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Figure 2. A schematic view of the Networked Infomechanical
Systems (NIMS) concept shows mobile nodes suspended on cable
infrastructure. This also shows the NIMS capability for sensing,
communicating, and transporting sensor nodes throughout a three-
dimensional volume. The NIMS infrastructure, shown here enables
precise physical reconfiguration in an environment that would
otherwise be intractable for navigation by conventional means. 

Adaptive Sampling for Environmental Robotics 

Abstract� The capabilities and distributed nature of networked 
sensors are uniquely suited to the characterization of distributed 
phenomena in the natural environment.  However, environmental 
characterization by fixed distributed sensors encounters 
challenges in complex environments. In this paper we describe 
Networked Infomechanical Systems (NIMS), a new distributed, 
robotic sensor methodology developed for applications including 
characterization of environmental structure and phenomena. 
NIMS exploits deployed infrastructure that provides the benefits 
of precise motion, aerial suspension, and low energy sustainable 
operations in complex environments.  NIMS nodes may explore a 
three-dimensional environment and enable the deployment of 
sensor nodes at diverse locations and viewing perspectives.  
NIMS characterization of phenomena in a three dimensional 
space must now consider the selection of sensor sampling points 
in both time and space.  Thus, we introduce a new approach of 
mobile node adaptive sampling with the objective of minimizing 
error between the actual and reconstructed spatiotemporal 
behavior of environmental variables while minimizing required 
motion.  In this approach, the NIMS node first explores as an 
agent, gathering a statistical description of phenomena using a 
nested stratified random sampling approach. By iteratively 
increasing sampling resolution, guided adaptively by the 
measurement results themselves, this NIMS sampling enables 
reconstruction of phenomena with a systematic method for 
balancing accuracy with sampling resource cost in time and 
motion.  This adaptive sampling method is described analytically 
and also tested with simulated environmental data.  Experimental 
evaluations of adaptive sampling algorithms have also been 
completed.  Specifically, NIMS experimental systems have been 
developed for monitoring of spatiotemporal variation of 
atmospheric climate phenomena.  A NIMS system has been 
deployed at a field biology station to map phenomena in a 50m 
width and 50m span transect in a forest environment. In 
addition, deployments have occurred in testbed environments 
allowing additional detailed characterization of sampling 
algorithms.  Environmental variable mapping of temperature, 
humidity, and solar illumination have been acquired and used to 
evaluate the adaptive sampling methods reported here.  These 
new methods have been shown to provide a significant advance 
for efficient mapping of spatially distributed phenomena by 
NIMS environmental robotics. 

Keywords-component; Networked Infomechanical Systems 
(NIMS); Environmental Robotics, Sensor Networks; Adaptive 
Sampling; Statistics and Geostatistics.  

I.  INTRODUCTION AND MOTIVATION 
Autonomous and comprehensive environmental monitoring 

robotics presents severe challenges for detection, location, and 
tracking of phenomena in the midst of unpredictably evolving 
environmental characteristics.  Since phenomena may appear 
as single or multiple events and may migrate within the 
environment, it is required that sensing be spatiotemporally 
distributed. Also, in order to extract desired information 
regarding phenomena, it is generally required that multiple 
sensor modalities be brought to bear at the same point in space 
and time.  Further, the reconstruction of phenomena from 
sensor sampling requires knowledge of the sensing channel 
propagation characteristics. Even more importantly, the 
presence of obstacles to sensing may entirely obscure events.  
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This paper describes a new capability, Networked 
Infomechanical Systems (NIMS) combining distributed 
networked sensing with infrastructure-enabled mobility.  NIMS 
enables active physical reconfiguration of a diverse 
spatiotemporal distribution of sensor nodes in three 
dimensional environments. NIMS infrastructure enables high 
precision and reliable mobility to locate sensor nodes as 
required to both calibrate and configure sensor distributions to 
the points of minimum sensing uncertainty.  However, this new 
capability is accompanied by many challenges, including the 
problem of optimizing spatiotemporal sensor sampling to 
reduce resource costs while recovering the most accurate 
reconstruction of environmental phenomena. New algorithms 
with analytical, simulation and experimental results with NIMS 
systems will be presented here.  Finally, the broad range of 
capabilities and applications of NIMS for environmental 
monitoring will also be discussed. 

