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Abstract

Recent advances in our understanding of the intestinal stem cell niche and the role of key signaling 

pathways on cell growth and maintenance have allowed the development of fully differentiated 

epithelial cells in 3D organoids. Stem cell-derived organoids carry significant levels of proteins 

that are natively expressed in the gut and have important roles in drug transport and metabolism. 

They are, therefore, particularly relevant to study the gastrointestinal (GI) absorption of oral 

medications. In addition, organoids have the potential to serve as a robust preclinical model for 

demonstrating the effectiveness of new drugs more rapidly, with more certainty, and at lower costs 

compared with live animal studies. Importantly, because they are derived from individuals with 

different genotypes, environmental risk factors and drug sensitivity profiles, organoids are a highly 

relevant screening system for personalized therapy in both human and veterinary medicine. Lastly, 

and in the context of patient-specific congenital diseases, orthotopic transplantation of engineered 

organoids could repair and/or replace damaged epithelial tissues reported in various GI diseases, 

such as inflammatory bowel disease, cystic fibrosis, and tuft enteropathy. Ongoing translational 

research on organoids derived from dogs with naturally occurring digestive disorders has the 

potential to improve the predictability of preclinical models used for optimizing the therapeutic 

management of severe chronic enteropathies in human patients.

Keywords

dog; enteropathies; organoid; precision medicine; transplantation

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit 
to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
5To whom correspondence should be addressed. jmochel@iastate.edu. 

HHS Public Access
Author manuscript
AAPS J. Author manuscript; available in PMC 2018 July 13.

Published in final edited form as:
AAPS J. ; 20(1): 17. doi:10.1208/s12248-017-0178-1.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


INTRODUCTION

Recent advances in biomedical research have allowed the development of intestinal stem 

cells in three-dimensional (3D) culture systems supporting ex vivo epithelial growth into 

organoids [1, 2]. Stem cell-derived organoids have multiple advantages over traditional 2D 

epithelial systems utilizing cancer-derived cell lines (e.g., Caco-2, T84, and HT29) [3], or 

spontaneously immortalized epithelial cells (e.g., rat intestinal epithelial (RIE) cultures) 

which rarely reproduce the structure and function of the intestinal epithelium. The benefit of 

the 3D organoid culture lies in the method’s ability to better harness innate endogeneous 

cellular programming within higher order cellular tissue organization [4]. The development 

of an ex vivo gut microphysiological system that morphologically, biologically, and 

chemically replicates the endogenous epithelium shows tremendous potential to study the 

biology of epithelial diseases [5, 6], and to evaluate the efficacy and toxicity of orally 

administered therapeutic drugs (Fig. 1). Furthermore, organoids may be collected from hosts 

having different genotypes, environmental risk factors (e.g., diet, microbiota), or drug 

sensitivity profiles, thereby more faithfully reflecting the diversity of the host background 

when cultured ex vivo. Yet, more data are needed to link the information derived from the 

use of organoids to the pathogenesis of the diseases of interest before it can be used as a 

primary tool to optimize individualized therapeutic options within a clinical setting.

The present Commentary provides a review of the current knowledge on the biology of 

intestinal organoids, their potential value in drug discover, precision medicine and 

regenerative (i.e., transplantation medicine), and the remaining gaps that need to be resolved 

before it can be used in a patient-specific manner.

DEFINITIONS, BACKGROUND, AND RATIONALE

Organoids: What they Are and why they Are Relevant to Study the Biology of Intestinal 
Diseases?

Organoids can be propagated from embryonic, induced pluripotent, or leucine-rich repeat 

containing G protein-coupled receptor 5 (Lgr5)-positive stem cells, also known as crypt base 

columnar (CBC) cells, located in the intestinal crypt. Primary cultures developed from CBC 

cells or isolated intestinal crypts are termed “enteroids” or “colonoids,” depending on the 

anatomic region (i.e., small vs. large intestine) they are derived from [7]. Additionally, 3D 

cancer cell cultures can be obtained from individual biopsies of patients and are referred to 

as “tumor organoids.” For simplification purposes, the generic term “organoid” will be used 

consistently throughout the rest of the Commentary.

