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An Augmented Lagrangian Formulation for the Finite
Element Solution of Contact Problems

Joseph A. Landerst and Robert L. Taylort

Department of Civil Engineering,
University of California, Berkeley.

ABSTRACT

A solution method for small deformation frictionless contact
problems is developed. First, a review of various solution methods
for contact problems is given. Next, a detailed discussion is made
of the augmented Lagrangian method. Then, the finite element
implementation is discussed. Finally, sample problems and their
solutions are presented to demonstrate the usefulness of the
method. Both the static and dynamic solution algorithms are

described in this report.

1. Introduction

While solutions to contact problems have been available for years [1], tech-
niques applicable to a wide range of problems with a minimum amount of user
intervention have been quite limited. This is true not only of static contact
problems, but also in dynamic impact situations as well.

In this report, & study is first made of various frictionless, small deforma-
tion contact algorithms. The advantages and disadvantages of each are dis-
cussed. Next, the augmented Lagrangian solution method is presented in the
context of finite element contact problems. This discussion covers both the
static and dynamic algorithms. The generality of the augmented Lagrangian
method is shown by examining how the other methods may be derived from it.
Several examples are presented, and comparisons are made to work done by
previous researchers. Finally, recommendations are made for future studies in

contact problems.

1 Research Assistant

% Professor and Cheirman
This work was funded by e grent from the Nevel Civil Engineering Laboratory et Port

Hueneme, California. The authors gratefully acknowledge their supportEARTHQUAKE ENG. AES. CTQ, LEBARY
Univ. of Calif. - 453 R.FS.

1301 So. 46th St.
Richmond, CA 94804-4698 USA
- (510) 231-9403



2. Contact Solution Algorithms
Contact solution algorithms are generally based upon either the classical
Lagrange procedure or the penalty function method. In the context of linear-
ized elasticity, finite element solutions can be viewed as the minimization of the
potential energy functional presented in equation (1).
Nw= J wwdv- [ pb.udv- [ t.ude (1)
B,UB, BUB, dB,UdF,

Yhere W is the stored energy function, pb is the body force vector, t is the sur-
face traction specified on the boundary and u is the displacement field. The
integrals are taken over both bodies and their boundaries. Application of stan-
dard finite element procedures leads to equation (2), the discrete form of the

functional.

M{u) = ¥u'Ku - u'R (2)

VWhere K is the system stiflness matrix, f is the vector of nodal forces, and u is
the displacement vector of nodes in the mesh. In the case of finite element con-
tact problems, a further requirement states that penetration of the two bodies

"does not take place.
(@p Ulp)n=0 (3)
Where @i 5 and @ p, are the positions in either deformed body, taken over the

contact interface, and nis the normal between the bodies.

Application of equation (2) subject to the constraint of egquation (3) is

equivalent to an optimization problem, which may be stated as:
minimize: [I{u) (4.2)
with the constraint: g'u=0 (4.b)

The purpose of this report is to discuss solution schemes for the expressions

listed in equations (4).

2.1. The Penalty Method

Optimization problems that involve constraints, such as those presented in
equation (4.b), are frequently converted to unconstrained problems by using
these constraint equations to establish relationships between the unknowns [2].
By writing equation (2) with the addition of a fictitious energy term, a new func-

tional is defined.

IT'(u) = Il(u) + %u‘gg‘u. where: u >0 (5)

" The last term contains the constraint, gfu, times a penalty term, . Because
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solution to finite element problems involve the minimization of equation (5), the
answer will tend to have a small value for gtu. Taking the first variation of (5)

equation (8) is found.
6u'Ku - 6u’R + dutugglu=10 (e)
By the fundamental lemma of variational equations, this becomes:
[K+uggtlu=R (7)
Several comments are applicable to the penalty method. First, the correct
choice of the penalty parameter, u, is the essence of the algorithm. Since the

penalty approach satisfies the contact conditions only approximately, valid
results from equation (4) are highly dependent on the value of u.

IM'(u)

I(u)

Figure 1: The effect of the penalty term, one dimensional case.

In Figure 1, a plot of the two functionals is shown. The addition of the penalty
parameter to equation (2), as stated in equation (5). can be seen as rendering
the functional convex [3]. This is true even if Il(u) is not already convex, for
points near the solution. Also note that in Figure 2, the minimum of the func-
tional with the penalty term will approach the minimum of the functional
without the penalty term only as p-=.

Issues such as u-+= bring forward a major problem with the penalty
method: the matrices used in the solution of the finite element problems may
exhibit poor numerical conditioning. While large penalty values insure a tighter
tolerance for the constraint, these values make an accurate solution of the

linear system of equations much more difficult.

-3-



NG +

Figure 2: The effect of increasing the penalty parameter.

The following problem will serve as a basis of comparison for the various
contact solution algorithms. This system consists of two springs connected in
series. One end is fixed, while at the other, a concentrated force is applied. The
constraint requireé that the displacements of nodes 1 and 2 remain equal. Fig-
ure 3 illustrates the system and external loading. By applying the penalty
method, the matrices corresponding to equation (7) are:

ok k! o} [1]
K=l ] Rl es|) ©

This leads to a linear system of equations:

[ —( Whe,! fol
le + L k + #“uaj ISJ (9)

—(k+up)  k+p =
This system has the solution:
|
9
k) 2

}u;J = 2_[21&1'_&} (10)

kik+pu

The exact solution is shown in equation (11).
[¢]
bl %‘

hue) = g (12)




o —p

k ' k
L L

l/ gap distance vV

7l A

Figure 3: A sample finite element system.

Nole thatl the condition number of the stiflness matrix can easily be found to

be:

A V52 2
mE 3k 42y - VEkZ 4+ Bry + 42

As Figures 4 and 5 illustrate, increasing penalty values lead to more accu-
rate solutions, but they also lead to more poorly conditioned matrices. Because
of the extreme importance of u, a natural gquestion to ask is: how can an
optimal value for the penalty parameter u be found?

