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Abstract

Multivariate pattern analysis of anatomic, physiologic, and metabolic imaging data for improved
management of patients with gliomas

by

Alexandra Elena Constantin

Doctor of Philosophy in Computer Science
Designated Emphasis in Communication, Computation, and Statistics

University of California, Berkeley

Professor Ruzena Bajcsy, Chair

The characterization of brain tumors involves the analysis of multiple heterogeneous data sets
that include various types of medical images and spectroscopy, clinical and histopathology data,
treatment history, and patient outcome. Of particular interest for such analyses is the utilization
of recent advances in brain tumor imaging research, which have given rise to novel techniques for
exploiting a number of different biological properties of normal and tumor tissue. The system-
atic analysis of these data could lead to better disease understanding, diagnosis, prognosis, and
treatment.

The main focus of this thesis was the development of computer-assisted support for glioma
understanding, diagnosis, and prognosis in clinical environments. This was achieved by analyzing
heterogeneous biomedical data using multivariate pattern recognition methods. The tools devel-
oped in this thesis were used to characterize biological changes predictive of malignant transfor-
mations and treatment effects in gliomas, and for the early detection of disease progression. They
were crucial in finding links between in vivo and ex vivo data that could give insight into the biol-
ogy of brain cancer and help determine the right course of treatment for individual patients. The
methods that are described in this thesis can contribute to clinical practice by improving the se-
lection of biopsy sites and the targeting of treatment. The models that were learned in this thesis
produced results with high classification accuracy, interpretability by means of clinical knowledge,
and capacity to generalize the performance to new samples. The technical aspects covered in this
thesis included the feature selection and modeling of biomedical data, the inference and evaluation
of predictive models, and the use of models for clinical applications.
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Chapter 1

Introduction

Gliomas are primary brain tumors that are thought to be of glial origin. In adults, they account
for 80% of such tumors, and result in more years of life lost than any other tumors [111]. Ev-
ery year, approximately 14,000 adults in the United States are diagnosed with glioma [111] and
approximately 10,000 adults die from this disease [111].

Gliomas have a complex evolution process which is characterized by a high degree of biological
and clinical diversity. They include a variety of subtypes with a wide range of histopathology,
molecular and genetic profiles, prognosis, and outcome. Despite major advances over the last
two decades, the prognosis for patients with gliomas remains poor. Significant progress in the
diagnosis, treatment, and prevention of these tumors requires both the timely implementation of
new technology in the clinic and a continuing effort at increasing our understanding of brain tumor
biology.

Neuroimaging plays a critical role in the diagnosis and preoperative planning of brain tumors
and also serves as a means for evaluation of response to therapy. Recent advances in technology
have given rise to novel data acquisition techniques that are capable of exploiting different biolog-
ical properties of tissue. These methods include diffusion-weighted magnetic resonance imaging
(MRI), contrast-enhanced perfusion MRI, and proton magnetic resonance spectroscopy (MRS).
The characterization of brain tumors involves the integration of heterogeneous data sets that in-
clude various types of medical images, spectroscopy, clinical and histopathology data, treatment
history, and patient outcome. Traditionally, these different types of biological signals are analyzed
by radiologists, pathologists, and clinicians, who combine their experience in analyzing previous
data with prior knowledge of the normal values of these biological signals in order to formulate a
diagnosis and treatment plan. However, the increasing number of data modalities available make it
likely that valuable but complex patterns within the data may remain undiscovered. The systematic
analysis of such biomedical data could lead to better disease understanding, diagnosis, prognosis,
treatment, and drug discovery.

The objective of this thesis was to develop multivariate pattern recognition models for inte-
grating advanced magnetic resonance (MR) data and histology, in order to obtain algorithms that
could assist in the clinical management and biological understanding of gliomas. The tools that
were developed in this thesis were applied to characterize biological changes that were predictive
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of malignant transformations and treatment effects in gliomas, and to detect disease progression at
an early stage. These tools were crucial in finding links between in vivo and ex vivo data that could
give insight into the biology of brain cancer. The methods described in this thesis can contribute to
clinical practice by improving the selection of biopsy sites and the targeting of treatment. The aim
of this work was to produce results with high accuracy in classification, interpretability by means
of clinical knowledge, and capacity to generalize the performance to new samples which are sub-
sequently obtained. The technical aspects covered in this thesis included the feature selection and
modeling of biomedical data, the inference and evaluation of predictive models, and the use of the
models for clinical applications.

The rest of this document is structured as follows.
Chapter 2 describes the diagnosis and treatment of gliomas and the types of data acquisition

technologies used to this effect. It also identifies major clinical problems that could benefit from
the use of pattern analysis.

Chapter 3 gives a brief overview of pattern recognition methods and their application to the
analysis of biomedical signals for patients with brain tumors.

Chapters 4-7 describe projects that utilize high resolution magic angle spinning (HRMAS)
data for the characterization of glioma, while chapters 8-12 make use of in vivo MR imaging and
spectroscopy.

Chapter 4 describes the use of pattern recognition methods for identifying malignant transfor-
mations in recurrent low grade gliomas (LGGs) based on HRMAS data.

Chapter 5 describes how the same pattern recognition tools can be used to distinguish between
primary and secondary glioblastomas multiformae (GBMs) based on their metabolic profiles.

Chapter 6 describes the differences in the metabolic profiles of treated and untreated grade 2
and 3 gliomas.

Chapter 7 describes supervised learning models for the metabolic characterization of histopatho-
logical properties of GBM tissue.

Chapter 8 describes a machine learning model for non-invasively distinguishing between re-
current LGGs that transformed to a higher grade versus those that remained low grade.

Chapter 9 presents classification models for distinguishing between low and high values of
histological parameters based on in vivo data.

Chapter 10 further refines the tumor cellularity prediction model by estimating the remaining
histological parameters using the expectation maximization (EM) algorithm.

Chapter 11 describes a multivariate survival analysis model for GBMs. Most of the research
conducted for this thesis relies on the definition of regions of interest (ROIs) in the imaging data.
For this reason, Chapter 12 presents an automatic segmentation method that could aid in the defi-
nition of ROIs.

Finally, Chapter 13 provides a summary of the methods and studies used in this thesis, and
describes the importance of the results.
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Chapter 2

The clinical assessment of patients with
gliomas

Gliomas are the most aggressive type of brain tumors, associated with a high degree of malignancy
and discouraging survival rates [133]. Prognosis largely depends on the histological sub-type and
grade of malignancy of the lesion, with the median survival ranging from 7 to 10 years for grade 2
tumors, 2 to 5 years for grade 3 tumors, and 15 to 18 months for grade 4 tumors [8].

Neuroimaging plays a crucial role in the diagnosis, therapy planning, evaluation of thera-
peutic effects, and early detection of recurrence of brain tumors. It is currently evolving from
a morphology-driven discipline to incorporate biochemistry and physiologic parameters into the
assessment of brain tumors. Although clinical and neuroimaging features of malignant gliomas
are very useful in identifying abnormalities in the brain, the gold standard for diagnosis is based
on the histologic examination of appropriately sampled tissue. Image-guided tissue biopsies are of
interest to ensuring the most accurate diagnosis by reducing sampling errors.

2.1 Nuclear magnetic resonance
Nuclear magnetic resonance (NMR) is a complex modality which is being increasingly used in the
diagnosis, characterization, and treatment of brain tumors. MR imaging of the protons in water
is a powerful technique that allows the visualization of internal anatomy in a safe and noninva-
sive manner. MRI is used for evaluating brain tumors for several reasons: it provides good soft
tissue contrast, it can perform multi-planar imaging, and it uses no ionizing radiation. MRI has
been expanded in recent years to include special techniques such as diffusion-weighted imaging
(DWI), perfusion-weighted imaging (PWI), and in vivo and ex vivo spectroscopy [7]. The contrast
mechanism used to generate these data relies upon different physical and physiological proper-
ties, and provides complementary information that can be used in the analysis of brain tumors and
surrounding tissue.

MR signals come from protons or other nuclei inside our body. In the absence of a magnetic
field, these nuclei have a property known as spin, and the orientation of the spin vector is random
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[11]. When the subject is placed inside a strong magnetic field, the spins of the nuclei align either
parallel or anti-parallel with the field. Then a radio frequency pulse (RF pulse) is introduced,
which excites these spinning protons, causing them to move out of alignment with the magnetic
field. When the RF excitation stops, the nuclei return to their resting state within the magnetic field,
giving off the RF energy acquired during the RF pulsation [59]. The signal is spatially localized
by the rapid turning on and off of spatially varying magnetic field gradients [59]. The signal is
detected by coils within the scanner and used to generate an image. The behavior of each nucleus
reflects its chemical environment. The differences in the behavior of the nuclei result in different
contrast mechanisms [7]. As the water content of tissue is on the order of 80%, the most abundant
and widely used MR signals come from the protons in water.

There are thus three key components of an MRI scanner: a very strong magnet that creates the
main magnetic field, which creates the parallel and anti-parallel energy levels; a set of gradient
coils, which impose a gradient on that magnetic field, which provides the spatial encoding; and
radio-frequency coils that either transmit the radio frequency pulses to excite the spin sample or
detect the resulting signal [7].

T1 and T2 relaxation
MR signal is dependent on the number of mobile hydrogen protons, the time needed for the protons
within the tissue to return to their original state of magnetization (T1 relaxation time), and the time
required for the protons perturbed into coherent oscillation to lose their coherence (T2 relaxation
time) [59]. The timing of the RF pulse and the reading of the radiated RF energy change the
appearance of T1 and T2 images. The repetition time (TR) describes the time between successive
repetitions of the RF pulse sequences [59]. The echo time (TE) describes the delay before the RF
energy radiated by the tissue is measured [59]. The pulse sequences, described by the TR and TE,
can be changed to maximize the differences in T1 and T2. This gives rise to T1 and T2 weighted
images [59].

The standard MRI pulse sequence for anatomic and pathological detail is a spin echo se-
quence. The T1-weighted images (short TR; short TE) provide better anatomic detail, while the
T2-weighted images (long TR; long TE) provide more detail about the pathology [59].

Fluid-attenuated inversion recovery

The Fluid-attenduated inversion recovery (FLAIR) uses a pulse sequence that removes the effects
of fluid from the resulting image. Lesions that are normally covered by bright fluid signals using
conventional T2-weighted images are made visible by this darkening of the fluid in this technique,
making FLAIR very important for the differentiation of brain and spine lesions. Figure 2.1 shows
a FLAIR image acquired from a patient diagnosed with GBM.
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Figure 2.1: Anatomical MR images obtained from a patient diagnosed with GBM; (Left): a pre-
contrast T1 image; (Middle): a post-contrast T1 image (T1-GAD); (Right): a FLAIR image; the
region marked with red was later selected as a biopsy location

Contrast enhanced images

Neuroimaging techniques are designed to highlight differences between lesions and normal struc-
tures. For some lesions, mass effect is sufficient for diagnosis. For others, contrast agents have to
be used to aid in diagnosis. Contrast agents are compounds that do not cross the intact blood-brain
barrier but do cross abnormally permeable blood-brain barrier regions [7].

Gadolinium (Gd) is one of the primary contrast agents used in MRI. It causes marked signal
change whenever there is breakdown of the blood-brain barrier, allowing high specificity tumor
diagnosis based on imaging alone [7]. Administering gadolinium allows for the acquisition of
two types of T1-weighted images: pre-contrast T1 and post-contrast T1 (T1-GAD). Figure 2.1
illustrates a pre-contrast and a post-contrast T1 image of a patient diagnosed with GBM. The region
marked with red in this figure was later selected as a biopsy location. This region is highlighted in
all of the imaging modalities presented in this chapter.

While a FLAIR image highlights the extent of abnormal tissue, a T1-weighted sequence ob-
tained after the injection of gadolinium contrast agent (T1-GAD) is believed to highlight the most
aggressive areas of the lesion, as well as necrotic tissue. Three ROIs can be defined based on
these images: the FLAIR abnormality region (T2all), the contrast enhancing lesion (CEL), and the
necrotic region (NEC), which are illustrated in Figure 2.2. The non-enhancing lesion (NEL) can
also be defined as the difference between the T2all and the CEL and NEC regions.
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Figure 2.2: Regions of interest: FLAIR abnormality regions (T2all), contrast enhancing lesion
(CEL), and necrotic region (NEC)

Diffusion MRI
Diffusion MRI allows the non-invasive evaluation of the diffusion of water molecules. Molecular
diffusion in tissues reflects interactions of the molecules with obstacles such as macromolecules,
fibers, and membranes. As a result this method can be used to reveal microscopic details about tis-
sue architecture. DWI inserts an additional pair of gradient pulses into the imaging pulse sequence
that measures the reduction in signal intensity caused by the motion of individual water protons.
This results in a greater loss of signal intensity for protons with high diffusion rates compared with
protons that have slow diffusion rates. It is possible to disentangle diffusion and relaxation effects
by creating two types of maps: apparent diffusion coefficient (ADC) and fractional anisotropy
(FA). FA describes the degree of anisotropy at each voxel, on a scale of zero for isotropic to one
for fully anisotropic [7]. A low value for FA indicates that the cortical white matter (WM) tracts
are isotropic, while a high value for FA indicates they are anisotropic with a preferred direction for
diffusion [7]. ADC maps measure the magnitude of diffusion of water molecules within cerebral
tissue. Figure 2.3 shows ADC and FA maps for the GBM patient used as an example throughout
this chapter.

Perfusion MRI
The changes in signal intensity that are observed in T2-weighted MR images during the passage of
a bolus of gadolinium through the microvasculature may be used to provide insight into cerebral
blood volume, tissue microvasculature, angiogenesis, and vessel permeability [66]. The advantages
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Figure 2.3: Diffusion maps obtained from a patient diagnosed with GBM; (Left): ADC map;
(Right): FA map; the region marked with red corresponds to a biopsy site

of this approach are that it is relatively easy to implement as part of a conventional MR examination
because patients with brain tumors are typically getting an injection of gadolinium for diagnostic
purposes. Quantification of the changes in signal intensity uses the approximately linear relation-
ship between concentration of the contrast agent and the changes in relaxivity to transform the
signal-intensity curve to a change in the relaxation rate (∆R2*) curve which increases during the
bolus, followed by a recovery period [66]. Four parameters can be derived from this curve. The
parameter most widely reported is the cerebral blood volume (CBV). This relates the area under
the curve during the bolus from an ROI to the area obtained from a region of normal-appearing
white matter (NAWM). Other parameters include the peak height (PH) in the ∆R2* curve, the
percent recovery to baseline (RECOV), which reflects the leakiness of the tumor induced vessels,
and the recirculation factor (RF) [66]. Figure 2.4 shows a T2-weighted image during the passage of
a bolus of gadolinium. The area marked with red corresponds to a site where tissue was acquired.
The figure also shows a ∆R2* curve for that site.

Spectroscopy
MRS uses the differences in chemical shift caused by alterations in the chemical environment of
individual nuclei to evaluate the presence and levels of different compounds. It is based on the
concept that certain nuclei have inherent spin properties. Examples include 1H , 19F , 31P , and
13C. These nuclei acquire small amounts of energy while in the presence of a static magnetic field.
However, the introduction of electromagnetic radiation of the correct frequency, at right angles to
the static magnetic field, causes the nuclei to jump to spin states of higher energy levels [59]. The
nuclei subsequently drop to their ground spin states by emitting radiomagnetic radiation at a rate
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Figure 2.4: Perfusion imaging data obtained from a patient diagnosed with GBM; (Left): a T2-
weighted image of a GBM patient during the passage of a bolus of contrast agent; the area marked
with red corresponds to a biopsy site; (Right): ∆R2* curves at the biopsy site

determined by the T1 and T2 relaxation times. The emitted radiation is detected by a receiver coil,
and the range of frequencies and their intensities comprise the MR spectrum.

Recent oncology research has shown that the evaluation of cellular metabolism can be very
helpful for the diagnosis and assessment of treatment effects for patients with brain tumors. There
is a growing body of evidence that MRS may contribute to the clinical evaluation of a number of
pathologies and therapeutically induced changes in tumor biochemistry [2, 3, 9, 15, 23, 26, 33, 38,
41, 44, 45, 54, 63, 70, 77, 86–88, 97, 102, 104, 106–108, 117, 119, 129, 132]. It can be performed
both in vivo and ex vivo.

In Vivo MRS

In vivo MRS uses similar spatial localization principles as MRI to measure the levels of different
metabolites within regions of tissue. Arrays of spectra make it possible to both observe the hetero-
geneity within the lesion and also to examine surrounding tissue that may appear normal on MRI
[87]. This provides a reference for comparing metabolite levels in the tumor and makes it possi-
ble to identify regions of abnormal metabolism outside the morphological lesion [87]. Figure 2.5
shows an example of an array of MRS data obtained from a GBM patient. Saturation bands were
used to diminish the distortions produced by fat tissue. Figure 2.6 shows a lactate-edited MRS data
array from a similar position. Both figures include the location of a future biopsy site. The MRS
data from this biopsy site is compared to ex vivo HRMAS spectroscopy in Figure 2.7.

The dominant compounds observed using the in vivo MRS technique are levels of choline
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Figure 2.5: In vivo magnetic resonance spectroscopy data obtained from a patient diagnosed with
GBM; saturation bands were used to diminish distortions due to fat tissue; the colored voxels
overlayed on the T1-GAD image are abnormal; the overlay corresponds to the choline to NAA
ratio (CNI); the voxel labeled in red was later selected as a biopsy location

(Cho), creatine (Cre), N-acetylaspartate (NAA), lactate (Lac), and lipid (Lip). The intensity of the
Cho signal reflects changes in membrane synthesis and turnover associated with cell proliferation
and remodeling. The Cre peak includes both creatine and phosphocreatine and is indicative of
cellular bioenergetic processes. NAA is a marker of normal brain tissue that is typically assumed
to correspond to the presence of actively functioning neurons. Lac is an end product of anaerobic
metabolism and may therefore reflect ischemia, hypoxia, or both. Lip that is observed within the
brain tissue is thought to reflect the presence of necrosis [87].

By comparing the relative concentration of metabolites from MRS data, it is possible to draw
inferences about biological features such as neuronal viability, the presence of neurotoxins, and the
process of membrane turnover within the volume of interest [54]. These can be used to formulate
hypotheses about the likely underlying pathology [30, 54, 131]. The clinical impact of MRS in
medicine was reviewed by Hollingworth et al. [54], Nelson [86, 87], and Smith et al. [117]. MRS
shows promise as a method to complement routine diagnostic investigation. Significant research
over the last decade has investigated the role of MRS imaging biomarkers in characterizing brain
cancer [84, 131]. The combination of MRS with high-resolution anatomical images provided by
conventional MRI provides unique information on brain tumor chemistry in inoperable tumors,
and might complement neuropathology, guide or even replace biopsies, and help monitor therapy
for operable brain tumors.

While a great tool for characterizing brain tumor metabolism noninvasively, in vivo spec-
troscopy suffers from some internal and external limitations that may strongly influence the re-
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Figure 2.6: In vivo lactate-edited MRS data obtained from a patient diagnosed with GBM; the
biopsy site marked with red is the same site marked in Figure 2.5

sults. In particular the limited in vivo spectral resolution restricts the number of metabolites that
can be evaluated. Even among metabolites that are detectable with in vivo MRS, subtle differences
between normal and pathological tissue can go unnoticed.

HRMAS spectroscopy

The development of HRMAS NMR spectroscopy and its recent application to ex vivo tissue sam-
ples made it possible to examine the biochemical composition of tissue by spectroscopic analysis
[15]. HRMAS is a non-destructive technique for obtaining spectra with narrow peaks, improved
signal to noise ratio, and higher spectral resolution over standard methods. Figure 2.7 shows an
HRMAS spectrum and the corresponding MRS spectrum obtained from a patient with a GBM.
Figure 4.3 better illustrates the higher resolution of the same HRMAS spectrum, and the much
higher number of metabolites that it reveals.

The development of HRMAS is based on the observation that the spectral broadening that typ-
ically occurs in tissue has an angular dependence that can be overcome by placing the sample at
a so-called magic angle with respect to the main magnetic field of the magnet. By spinning the
sample, one can mimic the high molecular mobility of liquids that results in a well-averaged MR
signal. An added bonus of HRMAS is that it can be used on unprocessed biopsy or surgical speci-
mens, allowing much of the structure and biochemistry of the specimen to remain intact. Because
HRMAS is a non-destructive technique, it can be applied to tissue prior to immunohistochemistry
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Figure 2.7: HRMAS and corresponding MRS obtained from a patient diagnosed with GBM; (Left):
HRMAS spectrum obtained from a GBM patient’s tissue sample; (Right): MR spectrum obtained
from the biopsy location of the same GBM patient; HMRAS has narrower peaks and higher spec-
tral resolution than MRS

(IHC) analysis, thus providing a link between metabolite concentrations, pathology, and clinical
MRI and MRS. To this end, a large body of research examines the identification of biomarkers for
brain tumor characterization and typing using HRMAS [46, 75, 88, 91, 104, 135]. Ex vivo mag-
netic resonance spectroscopy has also been used to link ex vivo metabolic profiles to in vivo MRS
and hence to determine which metabolites are of interest for characterizing different pathologies
[106–108].

Major metabolites in the brain

Choline (Cho) is a building block for cell membrane chemicals. Changes in Cho levels reflect
changes in membrane synthesis and turnover associated with proliferation and remodeling [87].
The importance of this metabolite is highlighted by the fact that Cho deficiencies affect key genes
in cell proliferation, differentiation, and apoptosis. Cho has a functional group that has a very
strong magnetic signal, with nine equivalent protons, and so even at lower concentrations, it is
visible in spectroscopic studies. It can be converted to and between various forms including Glyc-
erophosphocholine (GPC) and Phosphocholine (PC), which are also highly visible in proton
spectroscopy. When cells divide quickly or there is substantial remodeling of membrane compo-
nents, the Cho-containing compounds in solution increase. Thus, many brain tumors have elevated
Cho peaks, thought to be associated with their increased cellularity and compression of surround-
ing brain tissue.

Recent studies on LGGs have established a link between mutations in the isocitrate dehydro-
genase 1 (IDH1) gene and excessive production of 2-hydroxyglutarate (2HG) [23, 32]. This is an
important finding because overwhelming clinical evidence now suggests that glioma patients har-
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boring IDH1 mutations carry a significant survival advantage, irrespective of treatment therapies
employed for disease management [49, 56, 92, 137]. Although the function of both IDH-mutant
enzymes and 2HG in gliomagenesis remains unclear, the improved prognosis associated with IDH1
mutations suggests that the presence of 2HG may be of prognostic value as a surrogate for favor-
able genotypes.

