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Signal Transduction

Functional Genomics Approach Identifies Novel
Signaling Regulators of TGFa Ectodomain
Shedding
Jennifer L.Wilson1, Eirini Kefaloyianni2, Lauren Stopfer1, Christina Harrison3,
Venkata S. Sabbisetti4, Ernest Fraenkel1,5, Douglas A. Lauffenburger1, and
Andreas Herrlich2

Abstract

Ectodomain shedding of cell-surface precursor proteins by
metalloproteases generates important cellular signalingmolecules.
Of importance for disease is the release of ligands that activate the
EGFR, such as TGFa, which is mostly carried out by ADAM17 [a
member of the A-disintegrin and metalloprotease (ADAM)
domain family]. EGFR ligand shedding has been linked to many
diseases, in particular cancer development, growth and metastasis,
as well as resistance to cancer therapeutics. Excessive EGFR ligand
release can outcompete therapeutic EGFR inhibition or the inhi-
bition of other growth factor pathways by providing bypass
signaling via EGFR activation. Drugging metalloproteases directly
have failed clinically because it indiscriminately affected shedding
of numerous substrates. It is therefore essential to identify regu-
lators for EGFR ligand cleavage. Here, integration of a functional

shRNA genomic screen, computational network analysis, and
dedicated validation tests succeeded in identifying several key
signaling pathways as novel regulators of TGFa shedding in cancer
cells. Most notably, a cluster of genes with NFkB pathway regu-
latory functions was found to strongly influence TGFa release,
albeit independent of their NFkB regulatory functions. Inflamma-
tory regulators thus also govern cancer cell growth–promoting
ectodomain cleavage, lending mechanistic understanding to the
well-known connection between inflammation and cancer.

Implications: Using genomic screens and network analysis, this
study defines targets that regulate ectodomain shedding and
suggests new treatment opportunities for EGFR-driven cancers.
Mol Cancer Res; 16(1); 147–61. �2017 AACR.

Introduction
EGFR activation generates signals for cell proliferation, migra-

tion, differentiation, or survival (reviewed in ref. 1), cellular
phenotypes that are often dysregulated in cancer. A-disintegrin-
and–metalloprotease-17 (ADAM17) releases most ligands that
activate the EGFR, for example, TGFa (2–4). ADAM17, EGFR
ligands, and EGFR are indeed upregulated in numerous different
cancer types, driving EGFR activity that promotes cancer growth
andmetastasis (reviewed in refs. 1 and 5). The same components,
ADAM17 and EGFR/EGFR ligands, have also been associated,
for example, with the development of organ fibrosis in lung,

liver, or kidney (6–9) and have important roles in inflammation
(reviewed in refs. 10, 11). Broad-spectrum metalloprotease
inhibition has been unsuccessful in the clinic due to significant
side effects resulting from indiscriminate suppression of the
cleavage of many metalloprotease substrates and their depen-
dent physiologic functions (reviewed in refs. 12, 13). Even
recently developed selective ADAM10 or 17 inhibitors still
affect the cleavage of many substrates (14, 15). Existing strat-
egies to target EGFR itself would be more specific, but they
also have had limited therapeutic success in cancer and other
disease applications due to development of resistance to the
inhibitors (16, 17).

Excessive release of EGFR ligands is an importantmechanismof
therapeutic resistance in cancer treatment. It can outcompete
attempts to block ligand binding to EGFR or to block EGFR
kinase activity (18–20), and it can confer resistance to inhibition
of other oncogenic driver pathways by establishing "bypass sig-
naling" via the EGFRpathway (21). As examples for the latter, EGF
can induce resistance to cMet inhibition (crizotinib) in lung
cancer patients (22, 23), EGF or NRG1 can induce resistance to
cMet inhibition in cMet-amplified gastric cancer cells and BRAF
(V600E) inhibition in melanoma cells (21), and TGFa causes
resistance to ALK inhibition in lung cancer cells (24). Develop-
ment of strategies to target EGFR ligand release is therefore of great
importance for successful inhibition of the EGFR pathway and for
effective targeting of other growth pathways under current clinical
investigation in cancer and other diseases.

Ectodomain shedding by ADAMs can be induced by activation
of intracellular signaling pathways involving, for example,
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calcium influx, the activation of G-protein–coupled receptors,
and the release of diacylglycerol, an activator of protein kinase C
(PKC; ref. 25). Several mechanisms that regulate cleavage on the
level of ADAM17 have been reported, including regulation of
expression, maturation, trafficking to the cell surface (reviewed in
ref. 12), posttranslational modifications of ADAM17�s ectodo-
main (26–29) or C-terminus (by the MAPKs p38 or ERK; refs. 30,
31), and interaction with other transmembrane proteins, such as
iRhom1/2 (32, 33) and annexins (34, 35). In addition, a small
domain contained in the ectodomain of ADAM17 has been
identified that interacts with and regulates the cleavage of a small
subset of ADAM17 substrates (36, 37). Specific regulation of
substrate cleavage also involves intracellular signal–induced C-
terminal modifications of the substrate (4, 25, 38, 39) that lead to
protease accessibility changes of the substrate's ectodomain (40),
but it has remainedmostly unknownwhich intracellular signaling
components and pathways are involved (reviewed in ref. 12).

To identify such signaling components and pathways that
regulate induced TGFa cleavage, we carried out an shRNA screen
of all human kinases and phosphatases. An early limited screen
analysis revealed that protein-kinase-C-alpha PKCa and the PKC-
regulated protein-phosphatase-1-inhibitor-14D (PPP1R14D) are
required for specific regulation of phorbol ester (TPA; a diacyl-
glycerol mimic and PKC activator)- or angiotensin II–induced
shedding of TGFa and that this regulation indeed occurred on the
substrate and not the protease level (4).

Here we report a combined experimental and computational
approach for discovering novel regulators of TGFa cleavage. First,
using stringent analysis of our primary shRNA screen carried out
in acute T-cell leukemia-derived Jurkat cells, we validated a
significant number of positive and negative regulators of TGFa
cleavage in triple-negative breast cancer cells. We then modeled
and validated signaling pathways identified in an integrative
network modeling approach. This network incorporated experi-
mental genes measured in the screen and predicted genes that
regulate TGFa cleavage in different cancer cells. We discovered
and validated a cluster of TGFa-regulatory genes that are also
known to influence NFkB signaling and show that NFkB-regula-
tory functions of these proteins are not required for their cleavage-
regulatory functions.

Our results thus define targets that might allow therapeutic
control of EGFR ligand ectodomain shedding and thus avoid
EGFR ligand–mediated therapeutic resistance. More broadly, our
results highlight quite generally how a network approach can
improve shRNA screen validation, provide new opportunities for
existing therapies, and identify genes relevant for EGFR-driven
diseases.

Materials and Methods
The initial screen was conducted in Jurkat cells, as is fully

described in ref. 4. An important feature of this screen is that it
uses a Jurkat-TE cell line which expresses TGFa with an intracel-
lular GFP and extracellular HA tag.

shEnrich method
The shEnrich method analyzes redundant shRNAs against a

given gene to select for consistency and strength of biological
effect (in our case, projected effect on TGFa shedding). The
method rank-orders all shRNAs and calculates a moving enrich-
ment score (ES) based on summing the probability of finding an

shRNAwithin the gene's family (probability of a hit, "p_hit") and
the probability of finding an shRNA outside the family (proba-
bility of amiss, "p_miss"). For each gene's shRNA cohort, there is a
total effect represented by the sum of all shRNAs z-scores; the
p_hit is a fractional representation of howmuch of this total effect
is captured at each rank. The p_miss is a fractional penalty
equivalent to the inverse of the number of nonfamily shRNAs
in the screen.

