
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Graph Embedding via Subspace Minimization with Applications to Chip Placement and Semi-
Supervised Learning

Permalink
https://escholarship.org/uc/item/77h6n4vc

Author
Holtz, Chester

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/77h6n4vc
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Graph Embedding via Subspace Minimization with Applications to Chip Placement and
Semi-Supervised Learning

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

Computer Science and Engineering

in

Doctor of Philosophy
Computer Science and Engineering

by

Chester Holtz

Committee in charge:

Professor Chung-Kuan Cheng, Chair
Professor Albert Chern
Professor Bill Lin
Professor Gal Mishne

2023



Copyright

Chester Holtz, 2023

All rights reserved.



The Dissertation of Chester Holtz is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2023

iii



TABLE OF CONTENTS

Dissertation Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.1 Optimization on Stiefel Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.2 Laplacians of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
0.3 Outline and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 1 A Sequential Subspace Method for
Quadratic Optimization on
Stiefel Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Quadratic Programming on Stiefel Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Preliminary results in the spherical case . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Optimality conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 A Sequential Subspace Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 Efficient approximation via orthogonal Procrustes . . . . . . . . . . . . . . . . . . . 11
1.2.2 A gradient projection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.3 A sequential subspace method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Complexity analysis of SSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 2 Applications to Chip Placement and Graph-Based Semi-Supervised Learning 24
2.1 VLSI Placement Initialization and Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 PCB Placement Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.1 Net Separation-Oriented Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.2 NS-Place placement flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3 Graph Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.1 Preliminaries and Laplace learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

iv



2.3.2 Motivation via graph cut & Laplacian Eigenmaps . . . . . . . . . . . . . . . . . . . 56
2.3.3 Semi-supervised graph learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.4 Efficient approximation via Procrustes Alignment . . . . . . . . . . . . . . . . . . . 59
2.3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Chapter 3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.1 Additional Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.1.1 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

v



LIST OF FIGURES

Figure 2.1. Placement flow. Our proposed method is a “placement initialization” stage,
highlighted in yellow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 2.2. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 2.3. QCQP placement initialization with reweighting. . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.4. Eigenvector method and projection. (a): Eigenvectors of full Laplacian L
(b): Eigenvectors of reduced Laplacian L, ignorant of fixed node (denoted
in red) (c): Projected eigenvectors of L (Prop. 1) (note the axis scale). (d):
Orthogonal transform applied to projected eigenvectors (Prop. 2). . . . . . . . 32

Figure 2.5. Eigenvector method and projection. (a): Mean normalized decay in
HPWL of adaptec cases. (b): Per-iteration turnaround (seconds) vs. dimen-
sion of L22: # free cells + # nets in 103 unit. . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 2.6. Adaptec3 layout. (a): Projected eigenvectors for seed layout. Colors
denote initial spatial partitions. (b—d) Intermediate DREAMPlace results.
Note the preservation of cell groups (colors) through global placement. . . . 38

Figure 2.7. Notation & key terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 2.8. Congestion between nets denoted by red and blue pins. (a) Rectilinear
density metrics are pessimistic. (b) An optimistic model of routability. The
margin between the convex hulls of nets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 2.9. Placement procedure with Laplacian Eigenvector initialization, net-separation
minimization, and MILP-based legalization with relative positioning con-
straints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 2.10. PCB12 layouts. (a): Seed placement produced from Laplacian eigenvec-
tors. (b) Global placement to minimize net crossings. (c) MILP-based
legalization. (d) Manual layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 2.11. PCB12 P&R result in KiCAD. (a) Solution produced by our method.
Routable regions are emphasized with green rectangles. (b) Routed manual
placement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 2.12. Eigenvector method and projection example on the barbell graph.
(a): Embedding via Laplacian Eigenmaps. (b): Several iterations of
gradient-based repulsion are applied to remove vertex overlaps for better
visualization. (c): Consider taking an arbitrary vertex from each clique . . . 61

vi



Figure 2.13. Barcode plots of MNIST predictors (left) and embeddings of samples for
digits ‘2’ and ‘7’ (right). Learning is performed with 1 label per class. In
the barcode plots, the rows are the samples, ordered by their class. Ordering
of the columns was obtained by iteratively sorting the columns . . . . . . . . . . 62

Figure 2.14. Robust performance of SSM on F-MNIST. (a) robustness to different
numbers of neighbors k used to construct the graph, averaged over 10 trials,
5 labels per-class. (b) The log-first order condition, i.e. empirical rate of
convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vii



LIST OF TABLES

Table 2.1. Design characteristics. nfree =#Free cells and nfixed =#Fixed pins. Max Deg,
Avg Deg correspond to characteristics of the graph-models of the design
netlists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Table 2.2. Post-detailed place metrics. We report cumulative HPWL and runtime of
global and detailed placement and legalization using various initializations.
We report the percent improvement over random init. in parenthesis. The
best result is bolded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Table 2.3. HPWL and structure-preservation test statistic for Prob. 2.3 (min-squared
objective) and Prob. 2.3 (HPWL objective). . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 2.4. Design characteristics. locked are fixed components. layers are layers
available for routing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 2.5. Pre-route metrics for PCB designs. We report the cumulative HPWL and the
net separation cost. The top performing result is bolded. The "-" represents
that MILP cannot produce a feasible placement in 4 hours. . . . . . . . . . . . . . . 50

Table 2.6. Post-route metrics for PCB designs. We report routed wirelength using
FreeRouting, the number of vias, and the number of DRVs as reported by
KiCAD. We report the percent improvement in parenthesis. The best result
is bolded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 2.7. MNIST: Average accuracy scores over 100 trials with standard deviation in
brackets. Best is bolded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Table 2.8. FashionMNIST: Average accuracy scores over 100 trials with standard
deviation in brackets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Table 2.9. CIFAR-10: Average accuracy scores over 100 trials with standard deviation
in brackets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Table 2.10. Scaling behavior as the number of labeled vertices increases beyond the low
label rate regime: Average accuracy scores over 10 trials. . . . . . . . . . . . . . . . 66

Table 2.11. Tool comparison: wall time per-iteration, # iterations to reach |grad| <= 10e-
5 (– denotes no convergence), and accuracy using MNIST digits restricted
to 0-5 with 1 label / class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

viii



ACKNOWLEDGEMENTS

I would like to acknowledge Professor Chung-Kuan Cheng for his support as my advisor

and the chair of my committee. I would also like to acknowledge Professor Gal Mishne for her

care and collaboration and for her feedback on much of the work I have been doing during my

PhD. Their academic guidance and mentorship have been invaluable.

Chapter 1, in part is a composition of two works, one of which has been submitted for

publication—Revisiting Semi-Supervised Laplacian Eigenmaps via Alignment, 2023 and one

currently being prepared for submission for publication of the material: Minimizing a Quadratic

over Stiefel Manifolds.

Chapter 2, in full, is a reprint of material comprising one submitted paper: Revisiting

Semi-Supervised Laplacian Eigenmaps via Alignment and three publications: Placement Ini-

tialization via Sequential Subspace Optimization with Sphere Constraints, 2023, International

Symposium on Physical Design (ISPD) (best paper nomination), Placement Initialization via

a Projected Eigenvector Algorithm, 2022, Design Automation Conference (DAC) 2022, and

Net Separation-Oriented Printed Circuit Board Placement via Margin Maximization, 2022, 27th

Asia and South Pacific Design Automation Conference (ASP-DAC) (best paper award). The

dissertation author was the primary investigator and author of these papers.

ix



VITA

2017 Bachelor of Science, University of Rochester, Rochester

2023 Doctor of Philosophy, University of California San Diego

x



ABSTRACT OF THE DISSERTATION

Graph Embedding via Subspace Minimization with Applications to Chip Placement and
Semi-Supervised Learning

by

Chester Holtz

Doctor of Philosophy
Computer Science and Engineering in Doctor of Philosophy

Computer Science and Engineering

University of California San Diego, 2023

Professor Chung-Kuan Cheng, Chair

Recent work has shown that by considering an optimization perspective of the eigenvalues

and eigenvectors of graph Laplacians, more efficient algorithms can be developed for tackling

many graph-related computing tasks. In this dissertation, we present efficient methods for

solving general quadratic programs with nonconvex constraints in the context of very-large-scale

integration (VLSI) computer-aided design (CAD) and graph-based semi-supervised learning

problems. We propose a general framework for matrix quadratic programming with nonconvex

constraints, which is motivated by classic algorithms for solving trust-region subproblems.

xi



We introduce approximate and iterative methods with derived convergence guarantees. We

demonstrate the effectiveness of our framework on large-scale numerical test cases, specifically

real-world benchmarks. By leveraging analytical VLSI and PCB layout engines, we show that

effective initialization using our method consistently improves a variety of pre- and post-detailed

placement metrics. Additionally, we introduce a graph semi-supervised learning algorithm based

on this framework, which yields strong results across a wide spectrum of label rates.

xii



Introduction

0.1 Optimization on Stiefel Manifolds

Optimization problems involving orthonormal matrices arise in various scientific and

engineering applications, such as eigenfunction and electronic structure calculations Absil et al.

[2007], Edelman et al. [1998], Townsend et al. [2016]. Although these problems typically have

smooth objective functions, they are often ill-conditioned.

Efficient optimization procedures that can handle orthogonality constraints, particularly

for large-scale problems on graphs, have been a subject of recent research. One popular frame-

work for optimization on manifolds, including the Stiefel manifold characterized by X⊤X = I,

was developed in Absil et al. [2007], Edelman et al. [1998]. Notably, the trust-region methods

proposed in Absil et al. [2007] generalize traditional Euclidean optimization procedures to the

Stiefel manifold, including methods based on gradient descent, non-linear conjugate gradient,

and Newton’s method.

However, problems with computationally desirable structures such as sparsity particularly

benefit from numerical improvements in efficiency and robustness, particularly in the large-

scale and ill-conditioned regimes. For example, Newton’s method is typically too expensive,

necessitating inversion of large matrices and existing first-order methods converge slowly for

ill-conditioned problems. Therefore, there is a need for techniques that inherit the desireable

rapid convergence properties of Newton’s methods, while maintaining practical scalability under

such circumstances.

In this dissertation, we address this gap by adapting sequential subspace methods, in
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particular by generalizing Hager’s Sequential Subspace Method (SSM) Hager [2001], Hager and

Park [2005], Erway et al. [2009], to the Stiefel manifold. Generalizing these methods involves

developing a Sequential Quadratic Programming (SQP) iterate which is specifically designed

to deal with the problems that arise on the Stiefel manifold. In addition to introducing efficient

algorithms for quadratic optimization on the Stiefel Manifold, we show empirically that SSM is

very robust and efficient on a variety of large-scale numerical problems compared to existing

open-source implementations of baseline methods.

0.2 Laplacians of Graphs

The numerical study provided in this dissertation focuses on the graph data. Spectral

graph theory, a subfield of graph theory, is the study of the combinatorial properties of graphs

implied by the eigenvalues and eigenvectors of certain connectivity matrices characterized by the

graph structure. Applications of spectral techniques in computer science and machine learning

are discussed in Arsic et al. [2012]. In particular, spectral clustering has received much attention

in the machine learning community. The original work by Fiedler [1973] provides insight into

how spectral methods yield information regarding the topology an unweighted graph and the

relevance of the second-smallest eigenvalue of L to associated cluster structure. More concretely,

the work of Donath and Hoffman [1973] derived a lower bound on the number of cut-edges

for a k-partition in terms of the k largest eigenvalues of a family of matrices that includes the

Laplacian, L, and its additive inverse, −L. Spectral embeddings were originally introduced by

Hall [1970], who showed that the r smallest positive eigenvectors of L can be used to embed the

vertices of a graph in r dimensions. This technique is particularly useful for graph visualization

and VLSI placement, where it is necessary to determine coordinates in the plane to lay out the

vertices of a graph or VLSI netlist.

Spectral graph theory has a long history beyond spectral clustering. A detailed survey of

results from the 1950s is presented in Cvetković et al. [1980]. Of particular note is the seminal

2



work of Kirchhoff [1847], often considered the field’s birth. Kirchhoff proved that the number of

different spanning trees of an unweighted graph is equal to the product of all positive eigenvalues

of the Laplacian matrix L, divided by n.

More recently, research has shown that by leveraging an optimization perspective of key

spectral properties of the graph Laplacians, such as eigenvalues and eigenvectors, more efficient

algorithms can be developed to tackle many graph-related computing tasks Teng [2016]. Spectral

methods can potentially lead to much faster algorithms for solving sparse matrices Zhao et al.

[2017], Koutis et al. [2014], numerical optimization Christiano et al. [2011], graph analytics Ko-

ren [2003], Imre et al. [2020], and machine learning Belkin and Niyogi [2003], Holtz et al., as

well as very-large-scale integration (VLSI) computer-aided design (CAD) Hall [1970], Jacobs

et al. [2018], Hamada et al. [1992], Hagen and Kahng [1991], Charles J. Alpert [1995].

The work in this dissertation contributes to the development of efficient methods inspired

by spectral graph theory for graph-based semi-supervised learning and VLSI layout.

0.3 Outline and Contributions

This dissertation includes three chapters. Chapter 1 describes a scaleable and general

framework for quadratic programming on Stiefel manifolds. The method is introduced as a

generalization of an existing technique for solving trust-region subproblems. Chapter 2 validates

the efficacy of this method on several problems in VLSI design and machine learning. In

particular, the scalability of solution quality relative to the state of the art are highlighted.

Chapter 3 presents the conclusions of this dissertation and discusses the possible future works to

be explored.
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Chapter 1

A Sequential Subspace Method for
Quadratic Optimization on
Stiefel Manifolds

1.1 Quadratic Programming on Stiefel Manifolds

We assume k is a positive integer (much) less than n. Let K denote the set {1,2, . . . ,k}.

Let In,k denote the sub matrix of the identity matrix In, consisting of the first k columns. Let Ok

be the orthogonal group, i.e., Q ∈ Ok if and only if Q ∈ Rk,k and Q⊤Q = Ik.

1.1.1 Formulation

In this chapter, we study algorithms designed to solve matrix optimization problems over

a compact Stiefel manifold:

min
X

{
F (X) :=

1
2
⟨X,AX⟩− ⟨B,X⟩

}
, subject to X ∈ S t(n,r) (1.1)

Occasionally, we will also consider the more general reweighted problem

min
X

{
F (X) :=

1
2
⟨X,AXC⟩− ⟨BC1/2,X⟩

}
, subject to X ∈ S t(n,r) (1.2)

4



Note that when C = I, there is an equivalence between the two problems. Typically, A is denoted

the system matrix, which is a symmetric n×n matrix and B ∈ Rm,r. In this dissertation, and as

we discuss later, the above problem is discussed in the context of applications involving graphs.

Notably, A will almost always correspond to a combinatorial Laplacian. The set S t(n,r) is a

Stiefel manifolds and is defined as

S t(n,r) := {X ∈ Rn×r : X⊤X = Ir} (1.3)

and the associated Euclidean projection is given by

Remark 1.1.1. Given a matrix X ∈ Rn×k, its projection onto St(n,k), [X]+ := argmin{||Xs−X||F :

Xs ∈ St(n,k)} is given by

[X]+ = UV⊤, (1.4)

where X = UΣV⊤ is the singular value decomposition.

Minimization over a Stiefel manifold can be regarded as one generalization of the well-

known nonconvex quadratic over the unit ball or sphere, arisen in trust region methods Sorensen

[1982], Conn et al. [2000]. There could exist many local solutions in Eq. 1.1. A global minimizer

of Eq. 1.1 in general can be be ensured in advance. To overcome this difficulty, we introduce the

associated problems,

min
X

{
F (X) :=

1
2
⟨X,A′X⟩− ⟨B,X⟩

}
, subject to X ∈ S t(n,r) (1.5)

and

min
X

{
F (X) :=

1
2
⟨X,A′XC⟩− ⟨BC1/2,X⟩

}
, subject to X ∈ S t(n,r) (1.6)

Where A′, constructed from A, has the same set of eigenvectors as A, but has eigenvalues

d′1 = d′2 = . . . = d′r ≤ . . . ≤ d′n. More precisely, write the eigenvector decompositions of A and A′,
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respectively:

A = [v1,v2, . . . ,vn]diag(d1, . . . ,dn)[v1,v2, . . . ,vn]⊤

A′ = A−
r∑

k=2

(dk −d1)vkv⊤k = [v1,v2, . . . ,vn]diag(d′1, . . . ,d
′
n)[v1,v2, . . . ,vn]⊤

Note that d′j = d j for all j > r and d′1 = d′2 = . . .d
′
r = d1.