Myoinositol (Myo-I) is involved primarily in hormone-sensitive neuroreception. It is found
mainly in astrocytes and helps to regulate cell volume. Elevated levels of Myo-I are seen in glial
cell proliferation, such as gliosis. Reduced levels of Myo-I are seen in processes that cause glial
cell destruction, such as tumor formation.

Lactate (Lac) levels in the brain are normally very low or absent. When oxygen supply is de-
pleted, the brain switches to anaerobic respiration for which one end product is lactate. Therefore,
elevated lactate levels are a sign of hypoxic tissue. Low oxygen supply can result from decreased
oxygen supply or increased oxygen requirement. The former may be seen in vascular insults, or
hypoventilation, and the latter may be seen in neoplastic tissue.

Lipids (Lips) are often present in the form of triglycerides, phospholipids, and fatty acids.
These substances are incorporated into cell membranes and myelin. Within the brain, Lip peaks
are only seen in the presence of destructive processes, such as formation of necrosis, inflammation,
or infection [87].

N-acetylaspartate (NAA) is a marker of normal brain tissue that is typically assumed to corre-
spond to the presence of actively functioning neurons. It is present in both gray and white matter.
Its concentration has been reported to decrease with brain infection, ischemic injury, neoplasia,
and demyelination.

Creatine (Cre) is indicative of cellular bioenergetic processes. The Cre peak receives contri-
butions from both Cre and phosphocreatine (PCr). PCr supplies phosphate to adenosine diphos-
phate (ADP) to form adenosine triphosphate (ATP) with the release of creatine. The overall level
of Cre in normal brain is fairly constant. Reduced Cre levels may be seen in pathologies such as
neoplasm, ischemic injury, infection, or some systemic diseases.

Glutamine and glutamate (Glx) resonate closely together. Glutamate (Glu) is an excitatory
neurotransmitter in mitochondrial metabolism, and it is also a key component of the inhibitory
compound neurotransmitter g-aminobutyric acid (GABA). Glutamine (Gln) is a precursor to
neuronal Glu and a potential fuel, which, like glucose, supports neuronal energy requirements.

Taurine (Tau) has been suggested to act as inhibitory neurotransmitter or modulator in the
central nervous system. The immediate precursor of Tau, Hypo-taurine (Hyp-Tau), has also been
thought to have a synaptic role of its own or to act as a false neurotransmitter for GABA or Tau.
Both amino acids depress neuronal firing with similar potency.

Reduced Glutathione (GSH) levels play an important role in the protection of cells against
damage from free radicals and other electrophils and also influence cellular radiosensitivity, cellu-
lar response to hyperthermia, and cytotoxicity to some kinds of chemotherapeutic agents.

Alanine (Ala) is a non-essential amino acid with a non-reactive side group. It is the second
most highly represented amino acid, to leucine (Leu), in the primary structure of a sample of 1000
key proteins. Also, while it is not a reactive residue in proteins, it can play an important role in
protein substrate recognition.
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Figure 2.8: Multivariate imaging data and examples of normal and abnormal perfusion and spec-
troscopy

Under normal physiological conditions, the mature brain derives almost all of its energy from
the aerobic oxidation of glucose (Glc). Brain tumors, like most malignant tumors, depend heavily
on Glc for their metabolic energy.

2.2 Histopathology of gliomas
While MRI is an important step in evaluating patients with suspected brain tumors, histopatholog-
ical analysis of tissue samples from the lesion is always required to confirm a suspected diagnosis.
Histology refers to the study of the microscopic anatomy of cells and tissue. A pre-operative MR
exam, combining multiple images such as the ones illustrated in Figure 2.8, is used to guide the se-
lection of biopsy sites by identifying regions suspected of containing viable tumor. Tissue samples
may be obtained as part of a stereotactic procedure or during the tumor resection. A stereotactic
biopsy procedure can be performed by using a computer to localize a target lesion on a three-
dimensional image, as illustrated in Figure 2.9, and then extracting the tissue from that location.
The tissue samples are fixed and then slices are prepared for examination under the microscope by
a pathologist. The ability to identify microscopic structures is enhanced through the use of histo-
logical stains, which highlight features of interest. Figures 2.10, 2.11, 2.12, 2.13, and 2.14 show
low and high values of some of these histological features of interest.

The histological analysis of brain tumor tissue identifies parameters describing the number of
cancer cells and the invasive capacity of the tumor [72]. A short description of the parameters used
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Figure 2.9: Example of biopsy site selection and corresponding histological appearance

for the samples evaluated in the studies described in this thesis is provided next.

Tumor cellularity
Tissue slides stained with H&E were analyzed for tumor cellularity. This is a measure of the
density of cancer cells in a specimen. Slides were given a tumor cellularity score on the basis
of the contribution of tumor cellularity to total cellularity. A score of 0 denoted neuropil without
tumor, 1 indicated an infiltrating tumor margin containing detectable but not abundant numbers of
tumor cells, 2 denoted a more cellular-infiltrated zone, and 3 denoted highly cellular tumor with
few non-neoplastic cells. Figure 2.10 illustrates slides showing low and high tumor cellularity.

MIB-1 index
Cell cycle-associated nuclear proteins were utilized to estimate the growth potential of gliomas.
The Ki-67 monoclonal antibody recognized epitopes associated with a specific category of cell
cycle-associated proteins which appear to be necessary for the maintenance of the proliferative
state [72]. The monoclonal antibody MIB-1 reacts with the Ki-67 epitope in routinely processed,
paraffin-embedded tissue. For MIB-1-stained slides, a labeling index [(MIB-1-positive nuclei per
total tumor cells counted per 200× field)× 100%] was calculated based on the evaluation of at least
three fields and more than 1000 cells. Slides showing low and high MIB-1 proliferation indices
are illustrated in Figure 2.11.
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Figure 2.10: Two H&E stained slides with: (Left) a tumor score of 0, cellularity of 85 cells/field,
and (Right) a tumor score of 3, cellularity of 921 cells/field (courtesy of Dr. Joanna Phillips)

SMI-31
Axonal integrity was measured based on a composite axon score for SMI-31 staining [72]. A
score of axonal integrity was assigned to each SMI-31 stained slide on the basis of the extent
of disruption of the normal axonal architecture. A score of 0 denoted no disruption, 1 denoted
minimal disruption, 2 denoted mild disruption, and 3 denoted severe disruption. SMI-31 scores
are illustrated in Figure 2.12.

CA9
The CA9 gene expression reflects hypoxia [72], a deficiency in the amount of oxygen that reaches
the tissue. A hypoxia score of 0 denoted no positive CA9 staining, a score of 1 denoted that 10%
of the tissue area was stained positive for CA9, a score of 2 denoted that 10-25% of the tissue
area was stained positive for CA9, a score of 3 denoted that more than 25% of the tissue area was
stained positive for CA9 . Illustrations of CA9 staining are provided in Figure 2.13.

Microvascular morphology
GBMs frequently present with regions of abnormal angiogenesis, which is the outgrowth of new
blood vessels from preexisting vasculature [72]. Hyperplasia, the proliferation of cells which is
not neoplastic, may signal the body’s normal reaction to an imbalance or another stimulus [72].
On the basis of H&E staining and Factor VIII IHC, the microvascular morphology was graded as
delicate (resembling normal cerebral vessels), simple vascular hyperplasia (circumferential hyper-
plasia with definitive lumen), or complex microvascular hyperplasia (glomeruloid-type vessels).
These vascular parameters were measured on a four-tier ordinal scale (0, no contribution; 1, min-
imal; 2, prevalent; and 3, extensive). An overall hyperplasia score was assigned as: 0, signifying



16

Figure 2.11: (Left): Two H&E stained slides and (Right): the corresponding MIB-1 stained slides;
(Top): tumor score 3, cellularity 921 cells/field, MIB-1 of 35.5%; (Bottom): tumor score 3, cellu-
larity 27.4 cells/field, MIB-1 of 7.89% (courtesy of Dr. Joanna Phillips)

normal vasculature, 1 signifying simple hyperplasia, and 2 signifying complex hyperplasia. Ex-
amples of the vascular properties that can be observed in gliomas are illustrated in Figure 2.14.

Necrosis
GBMs are often made up of a necrotic center, with a surrounding rim of hypercellular tissue. Figure
2.15 shows an H&E stained tissue sample containing necrosis. A necrosis score of 0 signified
absent, 1 signified focal necrosis, and 2 signified extensive necrosis.
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Figure 2.12: SMI-31 staining; (Left): SMI-31 score 0, no axonal disruption; (Middle): SMI-31
score 2, mild axonal disruption; (Right): SMI-31 score 3, severe axonal disruption (courtesy of Dr.
Joanna Phillips)

Figure 2.13: CA9 staining (courtesy of Dr. Joanna Phillips)

Figure 2.14: Factor VIII microvascular pattern and density; overall microvascular hyperplasia
score: (Left) score 0, delicate hyperplasia, (Middle) score 1, simple hyperplasia, (Right) score 2,
complex hyperplasia (courtesy of Dr. Joanna Phillips)
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Figure 2.15: H&E slide showing necrosis and vascular hyperplasia (courtesy of Dr. Joanna
Phillips)

Figure 2.16: Histological appearance of tissue samples from (A) grade 2, (B) grade 3, (C) grade 4
gliomas

WHO classification
The World Health Organization (WHO) classifies gliomas on the basis of histologic features into
four prognostic grades: grade 1 2, 3, and 4. Examples of histological stains from grade 2, 3, and 4
gliomas are illustrated in Figure 2.16. Grade 4 gliomas are also referred to as GBMs [80]. Grade
3 tumors are characterized by increased cellularity, nuclear atypia, and mitotic activity [133]. In
addition, GBMs contain areas of microvascular proliferation, necrosis, or both [133]. These tumors
may contain a delicate network of branching blood vessels [133]. GBMs can be separated into two
main subtypes, primary and secondary [8]. Primary GBMs present themselves without clinical
or histopathologic evidence of a preexisting less-malignant precursor lesion. Secondary GBMs
typically develop in younger patients through malignant progression from a lower grade glioma.

Gliomas are very heterogeneous and invasive, as illustrated in Figure 2.17. They typically
contain both neoplastic and stromal tissue, which contribute to their histologic heterogeneity and
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Figure 2.17: Heterogeneity of histological features in GBM tissue samples, by patient

variable outcome [133]. The ability of histopathology to characterize and predict the behavior of
brain lesions is thus limited by the sampling error due to the heterogeneity in the lesion as well
as the inability to perform samplings at the time of presumed progression [130]. Molecular and
metabolic studies can potentially allow for better classification of these tumors and for separation
into different prognostic groups. Figure 2.18 shows the in vivo spectra corresponding to two biopsy
locations that seem similar on a T1-GAD image. This figure shows that multivariate MR data
provides complementary information, and that the integration of this data with histology has great
potential.

2.3 Important problems in the diagnosis and management of
gliomas

Brain cancer research is advancing at an accelerated pace which is being driven by the develop-
ment of all the new data modalities and the demand for personalized medical treatment. These
recent advances are providing ample opportunity for using machine learning methods for person-
alized medicine. Clinical endpoints that could benefit from a multivariate pattern analysis of multi-
modality data include tumor grading, early detection of malignant transformations, improved ways
of characterizing progression and response to therapy, and personalized survival prognosis.

Traditionally, multivariate MR data are analyzed by radiologists, who combine their experience
in analyzing previous images with prior knowledge of the contrast mechanisms of each image to
formulate an opinion about the tumor, its type and degree of malignancy, and its borders. Visual
interpretation is becoming more complex due to the increasing number of data modalities available.
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Figure 2.18: (Left): T1-GAD image of a GBM and two seemingly similar biopsy sites; (Right):
Corresponding in vivo spectra at the two biopsy sites; (A) tumor score 1, hyperplasia score 1,
complex vessel score 0, SMI-31 score 0, MIB-1 score 1.9%; (B) tumor score 2, hyperplasia score
2, complex vessel score 3, SMI-31 score 1, MIB-1 score 20%

Thus, it is likely that valuable patterns in the data may remain undiscovered. These issues have led
many researchers to pursue computational methods for combining information from multivariate
NMR data [2, 3, 9, 12, 15, 26, 27, 33, 38–41, 44, 45, 60, 63, 69, 70, 73, 74, 77, 79, 81, 82, 88, 90, 93,
96–98, 102, 106–108, 113, 114, 119, 129, 132, 139]. Not many of these studies are biologically
interpretable nor do they explore the relationship between in vivo MR and histological features
other than grade and tumor type.

One of the most significant limitations of in vivo MR imaging and spectroscopy is the underly-
ing uncertainty about the characteristics of cells in an MRI voxel. While MRI and MRS data can be
used to detect abnormalities and provide good spatial information about different tissue properties,
the true composition of the tissues can only be determined histologically. However, samples ob-
tained by biopsy or during surgical resection represent a relatively small amount of tissue and may
therefore not be fully representative of the characteristics of the tumor. This means that the suc-
cessful integration of histology and in vivo data through the use of multivariate pattern analysis can
lead to quantitative non-invasive markers of biological behavior, which are extremely important for
characterizing tumor heterogeneity, for defining the most appropriate region for obtaining image
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guided samples for histological analysis, and for evaluating patients for whom surgical resection
is not appropriate.

Thus, this thesis identifies the following open and interesting research problems in the field
of brain oncology that could benefit from the application and development of pattern analysis
methods:

• assessment of tumor grade

• detection of malignant transformations in gliomas

• development of new quantitative in vivo biomarkers to guide evaluation of progression and
response to therapy

• personalized survival estimates

• improved selection of biopsy sites

• importance of data features in determining clinical endpoints and in understanding tumor
biology

• characterization of tumor heterogeneity

• finding connections between ex vivo and in vivo biomedical signals.
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Chapter 3

Multivariate pattern analysis of biomedical
signals for patients with gliomas

Pattern analysis is the process of finding general relations in a set of data. One of the most important
pattern analysis tasks is supervised learning, the process of learning a model from supervised
training data. The training data consist of a set of training examples, which are pairs of input
objects and corresponding output values. Supervised learning algorithms analyze the training data
and produce a classification function (if the output is categorical) or a regression function (if the
output is continuous) that best describes the relationship in these data. The classification function
should be able to predict the correct output value for any valid input object. This requires the
learning algorithm to generalize from the training data to unseen situations in a reasonable way.

The development of pattern recognition systems involves the following steps, which will be
described in more detail next: preprocessing the data, reducing data dimensionality and selecting
relevant features, constructing a classifier, and measuring its performance on previously unseen
data. The supervised learning pipeline is illustrated in Figure 3.1.

One of the challenges best addressed by machine learning is illustrated in Figure 3.2. The figure
shows biopsy samples with high or low tumor cellularity scores, plotted according to two predictive
features. Standard statistical analysis methods reveal that the two tumor cellularity groups are
significantly different in terms of their excess Cho to Cre levels and the T1-GAD intensity values
at the biopsy locations. However, there is a large amount of overlap between the two groups, which
makes it hard to predict whether a biopsy sample has low or high tumor cellularity based on the
two illustrated features. Supervised learning methods are able to identify and combine biomarkers
that are sensitive and specific for individuals, rather than groups. These methods can identify a
small set of predictive features that, when combined, can distinguish between low and high tumor
score samples with good accuracy.

In order for supervised learning to be applicable to a specific problem there are some assump-
tions that need to be met. The data objects need to be represented as feature vectors of fixed length.
They also need to be members of mutually exclusive classes. The training set needs to be a good
representation of what will be encountered in a practical application. The data need to come from a
fixed distribution that does not, for example, vary over time. Also, a loss function has to be defined
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Figure 3.1: Supervised learning pipeline.
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Figure 3.2: Low and high tumor cellularity samples, plotted against two predictive features; stan-
dard statistics discovers that the two tumor cellularity groups are significantly different, with high
confidence; however, the two features cannot be used to distinguish between high and low tumor
samples with high accuracy

and estimated using empirical loss.
Once these assumptions are met, a supervised learning model can be built and evaluated as

described in the following subsections.

3.1 Preprocessing
Preprocessing aims to reduce the effects of noise and to transform raw data into a format that
will make it easy to analyze. Furthermore, preprocessing steps standardize the parameters of im-
ages and spectral data in order to make them comparable across different samples, patients, and
populations.

Preprocessing of MR images
For this thesis, the preprocessing of MR images includes noise reduction [42], intensity inhomo-
geneity reduction [116], normalization by the median intensity in NAWM, and registration [4, 5,
24, 47]. Image registration is the process of aligning images so that corresponding features can
easily be related [47]. In this thesis, anatomical images are registered using rigid transformations
[47], and perfusion and diffusion images are registered using nonrigid registration based on splines
[47].
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Preprocessing of spectra
Preprocessing of spectroscopic data involves transforming the raw free induction decay (FID) sig-
nal into the frequency domain using the Fast Fourier Transform (FFT).

MRS data also requires spatial transformations, phasing, correction, and water signal suppres-
sion. The spectra were normalized according to the integral of each spectrum.

In the case of HRMAS data, the frequency domain signal is shifted using 3-trimethylsilyl propi-
onic acid (TSP) as a reference, and phased using zero-order phase correction. Residual water signal
is removed using Hankel-Lanczos singular value decomposition (HLSVD). Each data sample in
the frequency domain is normalized using the electronic reference to access (ERETIC) method
[76] and the tissue weight of each sample.

Another optional step in the preprocessing of spectral data is the quantification of known
metabolites. The most basic quantification technique is peak integration. In this technique, the
region of the spectrum that contributes to the peak is marked on the frequency axis. The area of
the NMR curve between the two marks is then calculated, and this integral is used to quantify the
peak. More complex quantification methods such as LCModel [89], QUEST[100], and AQSES
[115] quantify previously known chemicals in NMR spectra by incorporating prior knowledge
about the set of frequencies that resonate for each chemical, the various resonance peaks, the rel-
ative area of these resonance peaks, and the shape of chemicals’ spectra. These methods could
potentially overlook important information in the spectrum, such as the presence of previously
unquantified metabolites. In addition, methods that search for metabolites independently based on
their shape, such as QUEST [100], cannot distinguish between low levels of a chemical or bad fits.

3.2 Feature selection
Dimensionality reduction is a crucial step when analyzing complex data with many parameters and
relatively few data samples. This step reduces the complexity of the problem, makes the problem
tractable, and improves the quality of the solution. If a model uses too few features, it will not
have enough information to produce highly accurate classifications. On the other hand, if a model
uses too many features, not enough data is available to accurately estimate all the parameters of the
model. This leads to biased results that do not generalize well to unseen examples. The optimal
number of features in a model depends on the training set size and on the classification method
used, as illustrated in Figure 3.3.

Dimensionality reduction methods can be supervised or unsupervised. Unsupervised methods
such as principal component analysis (PCA) try to transform the data in order to obtain a smaller
set of variables that retains as much of the information in the data as possible. Supervised dimen-
sionality reduction methods attempt to extract a set of features that retain the most characteristic
information for a given problem.

In the medical field, a vast amount of data can be recorded for each patient. However, a large
amount of this data is not relevant when trying to answer a specific question. This poses a great
challenge for unsupervised feature selection methods. In cases such as this, supervised methods are
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Figure 3.3: Optimal number of features in a model as a function of the training set size and the
classifier used

more appropriate. For this reason, this thesis only explores the use of supervised dimensionality
reduction methods.

Supervised feature selection techniques typically fall into two categories: feature ranking and
subset selection. Feature ranking methods independently rank each feature by a metric and elim-
inate all the features that do not achieve an adequate score. Subset selection methods search the
set of possible solutions for the optimal subset of features. This thesis uses both feature selection
techniques. Feature ranking methods are usually very efficient and can be used to drastically re-
duce the dimensionality of the data. Once the data are of manageable size, optimal subset selection
methods that take into account the interaction between features can be used to obtain a final feature
set. The pseudocode for these methods is provided in Algorithms 1 and 2.

Because one of the goals of this thesis was to obtain parsimonious models that can be easily
interpreted biologically, methods that transform the original features into a smaller set of mathe-
matically related features that combine information from all the available data were not employed.
Instead, three feature ranking metrics that lead to easily interpretable models were compared.

The three measures of association between features and classification output that were com-
pared are based on the value of the chi-squared statistic with respect to the class, the information
gain ratio with respect to the class, and a conditional probability-based technique that measures the
mutual association between class decisions and feature values based on conditional probabilities.

Given a data set (X, Y ) of data examples and associated classes, let n be the number of samples
in the data set. X is an n×mmatrix, containing n instances ofm features. Y is the target attribute,
and it can take on c different values.
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Algorithm 1 Fliter(S ′)

Require: S = {(x1, y1), . . . (xK , yK)}
Require: length(xi) = F

1: for i = 1 to F do
2: Rank(feature i, S)
3: end for
4: S ′ = (HighestRankedFeatures(X, Y ))
5: return S ′

Chi-squared feature selection
The Pearson Chi-squared statistic can be used to measure the association between the target class
feature and the input features [71]. This statistic assesses whether paired observations of two vari-
ables, expressed in a contingency table, are independent of each other. Consider a feature F that
takes on f values and target feature Y which takes on c values. Each data observation is allo-
cated to one cell of an f × c - dimensional contingency table according to its outcome. Let Oi,j

denote the frequency for a particular combination of values of the two variables. The null hypoth-
esis is that the occurrence of these outcomes is statistically independent. Under the assumption of
independence, the expected frequency in a cell is:

Ei,j =

f∑
k=1

Ok,j

c∑
k=1

Oi,k

n
. (3.1)

The value of the chi-squared test statistic is:

χ2 =

f∑
i=1

c∑
j=1

(Oi,j − Ei,j)2

Ei,j
. (3.2)

Continuous features are discretized into intervals according to a method described in [71]. At
first, the values of the attribute F are ordered, and each value forms its own interval. The chi-
squared test is performed as described above. Then, pairs of adjacent intervals with the lowest
χ2 values are merged until all of the intervals have χ2 values exceeding a significance level. This
process is repeated with a decreased significance level for each attribute, until an inconsistency
rate is exceeded in the discretized data. An inconsistency occurs when two patterns are the same
but classified into different categories. An inconsistency level of 5% is allowed.

Gain-Ratio feature selection
Gain-Ratio measures an attribute’s usefulness in classification using information theory concepts.
It is related to a measure commonly used in information theory, called entropy. This measure
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characterizes the impurity of a collection of examples. More formally, given a collection X , the
entropy of X relative to the c-wise classification described above is:

Entropy(X) =
c∑
i=1

−pi log2 pi (3.3)

where pi is the proportion of X belonging to class i [83]. The interpretation of entropy is that it
specifies the minimum number of bits of information needed to encode the classification of an
arbitrary member of X .

