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Role of STAT3 in lung cancer
Pranabananda Dutta1, Nafiseh Sabri1,2, Jinghong Li1, and Willis X Li1,*

1Department of Medicine; University of California, San Diego; La Jolla, CA USA; 2Department of Chemistry & Molecular Biology; University of Gothenburg; Gothenburg, Sweden

Keywords: U-STAT, Non-canonical, immune evasion, miRNA, stem cell, tumor suppressor

Abbreviations: ALDH, aldehyde dehydrogenase; CSC, cancer stem cell; DNMT1, DNA methyl transferase 1; EGFR, Epidermal
growth factor receptor; ETC, electron transport chain; HIF1-a, hypoxia-inducible factor1-alpha; HP1, - heterochromatin protein 1;
iNOS, inducible nitric oxide synthase; JAK, Janus kinase; MAPK, Mitogen-activated protein kinase; miRNA, micro RNA; NSCLC,
non-small cell lung cancer; PIAS, protein inhibitors of activated STAT; SH2, Src homology 2; SOCS, suppressors of cytokine signal-

ing; STAT3, Signal Transducer and Activator of Transcription 3; STAT3-C, Constitutively activated STAT3; U-STAT,
unphosphorylated STAT

Lung cancer remains a challenging disease. It is responsible
for the high cancer mortality rates in the US and worldwide.
Elucidation of the molecular mechanisms operative in lung
cancer is an important first step in developing effective
therapies. Accumulating evidence over the last 2 decades
suggests a critical role for Signal Transducer and Activator of
Transcription 3 (STAT3) as a point of convergence for various
signaling pathways that are dysregulated in the disease. In this
review, we discuss possible molecular mechanisms involving
STAT3 in lung tumorigenesis based on recent literature. We
consider possible roles of STAT3 in cancer cell proliferation and
survival, in the tumor immune environment, and in epigenetic
regulation and interaction of STAT3 with other transcription
factors. We also discuss the potential role of STAT3 in tumor
suppression, which complicates strategies of targeting STAT3 in
cancer therapy.

Introduction

Lung cancer is the most lethal cancer worldwide. Based on
2013 figures from the World Health Organization, it accounts
for 1.37 million deaths annually, which are more deaths than
from the next 3 most common cancers, i.e., colon, breast and
pancreatic cancer, combined.1 Over half of the people with lung
cancer die within one year of being diagnosed mainly due to the
late stage of detection and the scarceness of late-stage treatment
options. About 80% of patients with non-small cell lung cancer
(NSCLC), a class of lung cancer that constitutes 80–85% of the
cases, develop stage IV disease.2 Not surprisingly then, the 5-year
survival rate for lung cancer patients is only 16.6%, which is
much lower than for many other common cancers such as colon
(64.2%), breast (89.2%) and prostate (99.2%).3

Chemotherapy remains the principal treatment for lung can-
cer patients. However, the platinum-based chemotherapeutics
(e.g., cisplatin) often result in detrimental side effects due to their

toxicity toward normal tissues.4,5 In order to more precisely
attack malignant tissues in the lung and to provide patients with
“targeted therapy,” one must be able to interfere with the func-
tion of a specific molecule that has a central role in cancer cells.
Without a doubt, designing such a specific drug requires an
understanding of the precise molecular mechanism that underlies
the involvement of the targeted molecule in that particular can-
cer. STAT3 may be one of the key oncogenic drivers in
NSCLC.6-14 However, several studies have found that STAT3
also plays a role in tumor suppression,15-19 which should be taken
into consideration in cancer therapies based on STAT3 inhibi-
tion. In this review, we focus on the molecular function of
STAT3. We discuss how this transcription factor and its
upstream effectors and downstream targets may be involved in
lung cancer and how STAT3 may affect several characteristic
hallmarks of various pulmonary tumors including NSCLC (Fig.
1). Moreover, we discuss the crosstalk between STAT3 and other
transcription factors such as p53 and NF-kB.

