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The Infinite Hard-Sphere System
by
‘Roger Keith Alexander
ABSTRACT
: We constru#t the time-evolution for the system of infinitely

‘ many particles in‘space interacting by the hard-sphere potential ¢:
v - + o |x| < a
L 0(x) =
0 x| > a
Examples abound of configurations of the infinite system having
more than'one solution to the Newtonian equations of motion. We impose
a regulérity condition on the solutions we seek, which limits the growth
- of velocities and of the length of chains of .particlés close together
as Jx| -+ é; e prove'that'through any point of the phase space there-

passes-at most pné regular solution.

QQeryrpbint in a subset = of the phase space 2 is the initial
point of a regular solution which is defined for ali time. The subset
2 is of full measure for evéry Gibbs state and is invariant under
- the oné-paiaméter group Tt of éhifts along soluti&n‘trajectories. More-
~over, the flow'Tt'leaves every éibbs'state invariant.

The solutions we construct are limits, as R + «©, of motions in
_whiéh;particles_inside the sphere of radius R are élastiéally reflected

frbm 1ts.bouhaa;y while those outside fémain fixed. For this reason,
we also study‘theLmotion of finite systems.l

For finitely many hard-sphere particles in a region_of space-
with‘piecewiéevsmooth boundary, the set of points of the phase space

thfough which solutions exist for all time without triple or grazing



collisions, is of full Lebesgue measure and is residual in the sense
of Baire. Liouville's Theorem holds for the one-parameter group of
shift—transformations.Tt.

_Finally, we give examples in which a single billiard moving in
the plane is reflected infinitely often from a boundary curve in finite
time, and we establish necessary conditions for such singularities to

occur.



I. INTRODUCTION
.A. The Problem'

Systems'of infinitely many pafticles are avfirSt approximation to
realisticué?stems with a finite but unmaﬁageably large numbér of parti-
glgs. Such_syétems were figst gtudiéd extensiveiy by 0. Lanford
[Lanfo;d 1968,_1969] wiio provéd existence of the time-evolution for one-
dimensional systems of infinitely many particle;'iﬁteracting through
finite-range, Lipschitz-continuous forces. Sinai.pbnstructéd the time
evolution for“one—dimensional systems ( [ Sinai 1972] ) and for wv-
dimeﬁsionalasystems at low density ( [Sinai 1974]) for finite range
forces with'hard cores, by showing that the partitleé break up into
finite clusters which do not interact for short times. Lanford's 1974
Batté11e>Lectufes [Lanford 1974] are in bart devoted to his cbnsfruction
of tiﬁé evélution for v-dimensional infinite systems, where fhé éﬁper—
stable potential is allowed to have infinite range. An egistence theorem
for the dy#aﬁics for v-dimensional systemsvwith a_finiﬁeQrange, C
potential was obtained by Marchioro et al. [Marchior0~et al. 1975a T.

A éummafy of all these wérks is contained in Lanférd's 1974 Battélle

Lectures.



The purpose of the present work is to construct the time evolution
for;the infinite hard-sphere system in three-dimensional space.

Briefly, we have a configuration of the infipitg system, that is,

a sequénce {(qi, vi} ;;l’ the position and velocity»of the iftb particle
being given by 9?3 - vectors A vy respectively. Our object is 'to con-~
struct the motion of all, or almost all such configufations of particles
interacting,thtough the hard sphgre potential:

: + oo .= .i<a’

@ (q; - q) = Ty

0 else
(We require of the configuration {(q., v.}} * .that q. - q.| > a
i i i=1 i jt -

if i#3.)

The problems peculiar to infinite systems afe_described in Lanford's
survey [Lanford 1974]. In fact one cannot hope to solve theAequations of
motion for all initial configurations, because it is easy to construct
examples which reach a catastrophe in finite time. With hard spheres it
is so simple thé reader may do it himself, if he iikes. Thus to make
progress oﬁé must restrict fhe set of allowed initial configurations -
but not too severely: what femains éhould be large enough.to support mea-
sures.on the phase space which deséribe interesting statistical states
of the system. |

As usual,vthe hard sphere potential leads to some simplifications. -
All Boltzmann factors exp [ - B®] are independent of the inverse tempera-
ture f and take only the values 0 and 1, simplifying many estimatéé.

Moreover, the hard core condition guarantees that every bounded region

of space will contain only finitely many particles.



On the other hand, there are difficulties-péculiar to the hard-
sphere system: the pdﬁential ¢ is not differentiable, so there is not an
honest differential equatiop to determine thé motion. We resort to a pre-
scription_bagéd‘pn the elastic reflection law, but it is not clear then what
ﬁo do about friple and higﬁer multiple collisions. |

A further.problem is mbs; simply illus#rated~by an example of a.con—
figuratibn ﬁaving more than one solution to the quations‘of motion, which
is complemgntary to'thevexample giveq by Lanford [Lénford 1974]; Place an
infinite sequence of billiard ballé of1diaﬁeter a in a straight line so

that -q; - a) < ® , All P, = 0. Oné solution is: all parti-

L., (q,
121 a4y
cles remain at rest forever. For a second solution, let particle i begin

to move toward particle i - 1 with velocity v .at time

) . .
== ¥ . -.q. -
=y Ity )
j2i :

and comé to rest when it collides with particle i - 1 at time

. + . = q, - a)/v.

tl (ql 951 g)/v

This shows that in critical configurations a disturbance can be

propagated over arbitrarily lafge distance in a given finite time. It is
easy to see that by allowing a moderate growth in the velocity of the
th o .
1t particle as i + one can eliminate the requirements that the

particles lie .in a straight line and that the sum of the interparticle

distances be finite.

B. The Infinite System Phase Space

We specify once and for all that the hard sphere diameter is a fixed

positive number denoted by a, and that the particles have mass m = 1.
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R R - .
Vectors in &2~ giving positions, momenta or velocities of particles
will be denoted by q,p,x,y, etc., subscripted or not. Points of the one-
. 3 3 . : . .
particle phase space ZP~ xZ# are written as ordered pairs (q,p). Points of

§?3N

for N > 1 are written q,p, and we think of them as N-tuples of points

3 . 3
s q = i <i<N.
of Z&7: q (ql, a4y ,qN) with q; €, 1<i<N
The Euclidean scalar product is written <- . '> , and when the
dimension is not clear from the context it is given.by a subscript:

<- s '> N The scalar product of a vector x with itself is written

2

X .

For any set 2 and any subset AC Q, I denotes the indicator func-

A
tion of A, that is, the function on {2 which takes the value 1 on A and
0 on Q\A.

The complement of a set A is written A® when Q is understood. In
a topological space, the interior of A is denoted.AO. When the domain
of a function is understood, we use the bracket notation for brevity,
for éxample;_if f: @ >, then [f > 0] is the set {w e Q:f(w)> 0}..

For bounded measurable set A C§W3,|A| denotes volume of A.

The phaée space 22 of the infinite hard—sphere system may be spécifiedr
in several wajs. The most naive way is to take all sequénces‘{(qi,pi)}?zl
of points of the l-particle space §é3 ngg,fof which | a - qj' >a
if i #4j,.and say that two>sequences define the éame point of 2 if

they differ only . by permutation of the iﬁdices.

Alternatively, define 2 to be the set of all functions

X: §?3X§z§+ {0, 1} such that if x(q,p) = 1 = x(q',p'), then either

q=q'" andp=p'or [q-gq'|2a.
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We agree fo the following abuse of notatioﬁ:_to each x ¢ @ there
is associated a unique function, which will alsoube‘called x, from
to {0, 1} giving the positions of the particleslof x: that 1is,

x(q) = 1 if for some momentum p, x(q,p) = 1,‘ofhéfwise x(q) = 0.
For any ﬁeasurable A ngﬁ'we'obtain ﬁhe sﬁace EYh of configura—
tions of particles in A by restricting elements of Z to A x §?3.
Then @~ breaks up naturally into a product |
& = @ oz 3
' L2 AW\
.which is’juSt a fancy way of sayiﬁg that evéry‘cbnfiguratiOnof the infinite
, Systém'consists_of the part inside A and the part outside A.

There is a natural way of defining a topology on @& which makes it
into a space with desirable measure-theoretic properties. For a continuous
function VY: EWB‘X §P3 + R whose supportihas a ¢ompact projection onto
the first factor, define a function I¥: @2 > Z» ‘by

T¥(x) = T ¥(q,p)-
x(q,p) # 0

Because of the:hard core condition and the support properties of VY.,

only finitely many summands differ from 0. The zg’topdibgy is the weakest

topology»makingvall functions Z@ continuous.

It.can be proved ( [Lanford 1969 ]) that 2 with this topology is
a Polish space, that is, 2 has a countable dense subset and the topology
is given by a metric in which & is complete.

The fact that @ is a Polish space gives it very good measure-
theoretic properties. The results we shall need about Borel probability

measures on Polish spaces are summarized in the following theorem:



Theorem I.B.1 [ Schwartz]

Every Borel probability measure P on @ is inner regular and +v-

continuous at zero. That is, for every Borel set A,

PA = sup{ PK: A D K compact},
and for every generalized sequence of closed se£sta_ decreasing to ¢
we have l&@ PFa = 0.

There is a one-to-one correspondence between Borel probability
measures on & and positive linear functiénals E on the space Cm(gz)of
bounded continuous functions such that E(1) = 1 with the continuity
property l&m E(fa) = 0 for every generalized sequence of positive func-
tions fa € C_(@)decreasing to 0.

Thus a Borel probability measure on @& is determined by the integrals

of bounded ‘continuous functions with respect to it.

