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Frame Selection in a Connectionist Model Of
High-Level Inferencing

Trent E. Lange
Michael G. Dyer

Computer Science Department
University of California, Los Angeles

ABSTRACT

Frame selection is a fundamental problem in
high-level reasoning. Connectionist models have
been unable to approach this problem because of
their inability to represent multiple dynamic
variable bindings and use them by applying gen-
eral knowledge rules. These deficits have barred
them from performing the high-level inferencing
necessary for planning, reasoning, and natural
language understanding.

This paper describes a localist spreading-activa-
tion model, ROBIN, which solves a significant
subset of these problems. ROBIN incorporates
the normal semantic network structure of previ-
ous localist networks, but has additional structure
to handle variables and dynamic role-binding.
Each concept in the network has a uniquely-iden-
tifying activation value, called its signature. A
dynamic binding is created when a binding node
receives the activation of a concept’s signature.
Signatures propagates across paths of binding
nodes to dynamically instantiate candidate infer-
ence paths, which are selected by the evidential
activation on the network’s semantic structure.
ROBIN is thus able to approach many of the
high-level inferencing and frame sclection tasks
not handled by previous connectionist models.

INTRODUCTION

High-level cognitive tasks, such as planning, reason-
ing, and natural language undersianding, require the
ability to perform inferencing to make explanations
of and/or predictions from known states and actions.
In natural language understanding, for example, a
reader must often make multiple inferences to under-
stand the motives of actors and to connect actions that
are unrelated on the basis of surface semantics alone.
Complicating the understanding process is the fact
that language is often ambiguous on both the lexical
and conceptual level. Consider the phrase:

Pl: “John put the pot inside the dishwasher"

Most people will infer that John transferred a
Cooking-Pot inside of a dishwasher in an attempt to
get it clean. However, suppose P1 is followed by:
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P2:  “because the police were coming.”

Suddenly, the interpretation selected for the word
“pot” in P1 changes to Marijuana, and his Transfer-
Inside action becomes a plan for hiding the Mari-
juana from the police.

The inferences needed to understand these two phrases
(Hiding Pot) illustrate one of the fundamental prob-
lems in high-level inferencing, that of frame selec-
tion. When should a system make inferences from a
given frame instantiation? Which of its related frames
should it instantiate to make these inferences? With-
out being able to cope with these problems, a system
will not be able to handle the following crucial tasks:

Word-Sense Disambiguation: Choosing the meaning
of a word in a given piece of text. In P1, the word
“pot” refers to a Cooking-Pot, but when P2 is
presented, the evidence is that the interpretation
should change to Marijuana.

Inferencing: Making inferences to understand the re-
sults of actions and the motives of actors. Noth-
ing in Hiding Pot explicitly states that the po-
lice might see the pot, or even that the police will
be in proximity to it and John. Nor is it explic-
itly stated what the police will do if they see he
possesses Marijuana. All must be inferred from
seemingly innocuous phrases P1 and P2.

Concept Refinement: Inferring a specific frame from
a more general one. In P1, the fact that the pot
was inside of a dishwasher told us much more than
the simple knowledge that it was inside of a con-
tainer. In Hiding Pot, however, the salient
point is that it is inside of an opaque object,
which allows us to infer that the police will not
be able to see it.

Plan/Goal Analysis and Schema Instantiation: Rec-
ognizing the plan an actor is using to fulfill his
goals. In P1, it appears that John put the pot into
the dishwasher as part of the $Dishwasher-
Cleaning script to satisfy his goal of getting it
clean. In Hiding Pot, however, it appears that
it is part of his plan to satisfy his sub-goal of hid-
ing it from the police, which is part of his overall
goal to avoid arrest.
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Frame selection is complicated by the effect of addi-
tional context, which oftcn causes reinterpretation to
competing frames. The contextual evidence in Hid-
ing Pot can conflict even more, and the explanation
change again, if, for example, the next phrase is:

P3:  “They were coming over for dinner.”

