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Abstract: The aim of this work was to quantitatively model cross-sectional relationships between
structural connectome disruptions caused by cerebral infarction and measures of clinical performance.
Imaging biomarkers of 41 ischemic stroke patients (72.0 6 12.0 years, 20 female) were related to their
baseline performance in 18 cognitive, physical and daily life activity assessments. Individual estimates
of structural connectivity disruption in gray matter regions were computed using the Change in
Connectivity (ChaCo) score. ChaCo scores were utilized because they can be calculated using rou-
tinely collected clinical magnetic resonance imagings. Partial Least Squares Regression (PLSR) was
used to predict various acute impairment and activity measures from ChaCo scores and patient dem-
ographics. Statistical methods of cross-validation, bootstrapping and multiple comparisons correction
were implemented to minimize over-fitting and Type I errors. Multiple linear regression models
based on lesion volume and lateralization information were constructed for comparison. All models
based on connectivity disruption had lower Akaike Information Criterion and almost all had better
goodness-of-fit values (R2: 0.26–0.92) than models based on lesion characteristics (R2: 0.06–0.50).
Confidence intervals of PLSR coefficients identified brain regions important in predicting each clinical
assessment. Appropriate mapping of eloquent functions, that is, language and motor, and replication
of results across pathologies provided validation of this method. Models of complex functions pro-
vided new insights into brain-behavior relationships. In addition to the potential applications in prog-
nostication and rehabilitation development, this quantitative approach provides insight into
the structural networks underlying complex functions like activities of daily living and cognition.
Quantitative analysis of big data will be invaluable in understanding complex brain-behavior relation-
ships. Hum Brain Mapp 36:2147–2160, 2015. VC 2015 Wiley Periodicals, Inc.

Additional Supporting Information may be found in the online
version of this article.
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INTRODUCTION

The relationship between human cognition, language,
motor control and behavior and anatomical and physiolog-
ical brain networks largely remains a mystery. Tradition-
ally, clinical-pathological lesion mapping studies have
provided a way for researchers to explore brain regions
subserving specific functions [Broca, 1861; Wernicke, 1874]
and, at times, more complex behaviors [Milner, 1982; Pos-
ner et al., 1988]. Neuroimaging techniques, that is, diffu-
sion and functional magnetic resonance imaging (MRI),
enable an unprecedented investigation of human brain
anatomy and function. Recent works have used these in
vivo techniques in lesion-mapping studies to enhance our
understanding of eloquent cortical areas, such as those
responsible for language and motor functions [Butler
et al., 2014; Hope et al., 2013; Phan et al., 2010], general
intelligence[Barbey et al., 2012; Gl€ascher et al., 2010] and
neglect[Mort et al., 2003]. However, the anatomical sub-
strates underlying performance in more general tasks, like
basic activities of daily living and more complex behaviors
that arise from distributed brain networks, are not as fully
understood. Machine learning techniques applied to neu-
roscientific “big data” sets will be central to understanding
these complex brain-behavior relationships.

One such machine learning technique is the method of
partial least squares regression (PLSR)[Wold, 1982]. PLSR
has been applied in the field of neuroimaging in previous
studies of brain-behavior relationships, mostly in the anal-
ysis of functional MRI [Hay et al., 2002; Itier et al., 2004]
[see Krishnan et al., 2011 for a review]. For example, one
study [Phan et al., 2010] investigated the impact of infarct
size and location on motor and language function at a
voxel-wise level using a logistic version of PLSR. This
work and that of others [Kuceyeski et al., 2011; Menezes
et al., 2007] have reinforced the well-established notion
that the location of tissue damage is a key factor determin-
ing the attendant functional deficit, that is, sign or symp-
tom. Advanced neuroimaging techniques and quantitative
methods, for example, voxel-based morphometry [Ash-
burner and Friston, 2000] and voxel-based lesion-symptom
mapping [Bates et al., 2003], can be used to map voxel-
wise parameters to behavior. However, it is not only a
lesion’s location in gray matter (GM) that is important
since damage can also disrupt white matter (WM) tracts
that connect GM regions. This disruption of the brain’s
structural connections, in turn, affects function [Johansen-
Berg et al., 2010; Puig et al., 2013] and possibly recovery
[Crofts et al., 2011; van Hees et al., 2014]. Therefore, we
hypothesized that models based on measures of the

brain’s structural connectome disruption due to a lesion’s
size and location will result in more accurate predictions
of clinical assessments than a model based on lesion
characteristics.

