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Origins of atrophy in Parkinson linked to early
onset and local transcription patterns

Pedro D. Maia,1* Sneha Pandya,2* Benjamin Freeze,3,4 Justin Torok,2 Ajay Gupta,2

Yashar Zeighami5 and Ashish Raj1

*These authors contributed equally to this work.

There is enormous clinical value in inferring the brain regions initially atrophied in Parkinson disease for individual patients and

understanding its relationship with clinical and genetic risk factors. The aim of this study is to leverage a new seed-inference algo-

rithm demonstrated for Alzheimer’s disease to the Parkinsonian context and to cluster patients in meaningful subgroups based on

these incipient atrophy patterns. Instead of testing brain regions separately as the likely initiation site for each patient, we solve an

L1-penalized optimization problem that can return a more predictive heterogeneous, multi-locus seed patterns. A cluster analysis of

the individual seed patterns reveals two distinct subgroups (S1 versus S2). The S1 subgroup is characterized by the involvement of

the brainstem and ventral nuclei, and S2 by cortex and striatum. Post hoc analysis in features not included in the clustering shows

significant differences between subgroups regarding age of onset and local transcriptional patterns of Parkinson-related genes. Top

genes associated with regional microglial abundance are strongly associated with subgroup S1 but not with S2. Our results suggest

two distinct aetiological mechanisms operative in Parkinson disease. The interplay between immune-related genes, lysosomal genes,

microglial abundance and atrophy initiation sites may explain why the age of onset for patients in S1 is on average 4.5 years later

than for those in S2. We highlight and compare the most prominently affected brain regions for both subgroups. Altogether, our

findings may improve current screening strategies for early Parkinson onsetters.
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Introduction
Parkinson’s disease is a progressive neurodegenerative dis-

order clinically marked by tremor, bradykinesia and rigid-

ity. The Braak staging model of Parkinson’s disease

proposes that the deposition of mis-folded alpha-synuclein

initiates in the brainstem sites (Stages 1 and 2), substantia

nigra (SN) and limbic structures (Stages 3 and 4), finally

spreading into adjoining frontal and other cortices (Stages 5

and 6) (Del Tredici et al., 2002; Braak et al., 2003).

Subsequent studies improved upon the Braak system, par-

ticularly by recognizing the involvement of the olfactory

bulb and the existence of two separate progression path-

ways for pathology: one along an initial brainstem route as

proposed by Braak, and another along an initial limbic

route, as proposed by later groups (Leverenz et al., 2008;

Beach et al., 2009; Toledo et al., 2016; Coughlin et al.,
2019). The early sites of Parkinson’s disease pathology are

therefore expected to show substantial heterogeneity, a topic

that has received scant attention to date. The goal of this

study is to use state-of-the-art computational methods to

infer the likely initiation sites of Parkinson’s disease path-

ology to characterize such variability.

The stereotyped, and to some extent, predictable patho-

logical process occurring in Parkinson’s disease (Jellinger,

2009) gave rise to several computational models capable of

forecasting atrophy spread in the brain (Zhou et al., 2012;

Zeighami et al., 2015; Yau et al., 2018). In particular, the

network diffusion model (NDM) (Raj et al., 2012, 2015)

can successfully predict the trans-neuronal spread of atro-

phy (a commonly used radiological proxy for pathology)

using brain connectivity. When applied to Parkinson’s dis-

ease, NDM is able to recapitulate radiological correlates of

different stages of Braak’s Lewy pathology scheme (Pandya

et al., 2019). Moreover, this computational model provides

a principled way to test different brain regions as the likely

initiator of pathology, which we hypothesize to vary sig-

nificantly from patient to patient.

In previous studies (Freeze et al., 2019; Pandya et al.,

2019), the NDM was used to rank brain regions (such as

the SN) according to their likelihood of being the sole

initial site with pathology (see Fig. 1, forward NDM). By

excluding the possibility of multiple initiation sites, they

were able to test all regions in their brain atlas via ex-

haustive search. To overcome this limitation and allow

more nuanced initiation patterns, we will adapt the seed-

inference algorithm from Torok et al. (2018) to our

Parkinsonian context (see Fig. 1, backward NDM).

In what follows, we will show that our multi-loci seeds

hide a surprising degree of intersubject heterogeneity.

Specifically, that the individual subjects’ seed patterns can

be clustered into two distinct groups (S1 versus S2).

While only seed variables were used in the clustering ana-

lysis, the differences between subgroups extend to age-of-

onset, to regional transcriptional patterns of Parkinson’s

disease-related genes and to regional microglial abun-

dance. These differences may be traced to differential ex-

pression of immune, autophagy, metabolic and microglial

activity, suggesting that two divergent aetiologic processes

may govern early Parkinson’s disease. Our result also

highlights the value of computational backtracking

Parkinson’s disease-related atrophy, since individual sub-

ject’s aetiologic heterogeneity may not be apparent from

regional atrophy measurements in later stages using MRI.

Materials and methods

Participants

We test our model on a cross-sectional baseline imaging

dataset from Parkinson’s Progressive Marker Initiative

(PPMI) (www.ppmi-info.org/data) from 232 de novo

Parkinson’s patients and 117 age-matched healthy con-

trols (HC). Demographic and clinical features of our

study are shown in Table 1.

Graphical Abstract
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Structural pre- and post-processing
For this study, we used a brain parcellation reported previously

(Zeighami et al., 2015). Briefly, cortical- and basal-ganglia-related

regions were included from the Hammers atlas (Hammers et al.,

2003). The subthalamic nucleus, SN and red nucleus (RN) substruc-

tures were manually segmented using a high-resolution MRI tem-

plate (T1-weighted ICBM152 template, resolution ¼ 0.5 mm3), the

BigBrain atlas (Amunts et al., 2013) and the brainstem anatomical

atlas (Duvernoy, 1995). A subcortical atlas based on ultrahigh-field

MRI confirmed the accuracy of the segmentations (Keuken et al.,

2014). For the purpose of our study, we eliminated cerebellar

regions and used only 78 out of 112 regions (Pandya et al., 2019).