In order to find an answer to this question, the errors involved in solution
of the finite element contact problem must be examined in some detail. Two
sources of error effect the accuracy of the penalty method: the large perturba-
tion that results from a small penalty parameter, and the rounding errors due
to large penalty values in finite precision arithmetic on the computer [4]. A
study of the perturbation errors is done first.

Applying the Sherman-Morrison formula to equation (7), the following
expression for the displacements by the penalty method is obtained.

[K-l - Mﬁ} R (13)

The exact solution can be found by letting u-==:

[ gt -1
w = [K" - l(-g_“i(g“*—l;— R (14)
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Figure 4: The effect of 4 on the gap distance.

The error in u is:

[w-100t - - -1 ]
- 1Klgg'K!  uKlpplK!
Y U, gtK—lg 1 +/..Lg‘K"g R (15)

Upon expanding the last term as a series, this becomes:

{ -1 ty-1 -1 ty-1 -1 ty-1 - ty- ]
—u, = (K eg'K  Kllge'K'' | KlggK' KlggfK! o (g6
A e gK'g  ue'K'g? uAg'K'g) (16)

Canceling the first two terms, dropping items in u with powers greater than one,
and taking norms of both sides {16) can be written as:

Klgg'K ! R (17
g'K'g )

e <2

Dividing both sides by li u, ]:, (17) is transformed to:

l KlggrK-1 R
Uy — U, ” tK-1

. i_ | E* & _ (18)

Hu‘“ [K-lgt](——lg_.x—lggtx—I]R
g'K'eg

Simplifying. equation (19) is found:

U, — U < -l—ﬂ K-lggtx—l Rn ] 1 (19)

o B L | P
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For some constant &, this expression can be written as:

"“P - u. L1 __a
el # Jexc

(20)

(:’}::
—_ 4
e p
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Figure 5: The effect of 4 on the condition number.

A standard approximation for rounding errors is given in [5] as an expres-

sion of the form:

"“f““p
|

where u, represents the result computed using finite precision arithmetic, u,
identifies the result computed if exact arithmetic is used. The symbol b
represents some constant, while t represents the number of binary digits of
floating point precision. On the DEC VAX* series of computers, using double
precision instructions, t bas a value of 56. An approximation for the condition

< b2-¢cond (K) (21)

number of the system matrix Kis:

cond (K) = T(E— (22)
min ’

Here, K, is smailest diagonal stifiness matrix coefficient that is in the contact

®* VAX is & traedemerx of the Digital Equipment Corporation



region. Hence, the total error is represented by summing both, as in equation

(23).

ur ~ 4 " -t
+ ~Ll__ o + ”13 g (23)
] el # fexe]
Diflerentiating this expression and setting it equal to zero, the minimum is:
¥
a Koy
K= — (24)
b2t g‘K“g”
Assuming that the following approximation holds:
- 1
I ‘K- lgl = (e5)
€ & Krm’r.
equation (24) then becomes:
(c k2, )*
R -———-2_"“”‘ (28)

for some constant ¢. In practice, c has a value near unity when u is reasonably
large. Equation (26) represents a recommendation for the penalty value, within
the limitations presented in its derivation.

To summarize, penalty methods have several advantages. Despite the con-
ditioning and accuracy problems, the resulting solution requires no extra
efforts beyond adding the contact components to the stiflness matrix. Further-
more, these methods are easy to implement and have a certain intuitive appeal
to engineers. Finally, the contact force conjugate to the contact constraint,
although not explicitly found by this method, can be computed using an extra

procedure.

2.2. The Lagrange Multiplier Method

The classical Lagrange methods were among the first methods used to solve
contact problems. With this method, the functional of equation (2) is amended
with an additional term. This defines the new system listed in equation (27).

IT(wA) = I{u) + A'glu (27)

Taking the variation of (27) yields the following two equations:
6u'Ku - 6u'R+ Sufgh=0 (28.2)
SAfglu=0 (28.b)

By the fundamental lemma of variational equations, this leads to the system:

IK g
JH ; 2



The set of equations expressed by equation (29) may be indefinite but
non-singular [2]. Unlike the standard penalty method, the dimensions of the
matrices increase with this approach. Additionally, as illustrated by equation
(29). the matrix contains a zero sub-matrix along its diagonal. In a practical
finite element system, these zero diagonal terms are not automatically available
in a sub-matrix, but are scattered throughout the system stifiness matrix.
Thus, care must be exercised when the solution is found; special procedures
should be used which eflectively re-order the system of equations.

Despite these disadvantages, classical Lagrange rultiplier methods allow
the contact conditions to be satisfied exactly. Also, the A value has a straight-
forward physical significance; it is the value of the contact force conjugate to
the constraint condition.

An illustration of how the classical Lagrange method is used in contact
problems is demonstrated by again considering the two spring problem. Apply-
ing equation (29), the linear system of equations can easily be found:

2k -k 11¥u;] o]

-k k -1lljusl=lg (30)
1 -1 Ojlx 0
This system has the sclution:
f
g_l
Ay
=14
)\2 % (31)
-9

The results are the exact values for the displacement and contact force.

2.3. The Perturbed Lagrangian Method
An interesting extension to the classical Lagrange method is offered in
references [6] and [7]. Here the functional described by egquation (27) is

modified with an additional term:

T(wA) = I(u) + Algtu - EIL"""' where: > 0 (32)

The eflect of the last term is to fill in the zero sub-matrix of equation (29).
The resulting stiffness matrix no longer contains the zeros along the diagonal,
the classical Lagrange functional is recovered by allowing p-+=. Superficially, it
might be observed that this approach still suflers from one problem of the clas-
sical Lagrange method; an increase in the number of degrees of freedom of the
system. However, this problem can be circumvented in a clever manner when



the method is applied to finite element systems. To see how this may be done,
consider the first variation of equation (32).

