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Floquet wave––based analysis of transient scattering

from doubly periodic, discretely planar,

perfectly conducting structures

Nan-Wei Chen,1,2 Mingyu Lu,1 Filippo Capolino,3 Balasubramaniam Shanker,4

and Eric Michielssen1

Received 8 September 2004; revised 14 March 2005; accepted 12 April 2005; published 6 August 2005.

[1] A Floquet wave–based algorithm for solving an electric field time domain integral
equation pertinent to the analysis of transient plane wave scattering from doubly periodic,
discretely planar, perfect electrically conducting structures is presented. The proposed
scheme accelerates the evaluation of fields generated by periodic constellations of
band-limited transient currents via their expansion in time domain Floquet waves and use
of blocked fast Fourier transforms. The validity and effectiveness of the resulting
algorithm are demonstrated through a number of examples.
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scattering from doubly periodic, discretely planar, perfectly conducting structures, Radio Sci., 40, RS4007,

doi:10.1029/2004RS003171.

1. Introduction

[2] This paper presents a marching-on-in-time (MOT)
and Floquet wave–based scheme for solving an electric
field time domain integral equation (TDIE) pertinent to
the analysis of transient plane wave scattering from
doubly periodic, perfect electrically conducting (PEC),
discretely planar, and freestanding structures. The pro-
posed approach uses blocked fast Fourier transform
(FFT) based accelerators [Harrier et al., 1985; Bleszynski
et al., 2001; Yilmaz et al., 2002] to efficiently evaluate
time domain Floquet wave (TDFW) decomposed elec-
tromagnetic fields [Capolino and Felsen, 2002, 2003;
Felsen and Capolino, 2000; Marrocco and Capolino,
2002] generated by doubly periodic, discretely planar,
and temporally band-limited source distributions.
[3] In the past, transient scattering from doubly peri-

odic structures has been analyzed predominantly using
finite difference time domain methods [Veysoglu et al.,
1993; Tsay and Pozar, 1993; Harms and Mittra, 1994;

Roden et al., 1998; Holter and Steyskal, 2002]. These
solvers update fields inside a periodic structure’s so-
called mothercell using the classical Yee scheme [Yee,
1996] and impose periodic/absorbing boundary condi-
tions on mothercell walls with normal vectors residing
in/perpendicular to the plane of periodicity. Unfortu-
nately, for obliquely excited periodic structures, these
periodic boundary conditions call for future fields
values to update current ones, and therefore cannot be
applied directly. Several avenues for tackling this non-
causality problem have been suggested [see Maloney
and Kesler, 2002, and references therein]. It appears,
however, that most fixes proposed to date are either
hard to implement or somewhat limited in scope.
Transient scattering from periodic structures also can
be analyzed using TDIE-based schemes. Indeed, TDIE
solvers for analyzing scattering from doubly periodic
freestanding or substrate imprinted PEC elements were
proposed by Chen et al. [2002, 2003]. Just like in their
finite difference counterparts, noncausal terms arise
when discretizing periodic structure TDIEs for obliquely
incident fields using marching-on-in-time (MOT) proce-
dures. Chen et al. [2002, 2003], removed these non-
causal terms through the introduction of time-shifted
temporal current basis functions in conjunction with a
prolate-based extrapolation scheme. Unfortunately, even
though these periodic structure TDIE solvers now
efficiently cope with noncausal artifacts, their high
computational complexity precludes them from being
applied to the analysis of real-world structures. Gener-
ally speaking, the computational cost of MOT-based
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TDIE solvers can be attributed to their need to evaluate,
at each and every time step, fields produced by past
currents supported by the structure under analysis. The
TDIE solvers of Chen et al. [2002, 2003] carry out this
operation classically, by direct space-time convolution
of the free space Green’s function with all currents on
the periodic structure. To be more specific, to evaluate
the fields due to the past current, there is a double
summation over the periodic cells. When the fields are
observed on the mothercell, with the marching of time,
the region around the mothercell in which the sources
have to be take into account becomes larger and larger.
This renders the solvers of Chen et al. [2002, 2003]
computationally expensive.
[4] Here, an improved MOT-based TDIE solver for

periodic structures is proposed. Whereas spectral meth-
ods for computing frequency domain Green’s functions
(Ewald representations [Jordan et al., 1986], off-plane
plane wave sums [Jorgenson and Mittra, 1991], etc.)
are commonly used in periodic structure frequency
domain integral equation solvers, the proposed solver
is the first to do so within periodic structure TDIE
simulators. The solver relies on a time domain Floquet
wave (TDFW) representation of fields produced by
periodic transient current constellations [Capolino and
Felsen, 2002, 2003; Felsen and Capolino, 2000]. Spe-
cifically, the proposed solver exploits the fact that
TDFW representations of fields produced by quiescent
and band-limited sources only involve ‘‘propagating
modes’’ (this fact, to the authors’ knowledge demon-
strated here for the first time for time domain signals,
constitutes another important contribution of this pa-
per). Hence TDFWs provide a natural, compact, and
computationally efficient means of representing fields
produced by band-limited sources residing on practical
periodic structures that only support a finite and small
number of propagating waves within their operating
band, that is, structures with unit cells of linear dimen-
sions on the order of the wavelength at the highest
frequency in the incident field. Because the TDFW
propagator is not time-local, costly time domain con-
volutions are carried out using a blocked-FFT scheme
(first introduced in [Harrier et al., 1985] for the
purpose of solving one dimensional Volterra integral
equations, and interpreted/tuned here within the pro-
posed TDFW-TDIE framework). It will be shown that
this decomposition and subsequent TDFW representa-
tion of the fields provides a means for computing fields
produced by ‘‘past’’ currents in a manner consistent
with the classical MOT-TDIE framework that is espe-
cially effective when the structure under study is
discretely planar, viz. comprising a finite set of metal-
lized layers. The computational cost of the new solver
is only a fraction of that of periodic structure TDIE
solvers not using TDFW concepts.

[5] This paper is organized as follows. Section 2
outlines the proposed TDFW/FFT-based scheme for
rapidly computing transient fields produced by peri-
odic current arrangements and its incorporation into
an MOT-based TDIE solver for analyzing scattering
from discretely planar structures. Section 3 presents
numerical results that demonstrate the capability and
accuracy of the proposed method. Section 4 relates
our conclusions and avenues for future research.

2. Formulation

[6] Below, following a high-level description of the
proposed solver, the periodic structure TDIE solver and
TDFW concepts described by Chen et al. [2003] and
Capolino and Felsen [2003] are reviewed. Next, the
implementation of the proposed algorithm is outlined
with emphasis placed on the FFT-based scheme for
accelerating temporal convolutions involving TDFW
kernels.

2.1. Outline of the Proposed Solver

[7] The proposed solver derives from a periodic struc-
ture TDIE solver developed earlier by several of the
authors. The solver is accelerated by using a TDFW
expansion of scattered fields and blocked-FFT methods.
Below, these solver aspects are discussed in turn.
2.1.1. Periodic Structure TDIE Solver
[8] The periodic structure TDIE solver that forms the

basis of the proposed simulator is almost identical to
that of Chen et al. [2003]. When a periodic structure is
excited by a transient plane wave, currents and fields in
different cells are related to one another by a simple
temporal shift. The TDIE solver considers as unknown
the currents in one cell (the ‘‘mothercell’’) and imposes
boundary conditions on the electric field throughout the
same cell. To this end, the solver computes the fields
generated by all currents on the structure by spatially
convolving the mothercell currents with the free space
periodic Green’s function. Besides being very costly—
this procedure amounts to the time domain equivalent
of attempting to sum the frequency domain Green’s
function directly in the spatial domain—several diffi-
culties are encountered when discretizing the TDIE
using classical MOT methods, viz. schemes that permit
the iterative reconstruction of the currents one time step
after another. Chief among these difficulties is the fact
that the resulting MOT equations are noncausal. This
difficulty however almost entirely can be circumvented
by expanding the mothercell currents in a set of time-
shifted basis functions that fire in a synchronized
fashion with the time of arrival of the incident plane
wave. The (few) remaining noncausal terms in the
resulting MOT system are then eliminated by express-
ing ‘‘future’’ currents in terms of past ones through a
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bootstrapped band-limited extrapolation procedure.
These manipulations notwithstanding, the physical in-
terpretation of the resulting MOT equations barely
changes: (almost all) ‘‘past MOT matrices’’ represent
fields produced by periodic current constellations active
at different points in time. To avoid their costly mul-
tiplication by current expansion vectors, a new repre-
sentation of these fields is called for, however. The
periodic structure TDIE solver is discussed in section
2.2. The reader is encouraged to study [Chen et al.,
2003] as it elucidates and justifies the many parameter
choices relating to the current expansion and extrapo-
lation introduced there.
2.1.2. TDFW Expansion of Scattered Fields
[9] The proposed solver relies on a time domain