A phosphorylation site–specific interactome
We used the set of human interactions contained in version 13

of the iRefIndex database (41) as our source for protein–protein
interactions, which consolidates information from a variety of
source databases. We used the MIscore system (42) to assign
confidence scores (ranging from 0 to 1) to these interactions; this
scoring system considers the number of publications (publication
score), the type of interaction (type score), and the experimental
method used to find the interaction (method score). We extracted
the relevant scoring information for interactions from the iRe-
fIndex MITAB2.6 file, using the redundant interaction group
identifier (RIGID) to consolidate interactions between the same
two proteins reported by multiple databases, and used a java
implementation of MIscore (version 1.3.2, available at https://
github.com/EBI-IntAct/miscore/blob/wiki/api.md) with default
parameters for individual score weights. We only considered
interactions between two human proteins (i.e., we excluded
human–viral interactions) and converted protein identifiers, gen-
erally provided as UniProt or RefSeq accessions, to valid HUGO
gene nomenclature committee (HGNC) symbols. Once con-
verted, we removed redundant interactions (generally arising
from isoform-specific interactions that map to the same pro-
tein/gene symbols) and retained the maximum observed score.
This produced a total of 175,854 unique protein–protein
interactions.

To this interaction set, we added predicted and experimental
interactions for kinase and phosphatase sites. We collected the
kinase-site interactions from Phosphosite (43) and phosphatase-
site interactions from DEPOD (44, 45) Where site-specific infor-
mation existed, we created edges in the interactome, first from the
kinase/phosphatase to a substrate-site node (represented in the
network as "PROTEIN_SITE") and second from the substrate-site
to the substrate (represented as "PROTEIN"). The kinase/phos-
phatase to substrate-site interactionswere scored using amodified
MIscore framework (42). This scoring method is a normalized,
weighted sumof an interaction type score(SP), evidence type score
(St), and publication value score(Sp):

S ¼ KpSP þ KmSm þ KtSt
Kp þ Km þ Kt

Using the MIscore framework as a guide, all interaction type
scores (St) were set to 1 (because this interaction information was
"direct"). Publication scores were set using theMIscore scale (Sp¼
0.00/0.33/0.53/0.67/0.77/0.86/0.94/1.00 for 0/1/2/3/4/5/6/7
publications). The method scores (Sm) were set based on the
evidence available for each dataset:

DEPOD Phosphosite

in vitro reaction or in vivo in one lab 0.33 in vitro evidence 0.33
in vitro and in vivo or evidence in multiple labs 0.66 in vivo evidence 0.66
in vitro and in vivo in multiple labs 1.0 both 1.0
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All K values were set to 1. The interactome uses Uniprot identi-
fiers. A text version of this interactome is hosted on the Fraenkel
Lab website (http://fraenkel-nsf.csbi.mit.edu/tgfashedding/).

Prize-collecting Steiner Forest
We used the genes selected by the shEnrich method and the

interactome network described above as inputs to the Prize-
Collecting Steiner Forest algorithm (PCSF; ref. 46). The genes
from shEnrich were all assigned prize values of 1 and converted to
Uniprot identifiers.Weused the parameters b¼ 10,D¼ 10,w¼ 1,
and m¼ 0.006 (parameter optimization explained in Supplemen-
tary Methods). After finding an optimal network of genes, we
augmented this forest and added back all possible interactions
among these genes from our initial interactome. We converted to
gene identifiers back to gene symbol and visualized the network in
Cytoscape. The PCSF algorithm is available online as part of our
"Omics Integrator suite of tools (http://fraenkel-nsf.csbi.mit.edu/
omicsintegrator/)." An archived version of PCSF that was used for
this analysis is hosted on the Fraenkel Lab website (http://fraen
kel-nsf.csbi.mit.edu/tgfashedding/).

Sensitivity, specificity, and centrality metrics
To determine a gene's sensitivity within our network solution,

we created a family of 100networks using the original prize values
and genes selected from the shEnrich method. In each of these
simulations,we added0.5%noise to the interaction edge scores in
our interactome by randomly increasing or decreasing these edge
scores by 0.5%. For a given gene, we measured sensitivity by
counting the gene's representation in the family of noisy net-
works. A gene that shows up in all of the networks is insensitive to
noise and thus robust to our method. Because the prize nodes are
constant inputs to the algorithm, we expect them to be insensitive
to edge noise. To measure specificity, we again created a family of
100 networks. This time, we hold the interactome constant and
randomly select gene targets from our initial library as inputs. We
run the algorithm at the same parameters as above and count a
gene's representation in the family of random networks. We
calculated 1�specificity to rank genes that are specific to the real
experimental data and eliminate biases in selection due to the
initial library construction. For all centrality metrics, we used the
networkX module in Python.

For aggregate scoring, we used the following equation to rank
experimental and predicted genes:

W ¼ 1� sensð Þ � ssens þ 1� specð Þ � sspec þ norm cl � snorm cl

ssens þ sspec þ snorm cl

In this equation, sens, spec, and norm_cl refer to a gene's
sensitivity, specificity, and normalized closeness, and ssens, sspec,
and snorm_cl are the SDs of these measurements for the entire
network.

Analysis of NFkB-related cluster in model cell lines
We pulled RMA-normalized cell line expression data from

CCLE (47) and plotted these values using the Seaborn package
in Python.

Analysis of network-selected genes in cancer patient samples
We pulled patient mRNA expression data from www.cbiopor

tal.org (RNA Seq. V2 RSEM, z-scores) for the time frame January

11, 2016 to February 11, 2016. The data for IRAK1, CALM1,
OBSCN, PPEF1, and PPEF2 across cancer types for histogram
comparison was pulled from the same website on June 6,
2016. The data that were investigated were only from data using
z-scores with a 0.0 threshold used for analysis (to have the data
clearly represented without bias).

We further explored differential expression of human cancer
cell lines using RNA-seq from EMBL expression Atlas (48). We
selected for all instances of "cancer" versus respective "normal"
tissue. We plotted the log2 fold change expression as reported
from the Expression Atlas Downloads and used Seaborn package
in Python to group cancers based on their differential expression
of NFkB-related cluster genes. All differentially expressed genes
are P < 0.05 using a t test provided by the Expression Atlas web
interface.

Cell lines
Kato-III and MDA-MB-231 cells were purchased from ATCC in

March, 2016. Both cells lines were tested for mycloplasma using
the Lonza MycoAlert Mycloplasma Detection Kit. We tested cells
within one month of arrival and expanded the initial population
into aliquots for all further experiments.

shRNA knockdown experiments
MDA-MB-231 or Jurkat cells were transduced with lentiviral

particles used in the original screen or, for newly identified
regulators, obtained from Sigma Aldrich (Mission shRNA Trans-
duction Particles). The clone IDs of the particles were: PRKCA:
TRCN0000001693, TRCN0000001692; PPP1R14D: TRCN-
000000192, TRCN0000001924; DUSP9: TRCN0000002426,
TRCN0000002427; INPP5D: TRCN0000039894, TRCN00000-
39896; ENPP1: TRCN0000002538, TRCN0000002537; OBSCN:
TRCN0000021599, TRCN0000021602; PPAP2A: TRCN000000-
2579, TRCN0000002577; PPEF1: TRCN0000002551, TRCN-
0000002550; PKIB: TRCN0000002817, TRCN0000002815;
PPP4R1: TRCN0000052763, TRCN0000052766; PTPRE:
TRCN0000002893, TRCN0000002895; SSH3: TRCN000000-
2612, TRCN0000002613; SH2D1A: TRCN0000360148, TRCN-
0000367940 TRCN0000360149; PTPN22: TRCN0000355586,
TRCN0000355534, TRCN0000355533; TAB1: TRCN0000-
381913, TRCN0000380746, TRCN0000380345; XIAP: TRCN-
0000231575, TRCN0000231576, TRCN0000231577. MDA-
MB-231 or Jurkat cells were plated at 2.5 � 105 cells per well in
96-well plates, and infected with 1-mL of virus inmedia with 4 mg/
mL polybrene. After 24 hours (day 1), cells were switched to
media with of puromycin (2 mg/mL or 2.5 mg/mL for MDA-MB-
231 or Jurkat cells, respectively). On day 3, fresh media with
puromycin was added. On day 5, cells were switched to regular
growth media and allowed to recover before stimulation. On day
7, cells were either stimulated with 100 nmol/L PMA or left in
media. At 1 hour (MDA-MB-231, ELISA measurements) or 5
minutes (Jurkat, FACS analysis), released or surface-bound TGFa
was measured.