A rich body of literature has shown that 3D cell cultures are superior to traditional 2D 

monolayer systems in mimicking complex in vivo cellular heterogeneity [8–10]. The 

development of 3D organoid models comprised of multiple cell types provides an attractive 

approach to investigate key intra- and intercellular signaling pathways that contribute to the 

development of chronic enteropathies. Specifically, intestinal organoids can facilitate 

detailed mechanistic studies on the molecular and cellular reprogramming events that occur 

during inflammatory bowel disease (IBD) and colorectal cancer (CRC) pathogenesis. As 
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described by Thoma et al. [11], multiple levels of complexity can be built upon in 3D culture 

systems, ranging from simpler models of cancer cell monocultures in liquid-based 

environments to more advanced models that include co-cultures with endothelial, bacterial 

[12], and immune cells. These more complex systems can also be used to study the effect of 

environmental chemicals (such as endocrine disruptors) on disease development [13]. The 

use of organoids as an enteric infection model for bacteria and viruses crystallizes another 

recent application of 3D models for understanding disease pathophysiology. This was 

illustrated in a study by Rouch et al. [14] where the authors developed a human organoid 

model to elucidate the role of intestinal microfold (M) cells on the proliferation of 

Salmonella typhimurium.

Comparison to Caco-2 Cells for the Study of Oral Drug Transport and Metabolism

The Caco-2 cell model derived from human colon adenocarcinoma primarily measures 

passive transcellular and paracellular permeability of test compounds. Compared to in vivo 
physiology, solute carrier transporters (e.g., organic anion and cation (OAT/OCT) 

transporters) in the Caco-2 system are known to be expressed in relatively low amounts, 

such that the permeability of oral drugs is typically underestimated in this model [15]. This 

has been demonstrated for β-lactam antibiotics (e.g., cephalexin and amoxicillin), which are 

completely absorbed in vivo despite being poorly permeable across the Caco-2 cell 

monolayer [16, 17]. Overall, while the Caco-2 model can be considered relevant for 

predicting the oral availability of highly permeable drugs, it usually performs poorly in 

accurately predicting the gastrointestinal (GI) absorption of low permeability compounds 

[15]. In addition, while human-derived Caco-2 cells are a commonly used in vitro system to 

study P-glycoprotein (P-gp)-mediated drug efflux, there are several limitations to this model, 

including the presence of tighter cellular junctions than observed in normal enterocytes. 

Using 3D organoids, Zhao et al. [8] were able to study P-gp-mediated efflux in the presence 

of Rhodamine 123 which they later established as a predictive model for P-gp inhibitor drug 

screening in humans. Finally, although Caco-2 cell-based models are known to express 

hydrolase, esterase, and brush-border enzymes, they typically fail to express appreciable 

amounts of CYP3A4, one of the main cytochromes contributing to the pre-systemic loss of 

many orally administered drugs [13]. Negoro et al. [9] have successfully established an 

organoid model that proved to be relevant in the evaluation of drug-mediated CYP3A4 

induction on victim drug oral bioavailability and could be used as an alternative to the 

Caco-2 system.

Organoids and Organs-on-a-Chip

Organs-on-a-chip (OAC) are a recently emerged microphysiological system that leverages 

computer microchip manufacturing technology to create a microfluidic cell culture device 

[18]. OAC aims to emulate organ-specific physiological functions or cellular responses in a 

defined 3D microarchitecture and dynamic biomechanical motions of the target organ. 