Floquet wave (TDFW) representation of fields pro-
duced by periodic transient current constellations
[Capolino and Felsen, 2003]. TDFWs are transient
fields with fixed in-plane phase progression. While
an infinite number of them is required to represent
the fields produced by periodic current constellations
for all space and time, only so-called propagating
modes are required when the sources are quiescent
and band limited. Within the proposed solver this fact
is exploited by splitting fields produced by periodic
transient current constellations into two components.
First, there are the instantaneous, direct fields produced
by currents in a mothercell, as well as its immediate
neighbors through the action of the free space (non-
periodic) Green’s function; these fields are evaluated
classically for two reasons: their sources are not
quiescent at their time of arrival and they act in the
MOT system through matrices that are influenced by
the extrapolation procedure. Second, there are the
fields produced by sources that do not reside in the
immediate vicinity of the mothercell: they are evalu-
ated following their expansion in TDFWs. Because our
focus here is on periodic structures that only support a
finite and small number of propagating waves within
their operating band, that is, structures with unit cells
of linear dimensions on the order of the wavelength at
the highest frequency in the incident field, TDFWs
provide a very efficient means for representing these
fields. The TDFW representation of fields scattered
from periodic structures suitable within a TDIE-MOT
context is discussed in section 2.3.
2.1.3. Blocked-FFT Acceleration of Convolutions
Involving TDFW Kernels
[10] TDFWs do not constitute standard nondisper-

sive plane waves. Indeed, their fixed transverse be-
havior along with their broadband character renders
them dispersive in the direction perpendicular to the
plane of periodicity. As a result, TDFW propagators
are not time-local and costly time domain convolu-
tions are required to track the temporal evolution of

the TDFW amplitudes. Fortunately, if all sources and
observation points reside in the same plane (or a finite
set of distinct planes), then these convolutions can be
carried out using blocked-FFT schemes [Harrier et al.,
1985; Yilmaz et al., 2002]. This topic is discussed in
section 2.4.

2.2. Periodic Structure TDIE Solver

[11] Consider a periodic structure consisting of iden-
tical freestanding PEC elements Smn, m, n = �1, 1
residing in rectangular cells of dimensions Dx by Dy

that are anchored to transverse position vectors Rmn
c =

mDx x̂ + nDy ŷ and periodically arranged along x and y
(Figure 1). Element S00 is said to reside in the mother-
cell. In what follows, it is assumed that the Smn
comprise connected or disjoint but planar patches
residing in the x � y plane. Later, it will be argued
that the proposed scheme easily is generalized to
accommodate the analysis of scattering from discretely
planar periodic structures comprised planar PEC ele-
ments confined to a finite set of parallel screens; other
applications of the proposed scheme are highlighted in
the conclusion section. The structure is illuminated by a
band-limited plane wave pulse propagating along direc-
tion k̂inc = �sin qinc cos fincx̂ � sin qinc sin fincŷ � cos
qincẑ with electric field Einc (r, t, p̂inc) = p̂inc f(t � k̂inc �
r/c) where c and p̂inc denote the free space speed of
light and the incident field’s polarization, respectively.
This incident field’s temporal signature f(t) is assumed
band limited to angular frequency wmax and vanishingly
small throughout the mothercell for t < 0. In addition, it

Figure 1. Top view of a doubly periodic structure
comprising identical PEC elements.
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is assumed that both Dx and Dy are of O(lmin), where
lmin is the free space wavelength at wmax. This assump-
tion guarantees that only a fixed number of Floquet
modes propagate away from the structure irrespective of
the geometric features of S00. Finally, to facilitate the
description of the proposed FFT-accelerated field eval-
uator, it is assumed that the origin of the Cartesian
coordinate system resides on one of the four corners of
the mother cell such that k̂inc � R � 0 for all R = xx̂ + yŷ
on S00.
[12] Let Jmn(R, t) = J00(R � Rmn

c , t � k̂inc � Rmnc /c)
denote the electric current density induced on Smn in
response to excitation of the periodic structure by
Einc(r, t, p̂inc). The current

Pm;n¼þ1
m;n¼�1 Jmn(R, t) gener-

ates the scattered field Esca(r, t). The total electric field
comprises the sum of the incident and scattered fields.
An electric field TDIE for J00(R, t) is constructed by
forcing the temporal derivative of the total electric field
tangential to S00 to vanish:

ẑ� ẑ� @

@t
Einc R; t; p̂inc

� �
¼ �ẑ� ẑ� @

@t
Esca R; tð Þ J00f g

R 2 S00: ð1Þ

The time derivative of the scattered field is expressed as

� ẑ� ẑ� @

@t
Esca R; tð Þ J00f g

¼ � m0
4p

@2

@t2

Z
S00

ds0J00 R0; tð Þ * G R; R0; tð Þ

þ 1

4pe0
rr

Z
S00

ds0 rR0 � J00 R0; tð Þ
� �

* G R; R0; tð Þ:

ð2Þ

In (2), rr = (@/@x)x̂ + (@/@y)ŷ, the Green’s function is

G R; R0; tð Þ

¼
Xm¼þ1

m¼�1

Xn¼þ1

n¼�1

d t � k̂
inc � Rcmn=c� R0 þ Rcmn � R

�� ��=c	 

R0 þ Rcmn � R
�� �� ;

ð3Þ

where the asterisk denotes temporal convolution and m0
and e0 are the free space permeability and permittivity,
respectively.
[13] To solve (1) using an MOT procedure, S00 is

approximated by triangular facets and J00(R, t) is expanded
as

J00 R; tð Þ ¼
XNt

k¼0

XNs

l¼1

Ik;lf l Rð ÞTk;l tð Þ: ð4Þ

In the above equation, Ik,l is the unknown expansion
coefficient associated with space-time basis function
fl(R)Tk,l(t). In our implementation, the fl(R), l = 1, 2,. . ., Ns

are Rao-Wilton-Glisson functions [Rao et al., 1982]; in
other words, one zeroth-order divergence-conforming
basis function is associated with each interior or cell
boundary traversing edge in the S00 mesh. The number of
spatial degrees of freedom, Ns, is chosen to ensure
adequate spatial resolution of S00 and sampling of the
current—lengths of edges in the discretized S00 should be
no larger than say lmin/10. The Tk,l(t) are time-shifted
approximate prolate spheroidal wave functions
(APSWFs) parameterized as Tk,l(t) = P(t � tk � tl

d, Tp,
w0,W). Here tk = kDt and Dt is the time step size; the latter,
and consequently Nt, are chosen such that representation
(4) oversamples (from the Nyquist rate) all temporal
waveforms by a factor between 5 and 10. The basis
function dependent time shift imposed on the lth spatial
basis function is tl

d = k̂inc � Rlc/c where Rlc is the center of
the edge defining fl(R); these shifts are introduced to
mitigate the appearance of noncausal terms appearing in
the MOT equations that result upon discretizing (2) when
the structure under analysis is obliquely excited (the
procedure can be thought of as the time domain
equivalent of frequency domain phase extraction schemes
and also is used when testing the discretized integral
equation—see below and Chen et al. [2003]). The
APSWFs, originally proposed by Knab [1979], are