The JAK-STAT Signaling Pathway

The Janus kinase (JAK) and STAT pathway is involved in
mediating cytokine signals. In mammals, there are 4 JAKs
(JAK1, JAK2, JAK3, and Tyrosine kinase 2 or TyK2) and 7
STATs (STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B
and STAT6). In the canonical pathway, JAK-STAT signaling
starts with the binding of a cytokine (e.g., IL-6) to its specific
cell-surface receptor (e.g., gp130), leading the tyrosine phosphor-
ylation of the receptor-associated JAK protein. The phosphory-
lated (activated) form of JAK kinase, in turn, cross-
phosphorylates tyrosine residues on the cytoplasmic tail of the
receptor, resulting in the recruitment of latent STAT protein to
the receptor and a single phosphorylation of STAT C-terminus
around amino acid 700 (Tyr705 in STAT3) by JAK.20,21 In
addition to cytokines, several growth factors (e.g., EGF) activate
STATs. The growth factors interact with cell-surface receptors
that either have intrinsic tyrosine kinase activity (RTKs like
EGFR) or are able to recruit a non-receptor tyrosine kinase
(NRTK such as Src) to the activation site.22 Activated STATs
then hetero- or homo-dimerize via reciprocal SH2 domain–
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phosphor-tyrosine interactions, are released from the receptor,
and translocate into the nucleus, where they modulate the tran-
scription of a wide range of genes in both developing and adult
tissues. For example, STAT3 directly binds to the promoters of
Fas, cyclin E1, HGF, VEGF, TGF-b, hypoxia-inducible factor1-
a (HIF1-a), Akt, c-Myc, c-Jun, c-Fos, matrix metalloproteinase
2 and the anti-apoptotic genes BclxL, Mcl1 and surviving.23

As with other signaling pathways, STATs are under positive
and negative regulatory controls. With respect to positive feed-
back, treatment with one cytokine (e.g., IFN-a) augments the
reaction to the next cytokine (e.g., IFN-g). Regarding negative
feedback, STATs are regulated by suppressors of cytokine signal-
ing (SOCS), by protein inhibitors of activated STAT (PIAS),
and by protein phosphatases.24 Furthermore, a naturally occur-
ring truncated form of STAT3, which lacks the transactivation
domain, can also act as a dominant negative inhibitor.25 Finally,
STAT3 has been shown to undergo degradation through protea-
some-mediated ubiquitination.26,27

MAP kinases (ERK, JNK, and p38MAPK) regulate STATs as
well by governing a second phosphorylation event on a conserved
serine residue (Ser727 in STAT3), resulting in a fully activated
transcription factor.28 Protein kinase C and cyclin-dependent
kinase 5 are also able to mediate this serine phosphorylation.29

Besides phosphorylation, reversible lysine acetylation has been
revealed as an additional regulator of STAT activity.30 STAT
acetylation within the SH2 domain (Lys685 in STAT3) is
thought to support the conformational change that is required
for STAT dimerization.31 Interestingly, acetylated STATs seem
to attract the methylation machinery, in turn. For example, acet-
ylated STAT3 has been reported to mediate methylation of
tumor-suppressor gene promoters.32

Aberrant Activation of STAT3 in Lung Cancer

Constitutive activation of STAT3 is a common feature in
NSCLC, and has also been proposed to play an important role in
tumor resistance to conventional and targeted small-molecule thera-
pies.8-13 Normally, activated STAT protein has a short lifespan,
since STAT can be dephosphorylated quickly by protein phospha-
tases. However, in many primary cancers and cancer cell lines,
including lung cancers, STATs (STAT3 and STAT5) are persis-
tently active.8,9,11,33-35 Persistent STAT activation can be caused by
either the increased expression of receptors and kinases (in both an
autocrine and paracrine manners) or reduced activity of negative reg-
ulators, such as SOCS, protein phosphatases (e.g., SHP-1 and SHP-
2), and PIAS.24 There are also naturally occurring mutations in
STATs that make them constitutively active,36 though these muta-
tions are rare. One recent study has found a significant enrichment
of mutations in the JAK/STAT pathway in NSCLC.37