Measuring surface-bound TGFa in Jurkat cells
For all measurements in Jurkat-TE cells, we used the following

staining and washing procedure: Jurkat-TEs were spun out of
media and resuspended in 25 mL of 1:100 mouse anti-HA (Cov-
ance #MMS-101) on ice for 1 hour. Cells were washed three times
with 200-mL cold PBS with 3% FCS, and resuspended in 25-mL
1:100 APC-coupled anti-mouse (BD Pharmingen #550826) on
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ice for 2 hours. They were resuspended with propidium iodide
(PI) and relative TGFa at the surface was quantified using FACS.
We analyzed all FACS data using FlowJo. We measured the FITC
and APC-A geometric means in the PI-negative (live) population.
Relative TGFa is determined from the ratio of red:green fluores-
cence and represents the relative amounts of extracellular:intra-
cellular TGFa.

Measuring TGFa shedding in Kato-III and MDA-MB-231 cell
lines

Validation of screen hits was conducted using MDA-MB-231
cells plated in 96-well plates. Ninety-percent confluent cells were
stimulated with 100 nmol/L PMA for 2 hours after which time
supernatant was collected. A microsphere-based Luminex Tech-
nology and ELISA kits (DY239, R&D Systems) were used to
measure a panel of shed growth factors, as described previously
(49).

To measure changes in TGFa shedding with inhibitor treat-
ments, 4 � 104 cells per well were plated in a 96-well plate,
allowed to adhere overnight and then incubated with serum-
free medium for 3 hours. Cells were then pretreated for 1 hour
with DMSO control or IRAK4 inhibitor (5 mmol/L AS2444697,
TOCRIS) or IRAK1/4 inhibitor (5 mmol/L IRAK1/4 Inhibitor I,
TOCRIS) or IKKb inhibitor (2 mmol/L BI605906, TOCRIS) or
metalloprotease inhibitor (10 mmol/L batimistat, TOCRIS)
after which medium was replaced with fresh media containing
the respective inhibitor and 100 nmol/L PMA (or vehicle). After
1-hour incubation, TGFa shedding in the cell culture medium
was quantified using the DuoSet ELISA Development System
(R&D Systems). Cell viability was immediately assessed using
CellTiter-Glo Luminescent Cell Viability Assay (Promega).

TGFa shedding values (pg/mL) were normalized to cell viabil-
ity measurements.

Statistical analysis
For Jurkat experiments, we conducted unpaired t tests using

Prism software to assess significance. For all control shRNAs
(denoted "shCtl" in each figure), n ¼ 6 and for all other shRNAs,
n¼ 3. In all cases, error bars are SEM. For the ELISA experiments in
KATOIII or MDA-MB-231 cell lines, a one-way ANOVA test was
performed using Prism software to determine significance of
treatment conditions compared with the untreated control
(n ¼ 5). In all cases, error bars are SEM.

Results
A kinome/phosphatome screen for regulators of TGFa
shedding

We conducted a screen for signaling regulators of TGFa shed-
ding, comprising a library of 750 human kinases and phospha-
tases, using a FACS-based assay (Fig. 1A) in acute T-cell leukemia–
derived Jurkat cells. Most genes were targeted by 4–5 redundant
shRNAs (Fig. 1B). After gene knockdown, cells were stimulated for
2 minutes with phorbol ester (TPA), a commonly used cleavage
stimulus that activates protein kinase C (PKC).We thenmeasured
mean geometric extracellular TGFa (APC) to intracellular TGFa
(GFP) fluorescence by FACS and normalized this red:green ratio
for all shRNAs to control shRNAs targeting lacZ. Most individual
shRNAs showed no effect or had a normalized ratio with an
absolute value less than�1 z-score from the distributionmean. Z-
scores < 0 correspond to shRNAs with low red:green ratio, indi-
cating enhanced TGFa shedding, and z-scores > 0 correspond to

Figure 1.

An shRNA screen measured kinase and phosphatase effects on phorbol ester (TPA) induced TGFa shedding. A, Jurkat cells expressing HA-TGFa-GFP
and lentiviral vectors either expressing shRNAs targeting the human kinome and phosphatome or lacZ-targeting control shRNAswere treatedwith TPA, stainedwith
APC-coupled anti-HA antibody, and subjected to FACS. TGFa sheddingwas detected by determination of themean red:green fluorescent ratio of the cells.B, shRNA
coverage for most genes was 4–5 individual shRNAs/gene. C, Z-score normalized red:green ratios for all independent shRNAs relative to shlacZ controls
plotted as a ranked distribution (top) and as a histogram of scores (middle). Z-scores < 0 correspond to shRNAs that had a low red:green ratio and enhanced TPA-
induced shedding, and z-scores > 0 correspond to shRNAs which had a relatively high red:green ratio and prevented TPA-induced shedding. Bottom, all
lacZ shRNAs (20 total) and all AXL shRNAs (10 total) fell within this distribution, and highlights the difficulty in determining which genes are consistently affecting
shedding.

Wilson et al.

Mol Cancer Res; 16(1) January 2018 Molecular Cancer Research150

on July 6, 2018. © 2018 American Association for Cancer Research. mcr.aacrjournals.org Downloaded from 

Published OnlineFirst October 10, 2017; DOI: 10.1158/1541-7786.MCR-17-0140 

http://mcr.aacrjournals.org/


shRNAs with high red:green ratio and reduced TGFa shedding
(ranked distribution in Fig. 1C, top and middle). A limited
analysis validated the screen in principal by revealing that
PKCa and the PKC-regulated protein-phosphatase-1-inhibi-
tor-14D (PPP1R14D) are required for specific regulation of
TGFa cleavage (4).

Within a given family of redundant shRNAs targeting the same
gene, and also within samples targeted by the same control
shRNA, resulting z-scores varied over a considerable range and
overlapped significantly; shown as example for one targeted gene,
AXL, and shLacZ controls (Fig. 1C, bottom). This demonstrates
inherent difficulties similar to other shRNA screens in determin-
ing which shRNAs consistently produce a phenotype. We
explored multiple ranking strategies before pursuing a computa-
tional networkmodeling approach to significantly improve upon
these inherent problems.