1.1.2 Preliminary results in the spherical case

As previously mentioned, eq. (1.1) is one natural generalization of the following con-

strained problem discussed in Hager [2001], Hager and Park [2005]

min
x
{x⊤Ax−2⟨x,b⟩ : ||x|| = 1, x ∈ Rn} (1.7)

This problem is related to the trust region subproblem:

min
x
{x⊤Ax−2⟨x,b⟩ : ||x|| ≤ 1, x ∈ Rn} (1.8)

The following two propositions describe the global solution of 1.7. See Sorensen [1982]. The

condition 1.9 states that the global solution x is the critical point associated with λ bounded

above by the smallest eigenvalue d1 of A.

Proposition 1.1.1 (Hager and Park [2005]). A vector x ∈ Rn is a global solution of 1.7, if and

only if ||x|| = 1, and

A−λI ≽ 0, (A−λI)x = b (1.9)

holds for some λ ∈ R

Proposition 1.1.2 (Hager [2001]). Consider the eigenvector decomposition

A = [v1,v2, . . . ,vn]diag(d1, . . . ,dn)[v1,v2, . . . ,vn]T .
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Let V1 be the matrix whose columns are eigenvectors of A with eigenvalue d1. Then, x = Vc is a

solution for a vector c chosen in the following way:

• Degenerate case: suppose V⊤1 b = 0 and c⊥ := ||(A− d1I)†b|| ≤ 1 Then, λ = d1 and x =

(1− c2
⊥)1/2v1+ (A−d1I)†b

• Nondegenerate case: λ < d1 is chosen so that x = (A−λI)−1b with ||x|| = 1.

Remark 1.1.2 (Hager and Park [2005]). Note that ||(A−λI)−1b|| decreases monotonically with

respect to λ ≤ d1. A proper value of λ meets the condition ||x|| = 1. A tighter bound on λ can be

estimated from

(d1−λ)||V1b||2 ≤ 1 = ||(A−λI)−1b||2 ≤ (d1−λ)−2||b||2

With ||V1b|| > 0, λ lies in the interval [d1− ||b||,d1− ||V1b||].

1.1.3 Optimality conditions

In this section, we characterize the necessary and sufficient conditions for local and global

critical points. First, we state a first order condition of eq. (1.1) and an implied definiteness

condition. From this definiteness condition, we motivate an approximate method in Section 1.2.

We then discuss the sufficient conditions for local solutions of eq. (1.1) and associated global

solutions of eq. (1.5). Notably, these conditions are characterized by the eigenvalues of the

system matrix A and A′ as well as the eigenvalues of the Lagrangian multiplier matrix Λ.

Necessary conditions

We first state a pair of first-order necessary conditions of eq. (1.1):

Remark 1.1.3 (First order condition of eq. (1.1)). Any tangent vector to St(n,r) at X can be

expressed as XΩ+Z for some skew matrix Ω and Z ∈ Rn×r with Z⊤X = 0. For a local optimal X,

the differential AX−B of F must lie in the normal space to St(n,r) at X. This is exactly the first

order optimal condition:

AX = XΛ+B, λ ∈ Rr×r (1.10)
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for some symmetric matrix Λ.

Proposition 1.1.3 (Definiteness conditions of X⊤B for eq. (1.1)). Note the first term of F satisfies

the invariance ⟨X,AX⟩ = tr(X⊤AX) = tr(X̃⊤AX̃), where X̃ = XQ for any orthogonal Q ∈ R2×2. X

is a local minimizer if X⊤B ≽ 0 and symmetric.

Proof. Note that by assumption, X is feasible—i.e. X⊤X = I. Consider the substitution X→ XQ

for some orthogonal matrix Q. Since C = I, F(XQ) = ⟨XQ,AXQ⟩− ⟨Q,X⊤B⟩.

Fix X. Note that the first term satisfies the invariance ⟨X,AX⟩ = ⟨XQ,AXQ⟩. For any

orthogonal Q ∈Rk×k. The optimal choice of Q is determined by the affine second term. A standard

result from matrix analysis yields its minimizer Horn and Johnson [2013]. Let X⊤B = UDV⊤ be

the SVD of X⊤B. Then, Q = UBV⊤B and ⟨XQ,B⟩ = ⟨Q,X⊤B⟩ = ⟨I,D⟩ = tr(D) ≥ 0. □

In general, there could exist many critical points X fulfilling the aforementioned condition.

These points are called stationary points(maximizers, minimizers, or saddle points). We will

show that the eigenvalues of the associated matrix Λ, when examined in conjunction with the

eigenvalues of the system matrix A, characterize the quality of these critical points and the

optimality of X.

Sufficient conditions

Here, we state several sufficient conditions for optimality. Introduce one orthogonal

projection P⊥j I−
∑

k∈R\{ j} xkx⊤k .

Remark 1.1.4 (Min-max theorem). Consider the n− (r−1) dimensional subspace, i.e., orthogonal

to span(x2, . . . , xr). Apply the Courant-Fischer min-max theorem. Then the smallest nonzero

eigenvalue of P⊥1 AP⊥1 is bounded above by dr, i.e., dr ≥ λ1 must hold. Repeat the arguments to

other r−1 second order conditions. Thus, for a minimizer, eigenvalues of the associated matrix

Λ are bounded above by dr:

dr ≥max(λ1, . . . ,λr)
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Proposition 1.1.4 (Global solutions of eq. (1.1)). Let d1 be the smallest eigenvalue of A. Let X0

be a stationary point of eq. (1.1). and let Λ′ be the associated multiplier matrix. Suppose

d1I ≽ Λ′

Then X0 is a global minimizer. Suppose d1I ≻ Λ′. Then X0 is the unique global minimizer.

Proof. Let Λ ∈ Rr×r and the Lagrangian

L(X) =
1
2
⟨X,AX⟩+ ⟨B,X⟩−

1
2
⟨Λ,X⊤X− I⟩

Take any X ∈ S t(n,r) and consider the taylor expansion of the Lagrangian around X′:

F (X) =L(X) =L(X′)+
1
2
{⟨(X−X′),A(X−X′)⟩− ⟨(X−X′), (X−X′)Λ′⟩} (1.11)

≥ L(X)+
1
2
⟨(X−X′), (X−X′)(d1I−Λ′)⟩ ≥ F (X′) (1.12)

Where the linear term is dropped due to eq. (1.10). To summarize, since Λ satisfies d1I ≥ Λ, the

Taylor expansion implies

F (X) =L(X) ≥ L(X′) ≥ F (X′)

for each X ∈ S t(n,r), i.e. X′ is a global minimizer of F . On the other hand, suppose F (X) =

F (X′). The condition d1I ≥ Λ implies (X−X′)⊤(X−X′) = 0, i.e. X = X′ is unique. □

Generally, eq. (1.10) can fail to hold for any local solution X of F . Algorithmically, we

overcome this difficulty by adjusting eigenvalues of the system matrix A→ A′ (eq. (1.5)). The

modification is motivated by the following remark, for which eigenvalues of A are identical.

Remark 1.1.5 (A special case: A = I). When A = I, then the function F in eq. (1.1) reduces to:

F (X) =
1
2
||X−B||2−

1
2
||B||2
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and its minimizer corresponds to the projection of B on St(n,r). Write the singular value

decomposition of B = VBDBU⊤B . When B has r positive singular values, the optimal X is

uniquely given by X = VBU⊤B .

Theorem 1 (Local solutions of eq. (1.5) are global solutions). Consider eq. (1.5). The smallest

nonzero eigenvalue of P⊥j A′P⊥j is d1 for j = 1,2, . . . ,r. Any local solution of F ′ is a global

solution.

Proof. Let X be an optimal solution. Then, the first order condition A′X = XΛ+ B holds.

Eigenvalues λ1, . . . ,λr of Λ satisfy

P⊥j A′P⊥j ≽ λ jP⊥j .

By remark 1.1.4, we have λ j ≤ dr = d1 for all j = 1, . . . ,r. From Prop. 1.1.4, any local solution is

a global solution, which completes the proof. □

1.2 A Sequential Subspace Method

In this section, we introduce approximate and iterative methods to solve eq. (1.1)

(eq. (1.5)), the reweighted version of eq. (1.2)(eq. (1.6)). In theory, and as we show, one

can start with an arbitrary initialization to obtain a critical point of eq. (1.2) using projected

gradient descent, with the descent direction given by the gradient of eq. (1.5) and projection

given by eq. (2.21). However, the empirical rate of convergence depends significantly on the

initialization of the embedding matrix X. In order to improve convergence of our method,

we first introduce and motivate an efficient method based on Procrustes Analysis Wang and

Mahadevan [2008] to approximately compute critical points of the unscaled objective (C = I).

Local convergence is derived for eq. (1.2) and eq. (1.6). Assuming C = I, global convergence

can be guaranteed for the perturbed problem eq. (1.5).
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1.2.1 Efficient approximation via orthogonal Procrustes

Here we propose an efficient way to compute approximate critical points of eq. (1.5).

First we solve the canonical eigenvalue problem minX⟨X,AX⟩ subject to a constraint on the

second moment of X: X⊤X = I, yields X are the eigenvectors of A. Second, we appropriately

transform the solution so that X⊤B is positive definite (i.e. satisfies a necessary condition for

first-order optimality eq. (1.1.3), which we restate below).

Proposition 1.2.1 (Definiteness conditions of X⊤B for eq. (1.1)). Assume C = I. Note the

first term of F satisfies the invariance ⟨X,AX⟩ = tr(X⊤AX) = tr(X̃⊤AX̃), where X̃ = XQ for any

orthogonal Q ∈ R2×2. X is a local minimizer if X⊤B ≽ 0 and symmetric.

A consequence of this is the following algorithm:

1. Take X to minimize the first term of eq. (1.1)—i.e. the eigenvectors of A

2. Let the SVD of X⊤B = UBDBV⊤B and let Q = UBV⊤B . Projecting X onto Q decreases the

objective of eq. (1.1).

In Chapter 2 of this dissertation, we apply this method to both initialize a subsequent refinement

step.

1.2.2 A gradient projection method

In this section, We introduce a projected gradient-based method. With appropriate step

size α > 0, PGD produces iterates Xt, t = 1,2, . . .

Xt+1 = [Xt −αgt]+

Where gt is given by the gradient of the objective of eq. (A.1)—i.e. gt = AXtC−BC1/2 and [Xt]+

is the projection onto the manifold

M := {X : X ∈ S t(n,k), X⊤B ≥ 0}
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We first describe the projection X = [X1]+ as a composition of two projections; i.e. [X1]+ =

[[X1]S t]B ∈M:

Z = [X1]S t := argmin
Z
{||X1−Z||F : Z ∈ S t(m,r)} (1.13)

X = [Z]B := ZQ, Q = argmin
Q
{||Z−BQ⊤||F : Q ∈ Ok} (1.14)

In other words, Z ∈ S t(n,r) and Q ∈ Ok are chosen to minimize the sum

||X1−Z||2F + ||Z−BQ⊤||2F = ||X1Q−ZQ||2F + ||ZQ−B||2F

Take the SVD of X1, i.e. X1 = UXDXV⊤X . Then, the solution to eq. (1.13) is given by Z = UXV⊤X .

Likewise, X = ZQ for some orthogonal matrix Q chosen to maximize ⟨X,B⟩ = X⊤B.

Proposition 1.2.2 (Projection onto B). Consider the solution to the following projection:

[X1]+ = argmin
X∈S t(n,k)

{min
Q
||X−X1Q||2F : X⊤B ≥ 0,Q ∈ Ok} (1.15)

Suppose the singular values of X1 and B are positive. Then, the minimizer X is uniquely

determined by

X = [X1]+ = U1U2V⊤2

where U1,V1,V2 are determined from the two SVDs,

U1Σ1V⊤1 = X1, U2Σ2V⊤2 = U⊤1 B

Proof. The minimizer X in eq. (1.15) is the maximizer of maxX⟨X,X1Q⟩. Note that

⟨X,X1Q⟩ = ⟨X,U1Σ1V⊤1 Q⟩ = ⟨U⊤1 XQ⊤V1,Σ1⟩ ≤ tr(Σ1)
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Note two observations: (1) that U⊤1 XQ⊤V1 lies in Ok, and (2) that equality holds if and only if

U⊤1 XQ⊤V1 = Ik for some XQ⊤V1 ∈ St(n,k), i.e. XQ⊤V1 = U1, and thus,

X = U1V⊤1 Q.

Furthermore, the condition X⊤B is symmetric and positive definite implies a choice of Q that

fulfills

X⊤B = Q⊤V1U2Σ2V⊤2 , i.e.,V⊤Q = V2U⊤2

Finally, note that since the singular values Σ1,Σ2 are distinct and positive, U1 and V1 are

uniquely determined up to column-sign Q1 = diag(±1, . . .±1). Likewise, U2 and V2 are uniquely

determined up to Q2 = diag(±1, . . .±1). Hence,

X = U1Q1Q⊤2 U2Q2Q⊤2 V⊤2 = U1U2V⊤2

is unique. □

Given this result and the following remark, we will derive convergence of the gradient

method with the Armijo rule.

Remark 1.2.1. Consider the function h(X) = [X]St defined on Rn×k and X ∈ S t(n,k). The differ-

ential Dh at X is the linear map given by

Dh(X)[T ]− lim
α→0
α−1(h(X+αT )−h(X)) = (I−XX⊤)T + (−1/2)X(T⊤X−X⊤T )

for each T ∈ Rn×k. When X ∈M and T = −(AXC−BC1/2), then

⟨T,Dh(X)[T ]⟩ = ||(I−XX⊤)T ||2F .

Proposition 1.2.3. Let dt = −(AXtC−BC1/2). Let {Xt} be a sequence generated by the gradient
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projection method

Xt+1 = [xt +αtdt]+

where αt is chosen according the Armijo rule. Then, every limit point of {Xt} is a stationary

point.

Proof. The proof is motivated by the proof by contradiction of Prop. 1.2.1 in Bertsekas [1999].

Let G(X) = (I −X⊤X)(AXC −BC1/2) be the projected gradient of the objective of A.1, F at X.

We define α given by the Armijo rule—i.e. let s > 0, σ ∈ (0,1) and β ∈ (0,1). αt = β
mt s, where

mt is the first nonnegative integer m for which

F(Xt)−F([Xt +β
msdt]+) ≥ −σβts⟨G(Xt),dt⟩

Suppose X̂ ∈M is a limit point of {Xt} with ||G(X̂|| > 0. By definition, {F(Xt)} is monotonically

nonincreasing to F(X̂)., i.e. F(Xt)− f (Xt−1)→ 0. By definition, since the αt, the step sizes are

generated via the Armijo rule, at satisfies

F(Xt)−F(xt+1) ≥ F(Xt)−F([Xt +αtdt]+)

≥ −σ⟨G(Xt),dt⟩ = σαt||G(Xt)||2F

(1.16)

Let {Xt}T be a subsequence converging to X̂ ∈M Since

lim
t→∞

sup−⟨G(Xt),dt⟩ = ||G(X̂)||2 > 0,

eq. (1.16) implies {αt}T → 0. From Armijo’s rule, for some t′ ≥ 0, the inequality

F(Xt)−F([Xt +αtβ
−1dt]+) < −σαtβ

−1⟨G(Xt),dt⟩ (1.17)

holds for all t ≥ t′. By taking a subsequence {dt}T ′ of {dt}T such that {dt}T ′ → d′ and Xt→ X′,
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applying the mean value theorem to the left hand side of eq. (1.17), we have that

−⟨L([Xt +α
′
tdt]+)−B,D([Xt +α

′
tdt]+)[dt]⟩

= (αtβ
−1)−1(F(Xt))−F([Xt +αtβ

−1dt]+)

< −σ⟨G(Xt),dt⟩

for some α′t ∈ [0,αtβ
−1]. Taking the limit as k→∞, we have that α′t→ 0 andD([Xt+α

′
tdt]+)[dt]→

G(X′), which implies

−⟨G(X′),d′⟩ ≤ −σ⟨G(X′),d′⟩, i.e. − (1−σ)⟨G(X′),d′⟩ ≤ 0

Since σ < 1, it follows that

−⟨G(X′),d′⟩ = ||G(X′)||2F ≤ 0

which contradicts the non-stationarity of X′. Hence, the limit point X̂ is a stationary point. □

1.2.3 A sequential subspace method

Here we introduce an efficient iterative method capable of global convergence to high-

quality stationary points. We apply this method to refine the approximate solutions produced

using the method introduces in Section 1.2.1. Motivated by the similarity between eq. (2.22) and

standard trust-region subproblems, we apply the framework of SSM. In the k = 1 and C = I case,

SSM has been applied to Trust-Region sub-problems with remarkable empirical results Hager

[2001] and robust global convergence guarantees Hager and Park [2005], Erway et al. [2009],

even for so-called degenerate problems. At a high level, SSM-based algorithms generate a

sequence of iterates Xt by solving a series of rescaled quadratic programs (of the same form as

eq. (2.22)) in subspaces of dimension much smaller than that of the original problem.