P t; Tp;w0;W
� �

¼ w0

p
sinc w0tð Þ
sinh WTp

� �
sin WTp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t
Tp

	 
2
�1

r !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t
Tp

	 
2
�1

r ;

ð5Þ

wherew0 = 0.5(ws +wmax),W = 0.5(ws�wmax),ws =p/Dt >
wmax, and Tp = NproDt. The APSWFs are used as the
temporal basis functions because of their interpolatory
properties: they are strictly band limited to ws and virtually
time limited as they become vanishingly small for jtj >
(Npro + 1

2
)Dt for large enough time bandwidth products

WTp. As a result, each temporal basis function only covers
(2Npro + 1) time steps; typically, to ensure accuracies in
line with those associated with the above discussed spatial
representations, Npro is chosen between 3 and 5 (this and
other parameters along with their typical values are
collected in Table 1).
[14] Substituting (4) into (2) and testing the resulting

equation using each of the fl(R), l = 1, 2, . . .,Ns, at time ti +
tl
d, i = 1,. . ., Nt, results in the following matrix equation:

X0
k¼�Nadv

ZkIi�k ¼ Vi �
Xi�1

k¼1

ZkIi�k : ð6Þ
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Here Nadv denotes the number of future/advanced current
vectors that appear in the MOT system because of the
structure’s periodicity and use of the APSWFs; it was
shown byChen et al. [2003] thatNadv is independent of the
mothercell dimensions (in practice, Nadv always is less
than 3). The Ii andVi are vectors of lengthNs, [Ii]l = Ii,l, i =
1, . . ., Nt,

Vi½ �l¼ �
Z
S00

ds f l rð Þ � @

@t
Einc R; t; p̂inc

� �� �
t¼tiþtd

l

; ð7Þ

andZk, k =�Nadv,�Nadv + 1,. . ., 0,. . .,Nt� 1 arematrices
of dimensions Ns � Ns with elements

Zk½ �ll0¼ � m0
4p

h @2

@t2

Z
S00

ds f l Rð Þ �
Z
S00

ds0 f l0 R
0ð ÞT0;l0 tð Þ

* G R; R0; tð Þ � 1

4pe0

Z
S00

ds rr � f l Rð Þ
� �

�
Z
S00

ds0 rR0 � f l0 R0ð Þ
� �

T0;l0 tð Þ * G R; R0; tð Þ�t¼tkþtd
l
:

ð8Þ
Equation (6) cannot be solved by a standard MOT
procedure because at time step i future coefficients are
involved. This difficulty is resolved by extrapolating these
future coefficients through a band-limited extrapolator
[see Chen et al., 2003]. In essence, the future current
vectors (approximately) can be expressed in terms of
present and past current vectors as

Ii�k ¼
XNext

q¼0

Ak
qIi�q 8 k ¼ �Nadv; . . . ;�1; ð9Þ

where Next denotes the number of past current samples
used in the extrapolation and the Aq

k are extrapolation
coefficients for the kth future current vector associated
with the qth past current vector (all relative to the present
time step, i); these coefficients can be obtained using the
prolate-based extrapolation scheme detailed by Cadzow

[1979] and Slepian and Pollak [1961]. Upon inserting (9)
into (6), the latter is recast as

~Z0Ii ¼ Vi �
Xi�1

k¼1

~ZkIi�k ; ð10Þ

with ~Zq = Zq +
P�1

k¼�Nadv
Aq
k Zk for q = 0,. . ., Next, and

~Zq = Zq for q > Next. Often, just like Npro, Next is chosen
in between 3 and 5 [Chen et al., 2003]. In what follows,
however, it is assumed that Next < Npro, which implies that
matrices ~Zq for q > Npro are unaffected by the
extrapolation. In other words, past space-time basis
functions that are quiescent at time i enter the MOT
system through matrices ~Zi = Zi that describe fields
produced by periodic constellations of past currents. This
fact will prove to be important in the construction of a
TDFW-based scheme. Equation (10) can be solved by a
standard MOT procedure to obtain current vectors for all
time steps. Since ~Z0 is not diagonal, a nonstationary
iterative solver such as (TF)QMR [Saad, 1996] is used.
[15] The dominant computational cost in the above

scheme arises from the need to repeatedly evaluate the
right-hand side (RHS) of (10) for all time steps and
scales as O(Ns

2Nt
3). Indeed, the RHS of (10) is a measure

of the field at Ns observers on S00, produced by all
sources in the mothercell plus those in surrounding cells
whose field at a given time step has reached the mother-
cell. Obviously, the number of such sources grows larger
with time step and Nt; it is easily shown that, at a given
time step in the analysis, there are on average a total of
O(NsNt

2) of them. Evaluating their field at O(Ns) observ-
ers in the mothercell thus costs O(Ns

2Nt
2) CPU resources

for one time step, and O(Ns
2Nt

3) for all time steps.

2.3. TDFW Scheme

[16] This subsection details a TDFW-based scheme to
rapidly evaluate the sum on the RHS of (10). The scheme
hinges on an expansion of the periodic time domain

Table 1. Description of the Parameters in the Paper

Parameter Function Typical Value

Ns Number of spatial degrees of freedom
Nt Number of temporal degrees of freedom
Npro APSWF half width in time steps 3–5
Nadv Number of advanced currents in noncausal MOT system (6) 0–3
Next Number of past current coefficients used to extrapolate advanced

ones to convert noncausal MOT system (6) to causal MOT system (10)
3–5

Ndel Number of past current coefficients whose field is evaluated
classically, without relying on TDFW decomposition

5–7

Nexc Maximum length of all spatial basis functions in time steps
measured by the incident field

1–2

Np2 Half width of the modified APSWFs in time steps 5–8
x* One of the two parameters to determine Nmod, the number of

‘‘propagating modes’’
1.1–1.3

J One of the two parameters to determine Nmod, the number of
‘‘propagating modes’’

1–4

RS4007 CHEN ET AL.: FLOQUET WAVE ANALYSIS OF TRANSIENT SCATTERING

5 of 21

RS4007



Green’s function in TDFWs [Capolino and Felsen, 2002,
2003; Felsen and Capolino, 2000]. As TDFWs represent
efficiently only fields produced by quiescent band-limited
sources—see below—the time signature of the source
J00(R, t) (available at time step i) is decomposed as
(Figure 2)

XNs

l¼1

f l Rð Þ
Xi�1

k¼i�Ndelþ1

Ik;lTk;l tð Þ þ
XNs

l¼1

f l Rð Þ
Xi�Ndel

k¼1

Ik;lTk;l tð Þ:

ð11Þ

At time step i, the known signature, that is, the
values prior to time step i, is decomposed into two
components, instantaneous sources (dashed line in
Figure 2, the first term of (11)) and past sources
(solid line in Figure 2, the second term in (11)), in
temporal dimension according to the delay index Ndel.
Note the width of the instantaneous sources is fixed
from time step i to time step i + 1. Meanwhile, the
width of the past sources is increased by a time step
size. The parameter Ndel in (11) is chosen to satisfy
Ndel > Npro + Nexc, with Nexc a small integer defined
as