C. Gibbs states

Equilibrium states of the infinite system are described by probability
measures called Gibbs states. This section contains a summary of their
basic properties, and proofs of some basic estimates which will be needed
later. Fundamental papers with full details are [ Lanford and Ruelle
1969 1, [Ruelle 1970]. [Lanford 1974] gives a tﬁorough account; a
concise summéry is [ Ruelle 1971]. - |

Choose féél numbers 8 > 0, z > 0; a Giﬁbs state for fhe infinite
system with inverse temperature £ and activity z.is a Borel probagility

neasure U on & which satisfies the Equilibrium Equations:



Equilibrium Equations. Let A be a bounded Borel set of 9?3 and let

Y e LI(Q;-(B,U). Then J Y(x)u(dx)

o
n én/Z ( \
T oz B . B .2
- | dq d exp |- 5= Pp I I
. i 7]
' ’ An X§W3n
X ~u(dy) m I Y(x,y)
1<i<cn -~ [[q-q| 2
y(q)#0 :

SCEV!
Here (x,y) is fhe decomposition of a configuration of 2 into the part
inside. A and the part outside. Also, y € & has only finitely
. RAL
many particles within distance a of A, so that only finitely many fac-
tors in the'product in the second line differ from 1. Because of the
hard-core condition, only finitely many terms in. the sum over n arv dif—
ferent from zero.
Here are several properties of Gibbs states which can easily be
deduced from tbe definition:
1) Fér a bounded Lebesgue measurable set A C,9?3 the random
: vafiable nA(x) =.# {en:x(q) # 0 } is bounded a.e. - uby a
constant times the volume of A because of the hard-core con-
‘ dition. Therefore the mean number of particles in A,_J nAdU

@

is bounded by const [A].



The correlation functions for p are defined by |Ruelle 1969]

o (D= z" U(dy)e‘BU(_CD - BW(g,y)

o
=z 0 Ju(dY) T I
1<i<j<n [|qiqu| > al 1<i<n []qi—q[z al

y(q)#0

Since  is a probability measure and the integrand is bounded by one,

it is easy to see that [Ruelle 1969 Exercise 4.D]

p_(a) < 20 n 1
, 1<i<jsn [Iqi—qj| > a]

and we refer to this fact as the basic inequality for correlation func-

tions.,
The correlation functions have the following interpretation: for a

Lebesgue measurable set E CH" the integral

P, (@) dq
E
is the mean number of n-tuples of particles in E.

3) The conditional distribution of the momenta giveﬁ the positions
is independent Gaussian with meah‘zero and variénge a%?u This Maxwellian
velocity distribution leads to important bounds on.the probability of
occurrence of large velocities.

For a bounded Lebesgue-measurable set A C 9?3.define a random

variable
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. (h) :
v =v =0V sup |lp/m | .
max max (q.p)e A xZR3
- x(q,p) # 0

The square of the magnitude of the velocity of any particle has a Gamma

. *
distribution with parameters Vv = 3/2, b =.mB/2.

As before, let nA

number of particles in A. On the set [nA =%k1, Viax is the square

denote the random varidble which -counts the

root of the maximum of k indepeﬁdent random variables with this same
Gamma distribution. Let Pk(k) be the probability that Vmax>ux given

that there are k particles in A; Then for an§_Y < B/(2m):

Pk(x) N “[Vmax z M oy il

1l

- 3/2 e k
;J 1 [Sm] ul(ge-eu/zmdu

TG/ {2m
0

Z k. Pv b(x)dx < const k exp (-yA ) as A > o,
22
Therefore for eaéh bounded measurable A:
A ' 2 |
ulv > Al<E pln,= k] P, (A\) £ const e YA v % uln,= k]
max. K A k N K A

2
< const e YA 1al,

* v
A random variable has the Gamma distribution with parameters v,b if
it has the probability density function

, 1 v v-1 -b
r (x) = =—, b x e XI[x>0]_

[ Feller p. 46].
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because the last sum in the previous line is just the expectation of ny
' 2
It follows that e ''max jg u-insegrable for any y < %fm,
and
eXé(sz ) du < M|A|
1 max
@Z
where M depends on Yy but not on A.
To conclude this section we use the correlation functions to estimate

the probability of having a long chain of particles lined up close to-

gether in some bounded region of space.

Proposition I.C.l1 (Chain estimate)

Let y Be'a Gibbs state for @ . Let A be a béﬁnded measurable subset
of 593. Let 0 < ei <1 i=1, 2, *++ N-1. Let F be the set of configura-
tions in & in which- there is a string of N particles with mutual distances

Eia, that is

F= {x 832’|(*) holds}

(*) 3qi,, --+» iy €N q.
» 1 N 1i+1

-q. |<(1 + €.)a for 1<j<N-1,
3 3

€,.

Then uF < N! leAJ [—— I €

N-1 N-1
%f . 33J I

Proof: If Y denotes the integer-valued random variable defined by

Y(x) = number of N-tuples of particles of x satisfying(*)
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then FC[y 2 1] , and ﬂF <suly 2 1] g j Ydy,
) a

By the properties of correlation functions,

Y dy = N py(@dg
ggAN:

- T+
lagey = 9gl s +gpa
Insert the basic estimate for correlation functions,

p < zN I I

N 1i<jsN [lqi—qjl > al

into the integral above to get

Ydu ¢ Nt 20 | dq dy

N

or N : .
: . - < <{<N-
qel :a Iqi+lvqil < (L+e) a, ISisN-d

as< |q. -q.|, - i#]

Change to difference variables Y T 94 T Y (1< i< N-1); then

Ydy £ N! z dq1 dy - N! =z

a < Iyil < (1+ei)a

Since (1 + 8)3 - 1< 7¢e if 0 < £ < 1, the last expression is less than
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and the proof is terminated.

Subsequently, when this estimate is applied, we put

_ 28 3 N/N-1
CO = 3 m a z

N-1 N-1

< ' i
so that uF < N![A] <o e
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'II. FINITELY MANY PARTIcﬂEs. ’

This chapter is devoted ta the study of sfétems consisting of
finiﬁély many hardvsphere particles restricted tq é.bounded region of
space by a piéceéwise'émooth, elastically reflecting boundary. The
basic existence result of section B will be needed in Chapter III in
the proofjéf the existence of the motion for the infinite system. A
result analogous'to'that of our section B, for pérticles interécting
vby-a C2 potential bounded below, has been obtainéd.ﬁy Marchioro,
Pellegrinotti, Presutti and Pulvirenti [Marchioro et al. 1975bl. In
sgctibn C we give examples in which a particle unaergoes infinitelv
many reflections from the boundary in a finite time, and establish

necessary conditions for such singularities to occur.

A, Phase space

Let . A1 be a bounded open region in space. To describe the motion
of N hard spheres of diameter a in Al’ define A, the set of interior

positions of a particle in Ai, by

A= {q e Az d(a,30) > % a)

A is an open set of which, to avoid pathology, we require a few
simple properties: .
1) A is homeomorphic to an open ball. . :

2) There is a constant‘CA such that for 8§ > 0 sufficiently small

dq, < 8 |A|2/3;

d(q,3M)< §
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3) 9A is contained in the union of finitely many surfaces for which

a) there is a constant such that at every point of each «

Po

surface the radii of principal curvature are > po or
$ - OO;
b) the intersection of two of the surfaces is either empty or
‘consists of a smooth rectifiable arc along which the angle
Since the particles only see the part of A1 they can get
to, namely K, we will mention only A in what follows. The N-particle

phase—space is

I ={x = (g,p)e AV xg?m:lqi-qjl >a if i#j)c #N

- Our goal is to construct the time development which is described
informally by saying that the particles move freely in A, rebounding
elastically at coilisions with each other or the wélls.

A collision-point is a point x € ' for which some q €9 A or

=

To describe the flow somewhat more precisely, suppose first that

0 . . . s . 6N .
“x € T7, the interior of I' considered as sitting in @2 ; then there is

some Iqi - q

a largest open interval about 0 fof which §(=(3;P)) - E(t)(=(thE’P))
is still in T, and this defines the flow for such points, in a neighbor-
hood of t = 0.
When particle j strikes the wall 9A, the point (gq,p) is to be in- -

stantaneously transformed to the point (q,p') given by

p' Py i#j

=py -2 (pj,n(qj)> n(a;)

=)
It
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whére3the unit outward normal to the wall at q has been denoted by n(qj).
v =t v _ 3

'Similarly, when particle i collides with"particle' j, we inter-

'change normal components of their momenta:

'pi=pi~<pi-pj‘.ﬁ>ﬁ
. '_pJ!='pj- (p; = P> @) 8

whefe.ﬁ'= (qj - qi)/a‘is the unit vector alongvthe line of centers.

Notice that elastic reflection of particleé appears in the motion
of the phase ppint EZ'és eléstic reflection from the boundary of F.Thigis
imﬁediatelyrobvious when a single particle hits.thevwall, Let hij(ﬂ)'be
ﬁhe functioﬁ‘(qi - qj)2 F'az: then at a collisidn'qf particles i and j the
phase point x strikes a ﬁoint of the hypersurface hij(q) =.0’ig ol'. We
have

 grad b = (0,+-+,0,2 (2;-4,),0,++,0,2 (qj;qi),o,--;,o>,
| ¢ith'place | g Eth place
so that thé'unit normal is n - L (0,---,0,9,-q,,0,---,0,9,.~q.,0,---,0),
- av? 1] J 1

and the exchange of normal components of momenta of particles i and j is

effected by the transformation

ptp' =p-2 (p.mn) .o n
‘R
We look only at i,j components, since the others are obviously un-
changed:

Lol = (o) O W S
(p}>p}) = (p;>p) - 2 <»(pi’pj)"a/f (479329570 ) g6 = (93795,4579,)

qi—q.> 3 [

-

] J

a

4579, .79
a

bypp) = (PyPys

Pi - <pi_pj’ ﬁ) 9?3 a’ pj + <pi-ﬁj, a>@3 ﬁ]
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where q = (qi - qj)/a.