At step t, we introduce a subspace S t derived from the current iterate Xt, the gradient of

the objective of Prob. eq. (2.22) gt = AXtC−BC1/2, an SQP (i.e. Newton’s method applied to the
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first-order optimality system Xt) iterate Xsqp derived in Prop. 1.2.4, and the principal eigenvectors

of A. The Sequential Quadratic Programming (SQP) framework Nocedal and Wright [1999] is

applied to compute Xsqp. In theory incorporating the Newton direction as the descent direction

can dramatically speed up convergence to a stationary point.

Following the principle of SQP, we introduce the SQP direction Z according to the

linearization of eq. (2.24), the first-order conditions of eq. (2.22):

(AZC−ZΛ)−X∆ = E := BC1/2− (AXC−XΛ)

X⊤Z = 0

Proposition 1.2.4 (SQP iterate of the Lagrangian of eq. (2.23)). Assume Λ is symmetric. Let

P⊥ = I − X⊤X be the projection onto the orthogonal complement of the column space of X

and ΛC−1 = Udiag([λ1, . . . ,λk])U−1 be the eigenvector decomposition of ΛC−1. The Newton

direction Z of X via the linearization of the first-order conditions is

Z = OU⊤, (1.18)

where each column of O, o j = (P⊥AP⊥−λ jP⊥)†BC−1u j.

Proof. Recall the FOC and its associated linearization with respect to descent directions of X,Λ;

(Z,∆):

(AZC−ZΛ)−X∆ = E := BC1/2− (AXC−XΛ)

X⊤Z = 0
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Applying the projection P⊥ = I−XX⊤ eliminates the X∆ term:

PAZ−ZΛC−1 = PAPZ−ZUdiag([λ1, . . . ,λk])U−1 = PEC−1

Equivalently,

PAPZU −ZUdiag([λ1, . . . ,λk]) = PEC−1U.

Let O = ZU = [o1, . . . ,ok] lie in the range of P. Then,

PAw j−λ j = PEC−1u j, so o j = (PAP−λ jP)†EC−1u j.□

Note that λ j appears in the computation of the pseudo inverse of P⊥AP⊥−λ jP⊥. To ensure that

P⊥AP⊥−λ jP⊥ is positive semi-definite, we introduce a safeguard to adjust λ j manually.

Proposition 1.2.5 (Safeguard for λ j). λ j are chosen to be the eigenvalues of ΛC−1. Let

P⊥i = P⊥+ xix⊤i ∀i = 1,2, . . . ,k

Let µi be the smallest eigenvalue of P⊥i . Then, µi ≥ λi holds, i.e., we can use µi as a safeguard

for λi. Hence, the “safe” update to λ j is

λ̃ j =min(µ j− ϵ,λ j)

We note that the safeguarding λ j introduces additional computational cost to our algo-

rithm. In practice, we observe that safeugarding is not typically necessary. In the applications

presented later in this dissertation we forgo safeguarding to save computation.

Remark 1.2.2 (Lagrange multipliers). After each update X→ X+αZ, we take a projection []+

to generate Xk+1. Hence, the update of Λ does not benefit from the linearaization given in

Prop. 1.2.4. For simplicity, we directly employ Xk+1 to update Λl+1 via the following least
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squares estimates estimate of the first-order condition:

Λk+1 = argmin
Λ

||AXk+1C−BC1/2−Xk+1Λ||
2

That is,

Λk+1 = X⊤k+1Xk+1Λ = X⊤k+1(AXk+1C−BC1/2)

Algorithm 1. SQP Update

Input: System matrix A, affine term B, intermediate feasible iterate Xt, scaling term C
Output: j− th columns of Newton updates—∆ j,Z j

1: function SQP(A,Λt,B,Xt)
2: Λt = X⊤t (AXtC−BC1/2)
3: Udiag([λ1, . . .λk])U = ΛC−1 =C−1/2ΛtC−1/2

4: init O, P⊥ = I−X⊤X
5: for j ∈ [k] do
6: o j = (P⊥AP⊥)†BC−1u j

7: end for
8: return OU⊤

9: end function

Algorithm 1 presents the detailed steps involved in the computation of the Newton directions, i.e.

Prop. 1.2.4. In Section 1.2.4, we discuss its computational cost.

Although stationary points can be recovered via an iterative project-descent procedure

using gradient-based or SQP-based descent directions, we introduce the Sequential Subspace

Method (SSM) in Algorithm 2: a computationally friendly algorithm to address scalability with

respect to large problems. Our development of SSM is inspired by the 1-dimensional algorithm

of Hager [2001], originally proposed to solve large trust-region subproblems. In other words,

instead of solving eq. (2.19) directly as previously mentioned, we instead solve a sequence of

quadratic programs in subspaces of much smaller dimension relative to the size of the graph (the

dimensions of A). SSM generically involves repeating the following pair of steps:
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1. Compute the SQP direction Z = SQP(A,Λ,B,X) as defined in Prop. 1.18 and described

in Algorithm 1, line 5. Let V be the orthogonal matrix consisting of columns in S

(Algorithm 2, lines 6 and 7), where

S = span(Xt,Zt,v,gt). (1.19)

2. SSM generates an approximation of (X,Λ) and an approximation of the smallest pair of

eigenvalues σ and eigenvectors v of A in the subspace S ,

[X,Λ,v,σ] = SSM(A,B,S )

consider the approximation X = VX̃ for some X̃. Compute

min
X̃∈St(̃n,k)

FS :=min
X̃

F(X̃;V⊤AV,V⊤B). (1.20)

Note that eq. (1.20) is solved using the Projected Gradient Method, where the projection is given

by eq. (2.21): [X]+ = UV⊤. We update Λ according to the least-squares estimate derived from

the first order condition in eq. (2.24) Λ = X⊤(AXC−BC1/2).

The proof of convergence follows from the associated result for the Projected Gradient

Method, Prop. 1.2.3—i.e. applying the Projected Gradient Method with step sizes chosen

according to the Armijo rule ensures that any limit point X∗ is a stationary point, when dt =

−(AXtC − BC1/2) ∈ S t. Let Vt be an isometry, consisting of vectors in S t computed via a QR-

factorization. Let At := V⊤t AVt and Bt = V⊤t B. Then, F(X̃; At,Bt) be the corresponding objective

in S t. SSM computes Xt+1 = VtX̃, where

X̃ := argmin
X̃

F(X̃; At,Bt)
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Algorithm 2. Sequential Subspace Minimization

Input: System matrix A, unit vector v
Output: Solution X

1: function SSM(A,v)
2: Initialize X to Proj(U), U = [u1, . . . ,uk], where uk is the eigenvector of A corresponding to the i-th

smallest nonzero eigenvalue (Sec 1.2.1).
3: while not converged do
4: Z← S QP(A,Λ,B,X,v) ▷ Eq. 1.18 & Algorithm 1
5: S← span(Xt,Zt,v,gt)
6: V ← QR(col(S ))
7: Ã← V⊤AV , B̃← V⊤B
8: X̃←minX:X⊤X=I F(X; Ã, B̃) ▷ Solve Eq. 2.22 in S
9: Xt← V⊤X̃ ▷ Lifted coordinates

10: t← t+1
11: end while
12: return Xt

13: end function

Note that the sequence {X1, . . . ,Xt, . . .}, with Xt+1 ∈ Vt monotonically reduces F with respect to t:

F(X̃; At,Bt) =
1
2
⟨Xt+1,AXt+1C−2BC1/2⟩

≤min
X̃
{
1
2
⟨VtX̃,AVtX̃C−2BC1/2⟩ =

1
2
⟨X̃,AtX̃C−2BtC1/2⟩ = F(X̃; At,BtC1/2)}

≤
1
2
⟨Xt,AXtC−2BC1/2⟩ = F(Xt; A,B)

For each t, since the columns of Xt and AXtC − BC1/2 lie in S t, the iterations of the gradient

projection method with Armijo rule lie in S t, and the sequence with decreasing objective reaches

a stationary point X̃, which ensures that the first order condition

AX∗C−BC1/2 = X∗Λ∗

holds for some matrix Λ∗ ∈ Rk×k, given by

Λ∗ = X⊤∗ (AX∗C−BC1/2) = lim
t

X⊤t (AXkC−BC1/2)
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In the case C = I, the following states that the inclusion of [v1, . . . ,vk] in S t improves the quality

of the stationary point X∗, characterized by the eigenvalues of Λ.

Proposition 1.2.6 (Convergence of SSM for eq. (1.1)). Assume C = I. Let X∗ := [x1, . . . , xk] be a

stationary point generated from SSM. Then,

AX∗−X∗Λ∗

Let λ1, . . . ,λk be the eigenvalues of Λ∗ and let the eigenvalues of A be d1 ≤ d2 ≤ . . . ≤ dn. Then,

max{λ1, . . . ,λk} ≤ dk.

Proof. Let Xt = [x1,t, . . . , xk,t] be a global minimizer in Vt−1. let Yt := [y1,t, . . . ,yk,t]=V⊤t−1[x1,t, . . . , xk,t].

Then,

Lt−1Yt −Bt−1 = YtΛt

holds for some Λk with eigenvalues [λ1,t, . . . ,λk,t]. In addition, since YtBt−1 = XtB, then XtB is

positive semidefinite and symmetric. As t→∞, X⊤∗ B is also positive semidefinite and symmetric.

Additionally, let

P⊥,(t)j = I−
∑

i∈R− j

yi,ty⊤i,t.

The second order condition implies

P⊥,(t)j AP⊥,(t)j −λ j,tP
⊥,(t)
j ⪰ 0.

Consider the optimality of x1,t. Let ϕ1,t by a unit vector orthogonal to [x2,t, . . . , xk,t] in span{v1, . . . ,vk}.
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Then P⊥,(t)j V⊤t−1ϕ1,t = V⊤t−1ϕ1,t holds and the second order condition yields

0 ≤ ⟨V⊤t−1ϕ1,t, (P
⊥,(t)
j AP⊥j,t −λ j,tP⊥j,t)V

⊤
t−1ϕ1,t⟩

= ⟨ϕ1,t, (L−λ1,tI)ϕ1,t⟩

≤ (min
i

di−λ1,t)||ϕ1,t||
2,

Which implies λ1,t ≤mini di. As t→∞, a subsequence of {x1,t, . . . , xk,t : t} converges to [x1, . . . , xk] ∈

M and λ1,t converges to λ1 Hence, λ1 ≤mini di. Likewise, λ j ≤mini di by the optimality of x j,t

for j = 2, . . . ,k. □

The following is the result of Proposition 1.2.6

Theorem 2 (Global convergence of SSM for eq. (1.5)). A limit X∗ of {X1,X2, . . . ,Xt, . . .} generated

by SSM is a global minimizer of eq. (1.5).

In Chapter 3, we provide a numerical evaluation of the proposed SSM algorithm on

large-scale engineering and machine learning problems against standard algorithms and existing

open-source frameworks.

1.2.4 Complexity analysis of SSM

In this section, we discuss the computational cost of SSM, dominated by the SQP routine

to compute the SQP directions. We claim that the per-iteration complexity of ssm is Tmatrix,

where Tmatrix is the complexity of each call to a matrix solver. For example, in the case of

Laplacians, and more generally M-matrices, there exist nearly linear-time solvers Spielman and

Teng [2014]. Additionally, the QR-decomposition of col(S ) takes time linear in n. We further

note that the SSM procedure itself exhibits quadratic rates of convergence for nondegenerate

problems and global convergence with at least linear rates, even when the problem exhibits

certain degenerate characteristics Hager and Park [2005].

Regarding the approximate method, note that computing the principal eigenpairs of A,

specifically the eigenvectors U is typically a cubic operation for dense matrices, can be done
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quite efficiently for sparse symmetric matrices, such as graph laplacians. Specifically, the locally-

optimal block preconditioned conjugate gradient (LOBPCG) method Knyazev [2001] is one state

of the art method that we adopt in the numerical experiments presented in Chapter 2. Typically,

these methods necessitate matrix-vector products Ax leading to efficient implementations of

Ax in time linear in e, O(e) the number of nonzero entries of A. The complexity of each eigen-

pair computation for A is then O(ret), where t is a constant equal to the average number of

iterations required for the LOPCG algorithm (note t depends on the spectral properties of A and

is independent of its size, i.e. n). And aligning U with the observed labels necessitates an SVD

of the matrix U⊤B and the projection of U onto Q, both negligeable if r is small.

Generic quadratic programs are NP-hard Pardalos and Vavasis [1991], i.e. it takes

super-polynomial time to solve QPs optimally. In the convex case, there are polynomial time

interior point algorithms Dikin [1967]. Also, there are approximation algorithms that return

local solutions of nonconvex QPs in polynomial time Hager [2001]. Our method falls into the

category of algorithms that guarantee local, or block-globally optimal solutions for problems of

the form eq. (1.1), eq. (1.2) and globally optimal solutions for associated problems with system

matrices that have been appropriately adjusted, of the form eq. (1.5).

Chapter 1, in part is a composition of two works, one of which has been submitted for

publication—Revisiting Semi-Supervised Laplacian Eigenmaps via Alignment, 2023 and one

currently being prepared for submission for publication of the material: Minimizing a Quadratic

over Stiefel Manifolds.
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Chapter 2

Applications to Chip Placement and Graph-
Based Semi-Supervised Learning

In this chapter, evaluate the framework and algorithm described in Chapter 1 on three

problems engineering and machine learning. First, we apply our framework and method as a

preprocessing step for VLSI and PCB layout optimization tools. In these contexts, the system

matrix A corresponds to an graph Laplacian matrix. In particular, VLSI layout problems consider

Laplacians with up to several million rows and columns and more than a million nonzero entries.

Next, we demonstrate that graph-based semi-supervised learning can be formulated as a rescaled

quadratic optimization problem on the Stiefel Manifold, and that our method can be to solve it,

achieving state of the art classification results accross a wide spectrum of label rates. Namely,

the low-label rate regime is particularly notable as this regime is close to degenerate in a certain

sense.

2.1 VLSI Placement Initialization and Optimization

Given a circuit and a region, the placement problem is to assign each circuit module to

a specific location in the region. Most state-of-the-art layout algorithms for large-scale VLSI

placement rely on solving non-linear problems using iterative first-order optimization algo-

rithms Kahng et al. [2005], Lin et al. [2019], Lu et al. [2015a], Cheng et al. [2018], Lu et al.

[2015b]. As a consequence, there are typically few guarantees regarding the convergence of these
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methods to optimal, or even good, coordinate assignments in a limited time frame and initializa-

tion of the variables plays a critical role Lu et al. [2015a]. Despite the importance of initialization,

existing methods for placement initialization are primarily based on naive heuristics—including

minimizing wirelength without second-order constraints Lu et al. [2015b,a], Kahng et al. [2005],

uniformly assigning the cell coordinates to the origin, or assigning coordinates to small random

values Gu et al. [2020], Lin et al. [2019].

In this section, we address the following question:

Is it possible to improve upon random initialization for large-scale place-
ment engines?

We investigate a novel fixed node-aware formulation and describe an efficient algorithm to

solve it. More concretely, we formulate initialization as a Quadratically Constrained Quadratic

Optimization Problem (QCQP) with sphere constraints. Our formulation is aware of fixed nodes

via a decomposition of the netlist-graph. Although the QCQP is non-convex, we propose an

algorithm that can recover local and block-globally optimal (under certain assumptions) solutions.

We validate our technique by demonstrating scalability and convergence to superior post-detailed

placement solutions compared to min-wirelength and random initializations using an open source

placement flow Gu et al. [2020], Lin et al. [2019]. Furthermore, we propose a statistical test

to quantify the preservation of local structures derived from the initialization through global

placement.

2.1.1 Contributions

Our contributions are summarized below.

1. We introduce a novel formulation of global placement initialization as a sphere-constrained

quadratic programming problem, an extension of a classic Rayleigh Quotient prob-

lem Hager [2001] and devise a novel algorithm to solve it.

2. We propose a way to exploit the structure of the QCQP to improve the efficiency of
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Figure 2.1. Placement flow. Our proposed method is a “placement initialization” stage, high-
lighted in yellow.

optimization by iteratively solving the problem in a sequence of carefully chosen subspaces.

3. We adapt our approach via iterative reweighting to facilitate direct minimization of Half-

Perimeter Wirelength (HPWL).

4. We perform a comparison between various initialization schemes for analytic placement

with fixed macros.

