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ABSTRACT OF THE DISSERTATION

Optical Spectroscopy of Excitonic States and Interlayer Phonons
in Atomically Thin Transition Metal Dichalcogenides

by

Jeremiah van Baren

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, December 2020

Dr. Chun Hung Lui, Chairperson

Atomically thin transition metal dichalcogenides (TMDs, e.g. MoS2, MoSe2, WSe2, and

NbSe2) exhibit remarkable properties which are relevant for science and novel applications,

such as robust excitonic effects and well-defined valley degree of freedom. These electronic

and vibrational properties are highly dependent on the layer number, stacking configura-

tion, and charge density in the sample system and may be probed and manipulated through

applied electromagnetic fields. As the quality and complexity of TMD-based devices has

improved, so too has our ability explore the novel physics of these systems. In this disser-

tation, we probe exceptionally high-quality TMD devices to explore the detailed excitonic

physics in monolayer WSe2 and the interlayer phonons in MoS2 and NbSe2.

First, we study monolayer WSe2 devices encapsulated in boron nitride. The WSe2

optical spectra exhibit diverse excitonic features, including the bright states, both the intra-

and inter-valley dark states, and a collection of phonon replicas. We systematically study

these spectral features and identify novel excitonic physics. For the bright states, we ob-

serve the 1s – 4s Rydberg excitons and measure their binding energy and exciton radii.

ix



When subject to high magnetic field, the bright trions (or exciton polarons) further ex-

hibit pronounced charge-density-dependent oscillations due to Landau quantization. For

the dark states, we identify the dark trions and demonstrate their distinct valley Zeeman

effect and enhanced lifetime compared to bright trions. We further observe the intervalley

exciton and characterize the intra- and inter-valley relaxation pathways available to the

dark states. Finally, we investigate the exciton-phonon interactions and observe a collec-

tion of phonon-mediated relaxation processes. We demonstrate that these phonon replicas

enable valley-selective optical detection of the dark excitons (trions).

Beyond the monolayer, we study the interlayer shear and breathing mode phonons

in multilayer MoS2 and NbSe2. We compare the phonon spectra of 2H- and 3R-stacked MoS2

crystals and observe strong dependence of the shear modes on the layer stacking order. We

further simulate the Raman spectra with a concise analytical model that considers the

layer-by-layer structure of 2D crystals. Our Raman results provide an effective method to

characterize the layer number and stacking order in 2D materials.

x



Contents

List of Figures xiv

List of Tables xvii

1 Introduction 1
1.1 Transition Metal Dichalcogenides (TMDs) . . . . . . . . . . . . . . . . . . . 6

1.1.1 Optical Excitation of Monolayer WSe2 . . . . . . . . . . . . . . . . . 9
1.1.2 Bright Excitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.3 Bright Trions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.4 Exciton Energy with Finite Charge Density . . . . . . . . . . . . . . 17
1.1.5 Monolayer WSe2 under Out-of-Plane Magnetic Field . . . . . . . . . 20

2 Sample Fabrication and Experimental Methods 24
2.1 van der Waals Heterostructure Device Fabrication . . . . . . . . . . . . . . 24

2.1.1 Transfer Microscope Design . . . . . . . . . . . . . . . . . . . . . . . 26
2.1.2 2D Material Fabrication Process . . . . . . . . . . . . . . . . . . . . 28

2.2 Optical Microscope System . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.1 Light Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.2 Beam Pathway, Optics . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.2.3 Sample Stage, Electrical Interface . . . . . . . . . . . . . . . . . . . . 41
2.2.4 Measurement Automation . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Magneto-Optical Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.1 31-T Resistive Magnet . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3.2 17.5-T Superconducting Magnet . . . . . . . . . . . . . . . . . . . . 44

2.4 Reflection-Contrast Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5 Quantitative Analysis of Reflection-Contrast Spectra . . . . . . . . . . . . . 50

2.5.1 Transfer-Matrix Formalism for Thin-Film Interference . . . . . . . . 51
2.5.2 Parameterization of Unknown Layer Dielectric Function . . . . . . . 53
2.5.3 Optimization of Dielectric Function via Nonlinear Least-squares . . 58

2.6 Photoluminescence Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 61
2.6.1 Time-Resolved Photoluminescence Spectroscopy . . . . . . . . . . . 63

xi



3 Bright Excitons and Trions in Monolayer WSe2 under High Magnetic
Field 67
3.1 Magnetophotoluminescence of Exciton Rydberg States in Monolayer WSe2 68

3.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.1.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.1.3 Analysis of Exciton Zeeman and Diamagnetic Shifts . . . . . . . . . 74
3.1.4 Quantitative Model Calculations . . . . . . . . . . . . . . . . . . . . 78
3.1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.2 Landau-Quantized Photoluminescence and Absorption in Monolayer WSe2 . 80
3.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.2.2 Gate-Dependent Reflectance Contrast . . . . . . . . . . . . . . . . . 83
3.2.3 Electronic Quantization Observed via Optical Conductivity . . . . . 89
3.2.4 Landau-Fan-Type Analysis of Optical Conductance Oscillation . . . 93
3.2.5 Landau-Quantization Observed via Photoluminescence . . . . . . . . 97
3.2.6 Divergence from the Single-particle Model . . . . . . . . . . . . . . . 103
3.2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4 Dark Excitonic States and Phonon Replicas in Monolayer WSe2 106
4.1 Optical Selection Rules for the Dark Trion in Monolayer WSe2 . . . . . . . 108

4.1.1 Optical Detection of In-Plane-Emission Photoluminescence . . . . . 109
4.2 Gate-Tunable Dark Trions in Monolayer WSe2 . . . . . . . . . . . . . . . . 110

4.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.2.2 Gate-Dependent Photoluminescence at Zero-Field . . . . . . . . . . 111
4.2.3 Temperature Dependent Photoluminescence . . . . . . . . . . . . . . 113
4.2.4 Gate-dependent Magnetophotoluminescence . . . . . . . . . . . . . . 114
4.2.5 Gate-Dependent Photoluminescence Lifetime of Dark Trions . . . . 116
4.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.3 Valley-selective Chiral Phonon Replicas of Dark Excitons and Trions in Mono-
layer WSe2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.3.2 Gate-Dependent Photoluminescence at Zero-Field . . . . . . . . . . 122
4.3.3 Gate-Dependent Magnetophotoluminescence . . . . . . . . . . . . . 124
4.3.4 Measurement of Exciton Dipole-Orientation . . . . . . . . . . . . . . 127
4.3.5 Phonon Replica Optical Selection Rules . . . . . . . . . . . . . . . . 128
4.3.6 Chiral Phonons in Monolayer WSe2 . . . . . . . . . . . . . . . . . . 130
4.3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.4 Multipath Optical Recombination of Intervalley Dark Excitons and Trions
in Monolayer WSe2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.4.2 Observation of the Intervalley Exciton . . . . . . . . . . . . . . . . . 136
4.4.3 Signatures of Intervalley Excitons . . . . . . . . . . . . . . . . . . . . 138
4.4.4 K-point Phonon Replica Photoluminescence . . . . . . . . . . . . . . 142
4.4.5 Intervalley Phonon Replica Selection Rules . . . . . . . . . . . . . . 144
4.4.6 Multipath Radiative Relaxation of Dark Trions . . . . . . . . . . . . 145
4.4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

xii



5 Interlayer Phonons in Transition Metal Dichalcogenides 150
5.1 Stacking-Dependent Interlayer Phonons in 3R- and 2H-MoS2 . . . . . . . . 151

5.1.1 Rhombohedral (3R) MoS2 . . . . . . . . . . . . . . . . . . . . . . . . 152
5.1.2 Interlayer Phonons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.1.4 Experimental Low-Frequency Raman Spectra . . . . . . . . . . . . . 155
5.1.5 Frequency Analysis via Linear Chain Model . . . . . . . . . . . . . . 159
5.1.6 Calculation of Interlayer Force Constant and Elastic Moduli . . . . . 161
5.1.7 Group-Theory Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.1.8 Qualitative Description of Raman Activity . . . . . . . . . . . . . . 163
5.1.9 Quantitative Bond Polarizability Model . . . . . . . . . . . . . . . . 164
5.1.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.2 Interlayer Breathing and Shear Modes in NbSe2 Atomic Layers . . . . . . . 171
5.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.2.2 Crystal Structure of NbSe2 . . . . . . . . . . . . . . . . . . . . . . . 173
5.2.3 Broadening of Interlayer Phonon Raman from Sample Degradation . 175
5.2.4 Layer-dependent Interlayer Raman Peak Broadening . . . . . . . . . 181
5.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6 Conclusion 184

Bibliography 187

xiii



List of Figures

1.1 Illustration of layered materials and an example 2D heterostructure device. 2
1.2 Crystal structure of monolayer WSe2. . . . . . . . . . . . . . . . . . . . . . 7
1.3 Schematic band structure of monolayer WSe2. . . . . . . . . . . . . . . . . . 8
1.4 Optical valley selection in monolayer WSe2. . . . . . . . . . . . . . . . . . . 12
1.5 Excitons and related optical absorption in monolayer WSe2. . . . . . . . . . 14
1.6 Monolayer WSe2 gating device and schematic of hole trion (A+). . . . . . . 16
1.7 Schematic of intervalley (A−1 ) and intravalley (A−2 ) electron trions in mono-

layer WSe2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.8 Gate-dependent optical conductance in monolayer WSe2 gating device. . . . 18
1.9 Valley Zeeman effect in monolayer WSe2 and single-particle band g − factors. 21
1.10 Valley Zeeman shift of the neutral A exciton (A0) in monolayer WSe2. . . . 22

2.1 Photograph and schematic of transfer microscope stage. . . . . . . . . . . . 27
2.2 Illustration of the simple dry transfer fabrication process. . . . . . . . . . . 31
2.3 Time series of stamp approach to 2D flake. . . . . . . . . . . . . . . . . . . 32
2.4 Optical image of Representitive BN-encapsulated monolayer WSe2 gating

device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5 Schematic of multi-technique optical microscope system. . . . . . . . . . . . 35
2.6 Fiber-based magneto-optical schematic. . . . . . . . . . . . . . . . . . . . . 43
2.7 Free-space magneto-optical schematic. . . . . . . . . . . . . . . . . . . . . . 45
2.8 Absorption and corresponding reflectance spectra for isolated and encapsu-

lated monolayers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.9 Comparison of raw reflection and reflectance contrast spectra for monolayer

WSe2 gating device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.10 Dielectric function from Drude-Lorentz oscillator model. . . . . . . . . . . . 55
2.11 Multi-Lorzentian parameterization of monolayer WSe2 dielectric function and

representative fitting result. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.12 Optimization of the BN-encapsulated monolayer WSe2 dielectric function at

intermediate electron doping. . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.13 Gate-dependent reflection contrast spectrum and fitted optical conductance

map for monolayer WSe2 gating device. . . . . . . . . . . . . . . . . . . . . 60
2.14 Photoluminescence of exciton internal energy levels. . . . . . . . . . . . . . 62

xiv



2.15 Experimental gate-dependent photoluminescence map of a monolayer WSe2

gating device at T = 5 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.16 Time-resolved photoluminescence and deconvolution with instrument response

function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.1 BN-encapsulated monolayer WSe2 device schematic; Internal energy levels of
A exciton and PL spectrum of n = 1s− 4s energy levels. . . . . . . . . . . . 70

3.2 PL of A-exciton Rydberg states in monolayer WSe2 under magnetic field at
temperature T = 4 K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 The total, Zeeman, and diamagnetic energy shifts of A-exciton Rydberg
states in monolayer WSe2 under magnetic field. . . . . . . . . . . . . . . . . 75

3.4 The energy and radii of Rydberg excitons in monolayer WSe2. . . . . . . . 79
3.5 Schematic Landau levels in monolayer WSe2; comparison of single-particle

model and experimental results. . . . . . . . . . . . . . . . . . . . . . . . . . 81
3.6 Trion configuration at intermediate hole doping and gate-dependent reflection

contrast maps at B = 0 T and B = 17.5 T for the K- and K ′-valleys in
monolayer WSe2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.7 Optical sheet conductivity maps of monolayer WSe2 for B = 0− 17.5 T. . . 88
3.8 Gate-dependent oscillation of A0; comparison of experimental data and semi-

empirical calculation results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.9 Landau-level-related oscillation of K-valley intervalley electron trion A−1 . . . 92
3.10 Step-like energy shift and FWHM oscillations of K-valley A0 for B = 0−17.5

T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.11 Landau-level-induced kinks in peak conductivity and peak photon energy of

K-valley A−1 for B = 0− 17.5 T. . . . . . . . . . . . . . . . . . . . . . . . . 95
3.12 Landau fan diagram of magnetic-field-dependent Landau level half-filling

gate-voltages from A0 and A−1 oscillations. . . . . . . . . . . . . . . . . . . . 96
3.13 Landau-level-induced oscillations of photoluminescence intensity in the K-

and K ′-valley excitons and trions. . . . . . . . . . . . . . . . . . . . . . . . 98
3.14 Gate-dependent photoluminescence maps of the K ′-valley in monolayer WSe2

for B = 0 to 17.5 T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.1 Schematic configurations of bright exciton, spin dark exciton, and dark trions.107
4.2 Gate-dependent photoluminescence of BN-encapsulated monolayer WSe2 high-

lighting dark exciton and dark trions. . . . . . . . . . . . . . . . . . . . . . 112
4.3 Temperature-dependent PL of bright and dark trions in monolayer WSe2. . 114
4.4 Magnetic-field- and gate-dependent-dependent photoluminescence of mono-

layer WSe2; bright (dark) exciton (trion) g-factors. . . . . . . . . . . . . . . 116
4.5 Time-resolved PL of the bright trion (A+) and dark trion (D+, at Vg = −0.8

V and Vg = −3.0 V) in BN-encapsulated monolayer WSe2. . . . . . . . . . . 118
4.6 Band configurations, transition dipole, and optical emission of the bright

exciton, dark exciton, and dark exciton chiral phonon replica. . . . . . . . . 121
4.7 Gate-dependent photoluminescence map of BN-encapsulated monolayer WSe2

gating device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.8 Analysis of exciton PL features from gate-dependent PL map in Figure 4.2. 124

xv



4.9 Magnetic-field-dependent second-derivative PL map (d2I/dE2) of BN-encapsulated
monolayer WSe2 at charge neutrality, electron doping, and hole doping. . . 126

4.10 Photolumescence intensity of bright, dark, and phonon replica states; g-
factors and dipole orientation. . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.11 Chiral phonons and schematic of chiral-phonon-mediated dark exciton relax-
ation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.12 Schematic intervalley electron-hole recombination processes in monolayer
WSe2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.13 Gate-dependent photoluminescence map of BN-encapsulated monolayer WSe2

gating device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.14 Excitation power dependent photoluminescence intensity and FWHM of bright,

dark, and replica excitons (trions). . . . . . . . . . . . . . . . . . . . . . . . 138
4.15 Analysis of exciton features in gate-dependent PL map in Figure 4.13. . . . 139
4.16 Intervalley exciton g-factor measurement via magnetophotoluminescence. . 141
4.17 Magnetic-field-dependent, helicity-resolved PL map in BN-encapsulated mono-

layer WSe2 with electron doping or hole doping. . . . . . . . . . . . . . . . 143
4.18 Splitting of intra- and inter-valley trion emission under a magnetic field;

schematic diagram and gate-dependent magnetophotoluminescence of dark
trion in monolayer WSe2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.19 Zeeman splitting of intra- and inter-valley relaxation pathways of the dark
exciton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.1 Crystal structure of 2H and 3R MoS2. . . . . . . . . . . . . . . . . . . . . . 152
5.2 Experimental and calculated Raman spectra of the interlayer shear and

breathing modes for 2H- and 3R-MoS2 bilayer. . . . . . . . . . . . . . . . . 156
5.3 Parallel-polarized (VV) and cross-polarized (HV) Raman spectra of the shear

modes and breathing modes for 3R-MoS2 and 2H-MoS2 with layer number
N = 1L–13L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.4 Frequencies of the observed shear modes and breathing modes in Figure 5.3
as a function of MoS2 layer number. . . . . . . . . . . . . . . . . . . . . . . 160

5.5 Layer displacement of the two shear modes and comparison of experimental
and calculated cross-polarized Raman spectra in 3R- and 2H-MoS2 trilayers. 165

5.6 Schematic representation of interlayer bonds for 3R- and 2H-MoS2. . . . . . 167
5.7 Experimental and simulated cross-polarized shear-mode Raman spectra for

5L and 9L 3R- and 2H-MoS2. . . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.8 Experimental and simulated parallel-polarized spectrum of 10L 3R MoS2. . 170
5.9 Comparison of the crystal structure of bilayer 2Ha-NbSe2 and 2Hc-MoS2. . 174
5.10 Optical image of an exfoliated NbSe2 flake on a SiO2/Si with partial BN

capping. Low frequency Raman spectra of 1L and 2L uncapped NbSe2. . . 175
5.11 Low-frequency Raman spectra of NbSe2 with layer number N = 2− 15 and

bulk NbSe2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

xvi



List of Tables

3.1 PL energy (EPL), binding energy (Eb), g-factor, diamagnetic coefficient (σ),
and root-mean-square radius (r) of the exciton Rydberg states in BN-encapsulated
monolayer WSe2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Elastic parameters of 2H- and 3R-MoS2 calculated from the interlayer phonon
frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

xvii



Chapter 1

Introduction

When thinned to a single layer, extraordinary mechanical, electronic, and optical

properties can emerge from otherwise unremarkable bulk layered crystals. Graphite is the

prototype example whose layered structure is illustrated in Figure 1.1(a). Each sheet-like

layer, called graphene, has exceptionally strong in-plane bonds and excellent thermal and

electrical conductivity but is weakly bonded to its neighbors by the van der Waals inter-

action. Graphite has thus found widespread use as the “lead” in our pencils and as a dry

lubricant. Beyond the myriad uses of graphite, its dull, gray exterior hid another remark-

able secret: a single layer of graphene, isolated from its neighbors, exhibits remarkable

properties which emerge due to its intrinsic two-dimensionality [1]. Moreover, the isolation

of high-quality graphene flakes with lateral dimension ≤ 100 µm does not require expensive

instrumentation or complex processes. The so-called “scotch tape method” of microme-

chanical exfoliation requires only a bulk crystal, adhesive tape, and an optical microscope.

In strict terms of single-material fabrication, the barrier to entry in 2D materials research
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Figure 1.1: (a) Graphite, composed of individual graphene layers. (b) Schematic illustration
of arbitrary hetero-layer stacking of van der Waals materials (Adapted from K.S. Novoselov,
et al. [2]). (c) Example schematic of an all-2D gating device composed of monolayer tungsten
diselenide (WSe2) based, graphene, and hexagonal boron nitride (BN).

is low. As a result, the field has rapidly expanded in the intervening 15 years and has

grown beyond graphene to an entire family of 2D materials which include semiconductors,

insulators, ferromagnets, and more exotic classes such as superconductors and topological

insulators. Importantly, many members of this 2D catalog exhibit similar stability, ease of

few-layer exfoliation, and emergence of novel properties in the monolayer limit which have

attracted such interest to graphene.

The intrinsic layered nature of van der Waals materials which allows straightfor-

ward isolation of single layers is also advantageous in reverse. Just as constituent layers

may be peeled apart, so too can individual layers be assembled like building blocks into

an arbitrary 2D heterostructures [3] as illustrated in Figure 1.1(b). Figure 1.1(c) shows a

schematic diagram of a 2D gating device composed of few-layer graphite as electrical contact

and gate electrode, insulator hexagonal boron nitride (BN) as gate dielectric, and monolayer

WSe2 as the semiconductor channel. This example device uses only three members, but our

catalog of 2D materials is far more extensive. Generally, we can imagine a large number of
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possible 2D heterostructures whose characteristics may be finely tailored by specific mate-

rial choice and arrangement. Further, the properties of each layer are not fixed but can be

significantly altered through interlayer and interfacial interactions. In contrast to 3D mate-

rials where the electronic properties are dominated by the interior bulk material with little

influence from the surface, 2D materials are essentially all-surface. These 2D materials are

thus highly susceptible to extrinsic effects on a large scale from fine-tuning to fundamental

renormalizing their material properties. This remarkable phenomenon is perhaps best illus-

trated by the notable influence of interlayer stacking configuration on electronic properties

and recent demonstrations of “magic angle” graphene [4] and the observation of long-lived

interlayer valley excitons [5]. To realize the full potential of such designer heterostructures

whose properties can be finely controlled and targeted for specific technological or scientific

interests, we must first establish several key foundations: a fundamental understanding of

the properties of each individual 2D material, the consequences of layer-by-layer stacking in

both homo- and heterostructure configurations, and more broadly the influence of various

extrinsic effects which may induce desired properties.

In this dissertation, we use optical spectroscopy to investigate excitonic physics in

individual monolayers and the influence of few-layer stacking on the subgroup of 2D mate-

rials called transition metal dichalcogenides (TMDs) with form MX2 (M = Mo, W; X=S,

Se). Group-IV monolayer TMDs exhibit two time-reversal electronic valleys with direct

band gap and host exceptionally robust excitonic phenomena and strong light-matter inter-

actions [6]. These materials therefore attract significant scientific and technological interest

as a promising platform to explore excitonic physics and optoelectronic manipulation of the
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exciton, spin, and valley-pseudospin states among other properties [6–8]. We will briefly

introduce this family of materials below and discuss those optical and electronic properties

which are essential to the research results presented in the remainder of this work.

In Chapter 3 we explore the behavior of excitons and trions in high-quality mono-

layer WSe2 gating devices under high out-of-plane magnetic field (B ≤ 31 T). We first

discuss the internal energy levels structure of the bright, neutral A-exciton and characterize

the non-hydrogenic Rydberg series emission (n = 1s to n = 5s) via photoluminescence spec-

troscopy. The exciton states exhibit linear valley Zeeman shift and quadratic diamagnetic

shift under magnetic field from which we deduce the per-state exciton binding energies, g-

factors, and spatial radii. Next, we utilize electrostatic gating together with high magnetic

field to study the influence of Landau quantization on the exciton and trion. We observe

charge-density-dependent quantum oscillations of the various excitonic species in both re-

flectance contrast and photoluminescence spectroscopy. Our results highlight the complex

interaction between excitons and ambient carriers which may be controlled by Landau level

filling and which diverges from the standard single-particle model in the regime of moderate

charge density. This divergence suggests the presence of significant many-body interactions

in monolayer WSe2 which make this material a promising system in which to explore cor-

related quantum phenomena.

In Chapter 4, we go beyond the well-studied bright exciton (trion) and develop

a more complete picture of the dark excitonic states in monolayer WSe2. We measure

the photoluminescence of the spin-forbidden dark exciton and related trions which may be

continuously tuned by electrostatic gating. At zero magnetic field, our results show the
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binding energies of the dark exciton (trion) states and demonstrate the exceptionally long

recombination lifetime of the dark trion in comparison to the bright trion (up to 1.2 ns

vs. 10 ps). Using magneto-optical PL, we confirm the spin-triplet configuration of the

dark states and resultant valley-independent optical selection rules. We expand upon this

analysis to explore the multi-pathway radiative relaxation of the dark exciton (trion) states

mediated by phonon and lattice defect scattering. We first show valley-selective PL of

the dark exciton (trion) states via chiral phonon emission and rigorously establish their

optical selection rules. In this way, we demonstrate the optical detection of dark state

valley pseudospin. We further discuss the optical detection of the intervalley exciton and

intervalley-relaxation of the dark trion through chiral phonon and defect scattering. Totally,

we produce a more complete experimental and theoretical picture of the complex excitonic

landscape in monolayer WSe2 at the charge neutrality point and under moderate electron

(hole) doping.

Finally, in Chapter 5, we explore the influence of layer-by-layer stacking in MoS2

and NbSe2 homostructures by probing the interlayer vibrations via ultralow-frequency Ra-

man spectroscopy. We measure the interlayer phonon spectra in two chemically-identical

stacking configurations (3R and 2H) of MoS2 from the monolayer to bulk crystal from which

we determine the stacking-dependent elastic properties. We further develop a concise model

based on bond polarizability to calculate the interlayer phonon Raman intensites. Together

with our experimental results, this provides a clear fingerprint with which to efficiently

identify the thickness and stacking configuration of 2D materials via Raman spectroscopy.
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Before discussing the detailed research results that comprise the majority of this

dissertation, however, we present a brief introduction to the optical and electronic properties

of TMDs which are essential to the research results presented in the remainder of this work

followed by discussion of the experimental techniques used throughout.

1.1 Transition Metal Dichalcogenides (TMDs)

In contrast to the atomically-thin graphene, TMD monolayers are composed of

a transition metal atom sandwiched between two chalcogen atoms in a trigonal prismatic

structure, as shown in Figure 1.2(a) [6]. The most common group-VI MX2 TMDs (M =

Mo, W; X = S, Se) adopt a similar hexagonal lattice to graphene but with reduced D3h

symmetry (Figure 1.2(b)). Out-of-plane mirror symmetry (σh) is preserved but in-plane

inversion symmetry (i) is broken and rotational symmetry is reduced from C6 to C3. When

stacked, MX2 TMDs most commonly adopt an A-A’-A-A’. . . stacking order (2H) where

adjacent layers are inversion symmetric. We discuss a symmetry-based analysis of the 2H

structure and discuss our experimental results regarding the influence of stacking order on

TMD interlayer coupling in Chapter 5.

Although TMDs have been studied for over 50 years, both as bulk materials and

thin flakes, monolayer TMDs were only succesfully isolated and characterized in the last

decade. These monolayer TMD systems have since become a subject of immense research

interest, largely motived by two foundational results in MoS2. First, Mak, et al. [9] and

Splendiani et al. [10] confirmed in 2010 that TMDs have a direct band-gap and thus strong

optical coupling in the monolayer limit, as opposed to the indirect band gap and weak
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Figure 1.2: Illustration of the trigonal prismatic and hexagonal crystal structure of mono-
layer tungsten diselenide (WSe2).

optical coupling in few-layer and bulk samples. As illustrated schematically in Figure 1.3,

the direct gap is located at K and K ′ points in the Brillouin zone, which are referred to as

the K- and K ′-valleys. They further demonstrated the presence of robust excitonic effects

due to the two-dimensional electronic confinement which persist up to room temperature.

Shortly afterward, in 2012, Cao, et al. [11] and Xiao et al. [12] demonstrated experimentally

that the optical transition across this direct band gap could be selectively excited at the

K- and K ′-valleys by right- and left-circularly polarized light, respectively. Together, these

results established monolayer TMDs as a remarkable system which simultaneously exhibits

strong light interaction, robust excitonic effects, and optical valley-selection which gives a

momentum-based degree of freedom.

We use the WSe2 as a representative example to understand the electrical and

optical properties of monolayer group-VI TMDs as it is the subject of Chapter 3 and Chapter

4. Similar to MoS2, WSe2 transitions in the monolayer limit to a direct gap with Eg ∼

1.8 − 2.0 eV [14–16], located the K- and K ′-valleys in momentum space. Figure 1.3(a)
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Figure 1.3: (a) Hexagonal Brillouin zone of monolayer WSe2. (b) Schematic band configu-
ration at the K (K ′) valley in monolayer WSe2 (Adapted from E.J. Sie [13]). The arrows
and color indicate the electron spin (up, down) of the band.

shows a schematic view of the local band structure at the K- and K ′-points. Specifically,

we highlight the parabolic conduction and valence bands near to the charge neutrality point.