It is easy to see that any number of'simultaneous, separated col-
lisions may be performed at once, since the reflection operators
I -2 <-,_gl> 21 and T - 2 <-, 52> _22 commuté in case Eli n,,

1;‘32 are (parallel to) gradients of functions de-

which will be true if n
pending on distinct coordinates.

However;:there are many cases not covered byféur prescription, for
example collisions involving three particles at once. Moreover grazing
collisions can occur, after which the motion does not depend smoothly
on the initial configuration.

Our approach will be to identify the subset‘of o' corresponding to
events such as these, and to discard from I' all phase points which ever
reach it. This will turn out to be no loss, for the excluded set is of
first category and Lebesgue measure zero. On its complement solutions

are defined for all time.

We identify the follqwing sets of "bad" collision points:

.U. {|qi4qj|- = Iqj—qk [ = a } (triple collisions)
i,j,k
u {q.ES.qu—qk[= a } (particle hits wall and second particle simultaneously)
i,k ol )
. *
U {qiES., qiesk} (particle hits a corner curve in the wall)
iajsk ’ .

U i _ = / _ - = . _ ..
1 {lqi qjl a, {Py pj,qi qj> 0} (grazing two-body collision)
’

%
Notice that, if we like, we may leave in points where a particle hits

a corner curve at an interior point in the curve of the set where the two
surface normals nj and n, are perpendicular.
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v {qiesj: _< pi,nj(qi)> = 0} (grazing collision with wall).
i,j _ '

The union of all these sets is a closed subset of 9 which we call
D. 'In fact D‘ié a finite union of submanifolds of,.g?éN, each of which has
éodimension_at least two. This fact will be useful in section B.

It is pqssible to make the phase space into;a'ﬁanifoldfon which the
trajeptories have no corners. Let M = T\D. In M define an equi?alence re-
lation by o _

) '-.(g,p_) ~ (q',p") if either
(g-p) = (q'sp") or  (g,p), (q',p")ed

|l

9=49
(p:n(@) # 0
and ‘p' =p -2 (pn(@) n(@
where n(q) is the normal to the boundary of AN at the point q.
Define M to be the quotient topological space M/ ~, m:M > M
the natural projection. We define an atlas for M in which the trajectories
of the hard-sphere system have no corners.
_Charts for M are either
1) TO , the interior of T
or
2) For x € 3 I'\D:
a) Suppose first that x = (g,p) lies in a single hypersurface
of oI, that is, q 1lies in a 3N - l-dimensional surface

in the boundary of the configuration space AN\{|qi - qj]<a;
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1<i<j<N }. Choose coordinates in a neighborhood of

0 e @1 o that the hypersurface is given by

[

z = z(u) with g = z(0). Call the unit normal field N(u).

Define maps

v
gy
v
|
m

z(u) - &N(u) 0

F_(u,8)

F(u8) =2 + BN 0

IN

i
7
™

Denoting the derivative of F, by DF, = and tangent vectors to

9?3N“1 x R by (k,n ) we have, if n#o0

~(F_(u,0), DF_(k,n)) ~ (F, (u,0),DF, (K,n)).

b)

F(u;E,k,n) =

Thus for (gq,p)e 3T\D a chart in M for a neighborhood of

m(g,p) is given by

TT(F+(U,E), DF+(1<,T1)) g_Z 0, n # 0

m(F_(u,E), DF_(k,m)) £ <0, n # 0

If q lies in the surface formed by the intersection of k
mutually orthogonal hypersurfaces, define functions

FO(0E) = 2() + 5 v, £ 0, ()

where 1 < v £ 2k and vi = -1+ 2. [ith digit in binary

expansion of V]. Again x~y 1if and only if fof some Vv,

-1 o -1 . ;
(Fv’ DFv) x) = (Fv’ DFv) (y) and so the F 's define

a chart for some neighborhood of (q,p) € 3T\ D).

B. Construction of the Motion

This section is devoted to the proof of the following theorem:

Theorem II.

B.1 (Existence, uniqueness of solutions for finite systems)

Let A C 9?3 be a bounded open set with piecewise smooth boundary
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satisfying the conditions of the iast éection, and'iet [' be the phase
space for N>.hard spheres in A, D the singulariﬁéints of al'y and M the
manifold made from F'\'D by identifying incoming'and'0utgoing moménta at
collision>poin£sf |

Lgt {ﬁn} be an increaéing sgquence diverging to infinity. Then for
every n there is ap open dense subset Un of full measure in M such that for

X

| the followingAproperties:

every € Un ‘there is a mapping x: [—tn, tn] -> M'Qith x(0) = Xy enjoying

é) {§(t5} is a solution of ﬁhe equationsiéf‘motion with initial
. poigt gﬂ;
B) zﬁt)‘”never meets D (that is, there are no triple céllisions and
ﬁovgraZing collisions);
c) any‘ﬁappi?g x': [-tn,gn]_; M satiéfying }a)'cqincides
with x;
d) the shift mappings x(0) + x(t) are measure-preserving transforma-

tions of M.

m n —-—m-mm

Cofolléry II.B.1 (Consistency) Let m < n and §06AU nu » X ,X_ the

corresponding solution mappings on '[-tm, t, 1, [—tﬁ, tn] respectively.

Then x_ [ ' =x .
n [ -t ,t ] m
S M m
The above theorem immediately implies that almost all phase points

have solutions through them which are defined for all time.

Theorem II.B.2 In M there is a residual subset R, whose complement is a

Lebesgue null set, such that for any Xq € R there is a unique mapping

X: & - R which is a solution of the equations of motion having

x(0) = x,.
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Moreover the shifts along trajectories

s'x = x(t)

define a one-paramcter group of measure-preserving transformations in M.

The proof of Theorem 1 is accomplished in essentially two stepé.

First
tions
proof
ceeds
space

zero.

T

time

we show that for any t >0, the set of points x € I' which have éolu—
existing throughout [-t,t] is open. It will be clear frém the

that anylSUCh solution is unique. The second part of the proof pro-
by probability arguments: we show that the Lebesgue volume in phase

of the set of points which do not have solutions on [-t,t] , is

o begin the proof, let:_}_{0 € FO and let to be the smallest positive

Lo _ | \
t for which go(t) (SO + tEO’BO) € 9. Assume that §O(t0),€ oI'\p,

and assume that precisely one pair of particles collides or that exactly

one particle touches 9A in §0(t0). Then there is’ a neighborhood U of

%

and a time t, > t_ such that:

1 0

i) for every x € U, there is a unique solution trajectory

.

ii) For any t, 0SS t<t

{x(t): 0<¢tx< tl} along which there occurs exactly one collision,
which involves the pair of particles or the.particle'touching

oM in §O(t0).

l_the mapping x + x(t) is a measure—pré—

serving diffeomorphism of U.

To show the existence of such a U and tl’ note first that since

§O(t0)'€ 9T'\D there is a t, > t, to which, by reflecting the momenta

of colliding particles at t

1 0

, we can continue the motion of x, with no
0 -0

further collisions.
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Next, for‘any pair of particles which do not collide, say q; qj

the function
= + tp, - +t -
dj;(8) = fag +tp; = (g +ep)f - a
is'positivé on the compact interval [O,tl] and thus has a positive mini-
mum. The same goes for the function
45 () = d(a;(6), )
defined for any particle q; which does not meet the wall during [O,CI].

Thus for any particle q which does not collide, define

“1 | inf d.(t) A min inf o d, . (b)
Y i . i]

i <t<
1 j 0»_t_t1

r, =
i 2 10L&t

and find a neighborhood Ui C §?6 of (qi, pi) so that

] A + - : < .
swp oy e - @r | < or
0<t<ty,
(qa,p)e U, |
For a partiéle 9y which suffers a collision at time tO’ either tO
is the smallest time for which
A =
d(q; + tp,, M) =0
or for some particle qj, tO is the smaller 6f the two positive roots of

: 2 2
(qi + tp, - (qj-+ tpj) )° - a” = 0.

In either case; because of the smoothness of the bbundary surfaces and
because the collision fime evidently depends smoothly on qi, P> qj, pj
a neighborhood‘Ui of 95, p; may be determined so that if (q,p) £ Ui:

a) the'cqllision.feached by (qi, pi) at time to is reached by (q,p)

at some time t < t1 which depends smoothly on (q,p)
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b) there is nonzero momentum transfer at this collision, which
also depends smoothly on (q,p)

c¢) no further collisions are introduced.

The construction is finished: take the neighborhood U = U..

1 1

==

i
That the shifts along the trajectories starting at points of U are measure-
preserving follows from the fact that for any (g,p) € U, and for any i,
. ' < < i ._\ £ inite seo-
the map (qi,pi) -> (qi(t), pi(t)) 0< t< tl’ is made up of a finite sc
quence of translations
=5
(q;,p,) (qi,+ tp., P;)
and reflections
N .
(q;,p;) (q;5p;) |
which depend smoothly on (qi,pi) £ Ui,‘and all of which have Jacobian
equal to one.
From these simple considerations we get immediately the fact that

trajectories for any interval [0,t] exist on an open set:

Proposition II.B.1l Let 508 I' - and assume there is a well-defined tra-

having finitely many collisions at times

jectory x(t) through X, |
< < oo <t i i ; A
t1 t2 tn Then there is a neighborhood U»of §O and a time

t; > tn so that every x € U has the same collision-history as .9 on’
[O,t;]. Moreover for every t € [O,t;] the mapping x ~ x(t) is a diffeo-

morphism of U onto a neighborhood of §O(t) which leaves Lebesgue measure

invariant.

|}n

Proof: Apply the results above to obtain a sequence {tk k=1

<E.< t'<t . <tl'<.e.. <t <t i f ",
0 t1 t1 t2 t2 | tn a and neighborhoods Uk o §(tk)
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1< k< n, so that every x € U _has the same collision history on

k

] , and shifts along trajectories

[0, - ti] as has x. on [ t!,

1 ] 1 ]
byl % bl

are measure-preserving diffeomorphisms. Put

k-1

n -1
vt= N I s(t

j+1_tj) Uk wherg S(t) §>=_§(t);

then this U is a neighborhood of and has the desired properties.