Distributed sensor networks have demonstrated feasibility 
for environmental monitoring [1-3]. However, experimental 
and theoretical investigation of the monitoring capability 
determined from the deployment of these early sensor networks 
has revealed the challenge of sensing uncertainty. The 
problem of sensing uncertainty is inherent to environmental 
monitoring since it is uncharacterized. Unexpected physical 
phenomena and evolving environmental structures induce 
uncertainty in the coupling between signal sources and sensors.  
Further, since physical phenomena are the source of 
uncertainty, then physical adaptation of a sensor network (for 
example, through robotic mobility) may provide the only 
practical method for detection and reduction of uncertainty.  
However, while mobility is required, there are constraints on 
the form of mobility that can provide the required benefits for 
environmental monitoring.   

The structural complexity of natural environments and the 
nature of phenomena to be studied create a unique set of 
requirements for sensor node mobility.  These include: 1) 
Mobility must permit a wide range of location and viewing 
perspectives within the space of large three-dimensional 
environments.  This requires the capability to adjust location to 
adapt range between signal sources and sensors.  This also 
requires the capability to choose viewing or sensing 
perspectives to enable image acquisition, for example, in the 
midst of obstacles.  In typical natural environments, the proper 
viewing perspectives may be reached only with an overhead, 
aerial perspective and may not be accessible to surface-borne 
robots.  2) Mobility methods must also provide predictable and 
accurate sensor location and perspective.  Specifically, in 
order to reduce spatiotemporal uncertainty, it is essential to 
avoid navigation errors or limitations that would, in the case of 
conventional methods, increase uncertainty. 3) Sensor mobility 
must also access complex terrain and surface regions that may 
be incompatible with conventional surface vehicle navigation 
(or may represent regions where surface vehicle passage may 
disturb the environment in an undesired fashion).  4) Sensor 
mobility must also be sustainable since environmental events 
may evolve slowly or be infrequent, yet still require constant 
exploration and vigilance in order for detection. 5) The sensor 
mobility system must provide a means for enabling a logistics 
capability for transport of sensor nodes, energy, and physical 
samples (for example of atmosphere or water resources). 6) 

Finally, the mobile sensor environmental monitoring system 
must also support reliable network access to spatially 
dispersed, mobile nodes operating in complex environments. 
This networked capability is required to enable the accurate 
coordination of sensing assets for characterization of the many 
phenomena that are best investigated by the simultaneous 
application of multiple sensor devices. 

NIMS technology, shown in Figure 1, addresses the 
environmental monitoring requirements above in a way that 
would not be directly possible with other robotic forms.  Here, 
a �cableway� infrastructure is shown.  While many 
infrastructure types are adapted for specific applications, the 
general purpose cableway system satisfies requirements for a 
broad class of environmental monitoring requirements while 
introducing only limited deployment logistics and planning 
cost.  The cableway enables 1) elevated, aerial viewing 
perspective, 2) accurate, reproducible motion, 3) long range 
mobility in complex terrain, 4) low energy motion for 
sustainable operation, 5) logistics capability with energy 
transport via the cable systems, and 6) node elevation for 
enhancing wireless link budget relative to surface-distributed 
nodes [4].  Finally, the need for high fidelity monitoring of 
large environments will require the simultaneous operation of 
multiple NIMS nodes that exploit the infrastructure for 
communication and coordination [5].  

NIMS applications to environmental monitoring range from 
fundamental science objectives to public health and safety.  
Examples include natural environment monitoring with 
requirements for characterization of the atmosphere for 
photosynthetic gas flux, time-lapse imaging of plant growth 
and animal behavior, and sampling of water resources. NIMS 
physical sampling capabilities offer a dramatic advance for 
these applications by providing a means to automate the 
programmable acquisition of atmospheric gas and water for 
later characterization of trace concentrations.  NIMS may also 
be deployed over waterways including river and wetland 
systems.  Here NIMS offers a distributed means for monitoring 
of atmosphere, water, and subsurface sediment all in response 
to events or model-driven schedules.  NIMS devices are 
applicable as well to civil infrastructures for monitoring and 
inspection.  In this example, NIMS devices may be deployed 
for condition monitoring as well as being held in reserve and 
deployed rapidly upon demand in response to emergencies and 
failures.   

A series of new challenges accompany the development 
and application of NIMS for environmental monitoring.  A 
primary example lies in the accurate reconstruction of 
distributed environmental phenomena, including, for example 
the measurement of microclimate dynamics.  Here, the accurate 
determination of space- and time-dependent variables of 
temperature, water vapor concentration, and solar illumination 
within the complex environment is essential to the investigation 
of global change phenomena [6].  These variables must be 
sampled in a vast three-dimensional volume while both spatial 
and temporal variations are unknown and initially are 
unpredictable.  Thus, while NIMS capabilities offer the ability 
to explore large volumes, it is now required that sampling 
strategies be properly devised such that the density of sampling 
points is dynamically and autonomously adjusted using 
information derived from sensor systems.  This requires a 
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Figure 2. A schematic view of a typical NIMS natural environment 
deployment is shown. The NIMS Sensor Node may rise and fall 
vertically and propagate horizontally through the Patrol Area. The 
allowed measurement sites, pixels, are indicated by points in the 
surveillance area.  Sensed variables including atmospheric 
temperature, water vapor density, solar illumination, and others 
very in space and time.  Sampling must follow a policy that enables 
reconstruction of environmental data with an estimated degree of 
accuracy that may be specified in advance of sampling.   