Su'Ku — 6u'R + [ Adu‘gda = 0 (33.a)
4
—A ¢ -
[ JA{-— + g u} da =0 (33.b)
f 7

Where the integral extends over the area of contact between the two bodies.
Since 6A is arbitrary and u is a given constant, equation (33.b) can be written

as:

-I—f)\da =fg‘uda (34)
#65 6C

In the framework of finite element analysis, the displacement field is generally
approximated over each element region by some polynomial. If this approxima-
tion is linear, the strain field is constant function. Thus assuming that the con-
tact force, A, is constant over the region of interest, the above expression can

be transformed to:

A= f—fg‘u da (35)
c &

1

Because of the linear approximation, the integral can be evaluated by means of

the trapezoidal rule. Eence, A, can be approximated to:
A=pugtu (36)

The point of this exercise is that equation (33.2), after applying the funda-
mental lemma of variational equations, becomes the expression presented in

equation {37).
Ku-R+gr=0 ' (37)
Applying the results of (36), a new expression is found.
Ku-R+ uggu=0 (38)

Thus, the two equations in {33) can be reduced to a single system that does not
increase the number of degrees of freedom. Equation (38) is essentially that of
equation (7), except for the following points. First, an explicit expression for
the contact force is directly available through the use of equation (36). Second,
while a solution is sought, using the Lagrange approach, to the following:

minimize: [1{u) (35.a)
with the constraint: glu =0 (39.b)

What instead is obtained by using the perturbation is:
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minimize: I1{u) (40.a)
with the constraint: glu — -:—:—= 0 (40.b)

Clearly, one can see that the sclutions are equivalent only as u-=, but as was
seen in the standard penalty approach, increasing u leads to numerical
difficulties.

Again, the two spring problem is presented within the context of the per-
turbed Lagrangian method in order to illustrate how it may be applied to finite

element systems. The system of linear equations is:

[2k + u =k + “)”ul] o]
~(k +u)  k+yu “uz} = H (41)
This has the solution:
[ ]
k] | w E
[“z’J B _g_[Zk + EJ A= -q[k + ,u] (42)
k| k +pu

Note that as y-=, the exact solution is found.

2.4. The Augmented Lagrangian Method

Until now, the methods considered have had some considerable implemen-
tation drawbacks. The penalty and perturbed Lagrangian methods had solu-
tions which are highly dependent on the penalty parameter u. Although it is
possible through the use of an expression like that presented in equation (26)
to get a reasonably good value for u based on conditioning considerations, such
a value says nothing about how accurate a given solution might be. Moreover,
the classical Lagrange method, while it promises the exact results, requires that
the resulting larger system of equations eflectively be re-ordered during the
solution of the system. One might ask if it is possible to develop a method
which, while retaining a relatively easy implementation, minimizes the disadvan-
tages of the penalty and Lagrange methods. To this end, consider the following

functional in equation (43).
IT(aA) =TI(u) + Afgfu + %—u‘gg‘u. where:u >0 (43)
Equation (43) can be viewed as a classical Lagrangian method:
minimize: [I(u) + %—u‘ gefu (44.2)

with the constraint: glu= 0 (44.p)

-11-



because the addition of the penalty term to equation (44.a) does not change the
optimal values of u or the Lagrange multipliers A. Also, note that the system

can also be seen from the penalty viewpoint:
minimize: [Il{u) + A'gtu (45.2)
with the constraint: gtu=0 (45.b)

Observe that, if the correct values of the Lagrange multipliers A® are used,

equations (45) can be written:
minimize: [I{u) + (A")*g'u (48.a)
with the constraint: gfu=0 (46.b)
Or, by applying the penalty approach:
IT(wA) =TI(w) + (A ) glu + g—u‘gg‘u (47)

Taking the first variation of equation (47) and noting that since A° is the exact

value, the result must be equal to zero:

Su‘Ku — Su'R + sulgh’ + pdu'ggu=10 (48.a)
(6A°)Ygu=0 (48.b)
Since duf and (6A°)" are arbitrary, equations (48) have the solution:
Ku-R+gA’=0 (489.a)
glu=0 (49.b)

The formulas (49) represents a set of equations for an exact penalty method.
s, see [3].

For details on. e;(act pen Vlty rnetho

Since the correct values of A are not known in advance, a procedure must
be developed to find them, if the functional of equation (43) is to be of any use.
Until now, the algorithms developed did not require iteration if the contact area
between the two bodies remained constant. With the augmented Lagrangian
method, an iteration is required to compute the correct values of uand A . At
first this procedure might seem to be at a disadvantage, since extra computa-
tion is required. However, as will be shown, there are several advantages to this
approach. The system can yleld a value for A within a glven tolerance. and
hence, u can be computed to a ‘specified value. This did not occur with the
penalty or perturbed Lagrangian methods. Second, the number of equations of
the system does not increase. This was not the case in the classical Lagrangian
method. Third, convergence to a specified value does not require that u--=.
This can help mitigate the severe conditioning problems associated with using a
large penalty value. Fourth, and most important, in finite element problems,
the contact area is generally not known in advance. This area must be found as
the solution progresses. Hence, an iterative procedure is always necessary for

-12-




the finite element solution by the penalty, Lagrangian, and perturbed Lagran-
gian methods previously presented.

A first order update method for A can be written as in equation (50).

Aevy =N +uglu (50)

The motivation for such an updating scheme can be found if equation (45) is
written as:

mimimize: II(u) + Afg‘u (51.a)

with the constraint: gtu=0 (51.b)

Viewing this from a Lagrange standpoint:

/“\/H(u) + Aglu+ (A=A g'u}"gfgf? (52)

A typical step in the éugmented Lagrangian method involves the minimization

of:

H(m) +Afghu + ‘in' getu @’ (53)

So, comparing equations (52) and (53), a good approximation is:
HE'UR AT — A, (54)
Rearranging terms, A, is found.

