
UC Berkeley
UC Berkeley Previously Published Works

Title
Measurements of the time-dependent cosmic-ray Sun shadow with seven years of IceCube 
data: Comparison with the Solar cycle and magnetic field models

Permalink
https://escholarship.org/uc/item/77b2z2h2

Journal
Physical Review D, 103(4)

ISSN
2470-0010

Authors
Aartsen, MG
Abbasi, R
Ackermann, M
et al.

Publication Date
2021-02-15

DOI
10.1103/physrevd.103.042005
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/77b2z2h2
https://escholarship.org/uc/item/77b2z2h2#author
https://escholarship.org
http://www.cdlib.org/


APS/123-QED

Measurements of the Time-Dependent Cosmic-Ray Sun Shadow

with Seven Years of IceCube Data – Comparison with the Solar

Cycle and Magnetic Field Models

M. G. Aartsen,17 R. Abbasi,16 M. Ackermann,56 J. Adams,17 J. A. Aguilar,12 M. Ahlers,21

M. Ahrens,47 C. Alispach,27 N. M. Amin,40 K. Andeen,38 T. Anderson,53 I. Ansseau,12 G.
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Abstract

Observations of the time-dependent cosmic-ray Sun shadow have been proven as a valuable

diagnostic for the assessment of solar magnetic field models. In this paper, seven years of IceCube

data are compared to solar activity and solar magnetic field models. A quantitative comparison of

solar magnetic field models with IceCube data on the event rate level is performed for the first time.

Additionally, a first energy-dependent analysis is presented and compared to recent predictions.

We use seven years of IceCube data for the Moon and the Sun and compare them to simulations

on data rate level. The simulations are performed for the geometrical shadow hypothesis for the

Moon and the Sun and for a cosmic-ray propagation model governed by the solar magnetic field for

the case of the Sun. We find that a linearly decreasing relationship between Sun shadow strength

and solar activity is preferred over a constant relationship at the 6.4σ level. We test two commonly

used models of the coronal magnetic field, both combined with a Parker spiral, by modeling cosmic-

ray propagation in the solar magnetic field. Both models predict a weakening of the shadow in

times of high solar activity as it is also visible in the data. We find tensions with the data on

the order of 3σ for both models, assuming only statistical uncertainties. The magnetic field model

CSSS fits the data slightly better than the PFSS model. This is generally consistent with what

is found previously by the Tibet AS-γ Experiment, a deviation of the data from the two models

is, however, not significant at this point. Regarding the energy dependence of the Sun shadow, we

find indications that the shadowing effect increases with energy during times of high solar activity,

in agreement with theoretical predictions.

∗ also at Università di Padova, I-35131 Padova, Italy
† also at National Research Nuclear University, Moscow Engineering Physics Institute (MEPhI), Moscow

115409, Russia
‡ Earthquake Research Institute, University of Tokyo, Bunkyo, Tokyo 113-0032, Japan
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I. INTRODUCTION

The existence of the cosmic-ray Sun shadow, which commonly refers to cosmic rays being

blocked by the Sun, has first been suggested by George W. Clark in 1957 [19]. While cosmic

rays that propagate close to the Moon are only deflected marginally by the geomagnetic and

heliospheric magnetic fields, cosmic rays that traverse the coronal solar magnetic field can

be deflected strongly and irregularly.

Hence, the cosmic-ray Moon shadow essentially blocks cosmic rays from a well-known

solid angle and can be used as a direction and resolution standard. Several experiments

have exploited this feature to study their angular resolution, absolute pointing and absolute

energy scale1, e.g. Tibet AS-γ, MILAGRO, ARGO-YBJ and IceCube [1, 10, 13, 34].

The cosmic-ray Sun shadow, on the other hand, contains the footprint of the solar mag-

netic field in the form of those cosmic rays reaching Earth that come from directions close

to the Sun. In 2013, the Tibet AS-γ Collaboration compared coronal magnetic field mod-

els using the cosmic-ray Sun shadow at a median primary cosmic-ray energy of ∼ 10 TeV

[11]. Later, they also studied the influence of solar coronal mass ejections (CMEs) on the

cosmic-ray Sun shadow at energies of ∼ 3 TeV [12] and concluded that Earth-directed CMEs

(ECMEs) affect the cosmic-ray Sun shadow at these energies. The influence of the solar mag-

netic field on the cosmic-ray Sun shadow has been studied by several other experiments, like

Milagro, ARGO-YBJ, and HAWC, as well [8, 21, 39]. Such efforts are especially important

since no in-situ measurements of the solar magnetic field closer than to about 0.29 ua (≈ 62

solar radii) distance from the Sun (Helios spacecraft [33]) existed until very recently. Even

the Parker Solar Probe, which will eventually approach the Sun up to ∼ 8.9 solar radii in

2024 [28], has as yet not been closer than 27.8 solar radii, i.e. about 0.13 AU.

In this paper, we investigate a possible time dependence of the cosmic-ray Sun shadow

using seven years of IceCube data. The measurements are based on atmospheric muons

detected with IceCube, induced by cosmic rays entering the Earth’s atmosphere. For the

first time, we use IceCube data for a comparison of measurements with the expected shadow

for solar activity with different solar magnetic field models. We calculate the median energy

of the primary cosmic rays in our sample to 50 − 60 TeV, depending on the cosmic-ray

flux model that is used to derive cosmic-ray energies from the measured muons. This is

1 The latter is done by using the energy-dependent shift of the position of the shadow due to the Earth’s

magnetic field.
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therefore the highest energy measurement of the Sun shadow so far, as compared to the

median primary cosmic-ray energies of the earlier measurements that lie around 1−10 TeV.