The cross-sectional 3T high-resolution T1-weighted baseline images

were denoised, normalized and corrected for non-uniformity inten-

sity, following linear and non-linearly registration to the MNI-

ICBM 152 template per the standard pipeline (Aubert-Broche et al.,

2013). Regional brain atrophy was computed using deformation-

based morphometry (Zeighami et al., 2015). Regional deformation-

based morphometry values were extracted from the voxel-wise de-

formation-based morphometry maps for each subject. Parkinson’s

disease atrophy was defined by computing a two tailed t-test be-

tween Parkinson’s disease and HC mean deformation-based morph-

ometry values and was represented as a vector tPPMI ¼ ftPPMI (i) j i

2 [1, N]g, (N ¼ 112). The t-statistic was converted to the natural

range [0,1] using the logistic transform as followed in (Raj et al.,

2015; Pandya et al., 2019). We removed 34 cerebellar regions from

a previously validated brain parcellation (Zeighami et al., 2015),

leaving 78 cerebral regions.

The connectome (Illinois Institute of Technology

Human Brain atlas v3) was constructed from high-reso-

lution diffusion weighted MRI data from 72 young

healthy subjects. We used the anatomical connection

density as the measure of connectivity (Iturria-Medina

et al., 2007). This connectome is referred to as C ¼
fci,jg, whose elements ci,j represent the white matter path-

way connectivity strength between ith and jth grey matter

regions. Given that directionality is not deducible from

DTI tractography, these connections are assumed to be

bidirectional.

Forward NDM

The spread of proteinopathic agents over time is well

captured by a dynamical system defined over a network-

graph rendering of the brain, with the nodes representing

grey matter structures and inter-regional connections

defined as above. The forward NDM for the pathology

load � at time t is given by (Raj et al., 2012):

dx

dt
¼ � b L x tð Þ;

where L is the graph-Laplacian matrix given by

Figure 1 Overview of forward and backward NDM. NDM is an established graph-theoretical model for neuropathology spread. Each

node of the graph is associated with a grey matter region specified by a brain atlas. The connectome gives rise to the graph-Laplacian L. To

analytically predict the value of the regional atrophy vector! xðtÞ at a given point t, one must specify the initial state of the system. It is

customary in the forward NDM to test all possible single-locus seed vectors! xSL to find the one that best predicts the empirical atrophy (*).

The backward NDM is a recently developed algorithm that can infer more predictive and sophisticated initial states! xML, with multiple loci and

distinct entry values (**). Brain renderings show the coronal view, with pathology loads proportional to the sphere diameters (values scaled for

improved visualization). When applied to individual patients, the backward NDM gives rise to incipient patterns that are more heterogeneous

than generally appreciated.

Table 1 Demographic and clinical features of PPMI

cohort

Parkinson’s disease HC

Size 232 117

Male/female 155/77 74/43

Age at baseline 61.2 6 9.1 59.5 6 11.3

Education (years) 15.4 6 2.7 15.7 6 2.8

MoCA 27.3 6 2.2 28.2 6 1.2

UPDRS3 21.9 6 9.1.2 n/a

Hoch and Yarh stage 1.6 6 0.5 n/a

Symptom duration 0.58 6 0.59 n/a

Handedness (L/R/A) 17/210/5 n/a
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Li; j ¼

� ci; j; for i 6¼ j and ci; j 6¼ 0;X
t; j 2 e

ct; j; for i ¼ j;

0; otherwise :

8>>><
>>>:

The NDM has a closed-form analytical solution,

xðtÞ ¼ e � b L t x0, where x0 ¼ x ðt ¼ 0Þ is referred

to as the seed vector or incipient atrophy pattern on which

the diffusion kernel e � b L t acts as a temporal and spa-

tial blurring operator for the connectivity matrix C. In gen-

eral, the unit of model’s diffusion time t is arbitrary and

global diffusivity b is unknown. We chose a value that

would roughly span Parkinson’s progression (10–20 years),

giving b ¼ 0.15. Thus, for a given initial atrophy configur-

ation, we can use the NDM to predict the atrophy pattern

at all future time points. We have previously validated the

accuracy of the NDM predictions and robustness to param-

eter choices in multiple contexts (Raj et al., 2015; Pandya

et al., 2017, 2019; Raj and Powell, 2018).

Seed-inference method (backward
NDM)

The empirical atrophy z-scores are given bY

zij ¼ ðvij � l i; control Þ=r i; control;

where the indexes denote the i-th brain region and j-th

patient, respectively; l and r denote mean and standard

deviation calculated with respect to the HC. The scores

were then normalized by a weighted logistic transform to

keep values within the (0,1) range; these normalized vec-

tors will be referred to in what follows as empirically

observed atrophy vectors b against which we run our in-

ference algorithm (Raj et al., 2012; Torok et al., 2018).

The forward NDM can be used to infer the most likely

pattern of disease seeding xseed from a given vector b.

This inverse seed-inference process utilizes a constrained

optimization algorithm with a L1-penalized cost function

to promote sparsity while maximizing the Pearson’s cor-

relation R between the NDM-predicted atrophy vector

a t;xseedð Þ and b. Analogous to the original formulation of

the NDM, we define the two-variable function a as:

aðt; xseedÞ ¼ e � b L t xseed:

Following (Torok et al., 2018), we perform the mini-

mization over the two active variables, t and xseed, in two

steps. After determining an initial guess for the seed pat-

tern, x�seed, and running the NDM on each region indi-

vidually, we find an estimate for the tmin that satisfies the

following condition:

tmin ¼ argmin
t

e
�R ða t; x�

seedð Þ; bÞ
� �

;

where Rðaðt; x�seedÞ; bÞ is the Pearson’s correlation be-

tween the NDM-predicted atrophy using b initial atrophy

x�seed and the empirically observed atrophy vector.

This cost function is monotonically decreasing and is

minimized when the Pearson’s correlation is maximized,

which is consistent with the NDM criterion. We then use

this estimate of tmin to find the xseed that minimizes the

following L1-constrained cost function:

costðxseedÞ ¼ e�R a tmin; xseedð Þ; bð Þ þ k jxseedj1:

k is a tunable parameter that controls the sparsity of sol-

utions; higher values of k force more entries of the result-

ant xseed vector to 0. We used the same stopping criteria

as (Torok et al., 2018), and convergence under these con-

ditions was not an issue in all runs we observed. See the

original publication for further algorithmic details.