2.1.2 Preliminaries

Number of components n,nfree,nfixed ∈ R+
Placement coordinates x,y ∈ Rn

Adjacency, Degree, & Laplacian matrices A,D,L ∈ Rn×n

Linear offset terms b,d ∈ Rn,E0 = [b : d] ∈ Rn×2

Cell volumes v ∈ Rn
+,G = diag(v) ∈ Rn×n

+

Cell area constraints ci, i ∈ {1,2,3,4,5} ∈ R+
Lagrange multipliers Λ ∈ R2×2

Newton update direction Z ∈ Rn×2

Figure 2.2. Notation

Let x,y ∈ Rn be vectors corresponding to the coordinates of n components such that the

i-th component has coordinates encoded in the i-th row of [x : y]; [x : y]i. We aim to assign

coordinates so that the resulting layout has small cumulative wirelength.

26



(1.)
Initialize:

generalized
eigenvectors

of PLP

(2.)
Projection

(Rem. 2.21)

(3.)
Rotation

(Sec. 1.2.1)

SSM
(Eq. 1.19):
Calculate

subspace S

SQP
(Eq. 1.20):

Solve
Prob. 2.4 in

subspace

(5.)
Reweight
(Eq. 2.7):
Minimize

HPWL

SSM Initialization

(4.) SSM

Figure 2.3. QCQP placement initialization with reweighting.

Global analytical placement

Conventional global placement strategies minimize wirelength subject to density con-

straints. Density constraints are usually integrated into the objective to yield an unconstrained

relaxation Cheng et al. [2018], Lin et al. [2019]:

min
x,y

(
∑

e∈EWl(e; x,y)+λD(x,y)) (2.1)

where E denotes a set of given nets and Wl(·; ·) is a function that takes a net instance e as input

and returns the cumulative wirelength and D(·) is a density penalty. In the context of VLSI

placement, the wirelength of a net is commonly modelled with its Half-Perimeter Wirelength

(HPWL) or a smooth alternative andD is a smooth density penalty Lu et al. [2015a].

A typical approach is to represent individual nets as rectangles and to minimize the

sum-perimeters over all nets. Repulsion is often applied between overlapping nodes to reduce

density. For example, Lin et al. [2019] adopt the smooth and differentiable weighted-average

wirelength (WL) model for the wirelength cost Hsu et al. [2013]. The horizontal net-wirelength
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for net e is given by

Wl(e)
x =

∑
i∈e xi exp( xi

c )∑
i∈e exp( xi

c )
−

∑
i∈e xi exp(− xi

c )∑
i∈e exp(− xi

c )

where c is a parameter that controls the smoothness and approximation error with respect to the

HPWL of net e (i.e. |xi− x j| for two-pin net e = (i, j)). The wirelength of e is:

Wl(e; x,y) =Wl(e)
x +Wl(e)

y

To model the density term, the placement area is divided into B bins, and the placer seeks to

equalize the overlap at each bin via an analogy to an electrostatic system, with cells being

modeled as charges, density penalty modeled as potential energy, and density gradient modeled

as the electric field.

Overlap constraints are satisfied over the placement process by gradually increasing λ,

usually at the cost of increased wirelength. Current state-of-the-art VLSI placement algorithms

Lu et al. [2015a], Cheng et al. [2018], Lin et al. [2019] solve Problem 2.1 in this manner.

Global placement initialization

The VLSI placement problem is reduced to a graph layout problem by first collapsing the

netlist hypergraph to a component graph via various models (e.g. clique, star, etc.) Viswanathan

and Chu [2004]. A matrix-representation of the graph connectivity—the graph Laplacian is

then derived. The solution to the associated eigenvalue problem approximates the solution to

the sparsest cut problem Hall [1970], Alpert and Kahng [1996], and clusters arising out of the

vertex-projection into the space spanned by the first nontrivial eigenvalues correspond highly

connected components of the graph.

More concretely, we solve a variant of the following problem where x and y are cell

coordinates, ci are constants, v is a vector of cell areas, and L is the graph Laplacian; L = D−A,
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where A is a (weighted) adjacency matrix, and D is the associated degree matrix.

min
x,y

x⊤Lx+ y⊤Ly s.t. v⊤x = 0, v⊤y = 0,

x⊤Gx = c1, y⊤Gy = c2, x⊤Gy = c3

(2.2)

Typically, G = diag(v). In general, one can recover a reduction to the case G = I via the normaliza-

tion [x,y]←G1/2[x,y], L←G−1/2LG−1/2 and [v,b,d]←G−1/2[v,b,d]. Intuitively, the objective

is to minimize the weighted squared wirelength of a 2D placement. The linear constraints

characterize an origin (i.e. remove translational invariance) and the quadratic constraints spread

the layout evenly over the x and y axes (i.e. ensure that the embedding has nonzero constant

variance).

Fixed node constraints

Many layouts involve constraints on a subset of the cells—typically large macros and

primary input/output pads. We show how such fixed node constraints naturally lead to a

decomposition of the x, y and L terms in Eq. 2.2. We denote the coordinates of the fixed nodes x1,

y1. Likewise, let the movable nodes be x2, y2 Then, we can express x, y, and L and the parameters

v and G in terms of these indices: L =
[

L11 L12
L21 L22

]
, with x1 ∈ R

nfixed , x2 ∈ R
nfree , L22 ∈ R

nfree×nfree , and

L12 ∈ R
nfree×nfixed . x = [x1, x2]⊤ (likewise for y). By considering fixed-node terms (i.e. x1 and y1)

as constants, Problem 2.2 may be re-written (ignoring constants):

min
x2,y2

x⊤2 L22x2+ y⊤2 L22y2+ 2b⊤x2+2d⊤y2

s.t. v⊤2 x2 = c′1, v⊤2 y2 = c′2,

x⊤2 x2 = c′3, y⊤2 y2 = c′4, x⊤2 y2 = c′5

(2.3)

with b = L12x1, d = L12y1.

Equivalently, by re-writing the objective defined in Eq. 2.3 (for brevity, writing L22 as “L”

and v2 as v). Let X2 =
[
x2,y2

]
and E0 = [b,d] ∈ Rnfree×2 and X1 =

[
x1,y1

]
∈ Rnfixed×2.
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Let [c′1,c
′
2]⊤ = −r, where r := (v⊤1 X1)⊤. To eliminate the linear constraint v⊤X2 = −r⊤, we

introduce two adjustments: first, let (X)i = (X2)i+
1
wr⊤ denote a row-wise centering transformation

with respect to the fixed nodes, where w is a scale factor proportional to v2. This yields the

constraint v⊤X = 0 and implies the quadratic constraint

C =
[

c′3 c′5
c′5 c′4

]
=
[ c1 c3

c3 c2

]
−X⊤1 X1−

1
w

rr⊤.

Second, assuming that v is normalized to be a unit vector, let P = I− vv⊤ be the projection onto

the subspace orthogonal to vector v ∈ Rnfree , i.e., v⊤(PX) = [0,0]. Without loss of generality,

replacing E0 with P(E0−L 1
nfree

1r⊤), we have v⊤E0 = [0,0].

min
X
{F (X) = tr(X⊤(PLPX+2E0))} (2.4)

subject to X⊤X =C

Motivation and high-level flow

Our motivation for expressing initializations to Prob. 2.1 with Prob. 2.2—i.e. as a QCQP

with sphere constraints—is derived from two observations assuming graph-models of netlists: (1.)

if the Wl(·) corresponds to the squared wirelength, its minimization is equivalent to minimizing a

quadratic form defined on a graph Laplacian. And if the Wl(·) corresponds to the half-perimeter

wirelength, its minimization may be expressed as a sequence of quadratic problems of the

same form as Prob. 2.2. For example, we describe such a method in Sec. ??. (2.) a quadratic

equality—a sphere —constraint implies constant variance and satisfaction of density-constraints

assuming a uniform grid.

We highlight the high-level flow of our framework in Fig. 2.3:

1. Eigenvector initialization: The eigenvectors of L22, which correspond to the minimum-

squared wirelength solution are computed (Eq. 2.4).

30



2. Eigenvector projection: These eigenvectors are projected to satisfy the linear and

quadratic constraints (Prop. 2.1.1).

Proposition 2.1.1 (Projection). Let X1 be an intermediate solution and C1 := X⊤1 X1 and

C ≻ 0.

The projection of X1, [X1]+ := argmin
X
{F(X) = ||X−X1||

2
F

= tr(C)+ tr(C1)−2max⟨X,X1⟩}

s.t. X⊤X = C. Take the Singular Value Decomposition (SVD) of C1/2C1/2
1 , UΣV⊤ =

C1/2C1/2
1 .

Then the minimizer X = [X1]+ is given by

X = X1C−1/2
1 UV⊤C1/2 (2.5)

3. Eigenvector rotation: An orthogonal transform is applied to the projected eigenvectors to

minimize the distance between free and fixed components (Prop. 1.1.3).

4. Sequential subspace method (SSM): From these coordinates, an iterative projected-

subspace-descent algorithm is applied which results in convergence to a local / block-

globally optimal solution (Ch. 1).

5. Iterative net reweighting: During iterative descent, L is adjusted (reweighted) in order to

find a min-HPWL coordinate assignment (Sec. 2.1.2).

In the following section, we describe a sequential subspace method for solving Prob. 2.3. We

then show that one can easily adapt this method to facilitate direct minimization of HPWL.
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(a) (b)

(c) (d)

Figure 2.4. Eigenvector method and projection. (a): Eigenvectors of full Laplacian L (b):
Eigenvectors of reduced Laplacian L, ignorant of fixed node (denoted in red) (c): Projected
eigenvectors of L (Prop. 1) (note the axis scale). (d): Orthogonal transform applied to projected
eigenvectors (Prop. 2).

Minimization of HPWL via re-weighting

In this section, we show how our method may be adapted to facilitate direct minimization

of HPWL. A similar method was adopted by the GORDIAN-L cell placement tool Alpert et al.

[1998]. Inspired by asymptotically optimal algorithms for lasso-type regression problems Candès

et al. [2007], Wipf and Nagarajan [2010], Daubechies et al. [2010], Chartrand and Yin [2008],

we solve an equivalent ℓ1 minimization problem by solving a sequence of re-weighted ℓ2

minimization problems. In particular, we propose an analogous algorithm for the 2-dimensional
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case. Note that we now consider the following problem:

∑
i, j∈E

wi j(|xi− x j|+ |yi− y j|) (2.6)

Informally, the objective is upper bounded by the expression

min
ui, j>0

max
vi, j>0

∑i, j∈E(ui, j|xi− x j|
2+

1
ui, j
+ vi, j|yi− y j|

2+
1

vi, j
)


Crucially, the equality holds if and only if ui, j = |xi − x j|

−1 and vi, j = |yi − y j|
−1 and implies a

strategy for solving Prob. 2.6 that involves Prob. 2.4 as a sub-problem:

1. For each u > 0, v > 0, solve Prob. 2.6 with respect to x, y.

2. For each x, y, solve Prob. 2.6 with respect to u, v.

ui, j = |xi− x j|
−1, vi, j = |yi− y j|

−1 (2.7)

In practice, we alter the above algorithm in two ways: (1.) following Alpert et al. [1998], a

small adjustment to the denominator of each weight for normalization and to address numerical

instability in the situation where two nodes overlap—e.g., ui, j = 1/(W
√

(xi− x j)2+β), where

W is the width of the placement area (2.) instead of solving Prob. 2.6 (step (1.)) to convergence,

we perform incremental 1-step updates—i.e., we perform re-weighting each iteration of SSM and

compute the subsequent subspace with respect to the new re-weighted matrix L and associated

E0. While the concept of iterative re-weighting for optimization has most commonly been

applied to ℓ1 and ℓ∞ minimization problems, the framework is quite general and a similar

procedure motivates minimization of other kinds of norms-based objectives. Future work

includes investigating the efficacy of this reweighting scheme for alternative norm-minimization

problems (e.g. robust p-norm minimization) in the context of layout.
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2.1.3 Experiments

In this section we describe a set of comprehensive experiments on eight VLSI testcases

from the ISPD’05 contest suite Nam et al. [2005]. Summary statistics of the testcases are

presented in Table 2.4. Our numerical experiments are aimed at establishing the efficacy of our

method with respect to post-detailed placement wirelength. We leverage the DREAMPlace Lin

et al. [2019] placement engine and substitute the heuristic initialization schemes with our

proposed method.

Table 2.1. Design characteristics. nfree =#Free cells and nfixed =#Fixed pins. Max Deg, Avg Deg
correspond to characteristics of the graph-models of the design netlists.

Design #Free cells #Fixed pins #Nets Max Deg Avg Deg
adaptec1 211k 29k 221k 340 4.2
adaptec2 255k 21k 266k 153 3.9
adaptec3 452k 25k 467k 82 4.0
adaptec4 496k 29k 516k 171 3.7
bigblue1 278k 11k 284k 74 4.1
bigblue2 558k 141k 577k 260 3.5
bigblue3 558k 37k 1123k 91 3.4
bigblue4 2177k 170k 2230k 129 3.7

Table 2.2. Post-detailed place metrics. We report cumulative HPWL and runtime of global
and detailed placement and legalization using various initializations. We report the percent
improvement over random init. in parenthesis. The best result is bolded.

Design
Random Min-wirelength Projected Eigenvectors Projected Eigenvectors + SSM

HPWL GP runtime (s) HPWL GP runtime (s) HPWL GP runtime (s) runtime (s) HPWL GP runtime (s) runtime / iter. (s)
adaptec1 73.24 84.39 73.23 74.31 70.36 (3.9%) 63.86 93.6 70.34 (3.96%) 62.42 26.34
adaptec2 82.51 189.46 82.24 172.91 81.68 (1.0%) 164.37 88.2 81.21 (1.58%) 162.49 22.56
adaptec3 194.12 314.54 193.87 309.88 189.13 (2.5%) 313.29 181.2 187.95 (3.18%) 314.01 57.78
adaptec4 174.43 371.72 174.16 354.16 171.73 (1.5%) 372.14 168.6 171.62 (1.61%) 361.37 47.94
bigblue1 89.43 112.64 89.43 107.56 87.32 (2.3%) 94.11 124.2 87.04 (2.67%) 94.23 45.71
bigblue2 136.69 387.94 136.69 361.75 132.49 (3.0%) 327.14 150.6 131.37 (3.89%) 321.86 53.56
bigblue3 303.99 1064.63 303.99 1047.66 298.47 (1.8%) 847.03 369.0 297.31 (2.20%) 849.23 110.63
bigblue4 743.75 1534.11 743.75 1500.70 726.71 (2.2%) 1372.49 1539.6 724.78 (2.55%) 1293.10 322.32

Algorithm parameters

To produce graph-layouts of IC netlists we adopt a hybrid net model Viswanathan and

Chu [2004]—a combination of the clique and star models. Each net is converted to a star or

clique-graph depending on the size of the net—i.e. nets with three or fewer pins are modeled as
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Table 2.3. HPWL and structure-preservation test statistic for Prob. 2.3 (min-squared objective)
and Prob. 2.3 (HPWL objective).

Design
Squared-wirelength Direct HPWL

HPWL z HPWL z
adaptec1 70.34 (3.96%) 0.131±0.046 70.12 (4.26%) 0.139±0.052
adaptec2 81.21 (1.58%) 0.069±0.031 81.12 (1.68%) 0.073±0.038
adaptec3 187.95 (3.18%) 0.072±0.041 186.61 (3.87%) 0.076±0.043
adaptec4 171.62 (1.61%) 0.126±0.057 170.34 (2.34%) 0.131±0.061
bigblue1 87.04 (2.67%) 0.063±0.039 85.72 (4.15%) 0.067±0.041
bigblue2 131.37 (3.89%) 0.079±0.037 130.19 (4.76%) 0.081±0.044
bigblue3 297.31 (2.2%) 0.074±0.041 296.04 (2.61%) 0.074±0.043
bigblue4 724.78 (2.55%) 0.081±0.053 723.77 (2.69%) 0.081±0.054

cliques and nets with four or more pins are modeled as stars, with an associated free pseudo-pin

variable introduced. To determine v, we first consider the surface area of cells (i.e. vi = wi×hi,

where wi and hi is the width and height of cell i), scaled such that the distribution is centered

about 1. v is then normalized. The ci are determined according to the free layout space.

Implementation details

We implemented our algorithms in Python using the JAX framework Bradbury et al.

[2018] on a GCP c2-standard-8 machine with 8 virtual CPUs, 32 GB of memory, and a single

Nvidia Tesla K80 GPU. In particular, we exploit JAX’s capability to vectorize batched computa-

tion and compilation to XLA via the jit decorator. XLA facilitates hardware acceleration and the

entire framework (initialization, global placement, detailed placement / legalization) may exploit

GPU and multi-GPU-based parallelism without returning to a Python interpreter.