To test this hypothesis, we used the recently developed
Network Modification (NeMo) Tool [Kuceyeski et al.,
2013] in conjunction with PLSR to link patterns of disrup-
tion in the brain’s structural connectome to measures of
various cognitive, motor, language and daily living activ-
ities in a cohort of patients with ischemic stroke, similar to
[Kuceyeski et al., in press]. The NeMo Tool quantifies the
amount of connectivity disruption that a given cortical or
subcortical region has incurred due to a given WM lesion
using normal subjects’ structural connectivity information.
This tool is attractive because it uses MRI sequences rou-
tinely obtained in the clinical setting after acute stroke and
it does not suffer from the limitations of tractography tech-
niques applied in patient data with tissue abnormalities
[Pagani et al., 2007; Wheeler-Kingshott and Cercignani,
2009]. It also offers an easy way for radiologists to com-
pute complex and physiologically relevant quantitative
MRI-based biomarkers of structural network disruption in
a variety of diseases. In conjunction with reducing the
dimensionality of the data via PLSR, other statistical meth-
ods like cross-validation, bootstrapping, and strict multiple
comparisons correction of confidence intervals for model
parameter across the entire study are implemented to min-
imize the risk of over-fitting and Type I errors often asso-
ciated with models involving a large number of predictor
variables.

SUBJECTS AND METHODS

Data

Ninety-two subjects with acute stroke were admitted to
the inpatient rehabilitation unit (IRU) at New York-
Presbyterian (NYP) Hospital/Weill Cornell Medical Center
between July 2012 and November 2013 and provided con-
sent for participation in this IRB-approved study. Subjects
were included if they had (1) ischemic stroke, (2) MRI
scans acquired at NYP within 14 days of stroke, and (3)
apparent hyperintensities on diffusion-weighted images
(DWI). Forty-one subjects (age: 72.0 6 12.0 years, 20
female) satisfied these inclusion criteria, see Supporting
Information Table I for cohort characteristics. Average
time from stroke onset to imaging was 2.3 6 3.4 days and
average time from stroke onset to clinical assessments
(IRU admission) was 8.1 6 9.9 days. T1 and DWI were col-
lected on 1.5 Tesla (34 subjects) or 3.0 Tesla (7 subjects) GE
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Signa EXCITE scanners (GE Healthcare, Waukesha, WI).
The DWIs (on both 1.5 and 3.0 T) were acquired axially
via an echo-planar imaging sequence, with b 5 1,000 and
0 s/mm2 from 30 5-mm thick slices and 128 3 128 matrix
size, 1 mm in-plane resolution, 240 mm field-of-view, repe-
tition time/echo time/inversion time 5 8,000 or 10,000/
100/0 ms. T1 scans were acquired axially (repetition time/
echo time/inversion time 5 500/10/0 ms for 1.5 T and
1,700/21/725 for 3.0 T) with a 256 3 256 matrix over 30
5.0-mm thick slices with 0.5 mm in-plane resolution and
240 mm field-of-view. One subject did not have a T1 avail-
able; the T2 scan was used instead for postprocessing. The
T2 was an axial sequence (repetition time/echo time/
inversion time 5 4,000/85/0 ms) with a 256 3 256 matrix
over 30 5.0-mm contiguous partitions.