Given entropy as a measure of the impurity of a collection of training examples, information
gain can be defined as a measure of the effectiveness of an attribute in classifying the training
data. Information gain is defined as the expected reduction in entropy caused by partitioning the
examples according to this attribute. More formally, the information gain Gain(X,F ) of a feature
F , relative to a collection of examples X , is defined as:

Gain(X,F ) = Entropy(X)−
∑

v∈V alues(F )

|Xv|
|S|

Entropy(Xv) (3.4)

where V alues(F ) is the set of all possible values for feature F andXv is the subset ofX for which
attribute F has value v [83]. Intuitively, Gain(X,F ) is the information provided about the target
function value, given the value of some other feature F . Gain(X,F ) is the number of bits saved
when encoding the target value of an arbitrary member of X , by knowing the value of feature F .

The information gain measure favors attributes with many values over those with few attributes.
One measure that avoids this problem is the gain ratio. This measure penalizes attributes with
many values by incorporating a term called split information that is sensitive to how broadly and
uniformly the feature splits the data:

SplitInformation(X,F ) = −
c∑
i=1

|Xi|
|X|

log2

|Xi|
|X|

(3.5)

where X1 . . . Xc are the subsets of examples resulting from partitioning X by the c-valued target
attribute Y [83]. Note that SplitInformation is actually the entropy of X with respect to the
values of feature F .

The gain ratio measure is then defined as follows [83]:

GainRatio(X,F ) =
Gain(X,F )

SplitInformation(X,A)
. (3.6)

In order to assess the value of continuous-valued features, new discrete-valued features are
dynamically defined by partitioning the continuous attribute values into a discrete set of intervals.
For a feature F , a new boolean feature Ft is created. Ft is true if F < t and false otherwise. In order
to pick the threshold t that produces the greatest gain ratio, the examples are sorted according to the
continuous attribute F , and adjacent examples that differ in their target classification are identified.
A set of candidate thresholds can be generated midway between the corresponding values of F .
These candidate thresholds can then be evaluated by computing the gain ratio associated with each.
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Two-way conditional probability feature selection
Probability based methods are another set of approaches for characterizing the association between
features and a target class. A feature selection method proposed by Ahmad and Dey [1] measures
the mutual association between class decisions and feature values using conditional probabilities.
This method calculates the significance of an attribute using a two-way association function: a
feature-to-class association and a class-to-feature association. The feature-to-class association is
based on the observation that a change in the feature value should cause a change in the class
decision, while the class-to-feature value association is based on the observation that a change in
the class decision should be accompanied by a change in the feature’s value.

Consider a contingency table O for a feature F and class Y , as described in Section 3.2. Con-
ditional probabilities of classes and feature values can be calculated based on the frequencies in
the contingency table:

Pr[Yi|Fj] =
Oi,j

f∑
k=1

Ok,j

Pr[Yi|F {
j ] =

c∑
k=1

Oi,k −Oi,j

n−
f∑
k=1

Ok,j

Pr[Fi|Yj] =
Oi,j
c∑

k=1

Oi,k

Pr[Fi|Y {
j ] =

f∑
k=1

Ok,j −Oi,j

n−
c∑

k=1

Oi,k

where A{ is the complement of set A.
The feature-to-class association is a function of the discriminating power of the values of the

feature:

DiscriminationPower(F ) =

c∑
i=1

f∑
j=1

max(Pr[Yi|Fj], P r[Yi|F {
j )

f
− 1. (3.7)
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The class-to-feature association is a function of the separability of the decision class with re-
spect to the feature:

Separability(F ) =

f∑
i=1

c∑
j=1

max(Pr[Fi|Yj], P r[Fi|Y {
j )

c
− 1. (3.8)

The overall significance of an attribute is calculated as the average of the feature-to-class asso-
ciation and the class-to-feature association.

Wrapper-based feature selection
In order to obtain a stable, parsimonious model that only uses informative features, a second feature
selection step can be performed by evaluating the suitability of subsets of features as a group, not
just individually. This step is computationally intense, and for the problems explored in this thesis it
cannot be performed without some prior dimensionality reduction. One way to evaluate the relative
merit of subsets of features is via a wrapper method. Wrapper algorithms search through the space
of possible feature sets and evaluate each subset of features by determining its performance when
used in conjunction with a classification model. The search can be performed by utilizing a genetic
algorithm for determining which subsets of features to evaluate.

Genetic algorithms represent the solution domain as a binary m-dimensional vector v, where
vi = 1 if feature i is selected as part of the feature subset, and vi = 0 otherwise. The fitness
function that measures the quality of a solution v is the leave-one-out cross-validation (LOOC)
accuracy of a classifier based on the features selected for solution v.

At first, many individual solutions are randomly generated to form an initial population. During
each successive generation, a proportion of the existing population is selected to breed a new
generation of solutions. Individual solutions are selected through a fitness-based process, where
fitter solutions are more likely to be selected. The next step is to use these selected individuals to
generate a second generation population of solutions through genetic operators such as crossover
and mutation.

For each new solution to be produced, a pair of parent solutions is selected for breeding. The
child is produced by combining the two parents using crossover and mutation. Crossover involves
comparing individual bits between the two parents. Single-point crossover selects one crossover
position k ∈ {1, . . . ,m}. Two new offsprings are produced: one containing the first k bits of the
first parent and the last m − k bits from the second parent, and another offspring containing the
first k bits of the second parent and the last m− k bits from the first parent. Multi-point cross-over
selects multiple such cross-over points. Uniform cross-over, which is used in this thesis, allows
each position to be a possible cross-over point with a specific probability. Each of the bits of an
offspring can also go through a mutation, which involves flipping the value of a bit with a certain
probability.
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New generations of populations are produced and evaluated until a termination criterion is
met. At this point, the highest ranking solution is selected. The pseudocode for this procedure is
provided in Algorithm 2.

Algorithm 2 WrapperSearch(S∗)

Require: S = {(x1, y1), . . . (xK , yK)}
1: i← 0
2: while Stopping criterion not met do
3: Si = GenerateFeatureSubset(S)
4: accuracyi = Evaluate(Si)
5: end while
6: return argmaxSi={(x′1,y1)...(x′K ,yK)}{accuracyi}

3.3 Classification methods
Classification methods use a supplied set of training data containing inputs and their associated
labels to learn a model of the relationship between the input values and the labels. This model
should be able to accurately describe the training data, and to make predictions about which cate-
gory previously unseen data inputs belong to. The pseudocode for a learning a classifier is provided
in Algorithm 3. This section reviews some classification methods whose results are fairly easy to
interpret, such as logistic regression and linear discriminant analysis, as well as more complex
non-linear methods such as functional trees (FTs), support vector machines (SVMs), and decision
stump boosting.

Algorithm 3 BuildModel(S)

Require: S = {(x1, y1), . . . (xK , yK)}
1: S ′ ←Filter(S)
2: S∗ ←WrapperSearch(S ′).
3: M ← TrainClassifier(S∗)
4: return M

Linear discriminant analysis
Linear discriminant analysis (LDA) [29] is closely related to regression. It attempts to express the
target class variable Y as a linear combination of the predictors X . Suppose that in our data set
(X, Y ), the target class is binary. Then LDA tries to find a linear separator w such that [29]:

y = wtx (3.9)



32

Figure 3.4: LDA example

provides the best separation between the two classes. This is illustrated in Figure 3.4. Fisher’s
linear discriminant w maximizes the ratio of between-class scatter to within-class scatter [29].
When the conditional densities p(s|c = 0) and p(x|y = 1) are multivariate normal with equal
covariances Σ and means µ0 and µ1 then the optimal decision boundary has the equation [29]

w = Σ−1(µ1 − µ0). (3.10)

Logistic regression with ridge estimator
Logistic regression models the probability of occurrence of an event by fitting data to a logit func-
tion. Suppose that in our data set (X, Y ), the target class Y is binary. The probability that an
observation follows a logistic regression model is [13]:

p(Xi) =
exp(Xiβ)

1 + exp(Xiβ)
, (3.11)

where β is an m-dimensional parameter vector. The log-likelihood l of the data under this model
is [13]:

l(β) =
n∑
i=1

{Yi log p(Xi) + (1−Xi) log(1− p(Xi))}. (3.12)

Maximizing l(β) yields the maximum likelihood estimator for β. This estimator maximizes the
likelihood of the observed data given the model.
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The maximization of the log-likelihood function can be done with a penalty on the norm of β
[13]:

lλ(β) = l(β)− λ||β||2, (3.13)

where ||β|| = (
m∑
j=1

β2
j )

1/2 is the norm of the parameter β. Let β̂λ be the value that maximizes

this equation. λ is called a ridge parameter and it controls the amount of shrinkage of the norm
of β. When the number of predictors m is large compared to the number of samples n, this
parameter can circumvent the problem of predictor collinearity. The new model parameter, β̂λ, is
somewhat biased but has small variance. This parameter can be obtained by the Newton-Raphson
maximization procedure, as described by Cessie and Houwelingen [13].

Functional trees
Tree induction methods [99] and regression models are popular techniques for supervised learning
tasks, both for the prediction of nominal classes and numerical values. Regression methods fit
a simple linear or logistic model to the data, resulting in low variance but potentially high bias
estimates. If irrelevant attributes are included in a regression model, this usually results in a smaller
error on the training data, but will not, however, increase the predictive power over unseen cases,
and can sometimes significantly reduce accuracy. Decision trees, such as the one illustrated in
Figure 3.5, classify data into categories based on a series of questions or rules about attributes
of the class. A path in a decision tree can be seen as a conjunction of boolean expressions that
explain how to classify the data. Decision tree classifiers are able to capture nonlinear patterns in
the data, but are less stable and more prone to overfitting. These two schemes can be combined
into FTs, which are able to use decision nodes with multivariate tests and leaf nodes that make
predictions using linear or logistic functions. FTs are efficient to construct and easy to interpret,
they can be used for either classification or numerical prediction, and they are formed through a
constructive induction process that selects relevant attributes automatically, without changing the
representation of the data or projecting it into a different space. This property of FTs is important
in the medical imaging field, where it is necessary to be able to interpret the role of different
attributes in the prediction process. This knowledge can provide new insights about the disease
and treatment options.

FTs were first introduced by Gama [37]. Next, a short description of the algorithm is provided.
The works of Gama [37] and Landwehr et al. [64] offer more implementation details. A FT is built
by starting at the root. The existing set of attributes is extended using a constructor function that fits
regression functions using the LogitBoost algorithm [64]. This algorithm starts out with a simple
linear regression model based on the most predictive attribute. In every iteration, it computes re-
sponse variables that encode the error of the currently fit model on the training examples, and then
tries to improve the model by adding another simple linear regression function fit by least squared
error. Because every multiple linear regression function can be expressed as a sum of simple linear
regression functions, the general model does not change whether multiple or simple linear regres-
sion functions are used. LogitBoost is guaranteed to converge to the maximum likelihood estimate.
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Figure 3.5: A decision tree for determining whether a lesion transformed to a higher grade

However, if the method is stopped before convergence, this will result in the automatic selection of
the most relevant attributes. Therefore, LogitBoost is stopped based on a cross-validation method:
more iterations are performed (and therefore more attributes are included) only if this improves
prediction accuracy over unseen instances. Once the set of attributes is extended, the attribute that
maximizes the information gain ratio [99] is selected as a splitting criterion. The child nodes are
split recursively, by incrementally refining the regression models already fit at higher levels in the
tree, thus taking into account the attributes that are only predictive locally. Tree growing stops
if a node contains less than fifteen examples or if a particular split results in two subsets, one of
which contains less than two examples. A linear model is only built at a node if that node contains
at least five examples. Otherwise, a leaf with the majority class of the node is returned. Once a
tree has been grown, it is pruned back using a bottom-up procedure. At each non-leaf node three
possibilities are considered: performing no pruning, replacing the node with a leaf that predicts
a constant, or replacing it with a leaf that predicts the value of the constructor function that was
learned at the node during tree construction. The option that leads to the smallest error on a prun-
ing data set is selected. Predicting a test instance using a FT is accomplished by traversing the tree
in a bottom-down fashion. At each decision node the local constructor function is used to extend
the set of attributes, and the decision test determines the path that the instance will follow. Once
a leaf is reached, the instance is classified using either the constant or the constructor function at
that leaf.
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Figure 3.6: SVM separating hyperplane

Support vector machines
SVMs are a popular and versatile classification technique. In the simplest linear form, an SVM
is a hyperplane that separates a set of positive examples from a set of negative examples with
maximum margin. The margin is defined by the distance of the hyperplane to the nearest positive
and negative examples. The separating hyperplane is

u = wT · x− b, (3.14)

where w is the normal vector to the hyperplane, and x is the input vector [95]. The separating
hyperplane is the plane u = 0, and the nearest points lie on the planes u = ±1. The margin ρ is
thus ρ = 1/||w||2. An example is illustrated in Figure 3.6.

Maximizing the margin can be expressed as an optimization problem:

min
w,b

1

2
||w||2 s.t. yi(w

T · xi − b) ≥ 1, ∀i, (3.15)

where xi is the ith training example and yi is its associated label, which can take on the values ±1
[95].

Using a Lagrangian, this optimization can be converted into a dual form which is a quadratic
programming problem where the objective function L is solely dependent on a set of Lagrange
multipliers αi [95]:

L(α) = min
α

1

2

n∑
i=1

n∑
j=1

yiyj(xi · xj)αiαj −
n∑
i=1

αj

s.t.

n∑
i=1

yiαi = 0
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Figure 3.7: SVM slack variables

Once the Lagrange multipliers are determined, the normal w and the threshold b can be derived
as:

w =
n∑
i=1

yiαixi

b = wT · xk − yk for αk > 0.

Not all data sets are linearly separable. Slack variables, illustrated in Figure 3.7, can be intro-
duced to penalize the failure of an example to reach the correct margin:

min
w,b,ξ

1

2
||w||2 + C

n∑
i=1

ξi

s.t. yi(w
T · xi − b) ≥ 1− ξi,∀i,

where ξi are slack variables the permit the margin failure and C is a parameter which trades off
wide margin with small number of margin failures [95].

SVMs can be even further generalized to non-linear classifiers using kernel functions:

u =
n∑
k=1

yjαjK(xj, x)− b, (3.16)

where K is a kernel function that measures the similarity or distance between the input vector x
and the stored training vector xj [95]. An example of how a kernel can transform a nonlinearly
separable data set into a linearly separable one can be seen in Figure 3.8. Polynomial kernels are
used in this thesis.
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Figure 3.8: Example of SVM kernel application

Due to its large size, the quadratic programming problem that arises from SVMs cannot be
easily solved via standard quadratic programming (QP) techniques. Platt introduced sequential
minimal optimization (SMO), a simple algorithm that can quickly solve the SVM QP problem
without any extra matrix storage and without using numerical QP optimization steps [94]. SMO
decomposes the overall QP into sub-problems and solves the smallest possible optimization prob-
lem at every step. For the standard SVM QP problem, the smallest possible optimization involves
two Lagrange multipliers. At every step, SMO chooses two Lagrange multipliers to jointly opti-
mize, finds the optimal values for these multipliers, and updates the SVM to reflect the new optimal
values [94].

Decision stump boosting
Boosting is an important recent development in classification methodology. It works by sequen-
tially applying a classification algorithm to re-weight versions of the training data and then taking
a weighted majority vote of the sequence of classifiers thus produced [36], as illustrated in Figure
3.9. Given the training data (X, Y ), with Yi = −1 or 1, the classification function is defined as:

F (x) =
W∑
i=1

wifi(x), (3.17)

where each fi(x) is a simple classifier, and wi are constants. The corresponding prediction is
sign(F (x)). The classifiers fi(x) are trained onW weighted versions of the training sample. At the
beginning, all samples have equal weights. Then, in subsequent iterations, currently missclassified
examples are given higher weight. The final classifier is defined as a linear combination of the
classifiers from each stage. Let erri be the weighted classification error at iteration i. Then wi =
log((1− errm)/errm). The training examples that are missclassified are given new weights

vj ← vj exp(wi1Ci 6=fi(Sj)) (3.18)
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Figure 3.9: Boosting

after which the weights are re-normalized to add up to 1.
Decision stumps are used for the weak learners fi. Decision stumps are single-split decision

trees with only two terminal nodes. For numerical data, these are classifiers of the type x ≤ t,
where t is a threshold automatically chosen to maximize classification accuracy.

The success of this seemingly ad hoc technique can be explained in terms of the well-known
statistical principles of additive modeling and maximum likelihood [36].

Mixed effects models
A mixed effects model is an extension of a regression model for cross-sectional data that intro-
ducing random effects in the model to account for variations between individuals and correlations
within individuals. The random effects in a mixed effects model not only incorporate heterogeneity
in the data but also incorporate correlation between the multiple measurements within each indi-
vidual or cluster. This is because the data within the same individuals or the same clusters share
the same random effects or similar characteristics, which leads to correlation in the data.

Let yi,j be the jth response value for individual or cluster i, where i = 1, 2, . . . n and j =
1, 2, . . . ni. Let yi = (yi,1, . . . yi,ni

) be the ni repeated observations within individual or cluster i.
A general linear mixed effects model can be written as:
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yi = Xiβ + Zibi + ei

bi ∼ N(0, D)

ei ∼ N(0, Ri),

where β are the population parameters or fixed effects, bi are the random effects,Xi is a matrix con-
taining the covariates of individual i, ei are random errors of within-individual measurements, Ri

is a variance-covariance matrix of within-individual observations, and D is the random covariance
matrix of the random effects [136].

Logistic mixed effects models link the mean response of the data, µ, to the covariates, using
the logit link:

g(µ) = log
µ

1− µ
,

where µ = E(y) = P (y = 1). The logistic mixed effects model can be written as:

g(µi,j) = xTi,jβ + zTi,jbi + ei

bi ∼ N(0, D),

where µi = E(yi,j|β, bi) is the conditional mean, xi,j and zi,j are vectors of covariates, β is a vector
of mixed effects, and D is a covariance matrix [136].

Statistical inference for mixed effects models is typically based on the maximum likelihood
method or the restricted maximum likelihood method [136].

Mixed effects can be used to model data in which several biopsy samples are acquired for each
patient in the study. A simple logistic regression model with random intercept for a binary response
yi,j taking only two possible values can be written as:

log
µi,j

1− µi, j
= β0,i + β1xi,j = β0 + bi + β1xi,j

bi ∼ N(0, d2),

where µi,j = E(yi,j) = P (yi,j = 1) and β0,i = β0 + bi.

3.4 Multivariate survival analysis
Survival analysis examines and models the time it takes for events to occur. A typical such event
is death. However, applications of survival analysis are much broader. Survival analysis focuses
on the distribution of survival times.
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Kaplan-Meier estimator of survival
The Kaplan-Meier estimator estimates the survival function from life-time data. Let S(t) be the
probability that an item from a given population will have a lifetime exceeding t. For a sample from
this population of sizeN , let the observed times until death ofN sample members be t1, t2, . . . , tN .
Corresponding to each ti is ni, the number at risk just prior to time ti, and di, the number of deaths
at time ti.

The Kaplan-Meier estimator of the survival function at time t is [55]:

Ŝ(t) =
∏
ti≤t

ni − di
ni

. (3.19)

When there is no censoring, ni is just the number of survivors just prior to time ti. With
censoring, ni is the number of survivors less the number of censored cases.

Cox proportional hazards model
The most interesting survival modeling examines the relationship between survival and one or
more covariates. The Cox proportional hazards regression model is the most widely used such
methods. One representation of the survival function, as noted in the previous subsection, is S(t) =
Pr(T > t). Another representation of the distribution of survival times is the hazard function,
which estimates the risk of death at time t conditional on survival to that time [55]:

h(t) = lim
∆t→0

Pr[(t ≤ T < t+ ∆t)|T ≥ t]

∆t
.

The Cox proportional hazards model examines the relationship of the survival distribution to
covariates, by specifying a model for the log hazard. For example, a parametric model based on
the exponential distribution is written as [55]:

log hi(t) = α(t) + β1xi,1 + β2xi,2 + · · ·+ βkxi,k, (3.20)

where α(t) = log h0(t), is the baseline hazard function.
Consider two observations i and j. The hazard ratio for these two observations is [55]:

hi(t)

hj(t)
=
h0(t) exp(βxi)

h0(t) exp(βxj)
=

exp(βxi)

exp(βxj)
, (3.21)

which is independent of the time t. Consequently, the Cox model is a proportional hazards model.
The Cox proportional hazards model can handle time-dependent covariates and lagged covari-

ates.
In order to determine whether a fitted Cox regression model adequately describes the data, it is

necessary to check for proportional hazards, nonlinearity, and influential observations [55].
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Brier score
It is possible to measure the accuracy of survival models using the Brier score. This score is a
function that measures the accuracy of a set of probability assessments. It measures the average
squared deviation between predicted probabilities for a set of events and their outcomes.

The most common formulation of the Brier score is [55]:

BS =
1

N

N∑
t=1

(ft − ot)2, (3.22)

where ft is the probability that was forecast, and ot is the actual outcome of the event at instance t.

3.5 Evaluating the accuracy of a model
For classification problems, it is natural to measure a classifier’s performance in terms of the ac-
curacy. The classifier predicts the class of each instance: if it is correct, it is counted as a success;
if not, it is an error. The accuracy is just the proportion of correct classifications over a whole
set of instances, and it measures the overall performance of the classifier. The classifier’s likely
future performance on new data is, of course, more interesting than its past performance on old
data. To predict the performance of the classifier on new data, the classification accuracy needs
to be assessed on a test set that played no role in the formation of the classifier. When a large
amount of data is available, a model can be learned based on a large training set, and evaluated
based on another large test set. The error rates of the model on the training and test sets converge
to an asymptotic error rate, as the size of the data set increases. This is illustrated in Figure 3.10.
The difference between the training set error and the test set error is due to overfitting. Once the
accuracy has been determined, it is acceptable to produce a final classifier for actual use based on
both the training and the test data [134].

When the amount of labeled data is limited, the question becomes how to make the most of
the limited data set. From this dataset, a certain amount is held out for testing, and the remaining
is used for training. The more data are used for the training, the better the classifier. The more
data are used for testing, the better the accuracy estimate. Cross-validation and bootstrapping are
techniques for dealing with this dilema. Among these, bootstrapping is the evaluation method of
choice in most practical limited-data situations [134].

Cross-validation
Cross-validation reserves a certain amount of data for testing and uses the remainder for training,
but in order to mitigate any bias caused by a particular set being chosen for holdout, the whole
process is repeated, training and testing, several times, with different random samples. The initial
data set is split into a fixed number of partitions, or folds. Each partition is in turn used for testing
while the remainder of the data is used for training. The accuracy estimates obtained during the
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Figure 3.10: The training set and test set error rates converge to an asymptotic error

different iterations are averaged to yield the overall accuracy. LOOC is a special case of cross-
validation, in which each fold contains only one data sample; thus one sample is in turn held out
for testing, while the rest of the data is used for training. This procedure is attractive because it
uses the greatest possible amount of data in each case, and no random sampling is involved. The
pseudocode for this procedure is provided in Algorithm 4. Thus, leave-one-out offers the chance
to make the most out of a small data set and to obtain as accurate an estimate of the classifier’s
performance on unseen data as possible [134].