A very stringent two-best shRNA scoring method used the
average ofmultiplemeasurements for the same shRNA for z-score
calculation and required a gene's top two shRNAs contain one
hairpin that scored 2 z-scores and one hairpin that scored 1.5 z-
scores above or below the mean; this method selected 5 genes. In
contrast, a less stringent approachwhich calculated z-scores based
on themedianmeasurements of all redundant shRNAs targeting a
given gene identified 22 genes with a z-score of 1 above/below the
mean (in the positive/negative direction). The shEnrich method,
explained in the next paragraph, selected themost targets of all the
methods (Table 1). Each scoring method selected different and
partially overlapping gene lists (comparison of the different
scoring methods shown in Supplementary Table S1). PRKCA and
PPP1R14D published in the original screen validation (4) scored
in the 2 best shRNA and shEnrich methods, whereas other genes
only scored in shEnrich.

Selection of gene candidates using the shEnrich method
To improve our scoring of genes identified in the original

shRNA screen, we developed the shEnrich method to measure
consistency of redundant shRNAs and strength of their effect. This
enrichment scoring method is conceptually modeled after the
original Gene set enrichment method (GSEA), and is represen-
tative of other rank-order methods for RNAi scoring (e.g., RIGER
and dRIGER; refs. 50–53). These methods all developed ranking
statistics that look for consistency of shRNA effects comparedwith
the remainder of the tested shRNA population and control
shRNAs.

Our method most closely resembles that of Kampmann and
colleagues (53), in that our screening readout was a single
measurement (z-score normalized red:green fluorescent ratios)
and that we derived our null distributions from a cohort of
nontargeting controls. However, that earlier approach does not
correct for the number of shRNAs targeting a gene, which in our
case ranged from 1 to 10. We therefore calculated expected
distributions for each gene based on its shRNA family size; for
example, for a gene with 4 shRNAs, we calculated 1,000 permuta-
tions using 4 shLacZs from our control set. Our enrichment
method resulted in a projected z-score and amaximal normalized
enrichment score (NES). This represents the rank at which max-
imal enrichment occurs for a gene's shRNA family. Fig. 2A
represents the shEnrich score for AXL in the forward direction
(highest rank reflects that an shRNA increased shedding) and for
PPP1R14D in the reverse direction (highest rank indicates an
shRNA decreased shedding). Both AXL and PPP1R14D show high

NES relative to the lacZ controls indicating high consistency. We
repeated this process for all genes of all shRNA family sizes in both
the forward (shRNAs increase shedding) and reverse (shRNAs
decrease shedding) ranking directions.Within each family size (in
forward and reverse direction), we compared gene shEnrich NES
against 1,000 permutations calculated using subsets of the shlacZ
controls. Figure 2B shows the distribution of shEnrich NES for all
genes relative to the distribution of shlacZ scores for shRNA family
size 5 (all other family sizes plotted in Supplementary Figs. S1 and
S2). Most genes did not show an effect that was as consistent or
more consistent than the shlacZ controls. To additionally filter
gene candidates for strength of effect, we plotted gene shEnrich
NES against the projected z-score (Fig. 2C). Many genes had a low
shEnrich NES and a low projected z-score (low referring to a score
with a value < �1 in the forward direction or > þ1 in the reverse
direction). Only a few genes had a high shEnrich NES and a
relatively high projected z-score; these genes fell in the top left/top
right quadrants (highlighted with orange squares) in the forward/
reverse directions (scatter plots for all other family sizes shown in

Table 1. Genes selected by the shEnrich method

shEnrich Method

Forward shEnrich
shRNA family size 2 DDR2 PPP5C�

PPP2R1A DKFZP566K0524 PRG-3
PTBP1� DUSP13 PRKWNK3
RIOK2 EAT2 PTPRM�

shRNA family size 3 EEF2K� RAF1�

CDC25A� EIF2AK3 RIMS4
PTPN18 EPM2A SGPP2
TP53RK FBP2 SH2D1A�

shRNA family size 4 FLJ25449 SMG1�

BLK� Gpr109b SNRK�

CKM GUCY2C SPAP1
DUSP5� IMPA2 SYT14L
EGLN1� INPP5F WWP2�

FLJ16518 IRAK1� shRNA family size 8
GALK2 ITPKA CIB2
GMFB LOC283871 ERBB4�

HYPB LOC401313
INPP5B LPPR4
KIAA2002 MAP3K11� Reverse shEnrich
LOC400687 MAP3K7IP1 shRNA family size 2
LOC441868 MAPK4 CALM1�

LOC90353 NR1I3� PPP2R1A�

LOC91461 NT5E DUSP9
NEK7 NUDT11 shRNA family size 3
NUDT10 OBSCN� PPAP2A
PHKA2� PCTK3 SSH3
PIN1� PIB5PA shRNA family size 4
PMVK PIP5K1A GPR109A
PTPN22� PLCB4 LCK�

PTPN5 PPAPDC1 PPP1R14D
PTPRE PPAPDC1A SIK2�

RIPK5 PPEF1� TRPV5�

RXRB PPEF2� shRNA family size 5
SACM1L PPFIA1� CDC14A�

TEX14 PPM1J ENPP1
TRPM7� PPP1R12B� EPB41L4A
shRNA family size 5 PPP2CB� NME5
ABL1� PPP3CA� PIM1�

AKAP11� PPP4R1� PKIB
CKS2� PPP4R1L PRKCA�

NOTE: The shEnrichmethod selected genes that had consistent shRNAeffects in
the forward direction (shRNAs increased TPA-induced TGFa shedding) and in
the reverse direction (shRNAs decreased TPA-induced TGFa shedding). Aster-
isks indicate genes that are included in following network analysis.
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Figure 2.

shEnrich selects genes for consistency and effect size. A, Lightening plots show the enrichment score for AXL in the forward direction (red, top) and PPP1R14D
(gold, bottom) in the reverse direction. Gray lines represent 100/1,000 enrichment scores calculated for shlacZ. Dashed line represents position of maximal
enrichment for the gene of interest. B, Normalized enrichment scores (NES) for all genes with 5 redundant shRNAs (family size 5) plotted against 1,000 NES
for lacZ in the forward direction (left) and reverse direction (right). C,Maximal NES score for all geneswith 5 redundant shRNAs and lacZ controls plotted against the
z-score at which maximal enrichment occurs (`projected z-score'). Normalized distributions and maximal enrichment plots for all other gene family sizes are
included in Supplementary Figures. D, Supernatant ELISA detection of cleaved TGFa in MDA-MB-231 cells with PPP1R14D and PRKCA knockdown (top), or DUSP9
knockdown (bottom). Each bar represents redundant tests of the same shRNA; error bars, are SEs of the ratio of shRNA gene:shlacZ control. Dotted line
indicates measurements in respective shlacZ control. E, TGFa ELISA of additional genes identified by shEnrich method. Two shRNAs were selected for each gene
and tested in sextuplicate in MDA-MB-231 cells. Bars represent average log2 fold-change relative to a nontargeting control, and each dot represents an
individual replicate. Red/blue arrows indicate the shEnrich prediction of directionality of effect (increased/decreased TGFa shedding) for each gene tested, and
exclamation marks indicate where the experimental shRNA effect agreed with the shEnrich prediction.
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Supplementary Fig. S3). For our example genes,AXLdid notmake
the projected z-score cutoff of <�1, but PPP1R14Ddidmake the >
þ1 z-score cutoff. The full list of genes that passed these stringent
criteria is shown in Table 1.