As a result of P3, the word “pot” might be reinter-
preted back 10 Cooking-Pot. These examples clearly
point out two sub-problems of frame selection, frame
commitment and reinterpretation. When should a sys-
tem commit (o one interpretation over another? And
if it does commit to one interpretation, how does new
context cause that interpretation to change?

PREVIOUS APPROACHES

Symbolic rule-based systems, such as BORIS [Dyer,
1983] and MOPTRANS [Lytinen, 1984], have had
some success at performing the inferencing and frame
sclection necessary for high-level cognitive tasks.
Their processing mechanisms, however, are often ex-
traordinarily complex, being governed by large collec-
tions of brittle and sometimes ad-hoc rules that usu-
ally change with each type of knowledge structure
modelled. Ambiguous input, such as that of Hiding
Pot, has proven especially difficult for rule-based ap-
proaches, often requiring complicated and expensive
backtracking rules when reinterpretation is required.

Distributed Spreading-Activation Networks

Distributed connectionist models, such as those of
[McClelland & Kawamoto, 1986] and [Touretzky &
Hinton, 1988], have lately been receiving much inter-
cst, mainly because of the learning algorithms avail-
able for their massively parallel networks of simple
processing elements. Despite this attention, no dis-
tributed network model has yet exhibited the ability
to handle inferencing having complexity even near
that of Hiding Pot. The primary reason for this
current lack of success is their inability to represent
dynamic role-bindings and to propagalte these binding
constraints during inferencing, Distributed networks,
furthermore, are sequential at the knowledge level and
lack the representation of structure needed to handle
complex conceptual relationships [Feldman, 1989].

Localist Spreading-Activation Networks

Localist spreading-activation models, such as those of
[Cottrell & Small, 1983], [Wallz & Pollack, 1985],
and [Shastri, 1988], also use massively parallel net-
works of simple processing units. Localist networks
represent knowledge by simple nodes and their inter-
connections, with each node standing for a distinct
concept. Activation on a conceptual node represents
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the amount of evidence available for that concept in
the current context.

Unlike distributed nctworks, localist nctworks are
parallel at the knowledge level and can represent struc-
tural relationships between concepts. Because of this,
multiple inference paths are pursued simultaneously;
a necessity to account for the understanding speed ex-
hibited by people. Disambiguation is achieved auto-
matically as related concepts under consideration pro-
vide evidence for and feedback to one another.

The main problem with previous localist models is
that the evidential activation on their conceptual
nodes gives no clue as to where that evidence came
from. Because of this, previous localist models have
had no more success than distributed models at han-
dling dynamic non-local bindings — and thus remain
unsuited to tasks requiring high-level inferencing.

Marker Passing Networks

Marker-passing models, such as those of [Granger et
al., 1986] and [Hendler, 1988), operate by spreading
symbolic markers across semantic networks. Role-
bindings are trivially represented using the symbolic
pointers stored in their markers, whose propagation is
used to generate plausible inference paths. Unfortu-
nately, the logic and lisp-based symbolic mechanisms
of existing marker-passing systems are far more com-
plex than the simple processing units of spreading-ac-
tivation nctworks. More importantly, marker-passing
systems lack the natural constraint satisfaction abili-
ties that allow localist networks to implicitly weigh
contextual evidence in choosing a most highly-acti-
vated interpretation. They must therefore use a sym-
bolic mechanism separate from the marker-passing
process to apply a theorem prover and/or a heuristic
path evaluator for path selection.

ROBIN

ROBIN (ROle Binding and Inferencing Network), is a
localist spreading-activation model that has all of the
advantages of previous localist approaches but, in ad-
dition, handles the problems of dynamic role-binding,
inferencing, and frame selection. The localist net-
works in which ROBIN encodes its semantic networks
consist entirely of connectionist units [Feldman &
Ballard, 1982] that perform simple computations on
their inputs: summation, summation with threshold-
ing and decay, or maximization. Connections between
units are weighted, and either excitatory or inhibitory.