Aoy = A +Huglu (55)

S i

This is exactly the updating method proposed by equation (50).
Considering the two spring problem described in Figure 3 for the aug-
mented Lagrangian method, the following system of linear equations results:

{Zk + U -(k + ‘u)”u!] _ [O] [1 ]
SRRV (W & e
Note that in this example, A is one dimensional and that, initially it is set to

zero.
AN =0 (57)

So, the equation to update A is simply:
Aevy =N +u(uy —up) (58)

Solving the linear system, end updating the value of A leads to the following

series of equations.

A= fﬁ— (59.a)
Ap = —H2 [, & (59.b)

k+yl k+pu
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4
- _TMT I k k
)\3— % +ﬂll + % ran +[k +#] (590)

Or, in general, equations (59) can be written as:

—ug I k k 2 k 8 k n-1
= 1+ + oL
An k+pl k+u k+y]+{k+p]+' '+[k+p] (60)
This has the form:

M=¢(l+a+a%+a%+,.. ., +anl) (61)

for the following substitutions:

= B9 =k

= %+ 7] T r+ 7 (62)

An infinite geometric series, this converges to:

[ ]

. _ 1 _ =M [ 1 ] - _
A"‘{l—aJ k|- _k_| ¢ (63)
k + u
A requirement for convergence is that:
]ai<1 or {kf#]l\’l (64)

Therefore, it is seen that this system will converge for any positive value of u .

At convergence, the displacements can easily be found as:

[ 1 Iq]
) 3 i
L&aJ’g-px'Ikui Al e (85)
k |k +u k k

These values represent the exact result.

For a detailed convergence proof of the augmented Lagrangian method in
the general case, see [3]. The example previously presented displays the power
of the method for the following reasons. First, convergence to a specified toler-
ance is found without requiring u-=. Second, the correct displacements and
contact forces are available without the need for extra calculations. Also note
that, in practice, the penalty parameter does not have to be held fixed during
the iteration: it can slowly increase as the solution nears convergence. Third,
the burden of accuracy does not depend directly on u but rather on the
number of iterations used to compute A . Furthermore, the algorithm does not
have to be run until A® is found, but rather it needs only to be computed until A
is within a specified tolerance of A°. Finally, each iteration leads to an

-14-




improved estimate of the seolution.

In order to study further the convergence properties of this method, the
duality viewpoint of equation (43) will be examined. Recall that duality means
that the functional which results from the problem:

minimize: [1{u) + g—u‘gg‘u (66.a)
with the constraint: glu=0 (66.b)

will lead to the system of equations:
Ku-R+ (A*)g+ uggu=0 (87)

when the Lagrange approach is used. By invoking a convexity assumption on
the Hessian of equation (67), an equivalent dual problem can be written:

¢(A) = minimum {I(u) + Afgiu + %—u‘gg‘u (68)

Specifically, the dual function is used since it is a function of only one variable,
A, and hence there is a corresponding simplification in the problem statement.
The dual problem requires that the Hessian of the solution of the solution to
equations (66) be positive definite: this is a convexity assumption. Note that
from the results of the penalty method, and in fact from the results of Figure 1,
the problem is locally convex near the solution point for a reasonably large
value of u . Also worth noting is that equation (68) is not used in the solution to
the finite element problemn since the minimization requires a solution of an
unconstrained problem in terms of the unknown displacements. Updating
schemes for u corresponding to equation (50) are much more diffcult to

develop and use.

Using f(x(A)) to represent the standard finite element system, h(x(A)) to
represent the constraint, and x(A) as the vector which minimizes equations
(86), the dual of equation (68) can be written as:

d(A) = £ (x(A)) + A'B(x(A)) + £b* (x(A)h(x(A)) (69)
Equation (69) has the gradient:

Vd () = Vax(ANV 1(x(A)) + V. h(x(A))A + uV, h(x(A))h(x(A))} + h(x(A)) (70)

= h(x(\))

The term in braces vanishes at the stationary point, because it corresponds the
first variation of the functional given by equation (45). The Hessian of the dual
is now calculated in order to examine the convergence properties of the

-15-



augmented Lagrangian method.
V2d =V, x(A)V, h(x(A)) (71)
If the term in braces of equation (70) is described as:
V. L(x(A).A) = V. 1(x(A)) + AV h(z(A)) + uV.h(x(A))h{x(A)) = O (72)

then, upon differentiating this expression one finds (73).

V,x(A)VZ L(x(A).A) + VEL(x(A).A) = O (73)
Equation (73) can be further simplified to:
V,x(A)VZ L(x(A)A) + V. b (x(A)) = O (74)
Finally, V,x(A) can be found by solving equation (74).
V,x(A) = =V h! (x(A))VE L (x(A).A) (75)
Substituting this result into equation (71), the Hessian is listed in (78).
v2d (M) = =V, h' (x(A))VE L (x(A).A) (76)

-1
=V, b (x(A){VEH(x(A)) + #Vzh(X(X))Vzh'(X(A))} v h(z(A))

The steepest ascent formula for maximizing d(X) of equation (69) can be
written as:
Aesy = Ap + aVd(A,) (77)
Or. by substituting the results of (70), equation (77) becomes:
Ae+y = A + ah(x(A,)) (78)
And, from reference [3], a relationship between the values of A and the conver-

gence ratio is:

Ay - - ! I
WST(#)_max (ll-pWi. ll-—uwl) (79)

.