Additionally, the energy-dependence of the Sun shadow is investigated, i.e. two samples with

respective median energies of 40 TeV and 100 TeV are produced and qualitatively compared

to a recent prediction, in which the energy-dependence of the Sun shadow in a low-activity

solar magnetic field is shown to differ significantly from that in a high-activity solar magnetic

field [14]. The data we use for studying the cosmic-ray Sun shadow in IceCube comprise

the time from late 2010 till early 2017 and cover large parts of Solar Cycle 24. This cycle

is defined for the time interval from late 2008 to some time around late 2019 to early 2020,

wherein the exact location of the minimum that defines the end of the cycle is not clear at

this point. This work follows an earlier study which reported on the detection of a temporal

variation of the cosmic-ray Sun shadow measured with IceCube and found a correlation with

solar activity to be likely [3].

II. THE ICECUBE NEUTRINO OBSERVATORY

The IceCube Neutrino Observatory is a detection array deployed in the Antarctic ice near

the geographic South Pole and comprises a volume of about 1 km3 instrumented with 5160

Digital Optical Modules (DOMs) on 86 strings [2]. IceCube is located at a depth between

1450 m and 2450 m and detects relativistic secondary particles induced by astrophysical

neutrinos, gamma rays, and cosmic rays. The detector was built at the South Pole between

2005 and 2010 and exploits the clear Antarctic ice as its detection medium for Cherenkov

radiation of charged particles traversing it.

A sketch of the IceCube Neutrino Observatory including its sub-array DeepCore [23],

which aims to improve the sensitivity to lower-energy neutrinos, can be seen in Figure 1.

Data from DeepCore have not been used in this analysis. For neutrinos, IceCube’s main

array has an energy threshold of about 100 GeV. In this paper, we use atmospheric muons,

which are a background to the neutrino searches. In this sample, the energies of the primary

cosmic rays inducing these atmospheric muon events are typically & 1 TeV.

8



50 m

1450 m

2450 m 

2820 m

IceCube Array
 86 strings including 8 DeepCore strings 
5160 optical sensors

DeepCore 
8 strings-spacing optimized for lower energie
480 optical sensors

Eiffel Tower
324 m 

IceCube Lab
IceTop
81 Stations
324 optical sensors

Bedrock

FIG. 1. The IceCube Neutrino Observatory.

III. DATA SAMPLE

In IceCube, high-energy muons are observed. As these are predominantly produced by

cosmic-ray air showers, they trace the direction of the primary particles, with the angu-

lar uncertainty being dominated by the uncertainty of the light propagation in the ice and

limited by the kinematic angle between primary and secondary particle. We thus measure

an event rate of high-energy muons in IceCube. The event rate increases with increasing

elevation because of the decreasing amount of ice overburden that cosmic-ray induced at-
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mospheric muons have to cross to reach the detector. In this section, we describe the details

of our data sample.

A. Moon and Sun as seen from the South Pole

This paper uses data from IceCube’s 79-string configuration (IC79), which was available in

the 2010/2011 season and from the final 86-string configuration (IC86), which was available

from the the 2011/2012 season and onwards. We use the high-energy atmospheric muons

that pass through the detector for our analysis, as they are direct tracers of the primary

particles. The strength of the cosmic-ray shadow of the Moon and Sun is determined by

the number of cosmic rays that are blocked. Without additional forces this number results

from the solid angle that is spanned by the Moon and the Sun as seen from Earth, i.e.

their angular radii. The minimum and maximum angular radii of Moon and Sun as seen

from the South Pole amount to 0.245° to 0.279° for the Moon and 0.262° to 0.271° for the

Sun. Notably, both objects have an angular diameter of ∼ 0.5°, which makes a comparison

relatively straightforward.

The maximum elevation of the Moon at the South Pole varies between 18.3° and 28.6° due

to its orbital inclination and Earth’s axial tilt. While the Earth axial tilt changes only very

slowly, the Moon’s orbital inclination varies with a nodal period of about 18.6 years. For

the Sun’s elevation, on the other hand, only the Earth axial tilt is relevant for its maximum

elevation, which amounts to about 23.4° each year. The Sun rises and sets only once per

year at the South Pole, resulting in one continuous observation period approximately from

November through February each year. The Moon instead rises and sets approximately

every 27 days, which leads to about 13 separate observation periods. An example one such

period is shown in Figure 2.

B. Data selection and quality cuts

At the South Pole, the direction of each muon event is reconstructed using a fast

maximum-likelihood method. Since atmospheric muons detected in IceCube are ultra-

relativistic, the opening angle between muon direction and primary cosmic-ray direction,

which is on the order of 0.1° for multi-TeV muons [1], is part of the directional uncertainty
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FIG. 2. Comparison of Moon declination δ and final Moon shadow sample event rate. At the

South Pole, the elevation of an object equals −δ

between the actual primary cosmic-ray direction and the reconstructed event direction. Data

are only taken when Moon and Sun are above the horizon (at least 15° above the horizon

for data between May 2010 and May 2012, as in these early years, directional reconstruction

near the horizon was not good enough). These so-called Moon and Sun filters are imple-

mented at the South Pole and are necessary in order to reduce the data to a manageable

amount for satellite data transmission to the Northern hemisphere.

For further event reconstruction, a ±10° zenith band (±180° in azimuth) around the

known position of Moon/Sun in the sky is considered. While this full azimuth band is

available at the low-level of the analysis, the 6 off-source regions that we chose only make

use of parts of this band, in total 54°×6°. The reason not to include more off-source regions

is that it would increase the processing (and final data file sizes), while not substantially

reducing the statistical uncertainty.