Nexc ¼ max
1�l�Ns

k̂
inc � Rcl � R

any
l

� ���� ���
cDt

2
666

3
777; ð12Þ

where d�e selects the smallest integer larger than the
argument and R

any
l denotes an arbitrary point in the

support of fl(R). Note that Npro is the half width of
the temporal basis functions Tk,l(t), and Nexc measures
the maximum size of all the Rao-Wilton-Glisson
functions with respect to the incident angle. As a
result, the choice of Ndel > Npro + Nexc guarantees
that the past sources are in essence quiescent at time
step i for all the possible observers. Because Next < Npro <
Ndel, it also implies that all past sources enter the MOT
update equations through the original matrices Zi,
unaffected by the extrapolation procedure. In other words,
evaluation of the contribution of the past sources to the
RHS of (10) requires the computation of the fields they
produced, and nothing more. Note that the choice of Tk,l(t)
guarantees that both the instantaneous and past sources are
band limited in time. It is noted that Ndel is a constant of
O(1) that, just likeNpro,Nadv, andNext, does not depend on
Ns orNt. The reason for the presence of the termNexc in the
above inequality for Ndel is subtle and will become clear
when discussing the aforementioned blocked FFT accel-
erator (section 2.4).
[17] The above definition of instantaneous and past

sources prompts a similar decomposition of the sum on
the RHS of (10) as

Xi�1

k¼1

~ZkIi�k ¼
XNdel�1

k¼1

~ZkIi�k þ
Xi�1

k¼Ndel

~ZkIi�k : ð13Þ

Figure 2. Illustration of the split of the source time signature in the TDFW scheme.
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The first and second terms on the RHS of (13) define
the instantaneous and delayed fields at time step i,
respectively. Instantaneous fields, viz. fields produced
by instantaneous currents, can be computed classi-
cally, through multiplication of the sparse matrices ~Zk,
k = 1,. . ., Ndel � 1 with the current vectors Ii�k, k =
1,. . ., Ndel � 1. Because Ndel is of O(1) and the
linear cell dimensions are of O(lmin), this operation
requires O(Ns

2) operations per time step and thus no
more than O(Ns

2Nt) for the entire simulation. Delayed
fields, instead, are computed by casting them in terms
of TDFWs. To elucidate the introduction of TDFWs
into the MOT framework, consider the following

expressions for
Xi�1

k¼Ndel

ZkIi�k

h i
l, viz. the lth com-

ponent of the delayed field vector at time step i:

Xi�1

k¼Ndel

ZkIi�k

" #
l

¼
XNs

l0¼1

� m0
4p

@2

@t2

Z
S00

ds f l Rð Þ
�

�
Z
S00

ds0f l0 R
0ð Þ
Xi�Ndel

k¼1

Ik;l0Tk;l0 tð Þ

* G R; R0; tð Þ � 1

4pe0

Z
S00

ds rR � f l Rð Þ
� �

�
Z
S00

ds0 � rR0 � f l0 R0ð Þ
� � Xi�Ndel

k¼1

Ik;l0Tk;l0 tð Þ

* G R; R0; tð Þ�t¼tiþtd
l
: ð14Þ

This equation follows directly from (8). Note that
none of the integrands in (14) possess spatial
singularities because they model couplings with
(integer) delays greater than Ndel or equivalently,
between spatially separated sources and observers.
[18] Capolino and Felsen [2003] show that the

periodic time domain Green’s function can be expanded
in TDFWs as

G R; R0; tð Þ ¼
X1

p¼�1

X1
q¼�1

AFW
pq R; R0; tð Þ

¼
X1
p¼0

X1
q¼�1

bpq<e AFW
pq R; R0; tð Þ

h i
; ð15Þ

where bpq = 1 for p = 0 and bpq = 2 for p 6¼ 0, <e[�]
selects the real part of its argument,

AFW
pq R; R0; tð Þ ¼ ce�jApq� R;�R0ð Þ

2DxDy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p ej�wpqtJ0 ~wpqt
� �

U tð Þ;

ð16Þ

j =
ffiffiffiffiffiffiffi
�1

p
, J0(�) denotes the zeroth-order Bessel function,

U(�) is the Heaviside step function,

h ¼ sin qinc

Apq ¼ 2pp=Dxx̂þ 2pq=Dyŷ

A2
pq ¼ 2pp=Dxð Þ2þ 2pq=Dy

� �2
û1 ¼ cosfincx̂þ sinfincŷ

�wpq ¼ hc
1�h2 û1 � Apq

~wpq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�w2
pq þ A2

pqc
2= 1� h2ð Þ

q
t ¼ t � t0;

ð17Þ

and t0 = h û1 � (R � R
0)/c. The second equality in (15) is

due to the fact that Apq
FW(R, R0, t) and A(�p)(�q)

FW (R, R0, t) are
complex conjugates of one another. Before using the
above TDFW expansion of the Green’s function in (14),
two important observations are in order. First, although
the summation in (15) comprises an infinite number of
terms, upon convolution of the Green’s function with the
band-limited and essentially time-limited APSWF, only
so-called propagating modes should be retained provided
that the field is observed no earlier than t0 + JDt seconds
after the APSWF (essentially) vanishes with J > 1 a
dimensionless parameter. The propagating modes are
those with modal indices satisfying min (j~wpq + �wpqj,
j~wpq� �wpqj)/ws< x*, – recall thatws is the bandwidth of the
APSWF, with x* > 1 another dimensionless parameter. In
other words, the convolution of the APSWF with the
nonpropagating modes essentially vanishes for times t
starting t0 + JDt seconds after the APSWF elapses. This
observation is demonstrated in Appendix A, which
demonstrates the fast convergence of the truncated TDFW
series with increasing J and x*; typical values of J and x*
in line with accuracies of spatial current expansions are 3
and 1.2, respectively. It is also shown in Appendix A that
the total number of propagating TDFWs retained in the
expansion, denoted as Nmod, is proportional to the area of
the mothercell. Because the linear cell dimensions are
of O(lmin), Nmod is of O(1), that is, independent of Ns

and Nt. Second, the Floquet wave in (16) can be
expressed as

AFW
pq R; R0; tð Þ ¼ e�jApq�Rd t � hû1 � R=c½ �

* AFW
pq 0; 0; tð Þ

* ejApq�R0d t þ hû1 � R0=c½ �: ð18Þ

Artificial as this decomposition might seem at present,
it has important computational consequences as
demonstrated next.
[19] Indeed, use of (15)–(18) and the realization that

only propagating modes are needed in the TDFW ex-
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pansion of the Green’s operator for the signals consid-
ered in (14) yields the following expression for the
delayed fields at time step i produced by all past sources
and tested by fl(R), l = 1,. . ., Ns:

Xi�1

k¼Ndel

ZkIi�k

" #
l

¼ � m0
4p

X
p;qð Þ is propagatingmodef g

bpq

� <e
(Z

S00

ds f l Rð Þ � e�jApq�Rd t � hû1 � R
c

� �

* AFW
pq 0; 0; tð Þ

*
XNs

l0¼1

Z
S00

ds0ejApq�R0d t þ hû1 � R0
c

� �

*
Xi�Ndel

k¼1

f l0 R
0ð ÞIk;l0

d2

dt2
Tk;l0 tð Þ

)
t¼tiþtd

l

� 1

4pe0

X
p;qð Þ is propagatingmodef g

bpq

� <e
(Z

S00

ds rr � f l Rð Þ
� �

e�jApq�Rd t � hû1 � R
c

� �

* AFW
pq 0; 0; tð Þ

*
XNs

l0¼1

Z
S00

ds0ejApq�R0d t þ hû1 � R0
c

� �

*
Xi�Ndel

k¼1

rR0 � f l0 R0ð Þ
� �

Ik;l0Tk;l0 tð Þ
)

t¼tiþtd
l

: ð19Þ

This equation is the crux of the proposed TDFW
scheme for evaluating delayed fields produced by past
sources and its interpretation within a computational
framework is elucidated next. First, note that the first
and second terms on the RHS of (19) describe vector
and scalar potential contributions to the delayed field,
respectively. The evaluation of each term in (19)
comprises three temporal convolutions. As for the
vector potential term, these three convolutions arePNs

l0¼1

R
S00

ds0ejApq�R0d t þ hû1�R0
c

h i
*
Pi�Ndel

k¼1

f l0 R
0ð ÞIk;l0 d

dt2
Tk;l0 ( t )