X,
We now know thét’the set of phase points having solutions up to time
t is opeﬁ for all t; we do not know whether it is non—empty, and we do‘
not know Qhether any configurations have solutiéns exis£ing for all time.
In the remainder‘of this section we show that the set of initial
éonfigurations which fail to have solutions for ali time is contained in
a set of Lebésgue measure zero.
Here we take advantage of ;he fact that we are working with.pﬁre
hard spheres to simplify the argument: we fik E > 0 and considef. FE,
the set of configurations of energy less than E. PE is just.the
Cartesian product of the configuration space with the ball of radius
//%?— in velocity space, and since energy is conéerved any trajectory
which starté out in IFE stays there. Moreover, tﬁe motion of any pdintv
(¢,p) in T can be found by looking at a corresponding point (g) c-B)'
£ FE (for c small enough) aﬁd scaling the time appropriately. Th;s it
will suffice to show that the time-development exisfs almost everywhere
on FE' |
Pursuing this observation further, we see thét the set of points
which fail to have global solutions is invariant under homothetic trans-

formations in velocity space. Thus our argument will show that in any

energy surface, the set of phase points which do not have solutions
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exisﬁing for all time has probability zero for the microcanonical
distribution.

“ For convenience, we choose E so that the maximum velocity any
payticle can have is 1.

"The next four lemﬁas contain elementary geometrical estimates
which show that the flow can be put together from pieces of trajectories
along which only single collisiéns occur.

By P is meant Lebesgue méasure on FE normalized to 1.

Lemma II.B.l- There is a constant C1 depending only-on A and N, such

that for all §, 0 <8< a/2,

P[ some particle will collide with two others within time &] <C, 52,

Proof: Here and in the lemmas to follow we suppress reference to mo-
mentum space from the notation.vIntegrals over momentum space contribute
a fixed factor, namely the volume of the 3N-dimensional ball of radius
E, to all volume integrals over phase space.

The set in question is thus contained in the set

{ EAN: for some triple of distinct indices 1i,]j,k, a<jq.-q.l< a+28§
g a1y qJ

—qk|Sa+26}

and a <|q;

whose volume is bounded by

N 28
qeh™: aslqz—q1|§a+26 = a[1+:;}

aS|q3—q1|Sa+26
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where we have used the estimate of Proposition I.C.1 for the volume of

the Sphérical shell, which is valid because 26§ < a.

Lemma I1.B.2 There is a constant CZ’ depending only on A and N, such

that
P{ some particle collides with the wall and with another particle by
.. = 2
time 8] < C, §”.
. o2
Proof: Thé set in question ‘is contained in fhe'éetfwhere
i) there is a particlé within & of oA
and ii) there is a second particle within a+28 of the first.

A bound for the volume of the latter set is

N . : N 2
| . Y N=4/3 {28 _ 3) 28
i) Je [ ey e ) 22

qen:d(q,,00) < 6

aslql—q2|5a+26

inwhich 2) of section A has been used.

Lemma II.B.3 There are éonstants Cé and Cg depending only on N and the
domain A, such that ' |
P[Some‘pafficle strikes oA twice during timeZG ] < Cé 62 + C; §
Proof:
Case l: Two impacts on a single surface of 3A. (Figure 1)
Let S be one of the smooth surface components of JA and let’q €'S.
The sphgre d of radius po which is tangent to S at q lies entirely

inside S; therefore, if a particle can hit q and another point of S with-

in time § it must be able to hit q and another point of U within time &.
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A chord of ¢ whose length is § subtends an angle at the center of
¢ which is given by

2 2 2
po +_p0 ZQOpO cos o = 6

and this chor& makes an angle 8 = (m-0)/2 with the radius. By elementary
trigonbmetryvcompute cos B = 6/(200).

Thus if a particle is to collide with q and another point of ¢ within
time O ité distance from the tangent -plane at q‘is at most GOcosf= 'Egg .
By the condition 2) a) of section A on the curvature of 3A it folloﬁs
that theré'is'a constant c¢' such that for all ¢§ small enough such a parti-

cle is within a distance c' 62 of 9A. Again using ' 2) of section A we get

as an estimate for the volume of such configurations

NIAIN—1 dq < NCA IAIN—l/j'c' 8

d(q,38) < c' &2

Case 2: Impact with two different surface components (Figure 2).
Let @ >0 be the infimum of the angles at which two surfaces in A

intersect. For sufficiently small &, then, a'particle which is within a

distance & of two surfaces must lie within a distance of their .

no
intersection (see Figure 2). Thus, there exists a constant C4 such that
any particle which can collide with two different surfaces in time § must
lie in the union of cylinders of radius C46 about the intersection

curves. If the total length of these curves is L, the volume in FE of

configurations having such a particle is less than

NlAINfl i - dq < N |A|N'1-w L(C46)2
1F] .
d(q,51nSj)< C46
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and this complétes the proof.

Proposition II,B.2 Let F be the set of configurations whose next collision

point belongs.to D. F is a finite union of submanifolds whose codimension
is at least_l.f

y

This Proposition is proved by a series of lemmas.

Lemma II.B.4 D is a finite union of submanifolds of codimension at least

two.

Thé prodf of this is simple, and uses the fact that D is defined by
constrainté'invblVingvonly one or two coordinates,{Wﬁich specify»whether
a particle is inside or on the bogndary of A or whether t@o particles
Varé separatedjor in contact.

Define a function T on D by

T(g,p) = inf {t>_0:(g - tp,p) € (PO)C} .
Thus T is the time elapsed since the last collision.

Lemma II.B.5 T is lower semi-continuous.

Proof: For each pair of particles q 5 qj define

. - - £ > . - p— -— =
Tij (g,p) = inf {t > 0O: [(qi tp;) (qj tpj)l a}
and for each particle qy define .

Ti(g,g) = inf {t > 0:(qi—tpi)8 AC}.

Each function Tij’ Ti is lower semi-continuous; therefore so is
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T(x) = inf T,(x) A inf T..(x).
-~ . i .. ij
1 1,]

Lemma II.B.6 Let U be a manifold, T a nonnegative lower semi-continu-

ous function on U, § > 0. Then

U(S = {(x,t)e U xz2|0 <1 (x) A8} is a manifold.

Proof: It is sufficient to exhibit a neighborhood of the form
NX X (O’tl) of a gngn point (x,t) € U6 . If (x,t}“e Ué vwe have
0<t < T(X)AG‘ so there is a t1 ~such that t <»‘t1 < T(X)AG. The
set [T(X),> tl] is open in U, so it contains a neighborhood Nx of x, éndf
the proof is complete.

The proof of Proposition II.B.2 is completed by taking each manifold
U of D, forming UG., and mapping UG into FE by (q,p,t) > (q-tp,p).

We can ﬁow construct the flow in FE (and hence in TI). Only two
events can brevent a trajéﬁtory from being extended to all times: reaching

D, or having infinitely many collisions in finite time. These catastrophes

occur for a set of initial configurations which has measure zero.

Proposition II1.B.3 The set of points which are initial points of trajec-

tories defined for all time is of full measure in FE.

Proof: Let t. > 0. For any € > 0, we prove that the set of points of

FE which fail to have solutions throughout [O,tO] is of outer measure

less than €.

Let C = 4 max {cl, Cys cé, cg }, where these are the constants in

Lemmas I1I.B 1-3.
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Let M be so large that T < €, M < a, and § = vy is small
enough that Lemmas I1.B.1-3 hold for &.
| Set k +Li, t <« 0. By Lemmas II.B.1-3 and Proposition II.B.2, there
is a set of measure less tﬁan CGZ, on‘whose complemeﬁt solUtions haviﬁg
only one coliiéién exist from time 0 to timé §. Set k « k+ 1, t <« t+8.
.If t 2. tO werare through. If not, another time—steb of size & méy be
“taken provided we discard another set of measure at most 662. (Unwind
this set by Tft, which preserves Lebesgue measure, and notice that this
amo;nts to thréwing away a‘kth set of the same measure originally.)
| steps we reach t. on the complement of a set of

After to/d = Mt

0 0

measure less than

o C
- = —_— <
Mto Ccé Mto 5 €.

Finally, take any sequences tn +~ o  and €k+ 0 and let Fnk
be a set of méasurg less than Ek on whose complement it is possible to
reach t,- Thgn
Fn = Q Fnk

is a closed set of measure zero on whosé complement solutions are defined
throughout [O,tn ] - Putting Un = Fﬁ finishes the. proof of Theorem II.B.l.
The proof of fheorem I1.B.2 is immediate if we set R = g Un’ for then R
is a residu31VSUbset of full measﬁre on thch solufions starting at any

point exist for all time.

C. Singularities

This section is devoted to the study of singularities in the tra-
jectory of a single billiard in a two-dimensional domain. We construct

examples in which infinitely many collisions with the boundary occur in
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finite time, and then state necessary conditions for such singularities to occur.

