
0

• In fact, prop~rties i) and ii) of the definition 

follow immediately from the fact that {x(t): ~00 < t < oo} is .a regu-

lar s~lution, ~nd to see that th~ bounds in part iii) hold for any 

t > 0 it is enough to take Rl(x(t0 ),t) = R1(x,t + lt 0 j). This proves 

Proposition III.C.2 For all xE?Jr define the time evolution mapping 

Tt to be the .. one-parameter group of shifts ·along the 'trajectory of 

the regular solution through x: 

t 
T(x) x(t) 

Then ?Jr is invariant under every Tt. 

A further property of Tt is that it is measure-preserving. 

Proposition III.C.3. Every Tt leaves all Gibbs states invariant. 

Let ~ be any Gibbs state, and let f be a bounded continuous 

function on ~ For each XE!Jr and r finite integer put fr(x) = 

-t -t 
f(Tr x) and define f 00 (X) = f(T x) 

Since lim 
r-+ oo 

-t -t 
Tr x = T x for all xE?Jr, f r -+ f 

00 
a. s. -11, and 

therefore foo is ~- measurable. 
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Moreover, the fr 1 ~ r ~ "", are uniformly bounded by II f II co. Thus 

Jfoodll = lim J frdll = J fd11, the last equality ho-Lding because ll 
r -+ oo 

t 
is invariant under every TR. 

It now follows from the basic facts stated in Chapter I about 

Borel probability measures on Polish spaces that the measures ll and 

I 0 ,t 
ll "" 11 1 are the same, because they agree on all bounded continuous 

functions. The proof is complete. 

Using this result and Proposition III.C.l, it is possible to 

reformulate the uniqueness theorem so that the regularity condition 

does not appear explicitly. 

Theorem III.C. 3. Let T?r'"' be a subset of T!r'" whose complement is null 

t for every Gibbs state, and let S be a one-parameter group of trans-

formations of fll"'' into itseif such that 

i) every trajectory {Stx: -oo < t < oo} is a solution of the 

equations of motion, and 

ii) 
t 

S leaves every Gibbs state invariant. 

Then for all x in the complement of a set which is null for every 

t t 
Gibbs state, S x = T x for all t. 
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disclosed, or represents that its use would not infringe privately 
owned rights . 



... ~ :;: ~ 

TECHNICAL INFORMATION DIVISION 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

. ' 

~ 

.,, 