We first used a traditional strategy to validate a portion of
shEnrich-identified gene targets in MDA-MB-231 cells, a triple-
negative breast cancer cell line and well-studied cancer model,
using an ELISA assay that detected cleaved TGFa ectodomain in
cell culture supernatants. PPP1R14D or PRKCA knockdown
blocked TGFa cleavage, again confirming our previously pub-
lished results (4) and DUSP9 knockdown increased shedding;
results from six independent experiments are shown (Fig. 2D)
using one shRNA for PPP1R14D and PRKCA, and (Fig. 2D,
bottom) using two shRNAs for DUSP9. Knockdown of 11 other
shEnrich-identified genes that induced strong effects on TGFa
cleavage in the initial shRNA screen revealed that for 8 of the 11
gene targets, shRNAs showed consistent directionality of effect for
both shRNAs tested in the MDA_MB-231 context (INPP5F,
ENPP1, PPAP2A, PPEF1, PKIB, PPP4R1, and PTPRE), although
effect size varied (Fig. 2E). Of the individual shRNAs, 10 of 22 had
a directionality of effect consistent with the shEnrich prediction
for their gene target (up or down arrows highlighted with excla-
mation points in Fig. 2E); the other shRNAs with shEnrich
predictions showed opposite effects from the shEnrich predic-
tions (arrows, but no exclamation points in Fig. 2E).

These effects may result from differences in effectiveness of
knockdown depending on the cell type studied, as has been
described in other reports (51) highlighting the importance of
investigating a larger set of shRNAs per gene and using aggregate
statistics such as shEnrich to analyze their effects. Detected
switches in directionality suggest that contextual factors might
affect the shedding phenotype, making it difficult to incorporate
shRNA hits into signaling pathways from enrichment scores or
targeted validation alone. We therefore performed additional
analysis by network modeling to identify a more complete TGFa
cleavage regulatory pathway.

PCSF identifies a TGFa shedding pathway
We previously described the role of off-target effects in RNAi or

shRNA screens, specifically that both reagent-based and biology-
based effects determine whether a gene can be identified as part of
apathwaybasedon geneknockdowndata (43). InterpretingRNAi
or shRNA results in a network framework, in contrast to an
individual "hits" or "targets" framework, leverages contributions
from all hit/target contributions to pathways via their relation-
shipswithothernetwork genes. This interpretation can ameliorate
dependence upon individual reagent performance and increase
confidence in biological validation.

Our previous work demonstrated that data integration into a
network context could construct novel pathways despite noise
from RNAi screens (54). Starting with results obtained from
shEnrich, we used the PCSF method (46, 55) to construct a
pathway for TGFa cleavage; the method predicted additional
pathway genes not identified in the initial experimental set in
this process. The PCSF acted as a filter, and required genes to have
interaction associations with other genes identified from the
screen to be included in the final pathway. To define all sets of
possible associations, we derived an interactome from iRefWeb
and added predicted kinase and phosphatase site–specific inter-
actions from Networkin and DEPOD (refs. 45, 56; details of the
interactome construction are explained inMaterials andMethods;

optimization of network node selection is shown in Supplemen-
tary Fig. S4). The algorithm identified an optimal subnetwork
from this interactome by selecting edges that captured genes from
the shEnrich method ("experimental genes") without overfitting.
In this process, the algorithm added predicted genes that con-
nected experimental genes (Fig. 3, top). We used a set of para-
meters to tune the algorithm to ensure an appropriate selection of
experimental and predicted genes (see Materials and Methods).
This optimized network contained 86 genes, and 97 edges. Of the
original 108 genes selected from the shEnrich method, 43 were
retained. Of note, the network contained interaction evidence for
the experimental genes PPEF1, OBSCN, DUSP9, PRKCA, and
PPP4R1; these genes were selected by shEnrich and confirmed
with ELISA in MDA-MB-231 cells. PPP1R14D was not included
despite experimental validation, suggesting that there is not
sufficient interaction evidence to include this gene in the pathway.
The remaining 43 genes were previously unidentified genes pre-
dicted by the algorithm to be relevant to TGFa cleavage. These
predicted genes also included gene targets contained in the
original screen that were refractory to knockdown using available
shRNAs.

We hypothesized that the optimized network gene list con-
tained subsets of functionally related genes. To find these subsets,
we leveraged edges in the network solution. Genes with a high
number of interneighbor edges are more likely to have functional
similarities. We used the GLay Community clustering Cytoscape
plug-in (57) to subdivide the optimizednetwork into afinal target
set of 9 network submodules. This process removed 14 edges and
retained all genes (Fig. 3, bottom; full network shown in Sup-
plementary Fig. S5).

Robustness analysis prioritizes predicted pathway genes
Toprioritize candidates selected by PCSF,weperformed a series

of robustness and connectivity analyses. Here we explain the
metrics for gene prioritization and the corresponding quantifica-
tion as presented in Table 2. We measured the sensitivity of each
gene in the solution by counting representation in 100 runs of
PCSF with noise added to the edges. Genes that are insensitive to
noise show up in all networks and are assigned a score of 0.00,
whereas genes that are sensitive appear in a fewnetworks only and
are assigned a score equal to 1-fraction of networks in which they
are represented. A score of 0.99 indicates that the genewas present
in only onenetwork.Noneof the experimental genes identifiedby
shEnrich were sensitive to edge noise (high aggregate score; Table
2, left column); however, 12 of the newly predicted genes were
highly sensitive and showed up only in the solution without edge
noise (Table 2, genes with low aggregate score bottom of right
column). This suggests that lowprobability edges connected these
predicted genes to the network; varying the edge value caused the
algorithm to remove the predicted gene in some simulations.

We then tested specificity of thenetwork solutionusing random
inputs from the targets in the original shRNA library. This process
involved selecting random sets of genes from the original library
(regardless of whether they scored using our shEnrich method),
rerunning the PCSF routine at the optimal parameters and count-
ing gene representation in this family of 100 random networks.
Gene border color indicates fractional representation in these 100
random networks (Fig. 3, bottom). Of the 43 experimental genes,
30 genes showed low specificity, indicating general association
among targets from the original library. These targets may still
have a role in shedding regulation (such as PRKCA); however, we
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could not distinguish these effects from general library
association.

We further used centrality metrics to quantify the robustness of
our network selections. Centrality did not imply a biological
centrality per se, but reflected how the genes were selected in this
network solution. Having a high centrality implied a greater
resilience to experimental noise from the input set; mathemati-

cally, centrality reflects how interaction edges contributed to a
gene's presence in the final network. We calculated the degree,
betweenness, page-rank, and closeness centrality, and an aggre-
gate score (Supplementary Fig. S6A) based on interactions in the
original, unclustered network. We created a normalized histo-
gram of centrality scores to evaluate the relative distribution of
values (Supplementary Fig. S6B). From this histogram, we

Figure 3.

PCSF identifies TGFa shedding regulatory network. Top, the cartoon schematic represents how PCSF selects an optimal subnetwork. Interaction edges are
aggregated frommultiple databases andall edges are scored (two shown for simplicity). Prizes are assigned fromexperimental data; in our case prizeswere assigned
to genes selected by shEnrich. The algorithm weights the cost of adding edges with capturing prizes in selecting an optimal network. Bottom, the optimal,
clustered network contains 86 genes and 83 edges. Gray face coloring indicates genes selected from the original experimental data set; white face
represents predicted gene (genes andphospho-sites) selected by the algorithm. Gene border represents specificity to randomization (pink,<0.1; orange, <0.05), and
gene size represents closeness centrality (larger genes are more central and more robust). Gray gene labels indicate genes that are sensitive to edge noise.
Genes on the far right of the legend below the networks are annotated examples to help interpret all of their network properties. The cluster associated with NFkB
signaling is highlighted.
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observed that closeness centrality best discerns connectivity, while
othermetrics are dominated by a few high-value nodes (i.e., page-
rank, betweenness, and degree centrality). Using closeness cen-
trality, we visualized these genes within the network solution by
adjusting their symbol size to reflect extent of connectivity (Fig. 3;
quantification in Table 2). Finally, we created a normalized,
aggregate score (Table 2) reflecting an experimental gene's per-
formance across these three metrics. We adjusted specificity/
sensitivity to be (1�specificity)/(1�sensitivity), and normalized
closeness centrality to the max value to scale all metrics from 0 to
1. We weighted each metric by the SD for that metric and
normalized to the maximum score possible for all experimental
genes (Table 2, left).We completed a similar analysis for predicted

genes in the network, and again measured sensitivity to edge
noise, specificity using random input terminals, and closeness
centrality as a metric for connectivity (Table 2, right).