Numerical results

We applied the proposed method to eight benchmarks from the ISPD’05 contest suite Nam

et al. [2005] and measured the cumulative HPWL post-detailed placement. Numerical results

are provided in Table 2.2. We find that origin initializations consistently under-perform the

other three methods, and that random and min-wirelength exhibit comparable results. However,

initialization using the vanilla projected eigenvectors of the reduced Laplacian Chen et al. [2022]
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result in superior HPWL—improvement between 1.0% and 3.0% compared to the random and

min-wirelength heuristics. Larger gains are achieved when the initialization corresponds to the

solution to Prob. 2.3 using SSM without reweighting—between 1.58% and 3.96%. Additionally,

improvements in global placement runtime correlate with better initialization. We provide the

global placement (DREAMPlace) runtime in Table 2.2. The GP runtime ranges from 62.42s to

1293.10s for the Projected Eigenvectors + SSM method, which is comparable to or less than the

other methods.

Reweighted SSM iterations and runtime In Table 2.3, we demonstrate that the directly

(a) (b)

Figure 2.5. Eigenvector method and projection. (a): Mean normalized decay in HPWL of
adaptec cases. (b): Per-iteration turnaround (seconds) vs. dimension of L22: # free cells + # nets
in 103 unit.

minimizing HPWL via reweighting yields still further improvements—between 1.68% and 4.76%

compared to random and min wirelength initializations. We note that reweighting methods are

typically slow to converge Ene and Vladu [2019]. As a consequence, instead of running our

algorithm to convergence, we set a hard maximum limit of 100 reweighting / SSM steps. We

additionally observe a mean per-iteration wall-time of 26.34−322.32 and a significant (ρ = 0.99,

p = 1.1e−7) linear correlation with the number of free cells. We plot this trend in Fig. 2.5b. It is

likely that further gains could be achieved with a direct method for HPWL minimization.

While the per-iteration runtime of our method is nontrivial, we highlight three key points:

(1.) the experiments imply that the proposed QCQP formulation and method can consistently
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improve placement quality. This evidence incentivises future work to enhance the efficiency of

these algorithms—particularly Laplacian solvers to drastically speed up turnaround time, (2.)

few iterations are needed to significantly improve the post-detailed placement wirelength (as

demonstrated in Fig. 2.5a), (3.) typical placement flows usually involve multiple runs of the

global and detailed placement engine to validate different choices of hyperparameters, while our

parameter-free initializations need only be computed once.

In Fig. 2.5a, we demonstrate that relatively few iterations are needed to improve the

quality of post-detailed placement HPWL. For each testcase, we apply 100 iterations of SSM.

Global and detailed placement is performed using each intermediate SSM iterate as the initializa-

tion. The HPWL of the post-detailed placement is measured and normalized to lie in the range

[0,1]. We plot the distribution of normalized post-detailed placement HPWL with the shaded

region corresponding to 1 standard deviation in normalized HPWL. We observe that across all

testcases, 60% of the improvement in post-detailed placement wirelength is achieved within

the first 5−10 iterations while roughly 80% of the improvement is achieved after the first ∼ 20

iterations. Additionally, we emphasize that our method is parameter free and yields the same

solution across multiple runs. One may only need to generate a single initialization to validate

multiple choices of global / detailed placement hyperparameters.

Preservation of initial structure through global placement

In Fig 2.14, we plot intermediate iterations of the global placer, with colors corresponding

to clusters of standard cells derived according to physical proximity via Euclidean k-means with

k = 10. The consistency of the colors (cluster) pre- and post-global placement serves demonstrate

that the global placement algorithm preserves the global and local structure induced by the seed

layout. Inspired by metrics proposed in Fogaça et al. [2019] to evaluate the quality of a graph

partitioning / clustering, we propose to evaluate this hypothesis by proposing a novel two-sample

permutation test. We formulate the null (H0) and alternative (Ha) hypotheses below:
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(a) (b)

(c) (d)

Figure 2.6. Adaptec3 layout. (a): Projected eigenvectors for seed layout. Colors denote initial
spatial partitions. (b—d) Intermediate DREAMPlace results. Note the preservation of cell
groups (colors) through global placement.

H0: no effect of the initialization on the final layout

Ha: there is an effect

Intuitively, under the null hypothesis, the cells component to any initial spatial partitioning (e.g.

an arbitrary cell’s neighbors) would separate during the global placement process, and a new

partitioning after global placement would yield very different groups of cells. We consider a

partitioning computed based on the initial layout—e.g. we apply Euclidean k-medoids1 with

k = 100. After global placement, we re-partition the final layout using k-means. For each

1k-means assigns centers to arbitrary coordinates, k-medoids assigns centers to cells.
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centroid-cell c of an initial partition Pc, we find c’s partition P′c in the final layout. The statistic

with respect to c is

zc =
|Pc∩P′c|
|Pc|+ |P′c|

(2.8)

We consider the mean over all c; z = 1
k
∑

i∈[k] zci , as the test statistic for a given initialization. Intu-

itively, the null-distribution is centered about zero (samples in the initial partition Pc characterized

by c may end up arbitrarily far from c after global placement). Likewise, the “ideal” test-static

corresponds to 0.5 (Pc = P′c, partitions don’t change after global placement). In Table 2.3, we

report the z-scores associated with each design (since we find p-values are trivial). We simulate

the null-distribution associated with each testcase 1000 times to compute the p-value pstruct, the

percentage of simulations which result in a test statistic equal to or larger than proposed method’s

test statistic. We find significance at the 0.01-level for all designs, with the null-distribution close

to zero (e.g. z̄null = 0.00579 with standard deviation < 10−5 for adaptec3).

Our contributions can be summarized as follows:

1. We propose the NS-Place framework for PCB layout which minimizes net congestion

using a support vector machine-like formulation and performs legalization by solving a

congestion-aware MILP.

2. We demonstrate that the routed placements produced by our framework have fewer design

rule violations and vias, and shorter total metal length compared to manual placements.

In section 2.2, we review previous work. In section 2.2.1, we describe our routability objective.

The NS-Place placement framework, including initialization and the MILP-based legalizer

is described in Section 2.2.2. In section 2.2.3, we present experimental results on real PCB

testcases.
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2.2 PCB Placement Initialization

Examples of previous work on the PCB placement problem include Jain and Gea [1996],

Ismail et al. [2012], Badriyah et al. [2016], Alexandridis et al. [2017]. These techniques rely on

various meta-heuristics to produce non-overlapping layouts while taking into account various

metrics such as thermal and power characteristics of components, timing, and tidiness. In general,

these methods suffer from drawbacks—e.g. are computationally expensive, incapable of rotating

components, or evaluated on synthetic or toy benchmarks. In contrast, our framework is efficient,

capable of rotating modules, extensible, and validated on production PCB designs placed by

industry experts. We additionally acknowledge the similarity of the PCB placement problem

to macro placement, and point the reader to Adya and Markov [2005] for a review of relevant

techniques.

A typical method of estimating routing demand is to consider pin or feasible routed-

wire density Spindler and Johannes [2007]. Other methods include applying Rent’s rule Li

et al. [2004], or more sophisticated routing models; for example relying on the construction of

rectilinear Steiner trees or the external evaluation of a router Roy and Markov [2007]. State of

the art techniques for congestion-aware placement include mPL Li et al. [2004], a multilevel

analytical placer based on non-linear optimization and estimating the routing demand based

on a two-pin connection routing model, ROOSTER Roy and Markov [2007]: a min-cut placer

which models nets by Rectilinear Steiner Minimal Trees, and APlace Kahng et al. [2005], a

multilevel analytical placer based on non-linear optimization and stochastic estimates of the

routing demand. Similar to our work, Shabbeer et al. [2012] propose to minimize a smooth upper

bound on the crossing number to reduce edge crossings in the context of graph visualization, but

their formulation is incapable of handling multi-pin nets.

These techniques generally suffer from inadequate estimation or prohibitive computa-

tional cost. In contrast, the framework proposed in this work is rigorous and does not rely on

rerunning the placement algorithm or applying post-placement optimization.
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2.2.1 Net Separation-Oriented Placement

net e ∈ E
pin matrices Ae ∈ R

p×2

coordinates and orientation x,y ∈ Rn
+, r ∈ {0,1}n

density & net separation cost weight λD,λNS ∈ R+
convex hull coefficients u ∈ R2,γ ∈ R
wirelength smoothing parameter c ∈ R+

Figure 2.7. Notation & key terms

Let x,y ∈ Rn
+ be vectors corresponding of coordinates of n components such that the i-th

component has coordinates encoded in the i-th row of [x : y]; [x : y]i. Let E denote a set of m

nets. We aim to assign coordinates so that the resulting layout has small cumulative wirelength,

layout density, and routing congestion.

Our method may be expressed concisely as the following unconstrained optimization

problem given λ:

min
x,y

∑
e∈E

[
Wa(e; x,y)+λNSNs(e; x,y)

]
+λDD(x,y) (2.9)

where Wa and D corresponds to weighted-average wirelength and density terms, and Ns corre-

sponds to the proposed net separation term described in Sec. 2.2.1.D.

Wirelength and density-driven optimization

Many modern techniques for analytic placement rely on quadratic optimization with

terms associated with attraction of connected cells, and repulsion of overlapping cells. A typical

approach is to represent individual nets as rectangles and to minimize the sum-perimeters over

all nets. Repulsion is often applied between overlapping nodes to reduce density. In this work,

we adopt the smooth continuous and differentiable weighted-average wirelength (Wa) model Hsu

et al. [2011] for wirelength cost. The horizontal net-wirelength for net e is given by

Wa(e)
x =

∑
i∈e xi exp( xi

c )∑
i∈e exp( xi

c )
−

∑
i∈e xi exp(− xi

c )∑
i∈e exp(− xi

c )
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where c is a parameter that controls the smoothness and approximation error. We then write the

wirelength of e:

Wa(e; x,y) =Wa(e)
x +Wa(e)

y

The density term corresponds to the mixed-size module bin-based density objective described in

Kahng et al. [2005]. The placement area is divided into B bins, and the placer seeks to equalize

the overlap at each bin. For a bin b, let xb be the x-coordinate of the center and wb be the width.

Then the smoothed overlap Θx(b, i) in the x-direction between bin b and module i with width wi

and height hi is

Θx(b, i) =



1−2d2
x/w

2
b, if 0 ≤ dx ≤ wb/2

2(dx−wb)2/w2
b, if wb/2 ≤ dx ≤ wb

0 if wb ≤ dx

where dx = |xi− xb|. The overlap in the y-direction is defined similarly. The density function of

bin b is then

Db(x,y) =
∑

i

CiΘx(b, i)Θy(b, i) (2.10)

where Ci is a normalization factor such that
∑

b CiΘx(b, i)Θy(b, i) = wihi—the area of module i.

Finally, D(x,y) =
∑

b(Db(x,y)−
∑

i(wihi)
B )2.

Net-separation optimization via margin maximization

As mentioned in Sec. 2.2, typical approaches to model routing congestion rely on

estimating or expressing the routed wire density as a function of pin-density and the feasible

routing-area (e.g. the pin-bounding box Spindler and Johannes [2007]). The goal is then to

minimize this notion of wire-density. In this work, we model the feasible routing region as

the convex-hull of the net-pins, and our goal is to separate routing regions. This prevents

over-estimation of the routing density as shown in Fig. 2.8. The method consists of two steps:

1. Given two nets, find the max-margin separator h.
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(a) (b)

Figure 2.8. Congestion between nets denoted by red and blue pins. (a) Rectilinear density
metrics are pessimistic. (b) An optimistic model of routability. The margin between the convex
hulls of nets.

2. For all movable components, find directions (gradients) that maximize the margin with

respect to h.

Consider a k-pin net e defined by pins with coordinates e1 = [e1x,e1y],e2 = [e2x,e2y], . . . ,ek =

[ekx,eky] ∈ R2. Note that the coordinates of any point lying in the convex hull of the net-area

may be written as a convex combination of these pin coordinates. Let A⊤e =

e1x e2x . . . ekx

e1y e2y . . . eky


be the pin-matrix associated with net e. Now consider a k′-pin net e′ with associated pin matrix

Ae′ . For the convex hulls characterized by the pins to not intersect, there necessarily must be a

u , 0 and γ such that x⊤u−γ is nonpositive for all x lying in one net, and nonnegative for all x

lying in the other net. We denote the hyperplane defined by {x|x ∈ R2, x⊤u = γ} the separating

hyperplane, and we want to introduce a regularizer which encourages e and e′ to lie in different

half-spaces with sufficient margin. Note that e and e′ do not intersect if there is no shared point

in the interior of the convex hulls characterized by the coordinates of pins in e and e′—i.e. if the
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following has no solution.

∃δAe ∈ R
k, δAe′ ∈ R

k′

such that A⊤e δAe = A⊤e′δAe′ 1⊤δAe ,1
⊤δAe′ = 1,

δAe , δAe′ ≥ 0

Namely, duality & Farkas’ Lemma provide the conditions that must be satisfied if the convex

hulls defined by the pins do not intersect:

Aeu ≥ α1 Ae′u ≤ β1 α−β > 0

=⇒ Aeu−γ1 ≥ 1, Ae′u−γ1 ≤ −1

This formulation naturally implies the solution to the following minimization problem. Note that

one might alternatively aim to find the maximum-margin separator. Due to the equivalence with

the SVM optimization problem Cortes and Vapnik [1995], Bennett and Bredensteiner [2000],

efficient solvers may be employed to recover γ and u.

0 =min
u,γ

f (e,e′,u,γ)

=min
u,γ
||(−Aeu+ (γ+1)1)+||2+

||(Ae′u− (γ−1)1)+||2

(2.11)

Let Ae be the pin matrix corresponding to net e. We define the net-separation regularizer:

Ns(·) =
1
|M|

∑
e′∈E

min
u,γ

f (e,e′,u,γ) (2.12)
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The gradient of Ns can then be recovered with respect to the i-th row (pin coordinates) of Ae:

∂Ns
∂(Ae)i

= 1(Ae)i·u≤γ+12⟨u, (γ+1)1−Aeu⟩

Note that due to the reliance of the above gradient on γ, and the reliance of γ on pin coordinates

Ae, we adopt an alternating minimization method described in Sec. 2.2.1.B.

2.2.2 NS-Place placement flow

Figure 2.9. Placement procedure with Laplacian Eigenvector initialization, net-separation
minimization, and MILP-based legalization with relative positioning constraints.

In this section, we describe the overall flow of our method. The high-level flow is

described in Figure 2.9.

Initialization with Laplacian eigenvectors

First-order optimization algorithms are notoriously sensitive to initialization when ap-

plied to nonlinear problems. We address this by first collapsing the netlist hypergraph to a
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component graph via the clique model. We then construct a matrix-representation of the graph

connectivity—the graph Laplacian. The solution to the associated eigenvalue problem approx-

imates the solution to the sparsest cut problem Hall [1970], and clusters arising out of the

vertex-projection into the space spanned by the first nontrivial eigenvalues correspond highly

connected components of the graph. We use these coordinates to initialize global placement.

More concretely, we solve the following problem, where x and y are coordinates of components,

ci are constants, v is a vector of component areas, V = diag(v), and L is the normalized graph

Laplacian; L = R−
1
2 AR−

1
2 , where A is an adjacency matrix and R is the diagonal degree matrix.

min x⊤Lx+ y⊤Ly

s.t. v⊤x = 0, v⊤y = 0, x,y , 0

x⊤V x = c1, y⊤Vy = c2, x⊤Vy = c3

(2.13)

Intuitively, the objective is to minimize the weighted squared wire length. The linear and non-

equality constraints concentrate the layout about the origin and prevent the trivial solution. The

quadratic constraints spread the placement over the x and y axes.

Note that fixed-node constraints may be considered through variable partitioning and the

addition of an affine term in the objcetive. However, the problem remains unaware of component

orientations. To resolve this, we generate candidate initializations by considering all possible

relative component orientations for a given solution to Problem 2.13. The solution with minimal

cost with respect to Eq. 2.9 is used to seed the global placer.

Global placement using coordinate descent

In Alg. 3, we present the detailed steps of our iterative method to reduce congestion.