The events are then selected with the requirement to hit at least 8 DOMs on three
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different strings.

After the first selection at the South Pole, the data are transferred North and more

sophisticated reconstruction algorithms are applied to the following parameters: Besides

the multi-photo-electron (MPE) fit [7], which accounts for the total number of Cherenkov

photons collected by each DOM, this includes a paraboloid fit to the likelihood profile of the

directional coordinates [30].

To ensure that only well-reconstructed events are used for the final data analysis, two

quality cuts based on these reconstructions are applied:

1. The reduced log-likelihood (rlogl), which represents the goodness-of-fit of the MPE

reconstruction, is required to satisfy rlogl < 8.1, see [30].

2. The angular uncertainty σ, which is derived from the paraboloid fit to the likelihood

profile2, is required to satisfy σ < 0.71◦.

Both quality cuts were determined with the goal to maximize the statistical significance of

the shadows in [17] and have been used in previous studies [3, 37, 38].

IV. DATA ANALYSIS

A. Relative coordinates

The direction of each muon in the sample is compared to the known position of Moon/Sun

in the sky and relative local coordinates are calculated. The individual reconstructed decli-

nation of each muon event is defined as δµ.

The position is given in equatorial coordinates, with the quasi-Cartesian values of the

coordinates relative to the center of Moon/Sun given as x = ∆α cos δµ and y = ∆δ, where

δ is the declination and α the right ascension. The sign of the relative difference is defined

as α/δµ - α/δMoon/Sun.

2 The likelihood profile is defined as the entity of likelihood values as a function of the directional coordinates,

see [30] for details.
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B. On- and off-source regions

Based on the calculated quasi-Cartesian relative coordinates x and y, one on-source region

and eight off-source regions are defined as shown in Figure 3. Each region has an angular

extent of 6°× 6°, resulting in a total angular area of 54°× 6° for the nine regions.

In order to account for the spherical distortion, we keep the corrected relative right

ascension ∆α cos δµ of the entire analyzed region constant at 54° rather than the uncorrected

relative right ascension ∆α.

FIG. 3. On- and off-source regions used for the data analysis. The black “x” marks the zero point

of the relative coordinates, i.e. the center of Moon/Sun.

C. Event numbers and average declination

The number of events contained in the 54° × 6° window described in Section IV B and

their average declination are given in Table I.

It can be seen that the number of events varies between 3.8 and 7.9 million events for the

Moon shadow sample, while it amounts to 13.1 to 13.3 million events for the Sun shadow

sample except for IC79, which contains about 9 million events.

The average declination, on the other hand, varies between −16.7° and −22.1° for the

Moon shadow sample and amounts to −21.8° for the Sun shadow sample except for IC79,

where it is slightly smaller with −22.1°. These values are used later for modelling the

expected relative deficit due to the lunar and solar disk as described in detail in Section

V C.
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TABLE I. Number of events and average declination of the data sample for each year.

Moon Sun

Year N/106 −〈δ〉/° N/106 −〈δ〉/°

IC79 7.9 22.1 9.0 22.1

IC86-1 7.7 20.7 13.1 21.8

IC86-2 6.4 18.9 13.1 21.8

IC86-3 4.5 17.7 13.2 21.8

IC86-4 3.8 16.9 13.2 21.8

IC86-5 4.1 16.7 13.3 21.8

IC86-6 5.1 17.2 13.3 21.8

D. 2D maps and smoothing

After defining on- and off-source regions as described in Section IV B, the off-source

regions are shifted with respect to the on-source region such that they are centered at x = 0°

(displayed as the black × in Figure 3), becoming directly comparable to the on-source region,

which is centered at x = 0° by definition.

Then, two two-dimensional binned histograms containing the number of events are de-

fined: the first encloses the on-source region, the second represents the average of the eight

off-source regions. Both histograms cover 6°× 6° in x and y and consist of 60× 60 bins (i, j)

(i = 1 . . . 60, j = 1 . . . 60), wherein each bin has a size of 0.1°× 0.1°.

Then, the relative deficit due to the shadowing of Moon/Sun in each bin (i, j) is calculated

using the number of events N i,j
on in bin (i, j) in the on-source region and the average number

of events 〈Noff〉i,j in the eight off-source regions:(
∆N

〈Noff〉

)i,j
=
N i,j

on − 〈Noff〉i,j

〈Noff〉i,j
. (1)

The average number of events 〈Noff〉i,j in a bin (i, j) located in the off-source regions is

calculated by averaging over the off-source regions:

〈Noff〉i,j =
1

8

8∑
n=1

(
N i,j

off

)
n
, (2)

where
(
N i,j

off

)
n

is the number of off-source events in the nth off-source region. The result

is a two-dimensional map of the relative deficit due to the Moon/Sun shadow. In order to
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better suppress statistical fluctuations, the two-dimensional relative deficit map is smoothed

with a box-car smoothing algorithm that replaces the relative deficit in each bin with the

average of all bins within 0.7° around its center. It is described in Section VI. The chosen

smoothing radius corresponds approximately to the median angular resolution of the final

data sample.

To guide the eye, and for the numerical analysis presented in the next section, the center

of gravity of the shadow is determined and plotted as well3 (see Fig. 6 and Fig. 7). It is

determined by averaging over the positions of all bins with a relative deficit of 3 % or more

after smoothing. As typical statistical uncertainties after the smoothing amount to about

0.6 %, this threshold defines bins that show a statistically significant deficit of events.