Experimental validation of PCSF-selected network genes
First, we validated PCSF-selected experimental gene hits from

the original screen. SLAM-associated protein (SAP; SHD2D1A)
and Protein Tyrosine Phosphatase, Non-Receptor Type 22
(PTPN22), using our FACS-based TGFa shedding assay in Jurkat
cellswith orwithout TPA stimulation.WeusedTPA stimulation as
a benchmark to explore whether our gene perturbations were of
similar magnitude to a known modulator of TGFa shedding.
Knockdown of SH2D1A was monitored by qPCR, demonstrating

Table 2. Experimental and predicted genes ranked by multiple robustness metrics

Experimental
genes Sensitivity 1�Specificity

Normalized
closeness

Aggregate
score Predicted genes Sensitivity 1-Specificity

Normalized
closeness

Aggregate
score

LCK 0.00 0.891 0.920 0.963 BCL2 0.00 0.901 0.964 0.975
RAF1 0.00 0.723 1.000 0.956 RAF1_S499 0.00 0.950 0.876 0.961
PHKA2 0.00 0.941 0.780 0.936 BCL2_S70 0.00 0.970 0.849 0.958
PIN1 0.00 0.871 0.821 0.935 XIAP 0.00 0.950 0.851 0.955
PRKCA 0.00 0.713 0.923 0.935 CASP9 0.00 0.941 0.835 0.950
PTPRM 0.00 0.921 0.730 0.921 CASP3 0.00 0.931 0.821 0.945
PPP3CA 0.00 0.851 0.774 0.920 CASP9_S183 0.00 0.960 0.799 0.944
BLK 0.00 0.861 0.758 0.918 BCL2_Ser87 0.00 0.950 0.795 0.941
SH2D1A 0.00 0.851 0.738 0.911 PIN1_S16 0.00 0.941 0.786 0.938
PTPN22 0.00 0.832 0.732 0.907 SLAMF1_Y307 0.00 0.990 0.738 0.933
ABL1 0.00 0.901 0.668 0.902 NR1I3_T38 0.00 0.990 0.736 0.933
NR1I3 0.00 0.960 0.609 0.897 PTBP1_S16 0.00 0.970 0.736 0.930
RXRB 0.00 0.911 0.635 0.895 LCK_Tyr394 0.00 0.970 0.732 0.929
GMFB 0.00 0.950 0.609 0.895 VASP_S157 0.00 0.950 0.739 0.928
PIM1 0.00 0.881 0.654 0.895 TRPV5_S654 0.00 0.950 0.736 0.927
PPP2CB 0.00 0.842 0.673 0.894 CASP9_Y153 0.00 0.990 0.688 0.921
PTBP1 0.00 0.901 0.609 0.887 PIN1_S138 0.00 0.950 0.670 0.910
TRPV5 0.00 0.891 0.609 0.886 WNK3 0.00 0.950 0.667 0.909
IRAK1 0.00 0.911 0.587 0.883 CDC25A_Ser116Ser321 0.00 0.931 0.656 0.904
CKS2 0.00 0.881 0.563 0.873 TAB1 0.00 0.842 0.703 0.901
CDC14A 0.00 0.891 0.554 0.872 TSC22D4 0.00 0.871 0.670 0.898
DUSP5 0.00 0.891 0.554 0.872 VASP 0.00 0.941 0.614 0.895
TRPM7 0.00 0.911 0.540 0.872 SLAMF1 0.00 0.891 0.616 0.887
CDC25A 0.00 0.505 0.801 0.872 PPP4C 0.00 0.881 0.572 0.875
MAP3K11 0.00 0.871 0.563 0.871 SH2D1B 0.00 0.891 0.525 0.865
WWP2 0.00 0.931 0.524 0.871 PTEN 0.00 0.683 0.656 0.864
PPEF2 0.00 0.950 0.509 0.870 EEF2K_S78 0.00 0.950 0.470 0.861
PPEF1 0.00 0.941 0.509 0.869 SIK2_T175 0.00 0.921 0.442 0.849
PPP2R1A 0.00 0.822 0.574 0.866 SNRK_T173 0.00 0.911 0.441 0.847
ERBB4 0.00 0.802 0.562 0.860 TP53_S15 0.00 0.644 0.443 0.805
OBSCN 0.00 0.881 0.509 0.859 STK11 0.00 0.535 0.503 0.803
AKAP11 0.00 0.891 0.497 0.858 LCK_S42 0.99 0.990 0.842 0.373
CALM1 0.00 0.733 0.594 0.857 PTEN_Y240 0.99 0.970 0.768 0.351
PPP5C 0.00 0.891 0.489 0.856 MYH9_S1916 0.99 0.980 0.751 0.348
PPP4R1 0.00 0.881 0.493 0.855 GMFB_S72 0.99 0.980 0.736 0.345
PPP1R12B 0.00 0.871 0.497 0.855 CASP9_Thr125 0.99 0.960 0.685 0.329
SNRK 0.00 0.911 0.441 0.847 MYH9 0.99 0.980 0.630 0.318
PPFIA1 0.00 0.802 0.497 0.844 MAPT_Ser198Ser199Ser202Thr

205Thr212Ser214Ser235Ser
262Ser396Ser404Ser409

0.99 0.950 0.568 0.298

EEF2K 0.00 0.851 0.415 0.831 MYH9_T1800 0.99 0.990 0.538 0.297
SIK2 0.00 0.871 0.393 0.829 PTEN_T383 0.99 0.921 0.571 0.294
EGLN1 0.00 0.851 0.390 0.825 MAPK3_na 0.99 0.782 0.656 0.293
TP53RK 0.00 0.822 0.394 0.821 ING4 0.99 0.960 0.438 0.268
SMG1 0.00 0.802 0.394 0.818 PPP1CB 0.99 0.723 0.579 0.265

NOTE: Experimental genes (left) and predicted genes (right) were ranked by the followingmetrics: sensitivity represents fractional representation in a family of 100
networks created with 0.5% noise added to the interactome edges; specificity represents the fractional representation in a family of 100 networks created with
random inputs and 1�specificity is used for ranking as low specificity indicates robustness to this type of randomization; normalized closeness centrality reflects a
node's robustness as thismetric indicates association to other nodeswithin the network; aggregate scorewas calculated byweighting eachmetric by the SD for that
metric and normalizing to the maximum score possible for all experimental/predicted genes.
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70%–80% decrease of SH2D1A mRNA levels for all three indi-
vidual shRNAs (Fig. 4A). Knockdown of SH2D1A with three
individual shRNAs enhanced TPA-stimulated TGFa cleavage from
the cell surface as determined by decreased red:green fluorescent
ratio compared with TPA-stimulated control shRNA–expressing
cells (Fig. 4B). Again, mRNA knockdown for each individual
shRNA against PTPN22 was monitored by qPCR and varied
between 40% and 90% (Fig. 4C). In contrast to SH2D1A, three
shRNAs targeting PTPN22 decreased TPA-stimulated TGFa cleav-
age (increased red:green ratio) as compared with control shRNA
(Fig. 4D); Three other genes contained in the original screen
(OBSCN, PPEF1, and PRKCA) and present in our network model
were already validated in MDA-MB-231 triple-negative breast
cancer cells by ELISAmeasurements in the context of our shEnrich
method validation (Fig. 2E). Knockdown of SH2D1A or PTPN22
in MDA-MB-231 cells confirmed their effects on TPA-induced
TGFa cleavage in this cell type (enhanced cleavage after SH2D1A
and reduced cleavage after PTPN22 knockdown), as measured by
ELISA (Supplementary Fig. S7A, knockdown efficiency shown in
Supplementary Fig. S7B).