The National Institutes of Health Stroke Scale (NIHSS)
[Brott et al., 1989] was administered acutely on initial pre-
sentation to the hospital, and a battery of cognitive, func-
tional, and motor assessments were performed after
transfer to the IRU. These tests, which assessed general
stroke severity as well as motor, language, cognitive, and
overall neurological ability, included the Upper and Lower
Extremity Motricity Indices (MI) [Collin and Wade, 1990],
Functional Independence Measures (FIM) [Keith et al.,
1987], Montreal Cognitive Assessment (MOCA) [Nasred-
dine et al., 2005], and Symbol Digits Modality Test
(SDMT) [Smith, 1982] (see Table I). As aphasia is an
impairment related to injury in specific regions, we also
included the Mississippi Aphasia Screening Test (MAST)
[Nakase-Thompson et al., 2005] as a partial validation for
our methodology.

The NeMo Tool

The NeMo Tool infers changes to the structural connec-
tivity network that may result from a given WM lesion by
superimposing the patient’s lesion mask on a database of
73 normal control tractograms in a common space (Mon-
treal Neurological Institute, or MNI space). WM alteration
masks in this cohort were created and processed as in our
previous study [Kuceyeski et al., in press]. Specifically,
masks indicating acute stroke injury as identified by appa-
rent DWI hyperintensities were hand drawn; this method
was shown to have a Dice’s inter-rater similarity index of
0.70 6 0.12 (IQR: 0.64–0.83)[Kuceyeski et al., 2014]. The
stroke subjects’ T1 scans were normalized to MNI space
using linear followed by nonlinear normalization in
SPM8[Friston et al., 2006], and these transformations were
then applied to the DWI mask with nearest neighbor inter-
polation. The NeMo Tool then estimated the amount of
connectivity abnormalities each region incurred via the
Change in Connectivity (ChaCo) score, that is, the percent
of streamlines connecting to a given GM region that pass
through an area of infarct. Higher ChaCo scores corre-
spond to a higher percent of estimated connectivity dis-
ruption experienced by a given region.

Partial Least Squares Regression and

Bootstrapping

PLSR [Wold et al., 1984] was used to predict each of the
various clinical assessments from the input variables,
namely, subject age, gender, number of days between
stroke, and clinical assessment and ChaCo scores for 93
brain regions. We used a popular 116-region cortical and
subcortical region atlas [Tzourio-Mazoyer et al., 2002] and
averaged ChaCo values in the left cerebellum, right cere-
bellum, and vermis for a total of 93 cortical and subcortical
regions. PLSR is advantageous in situations where there
exist many more input variables than available data
points, as the data gets reduced to a parsimonious set of
statistically relevant components. PLSR reduces the dimen-
sionality of the input variables by combining them into
new variables (components) that have maximum correla-
tion with the outcome variable, followed by regression on
the new variables. Each newly created component is inde-
pendent of the others, making PLSR useful when input
variables may be colinear. Each input variable’s compo-
nent coefficient can be interpreted as relative weight that
determines the contribution of that input variable to the
given component. It must be noted that the sign of the
component coefficient is not important except for relative
comparison as they are invariant to reflection (sign flip-
ping). The final number of components for the final model
was chosen via jackknife cross-validation to minimize data
over-fitting, and stability of the model was assessed using
bootstrapping [Krishnan et al., 2011]. Confidence intervals
for the regression coefficients were calculated using the
bias corrected and accelerated percentile method [Efron,
1987]. If it did not include zero after correcting for multi-
ple comparisons using the Bonferroni method [Dunn,
1961], it was considered a significant predictor for that
assessment (see Supporting Information for details).

Comparison to Models Based on Lesion Volume

and Volume Plus Lateralization

We compared the PLSR model results to those of two
different models: one based on only volume of the
patient’s infarct and the other based on volume as well as
lateralization of the infarct. To do this, we created multiple
linear regression models for each clinical assessment that
were based on important subject characteristics (age, gen-
der, and number of days between the stroke and assess-
ment) in addition to (1) lesion volume (after log
transformation for better scaling) and (2) log lesion volume
and lateralization (left, right, bilateral). In the latter model,
we added two binomial variables to represent the three
categories of lateralization. As there were only 4 or 6 input
variables for the lesion volume models, we chose to use
standard multiple linear regression in favor of the PLSR
approach. Noncategorical input and output variables were
centered and standardized before performing the
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regressions. R2 values measuring goodness-of-fit and
Akaike Information Criterion (AIC) [Burnham and Ander-
son, 2002] measuring goodness-of-fit while considering
complexity were compared between the two models. The
AIC provides a way to relatively compare models that
have different input variables; smaller values of AIC indi-
cate the preferred model. All models and statistical tests
were performed using relevant programs within
MATLAB.