combination of new sampling algorithms, coordinated 
mobility, and proper dynamic selection of sensor assets.  In 
some applications, this will also require the coordination of 
multiple sensor nodes.  Objectives for optimization may 
include the accurate reconstruction of variable distribution or 
may include the optimization of accuracy associated with a 
variable set derived from combined, distributed measurements.   

II. RELATED WORK 
Environmental robotic development has provided methods 

for mapping, localization, and sampling of phenomena.  For 
example, environmental mapping by robotic systems includes 
the reconstruction of a spatial model of the robot�s environment 
based on sensor samples. Here environmental mapping may be 
characterized as the presence of absence of objects that enable 
robot navigation and localization.[7-8] Map reconstruction 
relies on sensing with range finders, cameras, odometers, 
tactile sensors, inertial and direction sensors, and GPS. 
Environmental mapping remains a challenge, particularly in the 
presence of dynamic environments.  Robotic mapping 
algorithms have relied primarily on probabilistic as opposed to 
statistical approaches. These approaches range from the 
Bayesian filter [9] to Kalman filter [10], hidden Markov model 
[11], to Bayesian network. These methods apply to mapping 
unknown environments with known robotic localization or 
localization with known environments. The Simultaneous 
Localization and Mapping (SLAM) approach is intended to 
achieve both mapping and localization without prior 
knowledge of either.[12]  

Geostatistics provides analysis methods for determination 
of spatial variation and interpolation of sampled data to obtain 
reconstructions (maps) of phenomena. These techniques have 
been long used in science disciplines such soil analysis, [13] 
weather mapping, [14] atmospheric science, [15] 
contamination studies, and geology. 

Also in the field of sensor networks, research has yielded 
methods for determination of spatio-temporal variable 
distribution and efficient field estimation for fixed sensing 
points.[16,17] 

This NIMS investigation is focused on the problem of 
spatiotemporal sampling of dynamic and unpredictable 
environmental phenomena in three-dimensional spaces.  This 
requires that sampling be responsive to not only spatial 
variation, as in Geostatistics methods, but, also to unpredictable 
temporal variations.  The exploitation of NIMS infrastructure 
enables precise robotic localization, removing an uncertainty 
from the reconstruction problem.  This, in turn, will enable 
introduction of new sampling capabilities with coordinated 
mobility of individual or multiple nodes. 

III. ROBOTS AS STATISTICAL AGENTS  
The NIMS sensor node motion is limited by mechanical 

means to a minimum resolvable unit, referred to here as a pixel, 
indicated schematically in Figure 2. Pixels represent the upper 
bound on spatial sampling frequency. Exhaustive sampling of 
the environment at all pixels may generally be prohibitively 
expensive in time and resource cost.  Indeed, for many 

examples, an attempt to sample at highest spatial resolution 
may result in an unacceptable latency with respect to visiting 
environmental regions, resulting in errors in the reconstruction 
of dynamically varying environmental phenomena. 

Thus, the development of a NIMS sampling policy is 
required in order to minimize reconstruction error for a set of 
finite resources in node mobility.  Our approach assigns the 
NIMS nodes to operate as �statistical agents� that are 
commissioned to acquire data regarding variable distributions 
by appropriately scheduled exploration. This approach is 
intended to apply to environmental conditions where no prior 
knowledge exists regarding variable distribution.  However, it 
is also intended to be applicable to instances where domain 
knowledge may be applied to superimpose rules that focus 
exploration and sampling (for example, to those regions 
estimated by domain knowledge to require the highest 
spatiotemporal sampling rate).  

In the following discussion, we review choices of sampling 
policies, including our proposed policy, for reconstruction of a 
map of environmental variables. Note that this map may be 
composed of a single variable such as the sensor attributes the 
robot carries (i.e. temperature, humidity, gas composition, or 
others) or it may be a more complex utility function such as a 
map of the correlation between the variables themselves (for 
example the correlation of atmospheric gas composition and 
temperature) or correlation between images collected in 
multiple spectral bands.  