Algorithm 4 Leave-One-Out Cross-Validation(D)

Require: D = {(x1, y1), . . . (xN , yN)}
1: for i = 1 to N do
2: Di ← D{(xi, yi)}.
3: Mi ← BuildModel(Di)
4: errori ← |Mi(xi)− yi|
5: end for

6: return accuracy = 1− 1
N

N∑
i=1

errori

Bootstrapping
Cross-validation methods provide unbiased, but high variance estimates of a classifier’s prediction
accuracy. This means that if the whole validation process were to be repeated, cross-validation
estimates could vary significantly. Bootstrapping, on the other hand, provides nearly unbiased
estimates of the prediction accuracy that are relatively low in variance, by repeating the validation
process several times on different samples of the data, thus also avoiding overfitting. Bootstrapping



43

is based on the statistical procedure of sampling with replacement. The data set is sampled with
replacement to form a training set. For this, a data set with N instances is sampled N times, with
replacement, to give another data set ofN instances. Because some elements in this second data set
will very likely be repeated, there must be some instances in the original data set that have not been
picked - the test instances. For a reasonably large data set, the test set will contain about 36.8% of
the instances, and the training set will contain about 63.2% of them [134], leading to the name 0.632
bootstrapping. Some instances will be repeated in the training set, bringing it up to a total size of
N , which is the same as the original data set. The accuracy estimate obtained by training a classifier
on the training set and calculating its accuracy on the test set will be a pessimistic estimate of the
true prediction accuracy of a model on new data drawn from the sampling distribution, because
even though the training set has size N , it only contains 63.8 % of the original data, which is far
less than the amount used in LOOC. To compensate for this, the accuracy on the test sample is
combined to that of the training sample, to give an unbiased estimate of the overall accuracy:

accuracy = 0.632× accuracytest + 0.368× accuracytraining. (3.23)

Then, the whole bootstrap procedure is repeated several times, with different replacement samples
for the training set, and the results are averaged. The pseudocode for this procedure is provided in
Algorithm 5.

The bootstrap procedure offers the best way to estimate prediction accuracy for very small data
sets [134]. The estimate of the accuracy represents an unbiased estimate of the performance of the
classifier on new data drawn from the sampling distribution [134]. However, before a model can be
used with confidence in clinical practice, it is necessary to validate it on a completely independent
data set, because the sampling distribution may not always accurately summarize the population
distribution.

In this thesis, both LOOC and 0.632 bootstrapping with 200 repetitions [31] are used in order to
evaluate the ability of the pattern recognition methods employed to generalize to unseen examples
drawn from the sampling distribution.

The pseudocode for these methods is provided in Algorithms 4 and 5. Thus, the data set given
as input to these algorithms contains N samples. The cross-validation algorithm calls Algorithm 3
using only N − 1 of the original samples each time. The bootstrapping algorithm calls Algorithm
3 using an N -sample data sets obtained by resampling the original data set with replacement.
Algorithm 3 calls the wrapper-search algorithm (Algorithm 2) using the reduced or resampled data
set. The wrapper-search algorithm, in turn, calls the cross-validation or bootstrapping algorithms
respectively in the Evaluate step, thus ensuring that all of the prediction accuracy estimates are
based on data that were left out during the model building.

3.6 EM imputation of missing values
Missing values often hinder the analyses of multivariate data. The most common practice is to
remove data instances that contain missing values. However, in the medical field this practice is
not acceptable, because even though the rate of missing values for each parameter is not very high,
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Algorithm 5 Bootstrapping(D)

Require: D = {(x1, y1), . . . (xN , yN)}
1: for i = 1 to N do
2: for b = 1 to NFOLDS do
3: Si ← Resample(D)
4: errorb = 0
5: totalb = 0
6: if (xi, yi) /∈ Si then
7: Mi,b ← BuildModel(Si)
8: errori,b ← |Mi,b(xi)− yi|
9: errorb ← errorb + errori,b

10: totalb ← totalb + 1
11: errorb ← errorb/totalb
12: end if
13: end for
14: end for

15: accuracyb ← 1− 1
N

N∑
i=1

errorb

16: M ← BuildModel(D)

17: accuracyt ← 1− 1
N

N∑
i=1

|M(xi)− yi|

18: return accuracy ← 0.632× accuracyb + 0.368× accuracyt

there are very few patients with complete data. In this thesis, the EM algorithm is used for filling in
missing data with plausible values, as well as to estimate the histological parameters when desiring
to predict tumor cellularity based on in vivo parameters alone.

Assuming a specific data model, it would be easy to estimate the model parameters if the miss-
ing values are known. Similarly, if the model parameters are known, it would be possible to use
the model to estimate the missing values. The EM algorithm provides an iterative approach to the
problem of maximum likelihood parameter estimation in statistical models with latent variables.
In the expectation (E) step, the values of the missing variables are estimated by calculating the
probability of the latent variables given the observed variables and the current values of the model
parameters. In the maximization (M) step, the parameters are adjusted based on the current esti-
mates of the missing values. These steps are repeated until the sequence of parameters converges
to the maximum likelihood estimates that average over the distribution of missing values [58]. The
EM algorithm for multiple imputations for Gaussian data is presented in detail by Schafer [109].
Below is a short description of the algorithm.

The dataset Y is assumed to be a matrix of n rows and m columns, with the rows correspond-
ing to observations and the columns corresponding to variables. The complete dataset contains
observed and missing portions: Y = (Yobs, Ymis). Let yi,j , with i ∈ 1 . . . n and j ∈ 1 . . .m, denote
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an individual element of Y and let yi denote a row of the data matrix. The main model assumption
is that y1 . . . yn are independent realizations of a multivariate normal distribution with mean vector
µ and covariance matrix Σ.

When both µ and Σ are unknown, the conjugate prior distribution for the multivariate normal
data model is the normal inverted-Whishart distribution [109]. Suppose that Σ is inverted-Wishart
and that µ given Σ is assumed to be conditionally multivariate normal. Then the complete-data
likelihood function is [109]:

L(θ|Y ) ∝ |Σ|−
n
2 exp

{n
2
trΣ−1S

}
exp
{
− n

2
(ȳ − µ)TΣ−1(ȳ − µ)

}
. (3.24)

The complete-data posterior is normal inverted-Wishart [109]:

µ|Σ, Y ∝ N(µ′0, (τ
′)−1Σ),Σ|Y ∝ W−1(m′,Λ′), (3.25)

where the updated parameters are [109]:

τ ′ = τ + n;m′ = m+ n;µ′0 =
( n

τ + n

)
ȳ +

( τ

τ + n

)
µ0;

Λ′ =
[
Λ−1 + nS +

τ

τ + n
(ȳ − µ0)(ȳ − µ0)T

]
. (3.26)

The prior distribution of µ is assumed to be uniform over the m-dimensional real space. Under
the improper prior, the complete-data posterior becomes [109]:

µ|Σ, Y ∝ N(ȳ, n−1Σ); Σ|Y ∝ W−1(n− 1, (nS)−1). (3.27)

If Y were fully observed, then the maximum likelihood (ML) estimation problem would amount
to maximizing log(L(θ|Y ). However, the ML estimates cannot be obtained in closed form when
Y has missing values. The E-step of EM calculates the conditional expectations of the missing
variables conditioned on the observed variables and fixed model parameters. This amounts to
calculating the expected complete log likelihood, and thus to finding the complete-data sufficient
statistics over P (Ymis|Yobs, θ) for assumed value of θ. The sufficient statistics are of the form∑
i

yi,j and
∑
i

yi,jyi,k [109]. Thus, it is necessary to find the expectations of yi,j and yi,jyi,k over

P (Ymis|Yobs, θ). Because the rows of Y are independent given θ, the following is true:

P (Ymis|Yobs, θ) =
n∏
i=1

P (yi(mis)|yi(obs), θ). (3.28)

The distribution P (yi(mis)|yi(obs), θ) is a multivariate normal linear regression of yi(mis) and yi(obs)
[109]. The parameters of this regression can be calculated by sweeping the θ-matrix on the posi-
tions corresponding to the variables in yi(obs), as described by Schafer [109]. The E-step consists
of calculating and summing the expected values of yij and yijyik for each j and k. Carrying out the
M-step involves maximizing the expected complete log likelihood with respect to the parameters.
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3.7 Applications in brain tumor diagnosis, characterization,
and treatment

The potential of ex vivo and in vivo NMR has lately been extensively exploited in conjunction with
multivariate pattern analysis methods in the separation between normal brain and brain tumors
[60, 81, 104] as well as for the characterization of different types and degrees of malignancy in
tumors [2, 15, 27, 33, 40, 44, 73, 77, 79, 88, 90, 97, 98, 102, 106–108, 113, 114, 128, 132]. Recent
work using HRMAS for brain tumors has shown that tumor classification according to histological
type [2, 26, 45, 73, 90, 97, 119, 129] and grade [2, 33, 40, 82, 90, 97, 101, 102, 113, 119, 132,
139] is possible with the use of multivariate methods such as LDA [97, 132], SVMs [2, 132], least
square SVMs [2, 97, 132], logistic regression [101, 102], partial least square discriminant analy-
sis [33], and multi-layer perceptrons [2]. Moreover, HRMAS multivariate studies have successfully
revealed the status of tumor microheterogeneity [15, 106] and detected tumor metabolic alterations
before they were morphologically detectable [2]. These studies combine dimensionality reduction
methods such as PCA [26, 129, 132] and metabolite quantification [26, 97, 101, 102, 106, 107, 132,
135] with the robust classification methods listed above. Many dimensionality reduction methods
and classifiers combine the data in such a way that the extracted components lack physical mean-
ing. For example, in PCA, the entire spectra may participate in the principal components, and the
linear combination may mix both positive and negative weights, which might partly cancel each
other. On the other hand, some studies are biologically grounded through the use of concentrations
of known metabolites that are quantified using methods such as LCModel [89], QUEST[100], and
AQSES [115]. These methods quantify previously known chemicals in NMR spectra by incorpo-
rating prior knowledge about the set of frequencies that resonate for each chemical, the various
resonance peaks, the relative area of the various resonance peaks, and the shape of chemicals’
spectra. These methods could potentially overlook important information in the spectrum, such as
the presence of previously unquantified metabolites. In addition, methods that search for metabo-
lites independently based on their shape, such as QUEST [100], cannot distinguish between low
levels of a chemical or bad fits. Thus, whole-spectrum analyses with statistical feature selection
methods that maintain a link to the biological meaning of the features may provided additional
benefits when compared to PCA or quantification based methods.

Most previous studies fall into two categories: biologically-grounded studies that limit them-
selves at describing independent metabolite behavior while ignoring the metabolite interconnec-
tivity, and multivariate statistical studies that focus on brain tumor characterization and typing,
without a link to the biological meaning behind the statistical analyses. In this thesis, robust fea-
ture selection and classification methods are combined to obtain accurate classifications with a
parsimonious and interpretable set of features. The parsimonious sets of features can be used to
gain insight into the biological processes of tumor cells, to inform in vivo MRS acquisition based
on ex vivo results, and to better categorize tumor properties non-invasively. Compared to other
multivariate studies, this work includes a relatively large number of data samples of each category.
Another new aspect of our work is the detection of transformations in tumors that were previously
of the same category, thus gaining insight into the malignant transformations that occur in LGGs
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that are undergoing treatment.
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Chapter 4

Identification of malignant transformations
in gliomas using HRMAS spectra from
image guided tissue samples

The study presented in this chapter was published in the Journal of Artificial Intelligence in
Medicine [18] and reproduced with permission.

Recent oncology research shows that the evaluation of cellular metabolism can be very helpful
for the diagnosis and assessment of patients with brain tumors [18, 19]. HRMAS spectroscopy
provides detailed metabolic data of whole biopsy samples for investigating tumor biology (see
Figures 4.1, 4.2, and 4.3). Analysis of such data can lead to identification of metabolites that may
be used as biomarkers for discriminating different types of cancer, and for grading and assessing
the evolution of tumors. The identification of ex vivo metabolites can also inform the acquisition
of in vivo MRS, which can lead to a non-invasive assessment of tumor biology.

LGGs include a diverse group of tumors, with distinct characteristics, patterns of occurrence,
response to treatment, and survival timelines. The objective of this study is to determine whether
quantitative metabolic parameters derived from HRMAS data are predictive of the biologic behav-
ior of recurrent LGGs. This is an important clinical question because of the need to determine
whether a lesion has transformed to a more malignant phenotype and to treat each patient with the
therapy that is most likely to be effective for their particular lesion. Thus, the goal of this study was
to explore multivariate pattern recognition methods to generate statistical models of the metabolic
characteristics of recurrent LGGs that correlate with aggressive biology and poor clinical outcome.
These models can be used for the early detection of malignant transformations in individual LGGs,
and can lead to a timely change in treatment for each patient.

Generating a predictive model of the metabolic characteristics of recurrent gliomas using HRMAS
begins with identifying regions in the HRMAS spectrum that can be used to accurately discrimi-
nate between different tumor grades in patients with recurrent or newly diagnosed gliomas, without
making any prior assumptions about which metabolites are present. Initially, all the regions in the
HRMAS spectrum that have a mutual association with disease stage or tumor grade are identified.
Then, a small subset of these features is selected to build a parsimonious model that is capable
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Table 4.1: Characteristics of recurrent LGG patients enrolled in the study and treatment received
prior to recurrence, tabulated according to the tumor grade at recurrence

Characteristic Grade 2 Grade 3 Grade 4 Total
Male 9 13 4 26

Female 13 11 3 27
Mean age (years) 37.6 49.5 46 44.4

Biopsy 22 24 7 53
Resection 17 18 5 40

Chemotherapy 10 14 1 25
Radiation 4 6 1 11

Total 22 24 7 53

of diagnosing new patients based on their HRMAS spectra. These features are then traced back
to metabolites that are known to appear in the chemical shift range corresponding to the regions
that were identified. These metabolites represent the best set of discriminatory features and would
therefore also be of interest for acquiring in vivo data that would contribute to assessing glioma
grade.

In this study, robust feature selection and classification methods are combined to obtain accu-
rate classifications with a parsimonious and interpretable set of features. The parsimonious set of
features can be used to inform in vivo MRS acquisition, and hence to better characterize of tumor
properties non-invasively.

4.1 Data acquisition
This study involved 53 patients who had previously been diagnosed with WHO grade 2 gliomas
and were presenting for surgical resection due to suspected disease recurrence. The patients had re-
ceived prior standard-of-care treatment with surgical resection, radiation, or chemotherapy. Table
4.1 provides information about the patient baseline characteristics and treatment prior to recur-
rence, broken down by grade of recurrence. The differences in baseline characteristics and prior
treatment between patients with gliomas that recurred at different grades were not statistically
significant.

Pre-surgical in vivo MR examinations enabled the planning of targeted biopsies for sampling
tissue from patient lesions. Imaging parameters derived from post-processed data helped guide
the designation of small (5 mm3), putative tumor regions. Regions of suspected tumor located in
relatively homogeneous areas of the MR images were designated as targets for tissue sampling
using surgical navigation software.

Tissue samples were divided into two parts. One part was flash-frozen in liquid nitrogen and the
other was fixed using conventional pathological techniques. The fixed component was examined



50

Figure 4.1: HRMAS spectrum for a recurrent grade 2 glioma

Figure 4.2: HRMAS spectrum for a recurrent LGG that transformed to grade 3

by a pathologist for histological features and for consistency with the tumor grade diagnosis. Only
tissue samples that contained tumor cells and that were consistent with the diagnosis were included
in the analysis. Histological analysis of tissue samples collected from the patients revealed that 7
tumors transformed to grade 4, 24 transformed to grade 3, and 22 remained grade 2.

The frozen part of the tissue sample was analyzed with ex vivo HRMAS. Tissue samples weigh-
ing between 0.78 and 28.14 mg (mean = 9.56 mg) were loaded into a 35-µl zirconium rotor
(custom-designed by Varian) with 3 µl of 99.9% atom-D deuterium oxide containing 0.75 wt%
TSP for chemical shift referencing. Data were acquired at 11.7 T, 1◦C, 2250 Hz spin rate in a 4-
mm gHX nanoprobe with a Varian INOVA 500 MHz multi-nuclear spectrometer. The nanoprobe
gHX is an inverse probe, which was optimized for the direct detection of protons and the indirect
detection of X-nuclei (e.g. 13C, 31P, 15N), and which was equipped with a magic-angle gradient
coil. A rotor-synchronized 1D CPMG pulse sequence was run with TR/TE=4s/144 ms, 512 scans,
40,000 acquired points, and 20 KHz spectral width for a total time of 35 minutes. The 180◦ hard
pulses were spaced 888 ms apart and synchronized to two turns of the rotor, resulting in 162 pulses.
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Figure 4.3: HRMAS spectrum for a recurrent LGG that transformed to grade 4

4.2 Analysis
Pattern analysis methods were used to build models capable of distinguishing between patients
with recurrent LGGs that transformed to a higher grade and those that remained low grade.

The development of pattern recognition systems involves four major steps that can be identi-
fied as follows: preprocessing the data, reducing the data dimensionality, and selecting relevant
features, constructing a classifier, and predicting its performance on previously unseen data.

Preprocessing
The raw free induction decay HRMAS signal was preprocessed using jMRUI [122]. The original
time domain representation of the signal was transformed into the frequency domain using the fast
Fourier transform. The frequency domain signal was shifted using TSP as a reference, and phased
using zero-order phase correction. Residual water signal was then removed using Hankel-Lanczos
singular value decomposition. Each data sample in the frequency domain was normalized using
the ERETIC in vivo concentrations method [76] and the tissue weight of each sample.

The preprocessed data were grouped into frequency bins of widths 5, 10, 15, 20, and 25 samples
to account for the fact that different metabolites have different linewidths. The value used for each
bin was obtained using trapezoidal numerical integration for the 5, 10, 15, 20, or 25 samples
corresponding to that bin. This resulted in an input vector with 18,266 dimensions. This method
is equivalent to identifying areas of parts of the spectrum, and is therefore less susceptible to noise
than using all the spectral data points.

Feature selection
Because one of the goals of this project was to obtain parsimonious models that can be easily
interpreted biologically, non-linear dimensionality reduction methods or methods that transform
the original features into a smaller set of mathematically related features that combine informa-
tion from all the available data (such as PCA) were not employed. Instead, the dimensionality
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of the data was reduced by identifying regions in the HRMAS spectrum that have a mutual as-
sociation with disease stage or tumor grade, using three feature ranking metrics that led to easily
interpretable results. The three measures of association between features and classification output
that we compared are based on the value of the chi-squared statistic with respect to the class [71],
the information gain ratio with respect to the class [83], and a conditional probability-based tech-
nique that measures the mutual association between class decisions and feature values based on
conditional probabilities [1]. The 40 highest-ranked features in the HRMAS spectra were obtained
for each of the three association metrics, for each classification problem. Selecting 40 features was
a heuristic loose enough to include most features with high and moderate levels of association,
while keeping the second feature selection step computationally tractable.

A second feature selection step was performed in order to obtain a stable, parsimonious model
capable of diagnosing new patients. A wrapper-based feature selection method was used to eval-
uate the suitability of subsets of features as a group, not just individually. The wrapper-based
method [61] used genetic algorithms [43] to search through the space of possible feature sets and
evaluate each subset of features by determining its performance when used in conjunction with a
classification method. The genetic algorithm represented a solution as a binary vector that encoded
whether a feature was included in the subset or not. LOOC accuracy was used to measure the fit-
ness of a possible solution. At first, 50 individual solutions were randomly generated to form an
initial population. During each successive iteration, a subset of the population was chosen to breed
a new generation of solutions. Fitter solutions were more likely to be selected to breed. The new
generation of solutions was obtained from pairs of parent solutions by combining the two parents
using cross-over and mutation. Fifty iterations were performed, after which the highest ranked
solution was selected.

Classification
The classification methods used to build diagnostic models were LDA [29] (which attempts to
express the target class as a linear combination of predictors), logistic ridge regression [13] (which
models the probability of occurrence of an event by fitting the data to a logit function), FTs [37]
(which use decision nodes with multivariate tests and leaf nodes that make predictions using linear
functions), SVMs with a polynomial kernel [95] (which project the data into a different space and
separate positive and negative examples using a hyperplane with maximum margin), and decision
stump boosting [36] (which sequentially applies decision stump classification to re-weight versions
of the training data and then take a weighted majority vote of the sequence of classifiers thus
produced). These methods were chosen because of their popularity and ease of interpretation.

Parsimonious diagnostic models based on very few relevant features were obtained after data
preprocessing, dimensionality reduction, and model learning. The features chosen as part of the
most discriminative subset for each model were then traced back to metabolites that are known
to appear in the chemical shift range corresponding to the regions that were identified. These
metabolites correspond to the best set of discriminatory features and their in vivo acquisition would
be beneficial for assessing glioma grade non-invasively.
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4.3 Validation
The models were validated using training accuracy, LOOC, bootstrapping, receiver operating char-
acteristic (ROC) area under the curve (AUC), precision, recall, and F-measure. Algorithms 4 and 5
provide more details about the analysis pipeline and the number of data samples used at each step.

4.4 Results

Classification
In order to determine whether quantitative metabolic parameters derived from HRMAS data are
predictive of malignant transformations in recurrent LGGs, the performance of diagnostic models
for distinguishing between patients with recurrent gliomas that transformed to a higher grade and
those that remained grade 2 were compared. The results of this analysis are illustrated in Tables
4.2 and 4.3. Logistic ridge regression and decision stump boosting models were able to distinguish
between recurrent gliomas that transformed to a higher grade and those that did not with 100%
training accuracy, 96% LOOC accuracy, and 96% bootstrapping accuracy. LDA, FTs, and SVMs
were able to achieve LOOC accuracies above 90% and bootstrapping accuracies above 85%. The
three feature ranking methods were comparable in performance. The pattern recognition methods
for this classification task were further compared using a plot of precision and recall, illustrated in
Figure 4.4, and ROC curves, illustrated in Figure 4.5. These curves show that the five classification
methods are comparable, but the logistic ridge regression and decision stump boosting methods
have a slight advantage. The difference in performance between logistic ridge regression and
decision stump boosting and the other three methods is statistically significant, as can be seen
from the non-overlapping 95% confidence intervals of the bootstrapping accuracy presented in
Table 4.3.