L-curves and parameter choices

The inverse-problem algorithm requires a sensible choice

of the L1-penalty parameter k (Torok et al., 2018). A pri-

ori, one does not know what this sensible choice should

be, thus, it is customary to explore the parameter space

within a reasonable range of values (0.1: 0.05: 1) and

analyse the corresponding L-curves (see Supplementary

Fig. 1). The goal is to select the ‘elbow’ of the curve, i.e.

a value that provides a sensible trade-off between the

mismatch of model/data—given by the e�R ða tmin; xseedð Þ; bÞ

term in the cost function, and the sparsity of the seed,

given by the k jxseedj1: The main steps are enumerated

bellow:

(1) Infer an individualized xseed from the observed atrophy

vector b using the inverse model.

(2) Project each xseed into the future using the forward model

to obtain the predicted atrophy vector a(t; xseed). Project

the single-seed vector xsingle the same way to obtain a(t;

xsingle).

(3) Obtain the Pearson’s correlation coefficient (R-max)

between (i) the pair of vectors {a(t; xseed), b}; (ii) the pair

of vectors {a(t, xsingle, Subst, Nigra), b} and (iii) the pair of

vectors {a(t, xsingle, Amygdala), b}, for each Parkinson’s dis-

ease patient. Create histograms for R-max for all cases

Supplementary Figs 1 and 2).

Supplementary Fig. 2A–C show the R-max histograms

(i)–(iii) defined above in black, green and in magenta, re-

spectively. The R-max values associated with (i) are typical-

ly higher than the ones associated with (ii) and (iii),

demonstrating that inferred individualized xseed patterns

lead to significantly more predictive patterns of the

patients’ atrophy vectors than a common single seed vec-

tor. This result provides strong evidence against a stereo-

typed/standard single seed location. We also find that

(Supplementary Fig. 2C) that a single seed in the SN is

more likely than a single seed in the Amygdala. Of course,

if the seed-inference algorithm was giving trivial outcomes

(e.g. inferred seed pattern ¼ observed atrophy pattern)

then we would erroneously obtain similar results to the

above. To guard against that possibility, in Supplementary
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Fig. 2D, we present an R-max histogram comparing the

two vectors fb; xseedg, showing that xseed are not obvious

correlates of the observed atrophy patterns. This is consist-

ent with the complex dynamics of disease spread in

Parkinson’s disease and suggests that our seed inference is

implicating a different set of regions than would be trivially

predictable from the most atrophied regions.

Hierarchical clustering

After applying our backward NDM algorithm to the base-

line MRI volumetric data for all 232 Parkinson’s disease

patients, we obtain a set of seed vectors given by

S ¼ fx1
seed, x2

seed, . . ., x232
seedg. For each patient, the entries

of his/her seed vector represent the amount of pathology in

our 78 ROI brain atlas during the incipient stage of the

disease. The seed vectors in S exhibit a large amount of

intersubject heterogeneity and lend themselves to explora-

tory data analysis and data mining. The categorization of

the inferred seed vectors in two subgroups (S1 versus S2)

is done via standard agglomerative hierarchical cluster tree.

This unsupervised method clusters the data based on sub-

ject’s dissimilarity. We used MATLAB’s linkage function

with (Ward) inner squared distance between clusters and

Euclidean metric. Ward’s linkage uses the incremental sum

of squares, that is, the increase in the total within-cluster

sum of squares as a result of joining two clusters. The

within-cluster sum of squares is defined as the sum of the

squares of the distances between all objects in the cluster

and the centroid of the cluster. The output of the analysis

is the tree displayed in Fig. 2 is not a single set of clusters,

but rather a multilevel hierarchy, where clusters at one

level are joined as clusters at the next level. Thus, the

classification into two subgroups (highlighted in black/

cyan) follows from the algorithm, as we did not pre-specify

a desired number of clusters. In what follows, we investi-

gate if the differences in seed patterns (i.e. belonging to S1

versus S2) extend to other features not included in the clus-

tering analysis.

Statistical analysis

Our selected HC and Parkinson’s disease cohorts passed

two-sample t-test at 5% significance level for all features

that may lead to substantial alterations in brain structure

such as age (P-value ¼ 0.16), sex (P-value ¼ 0.6) and

education years (P-value ¼ 0.36). Seed patterns were

inferred only for the Parkinson’s disease cohort via back-

ward NDM and categorized as S1 or S2 via hierarchical

clustering. In order to compare regional genetic differen-

ces between the subgroups, we apply t-test for 67 risk-

factor genes. See the Results section and Fig. 3 for

Pearson’s correlation r-coefficient and P-values for all

functional classes of genes. In order to compare differen-

ces between the 72 allele frequencies, we used a chi-

square test with Bonferroni multiple comparison correc-

tion. No allele survived the analysis. Finally, to compare

differences in clinical scores between the subgroups, we

applied t-test for all 30 features (see Supplementary Table

1). The only statistically significant differences were

regarding sex and age of onset.

Post hoc analysis for age of onset
The S1 and S2 subgroups also differ in features not included in the

clustering analysis. In Fig. 2C, we fit a logistic distribution for the

age of onset for patients in group S1 (in cyan, log likelihood ¼
�226.9, mean ¼ 63.5, var. ¼ 68.2, and parameters mu ¼ 63.5 and

Figure 2 Analysis and clustering of Parkinson’s disease seed patterns. (A) Average inferred seed pattern for all Parkinson’s disease

patients (n¼ 232). (B) Patients are clustered into two subgroups based on their seed patterns alone: S1 (n¼ 65, in cyan)—with strong

involvement of brainstem and ventral nuclei, and S2 (n¼ 116, in black)—with involvement of cortex and striatum. (C) Post hoc analysis for

variables not included in the clustering shows that the age of onset is in average 4.5 years later for S1.
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sigma ¼ 4.5) and a normal distribution for those in group S2 (in

black, log likelihood ¼ �609.3, mean ¼ 59.0, var. ¼ 87.0, and

parameters mu ¼ 59.0 and sigma ¼ 9.3). Patients in S1 are in aver-

age 4.5 years older than those in S2.