Where ¥ is the maximum eigenvalue of V2d(A), w is the minimum eigenvalue of
V2d (A) , the function r{u) is the convergence ratio and u° is the optimal value of
4 . This optimal value can be computed to be:

. _ 2
K = F+w (80)

And, the convergence ratio at that value is:

ru) = Pt (81)

Similarly, the Eessian of the primal function can be computed to be:

-16-




-1
Vip(u) = {Vzh' (X(u)){vﬁzr(X(u).A(u)) + uV h(x(u))v, b (X(u)>}-lvzh(X(U>)} (82)

-ul

Substituting and simplifying, the Hessians of both the dual and primal function-

als become:
-1

V2d () = —gt {K + ugg‘} g (83)
[ -1 ]-’
Vép (u) = lg‘ fic+ eet) gJ -kl (84)

Next, consider the following rank one update formula:
pe (K+ uge g =1~ (1+ ug'K-1g)"! - (85)
Multiplying both sides by (I + ug'K™'g) on the right leads to equation (88).
ng' (K + pge') g1+ ug'K'g) = ug'K g (886)

Suppose e is an eigenvector of g'K g with an eigenvalue a. Post-multiplying
equation (86) by e and simplifying, it can be written as equation (87).

ugt(K+ pgg') lg(l + pole = pae (87)
This equation has the form:
pA(l + uale= pae (88.a)
or:
Ake=nge (88.b)

So, e is also an eigenvector of A. Thus g'(K + ugg') 'g and g'K-!g have the same
eigenvectors. Using this information in equation (87) and the symbol b to
represent and eigenvalue of gf(k + ugg’) g a relationship between eigenvalues

a and b can be written:

b(1+ua)=a (89.2)
or:
.
= T+pa (89.b)
By substituting these values, the convergence ratio is:
o
)= — (90)
w tH
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Clearly, as u—=, the convergence ratio goes to unity, implying arbitrarily
fast convergence. By application of the analysis of the penalty method, it is
known that from equations (13) to (26), rounding errors also play a part. Thus,
e tradeoff situation has developed. Although increasing the penalty parameter
increases the rate of convergence, it also leads to more poorly conditioned set
of equations. Since the augmented Lagrangian will converge, within certain res-
trictions, for any value of the penalty parameter it is clear that "best” value to
use is the one which will minimize the rounding errors. Thus, this optimal value
for the penalty parameter u has exactly the same form as equation (26).

As a further justification for the first order update given by equation (50),
consider the application of Newton's method, and an approximation to the Hes-
sian of the dual functional. The value of A;,,; can be thought of as minimizing

the second order expansion of the dual around A,:
dy(A) = d(A,) + VA ()N = Ag) + KA = A ) VR (W) (A-A,) (21)
Taking the derivative and setting it equal to zero:
Vd,(A) = Vd(A,) + V2 (A, ) A=A, ) =0 (92)
This leads to the update formula:
Nevy = Ay = {vzdm)}"w () (93)

By equation (70), Vd(A,) is known, and from equation (78) V2d(X;) is also
known. Equation (B83) represents the system of equations for the contact prob-
lem: this expression could be substituted into equation (93). As a further
simplification, note that for a reasonably large u ., equation (83) is approxi-

mately —-I—. Hence, equation (93) can be expressed as:
Ak+1 = Ak + pg’u (94)

This is exactly the method proposed in equation (50).

The augmented Lagrangian procedure can be interpreted geometrically in
Figure 6. Consider the primal functional given in equation (43). By addition of
the penalty term, the system is convex near the solution, u’, A*. For a given
set of starting values for ug and Ay the solution proceeds as follows. The value
of u, is found and is used to update the Lagrange parameter A;,, . This value
corresponds to the negative slope of the functional at the point u, . The new
value of A,,, is then used to compute a new w,.,, . This process may be contin-

ued until the values u,,, and A,,, are within a specified tolerance to u’ and A*.
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/H'(u)

slope = ~Ap 4,

slope = —\°
M(u)

slope =:, =Mk +1

Figure 6: Grar hical interpretation of the augmented Lagrangian method.

3. Finite Element Implementation

The finite element method may be used to construct solution procedures
for the four contact schemes discussed in Section 2. In this section, only the
frictionless, two-dimensional, small deformation kinematics case will be
presented. Since the algorithms for the penalty and classical Lagrange
methods are so well known, the discussion of these methods will be confined to
their relationship with the augmented Lagrangian scheme. Details on the per-
turbed Lagrangian algorithm are given in references [6] and [7].

The augmented Lagrangian method has been implemented in the finite ele-
ment program FEAP [8]. Details of the contact kinematics can be found in [6]
and [7]. In these references, the contact interface is first split into a number of
segments along an intermediate surface, as shown in Figure 7. Assuming four
node isoparametric elements, these segments are unambiguously defined by the
geometry of the adjacent elements of the bodies in contact. Figure 8 shows a

typical segment.
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Figure 7: Discretization into contact segments.

Variable Description
x} Element node on body i at nodej
X! Projection onto body i of x}
u} Displacement of body i at node j
at Projection onto body i of u}
n' Normal to the contact segment on body i |

Table 1: A select list of variables and their description.

The notation in Table 1 is used to obtain the projection of contact segments
described in (95).

xt=(1-a')x}+ a'x} (95)
The variables in equation (95) are defined by:

(xf-x}).t!
12 M2 "R
al = el =2 | (96.a)

(x3 - x?).t?
oz e S6.b
TxE —xF ], (96.5)
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x}

Figure B: A typical contact segment.

xi — x!
t = —(—-;———-}l— (96.c)
| x} — x}

From equations (96), the displacement can be described as:

at=(1-a%)u} +a'u} (87)
And, hence, the gaps in the contact segments can be represented by:

gl=(u-u').n! (98.2)

g?=(u} —a?.n? (98.b)

The normal n' is defined by:
o' = e 8t (99)

By applying a linear interpolation to the displacement field described by
equation (87), a consistent approximation is obtained with the four node iso-
parametric element. In the context of this approximation, the contact pressure
within each segment is & constant. Note that this approach is not based on
nodal penetration of the adjacent body, but rather an average penetration
across a contact segment. Thus, in the solution to a finite element contact
problem, the constraint is satisfied in an "average" sense over a segment
instead of "point-wise” for a contact node. By using the expressions in equation
(98) for the interpolation functions g, in any of the equations (5), (27), (32) or
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(43) for gtu, this averaging can be incorporated into the solution methods pre-
viously discussed.