Typically, microfluidic OAC contain multiple juxtaposed microchannels compartmentalized 

by a flexible or a rigid porous membrane to reform a tissue-tissue interface. This organ-

specific microenvironment allows inter-cellular interactions, for instance of the human 

intestine, between the epithelium, endothelium, mesenchymal cells, immune components, 

and living gut bacteria [19]. More importantly, physiologically relevant cultures in the OAC 
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enable to reprogram cell morphogenesis, differentiation, and cellular responses to mimic the 

complex in vivo environment. For example, when Caco-2 cells are cultured in the gut-on-a-

chip, cells spontaneously undergo villus morphogenesis with crypt-villus characteristics, 

differentiate into four lineages of human small intestinal cells (i.e., absorptive, goblet, 

enteroendocrine, and Paneth cells), and display key physiological functions such as 

enhanced barrier function, mucus production, and CYP3A4-mediated drug metabolism [20]. 

is notable that conventional 2D static culture of Caco-2 cells never reproduces these 

reprogrammed functions in vitro. Such features can help deciphering the pathophysiology of 

chronic human enteropathies such as IBD, CRC, ileus, or celiac disease.

Despite the great promise of the OAC technology, the transfer of cells from a macroscopic 

environment (e.g., dishes, flasks, and well-plates) to a microfluidic system requires a 

significant revision of cell culture protocols. Precisely, multiple factors distinguish 

microfluidic from macroscopic cell cultures, such as different culture surfaces, reduced 

media volumes, and vastly different rates of, and methods for, medium exchange [21]. 

Additional challenges include the ability to reproduce the architectural complexity of 

biological tissues and organs in vitro in a miniaturized system, as well as methods to connect 

these individual structures for recapitulating tissue/organ interactions. Because the 

development of OAC is labor and time intensive, microfluidic chips are currently mainly 

used as a research tool, while patient-derived organoids can be cultured more directly for 

precision medicine purposes. Ultimately, organoid-derived epithelial cells reflecting 

patients’ specificity integrated into OAC will lay the foundation for future applications in 

personalized therapy.

A PROMISING PRECLINICAL MODEL FOR DRUG DEVELOPMENT

Currently, 9 out of 10 experimental drugs progressing from discovery toward development 

fail in clinical studies [22]. Recent reports have put the final price of bringing a drug to the 

market at approximately $1 billion dollars, with an estimated research time running into 

multiple years [10]. In Waring et al.’s retrospective analysis of drug development [23] 

including 605 candidates, nonclinical (i.e., preclinical) toxicology was the highest cause of 

drug attrition, accounting for 40% of failures in Research and Development (R&D) 

programs. Out of the few candidates that were moved forward to the Development stage, 

35% attrition in phase II studies was caused by failure to demonstrate clinical efficacy. 

These high failure rates highlight the urgent need for alternative screening systems at the 

early stage of the R&D lifecycle. Stem cell-derived mini-guts constitute an excellent model 

to identify new molecular pathways that could lead to novel therapeutic approaches. The 

potential of 3D organoids to better reflect the biology of the in vivo intestinal epithelium 

makes it a physiologically relevant platform for high-throughput screening of drug 

candidates.

Yet, the success of therapeutic approaches based on stem cells requires an improvement of 

disease models to more faithfully recapitulate human phenotypes, including the use of 

animals that have organs comparable in size and physiology to those of humans [24, 25]. 

While rodents represent an important model for dissecting mechanisms of many human 

diseases, there is growing concern about the limitations of these animal models with regards 
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to recapitulation of disease pathogenesis in humans. This was recently exemplified by the 

failures of the anti-IL17/IL13/IL10 candidate drugs in IBD clinical trials. In fact, the need 

for large animal models to improve translational science has been widely emphasized by It 

the National Institute of Health [26, 27]. As of today, porcine organoids are by far the most 

popular large animal model used for biomedical GI research [28–31]. There are however 

several important limitations of the porcine model. These include: (i) the use of induced/

artificial models of inflammation to reproduce part of the pathophysiology of the disease; 

(ii) the absence of non-invasive medical techniques, such as endoscopy, for long-term 

follow-up studies; and (iii) the cost associated with these studies, since pigs are typically 

culled after each experiment.