In our first example, the particle gets trapped between converging
walls in a cul de sac. We first construct the path, lying in the unit squarc
[0,1] x[0,1] of the plane. The particle starts at the point (0,1) with
velocity (1, -2) and reaches a horizontal wall at (%,0). It travels to

31 7 10 . . '
(%) (5 ) . and so on, each time being reflected at an angle T7/4
492 ’ 8)4 ’ - )
from a horizontal wall, the distance betwéen successive collisions being
halved. At time 1 the particle reaches the point (1, %) after infinitely
many collisions (Figure 3).
The walls are constructed by joining together pieces of c” func-

tions which have horizontal tangents at the collision points. Take & to

be any Cw(—e, I + €) function such that:
®>0, ®(x) =0 if x< 0, ®(x) =1 if x> 1,

(n)

o™ ) = 0= ™) for n> 1.

th . . i .
At the n bounce, the position of the particle is to be

n

- - - 1 i

(x_,y) = (1-27", 1+ 2 % (—l)kz k) = (1-27", =+ 2(«—)n).
n’’n k=1 _ 3 3 2

The even-numbered collisions occur against the upper wall. Put a translated
magnified ¢ between (XZk’ y2k) and (x2k+2, y2k+2);

X‘XZk .
or+2 %ok [ %5k, *2k+2!

At the odd-numbered collisions the particle'stfikes'the lower wall. De-

fine functions

X-X
___zl(:_]:____ I ](kz]_)

(x) =y + (y -y )9 -
b 2k-1 2k+1 7 2k-1 X141 Foko1 [x2k_1’x2kﬂ

The upper wall is given by g(x) = Zk> 0 gk(x), the lower wall by

h(x) = Zkz 1 hk(x); they are C ®  because only one summand differs from
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zero at any point, and successive pieces of the wall match to all orders

where they meet.

The second example is of a plane region with ¢ boundary from which
a properly incident particle is reflected infinitely often in finite time.

First we construct the trajectory. Let (Xk)kz.o be a strictly in-

creasing sequence with limit x < =; let 60, (ek)k> ) be positive num-

bers such that
/

o0

6. +2 I e <m/2. _ ‘ (1)
0 k=1 k o
Let the particle travel from left to right, and be reflected first

at a point above x its trajectory making an angle 60 with the horizontal

0;
axis.

Above x,

X1 the particle strikes the boundary again. Here the boundary

is inclined at an angle

=06 +¢ ' 2
Ql 0 1 ‘ )
to the hofizontal, and the incident trajectory makes angle €y with the

boundary, so’the path of the reflected particle makes an angle

81 = @1 + € < 60 + 2 ;1‘ (3)

with the horizontal axis.
It should be clear how to continue. Above the point Xy the particle,

whose trajectory has angle of inclination

k-1

ek_l = 60 + 2 ;Z €4 (&)
. ;=1

strikes the boundary with angle €10 since the boundary is inclined at
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the angle )
k-1

@k = ek_l + Ek = 60 + 2 iil e. + ¢, . (5

After reflection, the particle's trajectory makes the angle

[ -

b, = 60 + 2

" €, = o + vg (6)

i
with the horizontal.

We now show that under the assumptions

lim k ktl o= 0 for every n 21 ' (N
kre (g = %)
and
e )
k+1 :
the sequence |——— is bounded away from 0 and =, (8)
k) k21

we can define a function f € COo (xO - 6,-xm + §) so that

fKXk+1) - f(x)

— = tan ek (9)
T+l %k . .

(that is, chords of the graph of f are segments of the trajectory)

and

ff(xk) = tan @k :. (10)

(the function has the right slope at each point of collision).

It is obvipus that the values of f and f'.at the points x, are de~
termined by the sequences (Xk)’ (?k)’ and the numbers 60 and f(xo).
For brevity, we dénote these values of f and f' by fk and fé, respec—~
tively.

If such a function f exists, it is possible to define é sequence

of functions e ¢ [0,1] , k=1,2,-+, by
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| 1 £Gg +e0q - %)) - £ ,
gk(t) =T - — - tfk , 0t 1
K K+l T ¥

(11)
Our object will be to reverse this procedure, constructing a se-

quence {gk} which will be used to interpolate the values of f. Simple
computation shows that the functions
J/

g, must satisfy:

' gk(O) = gL(O) =0

(12)
f ~f
gk(l) - xk+1-xk fﬂ = —é— (tan ek - tan ®k)_ €
k k+1 "k k
(13)
g' (1) = —l—-(f' - f!') = —l—:(tan o) - tan &, ) = b
k € k+1 k € k+1 k k
: k. k
. (14)
Notice that bk > ck, and because of (8) all bk"ck are bounded
above by some constant times sup sec @k, and are bounded away from O.
k
The second and higher derivatives of the gis must satisfy a
compatibility condition at the end points; in particulér:
€ €
k " k+1 o
o &) = = g, (0). (15)
xk+1 xk k Xk+2 X4 k+1

We shall construct f by defining a sequence (gk)k> 1 satisfying
(12) - (16),

e =0-g™MW) forn 23,

(16)
in such a way that the { g(n)

L } are uniformly boundéd in k for each
. Then f is defined by
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-— = — L
f(xk + t(xk+l Xk) ) fk + (Xk+1 xk) (ek gk(t) + tfk)

(0st<l, k = 1,2,+++) . , (17)

and £ will be COo up to x = because for every n 2 2:

ek (M) ()5 0 as k »

-1 8k

f(n) (xk + t (x - xk)) =

k+1 n
(x5 )

by (7) and the uniform boundedness in k of all sequences {gén)} kS 10

It should be noted that it is easy to construét an f if we satisfy
(15) by taking gﬁ(O) = gﬂ(l) = 0 for all k. Then'ﬁhe gﬁ can be taken to
be translates of a single bump function. What is of ‘interest about our
construction is that it yields a boundary whose curvature is positive on

(x,., x ), vanishing only at x_ . We shall see later that it is necessary

0

that the curvature of the boundary vanish at an accumulation point of

collisions, and anyhow because of (7) we have

1 - . '
ek + €k+1 arc tan fk+l arc- tan fk

k+1~ Fk . X1 T %k

4 .
= —— arc¢ tan f'(x)l (<< 1)
dx xk+t(xk+1 xk)
t '2 »
= £'/(1 + £'7)] el gy ” 0 ask>e.
e e T %k
To begin the construction, define
O = € i/ G = %) (18)

Then (15) will be satisfied if we put
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" = 1" =
gk(O) 0> gk(l) Opto® ) (19)

We construct fhe sequence {g,} by defining a sequence of functions
. -k :

h e C. (0,1) so that {h(n)} is uniformly bounded for n = 0,1,2,---,

K K ke 1
~and
" = 5 < 2
0 < gk(t) = Ok + bk . hk(s)ds, 0<tgl, (20
0

where bk was defined in (14). Write down the integrals for gé and 8
in terms of hk’ invert the order of integration, and use (12), (13),
(14) and (19)»to arrive after simple computations at the other require-

ments on the hk:

1 _ .
JO h ()t = (o, ,, —.ok)/bk (21)
1,‘ —‘ . .
{0 t hk(t)dt =~ 1+ ok+2/bk » (22)
. 1.2 h (t)dt = - 2(1 - ¢, /b ) + o . ./b (23)
'Jo k I ™ k+2 Pk

By (5), (6), (8), (13), (14) it is easy to see that the ratios

Ck/bk are bounded away from 0 and 1; since o, > 0 by (7) and (18), we

k

can find an index "k and a positive number § so that for k > kO:

0
- 1<-1+ ok+2/bk < -1 +86 - (24)
- 2 + 48 < =2 (1 - ck/bk) + ok+2/bk < =48, (25)

To define the hk'S, let p e cw(g?) with support in (-%6 , %8 )

be such thaf J p(t)dt = 1 and p(t) =p (-t). We choose parameters
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M € (8/2, 1= 3 §/2) and a, € (1/(28), 2/8) so that by defining

( Op42
hk(x) = |a, + p(x - Uk -8

p(x - uk) -3t

=
- ’ a
I

(0£x<1)

we get functions which satisfy (22) and (23) (it is easy to see that

(20),(21) and the uniform boundedness are satisfied automatically).

1 1
The integrals X hk(x)dx and xzhk(x)dx are easy, if tedious,
0 0
to compute explicitly. Change variables to x - uk'or X - Uk - § in the

integrands and use the support and symmetry properties of p which imply

)
tq(t)dt = 0 (27)

J
(

2 .
2
t7d/p (t)dt = §Z-e for some 0 < 6 < 1. (28)

After somewhat lengthy but entirely elementary computation, one

finds
1 (e} -0 g
_ k+2 Tk "k
X hk(x)dx = - ak6 + 5 Mg T T 8 (29)
k k
0
1 .
x2h ()dx = - a 62, + &) + | (0.0 - o) 1
k KOV Hi by k+2 kM
0

-
_ o 2 N
26, Sy ~0,8° + (0py = 0)) ‘*_l (30)
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and it remains only to show that a  and uk may be chosen to satisfy (22)

k
| and (23).' For the expression (29) (resp. (30)) write fl(a,u) (resp.
fz(a,u)), and. denote the quantity in (24) (resp. (25)) by gk (resp. nk).