Recall the proposed global placement optimization problem described in Eq. 2.9. For brevity, we

refer to the cumulative objective as F. Note that the above problem may be solved exactly via

quadratic programming. We propose to solve the problem approximately by applying first-order
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Algorithm 3. Net crossing minimization

Input: Initial placement [x : y], pin matrices Ae, Ae′ , regularization parameter λ , learning rate α,
budget n
Output: Placement [x : y]

1: function NsOpt ([x : y],Ae,Ae′ ;λ,α)
2: while Eq. 2.9 not converged do
3: Fix Ae, Ae′ , compute u, γ by Eq. 2.11 ▷ separator
4: Fix u, γ, compute ∇pi F, P
5: g← λD∇[x:y]D+P ▷ compute component update
6: [x : y]t+1← [x : y]t +α ·g ▷ update components
7: update Ae,Ae′ according to [x : y]t+1
8: end while
9: return [x : y]n

10: end function

methods in an alternating minimization framework by iteratively solving for u and γ while

keeping x and y fixed and visa-versa. Given a layout, we first compute the separating hyperplane

characterized by u and γ in Eq. 2.11 (line 4 of Alg. 3). Given u and γ, we can derive the

net separation and wirelength gradients associated with individual pins (line 4). To recover

the component position update, we introduce the auxiliary variable P ∈ Rn×2 corresponding to

component update derived from pin-gradients where the i-th row of P is defined to be the average

of the ith component’s pin gradients—i.e. Pi =
1
|P(i)|
∑

p∈P(i)∇pF. The gradients associated with

the density and wirelength terms can then be computed, and component positions updated (lines

5-6). Given these new positions, the pin matrices Ae and Ae′ can then be updated (line 7).

Legalization via mixed integer linear programming

In this section, we introduce a standard MILP-based layout formulation for placing recti-

linear components subject to overlap and boundary constraints. We note that this formulation

shares similarities with previous work, e.g. Funke et al. [2016] who discuss the optimality of

MILP for wirelength-minimal block placements. Additionally, we integrate relative position-

ing constraints derived from the global placement procedure to preserve net separation while

improving scalability.
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MILP-based wirelength-minimal layout The objective and constraints are described in the

following set of equations. We introduce a second term corresponding to wirelength variance,

which we find improves the routability of designs further.

min
x,y,r

∑
i∈|E|

hpwl(i)+
[
max
i∈|E|

hpwl(i)−min
i∈|E|

hpwl(i)
]

hpwl(i) = (U(i)
x −L(i)

x )+ (U(i)
y −L(i)

y )

where the hpwl term (given for the x-direction only) is

U(i)
x ≥ p(i)

j (x), L(i)
x ≤ p(i)

j (x) ∀ j ∈ Ei

and the solution is subject to non-overlapping constraints (for brevity, boundary constraints are

not included):

xi+ rihi+ (1− ri)wi ≤ x j+W(pi j+qi j) i-left-j

yi+ riwi+ (1− ri)hi ≤ y j+H(1+ pi j−qi j) i-under-j

xi− r jh j− (1− r j)w j ≥ x j−W(1− pi j+qi j) i-right-j

yi− r jw j− (1− r j)hh ≥ y j−H(2− pi j−qi j) i-over-j

xi,yi ≥ 0, ri,qi j, pi j ∈ {0,1} variables

Where ri, qi j, pi j are variables representing orientation and relative positions between modules i

and j.

Relative positioning constraints Given a global placement solution, we derive relative position

constraints for pairs of components. By doing so, we preserve the global structure of the global

placement solution while allowing the MILP placer to make local adjustments.

For each pair of modules, we consider the minimum horizontal and vertical distances
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between modules (i.e. from boundary to boundary). We then check if the maximum of the

horizontal and vertical distances exceeds a pre-defined threshold k which trades off a preference

for HPWL-minimal solutions or routability and runtime. A horizontal or vertical relative position

constraint is introduced depending on which distance is greater and the associated binary decision

variables (qi j or pi j) are removed and the corresponding overlap constraints are simplified or

pruned entirely. By integrating these constraints, we preserve the global structure of the analytical

solution while eliminating a nontrivial number of decision variables.

2.2.3 Experiments

Table 2.4. Design characteristics. locked are fixed components. layers are layers available for
routing.

design W ×H(mm2) #comp #locked. util. #nets #pins #layers
PCB1 21×14 8 1 0.59 15 40 1
PCB2 51×23 18 5 0.79 34 77 2
PCB3 55×28 34 2 0.44 38 138 2
PCB4 23×60 28 6 0.67 52 140 2
PCB5 41×22 48 2 0.40 54 163 2
PCB6 62×57 48 2 0.17 64 190 2
PCB7 51×23 46 2 0.55 69 211 2
PCB8 57×87 36 2 0.62 70 188 2
PCB9 44×36 58 2 0.60 80 229 2

PCB10 102×54 57 18 0.21 99 319 2
PCB11 89×58 64 2 0.10 134 401 4
PCB12 58×60 58 4 0.31 35 233 4
PCB13 86×72 61 4 0.51 63 314 4
PCB14 86×54 1570 947 0.64 386 1638 4

We applied our method to 14 PCB benchmarks Lin et al. [2021]. Details are provided in

Table 2.4. We solve Eq. 2.12 via gradient descent with momentum with α = 1e−3, λNS = 1, and

λD = 1. GDMILP corresponds to running the NS-Place with λNS = 0, and MILP corresponds to

solving the MILP without relative-position constraints. Layout quality is evaluated using the

open-source FreeRouting router fre. The routed wirelength, number of design rule violations,
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Table 2.5. Pre-route metrics for PCB designs. We report the cumulative HPWL and the net
separation cost. The top performing result is bolded. The "-" represents that MILP cannot
produce a feasible placement in 4 hours.

Design
HPWL (mm) Net Separation Obj. Runtime (s)

manual MILP GDMILP NS-Place manual MILP GDMILP NS-Place MILP GDMILP NS-Place
PCB1 110.22 64.44 (41.50) 68.90 (37.4) 72.10 (34.60) 192.13 192.11 192.11 187.40 2.70 4.90 5.10
PCB2 362.70 291.10 (19.70) 294.32 (18.80) 296.18 (18.30) 497.50 497.40 499.30 493.10 6.30 6.20 6.80
PCB3 312.60 212.70 (32.0) 252.40 (19.30) 271.30 (13.20) 1427.10 2124.30 1426.40 1411.40 14400.00 3793.00 3917.60
PCB4 603.30 - 536.48 (11.10) 531.19 (12.00) 3750.20 - 3753.10 3746.13 - 9.40 9.90
PCB5 654.10 - 621.00 (5.10) 637.00 (2.60) 2400.00 - 2400.00 2300.00 - 4231.20 4461.50
PCB6 771.80 - 649.40 (15.90) 708.60 (8.40) 1930.00 - 1940.00 1740.00 - 4893.10 5072.40
PCB7 2987.90 - 563.10 (88.50) 1601.40 (46.40) 1241.34 - 1239.70 1017.16 - 5927.30 6008.20
PCB8 766.10 731.30 (4.60) 748.40 (2.30) 756.40 (1.30) 98500.00 99500.00 99400.00 96400.00 14400.00 4360.90 4732.40
PCB9 714.90 - 677.60 (5.20) 662.50 (7.30) 2600.00 - 2600.00 2400.00 - 5327.30 5719.80

PCB10 4355.61 - 3317.94 (23.80) 3315.46 (23.90) 2117.80 - 2124.10 2103.60 - 5314.70 5417.20
PCB11 2941.90 - 2573.20 (12.50) 2618.10 (11.00) 9210.00 - 9210.00 9070.00 - 4651.90 4782.40
PCB12 972.50 929.30 (4.40) 932.60 (4.10) 941.30 (3.20) 10.73 11.31 11.47 36.92 14400.00 4619.10 4752.30
PCB13 2644.97 - 2126.13 (19.60) 2151.77 (18.60) 2400.00 - 2400.00 2300.00 - 3278.60 3416.30
PCB14 7069.26 - 6432.19 (9.01) 6691.34 (5.35) 29400 - 29870 11186 - 14400.00 14400.00

Table 2.6. Post-route metrics for PCB designs. We report routed wirelength using FreeRouting,
the number of vias, and the number of DRVs as reported by KiCAD. We report the percent
improvement in parenthesis. The best result is bolded.

Design
Routed Wirelength (mm) #Vias #DRVs + #unrouted nets

manual MILP GDMILP NS-Place manual MILP GDMILP NS-Place manual MILP GDMILP NS-Place
PCB1 129.00 123.00 (4.70) 194.00 (-50.4) 121.00 (6.20) 0 10 9 4 6 0 0 0
PCB2 354.00 632 (-78.50) 507.00 (-43.20) 421.00 (-18.90) 3 6 8 5 13 26 24 23
PCB3 638.00 682.00 (-6.90) 771.00 (-20.80) 616.00 (3.40) 17 21 24 15 11 2 3 0
PCB4 809.00 - 857.00 (-5.90) 806.00 (0.40) 31 - 59 54 17 - 4 0
PCB5 558.00 - 538.00 (3.60) 541.00 (3.00) 32 - 84 49 7 - 5 3
PCB6 1007.00 - 854.00 (15.90) 906.00 (10.00) 23 - 47 19 34 - 29 0
PCB7 3735.00 - 3140.00 (15.90) 2949.00 (21.00) 161 - 141 93 23 - 0 0
PCB8 913.00 854.30 (6.30) 713.40 (21.90) 711.90 (22.00) 57 73 89 43 27 6 5 0
PCB9 1069.00 - 749.00 (29.90) 772.00 (27.80) 38 - 87 64 17 - 7 0

PCB10 5043.00 - 5294.00 (-1.00) 4914.00 (2.60) 129 - 136 97 12 - 3 0
PCB11 3460.00 - 3271.90 (5.40) 3107.80 (10.20) 131 - 286 109 23 - 57 13
PCB12 1790.00 1960.00 (-9.40) 1930.00 (7.80) 1720.00 (3.90) 49 62 54 45 4 9 8 0
PCB13 3150.00 - 2903.00 (7.80) 2897.00 (8.00) 161 - 98 83 11 - 9 0
PCB14 9017.00 - 9643.00 (-6.94) 8873.00 (1.60) 976 - 1007 942 104 - 139 92

and the number of vias are reported. Experiments are performed with an 3.4GHz Intel i7-4770

CPU and 31GB RAM. If no optimal solution is found after 4 hours, we report results for the

best-so-far (with respect to the MILP objective) feasible solution. If no feasible solution is found,

associated entries are marked with "-".

Main experiments

PCB placement metric comparison We provide manual, MILP, GDMILP, and NS-Place

placement results in table 2.5. We show that NS-Place reduces the net separation cost by 77%

and 41% on average compared to manual and GDMILP. This implies that although the MILP-
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(a) (b)

(c) (d)

Figure 2.10. PCB12 layouts. (a): Seed placement produced from Laplacian eigenvectors. (b)
Global placement to minimize net crossings. (c) MILP-based legalization. (d) Manual layout.

based fine-tuning step does not optimize net separation explicitly, satisfaction of relative position

constraints results in preservation of the global structure produced by the net separation step.

Furthermore, the inclusion of the net separation term does not result in a large increase in HPWL.

Although the HPWL of NS-Place solutions increase 9% on average compared to GDMILP,

NS-Place still achieves 20% lower HPWL compared to manual layouts.

We report the cumulative runtime to complete a placement in Table 2.5. Note that

methods employing relative positioning constraints (i.e., GDMILP, NS-Place) strictly improve

over vanilla MILP. We see that NS-Place closely matches the performance of the GDMILP flow

with only around 4% increase on average runtime. This implies that the net separation regularizer

imposes low overhead. Fig. 2.10 (a), (b), and (c) show the PCB placement results of PCB12 of

each stage of automatic placement flow. Fig. 2.10 (d) is the manual layout of PCB12. Compared
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to Fig. 2.10 (d), we observe that NS-Place produces placement with fewer net crossings as shown

in Fig. 2.10 (c).

PCB routing metric comparison We evaluate routability in Table 2.6 by reporting the routed

(a) (b)

Figure 2.11. PCB12 P&R result in KiCAD. (a) Solution produced by our method. Routable
regions are emphasized with green rectangles. (b) Routed manual placement.

wirelength, the number of DRVs and vias, and the number of unrouted nets using FreeRouting

and Kicad. Compared with manual, MILP, and GDMILP, NS-Place reduces the #DRVs and

#unrouted nets by roughly 80%, 70%, and 75% on average.

NS-Place additionally reduces the routed wirelength by 10% and 6% on average compared

to manual and GDMILP respectively and reduces the #Vias by 18% and 39%. Moreover, for

PCBs 7, 10, 11, and 13, which have #components larger than 60 and #pins larger than 300,

NS-Place achieves 34% #Vias reduction on average compared to manual. An example routed

result is given in Fig. 2.11. Compared to the manual layout, NS-Place successfully improves

routability via net separation (i.e., the routable regions near the center of the board). Note

that NS-Place fails to produce a superior solution for PCB2. We attribute this to PCB2’s high

utilization, with only about 20% of the board area available to the global placer as whitespace.
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In summary, we demonstrate that NS-Place significantly reduces #DRVs, #unrouted nets, and

#Vias for PCB reliability compared to manual, MILP, and GDMILP with an extensive study on

14 PCBs.

2.3 Graph Learning

Semi-supervised learning is an important field in machine learning and statistics. Semi-

supervised methods leverage both labeled and unlabeled data. In semi-supervised learning

(SSL), we are given a partially-labeled training set consisting of labeled examples and unlabeled

examples. The goal in this setting is to learn a predictor that is superior to a predictor that is

trained using the labeled examples alone. This setup is motivated by the high cost of obtaining

annotated data on practical problems. Consequently, we are typically interested in the regime

where the number of labeled examples is significantly smaller than the number of training points.

For problems where very few labels are available, the geometry of the unlabeled data can be

used to significantly improve the performance of classic machine learning models. For example,

a seminal work in graph-based semi-supervised learning is Laplace learning Zhu et al. [2003],

which seeks a harmonic function that extends provided labels over the unlabeled vertices. Laplace

learning, and its variants have been widely applied in semi-supervised and graph-structured

learning Zhou et al. [2005, 2003], Ando and Zhang [2006].

In this work, we improve upon the state-of-the-art for graph-based semi-supervised

learning at very low label rates. Classical Laplace learning and label propagation algorithms

yield poor classification results Nadler et al. [2009], Alaoui [2016] in this setting. This is typically

attributed to the fact that the solutions develop localized spikes near the labeled vertices and

are nearly constant for vertices distant from labels. In other words, Laplace learning-based

algorithms often fail to adequately propagate labels over the graph. To address this issue, recent

work has suggested imposing small adjustments to classical Laplace learning procedure. For

example, p-Laplace learning Alaoui [2016], Slepčev and Thorpe [2019], Calder [2018, 2019]
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for p > 2, and particularly for p =∞, often yields superior empirical performance compared to

Laplace learning at low label rates Flores et al. [2019]. Other relevant methods for addressing

low label rate problems include higher-order Laplacian regularization Zhou and Belkin [2011]

and spectral classification Belkin and Niyogi [2002], Zhou and Srebro [2011].

Other recent approaches have aimed to derive various approximations by iteratively

re-weighting the graph more heavily near labels. For example, Weighted Nonlocal Laplacian

(WNLL) Shi et al. [2017] amplifies the weights of edges immediately connected to labeled nodes.

The WNLL algorithm achieves better results at moderately low label rates and exhibits desirable

limiting characteristics, but still performs poorly at very low label rates Flores et al. [2019].

To address this, Calder and Slepčev [2020] proposed a Properly Weighted Laplacian, which

re-weights the graph in a way that is well-posed at arbitrarily low label rates.

In this work, we propose to solve a natural semi-supervised extension of Laplacian

Eigenmaps, which is well-posed in the limit of unlabeled data. Our extension is initially

motivated by the optimization-based perspective of Laplacian Eigenmaps as a Rayleigh Quotient

minimization problem over all labeled and unlabeled vertices. We show that a natural partitioning

of the problem yields a more general quadratically constrained quadratic program over the

unlabeled vertices. We then propose to generalize the sequential subspace (SSM) framework

commonly used to solve similar problems in Rn to Rn×k.

To summarize, our contributions are:

1. We introduce a natural formulation of graph semi-supervised learning as a rescaled

quadratic programming problem on a compact Stiefel Manifold, i.e. a generalization

of the Trust-Region Subproblem.

2. We describe scalable approximate methods and globally convergent iterative methods and

demonstrate robustness in a variety of label rate regimes.

3. We compare our approach to competing semi-supervised graph learning algorithms and

demonstrate state-of-the-art performance in low, medium, and high label rate settings on
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MNIST, Fashion-MNIST, and CIFAR-10.

The rest of the paper is organized as follows. In Section 2.3.1 we first briefly introduce Laplacian

Eigenmaps and our supervised variant, and then provide a detailed motivation for the algorithm.