E. Numerical analysis

In order to quantify the deficit of cosmic-ray induced muon events due to the shadowing

of the Moon and Sun, the relative deficit of events in a 1°-circle around the center of grav-

ity (cf. previous section) is computed. Choosing a reasonable search radius is a trade-off

between a smaller statistical error on the one hand and more off-source background con-

tamination (washing out the deficit due to the Moon and Sun) on the other hand. Within

1° the cumulative point spread function contains about 70 % of events while the off-source

background contamination is still relatively small. The statistical uncertainty of the relative

deficit is computed using error propagation as

σRD =
Non

〈Noff〉

√
1

Non

+
1

s · 〈Noff〉
, (3)

with the number of off-source regions s = 8.

In addition to the relative deficit, the significance of the shadowing effect is calculated

using a standard formula developed by Li and Ma [26], whereby a 0.7°-circle around the

center of gravity is chosen as search area. The selected search radius maximizes the statistical

significance for very large numbers of background events and for an angular resolution typical

for atmospheric muon events (cf. [17, 38] for details).

3 It should be noted that for the Sun shadow, the center of gravity is not necessarily expected to align with

the center of the solar disk due to the influence of the solar magnetic field.
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V. SIMULATIONS

A. Models

The simulations used for characterizing the cosmic-ray induced atmospheric muon flux

are based on CORSIKA [24]. More specifically, two CORSIKA-generated simulation sets are

used, covering primary energies from 600 GeV to 100 EeV and containing 1H, 4He, 14N,

27Al, and 56Fe nuclei. Hadronic interactions are simulated with Sibyll 2.1 [6] and the MSIS-

E-90 atmospheric profile [20]. Lepton propagation in ice is carried out using the lepton

propagation tool PROPOSAL [25]. Light emission and propagation is handled using GEANT4

[5] and the IceCube-internal software package CLSim that has been developed based on the

Photonics code [27]. The Antarctic ice in which IceCube is embedded is modeled using the

SPICE Lea model [4, 18]. The detector response is simulated based on internal software.

After simulating atmospheric muon events using the models described above, each event

is weighted based on a model of the primary cosmic-ray flux: The weight w of an event

induced by a primary cosmic ray with energy E, mass number A, and atomic number Z is

determined as the ratio of the cosmic-ray flux Φmodel according to a chosen model and the

simulated cosmic-ray flux Φsim:

w(E, A, Z) =
Φmodel(E,A,Z)

Φsim(E,A,Z)
. (4)

Here, the model by Gaisser with an extragalactic component presented in [22] and based on

the Hillas approach, thus called HGm model hereafter, is used.

B. Sample characteristics

Based on the models described in the previous section and the data analysis presented

in Section IV, the (simulated) data sample is characterized with respect to the energy dis-

tribution of primary cosmic rays (Figure 4) and the probability density function (PDF) of

the opening angle ∆θ between reconstructed muon direction and actual cosmic-ray direc-

tion (Figure 5). Both figures show the distribution of the final simulation sample after the

same steps as described in Section III. The base declination δ0 is chosen such that the ±3°

declination band around it has the same average declination as the final Sun shadow data

sample (cf. [38] for more details). The simulation sample contains events with primary
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FIG. 4. Energy distribution in a ±3° declination band around the base declination δ0 = −21.3°.

The thick yellow, orange, and red lines indicate the median primary cosmic-ray energies studied in

Section V G.

energies between ∼ 1 TeV and ∼ 100 PeV. The median energy amounts to about 60 TeV

and the 68 % interval is between 14.6 TeV and 302 TeV. The median angular error amounts

to 0.77°, the 68 % interval covers values between 0.31° and 2.1°.

C. Simulating the shadows

The shadowing of cosmic rays due to the Moon and Sun is modeled by modifying the

primary cosmic-ray weight w of each event. Using the probability p of each primary cosmic

ray to pass through interplanetary space without hitting the Moon or the Sun, the modified

weight w′ is calculated as

w′ = p · w . (5)

In the simplest model, the Moon and Sun are treated as non-magnetic, totally absorb-
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FIG. 5. Angular error distribution in a ±3° declination band around the base declination δ0 =

−21.3°.

ing spheres in space which block those cosmic rays that come from directions within the

respective lunar and solar disk as seen from Earth. In this model, p is a step function only

depending on the space angle ∆θ between the cosmic-ray direction and the center of the

Moon/Sun.

Although cosmic rays are deflected by the geomagnetic field, the net shadowing effect

remains largely unaffected, besides a small shift of the shadow that is significantly smaller

than the resolution of the detector is expected. Moreover, by applying the center-of-gravity

correction presented in Section IV E before calculating the relative deficit, such a shift is

accounted for in the analysis method.

In order to simulate the expected relative deficit due to the lunar and solar disk, two key

parameters are taken into account: the average declination 〈δ〉 of each data sample given in

Table I and the weighted average of the apparent radius 〈RMoon/�
app 〉 of Moon and Sun. While

the average declination determines typical energies and the median angular resolution (cf.
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[38]), the apparent radius determines, in simple words, how large lunar and solar disk have

to be modeled.

For calculating 〈RMoon/�
app 〉, the number of events for each Modified Julian Date (MJD),

NMJD, is determined together with the apparent radius in the sky for each individual MJD

of the sample, RMJD
app . The latter is calculated by obtaining the Earth-Moon distance for that

specific MJD and applying trigonometry. Using these pieces of information, the weighted

apparent radius becomes

〈RMoon/�
app 〉 =

∑
MJDNMJD ·RMJD

app∑
MJDNMJD

. (6)

With this procedure, the weighted average of the apparent radius of the Moon in the sky is

shown to vary between the 0.251◦ (IC86-6) and 0.274◦ (IC86-2).