These bands comprise the direct band gap and thus largely determine the electrical and

optical properties of the material. Due to the strong spin-orbit coupling in WSe2, the spin-

degeneracy of each band is intrinsically broken and each band is split into two sub-bands

with opposite spin configuration, labeled in Figure 1.3(b). The conduction band is split

by ∼ 30 meV (c1), while the valence band is split by ∼ 450 meV (v1) [6]. We note that

the conduction band spin-splitting is relatively small (∼ kBT = 300 K), and thus both

sub-bands play a significant role in the electronic properties. The valence band splitting,

however, is over 10× larger so the influence of the lower energy sub-band is much reduced.

For the remaining discussion, we largely focus on the three sub-bands (v1,↑, c1,↓, c1,↑) closest

to the charge neutrality point as this three-band picture is sufficient to describe the relevant

properties.
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1.1.1 Optical Excitation of Monolayer WSe2

We now describe the general process of photoexcitation in monolayer WSe2 at

charge neutrality and the formation of excitonic states. We can limit our discussion to

the K-valley for simplicity, as the two valleys are time-reversal partners. Identical analysis

under time-reversal can be applied to the K ′-valley.

At charge neutrality, the valence band is fully occupied by electrons and the con-

duction bands are fully unoccupied. An electron in the valence band may be excited to an

available state in the conduction band through absorption of an incident photon with ap-

propriate energy. For example, a direct transition between v1,↑ and c1,↑. As the photon has

vanishingly small momentum, the electron can be photoexcited only to those conduction

band states with nearly identical momentum which corresponds to a vertical transition in

the band diagram. The lowest energy free-particle transition across the band gap will thus

be between a valence band maximum and a conduction band minimum at the K point.

Importantly, the original electron state in the valence band is left unoccupied by the pho-

toexcitation process. This unoccupied valence band state modifies the electron interactions

and acts as an effective positive charge carrier - a hole. Thus, each photoexcitation event

produces a single excited electron-hole pair. We note that this is a slight generalization

but is broadly accurate for our purposes. Photoexcitation between two states away from

the band minimum is still allowed, but requires higher photon energy and leaves the ex-

cited electron-hole pair above their band minima (the hole will naturally relax to the top

of the valence band which is its energy minimum). These so-called hot carriers will rapidly

relax on the femtosecond timescale, either towards the band minimum through scattering
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with other charge carriers and lattice vibrations (phonons), or directly to the valence band

through another pathway (e.g., hot luminescence, Auger scattering).

So far, we have discussed the general process of photoexcitation and exciton for-

mation in a two-dimensional material semiconductor without much consideration of the

electronic structure in monolayer WSe2. As mentioned above, however, the distinct optical

selection rules and band configuration in this material are central to our interest and the

details of the results in Chapter 2 and Chapter 3 of this work.

Valley-Dependent Optical Selection

Beyond satisfying energy conservation, the photoexcitation of an electron between

two bands must also satisfy further properties of those bands such as the electron spin

and orbital symmetry. By considering the symmetry of each band in monolayer WSe2

(v1,↑, c1,↓, c1,↑)), we can derive the valley-dependent optical selection rules mentioned above.

The electronic transition by photon absorption can be expressed in terms of the

Bloch states of the involved bands, |ψα〉 (α = v1,↑, ...) and the momentum operator, P̂γ , for

the incident photon where γ indicates the photon polarization. For example, a transition

from v1,↑ to c1,↑ the transition rate (proportional to oscillator strength) is given from first-

order perturbation theory by:

Iv1,↑→c1,↑ ∝
∣∣∣〈ψc1,↑∣∣ P̂γ ∣∣ψv1,↑〉∣∣∣2 (1.1)

As mentioned at the beginning of this section, the monolayer WSe2 crystal has D3h sym-

metry and therefore the Brillouin zone-corner K-point states have slightly reduced C3h

symmetry - threefold rotation (C3) and out-of-plane mirror reflection (σh). For the oscil-
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lator strength to be non-zero (a dipole-allowed transition), the above expression must be

unchanged under these symmetry operations at the K-point [17].

〈
ψc1,↑

∣∣ P̂γ ∣∣ψv1,↑〉→ 〈
ψc1,↑

∣∣C−1
3 C3P̂γC3C

−1
3

∣∣ψv1,↑〉 =
〈
C3ψc1,↑

∣∣C3P̂γC
−1
3

∣∣C3ψv1,↑
〉

(1.2)

〈
ψc1,↑

∣∣ P̂γ ∣∣ψv1,↑〉→ 〈
ψc1,↑

∣∣σ−1
h σhP̂γσhσ

−1
h

∣∣ψv1,↑〉 =
〈
σhψc1,↑

∣∣σhP̂γσ−1
h

∣∣σhψv1,↑〉 (1.3)

From previous density functional theory (DFT) calculation [6], the valence and conduction

bands at the K-point near the charge neutrality point are primarily composed of the d-

orbitals of the W atoms with a sufficiently small contribution from the p-orbitals of Se

which we can neglect. The d-orbitals are split energetically into three orbits, d0 = dz2 ,

d±1 =
√

2
−1

(dxz ± idyz), and d±2 =
√

2
−1

(dx2−y2 ± idxy), where the subscripts (d±m)

indicate the magnetic angular momentum quantum number, m. The valence band, v1, is

dominated by the d+2 orbital and the conduction bands (c1,↓, c1,↑) are dominated by the

d0 orbital. Recall, as well, that v1,↑ and c1,↑ are spin up and c1,↓ is spin down. We can

therefore determine how the functions transform under the symmetry operations, as the

total state transforms as the product of the orbital and spin transformations.

C3 |v1,↑〉 = e−i
π
3 |v1,↑〉 , σh |v1,↑〉 = i |v1,↑〉 (1.4)

C3 |c1,↓〉 = e−i
2π
3 ei

π
3 |c1,↓〉 = e−i

π
3 |c1,↓〉 , σh |c1,↓〉 = −i |c1,↓〉 (1.5)

C3 |c1,↑〉 = e−i
2π
3 e−i

π
3 |c1,↑〉 = e−i

3π
3 |c1,↑〉 , σh |c1,↑〉 = i |c1,↑〉 (1.6)

Similarly, we can examine the photon momentum operator for in-plane, linear polarization

(P̂γ = P̂z) and out-of-plane, circular polarization (P̂γ = P̂± = P̂x ± iP̂y) under C3 and σh

transformation:

C3P̂zC
−1
3 = P̂z, σhP̂zσ

−1
h = −P̂z (1.7)
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Figure 1.4: Circularly polarized valley-specific optical selection rules for electronic photo-
transitons in the (a) K-valley and (b) K ′-valley in monolayer WSe2.

C3P̂±C
−1
3 = e∓i

2π
3 P̂±, σhP̂±σ

−1
h = P̂± (1.8)

Using the above transformations, we can evaluate Equation 1.2 and Equation 1.3 for each

permutation of band-to-band transition and photon polarization / propagation direction to

determine the optical selection rules. We show the case of a transition from v1,↑ → c1,↑ with

right-circularly polarized photon:

〈
C3ψc1,↑

∣∣C3P̂+C
−1
3

∣∣C3ψv1,↑
〉

= e−i
π
3 e−i

2π
3 e+i 3π

3
〈
ψc1,↑

∣∣ P̂+

∣∣ψv1,↑〉 =
〈
ψc1,↑

∣∣ P̂+

∣∣ψv1,↑〉 (1.9)

〈
σhψc1,↑

∣∣σhP̂+σ
−1
h

∣∣σhψv1,↑〉 = (−i)(i)
〈
ψc1,↑

∣∣ P̂+

∣∣ψv1,↑〉 =
〈
ψc1,↑

∣∣ P̂+

∣∣ψv1,↑〉 (1.10)

Thus, the transition v1,↑ → c1,↑ is only allowed with absorption of a normally incident right-

circularly polarized photon (P̂+). Similar analysis shows that the equivalent transition in

the opposite (K ′, v1,↓ → c1,↓) valley is allowed with absorption of a left-circularly polarized

photon. These are the valley-dependent optical selection rules, as illustrated in Figure 1.4.

We note that the higher energy transition v1,↓ → c1,↓ (and equivalent in K ′-valley) also

satisfies the same selection rules and is allowed.
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1.1.2 Bright Excitons

The photoexcited electron-hole pair are (quasi-)particles with opposite charge in

close proximity to each other and will therefore experience attractive Coulomb interaction,

analogous to the electron and proton in a hydrogen atom. In the weakly interacting limit,

the relaxation of the electron-hole pair will be dominated by rapid recombination with

energy equal to the free particle energy gap of the corresponding bands.

If the Coulomb interaction is strong, however, the electron-hole pair can form a

bound state - an exciton - with lower energy than the free-particle state (the exciton binding

energy) and extended lifetime. Although excitons can form between electrons and holes

throughout conduction and valence bands, respectively, we necessarily focus on those exciton

states which have strong light coupling and can be experimentally excited and detected.

The above discussion of optical selection rules in monolayer WSe2 involves only the single-

particle electronic transition, but the results can be extended to the exciton. Near the K

(K ′) points, the exciton inherits the symmetry of the single-particle transition and thus has

identical optical selection rules. We define two species of bright exciton which correspond

to the allowed optical transitions near the band gap at the K-valley: the lower energy

transition (v1,↑ → c1,↑) is the A exciton, while the higher energy transition (v1,↓ → c1,↓) is

the B exciton. The A and B exciton are shown schematically in Figure 1.5(a,b), respectively.

As both A and B excitons inherit the valley-dependent optical selection we may selectively

excite exciton populations in the K- and K ′-valleys by resonant absorption of right- and

left-handed circularly polarized light, respectively [12]. A representative optical absorption

spectrum of monolayer WSe2 is shown in Figure 1.5(c).
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Figure 1.5: Schematic of K-valley (a) A and (b) B excitons with right-circular polarized
optical selection in monolayer WSe2. (c) Representative absorption spectrum with peaks
corresponding to the A and B exciton resonances [18].

In addition to the valley-dependent optical selection rules, the 2D excitons in

monolayer WSe2 are energetically distinct from those in bulk materials. The electron-hole

interaction is enhanced due to the two-dimensional confinement of the electon and hole and

reduced Coulomb screening due to the dielectric environment surrounding the 2D plane

[19]. The electron and hole are confined to the plane, but the electric field which governs

their interaction is not. The combined effects are reflected in the large exciton binding

energy (∼ 0.17 − 0.5 eV) [7, 15, 16] which is approximately two orders of magnitude larger

than that in traditional 3D semiconductors, and one order of magnitude larger than in bulk

TMDs (quasi-2D). We note that the external screening effect is the primary cause of the

large variation in reported exciton binding energies and optically-derived free-particle band

gaps in monolayer TMDs. Like the hydrogen Rydberg series, the exciton hosts a complex

series of internal energy levels. The arrangement of energy levels in 2D excitons diverges

from the Rydberg equation, however, due to the 2D confinement and dielectric screening
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discussed above. We note, as well, that the A exciton in monolayer WSe2 has Bohr radius

∼ 1.6 nm which is 4−5× larger than the lattice constant (∼ 0.33 nm) [15,16] The exciton is

thus spatially delocalized (a Wannier-Mott exciton) and can diffuse through the crystal. As

a further consequence of the Bohr radius and large binding energy, the exciton must have

relatively large extent in momentum space and therefore includes contributions from states

throughout the corresponding conduction (valence) bands. We investigate the detailed

properties of the neutral A-exciton and its internal energy levels in Chapter 3.

1.1.3 Bright Trions

Due to its two-dimensionality, the charge density in the monolayer can be contin-

uously tuned via electrostatic gating as depicted in Figure 1.6(a). With negative (positive)

gate voltage (Vg) between the gate electrode and WSe2, ambient holes (electrons) are in-

jected into the monolayer. These ambient holes progressively fill the valence bands and thus

shift the WSe2 Fermi energy (EF ). We note that the 2D density of states is constant for

the conduction and valence bands near the band gap at the K (K ′) valley, so the shift in

EF is proportional to Vg and the state-degeneracy (e.g., ∆EF ∝ 2Vg when filling the valley-

degenerate valence bands). The presence of ambient carriers has several significant effects

on the excitonic behavior. We discuss the low- to intermediate-charge-density regime where

the ambient carrier separation is much greater than the exciton radius (charge density,

n < 5 · 1012 cm−2) as the excitonic picture breaks down at high charge density.

In the single-particle picture, an exciton can capture an ambient carrier and form

a three-particle bound state with finite charge called a trion. The positive (hole) trion, A+,
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Figure 1.6: (a) Schematic of a monolayer WSe2 gating device. WSe2 is encapsulated in
hexagonal boron nitride (BN), with few-layer graphite as electrical contact and gate elec-
trode. A gate-voltage is applied between the few-layer graphite sheets to inject charge into
the WSe2 monolayer. (b) Schematic of the bright hole trion (A+) configuration in monolayer
WSe2.

in monolayer WSe2 is depicted in Figure 1.6(b). The trion has an additional binding energy

relative to the neutral exciton and therefore its absorption resonance is at lower energy. In

monolayer WSe2, similar to other 2D systems, the trion binding energy is ∼ 10% of the

neutral exciton binding energy. For example, the neutral exciton (A0) and hole trion (A+)

have binding energies ∼ 180 meV and ∼ 20 meV, respectively, when encapsulated by thick

BN as in Figure 1.6(a). The possible configurations of trion depend on the arrangement

of valence and conduction bands. The exciton (trion) state is not simply a combination of

three discrete electron (hole) states - it includes contributions from many states near the

band minima. The constituent states are fermionic and are subject to Pauli exclusion; thus,

the trion cannot be composed of two electrons (holes) which occupy the same band. For

reasonable hole doping, only an intervalley trion configuration is allowed as the exciton-

forming hole already occupies the valence band of one valley. The intervalley trion (A+)

is depicted in Figure 1.6(b). For electron doping, however, both intervalley and intravalley

16



Figure 1.7: Schematic configurations of the (a) intervalley electron trion (A−1 ) and (b)
intravalley electron trion (A−2 ).

trion configurations are allowed. The exciton-forming electron occupies the higher spin-split

conduction band in one valley which leaves the lower sub-bands in both valleys available

for trion formation. The intervalley (A−1 ) and intravalley (A−2 ) are depicted in Figure,

respectively. We note that the binding energy of A−1 is reduced relative to A−2 due to the

intervalley exchange interaction from the A−1 spin-triplet configuration.

1.1.4 Exciton Energy with Finite Charge Density

The injected charge carriers will modify the exciton (trion) through two primary

mechanisms. First, the ambient charge will effectively screen the exciton Coulomb inter-

action and more broadly renormalize the electronic band structure. Increased screening

of the exciton binding will reduce its binding energy, increase the effective exciton radius,

and therefore decrease the oscillator strength. All else constant, the screening effect on the

exciton absorption produces increased resonance energy (blue shift) and decreased absorp-

tion intensity. However, the free particle interaction also experiences increased screening.

For the bands of interest at the K (K ′) point, the free particle band gap is reduced with
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Figure 1.8: Representative gate-dependent optical conductance map measured in a mono-
layer WSe2 gating device. The optical absorption is proportional to the optical conductance.

increasing charge density [7]. The exciton energy is given by the free particle band gap

minus the exciton binding energy, so the band gap renormalization and binding energy

reduction compete with each other. In monolayer WSe2, the magnitude of both effects is

approximately equal. Therefore, the net screening effect on the exciton is a small shift in

energy and significant decrease in oscillator strength where both effects are proportional to

the charge density.

Second, and slightly more subtle, is the filling by ambient carriers of states which

otherwise contribute to the exciton at charge neutrality. This so-called phase-space filling

(PSF) effect [7] reduces the phase space available for photoexcitation and exciton forma-

tion due to Pauli exclusion. Overall, the PSF increases the absorption resonance energy

(decreases the exciton binding energy). We note that this effect requires filling phase space

which is occupied by the exciton-forming electron (hole). As shown in Figure 1.5(a), the

exciton-forming hole for the A-exciton occupies the highest energy valence band. The A-
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exciton will thus experience increasing PSF immediately upon hole injection. In contrast,

the lowest energy conduction subbands are not directly involved in A-exciton formation.

The exciton-forming electron occupies the higher energy spin-split subband. Therefore, the

A exciton will not experience PSF with electron injection until this higher energy subband

beings to fill. The B-exciton (Figure 1.5(b)), however, will experience PSF immediately

upon electron injection as its exciton-forming electron occupies the lower energy conduc-

tion subband.

A representative map of the optical conductivity (proportional to absorption) of

the exciton and trion species (A0, A+, A−1 , A
−
2 ) as a function of ambient charge density in

monolayer WSe2 is shown in Figure 1.8. At charge neutrality (n ∼ 0 cm−2), only the neutral

exciton (A0) appears in the absorption spectrum within the energy range 1.66 − 1.78 eV.

With increasing hole density (negative Vg), the A0 absorption shifts to higher energy and

decreases in intensity. The A+ resonance appears immediately upon hole injection. The A+

absorption initially increases in intensity as it gains oscillator strength from A0, but begins

to decrease at intermediate charge density (∼ 2.5 · 1012 cm−2). At this point, the binding

energy is significantly reduced and the exciton effect is suppressed. Similarly, A0 is blue

shifted and suppressed with electron injection while A−1 and A−2 appear.

Limits of Trion Picture and the Exciton-Polaron

As a final note, we emphasize that the trion picture of a discrete three-body state

discussed above is not accurate beyond the single-particle scenario, but is nonetheless useful

to qualitatively describe the excitonic behavior at finite charge density. For this reason,

the trion picture has been widely used to describe the charge-density-dependent optical
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spectra in monolayer TMDs in the low-density-limit. A more realistic picture is given by

the exciton-polaron model [20–24] . Here, the exciton interacts with the broader Fermi

surface of ambient carriers and forms a complex, many-body state. The exciton can excite

electron-hole pairs across the Fermi surface; the exciton is thus dressed by this polarized

Fermi surface to form an exciton-polaron. This model converges to the trion picture in

the single-particle limit but the distinction becomes increasingly important with increasing

charge density. The detailed physics of the exciton-polaron and its divergence from the trion

is a subject of significant ongoing research. We use the terms interchangeably throughout

this work for ease of discussion, particularly where the distinction is not crucial to the

data interpretation, but for clarity emphasize that the exciton-polaron is the more accurate

picture.

1.1.5 Monolayer WSe2 under Out-of-Plane Magnetic Field

Another important consequence of the distinct band structure in monolayer WSe2,

which produces the optical valley selection discussed above, is the valley-specific evolution of

the electronic band structure under out-of-plane magnetic field. The out-of-plane magnetic

field breaks the time-reversal symmetry and lifts the valley degeneracy of each band. In

the single-particle picture, the shift of each band at the K- (K ′-) valley is described by

the valley Zeeman effect. Each band experiences a rigid energy shift, ∆Eα, which is the

combined effect of the spin, orbital magnetic moment, and Berry curvature contributions

to the net magnetic moment of the band states [8].

∆Eα = µBB

[
2 · Sα + mα + τ · m0

m∗α

]
(1.11)
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Figure 1.9: Schematic band structure of monolayer WSe2 under out-of-plane magnetic field.
Band shift is illustration of the valley Zeeman effect. The electron spin, orbital magnetic
moment, and Berry curvature contributions to the g-factor of each band from the single-
particle model are labeled. The upper conduction subband and valence band have similar
effective mass (m∗ ≈ 0.42m0) [25–27]. Our results in Chapter 4 show that the lower
conduction subband has larger effective mass (m∗ ≈ 0.46m0) [28].

where α = v1,↓, ... is the band index, µB = e~/2m0 is the Bohr magneton, m0 is the electron

mass, and B is the out-of-plane magnetic field strength. The first bracketed term describes

the contribution of the electron spin to the total magnetic moment, where Sα = ±1/2.

The second term arises from the orbital character of the band. As in our discussion of the

optical selection rules, we can identify the dominant magnetic angular momentum quantum

number, mα, for each band from DFT calculation [6]. The final term arises from the finite

Berry curvature of the band near the K (K ′) point which produces an effective magnetic

moment. Here, τ = ±1 is the valley index of K (K ′) and m∗α is the electron (hole) effective

mass.

We can thus estimate the energy shift of each band under out-of-plane magnetic

field, which we illustrate in Figure 1.9. We list the spin, orbital angular momentum, and
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Figure 1.10: (a) Illustration of exciton valley degeneracy breaking under out-of-plane mag-
netic field. The total single-particle g-factor for the relevant bands are labeled. The exciton
g-factor is the difference between the relative shift in each valley (g ≈ −4 for the A0 exciton
shown). (b) Energy splitting of the A0 exciton in the K (red) and K ′ (blue) valleys. The
magnitude of energy splitting is proportional to the exciton g-factor and magnetic field
intensity.

Berry curvature contributions next to each subband. Each subband is approximately a spin

eigenstate with S = ±1/2 indicated by red and blue, respectively. The conduction band is

primarily composed of W orbitals d0 = dz2 with m = 0, while the valence band is primarily

composed of W orbitals d+2 = 1/
√

2
(
dx

2−y2 ± idxy
)

with m = ±2 for the K- and K ′-valley,

respectively. These first two terms are known to fairly high confidence. The final term is

related to the carrier effective mass m∗. Here we assume the upper conduction subband and

valence band have similar effective mass (m∗ ≈ 0.42m0) [25–27]. Our results in Chapter 4

show that the lower conduction subband has larger effective mass (m∗ ≈ 0.46m0) [28]. By

convention, the valley Zeeman shift is defined in terms of a g-factor which is related to the

difference in energy between corresponding bands in the K- and K ′-valley as shown for the

valence band in Figure 1.9.
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Using the neutral exciton A0 as an example, we can see that the valley Zeeman shift

necessarily breaks the exciton valley degeneracy, as well. A0 is shown for both valleys under

out-of-plane magnetic field in Figure 1.10(a). If we assume that the exciton binding energy

is not modified by the magnetic field, then the exciton absorption energy will shift with

the difference between the conduction and valence bands. We note that this assumption

accurate only in the low-magnetic-field limit where the magnetic length lB =
√
~/eB is

much larger than the exciton radius. We discuss this further in Chapter 3. Regardless, A0

will experience an energy shift of ±2µBB in the K- and K ′-valley, respectively, as illustrated

in Figure 1.10(b). The total valley energy splitting of A0 will be ≈ 4µBB producing an

exciton g-factor, gA0 ≈ −4. Importantly, the valley-dependent optical selection rules are

maintained under out-of-plane magnetic field. As the exciton valley degeneracy is broken,

we can distinguish the exciton (trion) in each valley via circularly-polarized optical probe.

23



Chapter 2

Sample Fabrication and

Experimental Methods

2.1 van der Waals Heterostructure Device Fabrication

As discussed earlier, the 2D van der Waals materials have two universal, powerful

traits. “Stackability”, due to their weak out-of-plane bonding relative to those in-plane, and

exceptional influence of interface effects as 2D materials are essentially all-interface. Owing

to these fundamental characteristics, we can fabricate optoelectronic devices with desirable

properties by stacking vdW layers in a particular fashion. The layers can be assembled like

building blocks and add new functionality (e.g., gate electrodes) or modify the functionality

of other layers (e.g., dielectric layers, heterojunctions, moiré-pattern-based restructuring).

For example, encapsulating an active layer (e.g., monolayer WSe2) within flakes of few-layer

hexagonal boron nitride (BN) largely insulates it from environmental influence (e.g., surface
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adsorbates, strain) and modifies the surrounding dielectric environment [29]. BN is a wide-

bandgap insulator which can be relatively free of in-gap defect states which means that it

will not directly interact with incident visible light in a substantial way and is relatively

homogeneous. On the other hand, a stack of two WSe2 monolayers with a small twist angle

results in significant renormalization of the physical and electronic structure, essentially

producing an entirely new system with its own emergent physics [30]. We can imagine,

with an entire catalogue of 2D materials at our disposal, the possibility to design unique

vdW material heterostructure devices which may fulfill a large range of technological and

scientific needs.

We therefore need a tool which allows arbitrary stacking of vdW materials with

high precision and in such a way that minimizes damage and introduction of other undesired

external influences to the materials of interest. So-called “micromechanical transfer” tools

have been progressively developed over the last decade and there is significant literature that

illustrates noteworthy advancements in that time (e.g., development of dry-transfer method

[31, 32], tear-and-stack method for twisted homostructures [33]). Broadly, the transfer mi-

croscope holds a polymer stamp which can controllable pick up and deposit 2D material

flakes through the well-known dry transfer process. The microscope allows accurate place-

ment of the 2D flakes to assemble arbitrary van der Waals structures. We discuss the details

of the microscope design and transfer process as of December 2020.
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2.1.1 Transfer Microscope Design

We first discuss the design of our transfer microscope and note several aspects

which diverge from those found in literature. A photograph of the microscope and a cor-

responding schematic illustration are shown in Figure 2.1(a,b). The transfer stage consists

of two major parts: the Base and the Transfer Arm. During transfer, the substrate onto

which 2D material flakes have been exfoliated (purple, Figure 2.1(b)) is placed on the top

surface of the Base and is fixed in place by vacuum. The surface has a small hole in the

center which is connected to a vacuum line. Embedded within the Base are two DC resistive

cartidge heaters and a thermocouple which sits very close to the top surface. The heaters

and thermocouple are connected to a high-power DC voltage source and a temperature

PID controller. The PID controller regulates the DC voltage output to heat the base to an

input target temperature. We note that the PID is tuned to ensure sufficiently slow heating

that the Base surface has roughly uniform temperature and the heaters are unlikely to be

damaged. We thermally isolate the Base from the rest of the transfer assembly by mounting

it on ceramic standoffs. Beneath these standoffs, the full Base stage can be freely rotated

translated in plane (x, y). Above the Base is an optical microscope assembly which images

the plane parallel to the Base surface with interchangable long-working distance objective

lens (50x and 10x shown).

Between the Base and the objective lens is a Transfer Arm, which holds the poly-

mer stamp and must be sufficiently translucent so the optical microscope can image the

Base through the Transfer Arm. Conventionally, the Transfer Arm is a standard glass

microscope slide; however, the thickness of the glass slide can cause significant optical ab-
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Figure 2.1: (a) Photograph and (b) schematic drawing of the transfer microscope system
described in text.

berations when the microscope images through it to the Base. To alleviate this problem,

we instead use a thin aluminum Transfer Arm with a small hole covered by a standard

microscope cover slip. The cover slip holds the polymer stamp and is ≈ 10× thinner than

a glass slide which significantly reduces the abberations. The Transfer Arm is held in place

to the larger Transfer Army assembly by vacuum. To allow high-precision alignment of

the polymer stamp and the sample on the Base, and to bring the stamp into contact with

the Base, the Transfer Arm assembly features a 3D linear translation stage and a tip-tilt

stage. The entire Transfer Arm assembly is ultimately held in place on the optical table by

a magnetic base. The magnetic can be withdrawn to allow free positioning of the Transfer

Arm assembly. Altogether, the transfer assemblies allow ≈ 1 µm x, y alignment accuracy,

rotational alignment, and controllable x, y tilt of the stamp relative to the Base surface.
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2.1.2 2D Material Fabrication Process

2D Flake Preparation

First, the desired 2D material is exfoliated from bulk crystal (or otherwise pre-

pared, e.g., by chemical vapor deposition) onto an initial substrate using silicone-free semi-

conductor tape. We note the common substrate of choice for clear optical contrast is a

SiO2(250-320 nm)/Si wafer due to the strong interference of reflected visible light. Other

substrates may be used, such as quartz, however sample identification may be significantly

more challenging. Each of the to-be-stacked flakes is similarly prepared so that all are

available prior to the transfer process. Flakes of interest on the as-exfoliated substrates are

identified and imaged by optical microscopy. We image the flakes at the highest-available

magnification and at least one larger scale (e.g., 100x, 10x). The high-magnification image

is used for heterostructure design, e.g., by digitally overlaying images the component flakes;

the low magnification image is saved to aid precise location of the flake of interest in the

transfer microscope. Further imaging via dark-field microscopy is also useful to estimate the

ideality of the flakes in question – this technique collects only light scattered at angles larger

than the central imaging cone of the microscope objective, and thus allows identification of

“roughness” in a flake due to wrinkles, bumps, and other inhomogeneities in the ideal 2D

plane. Flake edges and steps can also be distinguished.