An additional validation experiment was performed in order to address the concern that the
high classification accuracies obtained may be due to overfitting caused by the large number of
features explored. Labels of “transformed” and “not transformed” were randomly assigned to the
HRMAS spectra, and bootstrapping accuracy results were obtained using the same methods that
generated the best model in the previous analysis. Logistic ridge regression models were built
based on the data with random labels. The features were filtered using information gain ratio. The
best subset of features was then selected using a genetic wrapper-based search. The experiment
was repeated 100 times, for different random generations of the labels. The average bootstrapping
classification accuracy was 63% with a 95% confidence interval of [49-77%] (range 42-81%),
significantly lower and more variable than the 96% bootstrapping accuracy with a 95% confidence
interval of [95%-97%], obtained using the true labels. The random labels of the data sets that
resulted in bootstrapping accuracies in the high end of the range actually had a significant number
of labels that matched the true labels.

In order to assess the ability to distinguish between different degrees of disease malignancy
based on HRMAS data, two other comparisons were performed. Statistical models were built
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Table 4.2: Accuracy for distinguishing between recurrent LGGs which transformed to a higher
grade and those that did not using five classifiers trained on HRMAS features selected using three
feature selection methods

Accuracy Features LDA Logistic FT SVM Boosting

Training
Chi-square 0.93 1.00 0.93 0.94 1.00
Gain ratio 0.85 1.00 0.93 0.94 1.00

Conditional 0.94 1.00 0.92 0.94 0.98

LOOC
Chi-square 0.94 0.94 0.91 0.94 0.96
Gain ratio 0.93 0.96 0.91 0.93 0.94

Conditional 0.98 0.91 0.93 0.94 0.91

Bootstrap
Chi-square 0.87 0.96 0.89 0.85 0.96
Gain ratio 0.84 0.96 0.89 0.83 0.94

Conditional 0.89 0.95 0.89 0.83 0.94

ROC AUC
Chi-square 0.94 0.90 0.95 0.92 0.94
Gain ratio 0.99 1.00 1.00 1.00 1.00

Conditional 1.00 0.99 1.00 0.99 0.97

Precision
Chi-square 0.92 0.92 0.90 0.92 0.90
Gain ratio 0.98 1.00 0.99 1.00 0.99

Conditional 0.99 0.98 0.99 0.99 0.98

Recall
Chi-square 0.91 0.92 0.90 0.92 0.90
Gain ratio 0.98 1.00 0.99 1.00 0.99

Conditional 0.99 0.98 0.99 0.99 0.98

F Measure
Chi-square 0.91 0.92 0.90 0.92 0.90
Gain ratio 0.98 1.00 0.99 1.00 0.99

Conditional 0.99 0.98 0.99 0.99 0.98

to distinguish between recurrent LGGs that upgrade to grade 3 and those that remained grade 2
(100% training accuracy, 96% LOOC and bootstrapping accuracy), and between recurrent LGGs
that transformed to grade 4 and those that transformed to grade 3 (100% training accuracy, 98%
LOOC and bootstrapping accuracy). These comparisons also show a slight advantage when using
logistic ridge regression and decision stump boosting.

Overall, the results suggest that metabolic parameters derived from HRMAS are predictive
of malignant transformations in LGGs. Models that were built based on these parameters are
specific and sensitive enough to be used for diagnosing individual patients, and do not merely
reflect average differences between different patient groups. All classification and feature selection
methods exhibit good performance, with logistic ridge regression and decision stump boosting
slightly outperforming the other classification methods.
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Table 4.3: 95% confidence intervals for accuracy results (presented in Table 4.2) for distinguishing
between recurrent LGGs which transformed to a higher grade and those that did not using five
classifiers trained on HRMAS features selected using three feature selection methods

Accuracy Features LDA Logistic FT SVM Boosting

Training
Chi-square 0.82-0.98 0.93-1.00 0.84-0.99 0.84-0.99 0.93-1.00
Gain ratio 0.72-0.93 0.93-1.00 0.84-0.99 0.84-0.99 0.93-1.00

Conditional 0.84-0.99 0.93-1.00 0.82-0.99 0.84-0.99 0.90-1.00

LOOC
Chi-square 0.84-0.99 0.84-0.99 0.79-0.97 0.84-0.99 0.87-1.00
Gain ratio 0.82-0.98 0.87-1.00 0.79-0.97 0.82-0.98 0.84-0.99

Conditional 0.90-1.00 0.79-0.97 0.82-0.98 0.84-0.99 0.79-0.97

Bootstrap
Chi-square 0.86-0.88 0.95-0.97 0.88-0.90 0.84-0.86 0.95-0.97
Gain ratio 0.83-0.85 0.95-0.97 0.88-0.90 0.82-0.84 0.93-0.95

Conditional 0.88-0.90 0.94-0.96 0.88-0.90 0.82-0.84 0.93-0.95

ROC AUC
Chi-square 0.88-1.00 0.82-0.98 0.89-1.00 0.85-0.99 0.88-1.00
Gain ratio 0.96-1.00 1.00-1.00 1.00-1.00 1.00-1.00 1.00-1.00

Conditional 1.00-1.00 0.96-1.00 1.00-1.00 0.96-1.00 0.93-1.00

Precision
Chi-square 0.78-0.98 0.78-0.98 0.74-0.98 0.78-0.98 0.74-0.98
Gain ratio 0.89-1.00 0.89-1.00 0.89-1.00 0.89-1.00 0.89-1.00

Conditional 0.89-1.00 0.89-1.00 0.89-1.00 0.89-1.00 0.89-1.00

Recall
Chi-square 0.71-0.99 0.77-0.99 0.71-0.97 0.77-0.99 0.71-0.97
Gain ratio 0.85-1.00 0.85-1.00 0.85-1.00 0.85-1.00 0.85-1.00

Conditional 0.85-1.00 0.85-1.00 0.85-1.00 0.85-1.00 0.85-1.00

F measure
Chi-square 0.75-0.99 0.78-0.99 0.72-0.98 0.78-0.99 0.72-0.98
Gain ratio 0.87-1.00 0.87-1.00 0.87-1.00 0.87-1.00 0.87-1.00

Conditional 0.87-1.00 0.87-1.00 0.87-1.00 0.87-1.00 0.87-1.00

Feature selection results
Although the direct identification of metabolites that are predictive of malignant transformations
is not necessary to distinguish those patients who exhibit malignant transformations, analyzing the
different metabolites that lead to high classification accuracy can lead to the detection of metabolic
biomarkers and to the better understanding of tumor metabolism. Thus, one of the goals of this
study was to model the metabolic transformations in gliomas in such a way that the results are easy
to interpret biologically, and able to inform in vivo data acquisition. To this effect, feature selection
results are presented. The features in this study represent normalized concentrations found in small
chemical shift ranges. In order to interpret these features, their chemical shift ranges were linked
to metabolites typically found in those spectral regions using the QUEST [100] quantification
algorithm.
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Table 4.4: Accuracy results for distinguishing between recurrent LGGs which upgraded to grade
3 and those that remained grade 2 using five classifiers trained on HRMAS features selected using
three feature selection methods

Accuracy Features LDA Logistic FT SVM Boosting

Training
Chi-Square 0.91 1.00 0.89 0.96 1.00
Gain Ratio 0.85 0.91 0.85 0.96 1.00
Conditional 0.87 1.00 1.00 0.96 1.00

LOOC
Chi-Square 0.87 0.96 0.87 0.96 0.96
Gain Ratio 0.91 0.87 0.72 0.94 0.96
Conditional 0.89 0.96 0.94 0.91 0.94

Bootstrap
Chi-Square 0.85 0.95 0.86 0.83 0.95
Gain Ratio 0.80 0.87 0.82 0.82 0.94
Conditional 0.84 0.96 0.87 0.84 0.95

Table 4.5: Accuracy results for distinguishing between recurrent LGGs which upgraded to grade 4
and those that upgraded to grade 3 using five classifiers trained on HRMAS features selected using
three feature selection methods

Accuracy Features LDA Logistic FT SVM Boosting

Training
Chi-Square 1.00 1.00 1.00 1.00 1.00
Gain Ratio 1.00 1.00 0.79 0.97 1.00
Conditional 1.00 1.00 1.00 0.97 1.00

LOOC
Chi-Square 1.00 1.00 1.00 1.00 0.96
Gain Ratio 1.00 1.00 0.79 0.97 0.97
Conditional 0.98 1.00 0.97 0.97 0.97

Bootstrap
Chi-Square 0.97 0.99 0.97 0.93 0.98
Gain Ratio 0.96 0.97 0.79 0.90 0.96
Conditional 0.97 0.98 0.79 0.90 0.97
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Figure 4.4: Plot of specificity and sensitivity for different thresholds of the logistic ridge regression
model with features selected using the gain ratio filter and a genetic search wrapper-based method;
the response variable is whether the tumor transformed to a higher grade

There was significant overlap in the 40 highest-ranking features selected using the chi-squared
statistics, the information gain ratio, and the conditional probability-based association techniques.
These features corresponded to nine metabolites. The highest-ranking of the 40 features were very
similar across the three measures, even though the ranks differed slightly. Parameters correspond-
ing to Myo-I, 2HG, Hyp-Tau, and Cho compounds were identified among the 40 highest-ranking
features by all three association techniques, while parameters corresponding to GSH and Ala were
identified only by some of the methods.

Table 4.6 shows the percentage of times each metabolite was identified by the logistic ridge
regression genetic search wrapper-based feature subset selection algorithm as being part of the
feature subset which was best at discriminating between tumor grades, during the bootstrapping
process. Thus, for each comparison, up to 200 models were built on resampled versions of the
original data set, and the percentages of times certain features were selected as part of these models
are reported in Table 4.6, grouped by corresponding metabolite.
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Figure 4.5: ROC curves comparing five classification methods used to distinguish between gliomas
that transformed to a higher grade and those that did not, based on features selected using the gain
ratio filter and a genetic search wrapper-based method
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Table 4.6: Percentage of times each feature was selected in one of the models for distinguishing
between low grade tumors that recurred at different grades
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Distinguishing between recurrent LGGs that transformed to a higher grade and those that re-
mained grade 2 was possible using areas of the ex vivo NMR spectrum corresponding to Myo-I,
2HG, Hyp-Tau, Choline, GPC, PC, GSH, and Lip. On average, the relative levels of Myo-I pa-
rameters were 56% lower in gliomas that transformed to a higher grade compared to those that
remained grade 2. The gliomas that transformed to a higher grade also had 2HG levels in the
[2.24− 2.3] chemical shift range that were 120% higher, 2HG levels in the [1.75− 1.87] range that
were 30% higher, Hyp-Tau levels in the [2.62−2.69] range that were 137% higher, Hyp-Tau levels
in the [3.35 − 3.39] range that were 57% higher, Cho compound levels in the [3.21 − 3.29] range
were 26% higher, Cho compound levels in the [3.69− 3.71] range were 83% higher, Lip levels that
were 53% higher, GSH levels that were 39% higher, and Ala levels that were 25% higher.

Distinguishing between recurrent LGGs that transformed to grade 4 and those that recurred as
grade 3 was possible using features corresponding to Hyp-Tau, GSH, Ala, and Cho. Another pre-
dictive feature shows increased activity in the 3.79 chemical shift range, where metabolites are very
hard to quantify. Levels of Hyp-Tau, GSH, Cho, Myo-I, and 2HG were useful in distinguishing
between gliomas that transformed to grade 3 and those that remained grade 2.

While some of the differences in metabolite levels between tumors that transformed to a higher
grade and those that remained grade 2 are very large, individual metabolites are not sensitive or
specific enough to distinguish between the two groups of lesions. Pattern recognition methods
were able to objectively combine the information provided by all of these metabolites into a model
that can accurately identify lesions that have undergone malignant transformations.

4.5 Discussion
The methods presented in this study were able to accurately detect malignant transformations in
recurrent LGGs based on small sets of metabolites, without any prior knowledge. While the boot-
strapping accuracies of the models created are very promising, the confidence in the models could
be further strengthened by performing validation on an independent data set.

Distinguishing between LGGs that recurred at different grades was possible based on features
corresponding to Myo-I, 2HG, Hyp-Tau, Cho compounds, GSH, Lip, and Ala. The fact that some
features were selected in very different percentages of the models when using different filtering
methods shows that that the features are highly correlated. Including all of these features in a
model would be superfluous. In fact, the models created during the bootstrapping phase were
based on 3 to 8 features each. This also explains why some metabolites identified as important
biomarkers in the literature were not selected as features in these models. There are two reasons
why a feature may not be selected by the algorithm: either because it is not well correlated with the
outcome, or because it is highly correlated with some of the other features already in the model and
it does not provide any additional information for the classification. Thus, the features identified
by the pattern classification methods are a parsimonious set of metabolites that are specific and
sensitive enough to lead to a quantitative formula that can be used to diagnose individual patients
and can be applied to unseen data.
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This analysis identified 2HG as a metabolite whose increased concentration is highly predic-
tive of malignant transformations in recurrent LGGs, but whose concentration is generally low
in newly diagnosed grade 4 gliomas. Recent studies have demonstrated that cancer-associated
IDH1 mutations lead to the accumulation of 2HG [23]. These mutations have also been reported
in acute myeloid leukemia (AML) [23], suggesting that a common mechanism may underpin both
these AML and secondary grade 4 glioma malignancies. These studies offer novel opportunities
to develop tumor directed therapeutic strategies.

Several of the metabolites selected by the pattern recognition methods for their discriminative
power, such as Cho, Lip, and Myo-I, can be acquired using current in vivo MRS methods, implying
that using pattern recognition methods in conjunction with in vivo spectroscopy may be successful
in determining whether patients with recurrent LGGs have transformed to a more malignant phe-
notype without the need for a tissue diagnosis. Lip, Lac, Cho, NAA, and Cre are already being
acquired in in vivo patient studies. Myo-I is one of the most important metabolites in terms of its
discriminative power in all of the models explored. This metabolite can be acquired in vivo, and
the results in this study suggest that it should be included in future in vivo acquisition protocols.

4.6 Conclusion
This study demonstrates the feasibility of using quantitative pattern recognition methods for the
metabolic assessment of tissue samples obtained from brain tumor biopsies. The findings in this
study enhance the knowledge obtained from previous HRMAS and MRS classification studies,
because they suggest that it is possible to obtain high classification accuracy by using only a few
spectral features obtained without any prior knowledge. The pattern recognition methods described
in this paper identified biomarkers of importance in detecting malignant transformations in LGGs.
Most of the metabolite parameters revealed by this method can be acquired in vivo. The use of
MRS at high magnetic fields and with a robust classification approach should improve the charac-
terization, typing, and prognostication of brain tumors. It can also be applied to assist in stratifying
patients for appropriate therapeutic protocols and in the monitoring of new therapies.
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Chapter 5

Metabolic profiles of primary and
secondary glioblastomas

GBMs were first classified into primary and secondary tumors by Scherer [110]. Primary GBMs
occur de novo without a recognizable precursor lesion. The clinical history of the disease is usu-
ally short, with a median survival of approximately one year following diagnosis. In contrast,
secondary GBMs develop slowly and arise from preexisting, lower-grade astrocytomas [67, 110,
112].

The histological differentiation between primary and secondary GBMs is difficult. However,
molecular genetic analyses suggest that there are at least two distinct pathways contributing to the
tumorigenesis of GBM. Primary GBMs frequently show amplification and overexpression of the
epidermal growth factor receptor (EGFR), phosphatase and tensin homolog (PTEN) mutations,
and partial or complete loss of chromosome 10. Secondary GBMs generally feature mutations
of the p53 or IDH1 genes, overexpression of platelet-derived growth factor receptors, and loss of
heterozygosity at 17p, 19q, and 10q. In addition, they rarely overexpress EGFR [103].

Recent studies on LGGs have established a link between mutations in the IDH1 gene and
excessive production of 2HG [23, 32]. This is an important finding because overwhelming clinical
evidence now suggests that glioma patients harboring IDH1 mutations carry a significant survival
advantage, irrespective of treatment therapies employed for disease management [49, 56, 92, 137].

Given the potential prognostic value of metabolites such as 2HG, the goal of this study was
to characterize differences in the metabolic profiles between primary and secondary GBMs using
HRMAS spectroscopy. Being able to accurately distinguish between primary and secondary GBMs
based on their metabolic profiles can help identify the right course of treatment and predict the
clinical behavior of these tumors [19].
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Table 5.1: Accuracy results for distinguishing between primary and secondary GBMs using five
classifiers trained on HRMAS features selected using three feature selection methods

Accuracy Features LDA Logistic FT SVM Boosting

Training
Chi-Square 0.98 1.00 0.95 0.98 1.00
Gain Ratio 1.00 1.00 0.95 0.98 1.00
Conditional 0.95 1.00 1.00 0.98 1.00

LOOC
Chi-Square 0.98 0.98 0.95 0.98 0.95
Gain Ratio 1.00 1.00 0.95 1.00 0.98
Conditional 1.00 0.98 0.98 0.98 0.95

Bootstrap
Chi-Square 0.96 0.98 0.95 0.98 0.98
Gain Ratio 0.97 0.98 0.95 0.98 0.98
Conditional 0.95 0.98 0.98 0.98 0.97

5.1 Data acquisition, preprocessing, feature selection, and
analysis

This study included 36 newly diagnosed primary GBMs and 7 recurrent LGGs that progressed to
grade 4. The secondary GBM patients had received prior standard-of-care treatment with surgical
resection, radiation, or chemotherapy before the data acquisition.

The acquisition, preprocessing, feature selection, and analysis of the data were identical to
those described in Chapter 4.

5.2 Results
Five classification models and three feature selection algorithms were used to distinguish between
the metabolic profiles of primary and secondary GBMs. The results are summarized in Tables 5.1
and 5.2. The models were able to distinguish between primary and secondary GBMs with 98%
bootstrapping accuracy, suggesting that the two types of tumors are indeed different entities. The
features selected in the logistic ridge regression model are shown in Table 5.3. Myo-I, 2HG, Hyp-
Tau, Cho compounds, and GSH provide enough information to accurately distinguish between
primary and secondary GBMs.

5.3 Discussion
The ultimate goal of this work is to improve the clinical management of patients with gliomas. The
data demonstrate the utility of HRMAS in distinguishing between primary and secondary GBMs.
Myo-I, 2HG, Hyp-Tau, and GSH levels are sufficient to obtain good separation between the two
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Table 5.2: 95% confidence intervals for accuracy results (presented in Table 5.1) for distinguishing
between primary and secondary GBMs using five classifiers trained on HRMAS features selected
using three feature selection methods

Accuracy Features LDA Logistic FT SVM Boosting

Training
Chi-square 0.91-1.00 0.95-1.00 0.88-0.99 0.91-1.00 0.95-1.00
Gain ratio 0.95-1.00 0.95-1.00 0.88-0.99 0.91-1.00 0.95-1.00

Conditional 0.88-0.99 0.95-1.00 0.95-1.00 0.91-1.00 0.95-1.00

LOOC
Chi-square 0.91-1.00 0.91-1.00 0.88-0.99 0.91-1.00 0.88-0.99
Gain ratio 0.95-1.00 0.95-1.00 0.88-0.99 0.95-1.00 0.91-1.00

Conditional 0.95-1.00 0.91-1.00 0.91-1.00 0.91-1.00 0.88-0.99

Bootstrap
Chi-square 0.95-0.97 0.97-0.99 0.94-0.96 0.97-0.99 0.97-0.99
Gain ratio 0.96-0.98 0.97-0.99 0.94-0.96 0.97-0.99 0.97-0.99

Conditional 0.94-0.96 0.97-0.99 0.97-0.99 0.97-0.99 0.96-0.98

Table 5.3: Percentage of time each feature was selected in the logistic ridge regression model for
distinguishing between primary and secondary GBMs

Metabolite Chemical Shift Gain ratio Chi-square Conditional Probability
Myo-I 3.61-3.68 32% 32% 100%
2HG 2.24-2.30 67% 84% 33%

Hyp-Tau 3.35-3.39 82% 37% 10%

Cho/PC/GPC
3.21-3.29 100% 86% 38%
3.69-3.71 40% 82% 72%

GSH 3.79-3.81 43% 43% 9%

glioma types. Since primary and secondary GBMs are indistinguishable histologically, this study
also shows that HRMAS provides complementary information.
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Chapter 6

Effects of treatment on the metabolic profile
of grade 2 and grade 3 gliomas

LGGs include a diverse group of tumors, with distinct characteristics, patterns of occurrence, re-
sponse to treatment, and survival. In clinical practice, magnetic resonance is used routinely for
assessing the tumor status, therapy response, and progression free survival. However, differen-
tiating between tumor progression and treatment effect using magnetic resonance imaging poses
significant challenges [120]. For example, while contrast-enhanced MRI is often used to assess
tumor progression and response to treatment, enhancement following treatment is not specific to
tumor [120].

To address this issue, the objective of this study [17] is to investigate the differences in the
metabolic profiles of newly diagnosed and recurrent grade 2 and 3 gliomas, using HRMAS spec-
troscopy. Identifying differences in metabolic parameters between these two groups is important
in understanding how tumor progression affects the pathways of glioma growth and invasion, and
in identifying biomarkers that may be associated with treatment effect. In order to assess whether
treated and untreated gliomas of the same grade are different entities, and thus might have dif-
ferential response to subsequent therapy, a multivariate pattern recognition method was used to
discriminate between them based upon their metabolic profiles.

6.1 Data acquisition
This study included 137 patients: 86 were newly diagnosed non-enhancing grade 2 (n=55) and
grade 3 (n=31) gliomas, and 51 were recurrent grade 2 gliomas that recurred as grade 2 (n=22) or
grade 3 (n=29). The number of patients in each category is summarized in Table 6.1. A total of 349
image-guided biopsy samples were obtained from the 137 patients; the samples were then analyzed
using HRMAS spectroscopy and histology. HRMAS data were obtained by scanning the biopsy
tissues with a Varian 500 MHz spectrometer, equipped with a gHX gradient nanoprobe. Samples
were evaluated at 1◦C while the tissue was spun at 2250 Hz at the magic angle (θ = 54.7◦). The
fully relaxed water presaturation sequence parameters were pulse width=7.8 mgrs, transients=128,
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Table 6.1: Number of treated and untreated patients with grade 2 and 3 gliomas

Treated Grade 2 Grade 3 Total
Yes 22 29 51
No 55 31 86

Total 77 60 137

sweep width=40 kHz, and 40,000 points. The ERETIC method was used to provide a constant
reference for quantification.