ROBIN uses structured connections of nodes to encode
frames [Minsky, 1975]. Each frame has one or more
roles, with each role having expectations and logical
constraints on its fillers. Every frame can be related



LANGE AND DYER

to on¢ or more other frames, with pathways between
corresponding roles for inferencing. Activation
spreads from frame to related frame when the con-
straints on their role fillers are met, thus automati-
cally instantiating other frames and performing the
processes of inferencing and frame selection,

As in previous localist models, ROBIN's networks
have a node for every known conceptual frame in the
network. Relations between concepts are represented
by weighted connections between nodes. Activation
on a conceptual node is evidenuial, corresponding to
the amount of evidence available for the concept and
the likelihood that it is sclected in the current context.

Simply representing the amount of evidence available
for a concept, however, is not sufficicnt for complex
inferencing tasks. Role-binding requires that some
means exist for identifying a concept that is being
dynamically bound to a role in distant areas of the
network. A network may have never heard about
John having the goal of Avoid-Detection of his
Marijuana, but it must be able to quickly infer just
such a possibility to understand Hiding Pot.

Dynamic Role-Bindings With Signature
Activation

To handle the problem of dynamic role-binding, every
conceptual node in the network has associated with it
a node outputling a constant, uniquely-idenufying ac-
tivation, called its signature [Lange & Dyer, 1989].
A dynamic binding is created when a role's binding
node has an activation matching the activation of the
bound concept's signature.

e
B @D
, 1

Transfer-Inside

Figure 1. Several concepts and their uniquely-
identifying signature nodes are shown, along
with the Actor role of the Transfer-Inside
frame. The dotted arrow from the binding node
(black circle) to the signature node of John
represents the virtual binding indicated by the
shared signature activation, and does not exist
as an actual connection.

In Figure 1, the virtual binding of the Actor role node
of action Transfer-Inside to John is represented by
the fact that its binding node, the solid black circle,
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has the same activation (3.1) as John's signature
node. The complete Transfer-Inside frame is repre-
sented by the group of nodes that include the concep-
wal node Transfer-Inside, a conceptual node for cach
of its roles (only the Actor role shown), and the bind-
ing nodes for cach of its roles.

Propagation of Signatures For Inferencing

The most important feature of signature aclivation is
that it is spread across paths of binding nodes to gen-
erate candidate inferences. Figures 2a thru 2c illus-
trate how the network's structure automatically ac-
complishes this.

Evidential activation is spread through the paths be-
tween conceptual nodes on the bottom plane (i.e.
Transfer-Inside and its Object role), while signature
activation for dynamic role-bindings is spread across
the parallel paths of corresponding binding nodes on
the top plane. Nodes and connections for the Actor,
Planner, and Location roles are not shown. Initally
there is no activation on any of the conceptual or
binding nodes in the nctwork.

When input for P1 is presented, the lexical concept
nodes for each of the words in the phrase are clamped
to a high level of evidential activation, directly pro-
viding activation for concepts John, Transter-
Inside, Cooking-Pot, Marijuana, and Dishwasher.

To represent the role-bindings given by phrase P1,
the binding nodes of each of Transfer-Inside’s roles
are clamped to the signatures of the concepts bound to
them!. For example, the binding nodes of Transfer-
Inside’s Object are clamped to the activations (6.8
and 9.2) of the signatures for objects Marijuana and
Cooking-Pot, representing the candidate bindings
from the word “pot” (Figure 23}2.

The activation of the network’s conceptual nodes is
equal to the weighted sum of their inputs plus their
previous activation times a decay rate, similar to the
activation function of previous localist networks.
The activation of the binding nodes, however, is equal

1RoBIN does not currently address the problem of
deciding upon the original syntactic bindings, i.e. that
“pot"” is bound to the Object role of the phrase.
Rather, ROBIN’s networks are given these initial
bindings and use them for high-level inferencing.

2An alternative input, such as “John put the cake
inside the oven”, would be done simply by clamping
the signatures of its bindings instead. A completely
different set of inferences would then ensue. This is
unlike previous localist models, where all instantia-
tions must be hard-wired into the network.
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Figure 2c. Activation after quiescence has been reached in processing for Hiding Pot.