Post hoc analysis for regional
genetics

In Alzheimer’s disease, it is common to use regional

imaging and gene expression data as proxies for trans-

neuronal and cell-autonomous processes predictors of

pathology (Acosta et al., 2018). In our previous work, re-

gional transcriptional analysis was used to show that

early disease sites inferred from NDM in Parkinson’s dis-

ease patients were characterized by unusual expression of

several susceptible genes, especially those responsible for

aberrant synuclein processing and neuroinflammation

(Freeze et al., 2019). Given that our clustering analysis

revealed two distinct subgroups regarding our inferred

seeds, we therefore performed a post hoc analysis to test

if the differences between subgroups extend to genetic

features associated with Parkinson’s disease. Regional

transcriptional mapping of Parkinson’s disease-related

genes was performed following (Freeze et al., 2019) using

67 putative Parkinson’s disease risk-factor genes from the

recent Genome-Wide Association Study (GWAS) meta-

analysis (Chang et al., 2017). The genes were mapped to

the same atlas used for NDM, using data from the

human Allen Brain Atlas (Hawrylycz et al., 2012). Data

for the gene CDC71 could not be located. Details of

transcriptional mapping on our atlas were previously

described (Freeze et al., 2019). Briefly, semantic matching

of expression data region to the 78-region atlas was

employed except in cases of differential demarcation. In

these cases, atlases were visually compared, and ABA

samples were mapped to the closest corresponding grey

matter region. ABA samples spanning more than one re-

gion were excluded from the analysis. For each gene, all

samples across all probes and brains (n¼ 6 HC) with the

same region were averaged and then normalized to pro-

duce a single expression value quantified as z-score. Gene

samples from white matter areas were excluded from

analysis. Expression data for LAG3 and the top five

neuronal and microglial high-fidelity genes (Kelley et al.,

2018) were mapped in the same way. Lysosomal, mito-

chondrial and autophagy-related were initially classified

as previously described (Chang et al., 2017). Immune-

related genes were initially classified according to the

ImmPort database (Bhattacharya et al., 2018).

Classification was manually reviewed, and additional

genes were added to the relevant functional class in cases

in which literature evidence supports a role in the class.

Data availability

The datasets generated during and/or analysed during the

current study are available from the corresponding author

on reasonable request.

Figure 3 Group-specific seeding patterns associated with distinct genetic predictors. Scatterplots of regional Parkinson’s disease-

related gene expression versus average seed region likelihood for (A) all GWAS Parkinson’s disease risk-factor genes, (B) immune-related

genes, (C) lysosomal genes, (D) autophagy-related genes, (E) mitochondrial genes and (F) LAG3. The S1 seeds are predicted by the average of

all GWAS genes, immune-related and lysosomal genes, whereas S2 genes are predicted by autophagy-related genes and LAG3. (G) Scatterplots

of regional microglial and neuronal abundance quantified by PC1 of high-fidelity genes, versus average seed region likelihood. Increased microglial

abundance and decreased neuronal abundance predict S2 seed regions, while these measures are unrelated to S2 seed region likelihood.
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Results

Overview of demographic and
clinical information

Table 1 summarizes the demographic and clinical infor-

mation for HC and Parkinson’s disease patients in our

sample. All data were made publicly available by the

PPMI. See the Materials and methods section for more

details. Our selected HC and Parkinson’s disease cohorts

passed two-sample t-test at 5% significance level for all

features that may lead to substantial alterations in brain

structure such as age (P-value ¼0.16), sex (P-value ¼
0.6) and education years (P-value ¼ 0.36).

Group-level regional patterns for
atrophy and seed vectors

Figure 1 shows brain renderings (coronal view) associated

with the forward* and backward** NDM. The leftmost

plots show the best single-locus seed vector !xSL, with

non-zero entries at both hemispheres of the SN, and the

connectome, that yields the graph-Laplacian L. For a

specified initial state (at t ¼ 0) and the network structure

L, the forward NDM analytically predicts the regional at-

rophy vector !xðtÞ for all t > 0 (see Materials and meth-

ods for details). The middle renderings in Fig. 1 compare

the best NDM-predicted atrophy vector !x with the em-

pirical atrophy vector !b (Parkinson’s disease group

average). This step recapitulates previous NDM results

for Parkinson’s disease, where all possible single-locus

seed vectors were tested and ranked based on the

Pearson’s correlation between !x and !b (Freeze et al.,

2019; Pandya et al., 2019). The largest entries of !b are

associated with the right Putamen (bj ¼ 0:15Þ; left and

right Pallidum (bj ¼ 0:15Þ; left Precentral gyrus

(bj ¼ 0:15Þ and left RN (bj ¼ 0:15Þ (see Table 2 for

more details). We note that the top-10 largest entries of

!b do not include the SN despite its association with

the best single-locus seed vector.

As previously stated, the set of all possible single-locus

seed vectors is very limited and precludes more complex

seed patterns with multiple loci and distinct entry values.

We therefore apply a recent algorithm developed by our

group (Torok et al., 2018) to infer the average multi-

locus (ML) seed vector xML. See Fig. 1 rightmost plot for

a brain rendering of the vector and the Materials and

methods section for more details on the inference

algorithm.

Table 2 shows that the largest entries of xML are asso-

ciated with the left RN (xj ¼ 0:30Þ; the right Putamen

(xj ¼ 0:25Þ; the right Pallidum (xj ¼ 0:22Þ and the right

SN (xj ¼ 0:21Þ: The main regions implicated in the

multi-locus seed vector are sites where Parkinson’s disease

pathology is observed (Braak et al., 2003; Huot and

Parent, 2007; Hanganu et al., 2014; Lewis et al., 2016).