(convolution 1), Apq
FW(0, 0, t) * (convolution 2), andR

S00
ds fl(R)e

�jApq�R d t � hû1 � r
c

� �
* (convolution 3),

where the asterisk indicates temporal convolution. The
three convolutions for the scalar potential term can be
similarly identified. These convolutions are carried out
on a time step by time step basis, resulting in the

three-stage scheme for evaluating
Xi�1

k¼Ndel

ZkIi�k

h i
l

described next.
[20] 1. Project the sources temporal signatures onto

‘‘source rays’’ (Figure 3a). Vector and scalar source rays
Spq,i
A (t) and Spq,i

f (t) for TDFW mode (p, q) and time step i
are defined as

SApq;i tð Þ ¼
XNs

l0¼1

Z
S00

ds0ejApq�R0d t þ hû1 � R0
c

� �

* f l0 R
0ð ÞIi�Ndel ;l0

d2

dt2
Ti�Ndel ;l0 tð Þ

ð20Þ
S
f
pq;i tð Þ ¼

XNs

l0¼1

Z
S00

ds0ejApq�R0d t þ hû1 � R0
c

� �

* rR0 � f l0 R0ð Þ
� �

Ii�Ndel ;l0Ti�Ndel ;l0 tð Þ:

Vector and scalar source rays Spq
A (t) and Spq

f (t) for

TDFW mode (p, q) are defined as Spq
A (t) =

X
i
Spq,i
A (t)

and Spq
f (t) =

X
i
Spq,i
f (t), respectively. As seen from

(20), vector and scalar source rays are constructed by
carrying out convolution 1 in (19) between source
signals residing at spatial locations R0 and delay operators
d[t + h û1 � R0/c]. In Figure 3a, the cross section of the
mother cell S00 is shown for illustration. The top plots of
Figure 3a depict the time signatures of the scalar source
signals at points Rc

l0
1
and Rc

l0
2
at time step i. The bottomplot of

Figure 3a shows the formation of source ray Spq,i
f (t) via

projecting all the scalar sources onto the point O = (x = 0,
y = 0, z = 0) along the direction of k̂inc. Note that the
scalar source ray Spq,i

f (t) is a complex quantity, although
it is drawn as a real-valued function in Figure 3a.
[21] 2. Construct ‘‘field rays’’ (Figure 3b). Vector and

scalar field rays Fpq,i
A (t) and Fpq,i

f (t) for TDFW mode (p,
q) and time step i are defined as

FA
pq;i tð Þ ¼ AFW

pq 0; 0; tð Þ * SApq;i tð Þ

F
f
pq;i tð Þ ¼ AFW

pq 0; 0; tð Þ * S
f
pq;i tð Þ:

ð21Þ

Vector and scalar field rays Fpq
A (t) and Fpq

f (t) for TDFW
mode (p, q) are defined as

FA
pq tð Þ ¼

Pt=Dtb c

i¼1

FA
pq;i tð Þ

Ff
pq tð Þ ¼

Pt=Dtb c

i¼1

F
f
pq;i tð Þ;

ð22Þ

where b�c selects the largest integer smaller than the
argument. Field rays represent the time signature of the
TDFW-decomposed delayed field observed at the spatial
origin. In (22), the upper limit in the summation over i is
bt/Dtc, because Spq,bt/DtcA (t)/Spq,bt/Dtc

f (t) is the last available
vector/scalar source ray at time t.
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[22] 3. Project the ‘‘field rays’’ onto the observers
(Figure 3c):

Xi�1

k¼Ndel

ZkIi�k

" #
l

¼� m0
4p

X
p;qð Þ is propagatingmodef g

bpq

� <e
(Z

S00

dsf l Rð Þ � e�jApq�Rd t � hû1 � R
c

� �

* FA
pq tð Þ

)
t¼tiþtd

l

� 1

4pe0

�
X

p;qð Þ is propagatingmodef g
bpq

� <e
(Z

S00

ds rr � f l Rð Þ
� �

e�jApq�R

� d t � hû1 � R
c

� �
* Ff

pq tð Þ
)

t¼tiþtd
l

: ð23Þ

In Figure 3c, the time signatures of the scalar field ray
Fpq
f (t) observed at the points Rcl1 and Rcl2 are shown in the

upper right and left insets, respectively. These time
signatures are obtained by projecting the scalar field rays
observed at point O onto the observation points along the
direction of k̂inc.
[23] Next, the computational implications and com-

plexity of the above three-stage decomposition and
scheme are elucidated. Before doing so, however, it is
useful to call attention to similarities between the pro-
posed method and the plane wave time domain algorithm
[Ergin et al., 1998] or fast multipole methods in general.
Indeed, like the latter, the proposed field evaluator
realizes computational savings by not having each source
and observer communicate directly with one another;
instead, they connect through a set of uncoupled though
common carriers, TDFWs in the present scheme.
Information contained in the delayed fields produced
by the O(Ns) sources is compressed/aggregated (step 1)
into a data stream of Nmod TDFWs, before being
propagated (step 2) and uncompressed/disaggregated

Figure 3a. Pictorial description of the first stage in a three-stage scheme.
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(step 3) to obtain O(Ns) observer fields. In view of the
properties of the temporal basis functions used — recall
that they are in essence time limited — all projections
inherent in steps 1 and 3 are strictly local and therefore
the computational costs of (a single of) these steps scales
linearly in Ns and Nmod and is independent of Nt; because
steps 1 and 3 are carried out for all Nt time steps, their
total cost for the duration of the analysis thus scales as
O(NmodNtNs). The cost of step 2 scales linearly in Nmod

and is independent of Ns. Because step 2 requires a costly
temporal convolution of source rays with the nonlocal
temporal propagator Apq

FW(0, 0, t), its cost scales as
O(NmodNt

2) if the convolution is evaluated classically.
Fortunately, the propagator Apq

FW(0, 0, t) is invariant with
respect to temporal shifts, thereby allowing the above
convolutions to be evaluated using blocked FFTs, as
described in the next paragraph, at a cost of O(Nt log

2

Nt); the computational cost of executing step 2 for all
time steps thus scales as O(Nmod Nt log

2 Nt). The total
cost of the proposed scheme therefore scales as O(Ns

2Nt +
NsNmodNt + NmodNt log

2 Nt) with the first, second, and
third terms in this estimate stemming from the evaluation
of the instantaneous fields, steps 1 and 3, and step 2 of
the delayed field evaluation, respectively. Because the
above assumptions guarantee that Nmod is of O(1), the
scheme’s cost essentially would scale linearly in both Ns

and Nt, were it not for the cost of evaluating
instantaneous fields. Fortunately, if Ns becomes large—

this means under the current assumptions that the
mothercell would be packed with many spatial un-
knowns to resolve fine geometric features of the scatterer
(an unlikely scenario)—then this cost can be reduced to
O(NsNt log

2 Nt) by using a low-frequency plane wave
time domain algorithm [Aygün et al., 2000] or time
domain adaptive integral method [Yilmaz et al., 2003].
This last option was not exercised in our current
implementation, as our focus was on relatively simple
mothercells. Also, note that the case of an electromag-
netically large unit mothercell, viz. one supporting many
propagating modes that in number might scale as Ns,
remains problematic. Although even in this scenario the
proposed solver outperforms the classical solvers Chen et
al. [2003], it remains prohibitively expensive. The
situation is no different for frequency domain integral
equation-based schemes for analyzing scattering from
periodic structures: to the authors’ knowledge, at present,
no fast solver for such structures exists if the number of
unknowns grows proportionally with the number of
propagating modes. The usefulness of such a solver is,
however, even more questionable as that of one capable
of analyzing highly resolved mothercells.