Of the large animal species used in translational GI research, the dog is especially relevant 

because canine gut physiology, diet, and intestinal microbiota are considered to be highly 

comparable to that of humans [32–39]. Interestingly, studies focusing on the relationship 

between the composition of the gut microbiota and the development of intestinal diseases 

have shown striking similarities between dogs and humans, but diverging results between 

mice and humans [28, 40]. Importantly and similar to humans, dogs spontaneously develop 

severe intestinal diseases such as IBD and CRC [36, 41–44] (Table I). Therefore, dogs can 

fulfill a pivotal role as a clinically relevant animal model in the translation from mouse to 

man. In contrast to pigs and mice, the natural occurrence of chronic enteropathies in dogs 

allows in vivo clinical trials to be conducted, in which the efficacy and safety of drug 

intervention can be monitored longitudinally, similar to clinical studies in humans. Long-

term, the complementary information generated in ex vivo organoids and through canine in 
vivo clinical studies can be used to select the most efficacious and safe therapeutics for 

clinical testing in human patients.

CLINICAL APPLICATIONS: PRECISION AND REGENERATIVE MEDICINE

For Personalized Oncology

Undoubtedly the greatest promise of the organoid model lies in its potential application to 

precision medicine. The ability to grow organoids from patients with intestinal cancer 

enables personalized testing of a wide range of therapeutics (and combination therapies) 

within weeks. CRC is one of the most prevalent and debilitating disorders of the GI tract, 

causing more than half a million deaths annually worldwide [45]. The disease develops 

through at least three major pathways, including (i) chromosomal instability, (ii) mismatch 

repair, or (iii) CpG island methylator phenotype (CIMP) [46, 47]. The absolute number and 

combination of genetic alterations in CRC confounds our ability to determine the 

contribution of each of these potential oncogenes on tumor development. The organoid 

model is perfectly suited to study the effect of genetic and epigenetic alterations on cellular 

differentiation and proliferation. Specifically, Calvin Kuo et al. from the University of 

Stanford have shown the utility of the highly tractable organoid system for modeling the 

biology of CRC [48]. There is tremendous potential for using organoids to develop more 

personalized medicine approaches, i.e., being able to treat each individual patient with drugs 

that are more likely to be efficacious and safe [49, 50]. Using surgically resected tumors 

from 20 previously untreated CRC patients, van de Wetering et al. [51] developed 
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automatized drug sensitivity platform in 3D organoid culture and correlated 

chemotherapeutic drug sensitivity with genomic profiles to identify molecular signatures 

associated with drug responses. From their analyses, a single colonoid culture was 

particularly sensitive to Wnt secretion (porcupine) inhibitors while carrying a gene mutation 

in the negative Wnt feedback regulator RNF43. These authors further confirmed the activity 

of cetuximab in a subset of KRAS wild-type organoids reflecting observations made in the 

clinic [52] and demonstrated Nutlin-3a effectiveness in TP53 wild-type organoids. Similarly, 

organoids from primary human pancreatic ductal adenocarcinoma have been expanded for 

drug screening in human patients showing poor response to chemotherapy protocols [53].

Various imaging techniques such as 18F-fluorodeoxyglucose (FDG)-PET have been 

previously explored as a predictor of stem cell response, but they usually lack the resolution 

and sensitivity to accurately quantify therapeutic response on a cellular level [54]. Walsh et 
al. [55] showed that optical metabolic imaging (OMI) of organoids derived from primary 

tumors can predict therapeutic response of anticancer drug responses in vivo. Their results 

indicate that OMI is sensitive to therapeutic intervention as early as 24 h after treatment of 

organoid with candidate drugs while resolving cell sub-populations with distinct metabolic 

phenotypes. Although most of the laboratory protocols for primary tumor organoids require 

the use of fresh tissues (which limits their clinical use), the same authors recently showed 

that viable organoids could be grown from bulk tissues slowly frozen in DMSO-

supplemented media [56]. They further demonstrated that the drug response of organoids 

from frozen samples correlated well with that of organoids obtained from fresh biopsies 

such that organoids can be collected, frozen, and used subsequently for drug testing 

purposes.