We note, as well, that post-exfoliation treatment can be critical to achieving the

highest quality vdW heterostructures, but optimal procedures vary significantly from ma-

terial to material. Generally, we find that post-exfoliation annealing of common transition

metal dichalcogenide flakes at T ≈ 350 K in a low pressure tube furnace with an inert
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carrier gas reduces the incidence of interfacial bubbles in the final monolayer TMD het-

erostructure devices. Flakes may also experience noticeable aging effects with long time

delay between exfoliation and use in fabrication which negatively impact heterostructure

quality and transfer success, but again this varies on a per-material and per-environment

basis. For most materials, storage in an inert environment is sufficient.

Polymer Stamp Preparation

We next fabricate the polymer stamp which will be used to pick up and manipulate

the flakes of interest. This stamp consists of two layers: a translucent, viscoelastic polymer

base, e.g., polydimethylsiloxane (PDMS), and a translucent, thermoplastic polymer top

layer which is soluble in a common solvent (e.g., acetone, chloroform). Choice of this top

layer is important as it must controllably pick up the flakes of interest and cleanly separate

from the base polymer when the final transfer step is completed. Common stamp materials

are polypropylene carbonate (PPC) and poly(bisphenol A carbonate) (PC). We believe that

PC is superior in most respects, but requires significantly higher temperatures throughout

the transfer process as compared to PPC. Thus, PPC is preferably for materials which

degrade under heating. To ensure the stamp conforms well to the flake, it is ideal to control

the stamp polymer glass transition. This temperature must be above room temperature,

achievable by the transfer microscope heating element, and low enough to not damage the

flakes of interest. We fabricate the stamp using thin commercial PDMS as a base and PC

as the active layer. A thin film of PC is prepared from liquid stock (PC in chloroform, 6%

w/t) by sandwiching the liquid between two standard glass slides. The top slide is quickly

removed with minimal downward pressure such that a uniform film remains on the bottom
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slide. After the PC film dries, we mechanically stack it with a sacrificial PDMS layer for

structural ridigity. The final stamp is formed by stacking a small square of PC film on top

of fresh PDMS and placing the stamp on the Transfer Arm (cover slip) to be used.

Dry Transfer Procedure

For brevity, we will describe only the first, second, and final mechanical transfer

steps. The intermediate steps are largely identical to the second step. The transfer process is

illustrated in Figure 2.2, but we discuss it in more detail in the text. The transfer microscope

Base begins at room temperature. The substrate containing the first flake to be transferred

is affixed to the Base, and the flake of interest is roughly centered in the microscope field

of view by translating the Base (a). The Base is then heated to just below (≈150 oC for

PC) the glass transition temperature of the active polymer layer. The flake may need to be

repositioned during or after the heating process due to the thermal expansion of the Base.

The stamp is then lowered until it is very near the sample surface. We move the focal plane

of the microscope to a height between the flake and the surface of the stamp. The stamp

is further lowered until it intersects the current focal plane, thus controllably approaching

the flake surface. This process is repeated until the stamp is immediately above, but not

touching, the sample surface.

Next, the stamp is slowly contacted with the substrate. This may be accomplished

by fine mechanical control or via thermal expansion of the Base. In the latter case, we use

lower initial temperature of the Base to allow for the required thermal expansion without

significantly exceeding the polymer glass transition temperature. For either method, we
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Figure 2.2: Illustration of the simple dry transfer fabrication process. (a) Polymer stamp
is positioned above to-be-picked flake. (b) Stamp in contact with flake, sample heated to
polymer glass transition. (c) Sample cooled, stamp lifted with attached flake. (d) Second
2D flake positioned. (e) Stamp stacks the two 2D flakes. (f) Sample is heated to high
temperature to separate polymer stamp, PC left behind. (g) PC is dissolved in chloroform.
(h) Completed simple stack.

attempt to contact the polymer and substrate such that the area immediately surrounding

the flake of interest is covered by the stamp but contact elsewhere between the stamp and

substrate is minimized. In this way we ensure good, conformed contact with the flake while

minimizing the overall contact area and thus total adhesion force between the stamp and

substrate. As the contact area increases, so does the difficulty in lifting the stamp from

the substrate and the likelihood of other issues such as stamp tearing or flake damage.

We accomplish this by tilting the stamp by ≈ 3o relative to the Base. This ensures that

initial contact between the stamp and the substrate is along a single line with controllable

position. As the stamp is brought closer to the substrate, the area of contact will expand
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Figure 2.3: (a-c) Time series of microscope images showing the angled polymer stamp (light
colored area, left side of image) slowly covering a BN flake as the polymer stamp is contacted
with the sample substrate.

linearly (Figure 2.3) such that the total contact area can be controlled. This also suppresses

the formation of ”bubbles” in the contact area due to deformation of the polymer stamp -

inhomogeneity in the stamp is naturally pressed out by the unidirectional contact spread.

While in contact with the stamp, we reduce the Base temperature below the glass

transition. The stamp and attached flake are then lifted from the substrate via thermal

compression of the Base or mechanical control. It is crucial to perform both the stamp

contact and liftoff in as smooth and controlled a fashion as possible to minimize mechanical

stress and subsequent damage to the flake. We note, as well, that BN is an ideal choice for

the first flake pickup / top heterostructure layer as it has relatively strong vdW interactions

with other 2D materials, is comparatively easy to pick up, and can be mostly inert to

functionality of the device.

Subsequent flakes are transferred in a similar manner, but at a lower Base tem-

perature below the glass transition. While the first layer relies solely on adhesion to the

polymer stamp, subsequent flakes may be picked up via interaction with the previous layer.

This is particularly true if most of the flake area is in contact with a previous layer, rather
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Figure 2.4: Optical image of Representitive BN-encapsulated monolayer WSe2 gating device
used for the experiments in Chapter 3 and Chapter 4. (a) Image showing complete device
with gold contacts deposited via electron beam lithography and electron beam evaporation.
(b) Magnified image of 2D heterostructure with constituent layers outlined and labeled.
The device is composed of BN/WSe2/BN/FLG/SiO2/Si.

than the polymer. In the case of a small overlap with the previous layer, the heating pro-

cess described in step one may be repeated; however, there is a risk of releasing those layers

already picked up by the stamp. Regardless, the stamp containing the already-picked-up

flakes is lowered near to the surface of the new flake. We adjust the focal plane between

the stamp and the flake substrate to properly align the layers. This alignment process is

repeated as the stamp is lowered to the substrate. Even with our thin stamp and substrate,

there is observable distortion of the microscope image viewed through the stamp. Aligning

the two flakes at a distance and blindly approaching will result in a misaligned structure.

After all layers have been sequentially aligned and picked up using the above

method, the desired heterostructure is complete but suspended from the polymer stamp. As

a final step, we carefully lower the completed heterostructure onto a target substrate again

ensuring a smooth and controlled approach. In contrast to previous steps, we maximize
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the contact area between the stamp and substrate. The Base is then heated substantially

above the polymer glass transition to ensure maximum adhesion between the active poly-

mer and the final substrate. The temperature is then lowered and the stamp lifted. The

active polymer adheres more strongly to the substrate than the PDMS, thus separating the

stamp and depositing the complete heterostructure and active polymer layer on the final

substrate. This sample is then immersed in an appropriate solvent (e.g., chloroform for

PC) to dissolve the active polymer leaving behind the completed heterostructure. Optical

images of a representative BN-encapsulated monolayer WSe2 gating device with few-layer

graphite (FLG) contacts is shown in Figure 2.4.

2.2 Optical Microscope System

In this section, we provide an overview of the multi-technique experimental setup

which is used for much of the zero-magnetic-field measurement. A comprehensive exper-

imental schematic for the work in this dissertation is shown in Figure 2.5. Solid lines of

various colors denote laser or broadband light pathways. Dashed lines are digital connec-

tions between electronics and the control computer. Thin black lines between components

are analog electrical connections. We present a brief overview of the components used in

the experimental procedures, starting with available light sources.

2.2.1 Light Sources

The schematic in Figure 2.5 includes three laser sources and a broadband lamp

which can be used interchangeably via flip mirrors. Each continuous wave (CW) laser source
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Figure 2.5: Schematic of multi-technique optical microscope system described in text. Col-
ored lines indicate optical pathways. Angled solid (dashed) black lines are (flip) mirrors.
Gold rectangles are transmissive frequency filters. Solid black lines connecting components
are analog electrical connections. Dotted black lines are digital connections.
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has linearly polarized emission with vertical orientation relative to the optical table, while

the broadband lamp is unpolarized. Each laser source is collimated and magnified by a lens

pair with adjustable separation distance.

Continuous-wave (CW) Laser Sources

1. 532.14-nm continuous wave laser (torus 532, Laser Quantum)

2. 632.8-nm continuous wave helium-neon gas laser (HNL210LB, Thorlabs)

The primary emission mode of both CW lasers has narrow bandwidth, but a sharp trans-

missive band-pass filter (yellow rectangle, Figure 2.5) is placed immediately after the laser

exit to remove any sidebands present in the emission spectrum. We note that any secondary

laser emissions are exceptionally weak compared to the primary lasing wavelength. How-

ever, our experimental signals have intensity ≥ 10−9 relative to the primary laser peak, so

may have comparable intensity to even weak laser sidebands. The final intensity of each

laser is controlled by reflective neutral density filters. Laser (1) has high initial output

power (≤ 125 mW) and features additional electronic control of the output power which

may be adjusted on the laser head or via external computer control.

Ultrafast Laser Source

1. 1030-nm, 76 MHz, 80 fs Nd:YAG oscillator (PHAROS, Light Conversion)

(frequency doubled via second harmonic generation to 515-nm)

The PHAROS laser pathway shown in Figure 2.5 is the direct output of a high power

oscillator (≈ 2.2 W) used to pump a 250 KHz regenerative amplifier system. The power must
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be immediately attenuated before continuing along the beam path for safety. The output

passes first through a variable-angle half-wave plate which rotates the linear polarization

and then a polarizing beam splitter which sends only the vertically polarized component

along the rest of the beam path. The horizontally polarized component terminates at

a beam block. In this work, we study excitons with absorption energy in the visible to

near-infrared range, so we double the output frequency of the ultrafast laser by second

harmonic generation (1030-nm to 515-nm). The 1030-nm laser is focused through a 1.9 mm

lithium triborate (LBO; EKSMA Optics LBO-602H) crystal with type-1 phase matching

between the fundamental 1030-nm pulse and 515-nm second harmonic pulse. We choose

a thin crystal to minimize temporal walk-off due to group-velocity mismatch (GVM) of

the fundamental and SHG pulses. This allows us to tightly focus the laser in the crystal

to maximize conversion efficiency. For the same reason, we choose LBO over the more

common barium borate (BBO) as it exhibits significantly lower group-velocity mismatch

for SHG at 1030-nm (51 fs/mm vs. 94 fs/mm). The distance over which phase-matching

between the fundamental and SHG pulses is satisfied can be approximated by the quasistatic

interaction length (Lqs = τ/GVM). For SHG at 1030-nm with 90 fs pulse width Lqs is ≈ 1.8

mm for LBO and ≈ 1.0 mm for BBO. We therefore expect proportionately higher conversion

efficiency in LBO vs. BBO. We note that LBO also exhibits reduced group delay dispersion

relative to BBO which will minimize temporal broadening of the SHG pulse relative to the

fundamental pulse width. Overall, we observe SHG conversion efficiency of several percent

which is more than sufficient given the available pump power.
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Broadband Light Sources

1. 360- to 2600-nm stabilized tungsten-halogen lamp (SLS201L, Thorlabs)

2. Visible LED lamp (for optical sample imaging)

For continuous, broadband optical measurement in visible and near-infrared wavelengths,

we use a stabilized tungsten-halogen lamp. The light is collimated immediately after the

lamp by two lenses with fixed separation length in a lens tube. The lamp is an extended

light source, so the first lens (aspheric condenser lens) focuses the light through a small

pinhole (≈ 5 µm diameter) placed at the focal point to approximate a point light source.

The transmitted light is then collected and collimated at a diameter ≈ 2 cm by a biconvex

lens. We note that the incoherent lamp output cannot be perfectly collimated but we

achieve sufficiently low beam divergence for our path length. A diffusing element can be

used, as well, to produce a more uniform image at the sample plane, rather than imaging

the lamp filament. To image the sample for positioning, inspection, etc. , we use a basic

LED lamp. The lamp output is roughly collimated with a biconvex lens and is coupled

into the laser beam path with a beamsplitting element to allow simultaneous imaging of

the reflected laser spot and sample via a basic CCD camera in the detection path.

2.2.2 Beam Pathway, Optics

Excitation Pathway

Following collimation and filtering, all light sources follow the same beam pathway.

The excitation beam first passes through a linear polarizer (LP) with vertical orientation

relative to the optical table, then a variable-angle half-wave plate which rotates the linear
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polarization. Next, the excitation beam is transmitted through an unpolarized beamsplitter

followed by a variable-angle quarter-wave plate. Together, the two wave-plates can produce

any polarization of the excitation beam with circular basis. In this work, we exclusively use

linear and circular (right- or left-handed) polarization. For linear polarized measurement,

we remove the quarter-wave plate.

The excitation beam then passes through a series of perpendicularly oriented mir-

rors which allow translation of subsequent mirrors without translating the relative beam

spot location on each mirror. Ultimately, this allows us to translate the objective lens,

which focuses the excitation beam onto the sample, in three dimensions without changing

the location of the beam spot in the objective entrance aperture. To maintain the relative

beam spot location on each element, all subsequent elements are translated identically such

that translation along one axis changes only the distance between two adjacent mirrors.

Each translation axis includes one less mirror. Here, the 3D translation is accomplished by

a series of successively smaller optical mounts and micrometer-actuated linear translation

stages stacked on each other. Thus, we mechanically translate the excitation beam focal

point in three dimensions with sub-micron resolution.

The excitation light is finally focused onto the sample surface using a high nu-

merical aperture (N.A. ≈ 0.6) dry objective lens with long working distance (Nikon). The

sample is contained inside an optical cryostat (described below) with the objective lens out-

side, so the focused light must pass through the cryostat windows. Due to the high N.A. and

window thickness, the window dispersion produces significant abberations which degrade

the optical image and greatly increase the minimum laser spot size. To compensate for
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these abberations, we use an objective lens with a correction collar that allows adjustment

of the central lens group position within the objective.

Detection Pathway

The to-be-detected signal is collected by the objective lens and follows the excita-

tion pathway in reverse through the translation stage and quarter-wave plate. The detected

light is separated by the unpolarized beamsplitter and sent along the detection pathway la-

beled in blue in Figure 2.5. For linear or circular polarized detection, we use a variable-angle

half-wave plate and linear polarizer (LP) in series to select the desired polarization. The

linear polarizer has fixed vertical orientation, so the remainder of this pathway is vertically

polarized. For Raman and photoluminescence measurement, the excitation laser is higher

energy and significantly more intense than the detected PL signal. We use a transmissive

long-pass filter (Semrock) to remove the excitation laser which is reflected onto a beam block

to minimize scattered light. Immediately afterwards, a flip mirror is available to direct light

towards a USB CCD camera which can image the sample. Finally, the detected light is fo-

cused into the entrance slit of a spectrometer (SpectraPro HRS 300, Princeton Instruments)

which contains three diffraction gratings on a controllable turret. The monochromator has

two exit slits which may be chosen by a computer-controlled mirror. A thermoelectric cooled

CCD array (PIXIS 400BRX, Princeton Instruments) is mounted at the primary exit. The

monochromator and CCD are controlled and calibrated by software (LightField, Princeton

Instruments) for straight-forward spectral measurement. The secondary monochromator

exit focuses the detected light within a chosen spectral window onto a single-element, single

photon avalanche photodiode (APD; PDM Series, Micro Photon Devices).
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2.2.3 Sample Stage, Electrical Interface

The sample is contained within a closed-cycle, low-vibration optical cryostat (Cryo-

station, Montana Instruments) with computer-controlled base temperature from 4 K to 350

K. The cryostat has two CaF2 windows: one exterior window and a second window in the

interior heatshield. The 2D material device is mounted on a custom sapphire chip carrier

which is placed close (≤ 2 mm) to the inner surface of the heatshield window. We note

that the true minimum sample temperature is higher than the base cryostat temperature

of 4 K, likely due to reduced cooling power through the chip carrier. The chip carrier is

connected to electrical feedthroughs in the cryostat through which we can apply and detect

voltages from external electronics (DAC, voltage sources; National Instruments, Keithley

Instruments) via computer control. The 2D device is wire-bonded to the chip carrier.

2.2.4 Measurement Automation

As some measurements require high acquisition rate (or, inversely, long total expo-

sure time), we use software automation via LabVIEW and python for unattended control.

For the research shown throughout this work, we use simple automation scripts which

simultaneously control the DAC/Voltage Sources (National Instruments, Keithley) and

Spectrometer/CCD Array (Princeton Instruments) for unattended gate-dependent mea-

surement. For clarity, the gate-dependent measurements are conducted by sweeping the

gate voltage at a fixed rate in equally-spaced voltage steps. At each step, the spectrometer

entrance shutter and CCD acquisition are triggered for a set integration time via the Light-

Field software API. The acquired spectrum is then read into the program memory. For the
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small single-gate maps in this work (≤ 1200 lines) it is sufficient to keep the entire map in

memory and write an output file upon completion. We do note that our lab automation

efforts include most of the major instrumentation and optomechanics in the lab but these

capabilities were not utilized in this work.

2.3 Magneto-Optical Experiment

The magneto-optical data in this work was wholly collected at the National High

Magnetic FIeld Laboratory (NHMFL) DC Field Facility in Tallahassee, FL over four user

weeks from August 2019 to January 2020. We used two magneto-optical systems at the

NHMFL whose experimental configuration we discuss here briefly.

2.3.1 31-T Resistive Magnet

Figure 2.6 illustrates the fiber-based optical path in this setup. First, the excitation

laser is focused into a single-mode optical fiber which carries it into the sample chamber

where the light is recollimated, sent through a transmissive laser line filter, 50/50 beam

splitter, and then quarter waveplate which converts the linearly polarized excitation laser

to circularly polarized with fixed helicity. The light is finally focused onto the sample

using a cryogenic objective lens with N.A. ≈ 0.67. The wider spectrum of emitted light

(photoluminescence) is collected by the same objective lens, and passes through the quarter

waveplate which converts right- (left-) handed circularly polarized PL to vertical (horizontal)

linear polarization. The collected light then passes though the beam splitter and a low-

pass transmissive long pass filter to remove the reflected excitation light. The collected
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Figure 2.6: Fiber-based probe setup for photoluminescence (PL) measurement under high
magnetic field. Cell 9, National High Magnetic Field Laboratory.

light is then focused into a multimode optical fiber to exit the cryostat. Outside of the

cryostat, the light exits the optical fiber, passes through a linear polarizer, and is focused

into spectrometer (Princeton Instruments ISOPlane 320) with charge coupled device (CCD)

camera to measure the PL spectrum.

The sample device was mounted in a custom optical insert provided by the NHFML.

The long insert arm carries the fiber-optic and electrical cables into the sample chamber of

the cryostat. Sample positioning and focusing is enabled by an XYZ open-loop piezoelectric

positioner (attocube) which holds the sample using a commercial chip carrier and socket.

The cryostat uses a He3 exchange gas and thus easily achieves sample temperature T ≤ 5 K

even under moderate laser irradiation. The magnet used here is a high power DC resistive

magnet which produces fields up to 31-T. For all measurements our sample was oriented

perpendicular to the magnetic field direction.
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We make three notes with regard to this experimental setup. First, it exhibits ex-

ceptional sample stability at constant temperature and magnetic field – we were unable to

observe any appreciable sample drift under these conditions. When sweeping the magnetic

field, however, we noticed significant sample drift which required careful correction using

the piezoelectric positioners. We attribute this behavior to a magnetic-field-induced force

on some components (e.g., chip carrier) which causes slipping of the piezoelectric stage.

This conclusion is supported by the exaggerated or unpredictable motion of the piezoelec-

tric stage immediately after or during magnetic field sweep, the effects of which diminish

quickly at constant magnetic field. Second, the optical setup is hard-wired for laser spec-

troscopy experiment. The single-mode fiber which carries the excitation light supports a

limited spectrum and the TFF is fixed in the interior optical probe. Thus, we were un-

able to conduct complimentary broadband reflectance measurements due to experimental

limitation. Finally, use time of the magnetic field is limited by power consumption - we

are provided a power budget by the facility which can be used over one week. As a rough

approximation, this entire power budget could be used in 9 hours of operation at the high-

est magnetic field (31-T). Thus, it was not feasible to conduct detailed gate-dependent PL

mapping at constant high magnetic field as one such map can take several hours to acquire.

2.3.2 17.5-T Superconducting Magnet

Figure 2.7 illustrates the free-space optical path in this setup. In contrast to the

fiber-based configuration in Cell 9, the top and bottom of the Cell 3 magneto-crystotat bore

feature transmissive windows so all optical elements besides the objective lens are outside

of the cryostat on a standard optical table. For PL, the essentials are largely the same:
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Figure 2.7: Free-space coupled setup for photoluminescence (PL) and reflectance measure-
ment under high magnetic field. Cell 3, National High Magnetic Field Laboratory.

the excitation laser is first collimated and cleaned with a transmissive laser line filter. The

laser then passes though a half-wave plate, then beamsplitter, and quarter-wave plate for

circular polarization. The excitation laser is finally reflected vertically into the bore of the

magneto-cryostat and aligned with an internal objective lens which focuses the light onto

the sample. The same objective lens collects the signal light which follows an identical path

in reverse out of the magneto-cryostat. The collected light passes through the quarter-wave

plate, then beamsplitter, and linear polarizer. Finally, the collected light passes through a

transmissive long pass filter which removes the reflected higher-energy excitation light and

is focused into a multimode optical fiber which carriers the signal into a spectrometer with

CCD array (Princeton Instruments) for spectral measurement.
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The sample device was mounted in a custom optical insert provided by the NHFML.

The long insert arm carries the fiber-optic and electrical cables into the sample chamber of

the cryostat. Sample positioning and focusing is enabled by an XYZ open-loop piezoelectric

positioner (attocube) which holds the sample using a commercial chip carrier and socket.

The cryostat uses a He3 exchange gas and thus easily achieves sample temperature T ≤ 5

K even under moderate laser irradiation.

We make several notes about this experimental setup in contrast to the Cell 9

system. First, the open-bore configuration with free-space coupling to the internal objective

lens allows significantly higher degree of experimental flexibility. In this system, both PL

and reflectance contrast measurements are straightforward from an optics standpoint and

it is feasible to conduct much more involved optical experiment (e.g., ultrafast). This is the

benefit of the open-bore configuration. We note that this does come with drawbacks - the

observed stability of the system is highly variable in terms of the beam spot location. The

excitation laser must travel several meters through the microscope bore from the optical

table to the internal objective lens. Thus, small variations in the angle or position of

the cryostat optical probe due to thermal cycling or magnetic-field-induced force can have

significant effects on the focusing conditions. This was the largest experimental hurdle to

conducting comprehensive gate-dependent PL and reflectance mapping in this facility as

it required active sample repositioning with the open-loop piezoelectric stage to maintain

constant focal position.
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2.4 Reflection-Contrast Spectroscopy

From the theoretical discussion in Chapter 1, we see that each exciton exhibits a

peak-like resonance in the material absorption spectrum. For this reason, we seek to measure

the absorption spectrum (equivalently, the optical conductance) of the target material as

directly as possible to characterize the exciton resonance. The absorption is not a directly

observable quantity, but it is closely related to the optical transmission and reflectance which

are experimentally observable. If we completely isolate the partially transparent monolayer

TMD, for example by suspension in vacuum, we can shine a broadband lamp directly onto

the material and easily measure the transmitted and reflected power for each photon energy.

Thus, we simply obtain the absorption spectrum. Due to experimental constraints (e.g.,

opacity of the sample substrate, sample mounting configuration), however, it is much more

difficult to measure the transmitted spectrum than the reflected spectrum. Thus, we would

prefer to use the reflected spectrum, alone, to characterize the material absorption.

For an isolated thin film of a single material, the qualitative relationship between

the absorption and reflection spectrum is straightforward. A peak in absorption (Fig-

ure 2.8(a)) corresponds to a similar peak in the reflection spectrum (Figure 2.8(b), green).

In reality, our gating device is not an isolated monolayer - it is a multilayer thin film struc-

ture composed of a 2D heterostructure (WSe2, BN, FLG) on a SiO2/Si substrate. Thus,

the reflection spectrum will be complicated by significant interference effects. The reflection

spectrum for the same peak-like absorption in Figure 2.8(a) is shown by the black line in

Figure 2.8(b) for an example device structure. We note that the shape and intensity of the

reflection spectrum is highly dependent on the dielectric function and thickness of each ma-
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Figure 2.8: (a) Example absorption spectrum of monolayer WSe2 in the vicinity of the
A0 exciton. (b) Corresponding reflectance contrast spectra calculated numerically from
the absorption spectrum in (a) for a monolayer suspended in vacuum (green line) and a
monolayer embedded in a realistic heterostructure (black line) of BN(20 nm)/WSe2/BN(40
nm)/FLG(8 nm)/SiO2(285 nm)/Si.

terial in the sample. Regardless, the interference effects complicate quantitative analysis of

the reflection spectrum but qualitative analysis of each ”peak” is still fairly straightforward.

We discuss a numerical approach to quantitatively analyze these reflection spectra later in

this section.

A second complication is knowledge of the exact spectrum of the incident light

whose reflected spectrum is measured. Experimentally, we measure the reflection spectra

by illuminating the sample with a broadband light source and simultaneously measuring the

complete reflection spectrum with a spectrometer and CCD array. The reflection spectra

in Figure 2.8(b) are relative reflected power at each photon energy. To avoid this issue and

maximize the signal contribution from the desired layer in the heterostructure sample we

can normalize the reflected spectra measured at two spatial locations on the sample. This

is reflection contrast spectroscopy. Specifically, we measure the reflected spectrum at two

locations on each sample: first, including the entire heterostructure device; second, including

48



the entire heterostructure minus the layer of interest. We refer to the second spectrum as

the reference. For the monolayer WSe2 gating device, the WSe2 is the layer of interest.

We measure the reflected spectrum of the full heterostructure (BN(20 nm)/WSe2/BN(40

nm)/FLG(8 nm)/SiO2(285 nm)/Si) and the reference spectrum (BN/BN/FLG/SiO2/Si)

which are shown in Figure 2.9(a) in black and red, respectively. The reflection contrast is

found by the difference between the two spectra divided by the reference spectrum, ∆R/R.

