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Abstract

There are inherent trade-offs between the flexibility and the capacity of working memory, or the 

ability to temporarily hold information “in mind.” In a recent issue of Neuron, Bouchacourt and 

Buschman (2019) present a new model of working memory that demonstrates how coordinated 

activity between specialized sensory networks and flexible higher-order networks may support 

these competing constraints.

Working memory refers to our ability to temporarily hold relevant information “in mind.” 

Two key features of working memory are its flexibility and its starkly limited capacity. 

Working memory is flexible enough to represent novel combinations of visual features but 

limited to representing only a few chunks of information at once. For example, if you see an 

unfamiliar flower on a hike, you can hold a precise image of its color and petal shape in 

working memory while you search for a match in your wildflower guide. But, if you come 

across a dozen unique flowers and want to ID them all, you cannot simultaneously hold 

them all in mind. Your memory for the distinct features of each flower will become less 

precise, and many flowers will be forgotten altogether. Thus, you might strategically and 

flexibly encode only a subset of the available information (e.g., just the colors or shapes of 

three flowers) each time you check your guide.

For decades, there has been great interest in modeling the neural codes that support working 

memory, particularly because working memory is disrupted in many clinical disorders (e.g., 

Schizophrenia, Parkinson’s, depression). However, flexibility and capacity have rarely been 

modeled together. In a recent issue of Neuron, Bouchacourt and Buschman (2019) present a 

new model that captures both core aspects of working memory. This model, which we’ll 

refer to as the “coordinated network model,” shows how structured sensory networks and a 

flexible, higher-order network can work together to support and constrain working memory.

Studies of working memory’s capacity often take working memory’s flexibility for granted. 

For simplicity’s sake, a common strategy is to measure working memory capacity using 

simple, controlled stimuli from a single feature space (e.g., colored squares). Because of 

this, many models have considered how competitive interactions in networks tuned for a 

particular feature space, such as color, will lead to behavioral capacity limits (e.g., Compte 
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et al., 2000). Although such models can explain behavioral capacity limits when 

remembering stimuli in a common feature space, they have a more difficult time explaining 

how limits would arise when flexibly remembering items that are novel or from multiple 

feature spaces. The key insight raised by Bouchacourt and Buschman (2019) is that 

competitive interactions that lead to capacity limits may actually arise via less specialized, 

higher-order processing layers rather than via direct competition within sensory networks. 

Of course, these possibilities are not mutually exclusive, and competition occurs at multiple 

levels of processing. But, an important test is whether interference in a flexible, domain-

general processing layer is sufficient to generate capacity limits.

To create a model that is both flexible and can account for the capacity limits observed in 

behavior, Bouchacourt and Buschman (2019) combined a structured, sensory-specific 

network (sensory layer) with a flexible, random network (random layer) in a two-layer 

network model. These two layers roughly map onto key characteristics of different areas of 

the brain. Early visual areas (e.g., V1-V4) are relatively specialized, with small receptive 

fields and neurons that are selective for a particular feature. By contrast, higher-order control 

regions like pre-frontal cortex are thought to flexibly represent arbitrary stimulus 

combinations, rules, and abstract ideas. In their model, the investigators implement these 

characteristics by linking highly structured sensory networks with higher-order networks via 

random connections. Each sensory network (one per encoded memory item) is structured in 

that an input of one color (e.g., red) leads to systematic excitation and inhibition as a 

function of color similarity; neurons tuned to similar colors are partially excited and those 

tuned to dissimilar colors are inhibited. Importantly, there is no direct competition between 

the sensory populations that encode each remembered item; instead, competition occurs in 

the random network. Because of this independence, the coordinated network model yields 

the prediction that competition will occur even when items are drawn from different feature 

spaces such as color and orientation(e.g., Fougnie et al., 2010). In contrast to connections 

within the sensory network, connections between the random network and the sensory 

networks are unstructured with respect to color. Memories are maintained by bidirectional, 

reciprocal connections between the random and sensory layers.

The storage of memories via random connections between structured sensory networks and 

higher-order networks provides a flexible mechanism for representing information of any 

type. However, it comes at a cost. For example, if we hold the colors of two flowers in mind 

rather than one, our memory for each color will be less precise. This cost can be predicted 

by the coordinated network model. When asked to remember one item, the modeled 

“neurons” selective to the color of the item in one sensory network are partially excited; 

these neurons in turn excite a random subset of neurons in the random network (Figure 1). A 

second remembered item will excite a different, but potentially overlapping, subset of 

neurons in the random network. Thus, on average, neurons in the random network have a 

greater sustained firing rate when more items are remembered, as observed in prefrontal 

cortex (Fuster, 1973). But, the excitation from a given neuron in the sensory network to the 

random network is balanced by weak inhibitory connections to all other neurons in the 

random network. This balanced inhibition means that the second item is also more likely to 

inhibit the neurons in the random network that are excited by the first item, thus weakening 

the recurrent feedback to the first item’s sensory network. This has two key consequences. 
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First, it results in divisive-normalization-like attenuation of tuning selectivity in the random 

and sensory networks. Consistent with empirical work, the coordinated network model 

predicts that the neural response to two items remembered together is a sublinear 

combination of the response to each item remembered on its own (Heeger, 1992). Second, 

this weakened recurrent feedback can lead to drift in the neural representation away from the 

true presented color, reducing behavioral precision.

A key ongoing debate is whether we actively maintain only a subset of items from large 

arrays and forget the rest (e.g., store 3 of 8 items) or if we instead maintain very imprecise 

representations of all items (e.g., van den Berg et al., 2014). The coordinated network model 

implements a “some-or-none” storage mechanism; if there is sufficient memory-related 

activity beyond a certain threshold, representation of the memory is sustained throughout the 

delay (though it may drift and become less precise). If activity is insufficient, the memory 

collapses to a null attractor state and is lost. This model prediction is consistent with recent 

behavioral work finding uniformly distributed guess responses for a subset of items from 

large arrays (Adam et al., 2017). The coordinated network model’s some-or-none 

implementation of storage highlights one way that graded neural codes could yield the 

complete loss of items when working memory is taxed.

Prior work has shown that widely distributed brain regions participate in working memory 

(for review, Christophel et al., 2017), but there has been substantial debate about which of 

these codes is most necessary or even solely necessary for supporting working memory. 

Some work has emphasized that sensory areas are well suited to maintaining extremely 

precise representations, whereas other work has argued that sensory codes may not be useful 

when interrupted by new visual inputs (Bettencourt and Xu, 2016; but see Rademaker et al., 

2019). Bouchacourt and Buschman’s coordinated network model highlights that the 

interaction between multiple regions, rather than a single region or representation, may be 

key to understanding how different areas jointly contribute to supporting working memory.
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Figure 1. Holding Precise Memories in Mind
(A) Working memory is how we temporarily hold information in mind. For example, while 

hiking, we may spot a flower that we want to identify. When we look away from the desert 

scene to our flower guide, we can hold a precise representation of the flower’s color in mind.

(B and C) In the coordinated network model, each item is input to a separate “sensory 

network.” When holding just one item in mind (B), we can remember it precisely, with few 

errors. When storing multiple items (C), representations begin to interfere in the random 

network. Thick gray lines represent excitatory connections; thin gray lines represent 

inhibitory. Note: this figure is illustrative and does not reproduce exact model parameters.
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