2.3.1 Preliminaries and Laplace learning

We assume the data can be viewed as lying on a graph, such that each vertex is a data-

point. Let V = {v1,v2, . . . ,vM} denote the M vertices of the graph with edge weights wi j ≥ 0

between vi and v j. We assume that the graph is symmetric, so wi j = w ji. We define the degree

di =
∑n

j=1 wi j . For a multi-class classification problem with k classes, we let the standard basis

vector ei ∈ Rk represent the i-th class (i.e. a “one hot encoding”). Without loss of generality,

we assume the first m vertices v1,v2, . . . ,vm are given labels y1,y2, . . . ,ym ∈ {e1,e2, . . . ,ek}, where

m≪ M. Let n denote the number of unlabeled vertices, i.e. n = M−m. The problem of graph-

based semi-supervised learning is to smoothly propagate the labels over the unlabeled vertices

vm+1,vm+2, . . . ,vM.

The Laplace learning algorithm Zhu et al. [2003] extends the labels by solving the

following problem

x(vi) = yi, if 1 ≤ i ≤ m

Lx(vi) = 0, if m+1 ≤ i ≤ M

 (2.14)

where L is the unnormalized graph Laplacian given by L = D−W, where D is a diagonal matrix

whose elements are the node degrees, and x :V→ Rk. The prediction for vertex vi is determined

by the largest component of x(vi)

ℓ(vi) = argmax
j∈{1,...,k}

{x j(vi)}. (2.15)

We note that Laplace learning is also called label propagation (LP) Zhu [2005], since the Laplace

equation eq. (2.14), can be solved by repeatedly replacing x(vi) with the weighted average of its

neighbors.
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The solution of Laplace learning eq. (2.14), is the minimizer of the following gradient

regularized variational problem with label constraints x(vi) = yi:

min
x∈ℓ2(V)

{
||∇x||2

ℓ2(V2)|x(vi) = yi,1 ≤ i ≤ m
}

(2.16)

2.3.2 Motivation via graph cut & Laplacian Eigenmaps

Suppose that we have two disjoint sets of vertices on the graph;V1,V2 ⊆V, such that

V2 =V
c
1. A graph cut:

cut(V1) =
∑

i∈V1, j∈V2

wi j

is the total summation of the edge weights whose two vertices are in different sets. In particular,

cut(V) = 0. Note that finding partitions that minimize this cut is likely to give us unbalanced

clusters/partitions.

As an alternative, consider the ratio-cut: rcut(V1,V2) = cut(V1,V2)
|V1|

+
cut(V1,V2)
|V2|

. Minimiz-

ing the ratio cut can be approximated by an eigenvector problem. First note that the cut is directly

related to quadratic form associated with the weighted graph Laplacian. Denote the indicator of

Vi: 1Vi . Then,

cut(V1,V2) = 1⊤
V1

L1V1 = 1⊤
V2

L1V2

Likewise, the ratio-cut can be succinctly written

rcut(V1,V2) = ⟨L,Z⟩

Where Z = 1
|V1|

1V11⊤
V1
+ 1
|V2|

1V21⊤
V2

. Note that Z is a PSD projection, that is, Z = UU⊤. One

way to relax the ratio cut is to optimize over V ∈ Rn×2:

min⟨L,U⊤⟩ s.t. U⊤U = I
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In Laplacian Eigenmaps Belkin and Niyogi [2003], one seeks an embedding of the

vertices via the eigenfunctions of the Laplacian corresponding to the smallest nontrivial eigenval-

ues. Equivalently, this can be expressed as the following Quadratically Constrained Quadratic

Program (QCQP) over the vertices of the graph:

min
X0
⟨X0,LX0⟩ s.t. X⊤0 X0 = I, 1⊤X0 = 0 (2.17)

where ⟨A,B⟩ is is the trace of the matrix A⊤B and 1 is the all-ones vector. The notation

X0 ∈ R
M×k is the mapping of the M vertices to a k-dimensional space. In the case where k = 1,

eq. (2.17) is also known in the numerical analysis literature as a Rayleigh quotient minimiziation

problem Golub and Van Loan [1996]. Despite its nonconvexity, a unique (up to orthogonal

transformations) global solution is given by the set of eigenvectors of L corresponding to the

smallest k nontrivial (nonzero) eigenvalues of L.

2.3.3 Semi-supervised graph learning

We first extend these frameworks with supervision, motivated by Laplace learning

in eq. (2.16). Additionally, to facilitate the supervised decomposition, we rescale I uniformly by

p = M/k, the balanced proportion of samples associated with each class:

min
X0
⟨X0,LX0⟩

s.t. X⊤0 X0 = pI, 1⊤X0 = 0, (X0)i = yi, i ∈ [m]
(2.18)

We denote the objective F. The associated prediction is then ℓ(xi) = argmax j∈{1,...,k}(X0)i j. Next,

we show how supervision naturally leads to a partitioning of the problem. We denote the

submatrices of X0 and L corresponding to the n unlabeled and m labeled vertices as Xu, Xl and

Lu, Ll, respectively. More concretely, L =
[

Ll Llu
Lul Lu

]
and X0 =

[
Xl
Xu

]
. Then, in conjunction with
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considering Xl fixed, the problem in eq. (2.17) may be expressed as

min
Xu
⟨Xu,LuXu⟩− ⟨Xu,B0⟩

s.t. X⊤u Xu =Cu, 1⊤Xu = −r⊤
(2.19)

where B0 = 2 ·LulXl, Cu = pI−X⊤l Xl = (p− p̃)I, where p̃ =m/k, and r = (1⊤Xl)⊤ = p̃1⊤ ∈ Rk are

fixed parameters, and Xu are the decision variables.

In general, the quadratic equality constraint poses a significant challenge from an op-

timization standpoint. We propose to address this problem directly by solving an equivalent

rescaled problem. By introducing terms to eliminate the linear constraint, we show how the

problem may be rescaled and efficiently and robustly solved as a quadratic program on a compact

Stiefel Manifold, denoted

St(n,k) = {X ∈ Rn×k : X⊤X = I}. (2.20)

The associated solution to this problem can then be used to determine the labels of the unlabeled

vertices, as in Laplace learning eq. (2.16).

Remark 2.3.1. Given a matrix X ∈ Rn×k, its projection onto St(n,k), [X]+ := argmin{||Xs−X||F :

Xs ∈ St(n,k)} is given by

[X]+ = UV⊤, (2.21)

where X = UΣV⊤ is the singular value decomposition.

To eliminate the linear constraint, we introduce two adjustments: first, let (X)i = (Xu)i+

1
nr⊤ denote a row-wise centering transformation with respect to the labeled nodes. This yields

the new constraint 1⊤X = 0 and yields C =Cu−
1
nrr⊤ for X. Second, we introduce the projection

P = I− 1
n11⊤ onto the subspace orthogonal to the vector 1 ∈ Rn, i.e., 1⊤(PX) = 0, which projects

vectors onto the set of mean-zero vectors. To obtain a solution limited to this subspace, we

introduce the substitutions B = P(B0−Lu
1
n1r⊤) and L = PLuP which implies 1⊤B = 0. Consider

58



the substitution X← XC1/2. The equivalent, rescaled problem is then

min
X:X∈St(n,k)

⟨X,LXC⟩− ⟨X,BC1/2⟩ (2.22)

Note that this problem is exactly the generalization of well-known problems that arise in trust-

region methods, optimization of a nonconvex quadratic over a unit ball or sphere Sorensen

[1982], Conn et al. [2000], i.e. problems of the form

min
x∈Rn:||x||=1

⟨x,Lx⟩− ⟨x,b⟩

We define the Lagrangian of eq. (2.22) where Λ ∈ Rk×k are the Lagrange multipliers:

⟨X,LXC⟩− ⟨X,BC1/2⟩− ⟨Λ, (X⊤X− I)⟩. (2.23)

The first-order condition is then

LXC = BC1/2+XΛ (2.24)

for some Λ. Solutions X that satisfy eq. (2.24) are critical points or stationary points. In general,

there could exist multiple critical points that satisfy this condition. In the appendix we show that

at these “stationary points” (maximizers, minimizers, or saddle points), (1.) the eigenvalues of Λ

characterize the optimality of X and (2.) finding good critical points necessitates computation of

the eigenvalues of L.

2.3.4 Efficient approximation via Procrustes Alignment

This step described in Sec. 1.2.1 can be interpreted as an alignment step, where an

orthogonal transformation Q is found that aligns unlabeled vertices with their neighboring

labeled vertices, and apply this transformation to all unlabeled vertices. We briefly describe the

connection with Orthogonal Procrustes Analysis Wang and Mahadevan [2008]. Let X be feasible,
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i.e. X⊤X = I. The approximation C ≈ I is appropriate in the limit of few labeled examples or

unlimited unlabeled data. Since C = (p− p̃)I− p̃2

n 11⊤, then C→ pI in the limit of n
m → 0. Note

that the invariance is nothing but tr(X⊤LX) = ⟨X,LX⟩ = ⟨XQ,LXQ⟩ for any orthogonal Q. Thus,

argmin
Q:Q∈St(k,k)

⟨XQ,LXQ⟩− ⟨XQ,B⟩

= argmax
Q:Q∈St(k,k)

⟨XQ,B⟩

= argmin
Q:Q∈St(k,k)

||XQ−B||2F .

(2.25)

The problem stated in the last line is the canonical Orthogonal Procrustes problem in Rk×k

in the context of finding an alignment between the axis-aligned labeled vertices and their

neighborhood of unlabeled vertices. We demonstrate the effect of this procedure in Figure 2.12.

In Figure 2.12a—b, we plot the first pair of eigenvectors corresponding to the smallest two

nonzero eigenvalues associated with a barbell graph. In Figure 2.12c, we pick a random pair

of vertices vi and v j with coordinates xi and x j from each clique and assign labels yi = xi and

y j = x j. Under this labeling, we say that the embedding is inconsistent. In other words, a linear

predictor in the space spanned by the embedding would be incapable of recovering a separating

hyperplane that accurately classifies the unlabeled samples. We then show that by applying the

approximate method based on Procrustes Analysis introduced in Section 1.2.1, we recover an

embedding which is consistent with the labels.

Alternatively, the projection and Q-transform can be interpreted as performing orthogonal

multivariate regression in the space spanned by the first k nontrivial eigenvectors of L:

Q = argmin
Q:Q∈St(k,k)

∑
i∈[m]

||xiQ− yi||
2
2,

where Q ∈ Rk×k and predictions are given by XQ. Note that this is similar in principal to the

Semi-Supervised Laplacian Eigenmaps (SSL) algorithm Belkin and Niyogi [2002], which solves
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(a) (b)

(c) (d)

Figure 2.12. Eigenvector method and projection example on the barbell graph. (a):
Embedding via Laplacian Eigenmaps. (b): Several iterations of gradient-based repulsion are
applied to remove vertex overlaps for better visualization. (c): Consider taking an arbitrary vertex
from each clique and assigning it a label (green vertices) such that the embedding is inconsistent
with the labels. (d): Orthogonal transform Q derived from Prop. 1.1.3 and applied to X; XQ
resolves the discrepancy between the embeddings and the labeled vertices.

an ordinary least squares problem using eigenvectors X of the Laplacian as features:

Q = argmin
Q

∑
i∈[m]

||xiQ− yi||
2
2.

Crucially, the orthogonality constraint on Q ensures that the solution remains feasible, i.e.

that XQ ∈ St(n,k). Furthermore, we show in our experiments that this feasability significantly

improves generalization at very low label rates in comparison to standard Laplacian Eigenmaps

SSL. These interpretations serve to motivate our initialization and subsequent refinement. In

particular, Zhou and Srebro [2011] consider the limiting behavior of Laplacian Eigenmaps SSL
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(a) (b) (c) (d) (e) (f)

Figure 2.13. Barcode plots of MNIST predictors (left) and embeddings of samples for digits ‘2’
and ‘7’ (right). Learning is performed with 1 label per class. In the barcode plots, the rows are
the samples, ordered by their class. Ordering of the columns was obtained by iteratively sorting
the columns of the embedding matrices X. (a—b) Laplace learning exhibits degeneracy in the
limit of unlabeled data. (c—d) Embeddings derived using Procrustes Analysis (Section 1.2.1)
demonstrates no degeneracy but mixed samples form different classes together. (e—f) Our
method exhibits good classification performance (a block diagonally dominant barcode) while
respecting the geometry of unlabeled examples.

and show that it is non-degenerate in the limit of infinite unlabeled data.

2.3.5 Experiments

Table 2.7. MNIST: Average accuracy scores over 100 trials with standard deviation in brackets.
Best is bolded.

# Labels per class 1 2 3 4 5

Laplace/LP Zhu et al. [2003] 16.1 (6.2) 28.2 (10.3) 42.0 (12.4) 57.8 (12.3) 69.5 (12.2)
Nearest Neighbor 55.8 (5.1) 65.0 (3.2) 68.9 (3.2) 72.1 (2.8) 74.1 (2.4)
RandomWalk Zhou et al. [2004] 66.4 (5.3) 76.2 (3.3) 80.0 (2.7) 82.8 (2.3) 84.5 (2.0)
WNLL Shi et al. [2017] 55.8 (15.2) 82.8 (7.6) 90.5 (3.3) 93.6 (1.5) 94.6 (1.1)
p-Laplace Flores et al. [2019] 72.3 (9.1) 86.5 (3.9) 89.7 (1.6) 90.3 (1.6) 91.9 (1.0)
Poisson Calder et al. [2020] 90.2 (4.0) 93.6 (1.6) 94.5 (1.1) 94.9 (0.8) 95.3 (0.7)
LE-SSL Belkin and Niyogi [2002] 43.1 (0.2) 87.4 (0.1) 88.2 (0.0) 90.5 (0.1) 93.7 (0.0)
Procrustes-SSL 87.0 (0.1) 89.1 (0.0) 89.1 (0.0) 89.6 (0.1) 91.4 (0.0)
SSM 90.6 (3.8) 94.1 (2.1) 94.7 (1.6) 95.1 (1.1) 96.3 (0.9)

In this section, we present a numerical study of our algorithm applied to image classifica-

tion in three domains at low label rates. We additionally explore medium and large label rates in

comparion to recent state-of-the-art methods.
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Table 2.8. FashionMNIST: Average accuracy scores over 100 trials with standard deviation in
brackets.

# Labels per class 1 2 3 4 5

Laplace/LP Zhu et al. [2003] 18.4 (7.3) 32.5 (8.2) 44.0 (8.6) 52.2 (6.2) 57.9 (6.7)
Nearest Neighbor 44.5 (4.2) 50.8 (3.5) 54.6 (3.0) 56.6 (2.5) 58.3 (2.4)
RandomWalk Zhou et al. [2004] 49.0 (4.4) 55.6 (3.8) 59.4 (3.0) 61.6 (2.5) 63.4 (2.5)
WNLL Shi et al. [2017] 44.6 (7.1) 59.1 (4.7) 64.7 (3.5) 67.4 (3.3) 70.0 (2.8)
p-Laplace Flores et al. [2019] 54.6 (4.0) 57.4 (3.8) 65.4 (2.8) 68.0 (2.9) 68.4 (0.5)
Poisson Calder et al. [2020] 60.8 (4.6) 66.1 (3.9) 69.6 (2.6) 71.2 (2.2) 72.4 (2.3)
LE-SSL Belkin and Niyogi [2002] 22.0 (0.1) 51.3 (0.1) 62.0 (0.0) 65.4 (0.0) 63.2 (0.0)
Procrustes-SSL 50.1 (0.1) 55.6 (0.1) 62.0 (0.0) 63.4 (0.0) 61.3 (0.0)
Procrustes-SSL + SSM 61.2 (5.3) 66.4 (4.1) 70.3 (2.3) 71.6 (2.0) 73.2 (2.1)

# Labels per class 10 20 40 80 160

Laplace/LP Zhu et al. [2003] 70.6 (3.1) 76.5 (1.4) 79.2 (0.7) 80.9 (0.5) 82.3 (0.3)
Nearest Neighbor 62.9 (1.7) 66.9 (1.1) 70.0 (0.8) 72.5 (0.6) 74.7 (0.4)
RandomWalk Zhou et al. [2004] 68.2 (1.6) 72.0 (1.0) 75.0 (0.7) 77.4 (0.5) 79.5 (0.3)
WNLL Shi et al. [2017] 74.4 (1.6) 77.6 (1.1) 79.4 (0.6) 80.6 (0.4) 81.5 (0.3)
p-Laplace Flores et al. [2019] 73.0 (0.9) 76.2 (0.8) 78.0 (0.3) 79.7 (0.5) 80.9 (0.3)
Poisson Calder et al. [2020] 75.2 (1.5) 77.3 (1.1) 78.8 (0.7) 79.9 (0.6) 80.7 (0.5)
LE-SSL Belkin and Niyogi [2002] 67.1 (0.0) 68.8 (0.0) 70.5 (0.0) 70.9 (0.0) 66.6 (0.0)
Procrustes-SSL 65.3 (0.0) 66.2 (0.0) 68.3 (0.0) 69.6 (0.0) 64.5 (0.0)
Procrustes-SSL + SSM 76.4 (1.4) 78.1 (1.3) 79.4 (0.9) 80.3 (0.7) 82.6 (0.4)

(a) (b)

Figure 2.14. Robust performance of SSM on F-MNIST. (a) robustness to different numbers
of neighbors k used to construct the graph, averaged over 10 trials, 5 labels per-class. (b) The
log-first order condition, i.e. empirical rate of convergence of Projected gradient method and
SSM on F-MNIST with 5 labels per-class.
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Implementation Details

We implemented our algorithms in Python using the JAX framework Bradbury et al.