We plot the reflection contrast thus obtained from Figure 2.9(a) in Figure 2.9(b).

Gate-Dependent Reflection-Contrast Spectroscopy

To explore the charge-density-dependent exciton behavior in our monolayer WSe2

gating device, we perform the above reflection-contrast measurement while varying the

applied gate voltage. The gate voltage is varied between a maximum and minimum value in

evenly-separated steps where a sample (full heterostructure) reflection spectrum is measured

for each gate voltage step. A representative raw gate-dependent reflection map and the

corresponding reflection-contrast map are shown in Figure 2.9(c,d), respectively. We note

that the most rigorous approach requires measuring a reference spectrum for each gate

voltage step, but we do not find that the reference spectra change significantly with gating

in our monolayer WSe2 gating device. Moreover, translating the measurement location

back and forth between sample and reference locations results in a noticeable reduction in

data quality due to accumulated positioning error and sample inhomogeneity. This decision

should be evaluated on a system-by-system basis.

49



Figure 2.9: (a) Reflection spectra of a complete heterostructure (black line) and reference
location (red line) without the semiconductor layer. (b) Reflection contrast spectrum cal-
culated from the signal and reference spectra in (a). (c) Gate-dependent map of raw signal
reflectance spectra (as in black line, (a)). (d) Gate-dependent map of reflectance contrast
spectra generated from (c) and the reference spectrum in (a).

2.5 Quantitative Analysis of Reflection-Contrast Spectra

As mentioned above, quantitative analysis of our experimental reflection-contrast

spectra is complicated by significant interference from the multi-layer sample structure.

The problem of thin film interference is well-studied and can be found in electromagnetic

texts, though, and can be easily applied to our sample system if we treat it classically.

From a calculation perspective, the transfer matrix formalism for thin-film interference is

particularly convenient. If the properties of each constituent layer in the thin film structure

are fully specified, as well as the incident light spectrum, the reflected and transmitted

spectra may be easily determined. With regard to our experimental heterostructure, we

50



ideally know the relevant properties of all but one unknown layer (or set of layers). Due to

the interaction between layers, this is not strictly true, but it is a reasonable assumption if

the relative interaction-induced change of the optical properties is not significant. We may

then “guess” the optical properties (dielectric function) of the unknown layer and calculate

a “test” reflection spectrum to be compared with our experimental data. The optical

properties may then be optimized via non-linear least squares such that the calculated and

experimental spectra are identical. Thus, the unknown optical properties are estimated.

2.5.1 Transfer-Matrix Formalism for Thin-Film Interference

Before discussing the details of our experimental analysis technique, we briefly

summarize the transfer matrix formalism used to calculate thin-film interference spectra

[34]. We assume a system of infinite, uniform thin films stacked in the z direction where we

define z = 0 as the first (top) surface. The incident light is approximated as plane waves,

such that the electric field at any position z is the sum of forward and backward propagating

plane waves.

E(x, y, z) = EF (z)e−ikxx + EB(z)eikxx (2.1)

In the simplest case of a single interface between two media, the forward and backward

propagating waves before (z = 0) and after (z = δ) the interface are related by a matrix

operation,EF (z = 0)

EB(z = 0)

 = T̂1,2

EF (z = L)

EB(z = L)

 =
1

t1,2

 1 r1,2

−r1,2 1


EF (z = δ)

EB(z = δ)

 (2.2)
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Here, T̂1,2 is the transfer matrix which describes the interface between the two media (1,2).

The matrix elements of T̂1,2 can be expressed in terms of the Fresnel coefficients:

tij =
2ñi

ñi + ñj
, rij =

ñj − ñi
ñi + ñj

(2.3)

where ñi and ñj are the complex refractive indices of the two media, respectively. We note

that the above coefficients are valid when the light is normally-incident on the interface,

which is the case for our experimental backscattering geometry. We use this simple case for

brevity, but expansion to the general case of arbitrary angle of incidence is straightforward.

We can solve the above expressions and determine the relative reflected and transmitted

power across the interface - these are the single interface Fresnel equations.

R =

∣∣∣∣∣r1,2

t21,2

∣∣∣∣∣
2

, T =

∣∣∣∣ 1

t1,2

∣∣∣∣2 (2.4)

Our device structure is composed of many layers with finite thickness, however, so we must

consider the influence of multiple interfaces and the accumulated phase, φ, of the plane

waves as they propagate through the bulk of each layer. Similar to interface treatment

above, we can relate the electric fields at position z and z + δ within the same medium by

a matrix: EF (z)

EB(z)

 =

eiφ 0

0 e−iφ


EF (z + δ)

EB(z + δ)

 , φ =
2π

λ0
ñδ (2.5)

where the accumulated phase, φ, is related to the vacuum wavelength, λ0, and the complex

index of refraction, ñ. Totally, we have two expressions with transfer matrices which relate

the electric field as it propagates through interface and bulk media. For a series of stacked

layers with finite thickness, the total transfer matrix for the multilayer system is simply the

sequential product of the individual interface and bulk transfer matrices.
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Thus, the electric field on either side (z = 0, z = L) of the complete thin film structure with

N layers and total thickness L are related by:EF (z = 0)

EB(z = 0)

 = T̂0,1T̂1T̂1,2...T̂N−1T̂N−1,N

EF (z = L)

EB(z = L)

 = T̂0,N

EF (z = L)

EB(z = L)

 (2.6)

Finally, we can solve for the relative reflected (R) and transmitted (T ) power for the com-

plete N -layer thin film system in terms of the matrix elements of the transfer matrix.

R =

∣∣∣∣∣T̂
1,2
0,N

T̂1,1
0,N

∣∣∣∣∣
2

, T =

∣∣∣∣∣ 1

T̂1,1
0,N

∣∣∣∣∣
2

, (2.7)

For a system of fully defined thin films, calculation of reflection spectra by the

above method is trivial. The transfer matrices are wavelength dependent, both directly

(λ0) and in the wavelength-dependent refractive indices ñi(λ0) for the involved media. We

calculate the transfer matrix for each wavelength in the desired spectrum, from which we

determine the relative reflected power. The only parameters required are the complex

refractive index and thickness of each layer. In our experimental system, most of these

quantities are known within some margin of error - layer thicknesses can be measured via

scanning probe (e.g., atomic force microscopy) technique and the wavelength-dependent

refractive index of “known” layers may be measured independently or found in literature.

Only the refractive index of the ”active” layer (e.g, monolayer WSe2) is unknown.

2.5.2 Parameterization of Unknown Layer Dielectric Function

To perform non-linear optimization and thus estimate the wavelength-dependent

refractive index, ñactive, of the ”active” layer, we must generate test reflection spectra

which can be compared to experiment. In this problem, ñactive is being optimized such
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that the difference between the calculated reflection spectrum of the total sample and the

experimental reflection spectrum (the residual, a 1D array) is minimized. Practically, we

need to parameterize the ñactive(λ0) function and collectively optimize each parameter.

To generate test ñactive(λ0), we use the well-known Drude-Lorentz oscillator model,

which relates the complex dielectric function, ε̃ = ε1 + iε2 = ñ2, to a series of physical

oscillators (e.g., exciton dipoles). Here, the imaginary component of the dielectric function,

ε2(ω), is given by the sum of peak-like (e.g., Lorentzian) functions, where each function

ideally corresponds to one physical oscillator. The real component, ε1(ω), is then found by

Kramers-Kronig relations. The complex dielectric function is therefore:

ε̃(ω) = ε1 + iε2 = 1 +
∑
i

ω2
p,i

ω2
0,i − ω2 − iωγi

(2.8)

ε1(ω) = 1 +
∑
i

ω2
p,i(ω

2
i − ω2)

(ω2
0,i − ω2)2 + ω2γ2

i

, ε2(ω) =
∑
i

ω2
p,iωγi

(ω2
0,i − ω2)2 + ω2γ2

i

(2.9)

The i-th oscillator in the imaginary component is described by the oscillator plasma fre-

quency (proportional to oscillator strength), ωp,i, the oscillator frequency, ω0,i, and the

oscillator linewidth (damping), γi.

Figure 2.10(a,b) depicts the imaginary (ε2,i) and real (ε1,i) components of a single

oscillator. Figure 2.10(c,d) show the imaginary and real components for a series of oscil-

lators. The magnitude of ε2,i is localized at the oscillator frequency, ω0,i. In contrast, ε1,i

has significant magnitude over a larger energy range – particularly for ω < ω0,i. Thus, the

influence of each oscillator extends to energies significantly below its central frequency. To

produce an accurate dielectric function for our experimental range of interest, then, we must

include contributions from as wide an energy range as possible. In our model system of BN
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Figure 2.10: (a) Imaginary (ε2) and (b) real (ε1) components of the complex dielectric
function for a single Drude-Lorentz oscillator (Equation 2.8). (c) Imaginary and (d) real
components for a series of five oscillators.

encapsulated WSe2, such a comprehensive measurement would require reflection data in a

large energy range from visible to ultraviolet. Experimental difficulty increases significantly

as we widen the studied energy window. Without complete experimental data, we must

approximate the contribution of oscillators outside of our experimental energy window. If

we have prior knowledge of the unknown dielectric function (e.g., previous measurement,

physical model), the extended spectrum can be estimated by discrete oscillators outside the

measured energy range. For an oscillator distant in energy from the experimental data,

however, large variation in the fitting parameters may have small or unexpected effects on

the calculated reflection spectra. Without appropriate constraints, the optimization pro-

cess will be unstable and likely fail. Further, we prefer to avoid excessive constraints in the

fitting process as it may bias or otherwise affect the results.
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Instead, we approximate the contribution of high frequency oscillators with a single

fitting parameter. The low-energy tail of ε1,i(ω) is approximately constant when ω <

ω0,i − 3γi. The total high energy contributions are estimated as a real constant ε∞.

ε̃(ω) = ε∞ +
∑
i

ω2
p,i

ω2
0,i − ω2 − iωγi

(2.10)

For the remainder of this section, we use this expression to parameterize the unknown

dielectric function. Finally, we must decide how many functions are necessary to fully

parameterize the dielectric function and for each determine their initial parameters and any

bounds.

Defining Necessary Oscillators

In the simplest case of the neutral exciton at charge neutrality, the dielectric func-

tion is well described by a single Lorentzian function which directly corresponds to the

physical exciton oscillator. This is shown clearly by comparing the calculated reflection

spectrum in Figure 2.8(b, black line) with the experimental reflection spectrum in Fig-

ure 2.9(a, black line). The calculated spectrum is determined using the layer thicknesses

and structure of the experimental device, and is qualitatively identical to the experimental

result.

Away from charge neutrality, however, the absorption spectra may have many

exciton (trion) resonances which require additional oscillators in the dielectric function to

properly describe. Figure 2.11(b, black line) shows an experimental reflection contrast spec-

trum for monolayer WSe2 with electron doping (Vg = 2 V). Features which correspond to

the neutral exciton (A0) and both electron trions (A−1 , A−2 ) are present simultaneously,
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Figure 2.11: (a) Imaginary component of complex dielectric function for BN encapsulated
monolayer WSe2 with intermediate electron doping. Peaks correspond to exciton (1.72 eV)
and electron trions (≈ 1.68) absorption resonances. (b) Optimization of reflection contrast
spectrum from experimental data (black line) for BN encapsulated monolayer WSe2 with
intermediate electron doping. The difference (blue line) between the experimental reflection
contrast spectrum and that calculated from ε2 in (a) is magnified by a factor of 10 to
highlight the goodness of fit.

so the dielectric function must feature at least three oscillators. The situation is further

complicated by the non-Lorentzian lineshape of these absorption features. To fully parame-

terize the non-Lorentzian shape, then, we must add additional Lorentzian oscillators which

may sum together to form arbitrary line shape. For example, Figure 2.11(a) shows ε2 for

monolayer WSe2 with electron doping (Vg = 2 V) and is totally composed by the sum of

≈ 20 Lorentzian functions of varied width and intensity. The additional parameterization

results in good fits to our experimental data. Figure 2.11(b, blue curve) shows the difference

between the experimental reflection contrast spectrum and the spectrum calculated from

Figure 2.11(a).

Unfortunately, this choice decouples the Lorentzian functions which parameterize

the dielectric function from physical oscillators - for example, a trion absorption resonance

may be described by the sum of five Lorentzian functions rather than one. This as a
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reasonable trade-off as the exciton (trion) absorption features with arbitrary line shape

can be quantitatively analyzed separately after the dielectric function is obtained. We

finally note that the choice of Lorentzians as the basis functions for parameterization of

ε2 is somewhat arbitrary -in principle we can use as a basis any function with finite area.

However, we find that the Lorenztian functions give good results with a low number of

total fitting parameters and minimal fitting error. We note that this solution is sufficient

for our purposes as we need ≤ 20 oscillators to describe our data. A more robust expanded

approach for fine analysis is discussed by Kuzmenko. [35]

2.5.3 Optimization of Dielectric Function via Nonlinear Least-squares

The fitting process used here is a standard non-linear least squares fitting im-

plemented in python using the lmfit package. We define a custom model function where

the residual is the difference between the calculated and experimental reflection contrast

spectra. The fitting parameters are the characteristics of each Lorentzian function from

Equation 2.10: ω2
p,i, γi, and ω0,i and the high frequency constant, ε∞. We define upper and

lower bounds based on reasonable physical constraints for each fitting parameter to reduce

the search space of the fitting algorithm, reduce fitting time, and avoid instabilities. We

note that the amplitude (ω2
p,i) is allowed to have a negative value to better fit arbitrary

functions with fewer parameters. This seems very unphysical, but as mentioned above we

have disconnected the Lorentzians from physical oscillators so it is not unreasonable so long

as ε2 remains positive.
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Figure 2.12: Optimization of the BN-encapsulated monolayer WSe2 dielectric function at
intermediate electron doping optimized using the described fitting procedure. (a-d) Opti-
mized real and imaginary components of monolayer WSe2, (e-h) comparison of experimental
reflectance contrast (black line) and calculated reflectance contrast (blue line) for increasing
number of regression model evaluations.

For each model evaluation step, a reflection contrast spectrum is calculated given

the test dielectric function and known characteristics of the layered structure (layer thick-

ness, known dielectric functions of other layers). The fitting parameters are then optimized

at each model step to minimize the residual using the least squares method in the scipy

package. The optimized dielectric function for monolayer WSe2 in the gating device (BN(20

nm)/WSe2/BN(40 nm)/FLG(8 nm)/SiO2(285 nm)/Si) is shown in Figure 2.12(a-d) for in-

creasing optimization steps. As shown by the nev = 2 panel, the initial conditions for the

dielectric function is a series of broad features which produce a relatively flat spectrum.

The optimized function quickly converges towards a peak like spectrum after a small num-

ber of evaluations; however, fine matching requires significantly more model evaluations.

The corresponding experimental (black curve) and calculated reflection contrast spectra for
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Figure 2.13: (a) Gate-dependent reflection contrast spectrum for monolayer WSe2 gating
device. (b) Gate-dependent optical conductance map generated from (a) using the described
fitting procedure.

increasing model evaluation steps are shown in Figure 2.12(e-h). By nev = 100, the experi-

mental and calculated reflection contrast spectra are nearly identical. Finally, we terminate

the optimization when the relative change in the residual drops below a cutoff value.

We apply this optimization process to the gate- and magnetic-field-dependent re-

flection contrast data to produce two-dimensional maps of the monolayer WSe2 optical

conductivity. The process is identical for all spectra with the exception of the initial dielec-

tric function. For example, in a gate-dependent map, we process the spectra sequentially

in order of gate voltage. To minimize fitting time for successive gate voltages where the

reflection contrast spectrum does not change enormously we use the optimized dielectric

function from the previous gate voltage as the initial guess of the current spectrum. To

avoid premature termination, we slightly perturb this initial dielectric function. An ex-

ample gate-dependent reflection contrast map and corresponding optical conductance map

generated from this fitting process are shown in Figure 2.13(a,b), respectively.
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2.6 Photoluminescence Spectroscopy

In contrast to the reflection measurement which resonantly probes direct optical

transitions, photoluminescence (PL) measures radiative relaxation. We are concerned with

the behavior of excitons in monolayer WSe2, so we will briefly discuss the photoexcitation

and radiative relaxation process in this class of 2D semiconductor. For PL, we excite the

system with a narrow bandwidth laser source and collect the light radiated from the sample

over a broad spectrum. There are thus two modes of photoexciting the exciton states:

resonant and non-resonant. In this work we primarily use non-resonant excitation, where

the photon energy of the laser source is higher than the resonant absorption energy. In the

single-particle picture, a photon with above-gap energy is absorbed and photoexcites a hot

electron-hole pair to states with energy above the band gap. The hot electron and hole

will cool and relax towards the energy minimum (e.g., conduction (valence) band minima

(maxima) through carrier-carrier and carrier-phonon scattering. As in the resonant process,

the electron-hole pair can form an exciton state which itself will relax further towards the

lowest energy state.

Depending on the state in question, the exciton may relax non-radiatively to an-

other exciton state (or to the ground state via Auger scattering) [7] or radiatively to the

ground state (annihilation) and emit a photon with energy corresponding to the recombina-

tion energy. We note that the exciton recombination energy and absorption energy need not

be the same. The photoluminescence and excitation processes may differ and the resonantly

excited exciton state may not be the minimum energy state. Experimentally, we collect the

emitted photons to measure a PL spectrum. Each exciton emission process will emit light
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Figure 2.14: (a) Schematic of internal s-series Rydberg-like energy levels of the A0 exciton in
monolayer WSe2. (b) Experimental photoluminescence spectrum which shows contributions
from the 1s to 4s A0 exciton states. Each PL peak is fitted using a Lorentzian function.

with a peak-like spectral distribution (e.g., Lorentzian). Thus, the total PL spectrum is

the sum of individual peak-like spectra from each exciton which can recombine radiatively.

Importantly, the exciton radiative recombination is controlled by the same optical selection

rules as the absorption process which we derive in Chapter 1 but the intensity depends on

both the exciton oscillator strength and the steady-state exciton population. [7]

As an example, we show the s-series of internal exciton energy levels of the bright

neutral exciton (A0) in Figure 2.14(a). The above gap incident laser excites a population of

electrons and holes which form excitons and populate the various energy levels. Relaxation

of the higher excited states is dominated by inter-level, non-radiative relaxation; however,

each state has the same optical selection rules as the 1s state and can recombine to emit

light. Figure 2.14(b) shows the measured PL spectrum which is the sum of the various

excited state PL.
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Figure 2.15: Experimental gate-dependent photoluminescence map of a monolayer WSe2

gating device at T = 5 K. The bright neutral exciton A0, hole trion A+, intervalley electron
trion A−1 , and intravalley electron trion A−2 are labeled. The unlabeled PL features with
energy < 1.70 eV are the dark states and phonon replicas which we discuss in detail in
Chapter 4.

As with reflection, the trions states will dominate the PL spectrum at non-zero

charge density. We can thus measure a similar gate-dependent PL map in a monolayer WSe2

gating device in which we identify the neutral exciton, electron trions, and hole trion. A

representative gate-dependent PL map is shown in Figure 2.15. This gating map also shows

another important difference between the reflection measurement and PL - we observe PL

features with lower energy than the bright exciton which do not appear in the reflection

map. These are the dark excitons which we discuss in more detail in Chapter 4.

2.6.1 Time-Resolved Photoluminescence Spectroscopy

The PL measurement above probes the steady-state exciton population. To resolve

the time dynamics of the PL process, we use time-resolved photoluminescence (TRPL)
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spectroscopy. Here, the sample is excited by an ultrafast pulsed laser (pulse width ≈

100 fs) to semi-instantaneously excite a population of excitons. Some part of the exciton

population will then decay radiatively with a characteristic lifetime - this PL emission is

detected in a time-sensitive manner. We note that there are two modes of time-resolved

detection commonly used to detect PL: streak camera imaging and single photon counting.

For experimental availability reasons, we choose (time correlated) single photon counting

(TCSPC).

In this scheme, the PL is directed into a monochromator in the same manner as the

steady-state PL. In steady-state, the diffracted light is dispersed onto a CCD array where

each CCD element corresponds to a detection wavelength depending on the diffraction

angle. Here, we select a subset spectral window (e.g., several nm energy width) by passing

the diffracted light through an exit slit. This spectrally narrow slice of the PL is focused

onto a single-element avalanche photodiode (APD) which is configured for single-photon

detection. When the APD detects a photon, it triggers the timing electronics along the

detection channel. The timing electronics correlate this detection event with reference

timing pulses from the excitation laser which allow determination of the time delay between

the excitation laser pulse generation and the detected PL event. In this way, we generate

a time-resolved plot of integrated PL intensity vs. time. Representitive TRPL traces for

excitons with different lifetime are shown in Figure 2.16(a). The APD has an intrinsic

instrument response function (IRF) which is convoluted with the true time trace. We

measure the IRF directly with a reflected ultrafast pulse and then numerically deconvolve

the experimental data. The deconvoluted TRPL traces are shown in Figure 2.16(b).
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Figure 2.16: (a) Experimental time-resolved photoluminescence traces with different life-
time (blue line, orange line), and measured instrument response function (IRF, grey line).
Data measured using time-correlated single photon counting procedure described in text.
(b) Corresponding time-resolved photoluminescence traces after deconvolution with the in-
strument response function.

We note that the PL detection rate must be kept significantly below the excitation

laser repetition rate to ensure accurate counting statistics. Following a detection event, there

is a period of ”dead time” in which incident photons will not be detected. This dead time

can be significant compared to the measured lifetime. When multiple PL photons arrive

at the detector within one period, then, we will always detect the first event but may not

detect the second (or further). Thus, the detection will be biased towards PL events with

shorter lifetime and the generated TRPL traces will not be representitive. To avoid this

”pulse pile-up”, we keep the PL detection rate ≤ 5% relative to the laser repetition rate

which significantly reduces the likelihood of multiply PL events per period.
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Choice of Ultrafast Laser Source for Single Photon Counting

Finally, we discuss the choice of ultrafast laser source used for TRPL. We study in-

dividual exciton species in monolayer WSe2 with lifetime ≈< 10ns. Our choice of ultrafast

laser source is thus subject to five key considerations: First, the peak instantaneous electric

field and total power must be kept below respective thresholds to avoid laser-induced ma-

terial damage. We maximize both thresholds by encapsulating the monolayer WSe2 in BN

and performing the measurements under vacuum at cryogenic temperatures. Nonetheless,

it is still easy to irreparably damage the sample. Second, the per-pulse energy must be

kept sufficiently low that exciton-exciton interactions are not significant. The initial popu-

lation of excitons is positively related to the pulse energy, and it has been shown previously

that multi-exciton interactions (e.g., biexcitons) arise with high exciton density [36–39].

Third, there is evidence of significant band renormalization under high intensity electric

field [40–42]. Fourth, the pulse duration and inter-pulse period must be much less than

and much greater than the exciton relaxation time, respectively. In this way, we ”instanta-

neously” excite an initial population of excitons which fully relax within one period. Each

of these limitations suggest we minimize the laser power, pulse energy, and repetition fre-

quency as much as possible, converging to the single-photon limit. The final requirement is

that we detect a sufficient number of exciton relaxation events to be a statistically repre-

sentative population in a reasonable time frame. Practically, this means the average laser

power should be as high as possible while satisfying the other requirements so the signal

detection rate is much larger than the background count rate. We thus choose a 76 MHz

(≈ 13 ns period vs. exciton lifetime ≤ 10 ns) excitation laser with pulse duration ≈ 100 fs.
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Chapter 3

Bright Excitons and Trions in

Monolayer WSe2 under High

Magnetic Field

Application of external magnetic field is a powerful tool to manipulate and probe

the electronic properties of two-dimensional materials. As discussed in Chapter 1 for mono-

layer WSe2, applied out-of-plane magnetic field breaks time-reversal symmetry in the 2D

material and therefore breaks the energy degeneracy between the opposite K- and K ′-valleys

while preserving the valley-specific optical selection rules. This allows us to selectively probe

the electronic transitions and excitonic states in each valley. The magnetic field also mod-

ifies the exciton energy which are related to its fundamental properties [15, 19, 43, 44] and

interaction with other excitonic states, localization, and ambient carriers [45] within the

material among many possible interactions.
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In this chapter, we apply strong out-of-plane magnetic fields to monolayer WSe2

gating devices and use photoluminescence (PL) and reflection contrast spectroscopies to

examine the non-hydrogenic Rydberg series of the neutral exciton and explore the complex

interaction between excitons and ambient carriers controlled by Landau level filling.

3.1 Magnetophotoluminescence of Exciton Rydberg States

in Monolayer WSe2

The binding energy of the neutral exciton (A0) in monolayer WSe2 and other

monolayer TMDs has been reported in the large range 0.16 eV to 0.6 eV [7] which is

mildly surprising at first glance. As briefly mentioned in Chapter 1, this is an expected

consequence of the 2D nature of the material and its placement on various substrates and

media. The Coulomb interaction, and therefore the excitonic effect, in monolayer WSe2 is

highly dependent on the surrounding dielectric environment so the choice of surrounding

material (BN encapsulation, bare wafer, suspension) has a significant renormalizing effect

on the electronic structure. It is therefore of interest to our further research efforts regarding

the excitonic physics in this system to first thoroughly characterize the neutral exciton and

the free particle electronic structure.

The exciton hosts internal energy levels similar to the Rydberg series of the hy-

drogen atom where the higher excited levels (e.g., n = 2s, 3s, ...) have been shown to have

larger radius and thus enhanced sensitivity to magnetic confinement and external screening

effects. We can therefore study the magnetic-field-dependent of the entire series of exciton

energy levels with an appropriate model to characterize the exciton and ground state (free
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particle). In this section we apply this methodology to BN encapsulated monolayer WSe2

samples and characterize the exciton under our specific sample conditions. The WSe2 gat-

ing devices used in subsequent results have similar dielectric environment and thus these

results inform our further work in this system.

3.1.1 Methodology

All samples were fabricated using the dry transfer method as described in Chapter

2. A schematic of the sample geometry is shown in Figure 3.1(b). In each sample, monolayer

WSe2 is encapsulated between two BN flakes with thickness 25 - 30 nm and deposited on

a clean SiO2(285 nm)/Si wafer. Electrical contact with the WSe2 flake was not required

for this experiment but few-layer graphite (FLG) gate electrode and electrical contact were

added for other data collection. This experiment was conducted at T = 4 K in the 31 T

cryogenic magneto-optical system (Cell 9) at the National High Magnetic Field Laboratory

(NHMFL) in Tallahassee, FL which is described in Chapter 2.

3.1.2 Experimental Results

Figure 3.1(c) shows a representative photoluminescence spectrum of monolayer

WSe2 without applied magnetic field. The energy range 1.81 eV – 1.90 eV is magnified

50x for ease of viewing. Owing to the ultra-clean nature of our encapsulated samples, the

PL lines are sharp and well-resolved. We identify the 1s – 4s features of the A exciton

as informed by prior reflection-contrast measurement on similar WSe2 samples. To quan-

titatively analyze and separate the overlapping 3s and 4s contributions, we fit the total
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Figure 3.1: (a) Schematic diagram of an exciton in monolayer WSe2 encapsulated by BN.
The electric field (lines) between the electron (e) and hole (h) spreads into the surrounding
BN medium. (b) Schematic internal energy levels of an exciton inmonolayer WSe2. (c)
PL spectrum of monolayer WSe2 at temperature T = 4 K and zero magnetic field under
532-nm continuous laser excitation. The spectrum at 1.81–1.90 eV is multiplied by 50 times
for clarity. The red line is the experimental spectrum; the orange, green, and blue lines are
the Lorentzian fits to reveal the 2s, 3s, and 4s exciton states, respectively. The gray line is
the total fit spectrum.

spectrum with a series of Lorentzian functions from which we extract the center PL ener-

gies of each feature. The extracted PL energies, EPL, are summarized in Table 3.1. Using

a quantitative model, the details of which we discuss in Section 3.1.4 , we extrapolate the

free particle bandgap (Eg = 1.884 eV) from our extracted A exciton PL energies. We thus

obtain binding energies for each state 1s – 4s as Eg – EPL which are shown in Table 3.1.