RESULTS

Among 41 study subjects, mean lesion size, as calculated
after normalization to MNI space, was 22.4 6 41.3 cm3.
Eighteen subjects had lesions affecting mostly right hemi-
spheric connections (>70% of total ChaCo score came
from right regions), 20 had mostly left (>70% of total
ChaCo score came from left regions) and 3 had bilateral
connectivity implications. ChaCo scores varied widely
across the population due to the diverse location of the
infarcts (see Fig. 1A) and were more prominent in the
hemisphere with the lesion. “Glassbrain” displays in
Figure 1B are used to visualize mean ChaCo scores.
Spheres are plotted at the center of the region they repre-
sent and colored based on classification (blue 5 frontal,

magenta 5 parietal, red 5 temporal, cyan 5 subcortical, and
yellow 5 cerebellar). Sphere size is proportional to that
region’s mean ChaCo score (larger 5 more connectivity
disruption). In general, areas with highest ChaCo included
the subcortical areas of the caudate, putamen, globus pal-
lidus, amygdala, thalamus, and insula in addition to the
right pre/post central gyri, left cerebellum and right fron-
tal areas. Parietal and temporal regions were also affected
but to a lesser degree. Mean ChaCo scores, represented as
percents, along with standard deviations are given in Sup-
porting Information Table II.

Figure 2 and Table I summarize the goodness-of-fit (R2)
measures for the linear regression models based on lesion
volume (black circles), lesion volume and lateralization
(green circles), the fixed-effects PLSR models based on
ChaCo scores (cyan triangles) and the bootstrapped ran-
dom effects PLSR models based on ChaCo scores for each
clinical assessment (blue boxplots). The boxplots visualize
the median (red line), interquartile range (blue box), range
of the most extreme points not considered outliers (black
whiskers), and outliers (red points). Fixed-effects PLSR
models had higher R2 values (generally 2–3 times higher)
and smaller AIC, indicating more accurate prediction of
assessments than models based on lesion volume and
lesion volume plus lateralization information. One excep-
tion was in the prediction of motor function, where

Figure 1.

Summary of lesion location and structural connectome disrup-

tion. (Panel A) A voxelwise heat map of the lesions across the

population. (Panel B) Mean ChaCo score for each region over

the population of 41 subjects. Each sphere is located at the cen-

ter of the corresponding GM region and its size is proportional

to that region’s mean ChaCo score (bigger 5 more network dis-

ruption). Colors indicate regional assignment to larger grouping

(blue 5 frontal, magenta 5 parietal, red 5 temporal, cyan 5

subcortical and yellow 5 cerebellar).
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models including lesion volume and lateralization infor-
mation performed similarly to the PLSR models. However,
PLSR models still had lower AIC values due to the fewer
number of predictor variables. Observed versus predicted
values (one point per subject) for each fixed-effects PLSR
model are given in Supporting Information Figure I.

“Glassbrain” displays in Figures 3 and 4 visualize the
PLSR regression coefficients for regional ChaCo scores.
Here, sphere size is proportional to the relative impact of
that region’s ChaCo score on the clinical assessment. Blue
spheres indicate regions whose ChaCo scores significantly
increase the value of the predicted outcome (positive coef-
ficients), while red spheres indicate regions that signifi-
cantly decrease the value of the predicted outcome
(negative coefficients). Black spheres indicate regions of
nonsignificant influence. The PLSR model components for
regional ChaCo are given in Supporting Information
Figures II and III, where red indicates negative and blue
positive component coefficients. Regression coefficients
and component summaries are given in Table I. Note: the
NIHSS was negated before regression to have the same
pattern as the other clinical assessments where higher

numbers indicate better performance and smaller numbers
indicate worse performance.