6.2 Analysis
The ex vivo spectra were processed using jMRUI and a customized QUEST fitting algorithm to
measure metabolite concentrations. A random effects model was used to compare metabolite con-
centrations in treated and untreated lesions, by grade. P-values were adjusted for multiple compar-
isons using Holm’s method. A supervised learning algorithm was used to determine whether it is
possible to accurately discriminate between the recurrent and newly diagnosed gliomas based on
their metabolic profiles. Spectral parameters obtained from small chemical shift bins formed the
input vectors, and the associated categories (newly diagnosed or recurrent) were the desired out-
puts or classes. The supervised learning method we used was multivariate logistic ridge regression
with automatic wrapper-based feature selection, as described in Chapter 4. This method treated all
biopsy samples as being independent. The supervised learning models were validated using 0.632
bootstrap accuracy estimates.

6.3 Results
A comparison of the metabolite levels in samples from patients with treated and newly diagnosed
gliomas of grades 2 and 3 revealed significant differences in the myoinositol to total choline ratio
(MCI) (p =< 0.001). The supervised learning model for distinguishing between these lesions had
90.25% accuracy (CI=[89.69, 90.81%]) and was based on features of the spectra corresponding
to Myo-I, Cho, aspartate (Asp), GSH, Cre, and Lac. Lower MCI levels (p = 0.004) and higher
levels of threonine (Thr) (p = 0.002) and Asp (p < 0.001) were detected in recurrent grade
3 gliomas, compared to newly diagnosed grade 3 gliomas. The multivariate supervised learning
model for distinguishing between recurrent and newly diagnosed grade 3 gliomas based on fea-
tures of the spectra corresponding to Myo-I, Cho, GSH, NAA, and lactate had 92.45% accuracy
(CI=[89.75, 95.15%]). Lower MCI levels (p = 0.003) and higher GSH levels (p = 0.014) were
detected in recurrent grade 2 gliomas compared to their newly diagnosed counterparts. The super-
vised learning model for distinguishing between recurrent and newly diagnosed grade 3 gliomas
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Figure 6.1: Metabolite levels in recurrent and newly diagnosed tumors, by grade

based on features of the spectra corresponding to Cho, GSH, Glc, Asp, 2HG, phosphoethanolamine
(PE), and Lac had 94.44% accuracy (CI=[92.2, 96.68%]).

A comparison of four metabolite levels in recurrent and newly diagnosed grade 2 and 3 gliomas
is illustrated in Figure 6.1. Table 6.2 provides a summary of the bootstrapping accuracy of the
logistic ridge regression models for distinguishing between treated and untreated glioma tissue
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Table 6.2: Bootstrapping accuracy of logistic ridge regression models for distinguishing between
treated and untreated glioma tissue samples

Grade Boostrap Accuracy Bootstrap 95% CI
2+3 0.90 0.89-0.91

3 0.92 0.90-0.95
2 0.94 0.92-0.97

Table 6.3: Percentage of times each feature was selected as part of the model for distinguishing
between newly diagnosed and recurrent grade 2 and 3 gliomas

Metabolite Chemical Shift Percent Selected Higher in Recurrent
Myo-I 3.55; 3.63 100% No

PE 3.93-3.94 100% No
Lac/Thr 1.32 100% Yes

2HG 4.02 100% Yes
4.96 100% Yes

Cre 3.04 7% No

Table 6.4: Percentage of times each feature was selected as part of the model for distinguishing
between newly diagnosed grade 3 gliomas and grade 2 gliomas that recurred at grade 3

Metabolite Chemical Shift Percent Selected Higher in Recurrent
Myo-I 3.53-3.56; 3.62-3.64; 4.06-4.07 100% No

PC/GPC/Cho 3.2-3.23 100% Yes
Lac/Thr 1.31-1.32 100% Yes

GSH 2.57 100% No
Hyp-Tau 3.35 100% No

NAA 4.53 83% No

samples. Tables 6.3, 6.4, and 6.5 show the percentage of times each feature was selected as part of
the final subset of features used for classification during the bootstrapping process.
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Table 6.5: Percentage of times each feature was selected as part of the model for distinguishing
between newly diagnosed grade 2 gliomas and recurrent grade 2 gliomas

Metabolite Chemical Shift Percent Selected Higher in Recurrent
Myo-I 3.56 100% No

PE 3.94-3.98 100% No
2HG 2.23; 1.89; 4.02 94% Yes
Glc 4.69 94% Yes

Cho/PC/GPC 3.21-3.26 94% Yes
Glx/GSH/Ala 3.77 93% No

Lac 4.10-4.11 66% Yes
Asp 2.78; 2.82 61% No

6.4 Discussion
Grade 2 and 3 newly diagnosed gliomas had significantly different metabolic profiles than recur-
rent gliomas of the same grade. MCI, a biomarker associated with treatment effect [120], was
significantly lower in recurrent lesions, regardless of grade. Multivariate supervised learning mod-
els were able to distinguish between treated and recurrent gliomas with more than 90% accuracy,
suggesting that the metabolic profiles of these tumors are significantly different.
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Chapter 7

Metabolic characterization of the
histopathological properties of glioblastoma
tissue

In vivo and ex vivo NMR spectroscopy provide useful information about the biochemical cellular
processes that occur in the tissue under investigation. They offer an objective, clinically feasi-
ble metabolic assessment of disease. In vivo and ex vivo NMR spectroscopy have been used to
separate normal brain from brain tumors [57, 104], as well as to characterize different degrees
of malignancy [33, 77, 85, 88]. Although HRMAS is increasingly used to analyze tumor tissue
biochemistry, histopathological analysis of surgically extracted tissue samples remains the gold
standard for assigning the type and grade of a tumor. Because HRMAS spectra are obtained di-
rectly from biopsy samples, they can be used to identify correlations between metabolic profiles
and histopathological properties of the same tissue. Combining these two types of analyses can
provide further insights into the biology of brain tumors and improve the diagnosis process.

Most of the previous HRMAS studies focus on brain tumor characterization and typing, but
do not describe the various histopathological tissue properties that play a role in the histological
diagnosis and typing of brain tumors. However, there is an increasing interest in determining the
correlation between metabolic features derived from ex vivo HRMAS and histopathological tissue
properties [108], as HRMAS promises to provide an objective methodology for tumor classification
and diagnosis. Previous studies have shown that HRMAS can help in predict the growth character-
istics within different regions of a tumor [78] and can help distinguish between glioma grades [33].
Moreover, HRMAS can successfully reveal the status of tumor microheterogeneity [14] and can
observe tumor metabolic alterations before they are morphologically detectable [2]. Nevertheless,
these studies describe univariate metabolite behavior, while ignoring the interconnectivity of the
metabolites.

In this study, multivariate pattern recognition methods were used to identify sets of features
that provide the best sensitivity and specificity in distinguishing between low and high levels of
histopathological features corresponding to tumor cellularity, proliferation, axonal integrity, and
microvascular alterations. The purpose of the study was to determine whether supervised learn-
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Table 7.1: Number of tissue samples with low and high values of histopathological tissue properties

Histology Low High
CA9 36 24

Complex 19 16
Hyperplasia 24 38

MIB-1 27 34
SMI-31 35 26

Tumor cellularity 27 35

ing methods based on HRMAS-derived parameters can successfully distinguish between differ-
ent histopathological tissue properties. Additionally, this study aimed to extract representative
metabolic tissue models for each histopathological tissue property and to analyze which of the
considered input feature values are most sensitive in revealing whether a histological tissue prop-
erty is present or absent.

This study analyzed the correlation between metabolic and histopathological tissue properties
in newly diagnoses GBMs, because these gliomas show the highest degree of heterogeneity and
the presence of the most malignant histopathological features.

7.1 Data acquisition and preprocessing
The study included 63 tissue samples obtained from 33 patients with newly diagnosed GBMs.

Pre-surgical in vivo MR examinations enabled the planning of targeted biopsies for sampling
tissue from patient lesions. Imaging parameters derived from post-processed data helped guide
the designation of small (5 mm3), putative tumor regions. Regions of suspected tumor located
in relatively homogenous areas of the MR images were designated as targets for tissue sampling
using surgical navigation software.

Tissue samples were divided into two parts. One part was flash-frozen in liquid nitrogen and the
other was fixed using conventional pathological techniques. The fixed component was examined
by a pathologist for histological features such as tumor cellularity, MIB-1 proliferation index, SMI-
31, CA9, hyperplasia, and the presence of simple, and complex vasculature. Only tissue samples
that contained tumor cells were included in the analysis. Each histopathological tissue property
was transformed into a binary variable describing either low or high values of that property. The
number of samples in each category for each tissue property are listed in Table 7.1.

The frozen part of the tissue sample was analyzed with ex vivo HRMAS, as described in Chap-
ter 4. The HRMAS data was also preprocessed according to the methods described in Chapter
4.
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7.2 Analysis
Pattern analysis methods were used to build models capable of distinguishing between low and
high levels of the various histopathological tissue properties.

The preprocessed data were grouped into frequency bins of widths 5, 10, 15, 20, and 25 sam-
ples to account for the fact that different metabolites have different linewidths. The value used
for each bin was obtained using trapezoidal numerical integration for the 5, 10, 15, 20, or 25
samples corresponding to that bin. This resulted in an input vector with 18,266 dimensions. The
dimensionality of the data was first reduced using the information gain ratio with respect to the
class. A wrapper-based feature selection method using genetic algorithms for searching was used
to evaluate the suitability of subsets of features as a group.

The classification method used to build metabolic models of the histopathological tissue prop-
erties was decision stump boosting. This method sequentially applies decision stump classification
to re-weight versions of the training data and then take a weighted majority vote of the sequence
of classifiers thus produced. It is an easy-to-interpret method that works well in the presence of
distinct subgroups within each of the classes.

The models were validated using LOOC and bootstrapping.

7.3 Results
Metabolic models were built for each of the histopathological tissue properties. The accuracy re-
sults of these models are illustrated in Table 7.2, and the metabolic features selected in each model
are listed in Table 7.3. The model for hyperplasia had 88% bootstrapping accuracy (95% CI=[87-
89%]) and was based on features corresponding to Myo-I, Ala, lysine (Lys), ethanol (Eth), and
Glc. The models for complex vasculature and tumor cellularity had 87% bootstrapping accuracy
(95% CI=[86-88%]). The model for complex vasculature was based on metabolic features corre-
sponding to Cre, PCr, PE, Myo-I, and Cho compounds, while that for tumor cellularity was based
on GABA, Hyp-Tau, acetate (Ace), and Lys. High/low CA9 tissue samples were detected with
85% bootstrapping accuracy (95% CI=[84-86%]) and was based on Ala, Lac, Cho, Asp, Gln, and
NAA. The model for low or high axonal disruption (SMI-31) had 81% bootstrapping accuracy
(95% CI=[80-82%]), and was based on metabolic features corresponding to Hyp-Tau, Lac, Thr,
GABA, and Ace. Lastly, tissue samples with low and high proliferation indices (MIB-1) were dis-
tinguished with 78% bootstrapping accuracy (95% CI=[77-79%]), based on features corresponding
to Cre, Hyp-Tau, 2HG, Thr, GPC, and Myo-I.

7.4 Discussion
This study demonstrates the feasibility of using quantitative pattern recognition methods for the
metabolic assessment of tissue samples obtained from brain tumor biopsies. The methods pre-
sented in this study were able to accurately classify tissue samples according to various histopatho-
logical properties. While the bootstrapping accuracies of the models created are very promising,
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Table 7.2: Accuracy results of multivariate decision stump boosting models for distinguishing
between low and high values of histopathological tissue properties

Histology LOOC LOOC 95% CI Bootstrap Bootstrap 95% CI
CA9 0.92 0.85-0.99 0.85 0.84-0.86

Complex 0.93 0.89-0.97 0.87 0.87-0.88
Hyperplasia 0.91 0.85-0.97 0.88 0.87-0.89

MIB-1 0.83 0.75-0.91 0.78 0.77-0.79
SMI-31 0.83 0.76-0.90 0.81 0.80-0.82

Tumor cellularity 0.93 0.88-0.98 0.87 0.86-0.88

Table 7.3: Feature subsets capable of distinguishing between low and high values of histopatho-
logical tissue properties

Histology Metabolite Chemical Shift Percent Selected Association

CA9

Ala 1.5 100% negative
Lac 4.1 95% positive
Asp 2.82 89% positive

Gln/NAA 2.48 90% negative

Complex
Cre/PCr/PE 3.95 96% negative

My-I 3.29 67% negative
PC/GPC/Cho 3.23 97% negative

Hyperplasia

My-I 3.64 76% positive
My-I 3.29 100% negative

Ala/Lys 1.56 96% positive
Eth/Glc 3.82 100% positive

MIB-1

Cre 3.04 95% negative
hyp-Tau 2.64 77% positive

2HG 1.81 100% positive
Thr/GPC 4.3 99% negative

My-I 3.29 79% negative

SMI-31
hyp-Tau/SI 3.36 96% negative

Lac/Thr 1.32 100% positive
GABA/Ace 1.92 94% negative

TSCORE

GABA/Ace 1.91 100% negative
hyp-Tau 2.68 100% negative

Lys 1.62 93% negative
GABA 2.99 85% positive
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they do not fully explain the difference in histopathological properties. Metabolic features corre-
sponding to Myo-I, Hyp-Tau, Cho compounds, Cre, Ala, Lac, and GABA are useful for distin-
guishing between tissue with low or high values of several histopathological parameters. These
findings could aid in a better understanding of glial tumor tissue metabolism, and therefore could
improve in diagnosis and prognosis of the tumor type and grade.
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Chapter 8

Identifying recurrent low grade gliomas
that transformed to a higher grade based on
in vivo magnetic resonance and spectroscopy

Histopathological evaluation of tumor tissue remains the standard method for the diagnosis and
classification of gliomas, but diagnostic challenges are well recognized, including subjective grad-
ing criteria, tissue sampling error, and lack of specific tumor markers. The objective of this study is
to determine whether the quantitative parameters derived from metabolic and physiologic in vivo
imaging characteristics are predictive of the biologic behavior of gliomas. This is an important
clinical question because of the need to determine the malignancy of each tumor and to treat each
patient with the therapy that is most likely to be effective for their particular lesion.

While some patients undergo biopsy or surgery to provide tissue for histological diagnosis,
sampling error is a significant problem and having a non-invasive imaging technique to direct
the surgeon to the most malignant region would be beneficial. For inoperable cases, imaging
could provide an alternative method for predicting transformation to higher grade and establishing
specific characteristics of the lesion.

The problem of determining whether a lesion has transformed to a more malignant phenotype
based on metabolic and imaging parameters is of particular importance, because biopsies are not
usually available at the time of progression. Having non-invasive biomarkers that are able to re-
liably define the spatial extent of recurrent tumor, predict whether the lesion has transformed to
higher grade and provide an early indication of the success or failure of subsequent treatments
would be extremely valuable for the management of these patients.

Although it is used for clinical evaluation of gliomas, standard MR provides ambiguous find-
ings with respect to tumor grade and treatment effects. The work described in Chapter 4, using
HRMAS to detect malignant transformations in recurrent LGGs, suggests that metabolic changes
can be accurately used to predict transformation to a higher grade.

The objective of this study [20] was to build a multi-parametric diagnostic model that can
predict whether gliomas originally diagnosed a being low grade have undergone malignant trans-
formations to a higher grade, based on in vivo MR imaging parameters. This is an important
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clinical application because it will determine the therapeutic options offered to patients. In some
cases this involves surgical resection to provide histological confirmation of tumor grade, but in
other cases the preferred options are radiation, temozolomide, or standard chemotherapy. Having
an objective, non-invasive model to predict tumor grade would allow patients to make an informed
decision about the risks and benefits of different approaches and could have a major impact upon
quality of life and survival.

8.1 Data acquisition
The study population included 61 patients with an original diagnosis of LGG, who were scheduled
for surgical resection due to suspected recurrence. MR examinations were performed in order to
provide data for planning image-guided surgery. The protocol included a FLAIR sequence, a T2
weighted fast spin echo (FSE) sequence, and a T1-GAD. These were used to define the spatial
extent of the anatomic lesion. Physiological images that were acquired comprised of 6-directional
diffusion tensor imaging (DTI) data with b=1000mm2, and dynamic susceptibility contrast (DSC)
images before, during, and after the injection of 0.1 mmol/kg body weight gadolinium diethyl-
triamine pentaacetic acid (Gd-DTPA) contrast agent at a rate of 3mL/sm. Metabolic imaging
data were obtained using lactate-edited three-dimensional MRS using point-resolved spectroscopy
volume-selection with echo planar and phase encoding localization. Image-guided tissue samples
were obtained during surgery and were used to confirm the diagnosis. Histological analysis indi-
cated that 37 of the patients had lesions that progressed to a higher grade (31 to grade 3, and 6 to
grade 4), and 24 patients had lesions that remained grade 2.

8.2 Preprocessing
The MR images were normalized using the median intensity value in the normal-appearing white
matter and registered to the T1-gad. ADC andFA maps were obtained from the DWI sequence
and CBV, PH, RF, and RECOV were estimated from the PWI susceptibility curves. The spectral
amplitudes and line-widths of Cho, Cre, NAA, Lac, and Lip were estimated from the spectroscopy
data. Four ROIs were created manually: the T2all, the CEL, the NEC, and the NEL. One hundred
imaging parameters were extracted and used for analysis, including the volumes of the ROIs and
of the regions with low ADC, high Cho to NAA ratio (CNI), and high CBV, as well as the me-
dian, 25th percentile, 75th percentile, and maximum intensity values of the imaging intensities and
metabolite heights and areas inside the T2all.

8.3 Analysis
The problem of identifying lesions that progressed to a higher grade was formulated as a super-
vised learning problem. The input vector was comprised of the 100 imaging parameters, and the
associated grade of recurrence (low grade or high grade) was the desired output or class. The goal
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was to build a supervised learning model to determine the probability that a lesion recurred at a
higher grade for any valid input vector, after having seen a number of training examples, by gen-
eralizing from the presented training data to unseen situations in a reasonable way. The type of
model we used was additive logistic regression, or boosting [36]. This method uses voting to com-
bine the output of univariate regression models, which are built iteratively and in such a way that
new models complement the previous ones by becoming experts for instances handled incorrectly
by earlier models. Each models contribution is weighted by its performance. Suppose fj is the jth

regression model in the ensemble and fj(a) is its prediction for instance a. Then, for a two-class
problem, the probability estimate that a belongs to the first class is

p(1|a) =
1

1 + exp(
∑
j

fj(a))
[1]. (8.1)

The variables used as input to the multivariate additive logistic regression model were selected
using an automatic, wrapper-based feature selection method [134]. The final model was evaluated
using LOOC and bias-corrected bootstrapping. These are the standard validation methods for
supervised learning algorithms built on small data sets. LOOC repeatedly leaves out one data
sample for testing, uses the rest of the samples for training the model, and then averages the
accuracy results. It provides an accuracy estimate which is unbiased but has a high variance.
Bootstrapping uses sampling with replacement to repeatedly split the data into a training set and a
test set, and averages the accuracy results in order to obtain an overall accuracy estimate which is
pessimistic, but has low variance.

8.4 Results
An additive logistic regression model based on automatically selected features was built to dis-
tinguish between tumors that recurred at a higher grade and those that remained grade two. This
model had 93.02% LOOC accuracy with a 95% CI of [87.84− 98.20%]. The bias-corrected boot-
strapping accuracy was 83.59% with a 95% CI of [80.19 − 86.99%]. The model assigned a high
probability of progression to lesions with the 75th percentile of normalized choline height above
1.82, the 25th percentile of percent recovery to baseline below 76, the 75th percentile of CNI
height above 1.25, and maximum choline height above 1.63. In order to compare the utility of
different imaging sequences for identifying malignant transformations in recurrent LGGs, we built
supervised learning models using sets of variables selected from spectral, perfusion, diffusion, and
anatomical imaging parameters, each individually. The results are summarized in Tables 8.1 and
8.2. Selecting only spectral or perfusion parameters leads to models with lower accuracies than
were obtained by selecting parameters from all imaging sequences, but these differences in accu-
racy are not statistically significant. Selecting only diffusion or anatomical parameters leads to
models with significantly lower accuracy than the models using spectral and perfusion parameters.
Table 8.1 also provides accuracy results for the univariate models that obtained more than 70%
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Table 8.1: LOOC and bootstrapping accuracy of additive logistic regression models for identifying
recurrent LGGs that progressed to a higher grade

Initial parameters LOOC LOOC 95% CI Bootstrap Acc. Bootstrap 95% CI
Model 1: All 0.93 0.88-0.98 0.84 0.80-0.87

Model 2: MRSI 0.86 0.77-0.95 0.79 0.75-0.82
Model 3: DSC 0.85 0.76-0.94 0.79 0.76-0.82
Model 4: DTI 0.76 0.66-0.86 0.69 0.67-0.71

Model 5: Anatomy 0.79 0.70-0.88 0.72 0.70-0.74
Model 6: Cho area 75% 0.67 0.56-0.79 0.76 0.73-0.79
Model 7: T1-gad 75% 0.62 0.50-0.73 0.75 0.73-0.77

Model 8: CNI height 75% 0.72 0.61-0.83 0.72 0.69-0.74
Model 9: T2all volume 0.58 0.47-0.69 0.71 0.69-0.73
Model 10: NEL volume 0.60 0.49-0.72 0.71 0.69-0.73

Model 11: CBV>2 Volume 0.79 0.70-0.88 0.70 0.68-0.73

Table 8.2: Feature subsets selected in the final decision stump boosting models which identify
recurrent LGGs that progressed to a higher grade

Initial parameters Parameters Selected
Model 1: All RECOV 25%, Cho area 75%, CNI height 75%, Cho max height

Model 2: MRSI CNI area >2 volume, CNI area median, Lac median, Cho area 75%
Model 3: DSC RECOV 25%, PH 75%, CBV>3 volume, median PH
Model 4: DTI FA median, ADC 75%

Model 5: Anatomy T1-gad 25%, FLAIR 75%, T1-gad 75%

bootstrapping accuracy. These variables are the 75th percentile Cho area, T1-gad intensity, and
CNI height inside the T2all ROI, and the volume of the T2all, NEL, and CBV greater than two.