STAT3, originally identified as an acute phase response factor
to IL-6, seems to be associated more frequently than other STATs
with tumor formation.7,23,33,38 Indeed, an engineered form of
STAT3 (STAT3-C), which spontaneously dimerizes, can cause
malignant transformation of immortablized fibroblasts, which
form tumors in nude mice,39 and over-expression of STAT3-C in
mice alveolar type II epithelial cells promotes chronic inflamma-
tion and causes spontaneous lung bronchoalveolar adenocarci-
noma.40 It has also been shown that STAT3 is required for cell
transformation downstream of activated Src,41 and that persis-
tently activated STAT3 can cause malignant transformation of cul-
tured fibroblast cells upon spontaneous immortalization.42

A significant body of evidence points to the importance of
upstream regulators of STAT3 in lung cancer. For example, IL-6 is
up-regulated in approximately 40% of lung cancer patients.43

EGFR is also over-expressed in NSCLC cells.44 and Src is over-acti-
vated in many cases of human lung tumors.45 It is therefore not sur-
prising that over 50% of NSCLC primary tumors and cell lines
contain high levels of activated STAT39,46,47 Activating mutations
in the EGFR kinase domain also make a large contribution to
STAT3-mediated tumorigenesis in lung cancer cells.7-9,48,49 An
autocrine mechanism involving IL-6 seems likely in this case.8

Besides EGFR, Src and JAK are candidate tyrosine kinases
that are thought to be responsible for the constitutively activated
STAT3 detected in lung tumors6,11,50 In NSCLC A549 cells, the
activation of STAT3 by growth factors and IL-6 has been shown
to require Src kinase activity.6 There is also a reciprocal synergy
between Src and EGFR in which the Src protein that is activated
by EGF mediates the phosphorylation of a tyrosine residue on
EGFR (Y845 in the mutant EGFR and Y869 in the full-length
EGFR), leading to the enhancement of EGFR kinase activity.51

Prevention of Apoptosis by STAT3

STAT3 enables cancer cells to resist radiation and cytotoxic
drugs through inactivation of both extrinsic and intrinsic apopto-
tic pathways. STAT3 activation causes down-regulation of Fas, a
major extracellular apoptotic ligand.52 STAT3 also acts jointly

Figure 1. Role of STAT3 in lung cancer. In lung cancer cells, STAT3 can
be activated by EGFR, JAK2, Src, IL6, or others. Negative regulators of
STAT3 include SOCS, PIAS, Protein tyrosine phosphatases, and miRNAs.
In the canonical pathway, activated STAT3 is phosphorylated at Tyr705
and functions as a transcription factor, inducing downstream target
genes that are important for cell proliferation, induction of angiogenesis,
prevention of apoptosis, evasion of host immune surveillance, or cancer
stem cell self-renewal. Potential non-canonical functions of STAT3 may
also operate in lung cancer cells. See text for more details.
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with a noncanonical NF-kB signaling pathway to increase the
proteolytic processing of NF-kB p100 to NF-kB p50, which is
an anti-apoptotic protein.53 Regarding intrinsic apoptosis,
STAT3 promotes the expression of Mcl-1 and Bcl-xL, 2 Bcl-2
proteins that prevent release of cytochrome c from the mitochon-
dria.54,55 STAT3 also enhances the level of survivin, which
directly binds to the pro-apoptotic protein caspase 9 and inhibits
its activity in multiple cancers.56 In addition, a modified version
of STAT3 with increased DNA binding affinity, STAT3-C is
simultaneously able to induce higher levels of survivin and lower
levels of the pro-apoptotic protein Bax.57

In several NSCLC cell lines, blocking of STAT3 activity indu-
ces apoptosis.6,58 In line with these data, STAT3 has been shown
to prolong the survival of human PC-13 large-cell lung carci-
noma cells upon serum withdrawal.59 Additionally, in HeLa
cervical cancer cells, STAT3 binds to the promoter of Skp2, a
cell-cycle factor, and induces its expression.60 Skp2 plays an anti-
apoptotic role, and is highly expressed in many cancers. Interest-
ingly, Skp2 correlates with a poor prognosis in NSCLC,61 but
whether STAT3 has a direct role in Skp2-mediated survival of
lung cancer cells is not yet clear.