DISCUSSION

This work has successfully converted neuroimaging
observations of structural connectome changes accompa-
nying stroke into a quantitative biomarker of acute post-
stroke impairment based on routine MRI scans. This
approach demonstrated robustness in that it produced
similar lesion-dysfunction mapping results for the same
functional assessment (the SDMT) across the two disparate
pathologies of stroke (here) and multiple sclerosis
[Kuceyeski et al., in press]. Additionally, confidence in the
veracity of this method’s results was bolstered by the fact
that it was able to localize eloquent functions to the appro-
priate areas. Furthermore, this study provides insight into
brain structural connectome-behavior relationships in
functions that are less easily mapped, that is, like activities
of daily living and cognitive processes that likely depend
on distributed brain networks. The presented method,

Figure 2.

The model fit summary for each clinical assessment NIHSS, LE

MI (lower extremity motricity index), UE MI (upper extremity

motricity index), MAST, Functional Independence Measure

(FIM), SDMT, and MoCA. The R2 for the linear regression

models based on lesion volume are represented by black

circles, the R2 for the linear regression models based on lesion

volume and lateralization are represented by green circles, and

the R2 for the fixed-effects PLSR models based on ChaCo

scores are given by cyan triangles. The distribution of R2 values

for the random-effects bootstrapped PLSR models based on

ChaCo are given by boxplots that visualize the median (red

line), interquartile range (blue box), range of the most extreme

points not considered outliers (black whiskers) and outliers

(red points). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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after thorough validation, has the potential to reduce the
risk of incorrect prognoses that can accompany subjective
radiological assessment. Further modeling of recovery
under various treatments could result in a quantitative
approach for optimization of individualized rehabilitation
plans.

Comparison to Existing Methods for Extracting

Brain-Behavior Relationships

There exist many tools with which to quantify brain-
behavior relationships such as voxel-based morphometry
[Ashburner and Friston, 2000], Tract-Based Spatial Statis-
tics [Smith et al., 2006], MR volumetrics [Fischl and Dale,
2000; Friston et al., 2006; Ad-Dab’bagh et al., 2006;

Woolrich et al., 2009] and lesion-symptom mapping [Bates
et al., 2003]. Brain atlases that divide WM and GM into
anatomically coherent regions have been created [Hua
et al., 2008; Oishi et al., 2009; Wakana et al., 2004] and
used in lesion-symptom mapping [Hope et al., 2013]. One
drawback of lesion-mapping approaches is that it consid-
ers only the damaged area and does not explicitly take
into account the distal affects of lesions in the context of
the structural connectome. To our knowledge, the ChaCo
score is unique in that it links localized WM lesions’ with
the corresponding affected GM regions, without having to
perform tractography in abnormal subjects. There have
been some studies that show relationships between struc-
tural connectivity and recovery by performing diffusion
imaging [Puig et al., 2013] and tractography [Crofts et al.,
2011; Johansen-Berg et al., 2010] in individual patients. It

Figure 3.

Glassbrain displays visualize the coefficients for the regional

ChaCo scores in the PLSR models predicting each outcome

variable NIHSS, LE MI (lower extremity motricity index), UE

MI (upper extremity motricity index), MAST, Functional Inde-

pendence Measure (FIM) and Symbol Digits Modality Test

(SDMT). Each sphere is located at the center of the GM region

it represents. Sphere size is proportional to the relative impact

of that region’s ChaCo score on the outcome measure. Blue

spheres indicate regions whose ChaCo scores significantly

increase the value of the predicted outcome (positive coeffi-

cients), while red spheres indicate regions that significantly

decrease the value of the predicted outcome (negative coeffi-

cients). Black spheres indicate regions of nonsignificant influ-

ence. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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is not known if tractography methods in these populations
can overcome noise from pathology to provide physiologi-
cally meaningful connectivity information, see discussion
in Crofts et al., [2011]. While these studies do provide
important insights into the mechanisms of recovery in
regions not obviously affected by the stroke lesion, it is
not as accurate in areas proximal to the lesion. More
importantly, it is difficult to perform high-quality diffusion
MRI needed for these types of analysis in the acute clinical
setting. We argue that the ChaCo score can be a good sub-
stitute for, and at times more accurate than, performing
diffusion imaging and tractography in patient populations.