Our result highlights a prominent role for the RN in the

rostral midbrain as a potential source of the disease. This

is consistent with the notion that Parkinson’s disease

does not necessarily begin in the SN (Del Tredici et al.,

2002; Braak et al., 2003; Lang and Obeso, 2004;

Ahlskog, 2005); but could also be due to the difficulty of

disambiguating fiber projections to and from SN versus

those that terminate at the RN. Brain regions such as the

Thalamus and the Nucleus accumbens were not among

the top 10 seed locations for xML despite their high atro-

phy values. Instead, larger entries were found in the right

RN and the left Pre-subgenual Frontal Cortex. See

Supplementary Fig. 3 for additional brain renderings with

axial and sagittal views.

S1 versus S2 subgroups for seed
patterns

The outputs of our seed-inference algorithm applied to

the Parkinson’s disease cohort led to incipient pathologic-

al patterns that are more heterogeneous than generally

appreciated. We perform an unsupervised, hierarchical

cluster analysis on the individual seed patterns (n¼ 232)

to investigate the existence of distinct Parkinson’s disease

subgroups. This technique provides not a single set of

clusters, but instead, a multilevel hierarchy, where clusters

at one level are joined as clusters at the next level.

Figure 2 shows that without pre-specifying the number of

clusters, the dendrogram splits into two large subgroups

(S1 versus S2). The S1 subgroup (n¼ 65, in cyan) is

Table 2 Brain regions, hemispheres and relative pathology values associated with largest entries of average vectors

Rank Atrophy vector Seed vector (group average) Seed vector (S1) Seed vector (S2)

1 Right Putamen, 0.15 Left RN, 0.30 Left RN, 0.49 Right Putamen, 0.34

2 Left Pallidum, 0.15 Right Putamen, 0.25 Right RN, 0.34 Left Precentral Gyrus, 0.25

3 Right Pallidum, 0.15 Right Pallidum, 0.22 Left Subthalamic Nucleus, 0.33 Right Lingual Gyrus, 0.22

4 Left Precentral Gyrus, 0.15 Right SN, 0.21 Left SN, 0.31 Left PSGF Cortex, 0.22

5 Left RN, 0.15 Right RN, 0.20 Right SN, 0.30 Left Lingual Gyrus, 0.21

6 Left Nucleus Accumbens, 0.14 Left Subthalamic Nucleus, 0.20 Left Pallidum, 0.26 Left Inferior Frontal Gyrus, 0.20

7 Left Putamen, 0.14 Left SN, 0.19 Right Subthalamic Nucleus, 0.26 Right Cuneus, 0.19

8 Right Thalamus, 0.14 Left Pallidum, 0.18 Right Thalamus, 0.20 Left Superior Parietal Gyrus, 0.18

9 Right Straight Gyrus, 0.14 Left PSGF Cortex, 0.18 Right Pallidum, 0.20 Left Cuneus, 0.18

10 Left Inferior Frontal Gyrus, 0.14 Left Precentral Gyrus, 0.17 Left Thalamus, 0.15 Left SGF Cortex, 0.18
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characterized by a strong involvement of brainstem and

ventral nuclei, while the S2 subgroup (n¼ 112, in black)

is characterized by the involvement of the cortex and stri-

atum. Table 2 shows the top 10 loci for S1 and S2. The

largest entries of S1 include the left and right RN

(xj ¼ 0:49;0 and xj ¼ 0:34Þ, left Subthalamic Nucleus

(xj ¼ 0:33Þ and left and right SN (xj ¼ 0:31; 0 and

xj ¼ 0:30Þ. Noticeably, the right Putamen (second high-

est entry at the full entire group level) is not prevalent

among patients in S1. Instead, it is prevalent in S2

(xj ¼ 0:34Þ, along with left Precentral Gyrus

(xj ¼ 0:25Þ, right Lingual Gyrus (xj ¼ 0:22Þ and left

Pre-Subgenual Frontal Cortex (xj ¼ 0:22Þ: The brain ren-

derings in Fig. 2 highlight the tremendous distinction be-

tween the spatial localization of these seed loci.

Moreover, these regions exhibit distinct local transcrip-

tional patterns of Parkinson’s disease-related genes, which

we explore below.

Post hoc analysis
The S1 versus S2 clusters are unknown in the field as they are only

apparent in the seeding patterns. We now perform a series of post

hoc analyses to understand the likely genetic and aetiologic origins

of these clusters, and to determine what effects, if any, the two clus-

ters have on clinical and demographic variables in patients. The fol-

lowing results explore features not included in the clustering

analysis. Supplementary Table 1 shows the results of student’s t-test

on various clinical and demographic variables between S1 and S2

patients. None of the variables showed a significant difference save

for sex (P ¼ 0:02Þ and the age of onset (P ¼ 0:003Þ for S1 patients,

which is on average 4.5 years later than for S2 (see Fig. 2C). This is

reflective of the fact that the measured atrophy patterns of the two

groups is also not distinguishable (Supplementary Figs 3–5), sug-

gesting that the patient’s atrophy profile become more similar to

each other over time.

Genetic predictors of S1 versus S2
seed regions

We next test if patterns of regional genetic differences

(Freeze et al., 2019) can predict the likelihood of sub-

group-specific seeds (S1 versus S2). We map the regional

transcript abundance of 67 Parkinson’s disease risk-factor

genes (Chang et al., 2017) to the same brain atlas used

in our analysis and compute the Pearson’s correlation

r coefficient between the average regional expression and

the seed region likelihood. Figure 3A shows that the

average regional expression across all Parkinson’s disease

risk-factor genes predicts the seed region likelihood for

the S1 group (r ¼ 0:45; P ¼ 4:3 � 10�5), but not for

the S2 (r ¼ 0:01; P ¼ 0:92). The Parkinson’s disease risk-

factor genes were subdivided into functional classes com-

prising immune-related, lysosomal, autophagy-related and

mitochondrial genes. The first two classes predict the

seed likelihoods for the S1 group (Fig. 3B, r ¼ 0:5; P ¼
3:2� 10�5 and Fig. 3C, r ¼ 0:44; P ¼ 6:9 � 10�5),

but not for the S2 group (Fig. 3B, r ¼ 0:04; P ¼ 0:73

and Fig. 3C, r ¼ 0:02; P ¼ 0:88). In contrast, the expres-

sion of autophagy-related genes correlates positively with

the seed region likelihood for the S2 group (Fig. 3E,

r ¼ 0:3; P ¼ 7:3 � 10�5) but not for S1

(r ¼ 0:04; P ¼ 0:74Þ. The regional expression of mito-

chondrial genes does not correlate with the seed region

likelihood for either group (Fig. 3F) (see Supplementary

Table 2 for details).