We next validated PCSF-selected predicted genes not found in
the original screen. Our optimized network contained a 15-gene
cluster with high centrality, specificity, and low sensitivity (Fig. 3).
Of these genes, 7 were from the original screen: PPEF1, PPEF2,

OBSCN, CALM1, IRAK1, PPP1R12B, and AKAP11. By shEnrich
analysis, 6 of these genes decreased TGFa shedding, except for
AKAP11 that induced shedding (lightening plots in Supplemen-
tary Fig. S8B–S8H).We then tested the effect of knockdownof two
predicted genes contained in this cluster, X-linked-inhibitor-of-
apoptosis (XIAP) and TGF-Beta-Activated-Kinase-1-Binding-Pro-
tein-1 (TAB1) for their effect on TGFa shedding.We selected these
predicted genes because they were robust among this cluster
(Table 2, right column). As we constructed this pathway using
a tissue nonspecific interactome, we also explored the expression
of this regulatory cluster in Jurkat, MDA-MB-231, Kato-III, and
MKN-45 cell lines (Supplementary Fig. S8I) using CCLE data and
found that all components were expressed (47). We monitored
mRNA knockdown by qPCR in the presence of three shRNAs
against TAB1 (Fig. 5A). TAB1 knockdown decreased TPA-stimu-
lated TGFa cleavage from the cell surface (increased red:green
fluorescent ratio) as compared with TPA-stimulated control
shRNA–expressing cells (Fig. 5B). XIAP mRNA knockdown (Fig.
5C) decreased surface-bound TGFa (decreased red fluorescence)
as compared with control shRNA (Fig. 5D). Additional experi-
ments evaluating the effect of TAB1 or XIAP knockdown on TGFa
shedding in Jurkat cells are shown in Supplementary Fig. S9A–
S9D. We also confirmed the same effects of TAB1 and XIAP
knockdown on TGFa cleavage in MDA-MB-231 triple-negative
breast cancer cells (Supplementary Fig. S9E) and monitored
mRNA expression after shRNA perturbation (Supplementary Fig.
S9F). Taken together, these results confirmed the relevance of
PCSF-identified experimental and predicted network genes in
TGFa cleavage regulation.

Network modeling identifies intersection between genes that
regulate inflammation and ectodomain cleavage

As it is widely accepted that inflammation contributes signif-
icantly to cancer pathogenesis (reviewed in ref. 58), it is interesting
to note that most genes contained in our PCSF-identified 15-gene
TGFa-regulatory cluster are associated with the NFkB pathway,
suggesting amechanistic link between the release of tumor growth
factors such as TGFa and inflammation. Here we hypothesized
that our gene cluster was relevant for understanding cancer
pathology and that testing of an existing chemical inhibitor
against the predicted gene, IRAK1, could lendmechanistic under-
standing of how this inhibitor could be applied clinically.

To explore the relevance of genes contained in our 15-gene
"TGFa/NFkB regulatory cluster" and growth factor release in
cancer, we first examined their normalized expression in various
cancers by analyzing cBioPortal data (59) and differential expres-
sion in human cancer cell lines from Expression Atlas (48). We
focused on the upper subset of already validated "TGFa/NFkB
regulatory cluster" genes, PPEF1, PPEF2, OBSCN, CALM1, XIAP,
TAB1. We observed that the genes in this subset are expressed in
multiple cancer types, including in gastric cancer, but none of
them at significantly different levels when compared between
cancers (Fig. 6A–E). However, some subsets of components were
differentially expressed inmultiple cancer types (log2 fold-change
in Fig. 6F; P values in Supplementary Fig. S10, and data accession
numbers in Supplementary Table S2). IRAK1 is most overex-
pressed in glioblastoma multiforme, astrocytoma, hepatocellular
carcinoma, and liver cancer from cell line data (Fig. 6F).

Although we validated the effect of some of these NFkB-
regulatory genes on TGFa cleavage (Fig. 5; Supplementary
Fig. S9), two inhibitors of IRAK1 had no effect on TGFa cleavage.

Figure 4.

Validation of effect of experimental genes on TGFa cleavage in Jurkat cells. A,
Knockdown of SH2D1A was monitored by qPCR. B, Knockdown of SH2D1A
with three individual shRNAs enhanced TPA-stimulated TGFa cleavage from the
cell surface compared with control shRNA–expressing cells (indicated by
lower red:green fluorescent ratio as compared with control). C, Knockdown of
PTPN22wasmonitored by qPCR.D,Knockdown ofPTPN22with three individual
shRNAs decreased TPA-stimulated TGFa cleavage as compared with control
shRNA (indicated by higher red:green fluorescent ratio as compared with
control). Error bars, SEM. We used an unpaired t test to test significance.
� , P � 0.05; �� , P � 0.01;��� , P � 0.001; ���� , P < 0.0001.
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Furthermore, an inhibitor of IKKb [upstream of NFkB; controls
the phosphorylation and subsequent degradation of one impor-
tant direct regulator of NFkB (IkB)] did not affect TGFa cleavage
(Fig. 6G and H). This suggests that the NFkB-regulatory function
of this gene cluster is not required for their effect on TGFa
cleavage. In addition, these results suggest that IRAK1 inhibitors
do not modulate TGFa cleavage.

In summary, these results suggest that tumor-associated
inflammation may enhance tumor growth by also enhancing
growth factor release due to overlap in their regulatory path-
ways and suggests unexpected novel applications for inhibition
of NFkB-regulatory genes in combination targeted therapies in
cancer.

Discussion
Here we report a putative TGFa shedding pathway through a

combined computational and experimental approach and dem-
onstrated the relevance of this pathway for targeted therapy
design. We identified a cohort of genes organized in subnetworks
that affect TGFa ectodomain release, vetted these selections
computationally, and validated genes using targeted experiments
in several cancer cell types. In the process, we identified an
unexpected connection between regulators of the NFkB pathway
and the release of cancer growth factors of the EGFR ligand family
by ectodomain cleavage.

While the identified genes tune TGFa shedding and thus EGFR
activation, many of them are not predicted oncogenes by tradi-
tional expression, mutation, or activation metrics. Our approach
thus further highlights a trend toward selecting therapeutic targets
based on functional role rather than overexpression of a particular
gene in diseased over normal tissue. It is important to note that
our network modeling approach yielded predicted genes not
previously tested in our shRNA screen and that we could not
have predicted these genes using traditional metrics. The direc-
tionality of their effect on TGFa regulation cannot be predicted,
and discovering directionality requires dedicated experimental
validation (see also discussion of the predicted gene XIAP below).
Furthermore, we made these predictions in a tissue, nonspecific
manner, but were able to validate these genes in multiple cell
lines. The results show that we can discover alternative control
mechanisms for growth factor pathway activation regardless of
tissue type and that these targets require novel methods for
discovery.