These results are comparable to previous results of reflectance spectroscopy in similar BN-

encapsulated WSe2 samples [15]. We note that this project considered only the A exciton.

In contrast to molybdenum-based TMD monolayers, the B 1S exciton is ∼400 meV above

the A 1s energy and thus well-separated from the studied series of A excited states.
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We further explore the A exciton energy levels by applying a strong out-of-plane

magnetic field. We measure PL spectra for magnetic field B = -31 T – 31 T, shown with

logarithmic color scale in Figure 3.2(a). As above, the energy range 1.81 eV – 1.90 eV is

magnified 50x. Figure 3.2(c) shows selected line cuts from the map in Figure 3.2(a). We

observe significant magnetic-field-induced PL energy shift which are highlighted with dashed

lines to trace the energy shift of each excited state. Notably, the higher excited states exhibit

more significant energy shift which allows clear distinction between each feature. The 3s

and 4s states, in particular, overlap at zero field but are cleanly separated at intermediate

magnetic field.

We note the appearance of shoulder-like features just below the 1s and 2s exciton

lines at B = -30 T, labeled with an asterix (*) in Figure 3.2(c). At high negative magnetic

field, theA exciton PL energy is much higher in the K valley than in the K’ valley. Intervalley

scattering processes will produce a valley population imbalance which favors the K’ valley.

The PL intensity of the K’ valley will thus be much greater than that of the K valley as the

total luminescence is proportional to population. We ideally measure the PL contribution

of only one valley (K) via circular-polarization filtering but there is some transmission of the

Table 3.1: PL energy (EPL), binding energy (Eb), g-factor, diamagnetic coefficient (σ), and
root-mean-square radius (r) of the exciton Rydberg states in BN-encapsulated monolayer
WSe2 . The numbers in parentheses are the theoretical values from our model.

EPL (eV) Eb (meV) g σ (µeV/T2) r (nm)

1s 1.712 172 (172.1) -4.38 ± 0.12 0.21 ± 0.1 (0.31) 1.6 ± 0.4 (1.68)

2s 1.843 41 (43.8) -4.60 ± 0.10 6.4 ± 0.2 (4.86) 8.24 ± 0.12 (6.66)

3s 1.864 20 (19.5) -4.22 ± 0.14 27.3 ± 1.3 (24.2) 17.0 ± 0.4 (14.86)

4s 1.873 11 (11.0) -45.06 ± 0.21 53.7 ± 3.0 (76.3) 27.8 ± 0.7 (26.37)
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Figure 3.2: PL of A-exciton Rydberg states in monolayer WSe2 under magnetic field at
temperature T = 4 K. (a) Logarithmic PL maps at magnetic fields B = -31 to 31 T. (b)
Color map of the second energy derivative of PL intensity (d2I/d2) in panel (a). (c) Cross-
cut PL spectra from panel (a) at selective magnetic fields. (d) The cross-cut d2I/d2 spectra
from panel (b) at selective magnetic fields. The dashed lines highlight the shift of Rydberg
states. PL features marked by the “*” symbol at B = -30 T come from the other valley due
to the imperfect helicity selection in the measurement.
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opposite polarization due to misalignment or low extinction of the polarizing filter. Thus,

when the intensity of our target polarization is very weak relative to that of the opposite

polarization, as induced here by magnetic-field splitting, a small polarization leakage will

be observable. We attribute the labeled features to this process.

To further enhance the weak, higher excited states, we plot the second derivative of

the measured spectra with respect to energy (d2I/dE2). For clarity, we take this derivative

for spectra of each magnetic field, individually, and plot the results as a false color map

in Figure 3.2(b). Maxima in the intensity map appear in the derivative map as sharpened

minima which allow us to more effectively trace the magnetic-field-induced energy shift of

each exciton state. Notably, an additional PL line appears at high energy above the 4s

state for B > 5 T. Although this feature is weak, we preliminarily identify it as the 5s A

exciton. We note that a second small dip in the derivative spectra appears just above the

2s line and mimics the 2s magnetic-field shift. This feature is labeled in Figure 3.2(c, d) at

B = 0 T with an open circle. We do not definitely identify this feature but suggest that it

may be an artifact of the interpolation / smoothing which is a part of the as-used numerical

derivative calculation.

Prior absorption experiments of the Rydberg-like exciton states in monolayer TMD

samples have shown notable absorption enhancement under out-of-plane magnetic field

[15, 44]. This was attributed to an enhancement of the exciton oscillator strength due to

magnetic-field-induced confinement. Due to their larger spatial extent, the higher-lying

excited states exhibited larger absorption enhancement. In contrast, we observe notable PL

suppression of the 2s–4s excitons at high magnetic field. The higher excited states appear to
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exhibit stronger magnetic-field-induced PL suppression. Further, the preliminarily identified

5s state appears only at intermediate magnetic field. Exciton PL intensity is roughly

proportional to the product of oscillator strength and lifetime. Thus, the observed PL

suppression suggests that the oscillator-strength-based PL enhancement is overpowered by

a significant reduction in exciton lifetime at high magnetic fields. We attribute this lifetime

reduction to increased non-radiative recombination rates of the exciton when shifted to

higher energy by the magnetic field.

3.1.3 Analysis of Exciton Zeeman and Diamagnetic Shifts

For a more quantitative analysis, we fit each spectrum with a series of Lorentzian

functions corresponding to each PL line as illustrated in Figure 3.2(a). The extracted PL

energies of each exciton state are plotted in Figure 3.3(a). According to prior research, the

exciton energy shift can be described by two components in the low-magnetic-field limit –

the valley Zeeman effect discussed in Chapter 1 and the diamagnetic shift. [15, 46]. The

Zeeman effect is odd in magnetic field, so the associated energy shift is simply the difference

in exciton PL energy in a single valley at opposite magnetic field or, identically, the difference

in exciton PL energy of opposite valleys at fixed magnetic field. The diamagnetic shift is

even under magnetic field – proportional to B2. The diamagnetic shift is thus the average

exciton PL energy in a single valley at opposite magnetic field. In this way, we extract the

valley-Zeeman and diamagnetic shifts of the 1s – 4s excitons which we plot in Figure 3.3(b,

c), respectively. Although we preliminarily identify a 5s peak, it appears only briefly with

weak intensity. The 5s feature is thus excluded from further analysis.
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Figure 3.3: The energy shifts of A-exciton Rydberg states in monolayer WSe2 under mag-
netic field. (a) The exciton PL energy as a function of magnetic field, as extracted from the
data in Figure 3.2. (b) Zeeman shifts extracted from panel a. The g-factors are obtained
from linear fits. (c) Diamagnetic shifts extracted from panel a. The lines are quadratic fits.
(d) Predicted exciton diamagnetic shifts from our model. We denote both the measured
and calculated diamagnetic coefficient (σ) in units of µeV/T2. The energy in panel (c) and
(d) for 1s state is magnified by 10 times.
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We first consider the valley-Zeeman effect as discussed in Chapter 1. The bright A

exciton is composed on an electron in the lowest-energy conduction band and a hole in the

highest-energy valence band – a spin singlet state. The total exciton spin is zero and does

not contribute to the Zeeman shift. However, the highest-energy valence band is largely

composed of d-type atomic orbital which has azimuthal quantum number m = ±2 for the

K- and K ′-valley, respectively [7]. The Zeeman splitting is the difference between valley

contributions. We thus estimate an effective g-factor, g = −4. In our experiment, the

Zeeman splitting energies of the 1s – 4s states are well-described by a linear fit. We extract

g factors between 4.2 and 5.1, as shown in Figure 3.2(b) and summarized in Table 3.1,

which are in good agreement with our estimate and previous reports [15,47–50].

We next consider the diamagnetic shift contribution. In the weak-field limit, where

the exciton binding energy is much greater than the Landau-level spacing, the diamagnetic

shift of the exciton energy can be expressed as: [51]

∆EDia. =
e2

8µ

〈
r2
〉
B2 = σB2 (3.1)

where µ = (m−1
e + m−1

h )−1 is the exciton reduced mass, σ is the diamagnetic coefficient,

and r is the radial coordinate of the exciton such that
〈
r2
〉

=
〈
ψ
∣∣r2
∣∣ψ〉 is the expectation

value of r2 over the exciton envelope function ψ. The root-mean-square radius is related as

r =
√
〈r2〉 =

√
8µσ/e. The diamagnetic shift coefficient, σ, is proportional to r2. Thus, a

larger diamagnetic shift of exciton energy indicates a larger exciton size. Successive higher

energy excited states have increasing spatial extent and are thus expected to exhibit larger

diamagnetic shift than the low-lying excitons.
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In the high-field limit, where the Landau-level spacing significantly exceeds the

exciton binding energy, excitonic effects are suppressed. The optical spectra are instead

dominated by direct optical transition between Landau levels in the valence and conduction

bands. The Landau-level energy is approximately linear with magnetic field

ELL = (N +
1

2
)~ωc (3.2)

where ωc = eB/µ is the interband transition cyclotron frequency. At intermediate magnetic

field, where the Landau-level energy spacing and exciton binding energy are comparable,

the rate of exciton energy shift will evolve continuously from low- to high-field descriptions.

Assuming identical electron and hole effective mass, me = mh = 0.4m0, we estimated

a reduced mass, µ = 0.2. The Landau level energy spacing can be roughly estimated

ELL ≈ 0.58meV T−1 which gives ELL(B = 31 T)≈ 18 meV.

We plot the extracted diamagnetic shifts of 1s – 4s excitons in Figure 3.3(c).

The 1s and 2s states exhibit small diamagnetic shift with approximately B2 dependence

throughout the measured magnetic field range. As discussed above, and summarized in

Table 3.1, we estimate the 1s and 2s binding energies as 171 meV and 41 meV, respectively.

Both are significantly larger than our estimated Landau-level energy spacing and thus well

within the weak-field limit. Using a quadratic fit, which we overlay as solid lines, we extract

diamagnetic coefficients σ1s = 0.24± 0.1 µeV T−2 and σ1s = 6.4± 0.2 µeV T−2 . From the

relationship r =
√

8µσ/e, we estimate the corresponding root-mean-square radii of the 1s

and 2s exciton as r1s = 1.6± 0.4 nm and r2s = 8.24± 0.13 nm.

In contrast, the 3s and 4s PL lines exhibit B2 dependence only for B < 15 T. Above

this limit, both features transition to approximately linear magnetic field dependence. In
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Table 3.1, we estimate the binding energies of the 3s and 4s states as 20 meV and 11 meV,

respectively, which is comparable to the estimated Landau level energy spacing of 18 meV

at B = 31 T. By fitting the diamagnetic energy shift in the low-field regime (solid line

overlay, Figure 3.3(c)), we extract diamagnetic coefficients σ3s = 27.3 ± 1.3 µeV/T 2 and

σ4s = 53.7 ± 3.0 µeV/T 2. The estimated exciton radii are thus r3s = 17.0 ± 0.4 nm and

r4s = 27.8 ± 0.7 nm. The extracted diamagnetic coefficient and r.m.s radius values for all

observed A-exciton states are summarized in Table 3.1. We note that these results are in

agreement with prior magnetoabsorption measurements which measured the diamagnetic

shift of the 1s - 3s A-exciton states in monolayer WSe2 [15].

3.1.4 Quantitative Model Calculations

As mentioned above, we carried out model calculations to quantitatively analyze

our data. We define the system as a 2D semiconductor with dielectric constant ε1L−WSe2 ≈

7.5 embedded in a 3D medium of boron nitride with lower dielectric constant εBN ≈ 3.8

[52]. As illustrated in Figure 3.1(b), the electron and hole which form the exciton are

confined to the 2D plane of the WSe2, but the electric field which defines their interaction

extends into the surrounding medium. When the spatial separation of electron and hole is

increased (increased exciton radius), a larger portion of the electric field extends beyond

the 2D plane. Thus, the screening effect from the surrounding material becomes more

significant. In our geometry, the surrounding material has a lower dielectric constant and

thus the total screening of the exciton interaction is inversely related to the exciton radius.
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Figure 3.4: The energy and radii of Rydberg excitons for principle quantum number n in
monolayer WSe2. (a) The recombination energy and (b) radii of A-exciton states (red dots)
extracted from the PL data in Figure 3.3, in comparison with the theoretical predictions
(blue triangles) and results from a prior absorption experiment (green squares [15]). The
dashed line denotes the free-particle band gap predicted by our model.

The interaction potential is well-described by the Rytova-Keldysh potential: [53, 54]

V (r) = − e2

8ε0r0
[H0(

κr

r0
)−N0(

κr

r0
)] (3.3)

where H0 and N0 are the Struve and Neuman functions of zero-th order, respectively; r is

the electron-hole separation; r0 is an effective screening length of monolayer WSe2, and κ

is the effective static dielectric constant of the heterostructure. Both r0 and κ are fitting

parameters in our model. In the long-range limit (r >> r0), the screening is dominated

by the 3D medium and the potential is proportional to 1/κr. In the short-range limit

(r << r0), where the 2D layer contributes significantly to the total screening effect, the

potential exhibits approximately log(r) dependence.

We used the potential described above to fit our observed PL energies and radii

of the 1s - 4s A excitons. We assume effective masses of the electron and hole obtained

from density-functional theory (DFT). We obtain best-fit values for the fitting parameters,
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r0 = 5 nm and κ = 3.97. We further estimate a free-particle band gap of 1.884 eV for

BN-encapsulated monolayer WSe2. Figure 3.4(a, b) show the calculated PL energies and

exciton radii as compared to our experimental observations and prior magnetoabsorption

study. We also plot the calculated diamagnetic shifts of the exciton states in Figure 3.3(d).

3.1.5 Conclusion

In summary, we measured the magnetophotoluminescence of BN-encapsulated

monolayer WSe2 samples under strong out-of-plane magnetic field. From the linear val-

ley Zeeman shift of the exciton PL energies, we extracted the exciton g-factors for each

excited states of the A0 exciton for n = 1s − 4s. We further measured the second order

diamagnetic shift of the exciton PL energies which allowed us to determine the diamagnetic

coefficients and exciton r.m.s radii for each excited state. Finally, we used the Rytova-

Keldysh model to fit our data and estimate the binding energy of the n = 1s−4s A0 states,

as well as the free-particle band gap. We also note that our results are in agreement with

two similar publications [44,50].

3.2 Landau-Quantized Photoluminescence and Absorption in

Monolayer WSe2

As discussed in the previous section and in Chapter 1, the first-order effect of

an out-of-plane magnetic field on the electronic structure of monolayer WSe2 is the valley

Zeeman shift. The two electronic valleys (K, K’) exhibit opposite Zeeman shift under out-

of-plane magnetic field. The relative energy shift of the valence and conduction bands at

80



Figure 3.5: (a) Schematic Landau levels (dashed lines) in monolayer WSe2 predicted by a
single-particle model. The arrows and color denote the electron spin in the conduction bands
and valence band. m = 0,±2 are the azimuthal quantum numbers of the atomic orbits in
the conduction bands and valence band, respectively. (b) LLs revealed by our experiment,
indicating strong enhancement of valley Zeeman shift by many-body interactions.

B = 17.5 T are illustrated in Figure 3.5(a) as predicted by the single particle model. For

”positive” magnetic field, the band gap will decrease (increase) in the K (K’) valley, which

produces a exciton energy splitting proportional to the exciton g-factor.

The magnetic field will also quantize the electronic density of states into Landau

levels (LL) whose degenerancy and energy spacing are proportional to the magnetic field

intensity. At charge neutrality, the Landau quantization becomes significant for excitons in

the intermediate-magnetic-field regime where the exciton binding energy is comparable to

the Landau level spacing (B ≈ 15 T for A3s). We observed this transition for the A3s and

A4s states. The A1s binding energy is ≈10x greater than A3s, however. For the magnetic

fields used in this section (B ≤ 17.5 T), the A1s binding energy is much greater than the

LL spacing; thus, the exciton is the superposition of many LLs.
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Landau-Quantization at Finite Charge Density

To this point, our discussion of Landau quantization on the excitonic behavior has

been limited to charge neutrality. The situation changes significantly at non-zero charge

density as we can form charged excitons (trions) and must fill the Landau levels sequentially

in energy with ambient charge injection which produces Shubnikov-de Haas-type oscillations

in conductivity in electrical transport [55–57]. In monolayer WSe2, the LLs inherit the spin-

valley characteristics and subsequent valley Zeeman splitting of their parent band [58–60].

Thus, at least the zero-energy [23,61,62] (band edge) LL will begin filling in one valley before

the other - these are so-called valley-polarized Landau levels. The order of LL filling depends

on the relative Zeeman shift and the alignment of the LL in each valley. As illustrated in

Figure 3.5(a), the single-particle model predicts three (nK = −0 to −2) valley-polarized

LLs in the K-valley valence band. As we will discuss later in this section, our results diverge

significantly from this prediction.

The the valley-polarized LLs in monolayer WSe2 have been studied previously by

transport [55–57] scanning probe [63], and optical absorption [61] measurements, but each

studied the LLs directly without consideration of excitonic effects. Further, transport study

was limited to LLs with filling factor n ≥ 17 due to high contact resistance and low carrier

mobility. Smolenski et al. [64] previously reported LL-related oscillation of the A1s exciton

in monolayer WSe2; however, their study was limited to optical absorption only for LLs

with filling factor n ≥ −1. We expand upon this study with comprehensive absorption

and PL which shows LL-related oscillation of the A1s excitons and trions (and further dark

trions) in the conduction and valence bands, including the zero-energy n = ±0 LL.
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3.2.1 Methodology

Using high-quality BN-encapsulated monolayer WSe2 gating devices as described

in Chapter 2, we conducted comprehensive magneto-reflectance-contrast and magneto-PL

measurements. Reflectance contrast and PL measurements are described in Chapter 2. All

data shown in this section was taken at the National High Magnetic Field Laboratory DC

Field Facility in Tallahassee, FL during two weeks March 18-25 and August 19-26, 2019.

We used the 17.5 T superconducting magneto-optical system (Cell 3) with sample temper-

ature T = 4 K described in Chapter 2 for all measurements. For better comparison with

theory calculation and qualitative analysis, we extract the single-layer optical conductivity

of monolayer WSe2 from reflectance contrast data using the approach in Chapter 2.

3.2.2 Gate-Dependent Reflectance Contrast

Figure 3.6(d) shows the reflectance contrast spectrum, ∆R/R, of monolayer WSe2

at zero magnetic field. For reference, we show a schematic band diagram in Figure 3.6(a).

Immediately, we identify the neutral A1s exciton (A0), the hole trion (A+), and intervalley

(A−1 ) and intravalley (A−2 ) electron trions. As discussed in Chapter 1, the presence of

ambient charges at Vg 6= 0 transfers oscillator strength from the neutral exciton to the

trion. In other words, it suppresses the neutral exciton and facilitates trion formation.

To explore the influence of Landau quantization on the excitonic states, we apply large

out-of-plane magnetic field (B ≤ 17.5 T) and selectively measure ∆R/R for the K and K ′

valleys.
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Gate-Dependent Reflectance Contrast, K ′-valley

The K ′ valley reflection contrast map (left circularly polarized detection) is shown

in Figure 3.6(e) at B = 17.5 T. At first glance, this spectrum is qualitatively similar to that

at B = 0 T. Upon hole (electron) doping, A0 is suppressed and the corresponding positive

(negative) trion appears. With closer inspection, we note three key differences. First, A0

is suppressed almost immediately with negative gating, rather than a prolonged transition

where both A0 and A+ are visible simultaneously. Second, A+ appears to red-shift linearly

with decreasing Vg. At B = 0 T, A+ exhibits a more complex energy shift with decreasing

Vg which initially red-shifts and then begins to blue-shift at Vg < −4 V. Third, we clearly

observe only one electron trion rather than the two observable at B = 0 T. Each observation

can be explained qualitatively by examining the energetic arrangement of constituent bands

in the K and K ′ valleys as depicted schematically in Figure 3.6(b). We discuss the hole-

side Vg < 0 V data immediately below but return to discuss the electron-side data in

Section 3.2.3.

First, the rapid supression of A0
K′ with hole doping. With increasing hole density

in the K-valley, oscillator strength is transferred from A0
K′ to A+

K′ which suppresses the

neutral exciton resonance. A+
K′ is depicted schematically in Figure 3.6(b). At B = 0 T, the

valence band is valley degenerate so we must simultaneously fill the both valleys upon hole

doping. For B > 0 T, however, the K-valley valence band lies at a higher energy than the

opposite valley. All injected holes will therefore fill the K-valley valence band first, which

means that the transition process from A0
K′ to A+

K′ will occur more rapidly.
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Figure 3.6: Schematic band structure with exciton (trion) configuration at intermediate
hole doping and gate-dependent reflection contrast maps for (a,d) B = 0 T, and B = 17.5
T for the (b,e) K ′ and (c,f) K-valley. The red dashed lines indicate corresponding Fermi
energy (EF ) and gate-voltage (Vg) to fill three K-valley valence band Landau levels. We
note that the depicted size of each Landau level is purely aesthetic - each Landau level has
identical degeneracy.

Second, the linear red-shift of A+
K′ . The presence of valley-polarized holes hints

at the origin of the observed A+
K′ linear red-shift with decreasing Vg. As discussed in

Chapter 1, excitonic states experience energy shift under electrostatic gating due to three

primary sources - phase-space filling (PSF), screening, and band-gap renormalization [7].

The screening and band-gap renormalization (BGR) are related to the total ambient charge

density and applied electric field intensity, but the PSF-based energy shift is sensitive only

to filling of electronic states directly involved in the exciton formation. Thus, an exciton

(trion) in the K ′ valley will always experience the screening and BGR effects with increasing
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charge density, but will not experience PSF-based energy shift under hole doping until the

K ′ valence band begins to fill. The PSF-effect causes an increase of the exciton energy, while

the net effect of screening and BGR is a reduction in exciton energy. Thus, the presence of

screening and BGR without PSF is consistent with the observed red shift of A+ throughout

our studied gate voltage range. We see no indication of the PSF-related energy blue-shift

even at the largest hole densities, which suggests that the Fermi energy does not reach the

K ′ valence band.

Finally, the electron trion. The appearance of only one clear A− resonance at high

magnetic field can be attributed to similar valley-polarization of the conduction band. As

discussed in Chapter 1, A−1 and A−2 correspond to inter- and intra-valley electron trions,

respectively. For B > 0 T, we expect to first fill the K ′ conduction band which immediately

facilitates formation of A−2 . The lack of ambient electrons in K for small positive gate

voltages prevents efficient formation of A−1 . We will discuss the behavior of the electron

trions in more detail in Section 3.2.3.

Gate-Dependent Reflectance Contrast, K-valley

The K valley reflection contrast map (right circularly polarized detection) is shown

in Figure 3.6(f) for B = 17.5 T. We observe three primary differences in comparison to K ′-

valley data. First, A0 extends to a much larger negative gate voltage before suppression,

whereas A+ is nearly completely suppressed within the studied Vg range.. At B = 17.5 T,

A0 persists with hole doping beyond our gating range . Second, we again observed one A−

resonance which appears at a higher energy than that in the K ′-valley. Third, A0 exhibits

step-like energy shifts (denoted by white arrows) which are equally-separated with inter-
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step gate voltage separation of ≈ 1.17 V, and A− exhibits two discernible intensity maxima

which are separated by a nearly identical ∆Vg to the step-like energy shifts in A0.

First, the simultaneous suppression of A+ and persistence of A0 with hole doping.

Just as A0 is efficiently suppressed in the K ′-valley, the valley-polarized valence bands can

explain the persistence of A0 to large negative gate voltage in the K-valley. A0 retains its

oscillator strength until A+ formation becomes favorable - in the K-valley, this requires the

filling of the K ′ valence band with ambient holes. As shown in Figure 3.6(c), the K valence

band lies above K ′ in energy and will be preferentially filled upon hole injection. Thus A0

will persist and A+ will be suppressed until the Fermi energy reaches the K ′ valence band

edge.

The valley-contrasting A− behavior may be explained similarly. The K ′ conduc-

tion band lies below the K valley in energy and will fill first under electron doping. This

favors formation of the intravalley A−1 in contrast to the observation of the intervalley A−2

in the K ′ valley reflectance map.

As further evidence of this qualitative picture, we examine the K-valley reflection

data under varied magnetic field intensity. To clearly distinguish each exciton resonance,

we calculate the monolayer WSe2 optical conductivity from reflection contrast data using

the method outlined in Chapter 2. The gate-dependent K-valley optical conductance maps

are plotted in Figure 3.7 for magnetic fields between B = 0 T and B = 17.5 T. At B = 11.5

T, which is the lowest non-zero magnetic field for which we have complete data, A0 is

persists only to −6.5 V. At this point, A0 is suppressed and a faint resonance appears at

≈ 1.71 eV which we identify as A+. We interpret this as the gate voltage at which the
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Figure 3.7: (a-f) The real part of the optical sheet conductivity (σ) for the K-valley excitonic
states in monolayer WSe2 for positive magnetic field B = 0 T to 17.5 T. Optical sheet
conductivity is proportional to the product of monolayer thickness and ε2 derived from
the reflectance contrast maps (as in Figure 3.6(f)) using the quantitative analysis process
described in Chapter 2. The A+ trion is weakly visible at B < 15 T, but is suppressed at
B > 15 T.
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K ′-valley valence band begins to fill under hole doping. As the magnetic field increases, the

K ′ valence band is further separated in energy from the K valence band due to the Zeeman

shift. Correspondingly, the total charge density we must inject to bring the Fermi energy

to the K ′ valence band edge increases with magnetic field and A0 may persist to ever larger

gate voltages.

We note that each of the qualitative explanations discussed so far do not require

quantization into Landau levels but rather appear due to the Zeeman shift. The observed

step-like energy shift of A0 and intensity oscillation of A−, however, cannot be explained

without considering a quantized density of states.

3.2.3 Electronic Quantization Observed via Optical Conductivity

To further explore the step-like behavior of A0
K , we examine the optical conduc-

tivity in detail at B = 17.5 T. For each Vg, we extract the photon energy of maximum

conductivity (eV), the full width at half maximum (FWHM), the peak conductivity, and

the total integrated conductivity of the resonance. The results are shown in Figure 3.8(a-d).