Recent studies show that the LAG3 gene directly binds

alpha-synuclein pre-formed fibrils in vitro, mediates

Parkinson’s disease-like disease progression in animal

models (Mao et al., 2016) and the regional expression

pattern of which predict the human Parkinson’s disease

atrophy pattern (Freeze et al., 2018). We performed a

similar analysis for this specific gene in Fig. 3D and find

that it predicts the regional seed likelihood for the S2

group (r ¼ 0:27; P ¼ 0:01Þ, but not for S1

ðr ¼ 0:02; P ¼ 0:87Þ. Together, these results suggest that

the two patterns of inferred disease seeding may have dis-

tinct genetic and aetiologic bases.

Microglial abundance predicts S1
seed regions

Because the average region expression of immune-related

genes predicts the seed region likelihood for the S1

group, we test whether the regional distribution of micro-

glia does the same. Previous work showed that regional

microglial abundance predicts the location for single-loci

seeds in averaged Parkinson’s disease atrophy data

(Freeze et al., 2019), and in this work, we test if this

finding is group-specific. By employing high-fidelity gene

expression mapping (Kelley et al., 2018), regional cell

type can be derived from bulk transcriptomic data such

as the Allen Brain Atlas expression data used here.

Regional microglial abundance, quantified as the first

principal component of the top five high-fidelity micro-

glial genes, is correlated with the seed region likelihood

for the S1 group (Fig. 3G, r ¼ 0:75; P ¼ 3:8� 10�5Þ but

not for the S2 group (r ¼ 0:02; P ¼ 0:88), consistent

with a prominent role for immune-related pathology in

S1. As a control, we also find a negative correlation be-

tween the regional neuronal abundance and seed region

likelihood for the S1 group (Fig. 3G,

r ¼ �0:47; P ¼ 1:2� 10�5Þ, but no statistically signifi-

cant relationship for S2 (r ¼ 0:03; P ¼ 0:81Þ.

S1 versus S2 differences in allelic
status

We examined differences in the allelic status between the

patients in the S1 and S2 clusters utilizing the template

of 72 Parkinson’s disease-associated genotypic variants

tabulated by the PPMI. Performing a chi-squared test to

each variant yielded no statistically significant predictors

after multiple hypothesis correction. Therefore, we con-

clude that the differences between patient Groups S1 and
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S2 cannot be explained by allelic status for genes that

confer a risk of developing Parkinson’s disease, although

a genetic basis for these two phenotypes cannot be fully

ruled out.

Supplementary analyses

Supplementary Fig. 4A and B shows Parkinson’s disease

subgroups for seeds and atrophy. We use MATLAB’s ag-

glomerative hierarchical cluster tree function to categorize

the seed and atrophy data into two subgroups each: S1

(65/232) versus S2 (167/232) for seeds and A1 (99/232)

versus A2 (133/232) for atrophies. Notice that the major-

ity of patients classified in S2 (100/167) are also classified

in A2, but there is significant mixing between seed and

atrophy subgroups. The histograms for age, MoCA

scores and UPDRS3 scores exhibit significant overlap be-

tween the subgroups (see Supplementary Fig. 4C–E).

The categorization between S1 versus S2 patients does

not hold at the atrophy level. Supplementary Fig. 5

shows the average predicted atrophy pattern (via NDM)

of the seeds classified in S1 (cyan) and S2 (black) sub-

groups, i.e. < a t;xseed 2 S1ð Þ > and <

a t; xseed 2 S2ð Þ > (termed AFS1 and AFS2, respectively).

They are very hard to distinguish from each other (mid-

dle panels) by visual inspection and demonstrate that

patient’s differences at the initiation stage of the disease

diminish with progression, suggesting a process of

convergence.

Discussion
In this work, we apply a novel seed-inference algorithm

(Torok et al., 2018) to computationally determine the in-

cipient pathology patterns of a Parkinson’s disease cohort

(see Table 1). The method improves upon recent studies

(Freeze et al., 2019; Pandya et al., 2019) by allowing the

initial state of the disease to contain multiple loci instead

of a single initiation site (Fig. 1, Backward NDM). The

seed patterns, that were obtained indirectly from baseline

MRI images, exhibit a surprising degree of intersubject

variability. A cluster analysis based on the seed patterns

alone reveals two very distinguished subgroups (S1 versus

S2, see Fig. 2). The S1 subgroup is characterized by a

high involvement of the brainstem and ventral nuclei,

whereas the S2 subgroup has a strong involvement of the

cortex and the striatum (see Table 2). Such clusters are

only apparent in the seeding patterns and are unreported

in the field. Moreover, differences between subgroups ex-

tend to other features that were not included in the clus-

tering analysis, such as local transcriptional patterns of

Parkinson’s disease-related genes and microglial abun-

dance (Fig. 3). Together, these findings suggest two dis-

tinct early aetiological mechanisms operative in

Parkinson’s disease.

Our inferred seeding patterns exhibit a high degree of

variability across subjects, perhaps more than generally

appreciated (Del Tredici and Braak, 2016). At the full

group level (Fig. 1 and Table 2), our inverse NDM algo-

rithm gave prominence to striatal structures that are high-

ly affected in Parkinson’s disease such as Putamen and

Nucleus Accumbens (Huot and Parent, 2007; Hanganu

et al., 2014). Table 2 shows that the seeds do not merely

mirror the observed atrophy patterns. Their potential re-

lation with non-motor symptoms that appear in

Parkinson’s disease, if any, merits further investigation

(Shiba et al., 2000; Schuurman et al., 2002; Leentjens

et al., 2003; Ross et al., 2006, 2008).