Figure 2. Simplified ROBIN network segment at three different cycles during processing of Hiding Pot.
Each figure shows the parallel paths over which evidential activation (bottom plane) and signature activation
(top plane) are spread for inferencing. Signature nodes (outlined rectangles) and binding nodes (solid black
circles) are in the top planes. Thickness of conceptual node boundaries (ovals) represents their levels of evi-
dential activation. (Node names do not affect the spread of activation in any way. They are simply uscd to
initially set up the network's structure and to aid in analysis.)

to the maximum of their unit weighted inputs, allow-
ing signatures to be propagated without altcration.

As activation starts to spread after the initial clamped
activation values in Figure 2a, Inside-Of receives ev-
idential activation from Transfer-Inside, represent-
ing the strong evidence that something is now inside
of something else. Concurrently, the signature acti-
vations on the binding nodes of Transfer-Inside's
Object propagate to the corresponding binding nodes
of Inside-Of's Object (Figure 2b), since each of the
binding nodes calculates its activation as the maxi-
mum of its inputs. The network has thus made the
crucial inference of exactly which thing is inside of
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the other. Similarly, as time goes on, Inside-Of-
Dishwasher and Inside-Of-Opaque receive eviden-
tial activation, with inferencing continuing by the
propagation of signature activation to their corre-
sponding binding nodes (Figure 2c).

Note that the actual activation values of signatures do
not affect the network’s processing. The signaturcs
of Marijuana and Cooking-Pot were arbitrarily cho-
sen to be 6.8 and 9.2 when the network was created,
but could just as easily have been any other values.
It is only necessary that each signature be different
from all others — and so uniquely identify the con-
cept bound to arole.
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Frame Binding Constraints Used In

Inside-Of-Stove (a Cooking-Pot is inside of a Stove) $Stove-Cooking ]
Inside-Of-Dishwasher (a Utensil is inside of a Dishwasher) $Dishwasher-Cleaning
Inside-Of-Opaque (a Phys-Obj is inside of an Opaque-Object) Avoid-Detection

Figure 3. Three of the competing refinements of state Inside-Of.

FRAME SELECTION

Several paths of candidate inference chains are instan-
tiated by the parallel propagation of signature and evi-
denual activation, The path chosen as the network's
interpretation at any given time is simply the one
with the greatest evidential activation.

Consider how this process handles the problem of
frame selection. Every frame in ROBIN's semantic
knowledge base is related, through its roles, (o one or
more other frames. Some of those related frames
compete, while others do not. The state Inside-Of,
for example, has multiple concept refinements, three
of which are described in Figure 3. No more than one
of those refinements can be selected as the active re-
finement of a given instantiation of Inside-Of.

The mechanism described previously is sufficient for
most examples of one or two phrases. Because of po-
tential crosstalk from logically unrelated inferences?,
however, the network's structure is actually more
complicated. Because of this, frame sclection is a
four part problem, controlled entirely by ROBIN'S
structure of simple spreading-activation nodes:

1) Choosing candidate frames: When the role bind-
ings of a frame match the logical binding con-
straints on the roles of a related frame, then that
related frame becomes a candidate frame for instan-
uation. Related frames whose binding constraints
are violated are rejected.

2) Propagating bindings to candidate frames: Candi-
date frames receive signature activation
(representing role-bindings) from their instantiat-
ing frame. New candidate inferences can then
propagate from each of the candidate frames to ex-
plore their respective inference paths.

3

—

Propagating evidential activation to candidate
frames: Candidate frames receive weighted eviden-
tial activation from their instantiating frame.
Candidates whose binding constraints are only par-
tially matched receive proportionately less eviden-
tial activation than if their constraints were
matched perfectly.

1A problem not handled well by previous localist or
marker-passing models.
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4) Selection between candidate instantiation frames:
Al any given time, the candidatc framc with the
most evidential activation represents the preferred
interpretation. Commitments may change if new
context gives more evidence to a competing frame.