Then our problem is to find in the rectangle
F = {(a,u) | 1/(28) < a < 2/8, 8§/2 <u <1 - 36/2}

E .
a solution of the equations

k

Cfy (e, =y | o (31b)

for tik,nk) in the rectangle determined by (24), (25).
From thé‘many ways to solve this problem, we choose Newton's method,

since an initial approximation immediately suggests itself: we take

0), _ 0 _ ., . _ .
a, Ekfé,uk = z(nk/Ek 8), so that equations (31la-b) are satis
fied up to terms of order Ok + 042 Then the first Newton iterate

(1 (1) e
(ak s Uy satisfies

1, @, _ (0 (0) |
with a constént'which is independent of k. Now G, —> 0 implies that

k

Vfor large enough k the hypotheses of Theorem 3 of [ Isaacson and Keller,

p. 115} ére éatisfied; the.inifial guess and all iterates lie in F and‘
the iterates éonverge to a sblution‘of (31a-b). Alternatively, use (Bla)
to eliminate a from (31b) and solve the resultiqg.quadratic equation

)

for U using the same uéo and Problem 3 [ Isaacson and Keller, p. 123].
The remainder of this section is devoted to showing that the two
examples given essentially exhaust the possibilities for a single particle

in a plane region: roughly speaking, the particle must be caught in a

cul de sac or it must rattle up to a point of zero curvature.
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Proposition II.C.1 Let A be a region in the plaﬁe-bounded by a piecewise

C3 curve, and let 0 € 3A be the unique accumulation point of collisions

over a finite distance for some trajectory in A which is linear in A

and obeys the law "angle of incidence at JdA equals angle of reflection."
If infinitely many collision points of the trajectory lie ou each

side of d, then the left and right tangents to 9A at dAmake angle 0 with

each other.

Proof: (Figure 4) The hypotheses imply that the set of collisions for
which the negt gollision occurs on the opposite side of d is cofinal in

the sequence of all collisions of the given trajecfory. Notice also that
when the trajecﬁory leaves some point of the boundary, making an angle

8 > 0 with the tangent there, its next collision cannot be on the same side
unless the tangent turns at least through an angle 6.

Assume that the left and right tangents to BA‘ at ¢ make aﬁgle
o> 0 with each other. Let £ < a/4.

Let P and Q be consecutive collision points on opposite sides of O,
close enough té @ that the angle QOP is greater than o - €/2, and the ab-
solute curvature of dA , integrated from Q to 07or from P to O, is less
than A€/8. This implies that the angle between 6P (resp.@b) and the tan-
gent to oA at P (resp. Q) is less than €/4, and that if the trajec-
tory reaches Q Qith incidence angle greater than u/2 its next collision
must be on the P side.

Let R be a point on the extension of Ob through Q.

Then (incidence angle at Q)> / PQR - ¢/4.

But / PQR = / &PQ + / QoP.
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NOQ, / ©PQ > (incidence angle at P) - €/4,»énd / QoP >a - €/2
by hypothesis. | | |

Thus.(incidence angle at Q) > (dincidence angle at P) + o - &,
and after at most (7/2)/(®/2) collisions on alternate.sides of 0, and

particle will be headed out of the éorner.

Proposition 11.C.2 Let‘g(s) be a smooth (Cr, r > 3) curve in the plane
parametrized by arc length, along which some trajéctory has infinitely
many reflecfions in finite time. Assume that after a certain time all
collisions of’this trajéctory take place on one side of the accumulation
point. Denéte by k(s) the curvature at the point §(§). Then dk/ds = 0

" dinfinitely bftén in the neighborhood of the accumulation- point, and k

and all its derivatives vanish at the accumulation_ point.

gggggf We show first that. k - O.

Denote the point of the jth collision by Ej ; Eﬁéj). Let Tj be
the length ofvthe trajectory (chord) from §j to §j+1’ Gj the corre-
sponding arc length. Write t for the unit tangent, n for the unit normal,
and let ¢ be the angle the incident trajectory makes with<5(sj) at §j'
Then

X. = x, + Tj (sin & t + cos ¢ n)

x =x, + (-sin ¢ t + cosdn)

. . T.
=3-1 =3 j-1

Expand X, “and X1 in terms of arc length about Xy

+1
= 1 2 3
Bppg T2 ¥ S L¥ g K & n oSy
_ 1, 2 3
X T Ej 6j—1 t+3 k 6j—1 n + d(éj_l)
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Equate tangent and normal components:

1. sin & = S, + 9(8°) T. cos & = £k 8%+ 6(55)
3 j h| j 2 j j
, (1)
L vrs3 _1 2 3
T,y sin®=8, , + d(csj_l) o Ty cos =5 kd G+ o’(dj_l)

Now suppose that beyond a certain index jO we have k(sj) # 0;
since we always assume ¢ # 0, %- we may divide the first of each pair

of equations in (1) by the second to obtain:

§. 1+ 62 . 82 1+ L9 6
T T T Tt T

8. T, IR
-1 1+ d(csj_l) I R A

-

0(1) as'j » .

Our assumption that lim k(s) # 0 implies that 1/k
s—>8§ : .
(o)

This implies
2
S. 1+ 0(8 1+ d(6,
; & o(6,_)

S. 2 ;
RER L(CHIPI ¥(.)

so there is a constant B > 0 so that beyond some index j1 we have

§s
<+ > L =B (8 + &

3 )

3-1 !

But since Zdj < oo the next lemma shows this to be impossible.

\
The stated result is actually a corollary of a more general fact:

LemmaII.C.1. Let Zak be a convergent series of positive terms.

+ a )2 is not bounded below.

Then (ay,) - 8 )/ (a,y + 3
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: a - a ) r, - 1
Proof: Put r, = a /a, ; then ktl k = L —~k~————, s0 the
T k kel ke (a + a )2 - % rz + 1
. ‘ k+1 k . “k
result is obvious unless_rk > 1. In that case it suffices to show
: 2 2 i
(ak+1—ak)/ak is not bounded below. Ifr(ak+1 - ak)/ak > -B for all Kk,
we have
a - a < Ba2 or a, .fa > 1 - Ba,.
k ktl — k> k+1" "k — k

Let k be so large that n > k => anB'< %. Then

Az 2 A (1 7 Bayy) 2 2, (- Ba) (1 - Bay, ),

and for p > 2, ' R . .

p-1 S
ak+p’ 2.ak -H (1 - B ak+j)'
_ j=1
But the infinite product converges if I (1 + Bak+j) converges, which it
_ ' J
does-becausg L Bak+j converges. This implies §k+§749 0, which is .

_ h|
'~ - absurd, and the Lemma is proven.

Return to the proof of Proposition II.C.2. If 3

Sk I B(S,
j-1

+8.)
, j-1 J
for j > jl’ repeat the argument of the Lemma and deduce from convergence
of the product T [1 - B(S, + 6, )] the result &, .. 50,
| 1l Atk gtk | Iy
which contradicts Z<% < o '

It remains to show that dk/ds has a zero in evefy neighborhood of
the acéumulatién point. Then Rolle's'theorem-will imply that any higher
derivatives of k which exist must also vanish at tﬁe accumulation point.

Cdnsider again the jth collision point, and subpose thaf dk/ds < 0

Consider the osculating circle d of x at Ej’ i.e.

for <s <s

®3-1 j+1°
the circle of center x, + 1 n (s,) and radius 1 . If k and k'
=3 k(sj) = 7] - k(sj)

have no zeroes between Sj—l and Sj+1’ an elementary argument [ Stoker
pp. 29-31] shows that the portion of the curve from Ej—l to éj lies
inside O, and'the portion from Ej to §j+1 lies outgidg 0. (In facf, un-
der these assumptions, no two osculating circles O(é') and 0(s")vfor

s < s' <s" <s have a point in common.)

j+l

.
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From this we deduce that the chord from 5,_1‘to éj has length

2
L 2 t
TJ—l (s cos ¢
J
and that T > cos & .
J k(s.)
J
In particular T > T,

. Evidently we must have T, T,
j-1 i® -l
infinitely often to obtain convergence; therefore dk/ds must

vanish infinitely often in the neighborhood of the accumulation point
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ITII. INFINITELY MANY PARTICLES

A. ThevSeqﬁence'of Finite Systems

For all configufations X Elgf’and integers.R;z»l define the partialv
flow Tg(x) by placing an elastically reflecting Qall at {q[ = R, fixing
all partiqleé not entirely inside it, and léttiﬁg phe particles inside
move according to the elastic reflection law.

Obviouély there are initial configugations for which not all TR can
be defined fof all time. That the set of all such configurations is null
for every Gibbs state follows most simply from éhéonditional probability

argument. Fix an integer R 2 1, let

A= { |q| £ R - a/2}

and let

F=2) < F

be the familiar splitting of configurations into-thé part inside A and
the part outside (note that a particle'which is ”inéide" A is "entirely
. inside" the sbhere of radius R about the origin). Let & be the g-alge-
_ bra generated by the coordinates of ZZAR3 ,.and B be the set of

x e for thch T;(x) does not extend to\gll time. It follows from the

results of Chapter II that

uBl ) =0a.ep
so that uB = 0.

Hence for each R, T, is defined for all time except on a set which

R

is null for every Gibbs state. Taking the union over R of these null

sets proves:
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Proposition III.A.1l. 2 = {xe@] T;x exists for all t, for every

R=1,2,... 1}

has probability one for every Gibbs state.
.

Eaéh TR

is evidently a measurable transformation of @, because

it affects only finitely many coordinates, and those measurably; the

partial flows TR

state is invariant under them.

have the further important property that cvery Gibbs

To see this, let R, A, & be as on the previous page, and let A

be any measurable set in é;'. Then

pA =/ u(A &) du

where u(A|5¥) is the &/-Measurable function

n 1<i<j<n j 1<ign

Y(q)#0

Now, 1
t

Z " | I | I |

2 _

Z_ d i I

! J 9 [qi—q | >al [ |qi-Q|Z a}

T,(g,Y)

(x,Y) = IA(TEX;Y), and it follows from Liouville's Theorem
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for the finite system in A that

w(TpAleh) = u(al ) ace. ()

and theféforep(T;A) = JA.

Probabiiipy Estimates for the Partial Flows.
.v ) . " N s t ~ T~
Our goal is to construct the flow T on a subset @ of @2 to

wnich the partial flows T, converge in measure as R + «. We do this

R .
by showing that for almost all initial configufations the motion of
a given.pérticle during a given finite interyal éf time is indepen-
dnet of R once R is large enough.