Consider equation (5), which represents the penalty method. Assuming two
bodies in contact, the functional can be written as in equation (100).

IT'(u!,u?) = TI(u!) + I{u?) + [ g—g‘g da (100)

Where the first two terms of equation (100) are of the same form as equation

(1):

H(u1)=!W(u) dv, -I,[pb-udvJ - f t.uda, (101.a)
1 1 45,
M) =)!;W<U) dv, —-,!;pb-udvg —J{;f-udaa (101.b)

By substituting equation (98) into equation (100), the following expression is

obtained:

t
M) =Nu) + & [ {ﬁ?—ﬁl}.ﬁ {ﬁ?-ﬁ*}.ﬁ da (102)
2 3

The kinematically admissible variations are:
vi= {m v H(@,)-R .y | g, = 0} (103.2)
Ve = {le 1 vE()~R® ., M | gp, = 0} (103.b)

Applying the Gateaux derivative to equation (102), and invoking stationarity:

D ,Il.¢q = —E!-—--H(v1 +an)azor ii—(v’ +oan)la=0+ (104.a)

Ya dv ! o

¢

o

[ ]
![ve-bang]-—{v’-l»am”.ﬁ da =0
a =0
Dv-'n'n2 = dcviz I(v?+ anz)la=o- _g_<v2 +am)lazc + (104.b)
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[ ]
%{d:‘? I[vz-l»aqzl_[vl +a'q,]J.ﬁ

14

{[v2+an2]—[v’+am]}.i da =0
a=0

Or, simplifying and combining these two equations the following expression is

obtained.
t
DyiTlemy + DyeTleme + [ (e —m)-ﬁ{{vz —v’]-ﬁ} da=0 (105)
1
Applying the linear finite element discretization, equation (105) becomes:

Eioral Siotat 4
4 L mec 2 cieu)=0 (108)
1 =

LG+ Y
€ 1 J

13

" [

Where the first sum represents the standard contributions of stiffness and force
to the finite element system, and the second sum represents the contact con-
straint contribution. The vector ¢, can be expressed with reference to Figure 8

as follows.

¢, = =%(1 -a!)n! (107.a)
cz = +%(n® — a'n?) (107.b)
s = +¥%(n' - o?n?) (107.c)

ey = —%(1 - a?) n? (107.4)

In equation (106), the sum is taken over all of the elements representing the
discretization of both bodies for the first term, and the sum over all segments in
contact for the second term. A typical contribution of a contact element to the

system 'stifiness matrix can be described as:

1

¢,
s =12 ]
Kcontact"/-“ Cg lcl Cz C3 CAIJ

Cq

(108)

d
V¥hich, for each segment in contact, represents a rank one update to the system
stiflness matrix.

Some diff.culties are present with this kinematic formulation, particularly
when higher order interpolations are used or an extension to three dimensions
is made. The small deformation, linear kinematics implementation has a
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reasonable geometrical definition, as described in Figures 7 and 8, for most
cases. However, the extension to multiple contact segments along a single slide
segment, or the general application of symmetric boundary conditions is
presently unclear. Figure 9 shows some problems that may arise even for the
four node case. Here, the interpolation method breaks down because projec-
tions are not simple enough to be described by the application of of the method

shown in Figure B.

Body 2
[ ]
intermediate
surface _.4
Body 1
.l y

Figure 9: Possible problems with the slide line logic.

Furthermore, ambiguity arises in the case of higher order interpolations of
the intermediate surface. While this problem could be overcome by a complex
calculation, it is not clear that the test for penetration could be done efficiently.
For example, determining if a node is penetrating a body requires the use of a
concave clipping algorithm. For boundaries represented by polynomials greater
than first order, the calculation can be very expensive [10]. Moreover, in order
to extend this approach to three dimensions, techniques from constructive
solid geometry (CSG) would have to be employed. This means that the penetra-
tion calculations might generally take longer than the solution of the system of
equations for the entire finite element system [11].

The finite element implementation of the augmented Lagrangian method
can now be discussed in more detail. By applying the procedure given in the
last section to the functional expressed in equation (43), a finite element sys-
tem of the form of equations (108) can be derived. This system is shown in

equation (109.2) in matrix notation.
Botal

2 {K‘u‘ - r‘} + s‘iu{uc'(c')‘u + c,A:} =0 (109.a)

-24-




The equation for updating A can be written as:

Al = A+ u(cf)u (109.b)

Several features are worth repeating about equations (109). First, the
summation extends over all of the elements representing the discretization of
the bodies in contact. Second, the contact stifiness contribution is a rank one
update of the global stiffness matrix over each segment in contact. Third, the
method is inherently iterative because the Lagrange parameter is not known
before the solution is attempted. Fourth, the interpolation across a contact
segment is done in an "average' sense, rather than "point-wise.” Finally, note
that even though the solution is iterative due to the nature of equation (109), it
is also not known in advance which segments are in contact: each loading
configuration requires control logic based on the current values of the displace-
ments. Newton's method is used to solve equations (109). The solution pro-
cedure is outlined as Algorithm 1.

In practice, each contact segment has information containing the current
interpolation functions e, current Lagrange parameter A, and penalty value u .
Generally, the penalty value varies slowly from its original value to something
about ten to a hundred times larger as the solution converges. This has the
effect of tightening the constraint as the answer becomes better known while

keeping the solution reasonably well conditioned at the early stages.