Rt emnens OF
-~
state Inside-Of Dhahwasher II:‘L::?_G Of - Opaque
o etk
Lecat ten )

Figure 4. Overview of bindings instantiated
with signature activation in Figure 2b.

As an example of how the frame sclection process
proceeds in ROBIN, consider Figure 4, which shows
Inside-Of and three of its refinements. Evidential ac-
tivation and signature role-bindings have reached In-
side-Of (as in Figure 2b), so the candidates for its
concept refinement need to be chosen. Inside-Of-
Stove is rejected since a Dishwasher does not
match the Stove constraint on its Location slot.
Inside-Of-Dishwasher, however, is chosen as a can-
didate refinement frame, since its constraints are
matched. Inside-Of-Opaque is also chosen as a
candidate, since a Dishwasher is-a Opaque-Object.

Refmemen OF R cfwcr o Rafwomes OF

s Innde O Stove stale [nside-Of Dhshwasher s lmside-Of-Opag
ahnt et S
Lecat len: Lecation: Olebwanbsr

Figure 5. Overview after Inside-Of-Dish-
washer and Inside-Of-Opaque become can-
didate refinements of Inside-Of (Figure 2c).

\
ue

e, ¢
Lng-Pet
saher

Flam
Dinrm

Locatien:

To implement this, the links allowing propagation of
signature and evidential activation from one frame to
another are gated by nodes that implement the frame
selection process. Activation is only allowed to pass
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Figure 6. Overview of a small portion of a ROBIN semantic network showing inferences dynamically made
after (syntactically pre-processed) input for phrases P1 and P2 of Hiding Pot have been presented. Thick-
ness of frame boundaries shows the amount of evidential activation for the frames. Role fillers have been
dynamically instantiated with signature activation. Darkly shaded area indicates the most highly-activated

path of nodes representing the most probable plan/goal analysis of the input.

Dashed area shows the dis-

carded dishwasher-cleaning interpretation. Nodes outside of both areas show a very small portion of the rest

of the network. These nodes received no evidential or si

from a frame to one of its related frames when its
role-bindings match the candidate frame’s binding
constraints. These logical binding constraints are cal-
culated by groups of nodes that compare the frame’s
signature bindings to the candidate's binding con-
straints, and are described in [Lange, 1989].

As soon as Inside-Of-Dishwasher and Inside-Of-
Opaque are chosen as candidate refinement frames,
inhibitory gates (that disabled them from receiving
signature or evidential activation from Inside-Of) are
opened, performing steps 2 and 3 of the frame selec-
tion process. The result can be seen in Figure 5,
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ignature activation from either phrase.

where both have been instantiated. After activation
has settled for Hiding Pot, Inside-Of-Opaque has
the greater evidential activation (indicated by its
thicker oval), and so is selected as the refinement-of
Inside-Of, serving as the plan for hiding his Mari-
juana from the Police.

Selection of Ambiguous Role-Bindings

Note that all ambiguous meanings of a word are
bound to a role with signature activation (Figures 2
thru 5). The network's interpretation of which binding
is selected at any given time is the one whose concept
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B Planting-Pot
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Iteration Number

Figure 7. Evidential activations of the meanings of the word “pot” as activation spreads in Hiding Pot.

has greater evidential activation. Because all candidate
bindings are propagated, with none being discarded
until processing is completed, ROBIN is able to han-
dle meaning reinterpretations without backtracking.

A DETAILED EXAMPLE

Figure 6 shows a segment of the semantic network
embedded in ROBIN after input for both P1 and P2
have been presented and the network has reached sta-
bility, making the inferences needed to understand
Hiding Pot. For example, the inference that the
Marijuana is inside of an opaque object is represented
by the instantiation of Inside-Of-Opaque. The
role-bindings of the frames shown were instantiated
dynamically with signature activation, with the final
interpretation selected being the most highly-activated
evidential path of frames inside the darkly shaded arca.