8.5 Discussion
Multivariate pattern recognition methods using parameters obtained from in vivo perfusion and
spectroscopy data can identify recurrent LGGs that progressed to a higher grade with fairly good
accuracy. High levels of choline and CNI, high intensity values in the contrast-enhancing lesion,
low percent recovery to baseline, large lesion volumes, and large volumes of CBV greater than
two are indicative of malignant transformations in recurrent LGGs. Choline-based parameters are
associated with increased tumor cellularity, and a low percent recovery to baseline is indicative of
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Table 8.3: Significance value of univariate parameters for logistic regression model which identi-
fies recurrent LGGs that progressed to a higher grade

Parameter P-value Odds ratio (higher grade vs. grade 2)
T2all volume 0.006 1.05
NEL volume 0.008 1.05
T1-gad 75% 0.012 125.65

median T1-gad 0.038 45.83
ADC <125 volume 0.008 1.43
ADC <15 volume 0.011 1.14
median CBV > 2 0.013 1.29

CBV > 2 area 0.024 1.49
RECOV 25% 0.014 0.86

median RECOV 0.026 0.86
INVREC 75% 0.02 0.8

median INVREC 0.027 0.83
median CNI height 0.01 1.73

CNI height 75% 0.011 1.39
CNI area 75% 0.013 1.48

CNI area median 0.014 1.8
CNI area maximum 0.017 1.17

CNI height maximum 0.019 1.15
CNI height > 2 volume 0.02 1.08
CNI area > 3 volume 0.022 1.12
CNI area > 2 volume 0.025 1.08

CNI height > 3 volume 0.029 1.1
CNI area > 2 volume 0.041 1.1

Cho height 75% 0.017 5.08
Cho height maximum 0.017 2.11
Cho area maximum 0.019 1.97

Cho area 75% 0.025 4.57
median Cho height 0.028 7.76
median Cho area 0.042 6.89
median Lac area 0.037 2273.12

Cre height maximum 0.05 3.89
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Figure 8.1: ROC curve of decision stump boosting model for non-invasively identifying whether a
tumor transformed to a higher grade or not

leaky vasculature. The results of this study emphasize the importance of spectroscopy and per-
fusion data in detecting malignant transformations in LGGs. The multivariate additive logistic
regression model built using these data can be used in clinical practice to identify patients sus-
pected of recurrence at a higher grade before histological confirmation of the diagnosis is possible.
While the in vivo parameters are influenced by the lesions histological subtypes, the parameters
and cutoffs selected by the multivariate model are predictive of progression across all histological
subtypes. An analysis of the model built with features selected from all of the parameters revealed
that all astrocytomas and oligoastrocytomas with a 75th percentile choline area above 1.065, as well
as all oligodendrogliomas with a 75th percentile choline area above 1.82, progressed to a higher
grade. All lesions with a maximum choline height lower than 1.63, regardless of histological sub-
type, did not progress to a higher grade. For astrocytomas and oligoastrocytomas, a 25th percentile
recovery lower than 76 indicated that the lesions progressed to a higher grade. Progression to a
higher grade was also indicated by 25th percentile recovery lower than 76 in cases of oligoden-
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dromas with a 75th percentile choline area below 1.82. Classification errors were most common
among the oligodendroglioma subtype. A multivariate model built on the oligodendroglioma data
alone revealed that a high volume of low ADC, low recovery to baseline, and low T1-GAD were
predictive of malignant transformations.
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Chapter 9

Linking ex vivo and in vivo glioma
biomarkers

Tumor grading is a complex process that involves the search for histological features predictive of
malignancy in biopsy specimens. Gliomas exhibit heterogeneous histopathological tissue proper-
ties, such as viable tumor cells, necrotic tissue or regions where the tumor infiltrates normal brain.
Small image-guided biopsy samples allow for histological information to be related back to imag-
ing parameters. However, due to the small size of the biopsies, it is very unlikely that one biopsy
sample will contain all the histological features required for grading a heterogeneous brain tumor.
Thus, being able to identify histological features of tissue using non-invasive MR data with high
spatial resolution is instrumental in improving the biopsy selection process, in accurately assess-
ing the malignancy of tumors, and in finding links between biological processes and non-invasive
biomedical signals.

Many studies have been done to assess the correlation between in vivo MRI and MRS and
various histological parameters [6, 25, 28, 50, 52, 65, 126, 127, 138]. These studies focus on
linking pairs of in vivo and histological parameters, and do not attempt to obtain tumor profiles of
histology estimates based on multiple data modalities. Other studies tried to asses the utility of in
vivo magnetic resonance imaging and spectroscopy in determining the grade of a tumor [12, 27,
40, 44, 77, 82, 98, 113, 128, 139]. The main disadvantage of these studies is that they use features
extracted from images of the whole brain in order classify tumors according to a subjectively
obtained tumor grade, based on a specific biopsy location. Thus, they do not offer a direct link
between images and histological features.

This study analyzed the relationship between parameters of brain tumors obtained through in
vivo MRI, in vivo MRS, and ex vivo IHC. Multivariate pattern recognition methods were used to
build models of histological features based on in vivo parameters. The successful integration of
histology and in vivo data through the use of multivariate pattern analysis can lead to quantitative
non-invasive markers of biological behavior, which are extremely important for characterizing tu-
mor heterogeneity, for defining the most appropriate regions for obtaining image guided samples,
and for evaluating patients for whom surgical resection is not appropriate. The successful predic-
tion of histological features from imaging data could thus lead to a non-invasive “virtual biopsy”
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Table 9.1: Number of tissue samples with low and high values of histopathological tissue proper-
ties.

Histology Low High
Tumor cellularity 37 81

Hyperplasia 30 87
Complex Vasculature 74 42
Simple Vasculature 56 61

MIB-1 80 38
SMI-31 49 67

CA9 57 47

with high spatial resolution.

9.1 Data acquisition
This study included 118 tissue samples from 52 patients with newly diagnosed GBMs.

MR examinations were performed in order to provide data for planning image-guided surgery.
The protocol included a FLAIR sequence, a T2 weighted FSE sequence, and a T1-GAD sequence.
These were used to define the spatial extent of the anatomic lesion. The physiological images
that were acquired comprised of 6-directional DTI data with b=1000mm2, and DSC images be-
fore, during, and after the injection of 0.1 mmol/kg body weight Gd-DTPA contrast agent at a rate
of 3mL/sm. Metabolic imaging data were obtained using lactate-edited three-dimensional MRS
using point-resolved spectroscopy volume-selection with echo planar and phase encoding localiza-
tion. Imaging parameters derived from post-processed data helped guide the designation of small
(5 mm3), putative tumor regions. Regions of suspected tumor located in relatively homogeneous
areas of the MR images were designated as targets for tissue sampling using surgical navigation
software.

Tissue samples were fixed using conventional pathological techniques and examined by a
pathologist for histological features such as tumor cellularity, MIB-1 proliferation index, SMI31,
CA9, hyperplasia, and the presence of simple, and complex vasculature. Only tissue samples that
contained tumor cells were included in the analysis. Each histopathological tissue property was
transformed into a binary variable describing either low or high values of that property. The num-
ber of samples in each category for each tissue property are listed in Table 9.1.
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9.2 Preprocessing and analysis
The MR images were normalized using the median intensity value in the normal-appearing white
matter and registered to the T1-GAD. ADC and FA maps were obtained from the DWI sequence
and CBV, PH, RF, and RECOV were estimated from the PWI susceptibility curves. The spectral
amplitudes and line-widths of Cho, Cre, NAA, Lac, and Lip were estimated from the spectroscopy
data.

The problem of identifying image voxels corresponding to a high or low histopathological
feature was formulated as a supervised learning problem. The input vector was comprised of
the imaging parameters at the biopsy locations, and the associated histopathological feature (low
or high) was the desired output or class. The goal was to build supervised learning models to
determine the probability that a voxel corresponds to a low or high level of the histopathological
parameter of interest, for any valid input vector, after having seen a number of training examples,
by generalizing from the presented training data to unseen situations in a reasonable way. The
type of model used was decision stump boosting. This method uses voting to combine the output
of univariate regression models, which are built iteratively and in such a way that new models
complement the previous ones by becoming experts for instances handled incorrectly by earlier
models. The contribution of each model was weighted by its performance.

The variables used as input to the multivariate additive logistic regression model were selected
using an automatic, wrapper-based feature selection method [134]. The final model was evaluated
using LOOC and bias-corrected bootstrapping.

9.3 Results
The globally predictive features for distinguishing between low and high values of tumor cellu-
larity, hyperplasia, complex and simple vasculature, MIB-1, SMI-31, and CA9 are listed in Table
9.2.

Decision stump boosting models based on automatically selected feature subsets were built to
distinguish between low and high values of tumor cellularity, hyperplasia, complex and simple
vasculature, MIB-1, SMI-31, and CA9. The accuracies of these models are illustrated in Table
9.3. It is possible to distinguish between low and high tumor cellularity samples and low and
high complex vasculature samples with 86% bootstrapping accuracy (95% CI=[83-89%]). Tis-
sue samples with microvascular hyperplasia can be distinguished in vivo with 84% bootstrapping
accuracy (95% CI=[81-87%]). Tissue samples with high axonal disruption were identified with
83% bootstrapping accuracy (95% CI=[80-86%]). Samples with low or high MIB-1 proliferation
index were classified with 79% bootstrapping accuracy (95% CI=[76-82%]). Low and high CA9
samples were distinguished with 75% bootstrapping accuracy (95% CI=[71-79%]).
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Table 9.2: Globally predictive features for distinguishing between low and high values of the
histopathological parameters of GBM tissue

Histopathology Parameter p-value Association

Tumor cellularity

T1-GAD 0.03 positive
CBV 0.02 positive

Choline 0.01 positive
Excess choline to NAA 0.009 positive

Excess choline to Creatine 0.003 positive
CNI 0.009 positive

Hyperplasia

Peak height 0.04 positive
Lactate 0.03 positive
RECOV 0.01 negative

CBV 0.07 positive

Complex vasculature
RECOV 0.05 negative

Peak height 0.06 positive

Simple vasculature
FA 0.01 negative

CBV 0.05 positive
Creatine 0.07 negative

MIB-1

T1-GAD 0.04 positive
Peak height 0.02 positive

CBV 0.0004 positive
Excess choline to creatine 0.003 positive

Lactate 0.09 positive

SMI31

RECOV 0.01 negative
T1-GAD 0.02 positive

Peak height 0.02 positive
NAA 0.08 negative

CA9
RECOV 0.02 negative
Lactate 0.03 positive

T1-GAD 0.05 positive
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Table 9.3: Accuracy results of decision stump boosting models for distinguishing between low and
high values of the histopathological parameters of GBM tissue

Histopathology LOOC LOOC 95% CI Bootstrap Bootstrap 95% CI
Tumor cellularity 0.94 0.88-1.00 0.86 0.83-0.89

Hyperplasia 0.90 0.82-0.98 0.84 0.81-0.87
Complex Vasculature 0.86 0.79-0.93 0.86 0.83-0.89
Simple Vasculature 0.82 0.72-0.92 0.79 0.76-0.82

MIB-1 0.85 0.77-0.93 0.79 0.76-0.82
SMI31 0.84 0.74-0.94 0.83 0.80-0.86
CA9 0.81 0.71-0.91 0.75 0.71-0.79

9.4 Discussion
Multivariate pattern analysis models were able to distinguish between low and high histopatholog-
ical tissue properties with good bootstrapping accuracies. Tumor cellularity, hyperplasia, complex
and simple vasculature, and SMI31 were easier to classify than MIB-1 and CA9. While not accu-
rate enough for diagnosis, these models could be used to guide biopsy site selection, by targeting
areas of the tumor with high values of malignant histopathological features. This process could
reduce sampling error and lead to more accurate histopathological diagnosis and grading.
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Chapter 10

Modeling tumor cellularity by linking MR
imaging and spectroscopy with histology
[21]

The study presented in this chapter was published in the Proceedings of the 2010 MICCAI Work-
shop on Computational Imaging Biomarkers for Tumors [21].

This study extends the analyses performed in Chapter 9 by analyzing the relationship between
parameters of brain tumors obtained through in vivo MRI and MRS, and ex vivo IHC, helped
by the correlation between various histopathological features. The goal of this project was to
provide a quantitative definition of tumor cellularity based on the in vivo parameters. Biopsy
samples obtained from previously untreated patients with a diagnosis of GBM were used to find
the link between imaging parameters at specific biopsy locations and IHC parameters from the
corresponding tissue samples. A logistic ridge regression model of tumor cellularity was learned
from the in vivo parameters and the remaining histological parameters. The tumor cellularity
model was then tested on examples which contained only in vivo parameters, by first estimating the
remaining IHC parameters by applying the EM algorithm, and then using the complete parameter
vector for classification.

10.1 Data acquisition and preprocessing
Fifty-two patients received full MR examinations on a 3T MR scanner. The MR examination
included a three-dimensional T1-GAD and a three-dimensional FLAIR sequence, acquired at
a resolution of 1mm × 1mm × 3mm. The exam also included 6-directional axial DWI with
b=1000s/mm2 and dynamic PWI with an injection of 0.1 mmol/kg body weight Gd-DTPA con-
trast agent at 5mL/s and lactate-edited three-dimensional MRS data. Chemical shift imaging was
performed using point-resolved spectroscopy volume-section techniques (10mm×10mm×10mm
nominal spatial resolution). Water suppression was achieved either through the use of spectral-
spatial spin-echo pulses or CHESS and outer volume suppression was performed using PRESS
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[77]. The spectral amplitudes and line-widths of Cho, Cre, NAA, Lac, and Lip were estimated. All
images were rigidly registered to the T1-GAD image. The registration was performed through the
maximization of normalized mutual information using a gradient ascent algorithm [123].

Tissue sample locations were selected based on surgically accessible areas with low ADC,
elevated CNI, or elevated PH and low RECOV. Upon surgical excision, the tissue samples were
flash-frozen in liquid nitrogen. For analysis, the tissue samples were fixed in paraffin and analyzed
by a pathologist, who scored the sample for tumor cellularity (on a scale from 0 to 3), evaluated
the MIB-1 index based on the number of cells stained with Ki-67 antibody relative to the total cell
count, calculated the axonal integrity score (SMI-31), and noted the presence or absence of simple,
complex, and delicate vasculature, hyperplasia, and CA9 gene expression.

The data set consists of 118 tissue samples obtained from 35 patients.

10.2 Feature selection
Each tissue sample had ten associated IHC parameters which were the imaging parameters at the
biopsy locations obtained by creating a 5mm biopsy mask using the recorded biopsy location of
each tissue sample. The median intensity values inside this mask in each of the MR and MRS
images were used as the in vivo parameters. A total of seventeen in vivo parameters were used:
two anatomical parameters, two diffusion parameters, six perfusion parameters, and seven spectral
parameters. A low/high cellularity variable was created for classification, by including tumor
scores of less than 2 into the low cellularity category, and the rest into the high cellularity category.
A wrapper-based feature selection method with genetic search was used to select an optimal subset
of features for the classification.

10.3 Models
The problem of classifying data samples into low and high tumor cellularity samples was formu-
lated as a supervised learning problem. The in vivo and IHC parameters of each tissue sample
were used to form a feature vector, or input. The associated tumor cellularity class was the desired
output. The task of the supervised learner was to determine the tumor cellularity class for any valid
input vector, after having seen a number of training examples, by generalizing from the presented
data to unseen situations in a reasonable way. The EM algorithm for multiple imputations was first
used to estimate the missing values in the training data. A logistic ridge regression classifier was
then used to learn a model of tumor cellularity based on the in vivo MRI and MRS parameters,
as well as the remaining histological parameters. The model was then used to predict the tumor
cellularity of unseen examples, either using the full input vector, or only the in vivo parameters.
In the latter case, the EM algorithm for multiple imputations was used to estimate the histological
parameters, and the resulting input vector is used for classification.
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Table 10.1: Training and LOOC accuracy results for binary and three-category tumor cellularity
models using different sets of parameters

Features
Binary Cellularity Three-Categ Cellularity
LOOC Bootstrap LOOC Bootstrap

in vivo + hist 0.95 0.94 0.82 0.77
hist 0.92 0.90 0.73 0.69

MRS + hist 0.88 0.87 0.70 0.65
Perf + hist 0.89 0.87 0.71 0.68
Diffu + hist 0.90 0.86 0.77 0.70
Anat + hist 0.88 0.85 0.73 0.68

in vivo 0.94 0.86 0.43 0.34

10.4 Results
The data was first preprocessed and the missing values were estimated using the EM algorithm.
The log likelihood threshold for convergence was set to 10−4. The logistic ridge regression classi-
fier was used to learn a model for classifying low and high tumor cellularity based on the remaining
histological parameters and the in vivo parameters.

The model was first tested using complete input vectors. Table 10.1 shows that the full in vivo
and histology model was able to distinguish between low and high tumor cellularity with 94%
bootstrapping accuracy. This model outperformed the model based on in vivo parameters alone.
The full model was based on seven parameters: SMI-31, the presence of complex vasculature, the
excess of Cho to Cre, the RF and PH of the ∆R* perfusion curve, and the intensity values of the
FLAIR and T1-GAD images at the biopsy locations. The histology parameters were, in general, the
most important in predicting tumor cellularity. This was expected, because the imaging parameters
came from an area around the estimated biopsy location, and might not have exactly corresponded
to the tissue samples themselves.

Table 10.2 shows that the information obtained from the histology parameters can be used to
improve tumor cellularity classification even when histological data is not available. Using the full
model to predict tumor cellularity based on in vivo parameters and EM estimates of the “missing”
histological parameters yields a significantly higher prediction accuracy compared to the in vivo
model. Learning the structure of the model from histology and using the in vivo parameters to
estimate the histological data gives better performance than trying to estimate tumor cellularity
using the in vivo parameters directly.

The three-category tumor cellularity model built a regression function for each class. The
accuracy of the three-category model was summarized in Table 10.1. The full model was able
to predict tumor cellularity with 77% accuracy, given a three-category response. The confusion
matrix for the full model was shown in Table 10.3. Most of the instances were classified correctly,
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Table 10.2: Accuracy of binary cellularity model with EM estimated histology

Training Data Test Data Bootstrap Acc
in vivo + hist in vivo + hist 0.94
in vivo + hist in vivo + hist EM estimates 0.9

in vivo in vivo 0.84

Table 10.3: Confusion matrix for full data three-category cellularity model

Class. 1 Class. 2 Class. 3 Actual
32 4 0 1
4 21 0 2
0 8 42 3

and the classification errors that occurred were always between two adjacent classes.
In addition to testing the accuracy of the model on examples with known classes, the model was

also used to predict the cellularity of every voxel inside the manually defined T2all of an MR exam.
The results are illustrated in Figure 10.1. The model classified a large part of the voxels in the center
of the abnormal region as being high cellularity. After performing morphological operations on
the resulting mask, we notice a center of high cellularity, with lower cellularity outwards. The
amount of data available for estimating the joint distribution of in vivo and histological parameters
was relatively small given the number of histological parameters that need to be estimated. Also,
the data were not randomly selected and came from a relatively limited distribution of parameters.
This explains some of the noise in the original high cellularity mask. Obtaining more data from
random locations in the abnormality region is necessary in order to be able to more accurately
extrapolate tumor cellularity values beyond the biopsy locations.

10.5 Discussion
This project provided a framework for learning a quantitative in vivo definition of tumor cellularity.
The model proposed was able to accurately classify data instances into tumor cellularity categories
using a set of in vivo and histological parameters, as well as the in vivo parameters and estimates
of histological parameters. Using estimates of other histological parameters provided better accu-
racy results than directly predicting tumor cellularity based on only the in vivo parameters. This
suggests that histological parameters are highly correlated, and that in vivo parameters provide
information about all of the histological parameters. This information can be used to improve the
accuracy of individual histological models. The pattern recognition framework described in this
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Figure 10.1: Tumor cellularity predictions superimposed on a T1-GAD image; (Left): T1-GAD
images; (Middle): the high cellularity mask in red; (Right): tumor cellularity masks (red = high,
yellow = low), corrected using morphological closing

project was able to identify in vivo parameters that were instrumental in predicting high tumor
cellularity in all models, such as high Cho and low RECOV. This framework was used to create
predicted maps of tumor cellularity at the spatial resolution of anatomical images provided that
training data covering the entire distribution of parameters in the region of interest is available.
Building such a model could lead to a better biopsy selection process or to the early prediction of
tumor cellularity and grade before biopsies are acquired and processed.
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Chapter 11

Multivariate serial analysis of glioblastomas

The median survival of patients with GBMs is approximately 15 months [125]. However, there is
considerable variability among individuals, with some benefiting from different types of treatment.
Previously published research revealed several factors that influence the prognosis of patients with
GBMs [10, 34, 35, 51, 53, 62, 121, 124]. Preoperative and postoperative MRI characteristics have
been reported as having predictive value in relation to survival [22, 48, 68, 105]. However, indi-
vidual MRI characteristics are not sensitive and specific enough to provide an accurate prognosis
estimate for individual patients. This study presents a multivariate model of survival based on
serial MR parameters that could be used to predict individual patients’ prognoses. A univariate
analysis of the data used in this study was previously published by Yan et al. [68].

11.1 Data acquisition
Sixty-four patients with newly diagnosed primary GBMs participated in this study. They had a
median age of 53 (range 27-77). Thirty-eight were male, and 26 were female. Thirty-six were on
corticosteroid therapy, while 21 were not. Sixty-three patients underwent subtotal or gross total
resection, while three patients only had biopsies. Patients had their baseline scans after surgical
resection or biopsy, but prior to radiation and chemotherapy. Subsequent scans were acquired
immediately after radiation and every two months afterwards, up to a maximum of one year. When
tumor progression was suspected, patients received an additional scan at approximately one month,
to help distinguish true progression from pseudoprogression.

MR data were acquired using either 1.5T or 3T GE scanners (GE Healthcare Technologies)
between November 2002 and March 2007. Anatomic MR imaging included a T1-weighted image
(repetition time [TR]/echo time [TE] = 54/2ms), a T2-weighted FLAIR image (TR/TE/inversion
time [TI] = 10002/127 − 157/2200ms), and pre- and post-contrast T1-weighted images (TR/TE
= 26/2− 8ms). DWIs were acquired with 3- or 6-directional axial diffusion echo planar imaging
(EPI) sequences (TR/TE = 5000−10000/63−110ms, b = 1000s/mm2). A bolus of 0.1mmol/kg
of body weight Gd-DTPA was injected intravenously at the speed of 5mL/s. PWIs were achieved
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by collecting a series of T2-weighted EPI (TR/TE/Flip = 1000 − 2000/54ms/30 − 358, 60-80
timepoints) acquired before, during, and after the bolus injection.

11.2 Preprocessing
The anatomical images were aligned to the corresponding T1-GAD image. ADC maps were cal-
culated from theDWI, resampled to the same resolution as the T1-GAD, and then rigidly aligned
to it. Perfusion datasets were resampled to the same resolution as the T1-GAD and then nonrigidly
aligned to it. CBV, RECOV, PH, and RF were calculated for each voxel using software developed
in the Surbeck Laboratory for Advanced Imaging. CBV intensities were obtained by fitting the
dynamic perfusion data by a modified gamma-variate function with a recirculation parameter. PH
and RECOV values were estimated using a simple nonparametric procedure.