For the Sun, the range of its apparent size varies, in general, between 0.262◦ and 0.271◦

over the year. For the time from November through February studied in this paper, however,

it amounts to 0.271◦ for each year. As a result of neglecting the sub-percent variation of

this value, the expectation for the geometrical shadowing effect of the solar disk is the same

in each year.

The expected relative deficit due to the shadow induced by the disk-model described

above is referred to as lunar disk and solar disk in Figures 8 and 9.

For simulating the Sun shadow including the effect of the solar magnetic field, the picture

is much more complex. Besides the geomagnetic field, also the heliospheric magnetic field

and especially the solar coronal magnetic field deflect cosmic rays. While the heliospheric

magnetic field, like the geomagnetic field, is comparably regular, the coronal magnetic field

can become highly irregular. This increased level of magnetic small-scale variability enhances

the interactions of cosmic rays with the magnetic field, thus changing the net shadowing effect

of the Sun. A first quantification of how the shadowing effect is changed has been discussed

in [14]. It is thus necessary to actually simulate cosmic-ray propagation in the heliospheric

and coronal magnetic field. In such a simulation, the passing probability p of each primary

cosmic ray can be determined. It can be calculated as the number of cases npass in which

the cosmic-ray particle traverses the solar corona without hitting the photosphere, divided

by the total number of trials ntotal,

p =
npass

ntotal

. (7)

This probability can be calculated by propagating cosmic rays in the magnetic field of the
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Sun. Here, we use a backtracking approach for computing time-efficient simulations and we

perform the propagation in two different magnetic field models. The details of these parts

of the simulation are described in the subsequent Sections V D and V E.

D. Particle propagation in the solar magnetic field

In order to produce simulations of the cosmic-ray shadow at Earth, the first step is to

numerically propagate the particles through the magnetic field of the Sun. We use the

test-particle approach, which implies that the magnetic field configuration is not changed

by the particle current. This is a reasonable assumption for such high-energetic particles,

whose coronal crossing time of a few minutes is much smaller than the timescales of solar

magnetic variability, and thus allows us to keep the magnetic field configuration constant

for the simulation of one particle trajectory.

The particles are propagated according to the equation of motion

d~p

dt
= q

(
~v × ~B

)
(8)

following the approach in [14]. The simulations are performed for different magnetic field

configurations, corresponding to the solar magnetic field at different times. In particular,

simulations for two magnetic field models are performed as described in the following sub-

section. These fields are provided for each month during the measurement and are kept

constant for that month. The details of this procedure are described in [14].

Propagating particles forward is very inefficient, as it cannot be defined beforehand

which of these particles actually hit Earth and which do not. Thus, in order to produce a

computing-time efficient simulation, only those cosmic rays that eventually induce an atmo-

spheric muon event in the final simulation sample are propagated. This is achieved by using

a backtracking method, which takes the known primaries of the final simulation sample,

changes all particles into their anti-particles and, at the same time, inverts their momen-

tum vector. This means that in the simulations, we start anti-particles at Earth, propagate

them around the Sun and detect the resulting projected shadow behind the Sun. Changing

the charge and the direction at the same time delivers the same result as the propagation

of particles along the inverted path. The back-tracking method is therefore well-suited to

reduce computational time while still providing a proper picture of the propagation in the
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magnetic field.

E. Solar magnetic field models

As mentioned before, the solar magnetic field consists of two components: the coronal

magnetic field and the heliospheric magnetic field. While the coronal magnetic field is mod-

eled using (a) a potential-field model and (b) a magnetohydrostatic model, the heliospheric

magnetic field is modeled using a Parker spiral approach [32], with a semi-linear approxi-

mation of the radial solar wind velocity profile.

1. PFSS model

The potential-field source-surface (PFSS) model [9, 35] assumes the solar corona to be

force- and current-free, i.e. ~j = ~0, with the current density ~j. Neglecting the displacement

current, ~j can be related to the curl of the magnetic field ~B as

~j =
1

µ0

(
~∇× ~B

)
. (9)

For a current-free corona the magnetic field must hence be curl-free, ~∇ × ~B = ~0, which

means that it can be expressed as the gradient of a scalar potential Φ, ~B = −∇Φ. With

~∇ · ~B = 0, this yields the Laplace equation

~∇2Φ = ∆Φ = 0 . (10)

The PFSS model uses one parameter, the source-surface radius Rss, which delimits the

domain in which the magnetic field dominates the plasma. Beyond this source surface, the

plasma becomes super-alfvnic and the magnetic field is passively advected outwards in it.

The source-surface radius is set to Rss = 2.5R�, which is a commonly used value and has

also been tested in [11].

2. CSSS model

The current-sheet source-surface (CSSS) model [40] is based on the magnetohydrostatic

equation

~0 = ~j × ~B − ~∇p+ ρ~g , (11)

21



which balances the Lorentz force, the gradient of the plasma pressure p, and the gravitational

acceleration ~g that acts on the plasma density ρ.

The CSSS model is based on the solution presented in [16] and uses three parameters: the

source-surface radius Rss, the cusp radius Rcp, and the length scale la of horizontal currents.

While Rss is set to 2.5R� and has the same meaning as in the PFSS model, Rcp is the radius

where magnetic field lines become closed. Rcp is set to 1.7R�, which is a typical height for

coronal streamers. Above Rcp, magnetic field lines are assumed to be open. The length scale

la of horizontal currents is set to 1R�.