Of note, STAT3 can inhibit apoptosis in normal lung cells as well.
For example, the overexpression of STAT3-C in pulmonary epithe-
lium protects the cells from inflammation and lung injury caused by
hyperoxia.62 STAT3 also protects human lung fibroblasts and
human bronchial epithelia cells from apoptosis upon exposure to cig-
arette smoke, leading to the survival of cells with DNA damage.63

Promoting Cell Proliferation and Angiogenesis
by STAT3

Constitutive activation of STAT3 correlates with enhanced cell
proliferation, metastasis, and angiogenesis in multiple cancers
including NSCLC.7,14 This effect of STAT3 is mediated through
its ability to induce the expression of several growth-promoting
genes such as c-Myc, Pim-1, and cyclin D1, or gene promoting
angiogenesis, such as VEGF and bFGF.14,64 The c-Myc protein is
the major regulator of the transition from G1 to S and the inducer
of the cdc25A gene, whose product regulates the activity of cyclin-
dependent kinases.65 Binding of STAT3 to the c-Myc promoter is
essential for the induction of c-Myc transcription upon IL-6 treat-
ment and Src activation.38 Pim-1, which is also a transcriptional
target of STAT3, cooperates with c-Myc to promote STAT3-
depencent cell cycle progression.66 Moreover, in fibroblast cell
lines, a constitutively active form of STAT3 up-regulates cyclin
D1 expression at the transcriptional level.39 while the ablation of
STAT3 in head and neck carcinoma cell lines represses cyclin D1
promoter activity, and also cyclin D1 mRNA levels.67

STAT3 and the Evasion of Anti-Tumor Immunity

One of the key hallmarks of cancer is the ability to escape
immune surveillance. STAT3 is a negative regulator of both
inflammatory and T cell responses under normal physiological

conditions.68-71 In tumor cells, STAT3 reduces the production
of pro-inflammatory cytokines and chemokines, which in turn
results in lower levels of pro-inflammatory signals (e.g., IL-12)
within immune cells.70,72,73

STAT3 promotes the expression in cancer cells of immune-
suppressive genes whose products (e.g., IL-10) not only inhibit
dendritic cell maturation but also induce STAT3 signaling in
dendritic cells and other immune cells, including both T cells
and cells mediating innate immune responses.74 In this way,
STAT3 keeps a stable feed-forward loop going between tumor
cells and tumor-interacting immune cells. Indeed, many tumor
cells that contain constitutively activated STAT3 lose their
STAT3 phosphorylation once they are in culture without neigh-
boring immune cells. This probably explains why silencing of
STAT3 often inhibits tumor growth more effectively in an in
vivo environment than in in vitro cultures. STAT3 activation
also prevents dendritic cells from activating naive T cells.73 In
addition, activated STAT3 leads to the local accumulation of
immunosuppressive cells such as regulatory T cells, Th17 cells,
and myeloid-derived immunosuppressive cells.74

STAT3 signaling contributes significantly to the evasion of
antitumor immunity in lung cancer. Increased numbers of mac-
rophages, lymphocytes, and neutrophils surround lung tumors in
mice carrying an epithelial cell–specific STAT3 deletion.75 In
addition, the levels of antitumor inflammatory mediators such as
TNF-a and IFN-g are enhanced in the lung tumors of the
STAT3-deleted mice. This might be due to the higher expression
levels of chemokines (e.g., RANTES and CXCL10) in tumor
cells in the absence of STAT3. The lack of STAT3 also can
reduce the expression of MHC class I antigens in lung cancer
cells, leading to elevated cytotoxic activity of natural killers cells,
which in turn stimulates an adaptive immune response.75 Hyp-
oxia is also known to reduce tumor susceptibility to cytotoxic T
lymphocytes. Targeting STAT3 leads to the downregulation of
hypoxia-inducible factor 1-a (HIF1-a), and a significant restora-
tion of NSCLC cell susceptibility to cytotoxic T lymphocyte-
mediated killing under hypoxic conditions.76

STAT3-MicroRNA regulatory circuits in lung cancer
ManymiRNAs are transcriptionally regulated by STAT3, either

directly or indirectly, in tumors as well as normal cells. For example,
STAT3 interacts directly with the promoters of miR-21 and miR-
199a-2 in myeloma cells and cardiomyocytes, respectively.77 The
STAT3/miR-21/PTEN/NF-kB circuit is also part of a positive
feedback loop in breast cancer.78 A case in which STAT3 plays an
indirect role is its binding to the promoter of the Lin-28 gene,
which encodes a miRNAprocessing protein. The STAT3-mediated
up-regulation of Lin-28 subsequently leads to a reduction of the let-
7 family of miRNAs, the upregulation of the high-mobility group
A protein 2 (HMGA2), which is a let-7 target, and the epithelial-
mesenchymal transition in breast cancer cells.79