To Treat Patient-Specific Congenital Defects

Diseases that are associated with whole organ intestinal failure manifest with severely 

reduced function of the intestinal epithelial layer. As such, a growing number of congenital 

diseases of the gut results in generalized loss of nutrient absorption capacity in newborns. In 

addition, extensive bowel resection in IBD or necrotizing enterocolitis can develop into 

functional short bowel syndrome. These conditions often result in severe malnutrition and a 

dependence on intravenous parenteral nutrition. Using a dextran sulfate sodium (DSS)-

induced model of IBD, Yui et al. [57] demonstrated the feasibility of colonic organoid 

transplantation in mice. Transplanted cells adhered to and covered superficially damaged 

tissues in only a few weeks. One month after transplantation of colonic organoids, donor-

derived cells were able to form self-renewing intestinal crypts that appeared to be 

functionally and histologically normal. Similar observations were made in a subsequent 

study by Fordham et al. [58] following transplantation of immature intestinal progenitor 

cells in DSS-treated mice.

Additionally, orthotopic transplantation of engineered organoids has the potential to repair 

or replace damaged epithelial tissues associated with chronic GI disorders, such as IBD, tuft 

cell enteropathy, cobalamin deficiency, and cystic fibrosis (CF). The proof-of-principle use 

of genome editing in organoids was demonstrated in a study by Schwank et al. [59] in two 

CF patients. In this study, CRISPR/Cas9 techniques were used to correct the anomalous CF 
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transmembrane conductance regulator locus by homologous recombination in cultured 

intestinal stem cells. Following genome editing, the corrected allele was expressed and 

demonstrated to be fully functional in clonally expanded organoids. A similar approach was 

used in COMMD1-deficient dogs where gene supplemented hepatic organoids facilitated 

restoration of liver function as an effective strategy to treat copper storage disease. 

COMMD1 deficiency is an autosomal recessive genetic disorder which predisposes dogs to 

accumulate copper in hepatic cells. As a result, these dogs develop copper-induced hepatitis 

which is clinically very similar to Wilson’s disease in humans [60, 61]. Functional assays to 

determine intracellular copper accumulation have been performed using a fluorescence-

based copper sensor [62–65]. This assay showed that COMMD1−/− hepatic organoids had a 

higher intracellular accumulation of copper compared to normal organoids. Yet, after ex vivo 
gene correction in hepatic organoids from dogs with COMMD1 deficiency using lentivirus 

transfection, the normal phenotype was restored and hepatic organoids could be transplanted 

into canine patients. This study therefore serves as a proof-of-concept that gene therapy in 

hepatic organoids of dogs carrying genetic mutations is possible and can, in the future, be 

developed into regenerative medicine applications. Another good example where gene 

editing into canine organoids could be used as a preclinical model for human congenital 

disorders is vitamin B12 deficiency (known as Imerslund-Gräsbeck syndrome), which also 

develops spontaneously in certain dog breeds, such as Border Collies, Giant Schnauzers, and 

Beagles [66].

For Precision and Translational Medicine in Dogs

Similar to humans, many GI disorders in dogs such as IBD, CRC, and congenital absorption 

defects specifically affect the epithelial layer of the intestine. The organoid model provides a 

unique approach for understanding how gene polymorphisms can influence the response to 

therapeutic drugs with potential applications to personalized therapy in veterinary medicine.

In fact, given the many similarities in gene polymorphisms between dogs and humans with 

IBD, there is a significant opportunity for the use of organoids from diseased dogs to 

identify new molecular targets and therapeutic strategies for human patients. A copious 

amount of literature has established that human and canine IBD shares common clinical and 

molecular features [34–39, 67–76]. In agreement with studies in humans, research on IBD in 

affected dogs has led to the hypothesis that genetic factors and enteric bacteria can play a 

pivotal role in the pathogenesis of these disorders, owing to the abnormal intestinal response 

to commensal microflora. More specifically, a recent study showed that several Toll-like 

receptors (2, 4, and 9) are upregulated in intestinal biopsies of dogs with IBD [64]. These 

results are consistent with previous descriptions in humans suffering from IBD. lgarashi et 
al. [72] and Kathrani et al. [36, 73–75] have shown that, similar to humans, single nucleotide 

polymorphisms (SNPs) in NOD2 and TLR5 play an important role in canine IBD. Even 

more recently, Peiravan et al. (manuscript under review) have investigated the genetics of 