The following important assumptions focus our initial our 
analysis: 

1. The reconstruction of a spatiotemporal map of dynamic 
phenomena using a single robotic element inherently implies a 
contention between spatial and temporal fidelity and system 
coverage. This robotic sampling system is intended to 
determine its own sampling distribution based only on its 
measurement results.  However, we consider the limit where 
the rate of change of phenomena is low to the extent that it may 
be considered static during the time required for the NIMS 
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Figure 3. The NIMS sampling policy described here is intended to
produce a map of an environmental variable with a specified maximum
acceptable error between the reconstructed (computed) map and
estimated actual phenomena.  Adaptation of the Stratification Policy
determines the rate and location of Mobile Sampling, in response to an
estimated error level. 

system to complete its sampling cycle over those points 
determined to be visited by the sampling policy.  In the limit 
where the sampling policy and phenomena characteristics 
result in sparse sampling, then this approximation is valid.  
However, examples will be explored and new approaches will 
be required that exploit multiple robotic NIMS nodes to 
reconstruct maps of rapidly evolving phenomena in large 
spaces. 

2. Analysis assumes that the NIMS infrastructure enables 
robotic sensor localization at a degree of accuracy such that 
motion contributed negligible sensing uncertainty. (This is 
readily achieved with present NIMS architectures that exploit 
odometer measurements for motion along fixed cables.) 

3. For the present investigation, it is further assumed that no 
sensing errors are present and that the phenomena understudy 
are spatiotemporally continuous.    While these assumptions are 
broadly applicable, in the future, these assumptions will be 
lifted.  Specifically, NIMS will be applied to in situ calibration 
of sensors and instruments, the detection of sensing 
uncertainty, and the adaptation of the NIMS system to enhance 
sensing performance. 

IV. SAMPLING POLICY 
Adaptive sampling policies investigated in the past include: 

A. Uniform (Regular or Grid) Sampling 
Uniform sampling methods acquire measurements at 

uniform intervals. The primary disadvantage of this method is, 
of course, high resource cost since in order to achieve adequate 
sampling density at those regions requiring greatest density, the 
sampling density must be uniformly high everywhere. 
Secondarily, the lack or randomization in sampling introduces 
a potential error in sampling of periodic phenomena. 

B. Random Sampling 
The random sampling procedure assures that each element 

in the pixel population has an equal chance of being selected. 
As for uniform sampling, resource cost is potentially 
prohibitive and may lead to loss of temporal fidelity. 

C. Stratified Random Sampling 
This adaptive method is well-suited to sampling in the 

presence of environmental heterogeneity. Here, the 
environment is partitioned into strata in which statistical 
characteristics of environmental variables are determined.  
Random sampling may occur in each stratum. This method 
offers the benefit that adequate sampling density is applied to 
those strata for which estimation error is high. However, at the 
same time, those strata not requiring high density sampling are 
not over-sampled at high resource cost. 

D. Nested Stratified Random Sampling 
This adaptive method uses the stratified random sampling 

approach but bases sampling density on the variance of 
measured variables within each stratum.  This method 
continues the stratification process and creates a hierarchical 
tree of strata. It has been applied to soil analysis with up to a 

seven stratification stages.[18-19] Disadvantages of nested 
stratified sampling have appeared in fixed sensor deployments 
where the requirements on stratification may vary, rendering 
the stratification sub-optimal.  However, for NIMS 
environmental monitoring, the sampling policy may be 
continuously adapted to follow evolving requirements.  

V. ROBOTIC ADAPTIVE SAMPLING  

A. NIMS Sampling Policy 
We developed a Nested Stratified Sampling method for 

NIMS as a �divide and conquer� algorithm (shown in Figure 3) 
that defines a sampling �tree� where individual strata occupy 
leaves on this tree. Here,  

• First the complete surveillance area under 
investigation, is stratified into a number of strata, m. 

• Then, environmental variables are sampled in each 
strata with a number of samples proportional to the 
area of the strata with: 

(1)  Sr Pαρ =  

(2) rSP αρµ /1==  

Where, ρ is the number of sampling points in the 
current stratum, µ is the mean of vertical and 
horizontal step size in terms of pixels, Ps is the number 
of pixels in the current stratum and αr is a design 
parameter with the stratum rank indicated by r. In 
practice parameter αr may be selected based on domain 
knowledge and have a linear relation with αr-1.  

• Then, data is acquired in the current strata using (2). 
The variance of these data are computed and, if the 
variance is found to exceed a threshold value, 
stratification is again performed to produce reduced 
area strata with an equivalent number of sample points.  

• Iteration of this process continues until variance falls 
below a desired threshold. 