3. Parker spiral

The heliospheric magnetic field is implemented using the model first developed by Parker

[32] (cf. [31] for a review). The Parker spiral in general has a footpoint as an inner boundary

of the description of the field, which for the Sun is assumed to be the photosphere [31]. While

the magnetic field at the footpoints of the spiral is determined by using the coronal models

described above, the radial velocity Vr of the solar wind, which in the frozen-magnetic-flux

model determines the radial component of the magnetic field, is modeled as a semi-linear

approximation of the Parker [32] isothermal solar wind profile:

Vr(r) =

C · (r/R�) r < Rc

V0 r ≥ Rc ,
(12)

with the slope C = V0 · (R�/Rc) = 20 km s−1 and the critical radius Rc = 22.5R�. Beyond

Rc, the radial velocity is assumed constant with a value of V0 = 450 km s−1, which is a

typical value for the radial solar wind velocity at 1 ua (cf. [31]).

F. Coordinate transformation for signal simulation

For a proper description of the propagation, coordinates need to be transformed into

ecliptic coordinates before starting the propagation around the Sun, which adds an additional

transformation step. The relative coordinates with respect to the Sun’s position, ∆λ and
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∆β are given by

∆λ = λcr − λ� (13)

∆β = βcr − β� , (14)

with (λ�, β�) as the position of the Sun in ecliptic coordinates and (λcr, βcr) as the position

of the detected cosmic ray in ecliptic coordinates. These relative coordinates can then be

transformed into quasi-Cartesian coordinates as follows:

x′ = cos βcr ·∆λ (15)

y′ = ∆β . (16)

Here, x′ is corrected for the spherical distortion by the cos βcr factor, just as it is done for the

Moon in equatorial coordinates. While Earths axial tilt of about 23.4◦ is taken into account

by transforming from equatorial to ecliptic coordinates, the tilt of the Suns rotational (and

magnetic) axis with respect to the ecliptic of about 7.25◦ is neglected in this approach, as

it is significantly smaller than the Earth’s axial tilt with respect to the ecliptic.

Finally, the coordinates are transformed back into the equatorial system that is used for

the data analysis of Moon and Sun, and also for the simulation of the Moon data.

G. Energy reconstruction

For studying the cosmic-ray Sun shadow at different energies, the data are divided into

three energy bands. This is achieved by using an energy-correlated observable, qdir, which

represents the charge deposited in direct hits. These direct hits are defined as not having

undergone significant scattering in the ice from the point of their emission, thus providing

more accurate timing information. For the observable qdir, the sum of charge deposited in

all DOMs that are hit within a time window of (−15 ns, 75 ns) around the first geometrically

possible arrival of a Cherenkov photon in a DOM is given in units of photo-electrons (p.e.).

The three bins are defined as qdir < 18 p.e., 18 ≤ qdir ≤ 30 p.e., and qdir > 30 p.e., resulting

in an approximately equal number of events in each energy bin, see Table II for details. These

three sub-samples have median primary energies of 40 TeV, 55 TeV, and 100 TeV as shown

in Figure 4.
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TABLE II. Summary of the parameters for the three energy bins of the analysis

qdir/p.e. range (68%)/TeV Emedian/TeV

< 18 (12− 160) 40

18− 30 (15− 260) 55

> 30 (21− 630) 100

VI. RESULTS

A. Shadow maps

The shadow maps for the Moon and the Sun as a result of this analysis are presented here

for each IceCube season. Figure 6 shows the cosmic-ray shadow of the Moon. Each panel

shows one year of data, starting with the earliest season 2010/2011 (IC79) on the top-left,

followed by data for the seasons 2011/2012 (IC86-1), 2012/2013 (IC86-2) and 2013/2014

(IC86-3) in the top row and 2014/2015 (IC86-4), 2015/2016 (IC86-5) and 2016/2017 (IC86-

6) in the bottom row from the left to the right. Data have been smoothed with the boxcar

average algorithm, where the smoothed relative deficit in each bin (i, j) is determined as the

average of all bins with centers within a certain angular distance around the center of bin

(i, j). Here, this smoothing radius is set to 0.7◦, which approximately corresponds to the

median angular resolution of the simulation sample and yields a reasonable balance between

angular resolution and statistical uncertainty.

The figure shows that the relative deficit reaches a depth larger than 8.0%. Figure 7

shows the corresponding pictures for the location of the Sun.

The significance of the shadowing effect (cf. Section IV E) is found to fall between 7.5σ

and 14.2σ for the Moon and between approximately 9.5σ and 16.9σ for the Sun (see Table

III). The reason for the higher significance of the Sun shadow is its larger data sample.

An interpretation of these figures, and in particular a quantification of a possible temporal

change in the shadow, will be given in the next section.
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FIG. 6. Boxcar-smoothed two-dimensional contour map of the Moon shadow for the years IC79 to

IC86-6 showing the computed center of gravity of the shadow as a white cross. The white circle

indicates the seven-year mean of the weighted average of the angular Moon radius.

TABLE III. Relative deficit (RD) and Li-Ma significance S (cf. Section IV E) for Moon and Sun

shadows.