2.4. Blocked FFT-Based Evaluation of the
Temporal Convolutions

[24] To describe a cost-effective FFT-based scheme for
evaluating temporal convolutions requisite in step 2 of the

Figure 3b. Pictorial description of the second stage in a three-stage scheme. The scalar field
ray Fpq,i

� (t) is formed via convolving the scalar source ray Spq,i
� (t) with the TDFW operator

Apq
FW(0, 0, t).
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above scheme, a discussion of the spectral properties and
representation of source and field rays is in order.
Equation (4) expands currents in terms of essentially
time-limited APSWFs of bandwidth ws > wmax. These
APSWFs permit the discrete representation/interpolation
of the current with exponential accuracy. Equation (14)
casts source rays in terms of scaled and shifted such
APSWFs. It follows that the discrete representation/
exponentially accurate local interpolation and manipula-
tion of source rays requires the introduction of an even
more resolved interpolant, itself capable of representing
the original APSWFs used to expand the current. To this
end, source rays are sampled at time intervals Dt/2 and
represented in terms of a new set of modified APSWFs
P(t, ~Tp, ~w0, ~W) of bandwidth ŵs = 2ws, where ~Tp =Np2Dt/2,
~w0 = 1.5ws, and ~W = 0.5ws (Figure 4). Because field rays
constitute convolutions of source rays band limited to ws

with Apq
FW(0, 0, t), they are band limited to ws as well and

hence can be represented by the same new APSWFs.

[25] With this background, a description of the blocked
FFT scheme for evaluating temporal convolutions in-
volving TDFW kernels becomes possible. For the sake
of brevity, only the scheme’s application to the construc-
tion of the scalar field rays is described. With minor
modifications, the procedures outlined can be applied to
the construction of vector field rays as well. It follows
from the above discussion that samples of vector field
ray (p, q) can be expressed in terms of a discrete
convolution

Ff
pq i0Dt=2ð Þ ¼ AFW

pq 0; 0; tð Þ *
Xi0=2b c

i¼1

S
f
pq;i tð Þ

( )
t¼i0Dt=2

¼
Xi0
k 0¼1

Hpq i0 � k 0ð ÞDt=2½ �
Xi0=2b c

i¼1

S
f
pq;i k

0Dt=2ð Þ
" #

ð24Þ

Figure 3c. Pictorial description of the third stage in a three-stage scheme.
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for i0 = 1, . . ., 2Nt, where

Hpq tð Þ ¼ P t; ~Tp; ~w0; ~W
� �

* AFW
pq 0; 0; tð Þ

¼
Z þ1

�1
P t0; ~Tp; ~w0; ~W
� �

AFW
pq 0; 0; t � t0ð Þdt0: ð25Þ

The first equality in (24) follows from (21) and (22). The
second equality was obtained by expressing the source
rays in terms of their samples associated with APSWF
P(t, ~Tp, ~w0, ~W). The summation over k0 in (24) can be
split into two parts:

Ff
pq i0Dt=2ð Þ ¼

Xi0
k 0¼i0�Nshift

Hpq i0 � k 0ð ÞDt=2½ �

�
Xi0=2b c

i¼1

S
f
pq;i k

0Dt=2ð Þ
" #

þ
Xi0�Nshift�1

k 0¼1

Hpq i0 � k 0ð ÞDt=2½ �

�
Xi0=2b c

i¼1

S
f
pq;i k

0Dt=2ð Þ
" #

; ð26Þ

where Nshift = 2Ndel + 2Npro + 2Nexc. This choice for
Nshift guarantees that

Xi0=2b c

i¼1

S
f
pq;i k

0Dt=2ð Þ ¼ Sfpq k 0Dt=2ð Þ ð27Þ

when k0 � i0 � Nshift � 1. (Please refer to Figure 5 for the
temporal locations of the source rays at different time
steps.) The first summation on the right hand side of (26)
requires O(1) operations for each i0, and therefore a total
of O(Nt) operations for i0 = 1,. . ., 2Nt. The second
summation in the right-hand side of (26) can be
efficiently evaluated using the blocked FFT scheme as

detailed next. First, it is noted that this sum can be
expressed as a matrix-vector multiplication as

Xi0�Nshift�1

k 0¼1

Hpq i0 � k 0ð ÞDt=2½ �
Xi0=2b c

i¼1

S
f
pq;i k

0Dt=2ð Þ
" #

¼
Xi0�Nshift�1

k 0¼1

Hpq i0 � k 0ð ÞDt=2½ �Sfpq k 0Dt=2ð Þ

¼ �HpqBpq

ð28Þ

for i0 = 1,. . ., 2Nt, where the vector Bpq is of dimension
2Nt and contains elements

Bpq

� �
k 0
¼ Sfpq k 0Dt=2ð Þ; k 0 ¼ 1; . . . ; 2Nt; ð29Þ

while the �Hpq is a matrix of dimension 2Nt � 2Nt with
elements (Figure 6)

�Hpq

� �
i0k0
¼

Hpq i0 � k 0ð ÞDt=2½ � i0 � k 0 þ Nshift þ 1

0 i0 < k 0 þ Nshift þ 1

;

8><
>:
i0; k 0 ¼ 1; . . . ; 2Nt: ð30Þ

Samples of Hpq(t) can be calculated and stored before the
MOT process starts. Equation (28) should be evaluated
in the context of the MOT. This implies that, the
convolutional nature of (28) notwithstanding, a straight-
forward FFT cannot be used to evaluate the Fpq

f (i0Dt/2)
because source rays Spq,bi0/2c

f (t), Spq,bi0/2c+1
f (t), . . . are not

available yet. Therefore the convolution in (28) is
evaluated using so-called blocked FFTs (proposed by
Harrier et al. [1985], with the purpose of accelerating
temporal convolutions when solving Volterra integral
equations), that allow fields produced by currents to
become available for the purpose of advancing the MOT
process without requiring FFTs of full length 2Nt each
and every time step. To this end, as shown in Figure 6b,

Figure 4. Reconstruction of the scalar source ray Spq,i
� (t) using a set of modified APSWFs P(t, ~Tp, ~w0, ~W).
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the part of matrix �Hpq that is covered by nonzero
elements is subdivided into blocks, each of which can be
multiplied with the corresponding part of the vector Bpq

using a simple (nonblocked) FFT, within the framework
of MOT. The reader is referred to Yilmaz et al. [2002] for
the details of the scheme, and a proof of the fact that the
cost of the resulting scheme scales as O(Nt log

2 Nt).
[26] Although the above presentation focused on pla-

nar PEC structures, it is easily extended to the case of
discretely planar structures, viz. scatterers comprising a
finite number of (offset) planar screens. The required
modifications to the algorithm involve the construction
of TDFW representations and corresponding blocked
FFT accelerators for all pairs of interacting screens. This
renders the scheme impractical when the number of
screens becomes large, or, equivalently, when a contin-
uum of source and observation planes exists, as is the
case when studying scattering from substrate imprinted
structures.

3. Numerical Results

[27] This section presents several numerical results that
demonstrate the capabilities of the above-described Flo-
quet wave–based MOT (FW-MOT) solver. All results
obtained with the FW-MOT code were compared against
data from a periodic frequency domain method of
moments (P-MOM) code following Fourier transforma-
tion of the time domain currents/fields to the frequency
domain. All periodic structures considered below are
illuminated by an electric field Einc(r, t, p̂inc) = p̂incf(t �
k̂inc � r/c) with f(t) a modulated Gaussian pulse
parametrized as

f tð Þ ¼ cos 2pfc t � tp
� �� �

exp � t � tp
� �2

= 2s2
� �h i

; ð31Þ

Figure 5. Illustration of the scalar source rays at two different time steps. Note that the width of
the scalar source ray is fixed at different time steps.