To establish thnis requires some care. To see the dificulty,
suppose that the motion of the particles in some-configuration in
A, under Ta is known. In the motion of the saﬁe configuration under

R

TR" where R' > R, say that a particle in AP at t = 0 is influenced

by the removal of the wall and the motion of ‘the particles in
AR'\AR if its TR' motion differs from its TR motion.

A pafticle_is influenced, then, if another particle is knocked
into its path and the two suffer a collision under T‘, which does not

occur under T . This influence can be indirect: a particle's tra-

R
jecfory will be changed if one of its TR collision—partners is knocked
out of its path so that no collision takes place.
The reader can easily invent more complicated schemes. It is
well known from computer simulation of hard-sphere systems that a.
v

slight disturbance of the collision history lieads very soon to a

dramatically different motion of the systemn.
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The effect of the motion of the particlés outside Ap can spread
rapidly in two ways. The first occurs when many particles are lined
up very‘ciose together. The chain estimate implies that very long
chains occur with small probability.

The second way in whicﬁ influence of a particle moves rapidly
is by the high velocity motion of the particle itself. In a Max-
wellian velocity distribution, arbitrary large velocities occur with

positive probability. Here is an estimate of that probability.

Proposition III.B.1 (Free distance estimate)

Lef A be a bounded measurable set in §?3,‘aﬁd let Tt be a flow

~

on & which leaves Gibbs states invariant. .Let p be a Gibbs sfate

for @ with inverse temperature 8. Define

v (®) =Vl ()= suwp v, ()]
qi(t)EA

Then there is a constant M depending only on y < é%~such that .

for any 1 > 0, » > 0
- t | ,
. e [y
M / vmax(t)dt > X< M I/\] cxp( T2>
0 .

T

~ 1 2
Proof: .Fgr xe @ let Y(x) = exp {y’(T vmax(t)dt> }
for some 0 < y < Ji;.
2m . )

. . 2
Since S}-is a probability on [0,T] and exp {y(-) } is convex, we

have by Jensen's inequality
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_ . _
pr(x) < %/ exp (Yv;ax(t))dt = ¥a(x).
0

‘Now Y, is u-integrable, for by Tonelli's theorem, the positive
function exp [y'v;ax (t) ] (x) is integrable over [0,7]x Z" if either

iterated integral is finite. But
2 — 2 o) ¥
/du exp <y Ve (t)) /du exp. (y Voo« ( )>
.. o : .
because u is invariant under Tt, so that vmax(t) has the same distri-

bution as vmaX(O). The last integral is < M_|A| for constant M

depending only on y, by the basic estimates for velocities in Gibbs

states.
Therefore,
/lhdu < /wzdu<M |A].
Finally,

4

LT T
. v (t)dt > A i = exp{Y(l- v (t)de)?t > exp YAZ
max _ T max 12 '
0 ‘ 0

EX we deduce

so that from the fact that for X = 0, p{X>2x] <

T
< 5 A2
i vmax(t)dt > A <M M| exp v
0 .

and the proof is complete.

C> )
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Fix notation for the remainder of Section B:
R > 2 is an integer.
¢ is a Gibbs state for Z with inverse temperature B.

B

Yy < om0 M, are cbnstanté from the free distance estimate.
Co is the_constant in the chain estimate of Chapter I.
Ag = {|q] < R} is the sphere of radius R.

Now let a > 5/2, ¢ > 0. For any such « ;nd ¢ we shall find a
set of full measure on which global solutions of the equations of
motion are‘defined and enjoy certain regularity properties.

If A'is a real number, the symbol [A], "ceiling of A”,-denotes

the least integer greater than or equal to A.

Having fixed a and ¢, we define n and w constants, and NR and 1
which depend on R, by

(1) n = 3a/5

we (@ = n, n = %)

(2)
(3) Ng= [i(log R)?—O‘/ﬂ
(4) 1= (log R) "

It follows from this that
(3) n~-%>w>a-~-n=2a/5>1
(6) 2(n-w) > 1
Finally, take R large enough that
(7) 4(log R) ® < a :
Cew e 2a/5
(8) (log R) ~ < g-(log R)

We are now ready to prove a series of probability estimates which

not only give strong control on the TR,but also have a more general

application.
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For fhe application, assume that St is a l-parameter group of
transformations of &7 leaving eQery Gibbs state invariant, such that
for almost every xeZ the trajectory {x(t) = Stx —® < t < @} is a
solutioﬁ.o% the equations of motion.

Oﬁf estimates will show that requiring St to be measure-preserv-

ing leads to very nice regularity properties of its trajectories.

Lemma III.B.1 For TRt consider xe@ ; for st take any xe@.

Put v (&) =v.oo(t) =  sup |vi(0)]
max max i (D) ehg 1

Let AR be the event that either

T

1 -w
a) v_max(t)dt > 2 (lgg R)

or b) there are Ny particles qil,..., qiNR_E AR with

: ‘ VW e i
Iqij - qij+1| <'a + 4(log R) 1<j < Ng - 1.

: < Y 2Zn~w)) ooy [ 4Co VR
Then UAR < ]AR| M exp _Z(log R) ‘f'NR' a(log R)W

Proof: Immediate from the free distance estimate and the chain estimate.
“In the free distance estimate we use T = (log R)_n, A = %(log R)—w.

4
I , . L .
. In the chain estimate we have € 2(Tog B)® < 1by (7).

This lemma has an immediate extension. If ty, > 0, we let
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K = [to (log R)3a/5] .

For fixed k, 0 < k < K we define the event BR K by
(k+1)T
-
i
a) vmax(t)dt > L (log R).
kt ’
i k arti PN . €A
or b) At time k1 there are NR particles 95> s qlNRe R
with
lq- (kt) - q3 (kr)|< a + 44—5————>.
14 1341 - (log R)W
Then by the invariance of p under T; or St, uBR K = uAR. This proves
Lemma III.B.2. Let B - KJI B . Then uB_ < KupA,.
R k=0 R,k R R

Direct application of these estimates gives the desired regu-
larity property of the trajectories. 1In the following Proposition,

where the partial flows T_ are considered, each set BR is defined by

R

" the motion under the corresponding T_ of the particles in Ag.

R

Proposition III.B.2 For either the family of partial flows

t .
{T R =1,2,...} or any one parameter group S of transformations

R
of @&  which leave all Gibbs states invariant and almost all of whose
trajectories are solutions of the equations of motion, there is a
measurable subset é%’of Z" with the following propertie$

a) u Ei’ = 1 for every Gibbs state y.

b) TFor each xe€2” and to positive there is an RO= Ro(x,to) such that

if R>Ry
i) there is no subinterval D:[—to,tol of length
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(log R)—3a/5

It

T(R)

. -w
for which fvmax(t)dt > (log R)
I
ii) At no time te[—to,to] is there a chain of N = NR

particles qi1(t)""’ qiNR(t) ehg . such that
W .
lqij(t) - qij+1(t)f < a_+ 2(log R) 1< j < Ng-

Pfoof: Let BR be as in the preceeding lemma, with t = k, and let

3?& ='[BR i.0.1%. We show X uBp < ©, so by the Borel-Cantelli Lemma

ey = 1.

By Lemmas III.B.1-2 write the upper bound for uBp as the sum of

two terms. The first is

KlAg| M exp -Y(log R)Z(H_w) = |k(log R)3%/5 ﬁ_nRS exp [-L(log R)Z(n~w)
: 4 3 4 ,

and since 2(n-w) > 1 by equation (6) above this term is summable in R.

The second term is
K[Ag| Nr![4 €, a™!(log R)‘“’]‘NR"l

= [k(log R)3a/5]-%TIR3 T(Ng + 1) exp{-w(Ng.- 1) log log R + O(Np)}

. c -
Since Ny = [Eg-(log R)® ﬂ] » we have from Stirling's formula:
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F(NR + 1) = exp{NR (a-n) log 1bg R + O(NR)},

so the term in question is
E(log R)?a/s] g'ﬂR3 exp{(a—n—w)_é%(log R)®™™ log log R+ 0(log R)*™N}

and the exponential goes to zero more rapidly than any inverse power
of R because « = n - w <0 and a - n > 1 by (5) above.

[os]

This completes the proof that ZuBR<
Next, if xeBE, there is no interval I of lgngth T(R) in [O,k]
for which the free distance “/.vmax(t)dt exceeds (log R)™®. For if

I
there were, we could choose j so that

G+1) T
/ Vmax(t)dt > /;Imax(t)dt > 1/Z(J-Og R)_w

jT
INn[jr,(G+1)]

which is impossible because XEB;.
Moreover, if at any time t, 0 < t < k, there were a chain of

NR particles qil(t),..., qiNR(t) e Az with ,qij(t) - qij+l(t)| < a

+ 2(log R)™¥ for 1 < j < NR7 1, then by taking the nearest time to

i . - . <
t of the form nt we would derive Iqu(nr) qu+1(nT)|
lqij(nr) - qij(t)l + |qij(t) - qij+l(t), + lqij+l(t) - qij+1(nT)]

< (log R)—w + a + 2(log R)_w + (log R)—w = a + 4(log R)’w

. L . . c
which again is not possible since x¢ Bg .
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Finally, we put & = ‘2 321. Then 1227 = 1 and all xe@
v : * - . .

satisfy b) i) and ii). The proof is complete.

Construction of the Motion for the Infinite System.

The next lemma is the crucial one. for our construction. It says
that deép inside Ay the particles for some time do not notice the

difference between T_ and T if R' > R.

R R'

We preserve the notations of (1) - (8) in the last section.

Lemma III.C.}l. Let X2 , t > 0; number the particles of x in the
order of their distance from the origin, and for qi let R > Ro(x7to)

be so large that

lqi| + /1 + t2 (1log 2R)® < 4R.
Then for R' = R+ j, 1 < j <R, and for all t, 0 <t < ¢t
(R) _ (R")
q; “(t) =qq5 “(t)

piR)(t) = pgR’)(t)

Proof: Say that a particle is marked at the infimum of the times for
.which its TR' motion differs frow its TR motion.