In contrast to the K ′-valley, the valence band LLs which compose the A0
K are the first to

be filled under hole doping as shown schematically in Figure 3.6(c). Thus, the A0
K will

experience the combined effects of PSF, screening, and BGR. When the Fermi energy is

within a partially-filled LL an increase in gate voltage will rapidly fill the LL with ambient

carriers. The exciton will experience an energy shift dominated by the PSF-effect which

increases the exciton absorption energy. When the Fermi energy is between LLs, an increase

in gate voltage will not inject further ambient carriers.
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Figure 3.8: (a) The optical sheet conductivity of A0 exciton extracted from Fig. 2(d). (b)
The exciton peak energy, (c) full width at half maximum (FWHM), (d) peak conductivity
(blue)and integrated conductivity (purple), extracted from (a). (e) The theoretical exciton
conductivity map, (f) peak energy, (g) FWHM, (h) peak conductivity (orange) and inte-
grated conductivity (red). All conductivity values are normalized to 1. The dashed lines
denote the half-filled LL positions.
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The total effect of the sequential LL-filling on the exciton energy is thus a step-like

behavior with decreasing Vg which alternates between rapid blue-shift while actively filling a

LL and an energy plateau in the inter-LL gap. This behavior is reflected by our experimental

data as shown in Figure 3.8(b). We note that the maximized phase-space near the Fermi

energy at the LL half-filling point will also facilitate exciton-carrier scattering which will

decrease the A0 coherence and homogeneously broaden the conductivity resonance. Thus,

the local maxima in FWHM should coincide with the center of each ”step” in the A0 energy

shift and indicate the Vg for half-filling of each observed LL. We overlay horizontal lines

in Figure 3.8 to show that this prediction is reflected by our data. We note that the total

integrated conductivity of A0 slowly decreases with Vg and does not oscillate with the LL-

filling. The maximum conductivity oscillates out of phase with the FWHM to preserve the

total conductance. We use this evidence to identify the maxima in FWHM as the half-filling

points for each LL.

This qualitative model can be quantified using semiempirical calculations. We

calculated the exciton conductivity spectrum by solving the massive Dirac equation for the

electon and hole, including the Coulomb interaction screening, for monolayer WSe2 under

magnetic field. For simplicity, we only consider the case of ambient hole injection in the K

valley. As shown in Figure 3.8(e-h), our calculations reproduce the primary experimental

observations and further confirm our identification of the half-filled LL gate voltages. For

details of this calculation, see supplementary material of this publication [65].
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Figure 3.9: (a) The normalized optical sheet conductivity of A−trions extracted from 3.7(f).
(b) The trion peak conductivity and (c) peak energy extracted from (a). The dashed lines
denote the half-filled LL positions. (d) The schematic band configuration of intervalley
A−trion with the relevant LLs and Fermi energy (EF ).

Landau-Quantization-Induced Oscillation of the Electron Trion

We now briefly discuss the LL-related behavior under electron doping (Vg > 0 V).

We first note that the neutral exciton A0 does not exhibit noticeable LL-related oscillations

in this regime, in contrast to the clear oscillations with hole doping. The lower conduction

bands (c1) which are filled first under electron injection are not directly involved in the A

exciton formation, so the PSF which causes the hole-side oscillations does not occur. This

provides further evidence that the overall carrier density only weakly influences the exciton

binding energy in comparison to the PSF effect.

In contrast to the hole trion (A+), the electron trion (A−1 ) in the K-valley does

show oscillatory behavior which we attribute to the LL-filling of the K ′-conduction band.

Figure 3.9(a) shows the extracted K-valley optical conductivity in the vicinity of A−1 . By

careful inspection of A−1 , we observe the appearance of two ”kinks” in the peak conduc-

tivity and slight blue-shift of the resonance energy which appear at identical gate voltages
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(Figure 3.9(b,c), respectively). We preliminarily assign these features as the gate-voltage

locations of the half-filled LLs. We speculate that the availability of phase-space near the

Fermi surface when the Fermi energy lies within a partially-filled LL will facilitate trion for-

mation, enhance the trion oscillator strength, and renormalize the binding energy. However,

this is very much a qualitative description and more study is warranted.

3.2.4 Landau-Fan-Type Analysis of Optical Conductance Oscillation

The above qualitative picture and supporting quantitative calculations support our

assertion that electronic quantization is the driving factor in this oscillatory conductivity

behavior; however, we have not provided compelling evidence that these are indeed Landau

levels. A clear signature of Landau-quantization is the well-defined state degeneracy of

each LL. For monolayer WSe2 under out-of-plane magnetic field, which is essentially a spin-

polarized 2D electron gas (more accurately, a massive Dirac fermion system), the density

of available states in each LL is given by the ratio of magnetic field strength, B, to the

fundamental flux quantum, Φ0 = h/e,

nLL =
B

Φ0
=
eB

h
(3.4)

where h is the Planck constant and e is the electron charge. If we consider our monolayer

WSe2 gating device as an ideal capacitor with capacitance C, the total charge density, N ,

is related to the gate voltage, Vg, as N = CVg/e. The gate voltage required to half-fill a LL

with index n is thus,

Vg(n,B) = (n+
1

2
)
e2B

hC
+ V0 = (n+

1

2
)
G0B

2C
(3.5)
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Figure 3.10: (a) Step-like energy shift and (b) FWHM oscillations of K-valley A0 extracted
from optical conductivity maps (Figure 3.7) for B = 0−17.5 T. Green dotted lines show the
approximate location and linear shift of Landau level half-filling gate-voltage with increasing
magnetic field.

Here, V0 is the gate voltage necessary to bring the Fermi energy to the edge of the valence

(conduction) band from the charge neutrality point due to filling of defect states, etc.

G0 = 2e2/h is the conductance quantum. We estimate the total device capacitance as the

geometric capacitance C = ε0εBN/d where ε0 is the vacuum permittivity, εBN is the relative

BN dielectric constant for a static field in the out-of-plane direction, and d = 42 nm is the

thickness of the bottom BN flake which serves as the gate dielectric measured by atomic

force microscopy (AFM).
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Figure 3.11: Landau-level-induced kinks in (a) peak conductivity and (b) peak photon
energy of K-valley A−1 (Figure 3.7) for B = 0 − 17.5 T. Green dotted lines show the
approximate location and linear shift of Landau level half-filling gate-voltage with increasing
magnetic field.

If the observed step-like energy shift in A0 originates from Landau quantization,

then we expect the steps to be equally separated in gate voltage and, further, that this

separation voltage, ∆Vg, should scale linearly with the magnetic field intensity. To confirm

this prediction, we perform identical gate-dependent reflection constant measurements at

varied B and extract the peak photon energy and FWHM as shown in Figure 3.10. We

identify the gate voltage of half-filled LL, Vg,LL, in the valence band from the A0 FWHM

maxima for each magnetic field. Similarly, we identify the gate voltage of half-filled LL in

the conduction band from the local maxima of the A− peak conductivity and energy shift

as shown in Figure 3.11(a,b).
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Figure 3.12: The measured gate voltages (Vg) for Landau level (LL) half-filling in the K-
valley valence band (red closed dots) and K ′-valley conduction band (red open dots) as a
function of magnetic field. Black lines depict the Landau fan diagram derived from fitting
the data, where n is the filling factor of the corresponding LL. The fit includes a ∆Vg ≈ 1.2
V gap between the half filling of n = ±0 LLs at B = 0 T which is partially due to filling of
defect states inside the band gap.

We plot the collected Vg,LL in Figure 3.12, where red and yellow points indicate

data A0 and A−, respectively, and fit the total set of Vg,LL with Equation 3.5. For both

electron and hole sides, we find remarkably good agreement where the observed LLs are

identified as n = −0 to −6 in the K valence band and n = +0 and +1 in the K ′ conduction

band for each B. We note that, beyond the LL index n, the only other fitting parameters

are the gate-voltage offset V0 and the BN dielectric constant, εBN . We find the best fit

when V0 = 0.5 V and εBN = 3.07. While V0 is highly device specific, depending on the

defect density and electrical contact barrier, our value of εBN is in excellent agreement with

literature reports of thick BN flakes (d > 30 nm) [66].

The observed linearity in B of the LL positions (Vg,LL) in Figure 3.12 in agreement

with Equation 3.5 is compelling evidence that the observed oscillations in A0 and A−
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originate from valley-polarized LLs. Beyond the qualitative evidence linking the observed

behavior to valley-polarized electronic quantization presented earlier in this section, the

fitting results show quantitatively that we are filling LLs with no spin- and valley-degeneracy.

The presence of either would modify the per-LL density of states. If our qualitative picture

is correct, it further shows that each of the observed oscillations indicates sequential filling

of LLs in a single valley without intermediate filling of the opposite valley LLs.

3.2.5 Landau-Quantization Observed via Photoluminescence

The discussion above is limited to the direct absorption (optical conductivity)

properties which form only one part of the larger picture of excitonic behavior. For more

comprehensive analysis, we study the effect of electronic quantization on the excitonic lu-

minescence via gate-dependent magneto-PL as described in Chapter 2. PL maps of the K

and K ′-valley at B = 17.5 T are shown in Figure 3.13(a,d), respectively. In both valleys,

we label the bright exciton (A0) and trions (A+, A−1 , A
−
2 ) seen in the above reflection con-

trast data, but also observe additional PL lines at lower energy. We identify these lower

energy PL features as the dark excitons (D0), trions (D±), and associated phonon replicas

which we discuss in more detail in Chapter 4. Regardless, we immediately observe clear

oscillations in the PL intensity of the hole side trions without any significant oscillation of

the PL energy. We note, as well, that such oscillations in PL intensity are conspicuously

absent from the various electron trions with the possible exception of A−1,K . To understand

the observed phenomena in detail, we examine the two valleys individually.
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Figure 3.13: (a) The gate-dependent photoluminescence (PL) map with right-handed cir-
cular polarization, which shows the K-valley emission of bright excitonic states (A), under
532-nm continuous laser excitation at B = 17.5 T and T ≈ 4 k. (b) The normalized in-
tegrated PL intensity for the A0 exciton (blue) and A+ trion (red) in (a). The dashed
lines denote the estimated half-filled LL positions. (c) The schematic band configuration of
K valley A+ trion with the relevant LLs and Fermi energy (εF ) under the magnetic field.
The K ′-valley hole comes from the laser excitation. (d)–(f) Similar figures as (a)–(c) for
left-handed circular polarization, which reveals the K ′-valley emission of bright excitonic
states. In (a) and (d), which share the same color scale, we also observe the emission of dark
excitonic states (D) from both valleys due to their linear polarization as well as a series of
phonon replicas of the dark states.
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Landau-Quantization Observed via PL, K-valley

The K-valley PL map is shown in Figure 3.13(a). As in the optical conductivity,

we observe similar persistence of A0 to high negative gate voltages as compared to the

zero magnetic field case due to the valence band Zeeman splitting. The intervalley electron

trion, A−1 , is noticeably enhanced as compared to A−2 due to the preferential filling of the

K ′ conduction band, in good agreement with our earlier discussion. In contrast to the

conductivity, however, we observe a weak signature of A+ simultaneously with A0. The low

intensity of A+ relative to A0 hints at its likely origin.

As depicted schematically in Figure 3.13(c), the K-valley A+ requires a popu-

lation of holes in the K ′ valence band, but the Fermi energy (EF ) cannot reach the K ′

valence within our studied Vg range due to the large Zeeman splitting. Thus there is no

ambient population of holes to faciliate A+ formation. Unlike the direct absorption process

in the reflectance contrast measurement, however, the PL measures the radiative emission

of the exciton state which has a significantly longer timescale. Following above-gap photo-

excitation, the hot electrons and holes will cool to the bottom of their respective bands

(and between bands) on a much faster timescale than the exciton radiative lifetime. It is

energetically favorable for a hole (electron) to relax to the highest (lowest) valence (conduc-

tion) band; however, interband relaxation processes have their own characteristic timescale.

Thus, as we continuously photo-excite the system, we generate a population of transient

electrons and holes which are distributed throughout the various bands. We suggest that

this transient population of holes in the K ′ valence band allows the formation of a small

A+ population despite the lack of ambient carriers.
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For both the weak A+ and A0, we observe oscillations in the PL intensity with

Vg, but note that they have opposite phase. When the A0 PL is maximized, the A+ PL is

minimized and vice versa. The integrated intensity of A0 and A+ are shown in Figure 3.13(b)

as blue and red lines, respectively. As alluded to above, the PL intensity is proportional

to the steady-state population of the corresponding exciton species. Thus, the alternating

PL intensity of A0 and A+ with LL-filling suggests that the steady-state population of

excitons and trions vary significantly depending on the position and extent of the Fermi

energy relative to each LL. According to our discussion of the A0 conductivity linewidth

oscillations, the A0 lifetime should be significantly reduced at the LL half-filling due to

enhanced carrier scattering. This suggests the non-radiative relaxation rate from A0 to the

lower energy A+ should be enhanced, and more generally that the direct formation of A+

should be favored. We study only the steady-state PL here and thus cannot distinguish

these trion formation processes, but we suggest that this could be addressed through two-

color pump-probe spectroscopy experiment under quantizing magnetic field. Regardless,

this qualitative picture explains the contrasting PL intensity oscillations of A0 and A+ and

allows use to identify the position of LL half-filling via PL to complement the reflection

contrast experiment.

Landau-Quantization Observed via PL, K ′-valley

Next, we examine the K ′-valley PL. Figure 3.13(d) shows the K ′-valley PL map

at B = 17.5 T. Similar to the optical conductance, A0 is suppressed and A+ appears

immediately with negative gating. As shown schematically in Figure 3.13(f) and discussed

above, the K valence band immediately accumulates ambient holes which allow efficient
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A+ trion formation. When the Fermi energy lies between two LL, however, the available

phase space for carrier interactions is minimized which should suppress the A+ formation

rate due to reduced carrier scattering. The predicted oscillatory behavior is reflected in

our experimental data. The integrated intensity of A+ is shown in Figure 3.13(e) where we

highlight the LL half-filling positions which coincide with PL maxima. Each of the A+ PL

intensity maxima are relatively equal, bu the last PL intensity maximum at Vg ≈ −7.8 V

is significantly enhanced. We attribute this PL enhancement to the initial filling of the K ′

valence band, when the Fermi energy reaches the first K ′-valley LL. In this scenario, the

simultaneous filling of LL in both valleys facilitates inter-valley scattering which enhances

trion formation and should smooth the observed LL-related PL intensity oscillations.

To study the evolution of the Zeeman shift and LL-formation in detail, we measure

the K ′-valley PL for a wide range of magnetic field intensity . PL maps highlighting the

bright exciton and trions are shown in Figure 3.14 for B = 5.5 T to B = 17.5 T. We observe

three phenomena with increasing magnetic field. First, the appearance and subsequent

spreading in Vg of the LL-related oscillations in A+. Second, The progressive supression

of A−1 and enhancement of A−2 as the K conduction band is shifted above that in K ′

thus favoring the formation of the intravalley A−2 . Third, the gate voltage at which the

A+ PL intensity suddenly increases and the LL-related oscillations are obscured, Vg,K′ ,

shifts approximately linearly with B. This linear shift with B is in general agreement

with our expectations for Zeeman-shift-related valence band splitting. We note that the

transition between filling a single valley and filling both valleys varies significantly with B.

For B = 10 T, we observe a series of approximately equal-intensity oscillations before the
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Figure 3.14: (a-l) Gate-dependent photoluminescence (PL) intensity maps for the K-valley
states in monolayer WSe2 under magnetic field B = 0 to 17.5 T. The sample temperature
is T = 4 K. All of the maps share the same logarithmic color scale bar in panel (a). The
black arrows denote an increase of the A+ PL intensity.
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A+ PL intensity suddenly increases and the observed oscillations vanish. For B = 13 T

and B = 16 T, the final PL intensity maximum (n = −6) is enhanced relative to the others

but is followed by a final local intensity minimum. Qualitatively, this behavior suggests a

complex overlap of the final K-valley polarized LL and the n = −1 LL in the K ′-valley

which depends on B and the charge density.

3.2.6 Divergence from the Single-particle Model

Figure 3.5(a) schematically shows the relative band configuration and Landau

level arrangement as predicted by the single particle model for monolayer TMDs which we

discussed in Chapter 1. In the model, the Zeeman shift of an electronic band, ∆Eband is

proportional to the band g-factor, gband:

∆Eband = µBB
(

2 · S + morbital + τ
me

m∗

)
(3.6)

Here, S = ±1/2 is the spin of the band, morbital = ±2 (0) is the orbital magnetic quantum

number for the valence (conduction) bands, τ = ±1 is the valley index for the K (K ′)

valley, me is the electron mass, and m∗ is the carrier effective mass. The Landau levels

are separated in energy proportional to the cyclotron frequency, ωc. The energy separation

between each LL is:

∆ELL = ~ωc = ~
eB

m∗
= 2

m0

m∗
µBB (3.7)

where e is the elementary charge. If we add the effect of the Zeeman shift to the LL energy,

we can derive expressions for the valence band LL energies in each valley where we define

E = 0 as the charge neutrality point.
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ELL,K(nK , B) = µB
[
5 + (1 + nK)

m0

m∗

]
(3.8)

ELL,K′(nK′ , B) = −µB
[
5 + (nK′)

m0

m∗

]
(3.9)

Here, nK (nK′) are the LL indices for the K (K ′) valence band. Using the valence band hole

effective mass, m∗h ≈ 0.4, we find that three K-valley LLs lie above the K ′-valley band-edge

LL (n = −1). We thus predict the three K-valley polarized valence band LLs as depicted

in Figure 3.5(a).

However, as discussed above and summarized in Figure 3.5(b), our experimental

results suggest the presence of at least seven K-valley polarized LLs in the valence band.

In both reflection contrast Figure 3.7 and Figure 3.14 measurements we identify valley-

polarized valence band LLs with index n = −0 to n = −6. This implies a significant

enhancement (≥ ×2.3) of the valence band g-factor as compared to the predictions of

the single particle model. We note that Equation 3.6 is well-tested near the band edge.

Divergence from this model in our gate-tunable device at moderate injected charge density

suggests the presence of significant multi-body interactions which modify the valence band

g-factor.

Likewise, the single particle model predicts one valley-polarized LL in the conduc-

tion band, but we observe at least two valley-polarized LLs in the optical conductivity of

A−K . This suggests that significant g-factor enhancement occurs in the conduction bands

with electron doping, as well.
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3.2.7 Conclusion

In summary, we used high-quality monolayer WSe2 gating devices with variable

carrier density under high magnetic field to study the influence of Landau quantization on

the exciton and trion. We observed charge-density-dependent quantum oscillations of the

bright and dark exciton (trion) species in both reflectance contrast and photoluminescence

spectroscopy. Our results highlight the complex interaction between excitons and ambi-

ent carriers which may be controlled by Landau level filling and which diverges from the

standard single-particle model in the regime of moderate charge density. This divergence

suggests the presence of significant many-body interactions in monolayer WSe2 which make

this material a promising system in which to explore correlated quantum phenomena.
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Chapter 4

Dark Excitonic States and Phonon

Replicas in Monolayer WSe2

In the gate-dependent photoluminescence (PL) data shown in the earlier chapters,

we notice the presence of several excitonic features with lower PL energy than the bright

exciton (trion) species identified thus far. A closer examination of the band configuration

near bandgap at the K- and K ′-points strongly hints at the origin of these PL features.

Figure 4.1(a) shows a schematic of the K-valley bright exciton (A0) configuration - we

notice that the separation between the lower conduction subband (spin down) and the

valence band (spin up) form the lowest energy band gap. Exciton (and, for that matter

trions) formation is not forbidden for an electron-hole pair between these bands. For clarity,

we show the configurations of possible exciton, electron trion, and hole trion formed from

the lower conduction subband in Figure 4.1(b-d).
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Figure 4.1: Schematic configurations of the (a) bright neutral exciton A0, (b) spin-forbidden
dark neutral exciton D0, (c) negative (electron) dark trion D−, and (d) positive (hole) dark
trionD+ in monolayer WSe2. In contrast to the bright electron trion which shows observable
reflectance and photoluminescence for the intervalley A−1 and intravalley A−2 configurations,
the dark trion exhibits only a intervalley configuration. The intravalley configuration is
unfavorable due to Pauli blocking as the dark-exciton-forming electron occupies the lower
K-valley conduction subband.
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4.1 Optical Selection Rules for the Dark Trion in Monolayer

WSe2

We ignored this state previously because our analysis of the optical selection rules

indicated that this transition is not dipole allowed with absorption of normally-incident

light. If we re-examine that analysis more closely, we find that the transition between the

lower conduction subband and valence band is actually dipole allowed for linearly polarized

light which propagates along the 2D plane (P̂z).

〈
C3ψc1,↓

∣∣C3P̂zC
−1
3

∣∣C3ψv1,↑
〉

= e−i
π
3 ei

π
3
〈
C3ψc1,↓

∣∣C3P̂zC
−1
3

∣∣C3ψv1,↑
〉

(4.1)

=
〈
ψc1,↓

∣∣ P̂z ∣∣ψv1,↑〉 (4.2)

〈
σhψc1,↓

∣∣σhP̂zσ−1
h

∣∣σhψv1,↑〉 = (−i)(−1)(i)
〈
σhψc1,↓

∣∣σhP̂zσ−1
h

∣∣σhψv1,↑〉 (4.3)

=
〈
ψc1,↓

∣∣ P̂z ∣∣ψv1,↑〉 (4.4)

However, the two bands are still of opposite spin. To excite an electron between the bands

its spin must be flipped which cannot be accomplished by absorption of a linearly polarized

photon. The exciton state should therefore be optically dark, despite the symmetry analysis.

Previously, this spin dark exciton was brightened and measured by out-of-plane optical

spectroscopy through the use of large in-plane magnetic field [27, 67]. In this scheme, the

magnetic field alters the spin of the bands such that they are no longer strictly spin up

or down. The transition is then spin-allowed. However, ours and previous measurements

without magnetic field show a faint dark exiton PL with out-of-plane detection [36–39,68,69]

and strong dark exciton PL using more complicated in-plane detection techniques [70–73].
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We can again understand this activity by symmetry analysis: the next highest

conduction band, c2, has d−1 orbital symmetry as compared to the d0 orbital symmetry of

c1. Thus when we include the spin splitting, c1,↓ has identical symmetry to the opposite

spin c2,↑ (similarly, c1,↑ and c2,↓). These bands with identical symmetry can mix through

the spin-orbit coupling.

|c̄1,↓〉 = |c1,↓〉+
〈c2,↑| α̂soc |c1,↓〉
Ec1,↓ − Ec2,↑

|c2,↑〉 (4.5)

Here, c̄1,↓ is the modified lowest conduction subband in the K-valley which is majority spin

down but has a small spin up component. α̂soc represents the spin orbit coupling operator

between the c1 and c2 bands. As the conduction bands are no longer pure spin (up, down)

states, the electronic transition from the valence band is not completely spin-forbidden.

Thus, the transition is allowed with the absorption of a photon with P̂z polarization.

4.1.1 Optical Detection of In-Plane-Emission Photoluminescence

The derived in-plane optical selection rules do not obviously explain our detection

of the spin dark exciton emission using an out-of-plane (primarily P̂±) detection scheme.

For this measurement, we use an objective lens with large numerical aperature (N.A. ∼ 0.6)

[68, 69]. The in-plane emission of the spin dark exciton truly radiates from the center in

the 2D plane with some non-zero solid angle, some of which overlaps with the solid angle

of the objective lens detection cone. Therefore, we can detect a small percentage of the

total in-plane emission from the dark exciton using our out-of-plane detection scheme. In

principle, we can also excite the spin dark exciton transition directly with similarly low

efficiency; however, it does not appear in our absorption measurement. As the PL intensity
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is proportional to both the detection efficiency and the steady-state exciton population, we

thus conclude that the spin dark exciton accumulates a large steady-state population due to

non-radiative relaxation from higher energy states and the long lifetime of the dark states

as compared to the bright states (> 100 ps compared to < 10 ps [68, 71, 74]). This allows

the spin dark exciton to have measurable intensity despite the low detection efficiency.

4.2 Gate-Tunable Dark Trions in Monolayer WSe2

We have argued for the detectability of the spin dark exciton and corresponding

trions in our measurement scheme - in the remainder of this section we show experimental

results and analysis which substantiate this argument and further characterize the spin dark

exciton,D0, and trions. D−, D+.

4.2.1 Methodology

The data is this section is steady-state and time-resolved photoluminescence of

BN-encapsulated monolayer WSe2 gating devices. The devices were fabricated using the

dry transfer process described in Chapter 2. All steady-state data shown was measured at

T = 4 K using the resistive magneto-optical cryostat system (Cell 9, NHMFL) described in

Chapter 2, except the temperature dependent data (Figure 4.3) which was measured using

the optical microscope system described in Chapter 2.2. In both cases, we use an excitation

laser with 532-nm wavelength. The time-resolved PL data (Figure 4.5) was measured using

the single-photon-counting TRPL system with 76 MHz, 515-nm excitation laser described

in Chapter 2.
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4.2.2 Gate-Dependent Photoluminescence at Zero-Field

Figure 4.2(a) shows a gate-dependent photoluminescence data of our monolayer

WSe2 device. We plot the PL intensity (counts) with a logarithmic false color map. At

the charge neutrality point (Vg = −0.50 V) we observe the bright A exciton (A0) at 1.712

meV. With electron doping (Vg = −0.25− 0.5 V) the A0 exciton is quickly suppressed and

two negative bright trions (A−1 ,A−2 ) appear. Similarly, a positive bright trion (A+) appears

with hole doping (Vg < −1.0 V). The bright trion binding energies are 21 meV, 29 meV,

and 35 meV, respectively, which is in good agreement with previous studies [7].

In addition to the bright exciton at charge neutrality, we observe another weak

PL feature at 1.671 eV, ∼ 41 meV below the A0 PL energy. According to prior research,

we identify this feature as the dark exciton (D0) [27,70]. Similar to the bright exciton, the

D0 line is quickly suppressed upon electron or hole injection at which point two new peaks

appear – one on the electron side at 16 meV below the D0 energy and the other on the hole

side at 14 meV below D0. We label these features as D− and D+, respectively. Both new

features exhibit approximately linear PL intensity with increasing excitation power which

excludes any association with biexcitons which exhibit quadratic power dependence [36–39].

In the rest of this chapter we will discuss further evidence that the D− and D+ features are

properly identified as dark trions.

We first examine the gate-dependence of the D0, D−, and D+ PL lines. For quan-

titative analysis, we fit the photoluminescence spectra with a series of Lorentzian functions

which correspond to each observed PL line. We plot the gate-dependent integrated in-

tensity, PL energy, and full width at half maximum (FWHM) of each exciton feature in
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Figure 4.2: (a) Gate-dependent PL map of BN-encapsulated monolayer WSe2 (device 1) at
T = 4 K and B = 0 T under 532-nm continuous laser excitation. (b) The extracted PL
integrated intensity, (c) PL energy, (d) PL full width at half maximum (FWHM) of both
dark and bright excitons and trions as a function of gate voltage. The numbers in (c) denote
the energy separation in units of meV. The dashed lines denote the charge neutrality point
(CNP)
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Figure 4.2(b-d). The dark species (D0, D−, D+) exhibit approximately analogous behavior

to their bright counterparts (A0, A−, A+) in each respect. For example, the intensities of

D−, A−1 , and A−2 each rise quickly to maxima near Vg = 0.2 V and then rapidly fall. Like-

wise, D+ and A+ appear at a similar voltage Vg = -0.75 V. Such parallel behavior suggests

that D+ and D− are approximately the dark analogs of the bright trions. We note, as well,

that the energy separation between the dark trion, D0, and the D− and D+ features are 14

meV and 16 meV, respectively. This is in good agreement with both previously reported

[27] and the theoretically predicted [75] binding energy of dark trions in monolayer WSe2.