Figure 6. (a) Illustration of the matrix �Hpq. (b) Sche-
matic diagram of the acceleration of the matrix vector
multiplication using a blocked FFT scheme.
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where fc is center frequency of the incident wave, s =
3/(2p fbw) and tp = 6s with fbw termed the ‘‘bandwidth’’
of the signal.
[28] The first structure analyzed comprises periodically

arranged rectangular slots in a PEC ground plane
(Figure 7). The side length of the square mothercell is
1 cm. The dimension of the slot is shown in the inset of
Figure 7. Current on the slotted ground plane is de-
scribed in terms of Ns = 1032 spatial unknowns. The
incident pulse has k̂inc = �ẑ, p̂inc = ŷ, fc = 15 GHz, and
fbw = 11 GHz. The time step is Dt = 2.564 ps and the
number of time steps Nt = 1024. The number of Floquet
modes Nmod of 69 is used for the FW-MOT scheme. The
power reflection coefficients [Chen et al., 2003] for the
structure obtained via the FW-MOT scheme and P-MOM
scheme are compared in Figure 7. Excellent agreement
between the two data sets is observed.
[29] Next, the structure analyzed comprises periodically

arranged Minkowski patches studied by Gianvittorio et
al. [2001]. This patch is designed to resonate in two
separate frequency bands. The side length of the square
mothercell is 30 cm. The dimension of the patch is
shown in the inset of Figure 8. Current on the patch is
discretized in terms of Ns = 2166 spatial unknowns. The
incident pulse has k̂inc = �ẑ, p̂inc = x̂, fc = 1.25 GHz, and
fbw = 1.25 GHz. The time step is Dt = 22.22 ps and the
number of time steps Nt = 2048. It is noted that in this
example the dimensions of the mothercell measured at

the sampling frequency ws = p/Dt are considerably larger
than those used in the last example (by approximately a
factor of ten). As a result, Nmod = 799 Floquet modes have
to be used in the FW-MOTsolver. The power transmission
coefficients [Chen et al., 2003] for the structure obtained
using the FW-MOT scheme and P-MOM scheme are
compared in Figure 8. As expected, two nulls correspond-
ing to the resonances of the big and small square patch
elements, respectively, are observed. The results
obtained using the FW-MOT and P-MOM codes agree
very well.
[30] The third structure analyzed comprises periodically

arranged four-legged elements which are loaded with
PEC patches and lumped elements [Epp, 1990]. The side
length of the square mothercell is 1 cm and the
dimension of the four-legged element is shown in the
inset of Figure 9. As shown in the inset of Figure 9, each
of the center cross’ two legs is connected to the PEC
patch through a parallel RLC resonant circuit with R =
1000 W, L = 1.3 nH, and C = 0.1 pF, which is marked as
a shaded square. Current on the four-legged element and
the PEC patch is discretized in terms of Ns = 383 spatial
unknowns. The incident pulse has k̂inc = �ẑ, p̂inc = x̂,
fc = 15 GHz, and fbw = 15 GHz. The time step is Dt =
2.22 ps and the number of time steps Nt = 1024. The
number of Floquet modes Nmod of 61 is used for the
FW-MOT scheme. The power reflection coefficients of
the structure obtained using the FW-MOT scheme and

Figure 7. Power reflection coefficients for a slot element at normal incident case (P-MOM,
asterisks; FW-MOT, diamonds).
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Figure 8. Power transmission coefficients for a fractal element at normal incident case (P-MOM,
diamonds; FW-MOT, solid line).

Figure 9. Power reflection coefficients for a four-legged element at normal incident case (P-MOM,
asterisks; FW-MOT, dashed line with diamonds).
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P-MOM scheme are compared in Figure 9. The two
nulls around 14GHz and 25GHz corresponding to the
resonances of the structures while the RLC resonant
circuits are removed or replaced with PEC patches
respectively are observed in the power reflection
coefficients plot. Again, TD-MOT and P-MOM results
are in good agreement.
[31] Finally, a two screen structure comprising period-

ically arranged identical square loop elements is ana-
lyzed. The side length of the square mothercell is 4 cm.
The dimensions of the square loop are defined in the
inset of Figure 10. Current on the dual square loop
elements is discretized in terms of Ns = 224 spatial
unknowns. The incident pulse has k̂inc = �ẑ, p̂inc = x̂,
fc = 3 GHz, and fbw = 3 GHz. The time step is Dt = 8.33 ps
and the number of time steps Nt = 1024. The number of
Floquet modes Nmod of 99 is used for the FW-MOT
scheme. The power transmission coefficients plot for the
structure obtained via the FW-MOT scheme and P-MOM
scheme are shown in Figure 10 and agree excellently.

4. Conclusions

[32] A TDFW accelerated MOT-based scheme perti-
nent to the analysis of transient scattering from doubly
periodic, discretely planar, PEC structures was presented.
The TDFW concepts were employed to efficiently rep-
resent the fields generated by periodic arrangements of
discretely planar source constellations. APSWFs were

chosen as temporal basis functions in the proposed solver
because of their interpolatory and spectral properties, and
the convolution of the TDFW kernel with the periodic
structure currents was accelerated using a blocked FFT
scheme. Even though application of the scheme is
restricted to discretely planar structures, it has many
applications, some of which were demonstrated in this
paper. The proposed scheme was validated through
comparison of scattering data for various periodic struc-
tures against frequency domain results. Current research
focuses on the use of this method in the construction of
hybrid time domain boundary integral—finite element
schemes for analyzing transient scattering from penetra-
ble periodic structures (in which the boundary integrals
are confined to two parallel interfaces and the present
scheme is directly applicable) and on developing a
Floquet wave–based solver that permits efficient means
for analyzing transient scattering from nonplanar doubly
periodic structures.

Appendix A: Truncation of the

TDFW Series

[33] This appendix demonstrates that, when the peri-
odic time domain Green’s function G(R, R

0, t) is
convolved with the (approximately) time- and (strictly)
band-limited APSWF P(t, Tp, w0, W), then only the ‘‘not
deeply evanescent TDFWs’’ significantly contribute to
the resulting field ‘‘shortly after P(t, Tp, w0, W)

Figure 10. Power transmission coefficients for a dual-screen square loop element at normal
incident case (P-MOM, asterisks; FW-MOT, solid line with diamonds).
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vanishes.’’ A more intuitive, though only qualitative,
demonstration was given by Capolino and Felsen [2003]
on the basis of the excitation of local instantaneous
frequencies of the various Apq

FW.
[34] Before firming up the above statement, some

preliminary comments are in order. (1) The TDFW
Apq
FW(R, R0, t) in (16) can be expressed as

AFW
pq R; R0; tð Þ ¼ �AFW

pq R; R0; tð ÞU t � t0ð Þ; ðA1Þ

where

�A
FW

pq R; R0; tð Þ ¼ gej�wpqtJ0 ~wpq t � t0ð Þ
� �

ðA2Þ

and g = ce�japq� R�R0ð Þ/2DxDy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
. Below, the con-

volution �Apq
FW(R, R0, t) * P(t, Tp, w0, W) will be studied

first; conclusion reached will be extended to Apq
FW(R, R0, t)

* P(t, Tp, w0, W) thereafter. (2) The Fourier transform of
�Apq
FW(R, R0, t) is (Figure A1) [Gradshteyn and Ryzhik,

1980]

F �AFW
pq R; R0; tð Þ

n o
¼
Z þ1

�1
�AFW
pq R; R0; tð Þe�jwtdt

¼
2gð Þe�jwt0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~w2
pq � w� �wpq

� �2q w 2 �~wpq þ �wpq; ~wpq þ �wpq

� �
0 elsewhere

:

8><
>:

The spectrum of �Apq
FW(R, R0, t) is nonzero only for w 2

(�~wpq + �wpq, ~wpq + �wpq); it follows from (17) that both
j�~wpq + �wpqj and j~wpq + �wpqj grow and that the spectrum

of �Apq
FW(R, R0, t) becomes increasingly smooth around w =

0 as jpj and/or jqj increase. Note however that (A3) is not
the spectrum of Apq

FW. (3) The Fourier transform of P(t,
Tp, w0, W) is nonzero only for w 2 (�ws, ws) with ws =
w0 + W (Figure A1); P(t, Tp, w0, W) itself is vanishingly
small outside the temporal interval (�Tp, Tp). (4) The

dimensionless parameters x
min
max
pq = min

max (j��wpq/ws + ~wpq/

wsj, j~wpq/ws + �wpq/wsj) measure the position of the spectra

of �Apq
FW(R, R0, t) and P(t, Tp, w0, W) relative to one another.