Conversely, several miRNAs are known to interact with the 30-
UTR of STAT3 mRNA and thereby negatively regulate STAT3
at the protein level. Lung branching morphogenesis is one of the
cases in which the regulatory circuit between STAT3 and miRNAs
plays a pivotal role during development. Here, miR-17, miR-20a,
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and miR-106b, which are important in modulating the levels and
distribution of E-Cadherin, do so via their down-regulation of
STAT3 and MAPK14 protein concentrations.80

In NSCLC cell lines, miR-21 inhibition can restrain cell inva-
sion.81 In line with this observation, STAT3-induced miR-21 is
important for an epigenetic switch between the non-transformed
and transformed states in many cells, including lung cancer cell
lines.78 In lung adenocarcinoma cells from patients who have
never smoked, activating mutations in the EGFR kinase domain
seem to enhance induction of miR-21 expression and anti-
apoptotic activity, although whether this EGFR/miR-21 circuit
operates via STAT3 has not yet been investigated.82 STAT3 also
mediates transcription of miR-92a in lung cancer cells, where
miR-92a directly targets RECK, a matrix metalloproteinase inhibi-
tor whose expression is strongly associated with invasiveness.83

STAT3 and Other Transcription Factors

During tumorigenesis, the transcriptional regulation of certain
genes (e.g., the anti-apoptotic gene Bcl-2, the signal inhibitory
gene SOCS3, and the chemokine gene CXCL2) requires coopera-
tion between STAT3 and NF-kB.84 Sometimes this means that
the 2 transcription factors bind to neighboring sites within a regu-
latory region of the shared target gene.85 Other times, for example
in the case of the inducible nitric oxide synthase (iNOS) gene,
STAT3 and NF-kB physically interact to modulate each other’s
transcriptional activity.86 Interestingly, transcription of iNOS is
also dependent on the direct interaction between STAT3 and
nuclear EGFR, which acts as a transcription factor in a variety of
highly proliferative cells.87 Finally, either STAT3 or NF-kB tran-
scription may up-regulate a protein (e.g., IL-6), which in turn
induces the activity of the other transcription factor.88

The tumor suppressor p53 transcriptionally activates genes
that are involved in G1 cell growth arrest and apoptosis, particu-
larly upon DNA damage.89,90 STAT3 has been shown to bind to
the promoter of p53, inhibiting its expression and thereby down-
regulating p53-reponsive genes in fibroblasts.91 In osteosarcoma
cells, the STAT3 effect seems to be indirect because here STAT3
binds to the p53-RELA complex, allowing it to interact with the
miR-21 promoter.92 On the other hand, STAT3 can be one of
the downstream effectors of p53. This is the case in prostate and
breast cancer cell lines where p53 over-expression leads to a sig-
nificant reduction in the tyrosine phosphorylation and DNA
binding activity of STAT3-C.93 Whether p53 has a direct effect
on STAT3 is not yet clear.

STAT3 in Lung Cancer Stem Cells

Multiple cancers, including lung cancer, have a minor popula-
tion of cancer stem cells (CSCs) that have a large capacity for
repopulation.94,95 Similarly to normal stem cells, CSCs can self-
renew and differentiate into heterogeneous cell populations. CSCs
are derived from both normal stem cells and differentiated progen-
itor cells, and exhibit several peculiar properties such as high

telomerase activity, quiescence, and a high degree of invasiveness.
CSCs are thought to be the major reason for the intrinsic resis-
tance of tumors to therapy (both chemotherapy and radiotherapy)
and for tumor relapse after therapy-induced remission.96,97

Both NSCLC and SCLC cell lines contain CSCs.98 Lung
CSCs express the CD133, CD166, and CD44 cell surface
markers, and show elevated aldehyde dehydrogenase-1 (ALDH)
activity. It should be noted that CSCs cannot be isolated by
means of a single marker, and a combination of markers is often
used to identify these cells in lung carcinomas.99 The CD133- or
ALDH-positive cells isolated from NSCLC patient samples con-
tain higher levels of the activated form of STAT3.100 Treatment
of these CD133-positive cells with a specific JAK-STAT inhibi-
tor leads to a downregulation of their self-renewal capability as
well as a lowering of their resistance to multiple cancer
drugs.100,101 The mechanism underlying STAT3 function in
lung CSCs remains to be investigated.