The seed patterns, when averaged across the entire

Parkinson’s disease cohort, show highest seed values

within the midbrain regions, in strong agreement with

accepted structures involved in early stages (Braak et al.,
2003). While our seeds do not contain the more caudal

structures implicated in the earliest stages of the Braak

scheme, there is disagreement about the extent to which

detectable a-synucleopathy in those regions is necessary

or sufficient for pre-determining rostral manifestation of

Parkinson’s disease (Burke et al., 2008). In any case,

since significant atrophy changes are known to occur in

the amygdala (Harding et al., 2002) and in substructures

of the basal ganglia and the SN (Davie, 2008), we can

determine if our individual inferred seeds are more pre-

dictive than a single-locus seed placed at these locations.

Both the empirical atrophy and our inferred seeding

patterns suggest a strong striatal involvement, but meas-

ured striatal Lewy pathology in Parkinson’s disease and

dementia with Lewy bodies (DLB) is generally low

(Braak et al., 2003; Jellinger and Attems, 2006).

Emerging data suggest that striatal synuclein lesions are

far more prevalent than previously thought (Saito et al.,

2003; Braak et al., 2006; Jellinger and Attems, 2006;

Mori et al., 2008). It is also possible that oligomeric or

soluble synuclein might be more abundant that Lewy

deposits in the striatum (Duda et al., 2002). Hence our

results regarding the striatum are not surprising and

might even highlight a potential role for inferring their

early involvement from MRI alone.

As in Alzheimer’s disease (Torok et al., 2018), we dem-

onstrate that the NDM predicts patient atrophy patterns

using individual seeds better than a consensus seed placed

at the SN or the amygdala (see Supplementary Fig. 2). In

contrast to that study, however, we detected two distinct

subpopulations of Parkinson’s disease patients based on

their seed patterns alone (S1 versus S2). The hierarchical

clustering analysis revealed, without pre-specifying the

number of desired clusters, an interesting subgroup struc-

ture in the seeding patterns that were not obvious from

their full group average (Figs 1 and 2 and Table 2).

The S1 subgroup is characterized by predominant in-

volvement of the brainstem and ventral nuclei, with the

RN and SN as their top seed locations (all values �
0.30). The S2 subgroup is characterized by more
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widespread frontal and dorsal striatal cortices, with top

seeds at the Putamen, Precentral Gyrus and Lingual

Gyrus (all values � 0.21). The most distinguishable sig-

natures were the presence of the Thalamus for the S1

subgroup and the presence of the Lingual Gyrus for S2,

a linked to letters processing, logical conditions and

encoding visual memories. Finally, both left and right

cuneus are among the top 10 seed regions for S2 but not

for S1.

The S1 versus S2 distinctions might explain the two

somewhat divergent sites implicit in Braak staging—one

that involves brainstem/subcortical structures, and an-

other, that involves predominantly cortical regions of the

brain. A possible but by no means exclusive explanation

of these effects may be that S1 sustains significant mid-

brain/BG damage due to dysfunction in the lysosomal

processing of synuclein and microglia-mediated neuroin-

flammation. S2 is enriched for LAG3 and autophagy-

related genes that may promote a different pattern of

synuclein spreading in the putamen and cortical regions

in the early disease state. Once synuclein reaches critical

levels in SN, however, it damages the same subcortical

circuits that cause the Parkinson’s disease hallmark motor

symptoms. The widely distributed neocortical pattern in

S2 is surprising as there is little evidence that synuclein

pathology begins in the neocortex and spreads inwards.

This suggests that for some patients, incipient atrophy

patterns might be poorly conflated with canonical early

histological patterns, which merits further exploration.

However, note that the Putamen is the most prominent

seed region in S2; its involvement in Parkinson’s disease

is a well-established, since it is one of the first regions

that suffers from a loss of dopaminergic striatal neurons.

Therefore, it is possible that S2 represents an aetiologic

process that begins in the Putamen and then spread

quickly to the neocortex.

As noted earlier, S1 and S2 groups did not show ap-

preciable differences in atrophy patterns or clinical scores.

Interestingly, they also did not show any differences in

their DaTScan striatal binding ratio, an established imag-

ing marker of Parkinson’s disease diagnosis (see

Supplementary Table 1). Hence, dopaminergic neuron

loss in the striatum is similar in both groups despite

marked difference in their age at onset. It is not possible

to unravel the mediators of this observation in our study,

but we might speculate the possibility that striatal dopa-

minergic loss followed by posterior-cortical cholinergic

depletion—the so-called dual hypothesis—may play a

role.

The identification of distinct Parkinson’s disease cohorts

is not new, and previous study reported a younger dis-

ease-onset-subgroup, a tremor dominant subgroup, a

non-tremor dominant subgroup and a subgroup with

rapid disease progression (Szeto et al., 2015). Their clus-

ter analysis, however, was based on numerous clinical

and cognitive variables. Our study is the first to report

distinct Parkinson’s disease phenotypes based solely on

the initial sites of atrophy development for each patient.

The differences between the subgroups, however,

extended to several features not included in the

categorization.

One of our most striking results is that microglial

abundance is highly differential between the seeding-

derived subgroups S1 versus S2 when using a healthy

brain template. As in Alzheimer’s disease (Sala Frigerio

et al., 2019), microglia in Parkinson’s disease may have

both neurotoxic and neuroprotective effects, depending

on their activation state. The list of protective effects

includes the activation of multiple receptors, the release

of anti-inflammatory cytokines, the initiation of neuron-

microglia crosstalk, the regulation of microRNA and the

modification of histone tails to suppress the expression of

neurotoxic genes. Together, these actions work against in-

flammation-mediated injury (Le et al., 2016). It is re-

markable that the first principal component of the top

five high-fidelity microglial genes is correlated with the

seed region likelihood for the S1 group but not for S2.

While microglia may have both toxic and protective

effects depending on their activation state (Joe et al.,

2018), we hypothesize that in early Parkinson’s disease

stages they might help suppress the neurotoxic effect of

incipient synucleopathy, thus explaining why the age of

onset for the S2 subgroup (regions where microglia are

less abundant) is on average 4.5 years earlier than for the

S1 subgroup (regions where microglia are far more

abundant).