The fact that the augmented Lagrangian method is a combination of both
the penally and Lagrangian methods has already been shown. Depending on
ones viewpoint, it is relatively straightforward to extend or simplify Algorithm 1
to incorporate these cases. For the penalty method, the Lagrange parameters
can obviously be ignored, leading to a system of equations analogous to equa-
tion (108):

Eyoral

sta!ul
Y (Ku-FR)+ ) uc'(c®lu=0 (110)

A similar procedure holds for the perturbed Lagrangian method, since equation
(36) expresses a value for the Lagrange parameter across the contact segment.
Kere, the step in Algorithm 1 which updates the Lagrange parameter may be
skipped since this item is considered constant across a given load

configuration.

Step (I1.D) in Algorithm 1 states that the ezact value of A does not have to
be found. The user can select the desired precision. Furthermore, this preci-
sion is, unlike that of the penalty, classical Lagrangian or perturbed Lagrangian
methods, independent of the penalty value. This penalty value, by the results of
section 2.4, governs the rafe of convergence of the augmented Lagrangian
method. It is generally expected that results to machine precision can be
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Static Augmented Lagrangian Method
. Setu;=0.A,=0
O Fork=1,2 3, .. until convergence do:
A. Build the system K 5iem 8nd Ryystem
B Fors=1to Su
1. Determine ¢* , g° = (c* ) u§

2. Check tou see if the segment is in contact:

lf[qs>?—“—
“u

then the segment is not in contact

else
a. Calculate the stiffness contribution: K niaer = ue{e® ) u,
b. Calculate the residual contribution: Riniecr = —(Af)ic®
c. Add the contact Kiniger + Riontacr 10 system Koysiem + Roystem
! to get Kiorar + Reota
C. Solve the system for the displacement increment:
Kictor Bu = Rigiar — Keorar W
! D. Check for convergence:
if 1 Kiotar We — Ry ' < tolerance
then announce convergence and stop.
! E. Update the displacement fleld: u.,; = u + Auy .y,
{ F.Fors=1to Sy
i Update the Lagrange parameters: Af,; = A§ + u(c® ) ue,,
l

G. Next k, go back to step Il.

Algorithm 1: Description of the static augmented Lagrangian method.

obtained after only & few iterations.

Since the algorithm depends on determining the state of a contact segment
in step (11.B.2), it should be noted that the convergence properties discussed in
section 2.4 might not always epply. This is because, as segments change state
from "not in contact” to "in contact’ or vice-versa, the tangent matrix becomes
discontinuous. For problems involving practical engineering applications, these
discontinuities last only during the initial iterations and the solution quickly
converges.

The augmented Lagrangian method can easily be extended to handle prob-
lems involving dynamic contact. Algorithm 2 presents a solution of the problem
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Dynamic Augmented Lagrangian Method
Initialize ®u, ®u, ®i
I. Fort = At, 2At, 3At, ... until Tgp,, do:
A . Setug. A; =0
B.Fork =1, 2, 3, ... until convergence do:
1. Build the system *K; stom+ ‘ Mspstom 204 ‘Ryysiem
2. FO!‘ s=1to S‘O‘Gl do:
a. Determine ¢ , g = (¢ )!u}

!ﬂ

b. Check to see if the segment is in contact: If [g‘ > %—-

then the segment is not in contact else
i. Calculate the stiffness contribution: K&,,,10c: = uc®{(c® )t u,
ii. Calculate the residual contribution: R = —(Af) e
iii. Add the contact Kf,n1act » Riontac: L0 System ‘Ksys{em + *Rystem
to get Kiotar + Riotal
3. Build ‘Kdynamtc = Koystem + ac! Myysiem

4. Calculate the residual:

[ ] .
‘Rdymzmtc = thatal - thozul‘u - ‘Msystem{ao luk - ‘UJ - a2‘u - a.’i‘u

5. Solve the system for the displacement increment: ‘Kdym,m-c Au = *Ryynamic
6. Update the current configuration: u,,, = u, + Au

7. Check for convergence:
if [r‘tRzotal = Kot We+1 — ‘Msystem‘ﬁ” < tole‘rance] then

a. announce convergence in k: f*lu =y, ,,

b. Update the velocity and acceleration fields:
141§ = ao[‘”u - ‘u] - a,ta - agti
ttlg=ta+ agfa+ a,t i
c. Go back to step Il
9. For s = 1 to Sjpa::
Update the Lagrange parameters: A,, = Af + u(c®)u.,,
" 10. Go back to to step 1I.B

Algorithm 2: Description of the dynamic augmented Lagrangian method.
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The parameters in Algorithm 2 are defined by:
2
a=050 = 0.25{0.5 + a} (111)

24

=l g -0 .1 .1 . _a_
no-ﬂAtE o, I az-ﬂAt ag = 1 u,—-ﬁ 1

28

t
ag = AE-{%- - Z}as = At{l - a} a, = aAT

in the time domain by the Newmark method. Note that for linear elastic prob-
lemns, steps which involve forming K stem 8nd Ryysiem could be moved out of the
loops in both Algorithms 1 and 2.

Below, the two spring problem is again considered for a suddenly applied

load. A comparison with the exact results in Figure 10 shows excellent agree-

ment.
(2 1 |
lok + 4 —(k + ) 37" B
Ktystem = —(]C + /J.) k + u J ystemn = 1 1 (112)
- =—m
8 3
This system leads to the following collection of matrices:
2 1 1
[ 2k + U —(k + u)] 3 6
Kaynamic = ~(k + ) k + u J+ 8514 i (113)
6 3
[
0| [2k+;.z --(lc+,u)]tul [1]
Rdynumic = -‘IJ - [._(k + u) k +u jtua —)\k[_lj - (114)
[2 1 1
3 8 [ux] ‘ul] Lul] L"lx]
a - -a I
-1—m l-‘m. 0 luz ‘uz 2 qu 3 tuz
6 3
The initial conditions are assumed to be:
6 1
buy fol Pusl ol Pu] |7
I°u2J=loJ °u2J= 0 °a2}= -2.4 (115)
7
Furthermore, the system constants are taken to be:
=1 =1 - - =
=5 ﬁ-—-4— k=1 m=1 g=-.1 (118)
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Figure 10: Comparison of exact and augmented Lagrangian results.