IC79 IC86-1 IC86-2 IC86-3 IC86-4 IC86-5 IC86-6

Moon
RD in % 4.0± 0.4 5.0± 0.4 4.5± 0.4 5.6± 0.5 5.3± 0.6 4.9± 0.6 3.7± 0.5

S in σ 11.2 14.2 12.1 10.0 9.4 9.5 7.5

Sun
RD in % 5.1± 0.4 3.3± 0.3 4.1± 0.3 3.1± 0.3 2.8± 0.3 3.5± 0.3 5.2± 0.3

S in σ 14.0 11.4 13.0 9.5 10.1 12.1 16.9
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FIG. 7. Boxcar-smoothed two-dimensional contour map of the Sun shadow for the years IC79 to

IC86-6 showing the computed center of gravity of the shadow as a white cross. The white circle

indicates the weighted average of the angular Sun radius.
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B. Comparison to lunar/solar disk

As described in Section IV E, the relative deficit within a 1.0°-circle around the center of

gravity of the shadow is used for quantifying the deficit of cosmic-ray induced muon events

due to the Moon and Sun shadows. Figures 8, 9, 10, 11, 12, and 13 thus use this quantity.

In Figure 8 the observed relative deficit due to the cosmic-ray Moon shadow is compared

to the relative deficit expected due to geometrical shadowing of the Moon. The simulations

show the same slight dip as the data. The reason for this dip is the slightly different distance

between Moon and Earth, which changes the angular radius and hence the shadowed solid

angle. Additionally, the average declination of the event sample is slightly different for each

year. Both effects are accounted for in the simulations shown in Figure 8.
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FIG. 8. Comparison of measured relative deficit due to the Moon shadow and relative deficit

expected from shadowing by the lunar disk.

In Figure 9 the observed relative deficit due to the cosmic-ray Sun shadow is compared

to the relative deficit expected due to geometrical shadowing of the Sun. There is no

substantial variation in the distance between Sun and Earth for the observation period
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November through February. Also, the average declination of the data sample is essentially

the same each year. Thus, the expected relative deficit due to the geometrical shadowing

by the solar disk is the same every year and amounts to (4.4± 0.1) %.
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FIG. 9. Comparison of measured relative deficit due to the Sun shadow and relative deficit expected

from shadowing by the solar disk.

In Table IV, the reduced χ2, p-value, and significance S of a χ2-test of the observed Moon

and Sun shadows and the expectation from the lunar/solar disk are given. With a p-value

of 32 % the Moon shadow shows reasonable agreement with the expectation from the lunar

disk. The Sun shadow, on the other hand, is incompatible with the expectation from the

solar disk with a statistical significance of about 7 standard deviations.

C. Comparison to solar cycle

As a first observational test of a connection between magnetic solar activity and the Sun

shadow, the temporal variation of the cosmic-ray Sun shadow is compared to the average
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TABLE IV. Reduced χ2, p-value and, significance of the comparison between the measured Moon

and Sun shadows with the expectation from the lunar and solar disk.

χ2/ndof p S in σ

Moon 8.2/7 ≈ 1.2 0.32 1.0

Sun 72.9/7 ≈ 10.4 3.9× 10−13 7.3

International Sunspot Number obtained from [36]. A similar comparison has already been

performed in [3] for five years of data, and a correlation has been found to be likely. In

Figure 10, the relative deficit due to the Sun shadow is shown together with the sunspot

number (averaged over the relevant months) between November 2010 and February 2017.
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FIG. 10. Comparison of measured relative deficit due to the Sun shadow and average sunspot

number as a tracer for solar activity.

In order to quantify the correlation between Sun shadow and solar activity, which is shown

in Figure 11, two correlation tests are performed. The results of these tests are summarized

in Table V. While a Spearman’s rank correlation test yields a correlation coefficient of 0.86
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and a p-value of 1.4 % for a correlation by chance, a Kendall-τ test yields a correlation

coefficient of 0.71 and a p-value of 3.0 %.

We also quantify the deviation from a constant function by fitting a linear function and a

constant one. We calculate the difference in the χ2 and number of degrees of freedom, ∆χ2

and ∆ndof , respectively. Based on these values, the p-value is calculated from the cumulative

distribution function of the appropriate χ2 distribution. While we find χ/ndof = 13.23/5 for

the linear model, the constant model yields χ/ndof = 53.67/6. The difference in these two

models therefore can be quantified to

∆χ2

∆ndof

=
40.44

1
= 40.44 . (17)

This results in a p-value of p = 2.0 · 10−10, corresponding to a significance of 6.4σ that the

linear fit is preferred over a constant one.
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FIG. 11. Correlation of measured relative deficit due to the Sun shadow and average sunspot

number. A correlation of the two quantities is found to be likely.
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TABLE V. Correlation coefficient and p-value of the two performed correlation tests.

Correlation test Correlation coefficient p in %

Spearman’s ρ 0.86 1.4

Kendall’s τ 0.71 3.0

D. Comparison to solar magnetic field models

Finally, we modeled cosmic-ray propagation in the solar magnetic field to obtain predic-

tions for the Sun shadow as expected from different coronal magnetic field models. Figure

12 shows the results in terms of the observed relative deficit due to the Sun shadow and

the expected relative deficit based on the PFSS and CSSS models in combination with the

Parker spiral model introduced in Section V E.

Both models reproduce the observed weakening of the shadow in times of high solar

activity. The PFSS model predicts a more pronounced weakening of the shadow than the

CSSS model in all years that are studied. In 2010/2011 as well as in 2016/2017 the relative

deficit observed in the data is slightly stronger than the prediction from both models, but

also stronger than the expectation from the solar disk. In addition to a χ2-test taking

into account the statistical uncertainties of the data points, a modified χ2-test, which also

takes into account the statistical uncertainties of the simulations and an estimate of the

systematic uncertainty, is performed:

χ2 =
∑
i

(xidata − xisim)2

(σidata)
2

+ (σisim)
2

+ σ2
sys

. (18)

As in [11], the systematic uncertainty is estimated from comparing the observed and expected

relative deficit due to the Moon shadow and is found to amount to about 0.3 %.