During the interpretation of Hiding Pot, Cooking-
Pot initially receives more evidential activation
(Figure 7, cycles 40-70) than Marijuana by conncc-
tions from the highly stereotypical usage of the Dish-
washer for the Clean goal. The network's decision
between the two candidate bindings at that point
would be that it was a Cooking-Pot that was
Inside-Of the Dishwasher. However, reinforcement
and feedback from the inference paths generated by the
Police's Transfer-Self eventually causes Marijuana
to win out. The final selection of the Marijuana
bindings over Cooking-Pot is represented simply by
the fact that Marijuana has greater evidential activa-
tion. The resulting most highly-activated evidential
path of frame nodes and propagated virtual bindings
represents the interpretation of John hiding his Mari-
juana from the police (Figure 6).

Note that evidential activation remains on Cooking-
Pot and Planting-Pot, available for possible reinter-
pretation given new input, such as phrase P3.
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CURRENT STATUS AND FUTURE WORK

ROBIN has been fully implemented in the
DESCARTES connectionist simulator! [Lange et al.,
1989]. ROBIN's inferencing, plan/goal analysis,
schema instantiation, disambiguation, and reinterpre-
tation abiliues have been successfully tested on Hid-
ing Pot and a number of other episodes in two do-
mains, using syntactically preprocessed inputs of one
or lwo sentences in length.

There are several directions for future work, including:

Signature dynamics: Currently, the identifying signa-
tures are single arbitrary activations; instead, sig-
natures should be distributed patterns of activation
that are learned adaptively over time.

Embedded role-binding: Using signatures of pre-ex-
isting concepts, ROBIN can create and infer novel
network instances. However, ROBIN currently
cannot dynamically gencrate and propagate new
signatures for one these instances. This ability is
crucial for recursive structures, such as in: “John
told Bill that Fred told Mary that...” Here each
Object of the telling is itself a novel frame in-
stance not having a pre-existing signature.

Network structure acquisition: Signatures allow
ROBIN to create novel network instances over its
pre-existing structure. The activation of these in-
stances is transient. Over ume, repeated instantia-
tions should cause modification of weights and re-
cruitment of underutilized units to alter network
structure and create long-term memories.

I DESCARTES is a development environment that al-
lows the flexible simulation of large-scale heteroge-
neous connectionist networks.
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CONCLUSIONS

Inferencing and frame selection are fundamental prob-
lems in high-level reasoning. Unfortunately, previ-
ous conncctionist models have been unable to ap-
proach these problems because of their inability to
handle dynamic variable bindings and use them by
applying general knowledge rules.

Although not completely solving the problems of
role-binding and inferencing, we have presented a lo-
calist spreading-activation model that solves a signifi-
cant subset of them. Using structure that holds
signature activation, ROBIN is able to dynamically
create novel frame instances by binding a role with
any previously known concept in the network.

Since each signature is simply an activation value
that uniquely identifies the concept bound to a role, it
can be propagated across paths of binding nodes that
preserve its activation, thus performing inferencing.
This allows the encoding and “firing” of any general
knowledge rule that states that the filler of one
frame’s roles can be inferred directly from the fillers
of another. ROBIN's extra structure to handle dynam-
ic variable-binding and rule-firing actually allows its
networks to be smaller than other purely connection-
ist (non-marker passing) models, where all possible
instantiations must be hard-wired into the network.

On the other hand, ROBIN’s networks are not yet able
Lo dynamically create new signatures, and thus cannot
bind newly created recursive structures. This some-
what limits the model’s inferencing capabilities in
comparison to symbolic rule-based systems.

For the large portion of the inferencing process that it
is able to handle, however, ROBIN has significant ad-
vantages over symbolic rule-based and marker-passing
systems. The inherent constraint-satisfaction of
ROBIN's normal evidential semantic network structure
allows it to select the most plausible of the candidate
frames and inference paths generated by the propaga-
tion of signature and evidential activation.

ROBIN is thus able to handle many of the high-level
inferencing and frame selection tasks not approached
by previous connectionist models, while at the same
time perform disambiguation and semantic reinterpre-
tation often difficult for symbolic systems.
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