Many other studies have used lesion-mapping
approaches to link structure to function [Hope et al., 2013;
Mort et al., 2003]. However, the functions are usually
restricted to specific domains like language, motor and
some areas of cognition [Barbey et al., 2012; Butler et al.,
2014; Gl€ascher et al., 2010; Hope et al., 2013; Phan et al.,
2010], in lieu of more complex and general behaviors like
activities of daily living that may be integral when devel-
oping patient prognoses. Here, we present a machine
learning approach that can assess brain-behavior relation-
ships across many different and quite variable domains,

from specific to general, with strict controls for multiple
comparisons correction. This method also considers the
continuous nature of functional measures as opposed to
dividing function into “impaired” and “not impaired”
groups, as many studies have previously performed
[Counsell et al., 2002; Pedersen et al., 1995].

Comparison to Previously Identified Brain-

Behavior Relationships

Uniformly, NeMo/PLSR models based on ChaCo scores
had higher goodness-of-fit and lower AIC than models
based on lesion volume. As anticipated, adding lateraliza-
tion information to lesion volume models increased the
goodness-of-fit for predictions of motor function to values
similar to the NeMo/PLSR models. However, AIC values
were still smaller in the NeMo/PLSR models due to the
larger number of input variables. Many regions in elo-
quent cortices were identified as significant predictors of
the known corresponding behavior and served to validate
the NeMo/PLSR approach. For example, lesions in right
motor areas predicted worse performance on left MI and

Figure 4.

Glassbrain displays visualize the coefficients for the regional

ChaCo scores in the PLSR models predicting each subtest out-

come in the MOCA. Each sphere is located at the center of the

GM region it represents. Sphere size is proportional to the rela-

tive impact of that region’s ChaCo score on the outcome

measure. Blue spheres indicate regions whose ChaCo scores sig-

nificantly increase the value of the predicted outcome (positive

coefficients), while red spheres indicate regions that significantly

decrease the value of the predicted outcome (negative coeffi-

cients). Black spheres indicate regions of nonsignificant influence.

[Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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vice versa. Moreover, lesions affecting connectivity of Bro-
ca’s areas, left frontal operculum and areas related to
facial, tongue and lip movement were predictors of apha-
sia [Alexander et al., 1990]. However, the current analysis
may be particularly enlightening when determining the
contribution of noneloquent cortices to complex behaviors
requiring more distributed brain input, such as attention,
memory and daily life activities.

Areas with language and motor functions, central to the
NIHSS, were significant predictors of individuals’ scores,
with a slight emphasis on left regions. Higher age was
associated with smaller NIHSS; in fact, there existed a pos-
itive and significant Pearson correlation between negated
NIHSS and age (r 5 0.32, P<0.05). This observation may be
a result of the subject selection criteria, as older subjects
with higher NIHSS may not have met the criteria or sur-
vived to be admitted to the rehabilitation unit. We
observed that lower NIHSS values were not as well pre-
dicted with our model (Supporting Information Figure I).
This is most likely due to the nonlinear nature of the score
for less severe strokes [Fonarow et al., 2012], which may
be better predicted using logistic PLSR[Phan et al., 2010].

In general, coefficients that predicted a subject’s FIM
scores were less localized than other tests. This may be
due to the complex nature of the tasks of the FIM, for
example, locomotion, eating, grooming, dressing, cognitive
comprehension, expression, social interaction and problem
solving that likely require distributed input from various
brain networks. In the prediction of FIM motor, ChaCo in
orbital-frontal areas that deal with executive functions,
emotion and decision-making [Fuster, 2008] had the larg-
est coefficients. The right hippocampus, also important to
FIM motor, was shown to be important in linking an
action to its consequences [Elsner et al., 2002]. Other stud-
ies have identified the hippocampus as an important factor
in navigation [Maguire, 1998] and locomotive control, par-
ticularly in the acute phase [Vanderwolf, 2001]. PLSR
model predictions of FIM have a ceiling effect (Supporting
Information Figure I), indicating possible model insensitiv-
ity for these values. This may be remedied by adding to
the model other important demographic information, for
example, previous independence level.