• A stratum is regarded as fully mapped when the 
variance of each leaf of this stratum tree is observed to 
fall below threshold. This process continues until the 
entire region has been sampled with a stratum rank 



  

 
Figure 4. A contour map of relative humidity acquired by a NIMS system
in an outdoor test environment is shown.  Vertical axis corresponds to
vertical node elevation, with horizontal axis indicating horizontal
displacement. Note the maximum in humidity at lower left.  Here, the
Nested Stratified Sampling algorithm has been applied.  The higher
density of strata at lower left is clear with a lower density appearing
elsewhere. Lower left zone is near wet land with maximum humidity
variation 

 

 
Figure 5. The variogram of the data set of Figure 4 is shown in the upper
panel. The lower panel displays the quad-level tree. Lower rank regions
of the tree correspond to high variance zones while higher rank regions
correspond to low variance zones. Leaf zones may show different areas
and but their variance falls below a certain threshold. The leaves can be
used to create a contour map of the environment. The tree also gives and
estimation on the upper bound of the variogram value at each rankl
depending on the number of leaves node at that rank..   

 

B. Maximum and Minimum Sampling Point 
If we define location of a stratum inside the tree as the rank, 

r, of that stratum then the population of pixels in each of the 
strata is: 

(3)  r
pixelsS mNP =  

(4)  ( ) r
pixelS mAAP /=   

Where PS is the number of pixels in the current stratum, 
Npixels is the total number of the pixels in the surveillance area, 
A is the surveillance area, Apixel is the size of each pixel and m 
is degree of stratification. The maximum depth of the 
stratification tree is: 

(5) )/( pixelAA
mTree Logd =  

Since at each step we effectively αr the sampled point then 
the maximum number of sampling point is: 
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Where, Smax is the maximum bound on the number of 
sampling points in the extreme case of a complete random 
system. A complete random system is a system for which in the 
limit of the smallest indivisible strata (npixels < m) the variance 
of values of all neighboring pixels exceeds the threshold 
variance). The minimum number of sampling points is: 

 

(7)  1min αpixelsNS =  

Smin and Smax show the minimum and maximum bound on 
the number of sampling points. Note that performance of 
adaptive sampling policy in the worst case is equal to a simple 
random sampling with Smax samples of the population. In this 
case the penalty of the adaptive sampling policy is (dtree-1) 
additional sampling sweeps. In general, the number of 
sampling points is equal:  

(8) ∑ ∑
=

=

=

=
=

tree ldl

l

rq

q
qlpixels AANS

1 1
])/[( α  

Where, S is the number of sampling points over all leaf 
stratums. Leaf stratums are stratified sections for which 
variance is below the variance threshold and hence has not 
been stratified further. Al is the size of the leaf stratum and rl is 
its rank in the tree. 

C. Error Estimation 
This system ultimately converges to produce a piecewise 

estimated map of the environment within each stratified block, 
represented by the mean of that stratum and its variance. 

Our Estimation of the environmental variable map is then 
represented by: 

(9) ),(��
, yxZM Lyx =  Lyx ∈,

  



  

 
 

    Rank1 Rank2 Rank3 Rank4 Rank5 
Constant 100 (4) 0 0 0 0 
Linear 0 0 100 (16) 0 0 
Square 0 50 (2) 0 0 50 (128) 
Cubic 0 50 (2) 0 12.5 (8) 37.5 (96) 

Random 0 0 0 25 (16) 75 (192) 
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Figure 6. The upper images display characteristic map surface 
topographies where the vertical axis represents an environmental variable 
value and the horizontal axes represent the spatial coordinates associated 
with NIMS node motion.  From left: A level surface, linear, square, cubic 
and random surface are shown. The table shows the percentage of the 
area covered by different leaf ranks (leaf numbers) for each of those 
functions. It is clear that as non-linearity increases the stratification 
process shifts from low ranks leaves to higher rank leaves. The lower 
graph shows the dependence of sampling density on the characteristics 
for these typical surfaces.  Here, sampling density is normalized with 
respect to the maximum sampling density of 2500 points for this system.

Where 
yxM ,

� is map estimation at point x,y and ),(� yxZL
is the 

estimation of the average of highest rank stratum (leaf stratum) 
that contains point x,y. The mean square root error of this 
estimation of map is then equal to: 

(10) ∑∑
= =

−=
p pX

i

Y

j
Lji jiZz

1 1
, )),(�(�δ  

Where, δ� is the map estimation error, Xp and Yp are the 
maximum number of pixels in X and Y axis, zi,j is the sampling 
pixel at point i,j  and ),(� jiZ L

 is the average value of the leaf 
stratum that the pixel belongs to it. 

In practice a more sophisticated spatial mapping technique, 
for example, that of Kriging[20] may be readily used here 
leading to reduced estimation error in specific applications.  