IBD in German Shepherd dogs and identified SNPs in several genes (e.g., IL4, IL13, and 

SLC22A5) that are known to be associated with IBD in humans. Finally, the modulation of 

intestinal lamina propria lymphocytes P-gp expression seems to play a similar role in both 

human and dog IBD. In IBD patients scarcely responsive to steroid treatment, P-gp is highly 
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expressed and, in dogs showing a good response to treatment, this protein is in fact modestly 

represented [66].

The clinical relevance of the canine organoid model to dog and human precision medicine 

also applies to colon cancer, for which multiple gene mutations commonly found in humans 

(e.g., tumor suppressors APC and TP53) have been shown to be present in similar 

frequencies in canine CRC biopsies [42–44]. The development of an ex vivo model of 

canine CRC, representing samples of clinical and molecular diversity similar to that seen in 

people, would therefore constitute an essential step to promote translational and comparative 

research on CRC.

FUTURE DIRECTIONS

Although very promising, various challenges must be overcome before the organoid model 

can be routinely used in clinical practice. In particular, intestinal organoids typically lack 

several essential components of the native digestive microenvironment, including cells of the 

adaptive and innate immunity, as well as the enteric nervous system. In addition, the 

organoid system does not recapitulate the gradient of nutrients which is present along the 

cryptvillus axis, or mimic biomechanical forces that stem cells encounter in vivo [10]. There 

is therefore an increasing demand to integrate the organoid system into a microfluidic organ-

on-a-chip device, as described by Takebe et al. [77] in a paper titled “Synergistic 

Engineering: Organoids meet Organs-on-a-Chip.”

Currently, most applications of organoids for precision medicine are related to the screening 

of anticancer therapeutics, with only few descriptions in other indications such as infectious 

diseases. This is partly due to the difficulty of co-culturing bacteria or viruses with epithelial 

cells in the organoid system. Specifically, human noroviruses—one of the most common 

causes of epidemic gastroenteritis over the world—have resisted cultivation efforts until very 

recently, when Mary Estes’s group showed that these viruses replicate in human organoid 

systems [78, 79]. This model has since then proven useful in testing anti-viral drugs by 

measuring viral load in infected organoid monolayers.

There are additional limitations to the use of organoids for regenerative medicine. Organoid 

cultures usually depend on mouse sarcoma-derived Matrigel, which precludes 

transplantation of organoids into humans [18]. Future considerations should therefore 

include alternative growth media compositions and culture protocols to maximize the yield 

of intestinal stem cells used for regenerative purposes [80]. Yet-to-be-performed experiments 

must include transplantation studies in large animal models to assess long-term safety, 

efficacy, and tumorigenicity of organoids for treatment of chronic GI diseases. Additional 

concerns include the method of tissue collection, the optimal route of mucosal delivery 

(presumably via endoscopy), and design of a suitable delivery vehicle to protect and sustain 

cells during transit while allowing for mucosal adhesion [81].

Demonstration of drug efficacy and safety in animals remains the best way to gain sufficient 

experience to initiate ethically designed human trials. Given the many limitations of the 
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mouse model, there is a critical need to develop well-characterized organoid systems in 

more relevant animal disease models.

Using published protocols for mouse, pig, and human organoid culture [82–84], our 

laboratory is currently developing canine organoids in an effort to find cures for humans and 

dogs suffering from similar diseases like IBD and CRC. Our preliminary data, which include 

live cell bright-field imaging, Trypan Blue viability staining, and hematoxylin and eosin 

(H/E, Fig. 2) showed a budding organoid morphology consisting of differentiated columnar 

epithelium, and spheroid formation in a high Wnt conditioned medium, similar to that seen 

in human organoids. Further characterization of the canine organoid system, including 

transmission electron microscopy, immunohistochemistry, RNA in situ hybridization, and 

gene expression analysis is underway. This will be an important step toward the validation of 

canine organoids as a relevant in vitro system for modeling human diseases.