Limitations

It is challenging to measure atrophy and connectivity in

the brainstem and midbrain accurately. Our 78-region

parcellation, while widely used and reported, is quite

large-grained, and likely encompasses substantial finer

structures that are not revealed in our analysis. For in-

stance, our imaging-derived atrophy patterns do not in-

clude the olfactory bulb, which has been reported on the

basis of post-mortem neuropathology to be the most like-

ly origination site of Parkinson’s disease. This important

shortcoming is hard to address as the olfactory bulb in

humans is much smaller relatively to mice (Desikan

Atlas, Paxinos and Smith Brain Atlas).

Our work also inherits limitations from the forward

NDM model when applied to atrophy in Parkinson’s dis-

ease (Pandya et al., 2019). The RN, for instance, plays a

prominent role in the S1 subgroup, but was not reported

by Braak et al. (2003) and cited as spared in later studies

(Dickson, 2012). We believe that inclusion of RN as a

seed region in S1 is erroneous due to tractography, and

contrast and spatial resolution limitations of diffusion

weighted MRI and T1-weighted MRI images. These spa-

tial inaccuracies caused by inaccurate normalization of

subjects to MNI template in atlas generation causes faulty

localization of atrophy in small nuclei such as RN.

Moreover, limitations are also imposed by the
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deformation-based morphometry methodology, which

identifies iron accumulation in RN as volume changes

due to T1-weighted MRI’s sensitivity to iron content.

Given these limitations we had excluded RN from post

hoc statistical analysis as elaborated in (Pandya et al.,

2019). The dependence on atrophy as a marker of under-

lying pathology is clearly a limitation, and this issue was

highlighted in detail in our previous work (Pandya et al.,

2019). The relationship between atrophy and (synuclein)

pathology in Parkinson’s disease is less well-established in

comparison to Alzheimer’s, since some of the most atro-

phied regions are in the striatum, which does not contain

high levels of Lewy deposits. One possible explanation is

that atrophy could very well be trans-neuronal retrograde

or anterograde from a brain region heavily affected by

alpha-synuclein pathology, without much or any such

pathology in the linked region. Despite these challenges,

the overall success of NDM in prior work (Pandya et al.,

2019) suggests that inverse seeding inference from atro-

phy in Parkinson’s disease is possible.

Finally, there is no ‘gold standard’ for seed-inference

methods since the analyses are based on live patients at

various stages of post-onset progression (Torok et al.,

2018). Plausibility of results is based on (i) agreement

with known pathology trends in early Parkinson’s dis-

ease; (ii) how well they are able to predict the atrophy

pattern; and (iii) if they contain latent substructures

that agree with other neuropathological markers. We

believe that on all those counts, our results appear

plausible.

Conclusion
In this work, we utilized a novel algorithm to infer the

likely early sites of brain atrophy in a cohort of

Parkinson patients. Images of incipient atrophy patterns

are rarely available for Parkinson’s disease, and even if

they were, in vivo techniques might be too coarse to

properly detect them. Post-mortem studies, on another

hand, typically find pathology patterns far away from

their initial stages. Thus, our results provide key insights

regarding the early stages of the disease. This study

reveals that seed patterns are more heterogeneous than

generally appreciated and can be categorized in two unre-

ported broad subgroups (S1 versus S2). Parkinson’s dis-

ease risk-factor genes were subdivided into functional

classes, which in turn, may predict the seed likelihood for

each subgroup. It is clinically relevant to identify S2

patients as early as possible since their age-of-onset

occurs on average 4.5 years before those in S1. Our find-

ings highlight and compare the most prominently affected

regions for both subgroups. Altogether, they may im-

prove current screening strategies for early Parkinson’s

disease onsetters.

Supplementary material
Supplementary material is available at Brain

Communications online.
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Del Tredici K, Rüb U, de Vos RAI, Bohl JRE, Braak H. Where does

Parkinson disease pathology begin in the brain?. J Neuropathol Exp
Neurol 2002; 61: 413–26.

Dickson DW. Parkinson’s disease and Parkinsonism: neuropathology.

Cold Spring Harbor Perspect Med 2012; 2: a009258.
Duda JE, Giasson BI, Mabon ME, Lee VMY, Trojanowski JQ. Novel

antibodies to synuclein show abundant striatal pathology in Lewy

body diseases. Ann Neurol 2002; 52: 205–10.
Duvernoy HM. The human brain stem and cerebellum. Vienna:

Springer Vienna; 1995.
Freeze B, Acosta D, Pandya S, Zhao Y, Raj A. Regional expression of

genes mediating trans-synaptic alpha-synuclein transfer predicts region-

al atrophy in Parkinson disease. Neuroimage Clin 2018; 18: 456–66.
Freeze B, Pandya S, Zeighami Y, Raj A. Regional transcriptional

pathogenesis architecture of Parkinson’s disease and network
spread. Brain 2019; 142: 3072–85.

Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L, et al.

Three-dimensional maximum probability atlas of the human brain,
with particular reference to the temporal lobe. Hum Brain Mapp

2003; 19: 224–47.
Hanganu A, Bedetti C, Degroot C, Mejia-Constain B, Lafontaine A-L,

Soland V, et al. Mild cognitive impairment is linked with faster rate

of cortical thinning in patients with Parkinson’s disease longitudinal-
ly. Brain 2014; 137: 1120–9.

Harding AJ, Stimson E, Henderson JM, Halliday GM. Clinical corre-
lates of selective pathology in the amygdala of patients with
Parkinson’s disease. Brain 2002; 125: 2431–45.

Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L,
Miller JA, et al. An anatomically comprehensive atlas of the adult
human brain transcriptome. Nature 2012; 489: 391–9.

Huot P, Parent A. Dopaminergic neurons intrinsic to the striatum.
J Neurochem 2007; 101: 1441–7.

Iturria-Medina Y, Canales-Rodrı́guez EJ, Melie-Garcı́a L, Valdés-
Hernández PA, Martı́nez-Montes E, Alemán-Gómez Y, et al.
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