D. Convergence Properties 
Convergence condition of this sampling algorithm depends 

on the spatial distribution of data. There are existing techniques 
for specification of sampling characteristics for environments. 
One such tool that has received much attention is the 
variogram [21]. The variogram reveals the randomness and 
structured aspects of the spatial dispersion of a given variable.  
The variogram is a plot of the average square difference 
between the values of a spatial variable at pairs of points 
separated by a lag distance versus the lag itself (Figure 5). The 
empirical variogram γ (h) is calculated as 

(11)  ∑
=

+−=
)(

1

2 ])()([
)(2

1)(
hN

i
ii hxyxy

hN
hγ   

 where h is the lag (in pixels) over which γ (semivariance) 
is measured, N is the number of observations used in the 
estimate of γ(h), and y is the value of the variable of interest at 
the spatial position xi. The value y(xi + h) is the variable value 
at lag h from x. This calculation is then repeated for different 
intervals of h. The empirical variogram describes the overall 
spatial pattern of sample data.  

This adaptive sampling approach is sensitive to variogram 
value and adapts sampling density of the phenomenon in 
accordance with variance. It samples the environment at high 
lag values and based on variance of the information, stratifies 
the environment leading to lower lag distances and provides an 
estimate of the variance at these less lower lag distances. In 
practice, for most phenomena, the variogram monotonically 
decreases from higher lag distance toward lower lag distance. 
In those cases this sampling approach converges toward a 
stratified tree. 

There are some rare cases in which the variogram of a 
phenomenon may exhibit temporal fluctuation or periodicity. 
Spatial periodicity may occur in the environment (for example 
as a result of cultivation and land management. In such cases 
the variogram displays a local minimum point near the variance 

threshold, complicating the search for an optimal sampling 
solution.  A method that may avoid the effects of such local 
minimum include the proactive exploration of continued 
stratification even after algorithm convergence is observed 

E. Motion Policy 
For this investigation, it is assumed that the NIMS node 

system has either been provided with an obstacle map (limiting 
its range of motion) or this obstacle map has been discovered 
through use of depth sensors. 

The motion policy of the NIMS node is orthogonal to its 
sampling policy. A robot may support a wide range of 
sampling policies including the adaptive sampling policy in a 
raster scan fashion. In the case of the adaptive policy the 
sampling step size scales linearly with location in the sampling 
tree. Adding the assumption of the presence of any temporal 
variability during the map frame time, highlights the 
importance of a motion policy since this is required for 
minimizing distortion of measurements in distributed locations. 
The raster scanning method used for the experiments reported 
here follow a �comb� pattern, relying on vertical excursions of 



  

     
Figure 7. At left is a panoramic view of the experimentally deployed NIMS node system at the Wind River Canopy Crane Research Facility near Carson, 
Washington (the NIMS installation is in the region of the highlighted box). The span for this deployed installation is 50m and the height above the forest floor
surface is also 50m.  The NIMS node infrastructure cable is suspended between two tall trees.  The center image displays an overhead view of the NIMS 
node.  Here it is suspended at a height of 50m above the forest floor.  Note that sensor systems are suspended from the node at an autonomously adjustable
height.  This permits the NIMS sensor node system to sample data in broad and deep vertical plane within the environment. At right, the NIMS node is shown 
in a detail view.  Here, its imaging system is seen. 

the NIMS measurement node over the entire measurement 
range followed by horizontal steps. 

VI. SIMULATION RESULTS 
Sampling efficiency in this approach depends on the nature 

of the variable map �surface�. While this sampling method 
finds the minimum number of required sample points to 
achieve a desired accuracy in reconstructed data, the 
advantages of this approach are greatest for systems that 
display spatially localized variance.  Of course, for 
environments displaying a high variance the density of sample 
points may always be high. This has been investigated in 
simulation. 

We have evaluated sampling algorithm response to 
representative surface shapes. These include a 1) uniform, level 
surface, 2) a surface displaying a linear slope in height, 3) a 
surface displaying a square law characteristic, 4)  a surface 
displaying a cubic law characteristic, 4) and a surface 
displaying a random surface height variation. In all these 
simulations the surveillance area was 100×100 pixels, the span 
of the signal was between zero and one and the threshold 
variance was 8% of the full span of the signal. This means that 
in our simulation, adaptive sampling policy guarantees a 
piecewise error estimation in which, estimated error bounded to 
the threshold variance. We have investigated the effect of 
increasing nonlinearity for the same error on the number of 
sampling points while estimation of error is bounded to 
variance threshold. 