4.2.3 Temperature Dependent Photoluminescence

Second, we investigate the temperature dependence of the dark and bright trion

species. Figure 4.3 shows temperature dependent photoluminescence for T = 5 − 75 K

at fixed gate voltage, Vg = −2.0 V. The D+ and A+ PL lines exhibit nearly opposite

temperature dependence. When the sample temperature is decreased, the bright trion PL

intensity drops sharply – in agreement with previous studies [76]. In contrast, the dark

trion PL is initially unobserved but appears at T < 50 K and continues to brighten with

temperature reduction. We attribute this behavior to the different energy levels of the bright

and dark trion species. The fundamental dark trion energy level lies below that of the bright

trion. At low temperature, where the thermal energy is much less than the energy difference

between the bright and dark exciton states, non-radiative relaxation processes will result

in large population transfer to the dark state. In particular, the bright exciton population

may be efficiently funneled to the dark state before it is able to relax radiatively. Thus, the

dark state will accumulate a large steady-state population and produce intense PL. Despite
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Figure 4.3: Temperature-dependent PL of bright and dark trions in monolayer WSe2 . (a)
PL spectra at different temperatures from 5 to 75 K. (b) The integrated PL intensity of
dark trion (D+) and bright trion (A+) as a function of temperature. The gate voltage is
Vg = -2 V.

this large population, we still observe comparable PL intensity from the bright and dark

states at 5 K. We attribute this to inherent inefficiency of our measurement geometry. As

noted above, our high N.A. objective lens can collect only a small percentage of the dark

exciton’s in-plane emission. Regardless, the low-temperature PL enhancement of the dark

trion is in line with our expectations.

4.2.4 Gate-dependent Magnetophotoluminescence

We expect the dark trion to inherit two further properties of its parent state -

linearly-polarized photoluminescence from both valleys due to the optical selection rules
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and an enhanced g factor relative to the bright exciton (∼ 8 vs. 4) due to the spin-

triplet configuration of the dark exciton. To confirm these characteristics, we apply strong

out-of-plane magnetic field and examine the relative energy shift of the bright and dark

exciton species. As discussed in Chapter 1, the exciton valley degeneracy in WSe2 is lifted

under out-of-plane magnetic field by the valley Zeeman effect. The K- and K ′-localized

excitons will exhibit linear magnetic-field-induced energy split which is proportional to the

exciton g-factor. We illustrate the valley Zeeman shift of the dark exciton schematically in

Figure 4.4(a).

Figure 4.4(b) shows the gate-dependent PL map at B = −10 T. As described

in Section 4.2.1, we collect only right-circularly polarized PL which corresponds to bright

exciton emission from the K-valley. We observe only one PL line for each of A0, A+, and A−1,2

which are shifted from their B = 0 T energies by the valley Zeeman shift. The dark trions

are expected to emit linearly polarized light from both valleys, however, so we should detect

PL from both valleys simultaneously. D0, D+, and D− are split into two PL lines whose

intensity is relatively unchanged when detecting right- and left-circularly polarized light.

This suggests that D0, D+, and D− emit linearly polarized PL. We further examine the

magnetic-field-dependent PL from B = -31 T - 31 T on the electrons side (Vg = 0.1 V) and

at the charge neutrality point (Vg = −0.5 V) in Figure 4.4(c,d), respectively. We observe

bright exciton (trion) emission from only one valley which shifts linearly with magnetic field

intensity. In contrast, we observe a cross-like energy shift of the dark exciton (trion) which

indicates PL emission from both the K and K ′ valleys.
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Figure 4.4: (a) Negative dark trions detected in our magneto-PL experiment. (b) The PL
map of monolayer WSe2 (device 1) at B = −10 T under unpolarized optical excitation
and right-handed PL detection. Dark excitons and trions are split into two peaks, whereas
bright excitons and trions are not. (c),(d) The B-dependent PL map at the electron side
(Vg = 0.1 V) and charge neutrality point (Vg = −0.5 V). (b)-(d) share the same color scale
bar. (e) The excitons and trion Zeeman shifts. The g-factors are extracted by linear fits of
the energy difference between the positive and negative magnetic field.

4.2.5 Gate-Dependent Photoluminescence Lifetime of Dark Trions

To quantitatively analyze the valley Zeeman shift of the bright and dark exciton

(trion) PL lines, we fit each spectra with a series of Lorenztian functions corresponding to

each feature of interest (e.g., A0, D0, D+, ...) and extract the center frequency as a function

of magnetic field. We plot the extracted peak frequencies for each exciton (trion) state in

Figure 4.4(e). Each feature exhibits approximately linear magnetic field dependence. We

thus perform a linear fit on each line to determine the experimental g-factor, which are
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shown next to each line in the figure. The bright exciton and trions exhibit g-factors from

−4.1 to−4.4 which matches our prediction (g ≈ −4) from the spin and orbital configurations

and previous research. In contrast, the dark exciton and trion exhibit g-factors from −9.3

to −9.5. This enhancement of valley Zeeman shift relative to the bright states is in line

with our predictions (g ≈ −8) and previous study of the dark exciton. We therefore confirm

that both the linearly polarized PL emission and enhanced g-factor characteristics of the

dark exciton are inherited by the dark trion.

Finally, the dark exciton and trion are expected to exhibit significantly enhanced

lifetime relative to the bright states due to the spin-triplet configuration [68]. The reduced

FWHM of the dark trions relative to the bright states (Figure 4.2(d)) is tangential evidence

of this lifetime enhancement, but more direct confirmation is needed. To measure the

PL lifetime directly, we use time-resolved photoluminescence of the dark trion states via

the time-correlated single photon counting (TCSPC) method described in Chapter 2. We

plot the time-resolved PL traces of A+, D+, and instrument response function (IRF) in

Figure 4.5(a). After deconvolution with the IRF, each of the trion PL traces is well-fit by

a single exponential decay. We first extract a bright trion (A+) lifetime of ∼ 10 ps which is

in agreement with previous studies [68]. The dark trion, D+, exhibits significantly longer

lifetime. At Vg = −0.8 V, we extract a D+ lifetime of 1270 ps - over two orders of magnitude

longer than the bright exciton/trion (1 − 10 ps) and one order of magnitude longer than

the dark exciton (180 ps).
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Figure 4.5: (a) Time-resolved PL for the A+ bright trion and D+ dark trion in BN-
encapsulated monolayer WSe2 (device 2). The black solid line is the instrument response
function (IRF). We fit the D+ and A+ data, respectively, with single-exponential and bi-
exponential functions convolved with the IRF (dashed lines). (Inset) The deconvolved fits.
The D+ lifetime is 1270 and 610 ps at gate voltages Vg = -0.8 V and -3 V, respectively.
The A+ lifetime is ∼10 ps. (b) The lifetime, PL intensity, and FWHM of the D+ trion as
a function of gate voltage.

We further observe that the PL lifetime of D+ is tunable with gate voltage. At

Vg = −3 V, we extract a D+ lifetime of 610 ps. To explore this gate-tunability more fully,

we systematically measure the D+ PL lifetime as a function of gate voltage from Vg = 0

to −5 V which we show in Figure 4.5(b) along with the integrated intensity and FWHM.

The PL lifetime and intensity of D+ initially rise with increasing hole concentration from

Vg = 0 V to maxima at Vg ∼ −1 V. The PL lifetime and intensity are suppressed with

further hole injection. D+ also experiences significant broadening for Vg < −2.5 V as

shown by the increase in FWHM from ∼ 5 meV at Vg = −2.5 V to ∼8 meV at Vg = −5
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V. We qualitatively understand the gate-dependence of D+ based on interactions between

ambient holes and the exciton / trion. Trion formation requires the presence of ambient

carriers - thus, the initial maximum in PL intensity and lifetime is related to the onset of the

trion as the dominant state over the neutral exciton. As the hole density increases further,

however, the relative density of ambient holes to trions will lead to frequent trion-carrier

scattering. This scattering will decrease the trion lifetime, suppress the PL as the primary

relaxation pathway, and broaden the PL emission.

4.2.6 Conclusion

In summary, we studied the zero-field and magnetic-field-dependent photolumines-

cence spectra in high quality monolayer WSe2 gating devices and observed clear, continuously-

tunable dark trions D−, D+ which we identify as the trions of the spin dark exciton D0.

At zero magnetic field, we measured the binding energies of the dark exciton (trion) states

and demonstrate the exceptionally long and gate-tunable recombination lifetime of the dark

trion in comparison to the bright trions (up to 1.2 ns vs. 10 ps). Using magneto-optical PL,

we confirmed the spin-triplet configuration of the dark trion by measuring the g-factors of

each dark state g ∼ 9.5.
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4.3 Valley-selective Chiral Phonon Replicas of Dark Excitons

and Trions in Monolayer WSe2

The dark excitons and trions discussed above exhibit many attractive properties

for fundamental study and future technological application. In comparison to the bright

excitonic states with short lifetime and limited valley polarization, the dark exciton (trion)

have long lifetimes and strong valley coherence due to the spin-triplet configuration which

suppresses intervalley exchange coupling [7]. The dark states also lie at a lower energy than

their bright counterparts, and thus can accumulate a relatively large, long-lived steady-state

population. Together, these characteristics make the dark excitonic states good candidates

to explore multi-body interactions such as exciton condensation and realize exciton manip-

ulation such as excitonic transport.

As shown in the previous section, however, study of the dark exciton states is

complicated by their distinct optical selection rules. While the bright exciton states interact

strongly with normally-incident light and exhibit optical valley selectivity (K- and K ′-valley

excitons couple to right- and left-circularly polarized light, respectively), the dark excitonic

states of both valleys simultaneously couple to vertically-polarized light propogating along

the monolayer plane. This lack of optical valley selection is a significant impediment to

study and exploitation of valley physics in the dark exciton states. It is therefore of interest

to identify alternative pathways to detect the dark exciton (trion) valley polarization.

In this section, we discuss the observation of chiral phonon-mediated radiative

relaxation pathways for the dark exciton (trion) in monolayer WSe2 and establish their
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Figure 4.6: (a)–(c) Band configurations, transition dipole, and optical emission of (a) bright
exciton, (b) dark exciton, and (c) dark exciton chiral phonon replica at the K-valley in
monolayer WSe2. The arrows denote the electron spin. A dark exciton can decay into a
chiral phonon and a photon with opposite chirality.

valley-specific selection rules. We note that this phonon replica process was previously

observed for the neutral dark exciton (D0) [77] and interband electronic transitions in

monolayer WSe2 [78, 79]. We expand upon this analysis to comprehensively characterize

the phonon replica emission process for D0, D+, and D−. Altogether, we find that each

dark exciton (trion) state has a corresponding chiral phonon replica emission in PL which

lies ∼ 21.4 meV below its parent state and originates from an interband scattering process

with a Γ-point E′′ optical phonon with energy EΓ,E′′ ∼ 21.4 meV [77,78,80]. In contrast to

the in-plane, linearly polarized emission of the dark exciton, the phonon replicas exhibit out-

of-plane, circularly polarized emission with valley-dependent helicity similar to the bright

excitons. The relaxation processes of the bright excitons, dark excitons, and chiral phonon

replicas are illustrated schematically in Figure 4.6(a,b,c), respectively. We thus identify a

method to optically detect the valley index of the dark excitons (trions) and further explore

the detailed exciton-phonon interactions in monolayer WSe2.
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4.3.1 Methodology

The data is this chapter is measured via gate-dependent magnetophotolumines-

cence in BN-encapsulated monolayer WSe2 gating devices. The devices were fabricated by

dry-transfer as described in Chapter 2. All data shown was measured using the 17.5 T

superconducting magneto-optical cryostat system (Cell 3, NHMFL) described in Chapter 2

with 532-nm wavelength excitation laser over one week in March 2019.

4.3.2 Gate-Dependent Photoluminescence at Zero-Field

Figure 4.7(a) shows a gate-dependent photoluminescence (PL) map of the mono-

layer WSe2 device at T = 5 K. The quality of this device is much improved over that shown

in Figure 4.2, so we more clearly distinguish the bright (A0, A+, A−1 , A−2 ) and the dark

(D0, D−, D+) exciton and trions. The PL energy of the dark exciton (trions) relative to

the bright states is in good agreement with our previous findings. We observe new PL lines

which are situated ≈ 21.4 meV below each of the dark exciton (trion) features and mimic

their gate-dependent behavior. In Figure 4.7, we label these replica PL features as D0
p,

D+
p , and D−p which are associated with parent states D0, D−, and D+, respectively. To

quantitatively analyze the replica features and their relationship to the dark exciton (trion)

states, we fit each PL line and extract the PL energy and integrated intensity of each PL

feature. In Figure 4.8(c), we shift the PL energy of each replica feature by +21.4 meV

and observe that the shifted replica state PL energies closely match that of the correspond-

ing dark exciton (trion). We plot the integrated intensities in Figure 4.8(b) and observe

qualitatively parallel gate dependence of the replicas and corresponding dark states.
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Figure 4.7: Gate-dependent photoluminescence (PL) map of a monolayer WSe2 device
encapsulated by BN. We observe the bright exciton/trions (A0, A+, A−1 , A−2 ), dark exci-
ton/trions (D0, D−, D+), and phonon replicas of dark exciton/trions (D0

p, D
−
p , D+

p ).
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Figure 4.8: (a) The cross-cut PL spectra at the charge neutrality point (Vg = −0.3 V), elec-
tron side (Vg = 2 V) and hole side (Vg = −2V). (b) PL intensity and (c) PL photon energy
of the dark excitonic states and replicas as a function of gate voltage. The replica energy is
upshifted for 21.4 meV for comparison. (d) The second energy derivative (d2I/dE2) of the
PL map in Figure 4.2.

4.3.3 Gate-Dependent Magnetophotoluminescence

To further confirm the replica nature of the observed PL features, we perform

magnetic-field-dependent PL measurements. K-valley (right-circular polarization) PL maps

with B = 0 T to B = 17.5 T are shown in Figure 4.9(a,c,e) for electron doping, charge

neutrality, and hole doping, respectively. K ′-valley (left-circular polarization) maps are

similarly shown in Figure 4.9(b,d,f). As discussed in the previous section, the dark exciton

(trion) has a g-factor of ≈ −9.5 which can be measured via the valley Zeeman shift of the PL

124



energy. If the new PL features are indeed replicas of the dark states which radiate through

a secondary relaxation pathway, it is reasonable to expect that D0
p, D

+
p , and D−p should

inherit the g-factor of their parent states. We overlay black dashed lines in Figure 4.9(a-f) to

highlight the dark exciton and replica PL lines and immediately see that their Zeeman shift

is qualitatively similar. To confirm this, we extract the magnetic-field-dependent PL energy

of each feature which is shown in Figure 4.9(g). As above, we shift the replica PL energy by

+21.4 meV to highlight the nearly exact overlap with the dark states. The g-factor for D0,

D−, D+ and their associated replicas are nearly identical, as determined from linear fitting

of the PL energy with the valley Zeeman equation. We show the fitted g-factors for the

neutral exciton (g = −9.9), electron trion (g = −9.2), and hole trion (g = −9.9) alongside

the PL energies in Figure 4.10(a).

Altogether, the parallel gate- and magnetic-field-dependence of the replica PL lines

to those of the corresponding dark exciton (trion) offer compelling evidence to support our

identification of the observed PL features as phonon replicas of the dark exciton states. The

phonon replica process involves relaxation of the exciton through simultaneous emission of

a phonon and a photon. The total exciton energy is emitted through the combined phonon

and photon energies. Thus, the replica PL line is energetically separated from the parent

emission by the emitted phonon energy. Our observed separation of 21.4 meV suggests that

phonon which mediates the replica emission is the zone-center (Γ) E′′-mode optical phonon

which has energy ∼ 21.4 meV in monolayer WSe2. [77, 79, 81–84] The previously reported

phonon replica of D0 similarly identified the Γ-point E′′ optical phonon [77].
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Figure 4.9: (a)–(f) Magnetic-field-dependent second-derivative PL map (d2I/dE2) of mono-
layer WSe2 on the electron side [(a), (b) gate voltage Vg = 1.5 V], near the charge neutrality
point (CNP) [(c), (d) Vg = –0.2 V], and on the hole side [(e), (f) Vg = –1.5 V]. We excite
the sample with a linearly polarized 532-nm laser and collect the PL with right-handed (top
row) or left-handed helicity (bottom row).

Curiously, the phonon replicas do not exhibit the same cross-shaped magnetic

field splitting in the circularly polarized PL maps (Figure 4.9) which is characteristic of the

linearly polarized dark exciton PL. Each replica instead exhibits a single PL line which red-

shifts (blue-shifts) under increasing magnetic field intensity for right-handed (left-handed)

circular polarized detection. For right-handed circularly polarized detection, the phonon

replicas shift in parallel with the lower energy (K ′-valley) dark exciton (trion). For left-

handed detection, the replicas shift in parallel to the higher energy (K-valley) dark exciton

(trion). This implies that the phonon replicas emit circularly-polarized PL with helicity

corresponding to the dark exciton valley psuedospin. Thus, the replica-mediating phonon

interaction allows the dark exciton to luminescence with bright-exciton-light selection rules.

126



The bright-exciton-like nature of the phonon replica PL in terms of valley selection

further suggests out-of-plane light emission (in-plane transition dipole) similar to the bright

exciton and thus enhanced detection efficiency in our experimental geometry as compared

to the in-plane emission of the dark states. However, the phonon replicas exhibit a lower

overall PL intensity than the dark states as shown in Figure 4.7(c). We consider two

possibilities to explain this discrepancy. First, our assumption of in-plane transition dipole

for the replica PL may be incorrect. The phonon replicas may have unique optical selection

which allows valley-specific circular polarization similar to the bright states with in-plane

emission similar to the dark states. Second, and more likely, the replica PL intensity may

be inherently limited by the rate of phonon emission process.

4.3.4 Measurement of Exciton Dipole-Orientation

To address this question of the phonon replica transition dipole orientation, we

examine data obtained by Tang et al. [71] using a optical measurement geometry which

allows discrimination between in-plane and out-of-plane light emission. The monolayer

WSe2 gating device is deposited on a planar GaSe waveguide with angled edges at which the

PL is collected. The waveguide carries both in-plane and out-of-plane oriented PL which will

remain perpendicular to one another throughout and can be selectively detected by linear

polarization. We extract the integrated PL intensity as a function of linear polarization for

the observed bright excitons (A0, A+, A−), dark excitons (D0, D−, D+), and dark state

phonon replicas (D0
p, D

+
p , D−p ) using this scheme and plot the results in Figure 4.10(b).

As the linear polarization detection angle is rotated, we alternate between detecting light
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Figure 4.10: (a) The Zeeman energy shift of one branch of the dark states and their replicas
from Figure 4.4. The replica energy is upshifted for 21.4 meV for comparison. The Zeeman-
splitting g-factors from linear fits are denoted. (b) The PL intensity of the bright excitonic
states (triangle), dark excitonic states (square), and dark-state phonon replicas (dots) as a
function of polarization angle in the in-plane collection geometry. The angles corresponding
to in-plane (IP) and out-of-plane (OP) dipoles are denoted.

propagating in-plane (out-of-plane transition dipole, labeled OP) and light propagating out-

of-plane (in-plane transition dipole, labeled IP). The OP and IP-associated emission are

perpendicular to one another. We observe nearly identical behavior of the bright excitons

and dark-state phonon replicas, in contrast to the opposite behavior of the direct dark

exciton PL. Thus, we confirm that the observed phonon replicas have optical selection rules

and transition dipole orientation which wholly mimic those of the bright exciton.

4.3.5 Phonon Replica Optical Selection Rules

For a more comprehensive understanding of the bright-exciton-like phonon replica

PL emission and optical selection rules, we perform a symmetry-based analysis of the elec-
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tronic and phonon states similar to that shown for the bright excitons in Chapter 1 and

dark excitons earlier in this chapter.

We discussed at the beginning of this chapter that the lower conduction band c1

mixes with higher energy band c2 through spin-orbit coupling which results in modified,

spin-mixed conduction bands. This spin mixing effect allows the dark trions to radiatively

relax as the constituent states are no longer purely of opposite spin.

|c̄1,↓〉 = |c1,↓〉+
〈c2,↑| α̂soc |c1,↓〉
Ec1,↓ − Ec2,↑

|c2,↑〉 (4.6)

Because the spin-orbit coupling follows the crystal symmetry, however, it can only mediate

interactions between bands which have identical symmetry [17]. In contrast, the electron-

phonon coupling breaks the unperturbed crystal symmetry due to the phonon-associated

lattice distortion. In other words, the presence of electron-phonon coupling can modify

the unperturbed electronic states in a similar fashion without the strict band symmetry

requirement. Following the same form, the mixing between conduction subbands (c̄1,↑, c̄1,↓)

can be expressed as:

|¯̄c1,↓〉 = |c̄1,↓〉+
〈c̄1,↑,Ω| Ĥep |c̄1,↓〉
Ec̄1,↓ − Ec̄1,↑ − ~Ω

|c̄1,↑〉 (4.7)

where Ĥep is the electron-phonon coupling operator, and |c̄1,↑,Ω〉 is the conduction sub-

band with a phonon of energy ~Ω which is mediating the coupling. For the band mixing

via electron-phonon interaction to be non-zero, 〈c̄1,↑,Ω| Ĥep |c̄1,↓〉 must satisfy the band

symmetry as in previous analysis.

〈C3c̄1,↑,Ω|C3ĤepC
−1
3 |C3c̄1,↓〉 = 〈c̄1,↑,Ω| Ĥep |c̄1,↓〉 (4.8)

〈σhc̄1,↑,Ω|σhĤepσ
−1
h |σhc̄1,↓〉 = 〈c̄1,↑,Ω| Ĥep |c̄1,↓〉 (4.9)
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From our previous knowledge of the conduction band symmetries, we can evaluate the above

expressions to determine the phonon selection rules which allow mixing between the spin

subbands in c1. We note that the interaction Hamiltonian is invariant under the symmetry

operations. The following expressions must be satisfied:

〈c̄1,↑,Ω| Ĥep |c̄1,↓〉 = 〈C3c̄1,↑,Ω|C3ĤepC
−1
3 |C3c̄1,↓〉 (4.10)

= ei
2π
3

(1+C3(Ω)) 〈c̄1,↑,Ω| Ĥep |c̄1,↓〉 (4.11)

〈c̄1,↑,Ω| Ĥep |c̄1,↓〉 = 〈σhc̄1,↑,Ω|σhĤepσ
−1
h |σhc̄1,↓〉 (4.12)

= −σh(Ω) 〈c̄1,↑,Ω| Ĥep |c̄1,↓〉 (4.13)

where C3(Ω) and σh(Ω) are the respective symmetry operations on the mediating phonon

state Ω. Thus, to satisfy the above expressions for coupling between c̄1,↑ and c̄1,↓, Ω must

left-handed chirality (C3(Ω) = −1) and odd parity under out-of-plane reflection (σh(Ω) =

−1). If we perform similar symmetry analysis for the inverse case, 〈c̄1,↓,Ω| Ĥep |c̄1,↑〉, we

find identical results but requiring a right-handed chiral phonon (C3(Ω) = +1).

4.3.6 Chiral Phonons in Monolayer WSe2

Previous work identified the presence of chiral phonons in monolayer WSe2 which

are a linear superposition of the energetically-degenerate longitudinal (LO) and tranverse

(TO) optical phonons with E′′ representation at the Γ-point [79, 80] . This superposition

can form two chiral phonon states with clockwise (counter-clockwise) rotation of the Se

atoms around stationary W atoms depending on the relative phase. We refer to these as

the right-handed chiral phonon (Ω+, C3(Ω+) = +1) and left-handed chiral phonon (Ω−,
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Figure 4.11: (a) The configurations of the doubly degenerate zone-center E′′ phonons in
monolayer WSe2. The W atoms are stationary and the Se atoms move laterally. The
vibration can be decomposed into the LO and TO modes with linear Se atomic motion
or left-handed and right-handed chiral modes with rotational Se atomic motion. (b) The
phonon-assisted radiative recombination of the dark exciton. The dark exciton can decay
into a pair of phonon and photon with opposite chirality..

C3(Ω−) = −1). We show the LO / TO phonon superposition which produces the chiral

phonons with E′′ symmetry schematically in Figure 4.11(a). Both chiral phonons have

odd σh parity (σh(Ω±) = −1) as the top and bottom Se atoms counter-rotate in-plane.

Therefore, the E′′ chiral phonons satisfy the symmetry requirements in our derived phonon

selection rules.

The above symmetry-based discussion involves the free particle electronic states in

each band; however, the electron and hole which constitute the exciton state inherit the same

symmetry as their free particle counterparts. Thus, the results of this symmetry analysis

can be directly applied to the dark excitons which are the motivation for this analysis.

The electron-phonon interaction with the Γ-point chiral phonon couples the two conduction

subbands in the same valley. This suggests mixing of the bright and dark exciton states
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in the same valley - the dark exciton can radiate with bright-exciton-like optical selection

as the dark exciton electron which resides in the lower conduction subband couples to the

higher subband of opposite spin. In this scenario, the K (K ′) valley dark exciton electron

emits a Ω− (Ω+) Γ-point chiral phonon to couple with the opposite spin conduction band

which allows the dark exciton to radiate following the bright exciton selection with out-of-

plane right (left) circularly-polarized light. This valley-dependent phonon / photon emission

process is shown schematically in Figure 4.11(b). This is the chiral phonon replica process

for the dark exciton. We note that the same analysis applies to intravalley relaxation of the

dark trions.

For completeness, we calculate the transition rate of the complete dark exciton

phonon replica process in the K-valley from perturbation theory to test the bright-exciton-

like optical selection. The electronic transition from the modified lower conduction subband

¯̄c1,↓ to the valence band v1,↑ is given by:

∣∣P¯̄c1,↓→v1,↑
〉
∝
∣∣∣〈v1,↑| P̂γ |¯̄c1,↓〉

∣∣∣2 δ (Ev1,↑ − E¯̄c1,↓ − ~Ω− ~ω
)

(4.14)

∝

∣∣∣∣∣〈v1,↑| P̂γ |c̄1,↑,Ω〉 〈c̄1,↑,Ω| Ĥep |c̄1,↓〉
Ec̄1,↓ − Ec̄1,↑ − ~Ω

∣∣∣∣∣
2

δ (...) (4.15)

where P̂γ is the momentum operator for an emitted photon with energy ~ω. This expression

is non-zero only when the emitted photon has right-circular polarization (P̂γ = P̂+) and

photon energy equal to the dark exciton energy minus the phonon energy (~ω = Ev1,↑ −

E¯̄c1,↓ − ~Ω). Similar analysis for the the K ′-valley dark exciton is the time shows opposite

chirality for the emitted photon and phonon.
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4.3.7 Conclusion

In summary, we have shown comprehensive experimental evidence and group-

theory-based analysis which supports the bright relaxation of dark excitons (trions) via an

intravalley chiral phonon replica process. Importantly, we demonstrate that the phonon

replica process is valley dependent. The dark exciton (trion) in the K (K ′)-valley can

relax through emission of a left (right)-circularly polarized chiral phonon and right (left)-

circularly polarized photon with energy equal to the direct dark exciton PL energy minus

the chiral phonon energy (∼ 21.4 meV). This process therefore allows optical detection of

the dark exciton (trion) valley degree of freedom.