While the standard χ2-test yields tensions between the data and the models on the order

of 3 standard deviations, the modified test yields reasonable agreement with p-values of

13 % and 17 % for the PFSS and CSSS model, respectively. All values are given in Table VI.

These results can be compared to the findings of Tibet AS-γ in [11], who performed a similar

study for the previous solar cycle (1996 – 2009) at lower energies of ∼ 10 TeV. In [11], it

is discussed that the simulations with the CSSS model produce results that are consistent

with the data. At these energies, the discrepancy with the PFSS model is larger (p-value of

4.9 · 10−5). In this paper, the CSSS model also fits somewhat better than the PFSS model,
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FIG. 12. Comparison of measured relative deficit due to the Sun shadow and relative deficit

expected from different models of the solar magnetic field.

but these differences are not significant. One reason could be that the magnetic activity

in solar cycle 24, which is investigated in this paper, is much less pronounced compared to

solar cycle 23 which was investigated with Tibet AS-γ data. In addition, effects should be

amplified at lower energies as lower-energy particles have smaller gyro radii and therefore

react stronger to the magnetic field. Finally, in this paper, we investigate seven years, while

Tibet AS-γ could make use of 14 years of data.

TABLE VI. Reduced χ2, p-value, and significance of the comparison between the measured Sun

shadows and the two different models. Both models were provided with SOLIS magnetogram data

[29]. Values in parentheses are based on the modified χ2 given in equation (18).

Magnetogram Coronal model χ2/ndof p S in σ

SOLIS PFSS 3.1 (1.6) 0.0027 (0.13) 3.0 (1.5)

SOLIS CSSS 2.9 (1.5) 0.0052 (0.17) 2.8 (1.4)
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E. Energy dependence

In this section we discuss the energy dependence of the Sun shadow. In Figure 13 the

relative deficit, normalized to the expectation from the solar disk, is shown for the low-energy

(median energy: ∼ 40 TeV) and high-energy (median energy: ∼ 100 TeV) sub-samples

during the observation period from November 2010 through February 2017. Normalizing to

the solar disk is necessary as the PSF is energy-dependent, causing the solar-disk shadow to

be stronger for higher energies.

For years with rather high solar activity (2011/2012–2015/2016) there is an indication for

increasing shadow strength. For the two low-solar-activity years (2010/2011 and 2016/2017),

no conclusions can be drawn. In general, these results are consistent with what is expected

from theory [14], where it is shown that the shadow should increase in strength for years of

high magnetic turbulence level and that it should be decreasing for low-activity years. How-

ever, to confirm such trends, a better energy resolution and a larger data set are necessary,

therefore we refer to future work to investigate this question in more detail.

VII. CONCLUSION

In this paper, the time-dependent cosmic-ray Moon and Sun shadows were studied using

seven years of IceCube data taken between May 2010 and May 2017. Both, Moon and Sun

shadows are observed with high statistical significance in all seven years of data. While

the Moon shadow is described reasonably well by the lunar-disk model (p = 0.32), the Sun

shadow is statistically incompatible with geometrical shadowing only due to the solar disk

(7.3σ).

We compared the temporal variation of the measured relative deficit of the Sun shadow

to the change in the International Sunspot Number as a tracer for solar magnetic activity.

We find the probability to observe the measured correlation by chance to be 3.0 % (Kendall’s

τ test) or 1.4 % (Spearman’s rank test), respectively. A linear relationship between shadow

strength and solar activity is preferred over a constant one with 6.4σ.

We test two coronal magnetic field models, the PFSS and CSSS models, together with

a Parker spiral beyond 2.5 solar radii. Taking into account only statistical uncertainties,

we find tensions between data and models on the order of ∼ 3σ. Including an estimate
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FIG. 13. Relative deficit due to the Sun shadow normalized to the expectation from the solar disk

as a function of the median energy of the sub-samples. For better visualization, pairs of data points

for a specific season where shifted along the abscissa. The inner (outer) grey band indicates the

statistical uncertainty of the disk-prediction for the low-energy (high-energy) sample.

of the systematic uncertainty based on the observed Moon shadow, however, we compute

reasonable p-values of 13 % and 17 % for the two models, respectively.

In times of high solar activity, the measured Sun shadow seems to increase with en-

ergy (1.8σ indication). In times of low solar activity, more data and an improved energy

estimation will be necessary.

Future possibilities furthermore include testing different coronal magnetic field models

like more general force-free or MHD models, studying the influence of CMEs on the Sun

shadow, or implementing different models of the heliospheric magnetic field and/or the radial

wind velocity profile. Further, in the future, energy-dependence can help to understand

the strength of the field in particular when studying years of low solar activity. Here, an

approximation by a Parker spiral is motivated by theory [14, 15]. A dipole-type field shows
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an increase of the shadow depth up to a certain maximum, which has a larger shadowing

effect than the geometrical shadow. The predicted behavior of the Sun shadow during low

solar activity with increasing energy is a monotonous increase of the shadow, converging

toward the geometrical shadow, thus for all energies below convergence showing a shadow

that is weaker than the geometrical one. Thus, for low activity years in particular, the

observed peak energy can reveal the true normalization of the dipole, while the high activity

years can help to disentangle the role of the small-scale component of the field.
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