Figure 6 shows the effect of this map characteristic on the 
stratification process. As the map characteristic increases in 
order, as expected, the density of sampling points increases 
from 500 samples to 2375 samples in the case of random 
distribution. The maximum theoretical bound on number of 
samples in this case (based on equations 5 and 8 above) is 2500 
for a simple random sampling policy. 

VII. NIMS DEPLOYMENT 
    We have deployed a NIMS system for investigation of 

microclimate dynamics phenomena with measurement of 
atmospheric temperature, humidity, and solar illumination 
(measured in the Photosynthetically Active Radiation (PAR) 
spectral band. In addition to local deployments near our 

facilities an experimental deployment has also been completed 
at the Wind River Canopy Crane Research Facility [22] near 
Carson, Washington, located in the Wind River Experimental 
Forest. The NIMS deployment included a complete system 
with NIMS sensor nodes (carrying both vertical and horizontal 
mobility), solar cell energy harvesting with sustainable 
operation, batteries, power transfer system, and sensors 
including an imager and microclimate dynamics sensor 
systems.  This node spanned a 50m wide transect that was 50m 
deep in a region between trees (Figure 7).    

VIII. FUTURE WORK 
Each of the many NIMS environmental robotics 

applications will rely on adaptive sampling methods that 
include those described here. Examples of future development 
include: 

• Systems and algorithms that permit accurate reconstruction 
of data in the presence of rapid temporal variation of 
environmental variables.   

• Methods combining mobile and fixed sensor nodes that 
may remain at a location or be adaptively relocated, on 
demand, by the NIMS system. 

• Coordinated sampling algorithms linking multiple mobile 
and fixed devices. Here, the challenge of meeting sampling 
demands in space and time will be partially relaxed by the 
availability of multiple assets that may be properly 
distributed.  

• Using more accurate piecewise linear tree estimation of a 
phenomena. Estimation of leaf area can be replaced by 
higher order estimators at each stratum [23] to increase 
sampling efficiency especially as nonlinearly of the 
phenomena increases. 

• Finally, while the sampling method reported here relies on 
a proactive exploration of the environment (followed by 
the execution of an optimized sampling policy) other 
sampling methods will be developed that are reactive to 
events. 

• These sampling methods and NIMS node systems are 
being prepared for further long term deployments 
(multiple seasons) and experimental investigations of 



  

environmental phenomena at the James San Jacinto 
Mountains Reserve.[24]  

IX. CONCLUSION 
In this paper, we have described the new Networked 

Infomechanical (NIMS) methodology that permits the intensive 
and extensive exploration of environments with mobile, robotic 
sensor systems.  This environmental robotic technology has 
promising potential for monitoring of natural environments, 
urban environments, and indoor facilities.  Its applications 
include scientific investigation, public health monitoring, 
characterization and tracking of environmental contamination 
and remediation progress, as well as applications in commerce.  
NIMS offers the unique characteristics of precise mobility in 
complex environments with low energy, sustainable transport. 

A particularly important objective for NIMS monitoring is 
the spatiotemporal mapping of environmental variables.  Here, 
the objective is to enable a reconstruction of environmental 
variables in a full three-dimensional space. This meets with the 
challenge of computing proper sampling density in order to 
minimize error in reconstruction. 

This paper has described an adaptive sampling method that 
exploits the NIMS system to proactively explore the 
environment and simultaneously develop a spatially varying 
map of sampling density with the objective of allowing 
accurate variable map reconstruction.  This, in turn, enables 
data reconstruction while minimizing required mobility, 
thereby reducing resource costs associated with investigation.  
An analytical description of this sampling method has been 
presented along with simulation results.  Finally, experimental 
measurements confirm the applicability of this technique to 
environmental robotics applications including microclimate 
monitoring. 

ACKNOWLEDGMENT 
The authors would like to thank members of the NIMS 

team specifically Duo �Steven� Liu, Christopher Lucas, Rachel 
Scollans, and Lisa Shirachi, for their work on the experimental 
deployment of the NIMS system. We also would like to thank 
Dr. Michael Hamilton for his advice and guidance. We further 
acknowledge Mark Hansen for his comments and suggestions.  
Finally, we also wish to acknowledge support by the Wind 
River Canopy Crane research team including Ken Bible, Mark 
Creighton, Jerry Franklin, Rick Meinzer, and David Shaw.   

REFERENCES 
[1] http://www.cens.ucla.edu/ 
[2] Pottie, G.J., and Kaiser, W.J., �Wireless Integrated Network Sensors�, 

Communications of the ACM, vol. 43, pp. 51-58, 2000. 
[3] Estrin, D., Pottie, G.J., Srivastava, M., �Instrumenting the world with 

wireless sensor networks�, ICASSP 2001, Salt Lake City, May 7-11, 
2001 

[4] Sohrabi, K., Manriquez, B., and Pottie, G.J., �Near ground wideband 
channel measurement in 800-1000 MHz", IEEE VTC Spring '99, 
Houston, TX May 16-20, 1999. 