The SDMT, requiring close visual attention and memory
recall, was predicted by ChaCo in right occipital areas that
deal with visual processing and attention. In a similar
study of multiple sclerosis subjects, we also found using
ChaCo scores that higher burden of T2-FLAIR hyperinte-
sities in WM connecting to occipital and bordering parietal
regions was significantly related to worse SDMT perform-
ance[Kuceyeski et al., in press]. This robust observation
across pathology states, image parameters, and data collec-
tion sites not only strengthens our belief in the physiologi-
cal finding, but also serves to validate the current
methodology.

Significant predictors of the MOCA visual-spatial/exec-
utive subscore included parietal regions that are critical to
spatial awareness, hand-eye coordination, vision, and

somatosensory processing [Bear et al., 2006]. This subtest
involves drawing a clock and copying a cube, both of
which require these functions in addition to executive
planning. Previous work [Corbetta and Shulman, 2002]
identified an inferior frontal-temporal-parietal network in
the right hemisphere that was specialized in the detection
of behaviorally relevant stimuli; this exact network con-
tributed to prediction of attention scores. Regions that
were significant predictors of language and abstraction
subscores were medial, that is, anterior and middle cingu-
late and medial frontal areas. Cingulate structures have
been shown to play a role in emotion formation, learning
and memory [Stanislav et al., 2013], which may explain
their importance here. Bilateral prefrontal regions and the
globus pallidus that were significant in the delayed recall
task have been shown to be activated in recall and recog-
nition tasks [Cabeza et al., 2003]. Language, abstraction
and delayed recall tasks, all having a central verbal com-
ponent, had similar patterns of regression coefficients that
did not involve left hemispheric language-related regions.
Most likely these complex tasks require proper functioning
of multiple distributed networks, that is, attention, vision,
and memory, which makes mapping them more difficult.
A larger and more varied population is needed to fully
understand the relationship between structure and these
complex functions. Total MOCA was predicted with the
lowest goodness-of-fit, possibly due to it being a combina-
tion of all subscores, each in turn being related to a local-
ized, distinct network. Indeed, total MOCA regression
coefficients appear distributed over the entire brain (Figure
4), but only those in the right attention network survived
significance testing.

There were some seemingly unanticipated results show-
ing higher ChaCo was associated with better performance
on certain clinical assessments. However, these instances
most likely arise either from noise in the data and model
(see Limitations), or are not surprising on further inspec-
tion. For example, higher ChaCo in left motor areas was
correlated with better scores on the left MI and vice versa.
This phenomena can be explained thus: if a person had a
lesion in the left motor area (higher ChaCo in left motor
regions) then they most likely did not have a lesion in the
right motor area and thus did not have impairment of left
motor function (better scores on left MI).

Limitations and Future Work

Models built with too few data points are subject to
over-fitting to that particular data set. Here, over-fitting
was minimized by cross-validation and bootstrapping
techniques for model building and performance assess-
ment. Even so, models were limited by the characteristics
of the available population. For example, if there was an
important WM connection for a particular function that
was not affected in any of the stroke subjects, then it was
not detected by the model. Future work will be needed as
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more data becomes available. This analysis also did not
investigate long-term recovery, which may be more impor-
tant clinically. Detailed measures of recovery are currently
being collected in these same subjects 6 and 12 months
poststroke. Future work will focus on long-term prediction
of recovery from MRI-based imaging biomarkers to inform
prognosis and possibly rehabilitation plan development.