Then obviously all particles in AR'\AR (except those for which
p = O)are marked at fime O.Y V

Take any particle of x which is inside Ag at t = 0, and which
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is marked at some time t;, 0 < t) S ty. Call this particle 1. We
show that particle 1 cannot be too far from dAg by constructing a
chain of particles reaching from particle 1 to 3Ag.

Set k « 1
(*) If particle k gets marked by reaching 3Ny .the chain terminates
with parficle k. |

If particle k is inéide AR at time t;, it gets marked because

it collides under either T_ or T (or possibly in both, with distinct

R R’
particles) with a particle which is already marked. Choose a marked
particle with which particle k collides in either TR or TR' -motion

at;timeftk. Call this particle k+1. It was marked at time tk+l’

< .
where 0 tk+1 < tk
Set k « k+1 and return to (*).
In this construction, the return to (*) is possible only finitely

many times because only finitely many collisions occur under TR' and

TR during [0,t,] .

A chain of, say, N particles has now been constructed, with

lag(t) | = k.

Suppose that R - [q;(t})]|> cV1+tg (log 2R)*. Notice that

qu(tN) - que | =R - Jaep] .

Divide the interval [0,t,] into sub-intervals of length
T1(2R) = (log 2R)_n = (log 2R)—3a/5.
During each of these sub-intervals { k1, (k+1)1] (O <k < [EQ])

T

no particle travels a distance greater than (log R)aw in either the
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T or T motion; however, there must be an index k with the following

R R’
property:

Denote by qik_the first particle to be marked after time k7,
Qipyg the first particle to be marked after (k+l)t. Then

-, 3¢ 5
Iqii)(kr) = iy (\k+1)r>| >'7f-(log 2R) 2%/

®) ) (R )<k <fe
This is because qj, (tlk) = 44y (tlk), 0<k<] . b,

) (R R) -
and !q£k)(tik) - qgk)(kr)l < (log R) ©
But if we suppose (log R);w < %(1og 2R)2a/5, this shows that we must

£ 2a/5 5 20/5 = N partd L
_ have at least >3 (log 2R) <™ > 7a (log‘R) NR particles in Ag

with mutual distance at most 2(log R)—w,which by the Proposition of
the last Section is impossible.
This shows that a particle which gets marked by time t, lies

within CV1+tg (log 2R)a of 3Ag. The proof is complete.

Theorem III.C.1 - (Existence) Let eri’ , to € Z2. Then lim Tto X
exists in the Z -topology. . T

" Proof: .Number the particles of x in the order ofitheir distance from
the origin. For each i, take Ry to be the R'of,the pfevious lemma:
repeated application of that lemma shows that if R' > Ry,

qu')(t)'= qﬁR)(t)

1

pER')(t) = pﬁR)(t)

4
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for 0 st <t or t,Sts<O0.
Thus, for each i = 1, lim q£3)(t0) = qi(w)(to) and
. R +»

lim pgR)(tO) E p§m)(tO) exist and define a configuration x(t,).2"

R + =

(At a collision point, we agree that all momenta shall be incoming.)
Let E@ be any function among those which define the 2 -topology,

that is, ¢ i% a function on 2»3 x 223 whose support has compact pro-

jection on the first factor, and Z¢(x) =‘Z¢(q,p). Let K C 23 be.
x(q,p) #0
compact such that ¢(q,p) = 0 if q)Z K. Take R > R(x,t_ ) so large

[og
that all translates of K by distances less than c/1+t3 (log R)

lie inside A%R'
Then all particles of x which could reach K by time t, are inside
AAR’ hence have the correct motion under TR up to time t,. Therefore,
[
. : t < s
in fact x(t0)|K>= TR??([K>for any R' 2 R, so R' Z R implies

Z¢(x(to))'= Z¢(T§?){), and this finishes the pfoof.

. R rY > o~
evidently a solution of the equations of motion. for any xe227, and the

The mapping from &2 into & given by t = x(t) = lim
trajectories enjoy an important regularity property.
To state this property explicitly, we continue to ﬁreserve the

notations of (1) - (8) for the numbers a, ¢, w, and for positive

integers R:

1(R) (log R)"3°‘/5

2z
1

R [295 (og R)ZQ/S]
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Definition: Let xe@. A map x: # > is called a regular solution

of the eqdations of motion with initial point x if
i) {x(t): -» <t < é} is a soiutiop of the equations of
motion and x(0) = x;
ii) only finitely many collisions, each involving only two par-
ticles, occur during any interyal [QE, t] in any Aps
iii) given any t > 0, there is an Rl(x,tj;such that if R > R; then

a) there is no subinterval I .of [-t,t]of length t(R) for
ey (R) -
which f Vmax (t)dt > (log R) ~ ;
I o .

and b) at no time se| -t,t] is there a chain of-NR particles in
Agr with mutual distances less than .a + (log»R)_m.
- In terms of this definition, we can reformulate the result of

Proposition III.B.2:

- t ) .
Proposition II1I.C.1. Let S~ be a l-parameter group of Gibbs-state-
preserving transformations of @  whose trajectories are solutions of the
equations of motion. The set of xe2 whose trajectories are regular

solutions has probability one for every Gibbs state.

We mentioned in the introduction examples.of;configurations which
are initial points of more than one solution of the equations of motion.
If we allow bnly regular solutions, however, it.is possible to establish
a uniqueness result:

Theorem II1.C.2 (Uniqueness) For any xeZ@~ there is at most one

regular solution of the equations of motion with initial point x.
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Proof: Let x (t), x"(t) be any regular solutions with x (0) = x"{0)
= X. If.ﬁl is not' identical to Eﬁ’ there is a particle q) and a time
t; > 0 so that t; = inf {t > 0 | q}(t) #* qi(¢t)}.

Let R be any number largervthan the maximum of Rj(x,t;), Ry(x,t;),
and [q| = [q;(0)].

As in the proof of Lemma III.C.l, say that a particle q of x is

marked at time t if either

i) t =0 and |q| > R
or ii) t; 2t >0 and t = inf {s | q'(s) # q"(s) or | q'(s)| >R}

In particular, q; is marked at time t;.

Now use the fact thaf 5’ and 5" have only finitely many collisions
in AR during [0,t;] to construct a chain of particles q;,qs,...q, and
corresponding times t; > t, > L0 tp = 0 so thaf q; is marked at time
ti, 1<1i<n and |qa(ty)| = R.

(If this construction did not reachlthe boundary we would have
a particle which before ité first collision moved differently for_§'
and 5& which is impossible because both are solutions.)-

Next, supposing that R - !ql(t1)| > C/T:E?_(log R)u,3we argue
exactly as in Lemma III.C.! that, because of the velocity Bound (condition
(iii) (a) for a regular solution), Eﬁe chain condition (iii)(d) must
Be violated.

Theréfore, since x' and x" are regular solutions, we must have
lql(tl)] > R - cV1+t% (log R)a

or, by the velocity bound,
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" lql(O) | > R - LZ/[‘:E;? (log-R)-u - 'I%R]j (log R -
but R > max {R;(x;t;), Ri(z,ty), |q1(0)l} was éfbitréry. The proof
is compléte. ' - | | |

Let 35; be the set éf xe2” which afe'iﬁitial points of regular
| solutions. The ekisteﬁce theorem shows é;'f)éé%, so regular solutions
existvalmost surely in every Gibbs State.k

The first remark to make about ' .é;'is:that’ifvxeé}'so is
x(fo) for any.to.' Iﬁ féct, propéfties i)'éﬁd ii)iof the definition
follow immediately from the fact that {x(t):) %m'< t'<'m} is a regu-
1ar-ébl§ﬁio;, an& to sée that thé'ﬁounds indéérf'iii) hold for ény

t > 0 it 'is enough to take Ri(x(to),t) = Rl(x,f + Itol). This proves

Proposition III.C.2 For all xe2 define the time evolution mapping
Tt ﬁo be the one-parameter gfoup of Shifts'alongithe"trajectory of

the régulér solution through x:

STt = x(b)

(x)
> i . ' t
Then &~ is invariant under every T,
\ t S ' s
A further property of T is that it is measure-preserving.

Proposition III.C.3. Every Tt leaves all Gibbs states invariant.

Let u be any Gibbs state, and let f be a bounded continuous
function on 27 For each xe2 and r finite integer put f.(x) =
f(T;tx) and define fw(x) = f(T—tx)

-t ~ '
for all xe2~, f,. ~ £ a.s.-u, and

. . -t
Since 1lim T, x =T %

> o

therefore f, is y- measurable.
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Moreover, the f,. 1 < r < =, are uniforﬁly bounded by I fll, . Thus

fody = lim f.du = fdp, the last equality holding because u
r : :

r >
is invariant under every T;.

If now follows from the basic facts.stated'in Chapter I about
Borel probability measures on Polish spaces that the measures py and
u’ = uoTt are the same, because.they agree on all bounded continuous
functions. The proof is complete.

“Using this result and Proposition ITI.C.1, it is possible to
reformulate the uniqueness theorem so that the régularity condition

does not appear explicitly.

Theorem III.C.3. Let @ be a subset of @ whose complement is null

for every Gibbs state, and let St be a one-parameter group of trans-
formations of 2’ into itself such’ that
: . t . .
i) every trajectory {Sx: =~= < t < =} is a solution of the
equations of motion, and

. t . - . .

ii) S~ leaves every Cibbs state invariant.

Then -for all x in the complement of a set which is null for every

Gibbs state, Stx = Ttx for all t.
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their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness
or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
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