CONCLUDING REMARKS

Organoids are a powerful mechanistic tool for identifying molecular targets that are relevant 

to the pathogenesis of chronic intestinal diseases. They can also be used as a platform for the 

screening of drug candidates that target the epithelial components of diseases such as IBD 

and CRC. However, until it has been confirmed that organoids can express patient-specific 

disease pathways, its main utility is to support potential therapeutic options and drug 

discovery as an early exploratory tool. The hope is that this Commentary will stimulate 

support for the research needed to enable organoids to serve as a tool guiding medical 

decisions within the clinical setting.

In addition, the possibility to grow organoids representative of the main targets for GI drug-

related toxicity (e.g., gut, liver) opens up new avenues for complementary animal-based 

toxicology studies. Importantly, because organoids are derived from individuals with 

different genotypes, environmental risk factors, and drug sensitivity profiles, they are a 

highly relevant model system for targeted and personalized therapy. Combination of 

organoids with microfluidic chips for the integration of patient-derived cells could lay the 

foundation for the future of precision medicine. Ultimately, orthotopic transplantation of 

organoids has the potential to repair or replace damaged epithelial tissues associated with a 

wide range of intestinal disorders, including IBD, CF, and tuft cell enteropathy.

Yet, the success of therapeutic approaches based on organoids requires a substantial 

improvement of the animal disease models they are derived from. Specifically, there are 

growing concerns about the ability of murine models to faithfully recapitulate human 

phenotypes. This is consistent with several NIH initiatives (e.g., PAR-16-094 and 

PAR-16-322) aiming at improving existing animal models to support stem cell research and 

the development of new therapeutic discoveries for digestive diseases. The dog is a 

particularly relevant species since it shares similar environmental, genomic, anatomical, and 

intestinal physiologic features with humans. Our preliminary data show that canine 

organoids can be successfully grown from intestinal crypts, and maintained in culture long-

term. This is a significant step toward the development of a completely new animal model 

system for GI research, with the added benefit that dogs, similar to humans, develop 
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naturally occurring enteropathies. By integrating this complement of knowledge, organoids 

can one day serve as a tool to inform clinicians regarding preferred patient-specific 

therapeutic options both in veterinary and human medicine.
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Fig. 1. 
Organoids: a promising in vitro system for drug discovery, precision, and regenerative 

medicine in human and veterinary medicine. (A) Organoids can be used as a preclinical 

model to evaluate the efficacy and safety of candidate drugs prior to live studies in animals 

and humans. (B) In addition, because they are derived from individuals with different 

genotypes, organoids are a relevant screening system for precision medicine. (C) Finally, 

transplantation of genetically engineered organoids has the potential to repair and/or replace 

damaged epithelial tissues associated with several gastrointestinal diseases
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Fig. 2. 
As the canine organoids grow, spheroids develop into large complex structures with a 

pseudolumen (L) and crypt-like (C) projections, similar to human organoids. Canine small 

organoid, 5-um-thick, paraffin-embedded section stained with H/E at ×400
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Table I

Comparative Features of IBD and Colorectal Cancer in Different Mammalian Species

Feature Human Dog Rodent

Genetic basis Yes Yes Engineered

Etiology Multifactorial Multifactorial +/− Multifactorial

Intact immune system Yes Yes +/−

Gut microbiota role Yes Yes Yes

Blood in stool Yes Yes Yes

Diarrhea Yes Yes Yes

Definitive diagnosis GI mucosal biopsy GI mucosal biopsy GI mucosal biopsy

Longitudinal studies Yes—endoscopy + histology Yes—endoscopy + histology No

Cancer treatment Surgery + chemotherapy Surgery + chemotherapy N/A

IBD treatment Diet + drugs Diet + drugs Drugs

Disease heterogeneity Yes Yes Variable
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