Noncanonical Functions of STAT3 and Epigenetic
Regulation

In the canonical JAK/STAT pathway, latent STAT resides in
the cytoplasm. However, many STAT proteins, including
STAT3, are found to shuttle in and out of the nucleus indepen-
dently of their phosphorylation status.21,102,103 In Drosophila,
where there is only one member of the STAT family, it turns out
that the unphosphorylated Drosophila STAT (U-STAT92E)
binds to heterochromatin protein 1 (HP1) to promote the het-
erochromatin stability and protect Drosophila cells from DNA
damage.104-106 Similarly, human U-STAT5A interacts with
HP1a to stabilize heterochromatin.107 Moreover, U-STAT5A
and HP1a downregulate many cancer genes in common in a
colon cancer cell line and act as tumor suppressors in a mouse
xenograft model.107 It will be interesting to see whether STAT3
plays a similar role in regulating heterochromatin and genome
integrity.

Regardless of heterochromatin regulation, there is evidence
that STAT3 can modulate the epigenetic status of cancer
cells. This effect has been attributed to the transcriptional
regulation of STAT3 target genes that encode modifiers of
chromatin. Indeed, it has been shown that in pluripotent
stem cells, DNA methyl transferase 1 (DNMT1) is one of
the transcriptional targets of STAT3.108 In addition, STAT3
also interacts with epigenetic regulatory factors, bringing
them to transcriptional regulatory sites. For example, STAT3
causes gene silencing by recruiting DNMT1 to the promoter
of the SHP-1 tyrosine phosphatase in malignant T lympho-
cytes.109 In lung carcinoma, STAT3 brings the histone deace-
tylase HDAC5 to the PTPN13 promoter.110 STAT3 can also
play a role in epigenetic de-repression. For example, STAT3
targets the p300 histone acetyl transferase to the promoter of
Skp2 in cervical cancer cells.60

The acetylation status of STAT3 seems to have a large impact
on the epigenetic silencing activity of the protein. Mutation of
Lys685 of STAT3 results in elevated expression of several tumor
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suppressor genes such as SHP-1 and p53, whose transcription is
normally inhibited by STAT3.91,109 One possible explanation is
that the lack of acetylation of the Lys685 residue disrupts the
interaction between STAT3 and methyl transferases and thereby
results in fewer methyl groups at the transcription sites. Indeed,
targeting of STAT3 acetylation with small-molecule drugs can
reverse the aberrant methylation of CpG islands at several
tumor-suppressor gene promoters in cancer cell lines.32

STAT3 is also found in the mitochondria and to drive onco-
genic transformation via a sustained alteration in mitochondrial
oxidative phosphorylation that is typically observed in cancer
cells.111 It has been shown that mitochondrial STAT3 associates
with components of the electron transport chain (ETC) in mito-
chondria and controls ETC activity, and that the function of
mitochondrial STAT3 depends on phosphorylation of Ser727,
but not Tyr705.112 Whether STAT3 plays a direct role in mito-
chondrial oxidative phosphorylation, however, is debated.113 It
would be interesting to learn if mitochondrial STAT3 plays any
role in lung carcinogenesis.

In the nucleus, it has been shown that U-STAT3 can bind to
DNA and drive the expression of several genes whose transcrip-
tional activity is not normally regulated by the phosphorylated
form of STAT3 protein.85 Thus, U-STAT3 and phospho-
STAT3 seem to regulate different sets of genes, which lead to
oncogenesis via different routes.85 Since lung cancers of various
types show high expression levels of STAT3, it would be helpful
to know whether U-STAT3 makes a contribution to tumorigene-
sis in the lung.