There are potential sources of error in the current proc-
essing pipeline that arises from the lesion masking process
and varying image acquisition parameters over the popu-
lation. There are strengths and weaknesses for automated
thresholding methods versus the hand-drawn lesion
approach used here, which was shown to have adequate
Dice’s inter-rater coefficient. With either method, some
manual editing is needed to deal with phenomena like T2
shine through, partial volume effects and other possible
artifacts. Since these are difficult to manage by purely
automated analyses, there is some justification for the
hand-drawn approach that is informed by image intensity
but uses more of the available information. Therefore, we
chose to manually outline the areas of hyperintensity on
the DWI. Pre-existing tissue abnormalities, including peri-
ventricular DWI hyperintensities from T2 shine-through,
were excluded when creating the lesion masks. While
chronic pathologies may influence a subject’s scores of
clinical dysfunction, this relationship most likely depends
on the age of the lesion. Since aging a chronic lesion is
impossible and we wanted to focus on the influence of the
acute lesion only, we decided to leave these variables out
of the model. Future studies could aim to somehow quan-
tify and characterize pre-existing abnormalities in addition
to the acute infarct. In addition, T1- versus T2-based nor-
malization effects were shown to be minimal in a study of
similar patients [Kuceyeski et al., 2014]. Furthermore, a
recent study illustrating bias introduced by the structure
of the vascular tree and the erroneous assumption of inde-
pendence of individual voxels may present an issue for
lesion-mapping studies in stroke [Mah et al., 2014]. How-
ever, those particular issues are somewhat mitigated here
since we investigate at network disruption on a regional
basis, which is likely less influenced by such biased
assumptions.

Some measures, in particular NIHSS, clinical assess-
ments with categorical outcomes or those that tend to
have a ceiling effect like motoricity index, may be better
predicted with a nonlinear approach like logistic PLSR.
Because we wanted to exploit the continuous nature of the
functional assessments, we did not implement such an
approach here. In the future, however, we will investigate
the application of these methods when predicting meas-
ures for which the standard PLSR model is determined
inadequate.

The rise of big data and machine learning approaches in
neuroscience through the cooperation of multiple collection
sites will be central to understanding these complex brain-
behavior relationships. Similar to the 1,000 connectomes
project [Biswal et al., 2010] and the Human Connectome

Project [Van Essen et al., 2012] that collect neuroimaging
and behavioral data in healthy subjects, we advocate the
creation of a “1000 Lesions Project”. This project would
represent a large-scale effort to create big data sets that
contain both neuroimaging and wide-ranging behavioral
data for subjects with brain lesions. Subjects with ischemic
stroke represent a sensible choice—such subjects are not
rare, most likely have compromised regions that can be
easily delineated, and already undergo imaging as a part
of standard medical care. However, the generalizability of
the mostly older stroke population and issues with bias in
stroke lesion-mapping [Mah et al., 2014] may necessitate
the use of other populations in the dataset. Multiple Sclero-
sis or Cerebral Autosomal-Dominant Arteriopathy with
Subcortical Infarcts and Leukoencephalopathy subjects
could be included in the database to investigate consisten-
cies across pathologies. Whatever the population, the aims
of this proposed database would be twofold. Behavioral
data collected acutely can help us better understand brain-
behavior relationships while longitudinally collected data
of both dysfunction and intervention may help us to
improve prognostic tools and possibly develop individual-
ize treatment plans.

Conclusions

Here, we use a machine learning approach on a moder-
ately sized data set of both neuroimaging and wide-
ranging behavioral data to identify possible brain struc-
tural connectome-behavior relationships. We have shown
that the NeMo Tool’s quantitative assessment of structural
connectome disruption due to infarct allows prediction of
an individual’s acute impairment and ability in several
domains. Models of eloquent functions, that is, language
and motor, provided validation of the method, while mod-
els of more complex behavioral measures provided new
insights into brain-behavior relationships. Robustness of
this method was demonstrated in the replication of
connectome-behavior relationships for a particular func-
tion across pathologies. The fact that this method can be
applied on clinically acquired neuroimaging data gives it
an advantage over other methods. In addition to the possi-
ble application of improving the accuracy of poststroke
prognoses, the current analysis offers the opportunity to
gain insight into the neural substrates underlying complex
behaviors such as those associated with activities of daily
living and specific areas of cognition.
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