ROIs included the NAWM, the CEL, the T2all, and the NEL, which was defined as the T2all
lesion subtracted from the CEL and NEC (Figure 2.2). NAWM was segmented automatically
using a hidden Markov random field model with an EM algorithm on the pre-contrast T1-weighted
image. The masks of tumor lesions were segmented using a region-growing segmentation tool. All
ROIs excluded the resection cavity. Volumetric, diffusion, and perfusion parameters were analyzed
within these abnormalities. Due to smaller acquisition coverage of DWI and PWI compared with
the anatomic images, these parameters were limited to the region that overlapped. To emphasize
any difference between patients, ADC, CBV, PH, and RF maps were normalized to the median
value within NAWM. The value of RECOV is calculated as a percentage of the baseline and was
therefore not normalized.

11.3 Analysis
Figure 11.1 shows the patient survival information and time to progression. The median overall
survival (OS) was 588 days (95% CI = [468-708]), with 11 patients sensored. Figure 11.2 illus-
trates the Kaplan-Meier curve for overall survival.

Table 11.1 shows the significant univariate predictors of overall survival. These include the
volumes of the T2all, the NEL, and the CEL (p < 0.0001), and parameters and extracted from the
ADC, RF, and PH.

A multivariate model was built using stepwise selection of covariates, using the following steps:

S1: Fit model containing all variables significant at the 0.2 level in the univariate analysis.

S2: Sort p-values of coefficients and use them to delete insignificant variables one at a time.

S3: Re-add removed covariate if removal procedure causes a change of more than 30% in the
coefficients.

S4: Try to add, one at a time, each variable not yet included in the multivariate model, and test
if it is significant or an important confounder (it changes coefficients more than 30%).
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Table 11.1: Significant univariate predictors of overall survival
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Figure 11.1: Event chart for 64 GBM patients

S5: Assess each interaction term individually.

S6: Evaluate model assumptions.

The final multivariate model is illustrated in Table 11.2. It includes nine covariates and an
interaction term between median ADC in the CEL region and the 10th percentile of RECOV in the
CEL region (partial likelihood test p-value = 0.00284).

Figures 11.3-11.6 evaluate the model assumption. Figure 11.3 shows the Martingale-residual
plots for the covariates in the multivariate Cox regression model. This plot reveals the linear
relationship between the covariates and the overall survival. This relationship is also illustrated in
the component-plus-residual plots illustrated in Figure 11.4. The index plots of dfbetas for the Cox
regression model of overall survival are illustrated in Figure 11.5. They reveal that none of the
observations are outliers in all covariates. Figure 11.6 plots the scaled Schoenfeld residuals against
transformed time for each covariate in the model fit in Table 11.2. The solid line is a smoothing-
spline fit to the plot, with the broken lines representing a ±2 standard-error band around the fit.
These plots are a check of proportional hazards assumption for each covariate.

The final multivariate model in Table 11.2 was used to predict individual overall survival. Ten
fold cross-validation and 0.632 bootstrapping were used to test the accuracy of the predictions.
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Figure 11.2: Kaplan-Meier overall survival curve ( median OS was 588 days)
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Figure 11.3: Nonlinearity test: Martingale-residual plots for the covariates in the Cox regression
model
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Figure 11.4: Nonlinearity test: component-plus-residual plots for the covariates in the Cox regres-
sion model
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Figure 11.5: Influential observations: index plots of dfbeta for the Cox regression model
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Figure 11.6: Proportional hazards assumption: plots of scaled Schoenfeld residuals against trans-
formed time for each covariate in the Cox regression model
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Table 11.2: Final multivariate model with significant interaction (partial likelihood test p-
value=0.00284)

VAR COEF EXP(COEF) S.E. ROBUST S.E. P-VALUE
t2all volume -0.129 0.8786 0.06 0.05 0.010003
nel volume 0.14 1.151 0.06 0.05 0.008054
cel volume 0.105 1.111 0.06 0.03 0.002402

median adc in cel -17.59 2.29E-08 5.15 4.69 0.000176
90th rf in t2all -0.416 0.66 0.22 0.16 0.008168

10th adc in t2all 7.084 1193 1.93 1.47 0.00000151
median rf in nel 3.655 38.68 1.59 1.59 0.021281

10th rf in cel 1.4 4.054 0.59 0.45 0.001724
10th recov in cel -3.936 0.6746 0.13 0.11 0.000326
median adc in cel

0.247 1.28 0.07 0.07 0.000198X
10th recov in cel

The prediction error curves obtained using the Brier score over time are illustrated in Figure 11.7.
The dashed line represents the chance prediction error. The figure illustrates that the model can
accurately predict the overall survival of patients with either relatively short or relatively long
survival times. The model is less accurate for patients with median survival times.

Figure 11.8 compares the bootstrapping prediction error curves of the multivariate model with
and without the interaction term, and of the univariate prediction models. Using the full model
in Table 11.2 produces the lowest prediction errors. However, the model excluding the interac-
tion term has very high errors for patients with median survivals. Among the univariate models,
the volume parameters and the 10th percentile ADC inside the T2all region produce the smallest
prediction errors.

11.4 Discussion
MRI is the principal method being used to evaluate response to therapy and tumor progression
in patients with GBM. The current study examined the predictive value of integrating anatomic,
DWI, and PWI examinations that were obtained postsurgery, pretreatment, and at post-treatment
follow-ups to determine whether the information obtained could accurately predict overall survival.

The median OS for the patients in this study with GBM was 84 weeks, but a large range of out-
comes were observed. Previous univariate studies have found several variables that are associated
with worse survival [68], but this multivariate study showed how these values can be combined to
predict survival. A multivariate model with 9 significant parameters and one interaction suggests
that different MR modalities provide complementary information about survival. Prediction errors
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Figure 11.7: Prediction error curves for survival models, obtained using Brier score over time

curves suggest that the evolution of GBMs follows a complex process not fully explained by MR
diffusion and perfusion parameters.
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Figure 11.8: Bootstrapping 0.632 prediction error curves for survival models with different covari-
ates, obtained using Brier score over time
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Chapter 12

Automatic segmentation of brain tissue in
patients with newly diagnosed gliomas

The study presented in this chapter was published in the Proceedings of the 2010 IEEE Interna-
tional Symposium on Biomedical Imaging [16] and reproduced with permission.

Effective brain tumor treatment depends on the accurate identification of boundaries between
tumor, edema, and healthy tissue. Most of the studies previously described in this thesis rely
on the identification of ROIs in the MR images that describe the tumor and abnormality extent.
High grade tumors challenge our ability to make distinctions between abnormal brain tissue types,
because they are diffuse, infiltrative, and heterogenous. They invade the surrounding healthy tissue
and are comprised of enhancing and non-enhancing tumor tissue and edema, making the transition
from tumor to healthy tissue gradual and hard to identify.

In this study, spectroscopy data were used for the coarse detection of the tumor region. Once
the tumor area was identified, the FLAIR abnormality region was finely determined using thresh-
olding with morphology and surface smoothing. Areas of contrast enhancement and necrosis were
then identified by analyzing the abnormal FLAIR region in a T1-GAD. Once the tumor regions
were removed, the remaining tissue was segmented into WM, grey matter (GM), and cerebrospinal
fluid (CSF) using a hierarchical graphical model based on the intensity values of the pre-contrast
T1-weighted image, the T2-weighted FSE image, and the T1-GAD image. The novel aspects of
this algorithm include the use of spectroscopy for coarse tumor detection, which makes it pos-
sible to use fast thresholding methods with high accuracy, as well as the identification of ROIs
within the tumor. Together, the pieces of this segmentation algorithm provide a framework for
accurately segmenting MR images into healthy and abnormal ROIs. The method can be used with
few corrections to replace the manual segmentation of such images used in the medical field.

12.1 Data acquisition and preprocessing
Sixty-nine patients with a diagnosis of high grade glioma received MRI examinations preceding
surgery. Thirty-two were scanned on a 1.5T MR scanner, and 37 were scanned on a 3T MR
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scanner. The MR examination included a three-dimensional T1-weighted sequence, acquired both
with and without gadolinium contrast agent, a three-dimensional T2-weighted sequence, and a
three-dimensional FLAIR sequence. These images had a nominal resolution of 1mm × 1mm ×
3mm. Chemical shift imaging was performed using point-resolved spectroscopy volume-section
techniques (10mm × 10mm × 10mm nominal spatial resolution). For the spectroscopy, water
suppression was achieved either through the use of spectral-spatial spin-echo pulses or CHESS, and
outer volume suppression was performed using very selective suppression pulses [77]. The spectral
amplitudes and line-widths of Cho, Cre, NAA, Lac, and Lip were estimated. The CNI index was
calculated using a robust linear regression algorithm [77]. All images were rigidly registered to
the T1-GAD. The registration was performed through the maximization of normalized mutual
information using a gradient ascent algorithm [123]. The images were stripped of the skull using
the Brain Extraction Tool (BET) [118].

12.2 Tumor segmentation
The patients considered in this study were diagnosed with GBM, which is the most common and
most aggressive type of brain tumor [7]. Scans of GBM usually show a heterogeneous mass with
a hypo-intense or necrotic center and a variable ring of enhancement surrounded by edema [7]. In
this study, the ROIs within a GBM are the CEL and the NEC.

The tumor segmentation algorithm used the CNI index to detect the tumor. A thresholding
algorithm with morphology was then used to find the boundaries of the tumor. Surface smoothing
was then applied as a last step correction. The algorithm is described in more detail next, and
the pseudocode is provided below. The algorithm used spectroscopy data for coarse detection of

Algorithm 6 Tumor segmentation algorithm
1: compute mask CNIabnormal
2: fit Gaussian distribution through FLAIR intensity values
3: select threshold t0 fitted based on Gaussian distribution
4: threshold FLAIR image:It0 = IFLAIR > t0
5: fill holes, erode, then dilate It0
6: find disjoint regions in the binary image It0
7: select regions of It0 which contain abnormal CNI: L0

8: define small windows around connected regions in L0

9: optimize threshold t on local window
10: select final abnormal region L and smooth boundary
11: threshold CEL in region L of T1-GAD image
12: threshold NEC in region L of T1-GAD image

the tumor region. Spectroscopy data have a much coarser resolution than structural images, and
therefore cannot be used for an accurate delimitation of the boundary of tissue abnormality. Fur-
thermore, spectroscopy data were only available for part of the structural image. In order to obtain
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high quality spectroscopy data, lipid has to be avoided during the acquisition process, which means
that part of the tumor might not have spectroscopic information. Even though spectroscopy data
cannot be used to finely determine the boundaries of tumors, this data reflect metabolite informa-
tion that is a lot more reliable in detecting abnormal tissue than the information available in the
structural images. Therefore, using spectroscopy for tumor detection and structural images for
boundary delineation can lead to more accurate results than using each modality on its own. An
abnormality index was derived for the CNI as described in Section 12.1. Once the areas of abnor-
mal CNI were identified, further processing was done on the FLAIR image in the neighborhood
of the tumor to determine the FLAIR abnormality region. In FLAIR images of patients diagnosed
with GBM, the abnormal region is typically brighter than the rest of the image. A thresholding al-
gorithm was used to identify the bright FLAIR areas in the vicinity of abnormal CNI. A Gaussian
distribution was fitted through to the FLAIR intensity values, and a threshold was selected based on
this distribution. The rough area of the abnormal FLAIR region was estimated using the area of the
abnormal CNI region. This area was used to select an initial thresholding value. The threshold was
then optimized by maximizing the inter-region contrast between the area of high FLAIR intensity
and the adjacent regions. The contrast was measured in terms of the average gray-level intensity
of the ROI, IROI , and the average intensity of the local background, IBG, and was computed as
C = IROI−IBG

IROI+IBG
. In order to obtain the intensity of the local background, the bounding box around

the ROI was computed, and its edges were increased by 5% in each direction. This provided a
local analysis window that was large enough to accurately recompute the tumor boundaries, yet
small enough to keep the noise levels reduced. The pixels inside the extended box that did not
belong to the ROI were considered local background pixels. After thresholding, three-dimensional
morphological operations were used for spatial correction: the ROI was dilated and eroded and
gaps were filled. The surface of the ROI was modeled by surface tessellation using connected
triangles. This model was used to smooth the boundaries of the FLAIR abnormality. Areas of con-
trast enhancement and necrosis were then identified by analyzing the FLAIR abnormality region
in a T1-GAD image. A thresholding algorithm was used to identify the contrast enhancing lesion
as the brighter region in the abnormal tissue. Necrosis was identified through thresholding as the
darker region within the abnormal tissue. The same segmentation accuracy metrics were used to
determine appropriate thresholding values.

12.3 Healthy tissue segmentation
After the abnormal brain region was identified using the FLAIR image, the healthy tissue was
further segmented into WM, GM, and CSF based on three images: the pre- and post-contrast T1-
weighted images, and the T2-weighted image. A hierarchical graphical model was used to model
the intensity values of the three healthy tissue types in the three types of MR images, and the
parameters of the model were estimated using the EM algorithm.

The image classification problem involved assigning to each voxel a class label taking a value
from the set L. Each pixel in an image was characterized by an intensity value Y . The true and
unknown labeling of the image was denoted as X∗, and X̂ was an estimate of X∗, both of which
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were interpreted as particular realizations of a random field X , which was a Markov random field
(MRF) with a specified distribution P (X). The observable image was denoted by Y , which was a
realization of a Gaussian Hidden Markov Random Field (GHMRF). The problem of classification
was recovering X∗ given the observed image Y .

The algorithm used for single channel segmentation was introduced in [140] and is briefly de-
scribed next. This algorithm was then extended to multichannel segmentation. The EM algorithm
was used to iteratively fit the parameters of the model. The strategy underlying the EM algorithm
was the following: estimate X̂ given the current θ estimate, then estimate the new parameters θ by
maximizing the expectation of the complete-data log likelihood, E[logP (X, Y |θ)]. The E-step of
the EM algorithm calculated the conditional expectation Q(θ|θt), while the M-step maximized it
to obtain the next estimate.

Algorithm 7 EM algorithm

E-step: Q(θ|θt) = E[logP (X, Y |θ)|Y, θt]
M-step: θt+1 = argmaxθQ(θ|θt)

Given several types of images of the same structure, a hierarchical model was formed that
combined complementary brain tissue type information from several imaging modalities. The data
from m imaging modalities were denoted as Y = Y1, . . . Ym. Each of the imaging modalities
had its own parameters, Θ = θ1, . . . , θm. The remaining parameters of the model were the labels
corresponding to the underlying tissue types, θL. Then, according to Bayes’ rule, p(Θ, θL|Y,M) ∝
{
∏m

i=1 p(Yi|θi, θL)}p(θL|M). The marginal posterior for the common parameters was obtained by
marginalizing over the parameters specific to each distribution:

p(θL|Y,M) ∝
∫
θ1

. . .

∫
θm

p(Θ, θL|Y,M)dθ1 . . . dθm. (12.1)

12.4 Results
The segmentation algorithm was run on the data described in Section 12.1. The segmentation
results for the T2all, CEL, NEC, and WM were then compared to expert manual segmentation.
These four types of tissue were the ROIs that were manually segmented for all the acquired scans.
WM was of interest because it can be used for normalization in other studies. The precision (P),
recall (R), and F-measure results of this comparison are summarized in Table 12.1, and some
examples are illustrated in Figure 12.1. Table 12.1 also illustrates the benefits of using CNI for
tumor detection, by contrasting the results with those of using FLAIR alone for the abnormality
detection.

12.5 Discussion
The algorithm proposed in this study was able to obtain the FLAIR abnormality with high ac-
curacy. This algorithm was fast, and did not require any training. The use of spectroscopy data
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Table 12.1: Segmentation results

ROI with CNI without CNI
P R F P R F

T2all 0.95 0.95 0.95 0.48 0.95 0.64
CEL 0.85 0.88 0.86 0.56 0.80 0.66
NEC 0.87 0.85 0.85 0.33 0.81 0.47
WM 0.98 0.90 0.94 0.98 0.77 0.86

for tumor detection eliminated the need for a slow, complicated algorithm for tumor detection or
for correcting spatial segmentation errors. The possible drawback in the use of spectroscopic im-
ages was the extra acquisition time. However, spectroscopic images should be routinely acquired
for glioma patients in order to assess tumor progression and treatment response. The accurate
spectroscopy-based tumor detection made it possible to use a fast thresholding with morphology
and surface smoothing to delineate the boundaries of the abnormal region, and to further detect
the contrast enhancing lesion and necrosis. Accurately removing the abnormal brain tissue from
the images made it possible to use a clustering Bayesian algorithm for healthy tissue segmenta-
tion. This algorithm could not cope with the heterogeneity in tumor appearance, but provided a
good mathematical framework for integrating the appearance of common healthy structures from
different types of images.
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Figure 12.1: Segmentation results: each row corresponds to one patient; the columns, from left
to right, illustrate the abnormal brain region on a FLAIR image, the CEL and NEC on a T1-
GAD image, and an overlay of the abnormal, WM, GM, and CSF automated segmentation on
top of a T1-weighted image; the ROIs segmented by our algorithm have red outer boundaries and
green inner boundaries; the manually segmented ROIs have yellow outer boundaries and blue inner
boundaries; the tumor is red, the CSF is blue, the WM is green, and the GM is yellow
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Chapter 13

Summary

The objective of this thesis was the analysis of advanced NMR data in conjunction with multivari-
ate pattern recognition methods to assist in the clinical management and biological understanding
of gliomas, the most malignant type of brain tumors. The tools developed in this thesis were used
to characterizing biological changes predictive of malignant transformations and treatment effects
in gliomas, and for the early detection of disease progression. These tools were crucial in finding
links between in vivo and ex vivo data that could give insight into the biology of brain cancer. The
methods described in this thesis can be easily translated into clinical practice by improving the
selection of biopsy sites and the targeting of treatment.

The main contribution of this thesis was the development of computer-assisted support for
glioma understanding, diagnosis, and prognosis in clinical environments based on pattern recogni-
tion methods. The work described in this thesis produced results with high accuracy in classifica-
tion, interpretability by means of clinical knowledge, and capacity to generalize the performance
to new samples. The technical aspects covered in this thesis include the feature extraction and
modeling of biomedical data, the inference and evaluation of predictive models, and the use of the
models for clinical applications. These methods were described in Chapter 3.

Chapter 4 compared the use of several multivariate classification methods for identifying recur-
rent LGGs that transformed to a higher grade based on HRMAS data. The highest bootstrapping
classification accuracy obtained by these classifiers was 96%. The use of interpretable feature se-
lection methods lead to the identification of a parsimonious set of metabolites that are predictive of
malignant transformations in recurrent LGGs. The identification of these metabolites can inform
the acquisition of in vivo MRS, which could lead to better non-invasive identification of malignant
transformations in LGGs.

The HRMAS analysis was extended in Chapter 5 to identify the differences between primary
and secondary GBMs, with bootstrap classification accuracy of 98%. This analysis identified 2HG,
a metabolite whose increased concentration is highly predictive of malignant transformations in re-
current LGGs, but whose concentration is generally low in newly diagnosed GBMs. This provided
evidence supporting the hypothesis that primary and secondary GBMs are different disease enti-
ties, and that 2HG is useful in discriminating between them. Distinguishing between these two
categories is important in administering the right treatment plan.
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HRMAS data were also used to compare the metabolic profiles of treated and untreated grade
2 and 3 gliomas in Chapter 6. This work identified chemical changes that may be due to treatment
effect, and that could thus help differentiation between tumor and treatment induced transforma-
tions in non-malignant tissue. This work could also help in the detection of early response to
treatment. Pattern recognition methods determined that treated and untreated gliomas have very
different metabolic profiles. This suggests that these tumors might benefit from different types of
treatment.

Histological analysis is a relatively subjective process that varies across experts. The develop-
ment of HRMAS led to an objective method for analyzing tissue. However, this data are signifi-
cantly harder to interpret. Finding a link between HRMAS metabolites and histological parameters
could lead to faster, more objective glioma grading and typing. This type of analysis could also
provide new insights into the biology of brain tumors. For this reason, pattern classification meth-
ods for modeling histological features based on ex vivo metabolic data were described in Chapter
7. These models achieved bootstrapping accuracies of 78-88%, with tumor cellularity, hyperplasia,
and the presence of complex vasculature being easier to model than CA9 or the MIB-1 proliferation
index.

A natural continuation of the HRMAS work was to explore the use of in vivo spectroscopy
and imaging to detect malignant transformations in LGGs. The model was developed in Chapter 8
and had 93% LOOC accuracy and 84% bootstrap accuracy. The previous HRMAS study indicates
that this model could be improved by acquiring Myo-I in vivo. In the clinic, this model can lead
to the early detection of tumor progression and to a faster change of treatment for those patients
exhibiting malignant transformations.

Tumor grading is a complex process that involves the search for histological features predictive
of malignancy either in a large biopsy sample or in several smaller biopsy specimens. In this work,
the biopsy samples were small, in order to allow for their precise localization on the anatomical
images. It is very unlikely that one biopsy sample contained all the histological features required
for grading, because of tumor heterogeneity. In general, classification models linking in vivo and
ex vivo data could help select biopsy sites that contain histological features of interest. The link be-
tween in vivo and histological glioma parameters was explored in Chapter 9. This chapter describes
classification models for distinguishing between low and high values of histological parameters.
These models achieved bootstrapping accuracies of 75-86%, with tumor cellularity, hyperplasia,
and the presence of complex vasculature being easier to model than CA9 or the MIB-1 prolif-
eration index. Chapter 10 describes a method for improving the tumor cellularity prediction by
estimating the remaining histological parameters using the EM algorithm. These models can be
used to create maps of tumor cellularity and other histological estimates at the spatial resolution of
anatomical images. These maps can be used to improve the biopsy site selection process.

Multivariate analysis methods can also be used for predicting survival. An application of mul-
tivariate survival methods for GBM patients is presented in Chapter 11. This work describes the
methodology for building a multivariate survival analysis model and using cross-validation and
bootstrapping to estimate its accuracy.

Most of the projects involving in vivo data make use of manually defined ROIs. In order to
help with the definition of the ROIs, an automated tissue segmentation technique for patients with
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newly diagnosed GBM was developed and described in Chapter 12. This method used multi-
modality MRI and MRS data. The spectroscopy data were used for coarse detection of the tumor
region. Once the tumor area was identified, further processing was done on a FLAIR image in the
neighborhood of the tumor to determine the T2all abnormality region. Areas of contrast enhance-
ment and necrosis were then identified by analyzing the T2all in a T1-GAD image. The healthy
brain tissue is then segmented into WM, GM, and CSFusing a hierarchical graphical model whose
parameters are estimated using the EM algorithm. This method segmented the T2all region with
95% accuracy compared to manual segmentation. The CEL and NEC regions were segmented
with 85% accuracy.

This results in this thesis demonstrated that the systematic analysis of patients’ biomedical data
could lead to better disease understanding, diagnosis, prognosis, and treatment.
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