STAT3 as a Therapeutic Target for Lung
Cancer Treatment

The research on JAK inhibitors for use in cancer therapy began
in 1996.114 After the discovery of a JAK2 mutation in myelopro-
liferative disorders, several JAK inhibitors were developed. For
example, the JAK2 inhibitor AZD1480 blocks STAT3 activation
in several solid tumor cell lines, including several small and non-
small cell lung cancer cell lines, and suppresses the growth cancer
xenografts harboring persistent STAT3 activation.115-117 In
NSCLC cells, IL-6 neutralizing antibody has been shown to
inhibit tumor growth in a mouse xenograft model by suppressing
JAK1/STAT3 signaling.50Moreover, the JAK1/2 inhibitor ruxoli-
tinib significantly slowed down the growth of xenografted
NSCLC cells in nude mice.11,118 Introducing sh/siRNA targeting
STAT3 into cancer cell lines has also been shown to inhibit tumor
growth when implanted in immunodeficient mice.115

By the use of murine animal models and primary cell lines, it
has been demonstrated that targeting STAT3 is an effective way
to inhibit lung cancer growth.119 Finding potent inhibitors of
STAT3 tyr705 phosphorylation is the subject of an increasing
number of studies in the field. In addition to tyr705, phosphory-
lation of STAT3 ser727 makes a significant contribution to the
progression of many types of cancers.120 Thus, it is likely that
inhibitors of STAT3 ser727 phosphorylation will also become
useful in the future. Targeting STAT3 dimerization and DNA-

binding activity has gained much attention as well.121 Different
strategies for designing inhibitors of STAT3 have been reviewed
elsewhere.122,123

Role of STAT3 as a Tumor Suppressor

Despite considerable effort, none of the anti-STAT3 agents,
ranging from small-molecule inhibitors to oligonucleotide-based
drugs have so far passed clinical trials, emphasizing the need for a
better understanding of the properties of STAT3 (phosphory-
lated and unphosphorylated) in order to allow for a more ratio-
nale design of future inhibitors with better therapeutic
properties. It also necessitates a better understanding of the bio-
logical functions of STAT3 in normal animal physiology and in
diseases.

A potential factor that complicates the targeting of STAT3
for cancer therapy is that STAT3 has also been reported to
function as a tumor suppressor, depending on the mutational
context or the stage of the cancer.15-19 For instance, STAT3
plays a critical anti-proliferative and tumor suppressive role
in PTEN-deficient glioblastoma cells.15,124 Conditional dele-
tion of STAT3 in mouse lung epithelial cells increases carcin-
ogen or oncogenic K-Ras-induced tumorigenesis.18 Likewise,
conditional deletion of STAT3 in intestinal epithelial cells of
Apc(Min/C) mice promotes tumorigenesis.17 In addition,
knocking down STAT3 in thyroid cancer cell lines increases
their tumor growth as xenografts.19 Thus, in some situations,
inhibiting STAT3 could promote cancer progression. It has
been shown that U-STAT5A inhibits colon cancer growth by
promoting heterochromatin formation.107 It remains to be
determined whether the reported tumor suppressive function
of STAT3 is due to pSTAT3 or U-STAT3. Perhaps in malig-
nancies such as lung cancer, U-STAT3 plays a role similar to
that of U-STAT5A in colon cancer.

Conclusion

Within a normal cellular context, the JAK-STAT pathway
operates downstream of cytokine signaling and drives cellular
proliferation and survival. Various cancers hijack this pathway in
order to counter apoptosis and continue abnormal proliferation.
In the past few decades, various aspects of the signaling processes
that utilize STAT3 have been worked out in lung cancer models
in vivo and in vitro. However, with regard to STAT3, there are
still questions that are probably worthy of investigation within
the context of lung cancer. Among the JAK-STAT pathway com-
ponents, STAT3 seem to be particularly vulnerable to activating
mutations that promote cell proliferation. As with many other
cancers, various oncogenic pathways in lung cancer converge on
STAT3 and critically depend on activated STAT3. Therefore,
STAT3 seems to be a promising target for chemotherapy in the
fight against lung cancer and in the quest for longer disease-free
survival, if not cure. However, targeting STAT3 may be quite
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complicated, given that STAT3 also has tumor suppressor
functions.
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