4. Examples

This section contains examples of the augmented Lagrangian solution
method for both the static and dynamic cases. The examples presented here
are compared to work done by previous researchers. In particular, the aug-
mented Lagrangian method is compared to the results of references [6] and [7]
for the perturbed Lagrangian approach, reference [15] for the dynamic case
and reference [14] for the Hertz solutions.

The augmented Lagrangian method was applied to the system of a rigid
punch into an elastic foundation, illustrated in Figure 11. The finite element
mesh is successively refined in order to get an idea on the convergence charac-
teristics of the system. Using information from reference [7], the following
parameters were used:

Ep\mch = 108 V}mnch = 0.0 E[ouudctian = 10° Vfound.ation =0.3 (1 17-3)

Lpunch =20 Lfoundutt’on = 58 Dfoundation =22 (1 17-b)
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Figure 11: Rigid punch into an elastic foundation.
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Figure 12: Results after 1 iteration for the 3 element mesh.
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Figure 13: Comparison of converged results for the 3 element mesh.

Figures 12 and 13 display the results of applying the penally, perturbed
Lagrangian and augmented lLagrangian methods to the three block problem.
Figure 12 shows the results after 1 iteration of each of the methods. Note that
the augmented Lagrangian method gives accurate results over a much wider
range of penalty parameter values. The converged results are shown in Figure
13. In this case, the augmented Lagrangian approach always yields the correct
results, while the other methods only approximate the solution for smaller
penalty values. Table 2 displays the comparison on the number of iterations for
the three methods, using a penalty value of u = 107. Observe that even though
the solutions are improved over the standard penalty and perturbed Lagran-
gian methods, the values in Table 2 show that little extra work is required.

Method Mesh1 | Mesh2 | Mesh 3
penalty 3 F] 5
perturbed Lagrangian 2
eugmented Lagrangian e

Table 2: lteration results for the rigid punch problem.
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Figure 14: Finite element mesh for the Hertz contact problem.

In order to further illustrate the augmented Lagrangian method, the finite
element system in Figure 14 was studied. This mesh represents a sphere in con-

tact with a rigid wall. The parameters for this system are:
E=10° v=03 p=0.01 R=8.0 (118)

The study of a static analysis involved three diflerent load values applied to the
top of the sphere. Results of the loading, compared to the classical Hertz solu-
tion are illustirated in Figure 15. An iteration count comparing the three
methods can be found in Table 3. Each of these method used a penalty value of
u = 107. A dynamic analysis was also carried out, assuming that the sphere was
given an initial velocity of 0.1 downward. The results displayed in Figure 18
represent the maximum impact values. In this dynamic analysis, only the aug-
mented Lagrangian method obtained reasonable results.

Method iterations

penalty

perturbed Lagrangian

augmented Lagrangian

Table 3: lteration results for the Hertz contact problem.
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Figure 18: Dynamic results for the Hertz contact problem.
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5. Recommendations for further work

This section contains a list of possible extensions to the solution method
and its associated algorithms. In particular, proposals are made which would
improve the rate of convergence of the algorithm, make the slide line computa-
tions more efficient and extend the algorithm to cover new problem domains.

Using equation (93), 2 second order updating scheme could be added to
the augmented Lagrangian method. By comparing eguations (83) and (84), the
following scheme could be developed.

-1
) = v (119)

Thus, the iteration corresponding to equation (93) is obviously:
Acos =2+ [P (0) + va () (120)

As the computation proceeds, values are found for p(u) and Vp(u) = A, + pu
These values could then be used to generate an approximation to V¥p(u). The
need to use second derivatives is eliminated entirely if one chooses to solve the
contact problem by some quasi-Newton methods such as the DFP or BFGS. See

reference [4] for more details on these methods.

A further enhancement might be to extend the slide line contact logic. As
was mentioned in Section 3, the logic is not well defined when multiple segments
are in contact with a single surface. For four node isoparametric elements, the
extension is straightforward. However, an extension to cover three dimensional
problems would entail the use of a clipping algorithm to determine if segments
were in contact. Essentially, the algorithm is cubic in the number of nodes for
this case, but if linear elements are used, a proper implementation could
reduce the required computation significantly. The extension to cover higher
order elements is less clear. It is believed, however, that by using techniques
from constructive solid geometry and exploiting the convex hull properties of
the finite element mesh, a reasonably efficient method could be developed.

A third area which needs further work is the development of algorithms
which include friction on the contact surface. In particular, methods which
develop consistent tangent matrices need to be devised. The addition of fric-
tional contact to the algorithms presented here would greatly enhance their
generality.

Finally, the contact algorithms should not be limited to small deformation
kinematics. All of the solution eflorts that have been described here need to be
evaluated for situations in which motions on the contact surface are finite.
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6. Summary and Conclusions

An augmented Lagrangian method for the solution finite element contact
problems offers several advantages over the standard penalty, classical Lagran-
gian or perturbed Lagrangian methods. By using the augmented Lagrangian
method, the user has direct control over the accuracy of a given problem, since
it is the number of iterations that control the tolerance of the solutions. The
value of the penalty parameter controls the rate of convergence. Expressions
have been presented, based on error considerations, which may be used as a
guide to selecting a reasonable penalty parametler.

The algorithm for the augmented Lagrangian method can be simplified to
incorporate both the standard penalty and perturbed Lagrangian Methods.
Furthermore, this method is applicable to both static and dynamic problems.
The results presented in section 4 show that the method compares very well to
work done by previous researchers. Convergence is quite fast, even in cases

where the other methods fail.
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