We explored the relevance of this pathway for cancer therapeu-
tics and specifically investigated whether there was a link between
theNFkBpathway andTGFa shedding. The literature supports the
role of these genes in regulating NFkB signaling and there are
several observations that suggest that more indirect connections
and coregulation of the EGFR andNFkB pathways indeed exist. In
head and neck squamous cell carcinoma, EGFR and TGFA genes
are upregulated concurrently with NFkB signaling components.

Figure 5.

Validation of predicted genes on TGFa
cleavage in Jurkat cells.A,Knockdown
of TAB1 was monitored by qPCR. B,
Knockdown of TAB1 with three
individual shRNAs decreased TPA-
stimulated TGFa cleavage from the
cell surface as compared with control
shRNA–expressing cells (indicated by
higher red:green fluorescent ratio as
compared with control). C,
Knockdownof XIAPwasmonitored by
qPCR. D, Knockdown of XIAP with
three individual shRNAs decreased
TGFa at the cell surface as compared
with control shRNA (indicated by
lower red fluorescence as compared
with control). Error bars, SEM. We
used an unpaired t test to test
significance. � , P � 0.05; �� , P �
0.01;��� , P � 0.001; ���� , P < 0.0001.
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Figure 6.

Analysis of genes in the "TGFa/NFkB
regulatory cluster". A–E, mRNA
expression of network genes in human
cancer samples. Histograms represent
distribution of mRNA z-scores for
PPEF2 (A), PPEF1 (B), OBSCN (C),
CALM1 (D), and IRAK1 in gastric cancer
(orange; 302 samples) and "other"
cancers (purple; 10,550 samples; also
see Materials and Methods; E). F,
Differential expression of genes of the
TGFa/NFkB regulatory cluster in
multiple cancer types from Expression
Atlas. Colorbar indicates log2 fold-
change as reported from Expression
Atlas. Kato-III (G) or MDA-MB-231 (H)
cells were treated with vehicle
(DMSO), themetalloprotease inhibitor
BB94, IRAK4 inhibitor, IRAK1/4
inhibitor, or IKKB inhibitor for 1 hour
and exposed to control treatment or
TPA (100 nmol/L) for 30 minutes.
TGFa release was measured in cell
supernatants by ELISA. Error bars,
SEM.
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TheNFkB activators, IKKa and IKKb enhance EGFR signaling, and
activation of both IKKs can induce EGFR, TGFa, and Jun expres-
sion, a downstream effector of EGFR (60). Gastric H. pylori
infection induces activation of EGFR and NFkB activity and both
are thought to be associated with gastric cancer progression
(61, 62). NFkB has been associated with resistance to EGFR
therapies in cancer and inhibition of NFkB is able to sensitize
cells to erlotinib treatment. Anti-EGFR therapies were indeed able
to reduce NFkB activation (reviewed in ref. 10). Furthermore, it is
well established that stimulation of EGFR can activate NFkB
through proteasome-mediated degradation of IkBa (63, 64).
Patient and cell line expression data validated our first hypothesis
that these network components are expressed in cancer samples,
albeit at varying levels in different cancers, and possibly rele-
vant to pathology. Our experimental validation confirmed the
network-based hypothesis that TAB1 and XIAP affect TGFa
shedding. Our experiments with chemical inhibitors of IRAK1
or of IkB suggest that the NFkB-regulatory function of these genes
is not needed for their cleavage regulatory function, and thus,
we were unable to confirm amechanistic hypothesis about inhib-
itor mode of action. We sought to validate the role of IRAK1 in
tuning TGFa shedding in gastric cancer because these cancers are
growth factor–driven and exhibit EGFR pathway dependencies.
However, from our cancer cell line analysis, it appears that our
NFkB-related cluster is differentially expressed in brain and liver
cancers, which are not traditionally EGFR pathway driven. Further
analysis may explore the role of IRAK1 inhibitors in these cancers
as opposed to gastric cancers.

Our network model predicts new mechanistic information
about XIAP, a gene that is currently a focus for therapeutic
development. XIAP-TAB1 binding is an upstream regulator of
NFkB signaling (65) andoverexpressionofXIAP is associatedwith
loss of apoptotic signaling in cancer (66). XIAP binds and inhibits
caspases 3 and 9, and also TAK1; binding TAK1 causes ubiqui-
tination and degradation of TAK1 to prevent its activation of JNK
(67). NF023, a new compound, inhibits XIAP–TAB1 binding, and
thus could act as a proapoptotic therapeutic in cancer (65). Our
work complements these efforts by predicting an additional
functional role for XIAP: XIAP targeting can also affect EGFR
signaling by modulating TGFa cleavage. This information could
indicate when XIAP intervention might be clinically useful.
Although XIAP–TAB1 interaction is necessary for activation of
NFkB signaling, knockdown of XIAP and TAB1 proteins individ-
ually have opposite effects on TGFa cleavage. This suggests that
their cleavage regulatory function is independent of their func-
tions in NFkB signaling. Experimental validation determined the
directionality of predicted genes' effect onTGFa shedding because
our model did not describe this directionality.

Our focus here has been on signaling pathway nodes, as a
category generally offering potential for therapeutic targeting. This
focus differs from an earlier study in which the Kveiborg labora-
tory undertook a genome-wide screen for regulators of HB-EGF
shedding (like TGFa also an EGFR ligand ADAM17 substrate;
ref. 68). On the basis of selection criteria requiring that at least
three of four individual siRNAs inhibited HB-EGF shedding after
TPA treatment, they validated 81 genes, including ADAM17 and
PKCa. The signaling nodes obtained in their study corresponded
well with the findings in our screen. Further stringent retesting of
these initial hits confirmed that 24 hits mimicked the effects of
ADAM17 knockdown on HB-EGF cleavage, including the multi-
functional sorting protein PACS2 as a top hit. PACS2 was shown

to colocalize with ADAM17 on early endosomes and to regulate
recycling and stability of internalized ADAM17, thereby sustain-
ing ADAM17 cell-surface activity by diverting ADAM17 away
from degradation. The fact that the main finding of this screen
represents an ADAM17 trafficking factor might be related to the
significantly longer time frame of induced shedding stimulation
in the screen (30minutes vs. 2–5minutes in our screen). Shedding
can occur within seconds to minutes, while trafficking usually
requires more time. This suggests that the genes we identified
might act on regulatory components that do not require traffick-
ing (or transcription). Similar to our screen results, hits were
segregated into multiple functional categories but no enrichment
in particular signaling pathways was found. This further empha-
sized the need for novel network modeling approaches as we
performed and validated them in the current work. Future work
will have to addresswhether the regulatorswe identified act on the
protease, the substrate (TGFa) or other proteins that interact with
ADAM, substrate or both (12), andbywhatmechanism they affect
cleavage. In this context, particularly if they act on the protease, we
need to explore the possibility that our regulators also affect the
cleavage of other ADAM substrates beyond TGFa.

In summary, our work identified and validated numerous
regulatory components of TGFa shedding that could be leveraged
for multiple treatment and disease contexts. These genes may be
relevant as novel therapeutic targets in contexts where EGFR
signaling is hyperactive or where EGFR is a source of therapeutic
resistance. While we focus primarily on cancer, this pathway
model is relevant for other diseases that are strongly affected by
EGFR signaling, such as organ fibrosis or inflammation (8). Our
network modeling approach proves useful for identifying how
signaling pathways intersect or overlap and can thus affect tar-
geted therapies. Our pathway analysis lays the ground-work for
identifying signaling intermediates that bridgemultiple pathways
to affect the release of growth factors in the tumor environment.
While discovering how these pathways intersect remains a diffi-
cult challenge, our analysis demonstrates a path toward target
selection and consideringmechanistic implications of therapeutic
interventions.
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