[5] Mataric,M.J., Sukhatme,G.S., and Ostergaard, D., �Multi-robot Task 
Allocation in Uncertain Environments�, Autonomous Robots (to 
appear). 

[6] Ozanne, C.M.P., Anhuf, D., Boulter, S.L., Keller, M., Kitching, R.L., 
Körner, C., Meinzer, F.C., Mitchell, A.W., Nakashizuka, T., Silva Dias, 
P.L., Stork, N.E., Wright, S.J., Yoshimura, M. (2003), �Biodiversity 
meets the atmosphere: A global view of forest canopies.�, Science, vol. 
301, pp. 183-186, 2003. 

[7] S. Thrun, �Robotics Mapping: A survey�, Exploring Artificial 
Intelligence in the New Millenium by Lakemeyer, G. and Nebel, B. 
Morgan Kaufmann 2002. 

[8] S. Thrun, D. Fox, and W. Burgard, �A probabilistic approach to 
concurrent mapping and localization for mobile robots�, Machine 
Learning, 31:29-53, 1998. also appeared in Autonomous Robots 5, 253-
271. 

[9] A.M. Jazwinsky. �Stochastic Processes and Filtering Theory� Academic, 
New York, 1970. 

[10] R. E. Kalman. �A new approach to linear filtering and prediction 
problems�, Trans. ASME, Journal of Basic Engineering,82:35�45, 1960. 

[11] L. R. Rabiner. �A tutorial on hidden markov models and selected 
applications in speech recognition�, In Proceedings of theIEEE. IEEE, 
1989. IEEE Log Number 8825949. 

[12] G. Dissanayake, H. Durrant-Whyte, and T. Bailey. �A computationally 
efficient solution to the simultaneous localisation and map building 
(SLAM) problem�, Working notes of ICRA�2000Workshop W4: Mobile 
Robot Navigation and Mapping,April 2000. 

[13]  M. A. Oliver, A. L. Kharyat. �Investigating the spatial variation of 
radon in soil geostatistically�, Proceedings of the 4th International 
Conference on GeoComputation Mary Washington College 
Fredericksburg, Virginia, USA 25 - 28 July 1999. 

[14] Dubois G., Saisana M., Chaloulakou A. and Spyrellis N. (2002). �Spatial 
correlation analysis of nitrogen dioxide (NO2) concentrations in the area 
of Milan, Italy�. Proceedings of the First Biennial Meeting of the 
International Modelling and Software Society, IEMSS�2002, June 2002, 
Lugano, Switzerland. A. E. Rizzoli & A. J. Jakeman (Eds), Vol. 3., pp. 
536-541. 

[15] Christakos, G., and V.M. Vyas, �A composite space/time approach to 
studying ozone distribution over eastern United States�, Atmos. Env., 
32, 2845-2857, 1998 

[16] R. Nowak and U. Mitra,�Boundary Estimation in Sensor Networks: 
Theory and Methods�, , 2nd International Workshop on Information 
Processing in Sensor Networks, Palo Alto, CA, April 22-23, 2003. 

[17] Deepak Ganesan, Sylvia Ratnasamy, Hanbiao Wang and Deborah 
Estrin. �Coping with irregular spatio-temporal sampling in sensor 
networks�, 2nd Workshop on Hot Topics in Networks (HotNets-II), 
November 2003. 

[18] Youden, W.J. and A. Mehlich, 1937. �Selection of efficient methods for 
soil sampling�. Contributions of the Boyce Thompson Institute of Plant 
Research, 9, pp. 59-72 

[19] Oliver, M.A., and R. Webster ,1986 . �Combining nested and linear 
sampling for determining the scale and form of spatial variation of 
regionalized variables�, Geographical Analysis, 18, pp. 227-242. 

[20] Cressie NAC.,1990, �The Origin of Kriging� , Mathematical Geology, 
22, p. 239-252. 

[21] Cressie, N.A.C. 1985. �Fitting variogram models by weighted least 
squares�.Mathematical Geology, Vol. 17, pp. 563�586. 

[22] Wind River Canopy Crane Reseach Facility , 
�http://depts.washington.edu/wrccrf/ � 

[23] P. Chaudhuri, M.-C. Huang, W.-Y. Loh, and R. Yao,    (1994). 
�Piecewise-polynomial regression trees�, Statistica Sinica,, 4,143-167. 

[24] James San Jacinto Mountains Reserve,�http://www.jamesreserve.edu/�

 