[2018] with the GraphLearning API Calder [2022] on a single RTX 2080 Ti. In particular, we

exploit JAX’s capability to vectorize batched computation and compilation to XLA via the jit

decorator. XLA facilitates hardware acceleration and the entire framework may exploit GPU and

multi-GPU-based parallelism without returning to a Python interpreter.

Experimental Setup

We evaluated our method on three datasets: MNIST Lecun et al. [1998], Fashion-MNIST

Xiao et al. [2017] and CIFAR-10 Krizhevsky and Hinton [2009]. As in Calder et al. [2020], we

used pretrained autoencoders as feature extractors. For MNIST and Fashion-MNIST, we used

variational autoencoders with 3 fully connected layers of sizes (784,400,20) and (784,400,30),

respectively, followed by a symmetrically defined decoder. The autoencoder was trained for 100

epochs on each dataset. The autoencoder architecture, loss, and training are similar to Kingma

and Welling [2014].

For each dataset, we constructed a graph over the latent feature space. We used all

available data to construct the graph, giving n = 70,000 nodes for MNIST and Fashion-MNIST,

and n = 60,000 nodes for CIFAR-10. The graph was constructed as a K-nearest neighbor graph

with Gaussian weights given by

wi j = exp
(
−4|xi− x j|

2/dK(xi)2
)
,

where xi represents the latent variables for image i, and dK(xi) is the distance in the latent space

between xi and its Kth nearest neighbor. We used K = 10 in all experiments. The weight matrix

was then symmetrized by replacing W with 1
2 (W +W⊤).

We compare our SSM approach and alignment-based approximation (Procrustes-SSL)

against Laplace learning Zhu et al. [2003], Poisson learning Calder et al. [2020], lazy random

64



walks Zhou et al. [2004, 2003], weighted nonlocal Laplacian (WNLL) Shi et al. [2017], p-

Laplace learning Flores et al. [2019], and Laplacian Eigenmaps SSL (LE-SSL)Belkin and Niyogi

[2002]. In all experiments, we evaluated our method on 10 trials with randomly chosen labeled

data points.

Numerical results

Table 2.9. CIFAR-10: Average accuracy scores over 100 trials with standard deviation in
brackets.

# Labels per class 1 2 3 4 5

Laplace/LP Zhu et al. [2003] 10.4 (1.3) 11.0 (2.1) 11.6 (2.7) 12.9 (3.9) 14.1 (5.0)
Nearest Neighbor 31.4 (4.2) 35.3 (3.9) 37.3 (2.8) 39.0 (2.6) 40.3 (2.3)
RandomWalk Zhou et al. [2004] 36.4 (4.9) 42.0 (4.4) 45.1 (3.3) 47.5 (2.9) 49.0 (2.6)
WNLL Shi et al. [2017] 16.6 (5.2) 26.2 (6.8) 33.2 (7.0) 39.0 (6.2) 44.0 (5.5)
p-Laplace Flores et al. [2019] 26.0 (6.7) 35.0 (5.4) 42.1 (3.1) 48.1 (2.6) 49.7 (3.8)
Poisson Calder et al. [2020] 40.7 (5.5) 46.5 (5.1) 49.9 (3.4) 52.3 (3.1) 53.8 (2.6)
LE-SSL Belkin and Niyogi [2002] 16.2 (0.1) 36.5 (0.1) 44.4 (0.1) 43.0 (0.0) 46.1 (0.0)
Procrustes-SSL 36.2 (0.1) 40.6 (0.1) 44.8 (0.1) 42.9 (0.0) 45.6 (0.0)
Procrustes-SSL + SSM 40.9 (6.1) 47.3 (5.9) 50.2 (4.3) 52.1 (4.3) 54.7 (3.4)

# Labels per class 10 20 40 80 160

Laplace/LP Zhu et al. [2003] 21.8 (7.4) 38.6 (8.2) 54.8 (4.4) 62.7 (1.4) 66.6 (0.7)
Nearest Neighbor 43.3 (1.7) 46.7 (1.2) 49.9 (0.8) 52.9 (0.6) 55.5 (0.5)
RandomWalk Zhou et al. [2004] 53.9 (1.6) 57.9 (1.1) 61.7 (0.6) 65.4 (0.5) 68.0 (0.4)
WNLL Shi et al. [2017] 54.0 (2.8) 60.3 (1.6) 64.2 (0.7) 66.6 (0.6) 68.2 (0.4)
p-Laplace Flores et al. [2019] 56.4 (1.8) 60.4 (1.2) 63.8 (0.6) 66.3 (0.6) 68.7 (0.3)
Poisson Calder et al. [2020] 58.3 (1.7) 61.5 (1.3) 63.8 (0.8) 65.6 (0.6) 67.3 (0.4)
LE-SSL Belkin and Niyogi [2002] 47.9 (0.0) 50.4 (0.0) 46.5 (0.0) 45.0 (0.0) 46.7 (0.0)
Procrustes-SSL 46.1 (0.0) 50.0 (0.0) 46.9 (0.0) 45.5 (0.0) 46.9 (0.0)
Procrustes-SSL + SSM 59.4 (2.3) 62.4 (1.7) 64.9 (1.1) 66.6 (0.4) 68.4 (0.4)

Tables 2.7, 2.9, 2.11 and 2.8 show the average accuracy and standard deviation over all

100 trials for various label rates. We demonstrate consistent improvement over the state-of-the-art.

In particular, our method strictly improves over relevant methods on all datasets at a variety of

label rates ranging from low (1 label) to low-medium (160) and high (4000).

In particular, on all datasets, the proposed method matches or exceeds the performance

of relevant methods, except in two instances: Poisson learning Calder et al. [2020] on CIFAR-10
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Table 2.10. Scaling behavior as the number of labeled vertices increases beyond the low label
rate regime: Average accuracy scores over 10 trials. Note that standard deviation across trials
approaches zero for all methods. We use the publicly available implementation of Poisson
Learning Calder [2019] with default parameters.

# Labels per class 500 1000 2000 4000

MNIST
Laplace/LP 97.8 97.9 98.1 98.3
Poisson 97.1 96.9 96.3 93.8
Procrustes-SSL + SSM 97.8 98.0 98.1 98.2

FashionMNIST
Laplace/LP 84.0 84.7 85.3 85.8
Poisson 82.2 78.9 74.9 58.6
Procrustes-SSL + SSM 84.3 84.8 85.9 86.1

Table 2.11. Tool comparison: wall time per-iteration, # iterations to reach |grad| <= 10e-5 (–
denotes no convergence), and accuracy using MNIST digits restricted to 0-5 with 1 label / class.

wall time / iter # iter to crit. point accuracy

SSM 6.1 7 0.99
TR 145.5 10 0.94
RG 3.4 – 0.75

with 4 labels per class and P-Laplace Calder [2018] on CIFAR-10 with 160 labels per class. We

see that while Laplacian Eigenmaps SSL achieves better performance at higher label rates relative

to Procrustes-SSL, at lower label rates Procrustes Analysis is significantly more accurate. Future

work includes exploring the effect of taking powers of L0 on the alignment. We highlight the

discrepancy between the approximate method we introduce (Procrustes-SSL) and our SSM-based

refinement. This indicates the importance of refinement for recovering good critical points of

eq. (2.22).

We additionally evaluate the scaling behavior of our method at intermediate and high

label rates. In Table 2.11, we compare our method to Laplace learning and Poisson learning on

MNIST and Fashion-MNIST with 500, 1000, 2000, and 4000 labels per class. We see significant
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degradation in the performance of Poisson Learning, however, our method maintains high-quality

predictions in conjunction with Laplace learning. These results imply that while Laplace learning

suffers degneracy at low label rates and Poisson Learning seemingly degrades at large label

rates, our framework is able to reliably in both regimes—covering the spectrum of low and high

supervised sampling rates.

Figure 2.14a shows the accuracy of SSM at 5 labels per class as a function of the number

of neighbors K used in constructing the graph, showing that the algorithm is not significantly

sensitive to this choice. In Figure 2.14b, we demonstrate the convergence behavior of SSM

and the projected gradient method discussed previously by plotting the norm of the first order

condition: ||LXtC−BC1/2−XtΛt||. Note that while both methods are guaranteed to monotonically

reduce the objective of eq. (2.22) via line search, SSM rapidly converges to a critical point, while

the projected gradient method fails to converge, even after 100 iterations.

Chapter 2, in full, is a reprint of material comprising one submitted paper: Revisiting

Semi-Supervised Laplacian Eigenmaps via Alignment and three publications: Placement Ini-

tialization via Sequential Subspace Optimization with Sphere Constraints, 2023, International

Symposium on Physical Design (ISPD) (best paper nomination), Placement Initialization via

a Projected Eigenvector Algorithm, 2022, Design Automation Conference (DAC) 2022, and

Net Separation-Oriented Printed Circuit Board Placement via Margin Maximization, 2022, 27th

Asia and South Pacific Design Automation Conference (ASP-DAC) (best paper award). The

dissertation author was the primary investigator and author of these papers.
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Chapter 3

Conclusion

3.1 Conclusion

In this dissertation, we propose a practical and principled framework for large-scale

quadratic optimization on Stiefel Manifolds. Our iterative method minimizes the quadratic over

a sequence of varying subspaces, and we demonstrate global convergence for this method and

a projected gradient method. We also introduce an effective initialization scheme based on the

eigenvectors of the system matrix and a transformation motivated by the first-order necessary

condition.

We conduct a detailed numerical study of our framework applied to graph problems in

the context of chip placement and semi-supervised learning. Specifically, we show that applying

our framework as an initialization step for downstream layout engines consistently outperforms

the state-of-the-art placements with respect to post-detailed placement layout quality for eight

VLSI designs and 12 PCB designs. We also explore an extension of our method that facilitates

the minimization of linear wirelength.

In addition, we introduce a formulation of Laplacian Eigenmaps with label constraints as

a non-convex Quadratically Constrained Quadratic Program, motivated by the robustness of semi-

supervised Laplacian Eigenmaps in low label rate regimes. Application of our framework to this

reformulation results in classification solutions that consistently outperform the state-of-the-art

with respect to semi-supervised accuracy in low, medium, and high label rate settings.
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3.1.1 Future Directions

Future work includes a more careful analysis of the problem in eq. (2.22) and our

generalization of SSM—particularly verification of convergence rates from Hager [2001], Hager

and Park [2005], Absil et al. [2007]. Continuing to improve scalability is another notable

direction; e.g. by exploring ways that we might relax the necessity of computing Z in eq. (1.2.4)

exactly. Other directions includes investigation of methods to query labeled points—i.e. active

learning, and imbalanced label settings. For example, there might be many to potential ways to

select “the best” vertices to label. E.g., to better condition the optimization problem, one may

want to select vertices that result in the columns of B being correlated with the eigenvectors of L:

For simplicity, take k = 2. And denote λ1,λ2 the eigenvalues of Λ. We can prove

that for any local minimizer X, if the associated eigenvalues λ1,λ2 are both less than d1, the

smallest nonzero eigenvalue of L, that X is a global minimizer. As we have shown, with proper

initialization, our method recovers a local minimizer X such that λ1,λ2 are both less than d2.

There are several potential avenues to prove that any local minimizer is also a global minimizer.

For example we could impose an eigenvector-preserving transformation to L or restrict our

analysis to graphs such that λi = λk where λi ≥ 0. An alternative method is to ensure a non-

degenerate condition on B as in canonical trust-region methods. Briefly, let v1, . . . ,vk be the

eigenvectors of L corresponding to k smallest nonzero eigenvalues d1 ≤ . . . ≤ dk. At a high level,

we need to ensure that the columns of B are not nearly orthogonal to v1, . . . ,vr

Proposition 3.1.1. Let V = [v1,v2] ∈ Rn×2 be the eigenvectors of L corresponding to the smallest

two nonzero eigenvalues d1 ≤ d2. Let X be a local solution satisfying the first order condition

AX = XΛ+B

and second order condition λ1,λ2 ≤ d2. Let s1 be the smallest singular value of V⊤B. Suppose

s1 > d2−d1
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Then, the eigenvalues λ1,λ2 of the Lagrangian multipliers Λ are less than d1 and X is a global

minimizer.

Proof. Recall that the second order condition is

λ j ≤ d2 for j = 1,2.

Consider the first order condition LX = XΛ+B. Taking an inner product with v2 and v1 yields

d2v⊤2 X = v⊤2 LX = (v⊤2 X)Λ+ v⊤2 B,

d1v⊤1 X = v⊤1 LX = (v⊤1 X)Λ+ v⊤1 B.

Let u1 and u2 be eigenvectors of Λ associated with eigenvalues λ1,λ2. For j = 1,2, taking the

product with u j on the r.h.s yields

(d2−λ j)v⊤2 Xu j = v⊤2 Bu j, (d1−λ j)v⊤1 Xu j = v⊤1 Bu j

Since ||V || = 1 = ||X||, then ||V⊤Xu j|| ≤ ||Xu j|| ≤ 1. Thus,

|d2−d1| < s1 ≤ ||V⊤Bu j|| ≤min(|d2−λ j|, |d1−λ j|)||V⊤Xu j|| ≤min(|d2−λ j|, |d1−λ j|)

which implies λ j < d1.
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Appendix A

A.1 Additional Derivations

min
X:X∈St(n,k)

⟨X,LXC⟩− ⟨X,BC1/2⟩ (A.1)

Quadratic minimization over the Stiefel manifold is a generalization of the well-known nonconvex

quadratic over the unit ball or sphere. These problems often arise in trust region methods Sorensen

[1982], Conn et al. [2000]. Notably, there could exist many local solutions in A.1. We will

demonstrate convergence to critical points of two iterative methods: a gradient projection method

and the Sequential Subspace Method proposed in this work. Furthermore, when the subspaces

component to the SSM algorithm contain the span of the first k nontrivial eigenvectors of L, we

show that the quality of the stationary point is characterized by the eigenvalues of the Lagranage

multipliers Λ.

First denote the the eigenvector decomposition of L be given by

L = [v1,v2, . . . ,vn]diag(d1, . . . ,dn)[v1,v2, . . . ,vn].T

To summarize, in Chapter 1 of this dissertation, we have shown the following:

• We propose a gradient projection method to solve A.1. We prove convergence with the

Armijo rule in Prop. 1.2.3.

71



• We analyze the proposed iterative method in the framework of SSM, constructing a

sequence of subspaces to reach one approximation of local solutions, where the subspace

consists of columns of Xt, LXtC−BC1/2 and eigenvectors associated with di, i = 1, . . . ,k.

Each sub-problem can be solved by the aforementioned gradient projection method. We

demonstrate global convergence to high-quality critical points. Theoretically, when C = I

and the multiplicity of the first nontrivial eigenvalue is greater than or equal to k, a local

solution is actually a global solution.

A.1.1 Computational results

Derivation of B and C

Given 1⊤X = 0 and X⊤X = pI, we have that 1⊤Xu =−r⊤ and X⊤u Xu = pI−X⊤l Xl = (p− p̃)I,

where r = 1⊤Xl.

Let (X̃u)i = (Xu)i+
1
nr. We have the following:

1. 1⊤X̃u = 0

2. X⊤u Xu = X̃⊤u X̃u+
1
nr⊤r

Thus, X̃⊤u X̃u = (p− p̃)I− 1
nr⊤r

Consider ⟨X0,LX0⟩ = X⊤u LuXu+2X⊤u LulXl+X⊤l LlXl. Let R = 1
n

 r⊤...
r⊤

 ∈ Rn×k We have that

⟨X0,LX0⟩ = X̃⊤u LuX̃u−2X̃⊤u LuR

+R⊤LuR+2X̃⊤u LulXl−2R⊤LulXl+X⊤l LlXl

= X̃⊤u LuX̃u+2X̃⊤u (−LuR+LulXl)

+R⊤LuR−2R⊤LulXl+X⊤l LlXl
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