The parameter xpq
min is especially important. Modes (p, q)

with xpq
min > 1 are termed evanescent; for these modes P(t,

Tp, w0, W)’s spectral support is fully contained within that
of �Apq

FW(R, R0, t) —this situation is depicted in Figure A1.
Modes (p, q) with xpq

min < 1 are termed propagating; for
these modes P(t, Tp, w0, W)’s spectral support resides
partially outside that of �Apq

FW(R, R0, t). The discussion below
pertains only to evanescent modes.
[35] A partially computational demonstration of this

appendix’ opening statement based on the fact that the
spectra of TDFWs are increasingly smooth in the interval
w 2 (�ws, ws) for larger xpq

min, is presented next. Assume
that there exists a time-limited function B(t) with
spectrum that approaches that of �Apq

FW(R, R0, t) for w 2
(�ws, ws) and with energy not exceeding that of �Apq

FW(R,
R
0, t) restricted to the same interval by a fixed and small

multiplicative constant c1 (typically < 10):

F �AFW
pq R; R0; tð Þ

n o
� F B tð Þf g for w 2 �ws;wsð Þ

ðA4aÞ

k B tð Þ k =

Z ws

�ws

F �AFW
pq R; R0; tð Þ

n o��� ���2dw < c1: ðA4bÞ

The fact that P(t, Tp, w0, W) is band limited to (�ws, ws)
along with (A4a) ensure that

�AFW
pq R; R0; tð Þ * P t; Tp;w0;W

� �
� B tð Þ * P t; Tp;w0;W

� �
:

ðA5Þ

Equation (A5), along with the fact that P(t, Tp, w0, W)
is approximately time limited and (A4b) guarantee that
B(t) * P(t, Tp, w0, W) and �Apq

FW(R, R0, t) * P(t, Tp, w0, W) are

(A3)

Figure A1. Illustration of the spectra of P(t, Tp, w0, W) and �Apq
FW(R, R0, t).
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approximately time limited too – condition (35b) ensures
that out-of-band spectral components that arise upon time
limiting P(t, Tp, w0, W) to (�Tp, Tp) in a computational
setting do not destroy (A5). Next, it is shown that, for
modes with large enough xpq

min > 1, there exist B(t) for
which (A4a) holds to arbitrary accuracy. To this end,B(t) is

assumed of the form B(t) =
XN

n¼1
Bnd(t � tn); here the tn

are sampled uniformly in between �JDt + t0 and JDt +
t0 (Dt = p/ws) and the coefficients Bn, n = 1,. . ., N are
determined by enforcing (A4a) in a least squares sense
while restricting B(t)’s energy according to (A4b). The
relative error in (A4a) is defined as

Z ws

�ws

F �AFW
pq R; R0; tð Þ

n o
�
XN
n¼1

Bne
�jwtn

�����
�����
2

dw

Z ws

�ws

F �AFW
pq R; R0; tð Þ

n o��� ���2dw

0
BBBBB@

1
CCCCCA

1=2

;

ðA6Þ

and only depends on the dimensionless parameters
xpq
min, xpq

max, and J. Figure A2 shows that for evanescent
modes with sufficiently large xpq

min > 1 the relative error
decreases exponentially fast with J. For all cases

shown in Figure A2, the relative error reduces to less
than 10�5 when J is larger than 4. For a fixed J, the
relative error decreases exponentially fast with xpq

min

and, understandably, is insensitive to xpq
max. In conclu-

sion, when xpq
min is sufficiently large, then a well-

behaved function B(t) that is nonzero only for t 2
[�JDt + t0, JDt + t0] can be constructed such that F
{�Apq

FW(R, R
0, t)} � F {B(t)} for w 2 (�ws, ws). It

follows that B(t) * P(t, Tp, w0, W) is time limited to
within t 2 (�Tp � JDt + t0, Tp + JDt + t0) and

therefore that �Apq
FW(R, R0, t) * P(t, Tp, w0, W) � 0 when

t > Tp + JDt + t0. Using (A1) it follows that

AFW
pq R; R0; tð Þ * P t; Tp;w0;W

� �
�
Z Tp

�Tp

dt0P t0; Tp;w0;W
� �

� AFW
pq R; R0; t � t0ð Þ ¼t>Tpþt0

Z Tp

�Tp

dt0P t0; Tp;w0;W
� �

� �AFW

pq R; R0; t � t0ð Þ ¼ �AFW
pq R; R0; tð Þ * P t; Tp;w0;W

� �
:

ðA7Þ

Hence

AFW
pq R; R0; tð Þ * P t; Tp;w0;W

� �
� 0 ðA8Þ

Figure A2. Relative error when approximating the spectrum of �Apq
FW(R, R0, t): for line a xpq

min =
2.5 and xpq

max = 2.5; for line b xpq
min = 1.8 and xpq

max = 2.2; for line c xpq
min = 1.4 and xpq

max = 2.6; for
line d xpq

min = 4/3 and xpq
max = 2; for line e xpq

min = 8/7 and xpq
max = 12/7; and for line f xpq

min = 9/8 and
xpq
max = 11/8.
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Figure A3. Instantaneous error due to the truncation of TDFWs.
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when xpq
min is sufficiently larger than one and t > Tp +

JDt + t0. A direct consequence of (A8) is that, when
the time domain periodic Green’s function is con-
volved with an APSWF, the high-order Floquet waves
do not contribute if the convolution is observed for t >
Tp + JDt + t0. In other words, in

G R; R0; tð Þ * P t; Tp;w0;W
� �

¼
Xm¼þ1

m¼�1

Xn¼þ1

n¼�1

d t � k̂
inc � Rcmn=c� R0 þ Rcmn � R

�� ��=c	 

R0 þ Rcmn � R
�� ��

* P t; Tp;w0;W
� �

�
X

p;qð Þ;xmin
pq �x*f g

AFW
pq R; R0; tð Þ

* P t; Tp;w0;W
� �

;

the error in the TDFW expansion rapidly tends to zero
as x* increases beyond unity and t > Tp + JDt + t0. It
is easily verified that, for a fixed x*, the number of
TDFWs for which xpq

min � x* is proportional to the
area of the mother cell measured in wavelengths at
the sampling frequency ws = p/Dt. To be specific, if
the total number of TDFWs that satisfies xpq

min � x* is
denoted as Nmod, then Nmod / DxDy(x*ws/c)

2. The
convergence of the truncated TDFW series (A9) is
verified numerically through one example with Dt = 1 s,
w0 = 0.55p rad/s, W = 0.45p rad/s, Tp = 7 s, ws = w0 +
W = p rad/s, Dx = Dy = 7cDt, R = (0.0,0.00001Dx) and
R
0 = (0.0,0.0). Figure A3 show the instantaneous relative

error in (A9), for various choices of x*. In Figures A3a
and A3b, k̂inc = ẑ and k̂inc = x̂(1/2) + ẑ(

ffiffiffi
3

p
/2),

respectively. The waveform of the APSWF is also
plotted in the inset of Figure A3a. It is observed the
APSWF virtually vanishes after time Tp. The relative
error for t < Tp is always large, irrespective of the choice
of x*. When x* is smaller than 1, the relative error
remains large, even for t > Tp. However, when x* is
chosen greater than 1, the relative error becomes
vanishingly small for t > Tp.
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