4.4 Multipath Optical Recombination of Intervalley Dark

Excitons and Trions in Monolayer WSe2

Our optical investigation of the excitons presented thus far (bright, dark, and

phonon replica) has been restricted to the constituent electrons and holes which reside in

a single valley and thus couple with light through intravalley transitions. The initial and

final electronic states have almost identical momentum as the mediating photons and Γ-

point phonons contribute vanishingly small momentum change. As noted at the beginning

of this chapter, however, there is principally a complex landscape of exciton species which

forms between states throughout the electronic band structure but which cannot couple

directly to light (we note that this is not strictly true, as light with special geometries

such as twisted light with finite orbital angular momentum can couple to a wider variety of

electronic transitions besides those discussed here) [85].
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One such example is the intervalley exciton which forms between electrons and

holes in opposite valleys (K ↔ K ′) [86–90]. The intervalley exciton, I0, is shown schemat-

ically with the bright (A0) and spin dark exciton (D0) in Figure 4.12(a). The intervalley

recombination requires a significant change in momentum, ∆p = K−K ′ = K, which cannot

be satisfied by the photon or Γ-point phonon interaction. The intervalley exciton therefore

cannot couple directly to light. Similar to the intravalley band mixing via electron-phonon

interaction above, we can imagine that an appropriate phonon in monolayer WSe2 can allow

interaction between valleys, as well. Such an intervalley exciton-phonon scattering process

could allow radiative relaxation of the intervalley exciton as shown in Figure 4.12(b)

In this section, we present experimental evidence and group-theory-based symme-

try analysis which of radiative intervalley exciton recombination in monolayer WSe2 and

determine the optical and phonon selection rules. We further show that the previously

discussed dark excitons (D+, D−) which are illustrated schematically in Figure 4.12(c,d)

can relax radiatively through four distinct pathways: in-plane emission, intravalley phonon

replica via Γ-point phonon emission, intervalley phonon replica via K-point phonon emis-

sion, and defect scattering.

4.4.1 Methodology

The majority of data is this chapter is measured via gate-dependent magnetopho-

toluminescence in BN-encapsulated monolayer WSe2 gating devices. The devices were fabri-

cated by dry-transfer as described in Chapter 2. All magneto-PL data shown was measured

using the 17.5 T superconducting magneto-optical cryostat system (Cell 3, NHMFL) de-
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Figure 4.12: Intervalley electron-hole recombination processes in monolayer WSe2. (a) Band
configurations for the intravalley bright exciton (A0), intravalley spin dark exciton (D0),
and intervalley momentum-forbidden dark exciton (I0). The arrows and color denote the
electron spin. (b) Recombination of I0 mediated by defects or zone-corner chiral phonons.
We denote the irreducible representations of the electronic states at the K and K ′ points
in the C3h point group. (c),(d) Trion decay through emission of zone-center or zone-corner
chiral phonons. Γ5 (K3) is the representation of chiral phonons at the Γ (K ′) point in
the D3h (C3h) point group. Ω± and σ± denote the chirality of the emitted phonons and
photons, respectively.
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scribed in Chapter 2 with 532-nm wavelength excitation laser over two weeks in March

and August 2019. Excitation-power-dependent PL measurement was conducted using the

multi-source optical system discussed in Chapter 2.

4.4.2 Observation of the Intervalley Exciton

Figure 4.13(a) shows a gate dependent photoluminescence (PL) map of monolayer

WSe2. Detailed line cuts showing the linearly scaled PL spectra at the charge neutrality

point (CNP, Vg = −0.2 V), electron side (Vg = +2 V), and hole side (Vg = −2 V) are shown

in Figure 4.15(a). We can immediately labeled those exciton (trion) PL features which we

have discussed earlier in this work: the bright exciton and trions (A0, A+, A−1 , A
−
2 ), spin

dark exciton and trions (D0, D+, D−), and zone-center chiral-phonon replicas of the spin

dark states with ∼21.4 meV redshift (D0
p, D

+
p , D

−
p ). Four previously undiscussed features

are labeled in the figure in red: I0 and I0
p at the CNP, I−p on the electron side, and I+

p on

the hole side which we preliminarily identify as the intervalley exciton, its phonon replica,

and intervalley phonon replicas of the dark trion. We will discuss each of these PL features

and present evidence and analysis to support this identification, starting with I0 and I0
p .

Excitation-power-dependence of Photoluminescence

As an initial, general note, we measure the excitation power dependence of each PL

feature to eliminate the possibility that any is attributable to biexciton formation. The PL

intensity of biexcitons exhibits quadratic dependence on power, whereas the single exciton

(trion) species have approximately linear power dependence [36–39]. For completeness, we
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Figure 4.13: Gate-dependent PL map of monolayer WSe2 at T ∼ 4 K and zero magnetic
field under 532-nm continuous laser excitation with incident laser power P ∼ 10 µW. We de-
note the bright exciton and trions (A0, A+, A−1 , A

−
2 ), dark exciton and trions (D0, D+, D−),

intervalley dark exciton (I0), zone-center chiral-phonon replicas of dark states with ∼21.4
meV redshift (D0

p, D
+
p , D

−
p ), and zone-corner chiral-phonon replicas of dark states with

∼26.5 meV redshift (I0
p , I

+
p , I

−
p ).

show the power dependence for all neutral exciton species discussed thus far. We fit each

PL feature with a Lorenztian-type function and plot the integrated intensities as a function

of incident laser power in Figure 4.14(a). Each of our observed features shows linear power

dependence. We note, as well, that the full-width at half maximum (FWHM) increases for

each PL feature increasingly significantly with incident power as shown in Figure 4.14(b).

We thus use an incident power of ∼ 10 µW as a reasonable trade-off between detected PL

intensity and FWHM to ensure sharp features while maintaining good signal-to-noise ratio

in detection.
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Figure 4.14: (a) Photoluminescence (PL) intensity as a function of incident laser power for
the bright exciton (A0), dark exciton (D0) and its phonon replica (D0

p), intervalley exciton
(I0) and its phonon replica (I0

p ). The coefficients from power law fits (I = P γ) of each
exciton are shown. (b) Full width at half maximum (FWHM) of these peaks as a function
of incident laser power.

4.4.3 Signatures of Intervalley Excitons

We next discuss the I0 PL feature. We use Lorentzian-type functions to fit the

observed exciton features and extract the PL energy, FWHM, and integrated intensity of

each as a function of gate voltage, which we plot in Figures 4.15(b-d). It is immediately

clear that I0 exhibits parallel gating behavior to D0 in each fitted characteristic. Beyond

this qualitative similarity, there are two primary attributes which we use to identify this

feature as the PL of the intervalley exciton.

First, we measure the PL energy separation between I0 and D0 and find that the

intervalley exciton lies ∼ 10 meV higher in energy. The observation that I0 has a higher PL

energy than D0 is consistent with our expectations, which we can understand qualitatively

from the exciton binding energies. Recall that the PL energy at CNP is equal to the free
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Figure 4.15: Analysis of exciton features in gate-dependent PL map in Figure 4.13. (a)
Cross-cut PL spectra on the electron side, charge-neutrality point, and the hole side with
respective gate voltages Vg = +2,−0.2, and −2 V. (b)–(d) The PL energy, full width at half
maximum (FWHM), and integrated PL intensity of different excitonic peaks as a function
of the gate voltage. The numbers in (b) denote the energy separation in the units of meV.

particle band gap energy minus the exciton binding energy. The band configuration of I0

and D0 are energetically degenerate (Figure 4.12(a)), thus I0 lying at higher energy than D0

implies that the I0 binding energy is lower. The binding energy of each exciton arises from

two primary interactions: the long range direct Coulomb interaction and the short-range

exchange interaction which is related to Pauli exclusion [7]. The long range interaction does

not depend on the momentum or spin and is identical between the intravalley and intervalley

excitons; the exchange interaction, however, depends strongly on the relative spin of the

electron and hole which constitute the exciton. D0 has opposite electron and hole spin,
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while I0 has parallel spins. Thus, the exciton binding in I0 should be reduced relative to

D0 as we observe. To quantify this picture , we carried about first-principles calculations

which confirm that the binding energy of I0 should be ∼ 10 meV higher than that of D0.

For details of this calculation, please see the supplemental material of the publication [28].

For finite charge density (electron or hole side), we might naively expect intervalley

trions to appear at ∼ 10 meV above the dark trions (D−, D+) similar to the relationship

between D0 and I0. Careful analysis shows that this should not be the case, however. As

shown schematically in Figure 4.12(c,d) for the electron and hole trions, respectively, the

intervalley trions are indistinguishable at zero magnetic field from the dark trions discussed

earlier in this chapter. The short range exchange interaction which causes the energy

splitting between D0 and I0 at zero magnetic field is dependent only on the total spin

configuration of the constituent electrons and holes and is not sensitive to the recombination

pathway [7]. Thus, we require out-of-plane magnetic field to lift the valley degeneracy and

distinguish the expected intravalley and intervalley relaxation pathways.

Second, the intervalley exciton has an intervalley configuration and therefore its

g-factor will include a contribution from the valley magnetic moment due to the Berry

curvature. As discussed in Chapter 1, the exciton valley Zeeman g-factor can be estimated

from the net azimuthal magnetic moment of the conduction and valence bands which hold

its constituent electron and hole, respectively. We show the band configuration with non-

zero magnetic field and label the estimated spin, orbital magnetic moment, and Berry

curvature contributions to the total g-factor of each band in Figure 4.16(a). We thus

estimate the I0 g-factor as g ∼ 13. Figure 4.16(b,c) show magnetic-field-dependent PL
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Figure 4.16: (a) Estimation of valley Zeeman splitting g-factor for intervalley exciton I0

predicted by the single-particle model described in Chapter 1. The difference of the exciton
g-factors between the two valleys is the Zeeman-splitting g-factor of the exciton (which is
denoted in the middle of each panel). (b,c) Magnetic-field-dependent and helicity-resolved
PL map in monolayer WSe2 at the charge neutrality point for B = 0− 17 T. The top and
bottom rows show PL with right- and left-handed circular polarized detection, respectively.
The PL lines and their measured g-factors are labeled at the top.

maps in monolayer WSe2 at the CNP (Vg = −0.3 V) for right- and left-circularly polarized

detection, respectively. From this map, we perform a linear fit of the Zeeman shift for each

PL feature and extract the exciton g-factors. The g-factors for the bright exciton (A0 ∼ 4),

spin dark exciton (D0 ∼ 9) and dark exciton phonon replica (D0
p ∼ 9) are in agreement

with our previous observations. Importantly, the experimental g-factor of I0 (g = 12.4) is

very close to our estimated value (g ∼ 13.1).

Defect-Mediated Intervalley Radiative Relaxation

Together, the energy splitting with D0 and the distinct valley Zeeman g-factor

provide strong evidence to support our preliminary identification of I0. However, it raises

the significant question of how I0 can radiatively relax with unmodified energy. Our stated
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expectation is that this relaxation process should only be allowed when the momentum

mismatch between electron and hole is satisfied by a K-point phonon interaction which

would necessarily reduce the observed PL energy. It was previously suggested that this

intervalley exciton recombination may be mediated by defect interaction, as illustrated in

Figure 4.12(b) [91]. We note, however, that the exact mechanism is not clear.

4.4.4 K-point Phonon Replica Photoluminescence

In addition to this defect-mediated relaxation pathway, we observe the K-point

phonon mediated relaxation of I0 which we label as the intervalley phonon replica, I0
p . As

discussed in the previous section, the the phonon replica is related to its parent state by

several characteristics.

First, the phonon replica PL energy should be equal to that of its parent state

minus the energy of the emitted phonon. The neutral phonon replica lies ∼ 26.6 meV

below I0, which is consistent with the energy of the K-point LO chiral phonon with E′

representation [78]. We observe the same ∼ 26.6 meV energy separation between the dark

trions (D−, D+) and the PL features which we preliminarily identified as the intervalley

trion phonon replicas (I−p , I
+
p ). Recall that the intervalley trion and dark trion are indistin-

guishable at zero magnetic field, so we are simply observing three possible decay paths of the

same trion state: D−, D−p , I
−
p arise from the same electron trion depicted in Figure 4.12(c)

and D+, D+
p , I

+
p arise from the same hole trion depicted in Figure 4.12(d).

Second, the phonon replicas should exhibit parallel gate dependence to their parent

state. As shown in Figures 4.13(c-e), I0 and I0
p both appear in a very narrow gate voltage

range immediately surrounding the CNP and exhibit qualitatively parallel intensity change.
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Figure 4.17: Magnetic-field-dependent, helicity-resolved PL map in monolayer WSe2 with
(a,b) electron doping (Vg = +1 V) and (c,d) hole doping (Vg = −1 V) for B = 0 - 17 T.
The top and bottom rows show PL with right- and left-handed circular polarized detection,
respectively. The PL lines and their measured g-factors are labeled at the top.

Similarly, the intervalley trion replicas (I−p , I
+
p ) exhibit parallel gating dependence to the

corresponding dark trions (D−, D+) in PL energy, FWHM, and integrated intensity.

Third, the phonon replicas should exhibit the same valley Zeeman g-factor as their

parent states. Returning to the magnetic-field-dependent PL at the CNP in Figure 4.16(b),

we see that I0
p has nearly identical g-factor (12.5) to its parent state I0 (12.4). We also

measure the magnetic-field-dependent PL for the electron trions (Vg = +1 V) and hole

trions (Vg = −1 V) in Figure 4.17(a,b; c,d), respectively. We extract g-factors for I−p (11.9)

and I+
p (13.7) which are comparable to that for I0 (12.4). Similar to the spin dark trions and

dark trion replicas, we note that the g-factors for the trion states differ noticeably from the

corresponding neutral excitons and therefore the g-factors predicted by the single-particle

picture. This further suggests the significance of Fermi sea interactions at finite charge

density which modify the character of the excitons and/or constituent electronic states.
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Finally, the K-point LO phonons which mediate the intervalley phonon replicas are

chiral, similar to those involved in D0
p, etc. The intervalley replica PL should therefore follow

similar chiral, valley-dependent selection rules. As shown in Figure 4.16(b) and Figure 4.17,

the intervalley phonon replicas (I0, I−p , I
+
p ) all exhibit single-valley, circularly polarized PL

similar to the bright exciton optical selection rules. For completeness, we can derive the

intervalley replica phonon and optical selection rules with similar symmetry-based analysis

to those used in earlier sections.

4.4.5 Intervalley Phonon Replica Selection Rules

As discussed in the previous section, we can consider the electron-phonon-interaction-

mediated conduction band mixing for the intervalley exciton whose hole resides in the K-

valley valence band (Figure 4.12(a)):

∣∣¯̄c′1,↑〉 =
∣∣c̄′1,↑〉+

〈c̄1,↓,Ω| Ĥep

∣∣∣c̄′1,↑〉
Ec̄′1,↑ − Ec̄1,↓ − ~Ω

∣∣c̄′1,↑〉 (4.16)

where
∣∣∣c̄′1,↑〉 is the lower conduction subband with majority spin up in the K ′-valley, |c̄1,↓〉

is the lower conduction subband with majority spin down in the K-valley. Ω represents

an emitted K-point chiral phonon with phonon energy ~Ω. The transition rate for the

intervalley recombination with K-valley hole is thus:

P¯̄c′1,↑→v1,↑ =
2π

~

∣∣∣〈v1,↑, ω,Ω| Ĥel

∣∣¯̄c′1,↑〉∣∣∣2 δ (E¯̄c′1,↑
− Ev1,↑ − ~Ω− ~ω

)
(4.17)

=
2π

~

∣∣∣∣∣∣
〈v1,↑, ω,Ω| Ĥel |c̄1,↓,Ω〉 〈c̄1,↓,Ω| Ĥep

∣∣∣c̄′1,↑〉
Ec̄′1,↑ − Ec̄1,↓ − ~Ω

∣∣∣∣∣∣
2

δ(...) (4.18)

where ω represents an emitted photon with energy ~ω. Using the symmetries of each band

as discussion earlier in this chapter and Chapter 1, we have evaluated the above expression
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and find that it is non-zero (the transition is allowed) only when the emitted phonon has

left-handed chirality (C3(Ω) = −1) and the emitted photon has right-circular polarization

(P̂+). Similarly, the intervalley exciton with hole in the K ′-valley will emit a right-handed

chiral phonon and left-circularly polarized photon (P̂−). Thus, the intervalley replica fol-

lows the optical selection rules of the bright exciton with identical hole. Together, the

gate-dependence, magnetic-field-induced Zeeman shift, and optical selection rules consis-

tent with our analysis and previous theory [83, 84] provide compelling evidence to support

our identication of I0
p and the intervalley trion replicas I−p , I

+
p .

4.4.6 Multipath Radiative Relaxation of Dark Trions

Finally, we consider the detailed relaxation processes for the dark trions (D+, D−).

In this chapter, we have already observed three distinct relaxation pathways of the dark

trion via PL at zero magnetic field - the direct dark trion states (D+, D−), the intraval-

ley phonon replicas (D+
p , D

−
p ), and the intervalley phonon replicas (I+

p , I
−
p ). As discussed

above, however, and illustrated in Figure 4.12(b-d), the dark trion has at least four possible

relaxation pathways. We cannot distinguish the defect-mediated intervalley trion PL (I±)

and the direct dark trion PL (D±) as the two pathways should be energetically degenerate

at zero magnetic field. To resolve this issue, we carefully examine the hole dark trion con-

figuration under strong out-of-plane magnetic field. The magnetic field breaks the exciton /

band valley degeneracy as illustrated in Figure 4.18(a) such that the intravalley and inter-

valley relaxation are no longer energetically degenerate and will instead shift in energy with

their respective valley Zeeman g-factors (∼ 9 and ∼ 13, respectively). Both the direct dark

trion (D+) and defect-mediated intervalley trion (I+) emit linearly polarized PL. Therefore,
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we expect to observe a four-fold splitting of the dark trion (I+
K , D

+
K ;D+

K′ , I
+
K′) to appear in

magneto-PL, which is shown schematically in Figure 4.18(b). We note that the two higher

energy branches originate from dark trions with electrons in the K ′- and K-valley, respec-

tively, as illustrated in Figure 4.18(a). Likewise, the two lower energy branches originate

from dark trions in opposite valleys.

To explore this intravalley and intervalley splitting of the dark exciton, we mea-

sure the hole side PL at high magnetic field. Although the four-fold splitting should be

observable for any PL detection polarization due to the valley-independent linearly polar-

ized emission of I+ and D+, it is nonetheless experimentally preferable to use circularly

polarized detection to simplify the remainder of the spectrum and observe just one branch of

each phonon replica PL. Figure 4.18(c) shows a hole-side gate-dependent PL map (Vg = 0 V

to −5 V) at B = 15 T. We can immediately identify those PL features previously discussed

in this chapter: D+
K , D

+
K′ , D+

p , I
+
p . At intermediate gate voltage, however, we observe an

apparent splitting of D+
K′ and the appearance of a higher energy PL feature which we label

as I+
K . We verify this assignment of I+

K by performing a magnetic-field-dependent measure-

ment at Vg = −5 V, shown in Figure 4.19(a), to observe the magnetic-field-induced splitting

of D+
K′ and I+

K . We extract the PL energy of both features and plot the energy difference,

∆E, in Figure 4.19(b). By performing a linear fit of ∆E, we estimate a relative g-factor for

the trion splitting (g = 2.35). As illustrated in Figure 4.18(a), the magnetic-field-induced

energy splitting between D+
K′ and I+

K is simply the Zeeman splitting of the lower conduc-

tion subband. Thus, we can directly measure the g-factor of that band assuming that the

electron in the dark trion follows the free-particle band energy at finite charge density. As
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Figure 4.18: Splitting of intra- and inter-valley trion emission under a magnetic field. (a,b)
Schematic configurations and energy levels of different trion transitions. The application of
a magnetic field splits the fourfold degenerate trion emission into four distinct emission lines,
labeled as I+

K , D
+
K′ , D

+
K , and I+

K′ from high to low energy. D and I denote intra- and inter-
valley transitions, respectively; the K and K ′ subscripts denote the valley of the electron in
the trion. (c) The left-handed PL map on the hole side of monolayer WSe2 at B = 15 T. The
different transitions and energy separations are denoted. The gate-dependent oscillations
of PL intensity come from Landau quantization.
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Figure 4.19: (a) Log-scale magnetic-field-dependent PL map of positive dark trions
(D+

K′ , I
+
K) for B = 0 to 17 T at Vg = −5 V. (b) Energy separation between the D+

K′

and I+
K as a function of magnetic field. The line is a linear fit from which we extract an

effective g-factor of 2.35± 0.03.

discussed in Chapter 1, the final term in the single-particle valley Zeeman shift expression

is arises from the Berry curvature, which has opposite sign in the K- and K ′-valleys. Thus,

including the spin-magnetic moment component, the total Zeeman of the lower conduction

subband is:

∆E = gbandµBB = 2µBB
(

2 + 2
m0

m∗

)
(4.19)

where gband is the band g-factor, µB is the Bohr magneton, m0 is electron mass, and m∗

is the carrier effective mass. We therefore estimate the electron effective mass in the lower

conduction subband as m∗ = 0.46m0, which is consistent with theoretical predictions [26].

4.4.7 Conclusion

In summary, we examined the complex landscape of intra- and intervalley radiative

relaxation pathways for excitons and trions in monolayer WSe2 using photoluminescence

spectroscopy of high-quality BN-encapsulated gating devices. We observed the PL of the

neutral intervalley exciton and determined that it can relax either through defect-mediated
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or phonon-mediated replica pathways which we label as I0 and I0
p . Using a group-theory-

based symmetry analysis, we derive the optical and phonon selection processes for both

relaxation pathways. We further apply strong out-of-plane magnetic field to measure the

intervalley exciton (replica) g-factors. The magnetic field also breaks the degeneracy of the

intra- and intervalley relaxation pathways for the dark trion - the former is the previously

studied dark trion D+, D−, while the latter is relaxation of the dark trion following the

defect-mediated pathway which we established for I0. We thus demonstrate four distinct

radiative relaxation pathways of the dark trion: D±, I±, the intravalley Γ-point chiral

phonon replica (D±p ) and the K-point intervalley chiral phonon replica (I±p ).

Totally, we demonstrated in this chapter a more complete experimental and the-

oretical picture of the complex excitonic landscape in monolayer WSe2 at the charge neu-

trality point and under moderate electron (hole) doping.
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Chapter 5

Interlayer Phonons in Transition

Metal Dichalcogenides

To build a more complete understanding of the 2D materials and how they can

be arranged to produce desirable properties, it is important to investigate the interlayer

coupling and effects of layer-by-layer stacking in addition to the properties of each monolayer

material itself. In this section, we directly study the interlayer coupling in two TMD material

homostructures - NbSe2 and MoS2 - through their interlayer phonons via ultralow-frequency

Raman Spectroscopy. We examine the interlayer phonon spectra in 2H-NbSe2 and two

stacking configurations (3R and 2H) of MoS2 from the monolayer to bulk crystal from which

we determine the stacking-dependent elastic properties. We further develop an analytical

model based on bond polarizability to calculate the interlayer phonon Raman intensites.

Together with our experimental results, we demonstrate an efficient method to efficiently

identify the thickness and stacking configuration of 2D materials via Raman spectroscopy.
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5.1 Stacking-Dependent Interlayer Phonons in 3R- and 2H-

MoS2

Besides graphene, molybdenum disulfide (MoS2) is a likely the most studied 2D

material. Monolayer MoS2 was successfully isolated only a short time after graphene and has

since become a backbone of 2D semiconductor research. In monolayer form, MoS2 exhibits

a non-centrosymmetric trigonal prismatic (1H) structure with alternating layers of sulfur

and molybdenum atoms as illustrated in Figure 5.1(a). The lack of inversion symmetry,

coupled with intrinsic 2D quantum confinement and strong spin-orbit coupling, produces

a remarkable array of electronic properties such as its direct band-gap, room-temperature

excitonic effects [92, 93], spin-valley coupling [94], and strong optical harmonic generation

[95–97]. Upon adding a second layer, however, MoS2 commonly adopts a hexagonal 2H con-

figuration Figure 5.1(c) in which adjacent layers are inversion partners. For even-layered

systems, this results in a restoration of inversion symmetry which suppresses the most in-

teresting valleytronic [94] and nonlinear optical properties [95, 96]. Odd-layered systems

lack inversion symmetry as a whole; however, alternating layers are still inversion symmet-

ric. While those properties which require symmetry breaking can remerge in odd-layered

samples, alternating layers contribute destructively [95,97]
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Figure 5.1: The crystalline structure of monolayer MoS2, few-layer 3R- and 2H-MoS2 poly-
types. The top (bottom) column shows the top (side) view of the crystals. The dashed
boxes highlight the interlayer atomic alignment. 3R-MoS2 has the non-centrosymmetric
point group C3v for all layer numbers. 2H-MoS2 has the D3h (D3d) point group for odd
(even) layer numbers.

5.1.1 Rhombohedral (3R) MoS2

MoS2 exhibits a second stable stacking order which remains non-centrosymmetric

for arbitrary layer number. As shown in Figure 5.1(b), adjacent layers are only translated

slightly with regard to their neighbors in the rhombohedral 3R stacking order. Thus, 3R-

MoS2 lacks inversion symmetry for all layer numbers and preserves the desirable valleytronic

and nonlinear optical properties into the bulk limit [97–100]. Theory predicts that the 3R

crystal may also host distinct inter-layer hybridized excitonic states [101]. Notably, 3R-

MoS2 is naturally occurring and constitutes ∼ 1% of naturally formed MoS2 crystals.
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Although 3R-MoS2 has many technologically attractive properties which avoid

the practical requirement of monolayer fabrication, we lack an efficient, non-destructive

method with which to characterize the thickness and stacking configuration of MoS2 crystals.

Standard characterization methods such as electron microscopy, x-ray or electron diffraction,

and scanning probe microscopy cannot simultaneously determine the thickness and stacking

order. Further, these methods are practically difficult to apply to large scale samples and

require significant initial investment and setup. Thus, we turn to Raman spectroscopy as a

rapid, non-destructive, and comparatively simple tool to effectively characterize multilayer

2D material samples. The in-plane phonon modes have been used to identify the thickness

of few-layer graphene samples, for example, but these spectral features evolve subtly with

increasing thickness and quickly converge towards a “bulk” limit beyond ∼5L. Thus, Raman

spectroscopy of the high-energy in-plane phonons is not an ideal tool for characterizing

multilayer structures.

5.1.2 Interlayer Phonons

In contrast, the behavior of the interlayer phonons – collective layer-by-layer vibra-

tions of the multilayered crystal – is largely determined by the crystal thickness and detailed

stacking configuration. If we consider the 2D layers as approximately rigid sheets, the sys-

tem should exhibit vibrations which involve either in-plane or out-of-plane displacement.

These are the interlayer shear and breathing phonon modes, respectively. The multilayer

structure can be considered a system of nearest-neighbor coupled oscillators where the cou-

pling arises entirely from the weak van der Waals interaction whose normal vibration modes

are highly sensitive to the number of layers, interlayer coupling geometry, and surface en-
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vironment (e.g., adsorbates). By virtue of the weak coupling, the interlayer phonons have

exceptionally low energy (∼ 0.5 − 5 meV) as compared to the intralayer phonons com-

posed of strong covalent interatomic bonds (∼ 20 − 400 meV). To measure the interlayer

vibrations, we must use specialized ultralow-frequency Raman spectroscopy. This technique

is well-established and has been widely used to characterize the interlayer phonons and

associated properties in a variety of 2D materials [102–111].

In this section, we conduct ultralow-frequency Raman spectroscopy on 2H and 3R

MoS2 sample with varied thickness to study the thickness- and stacking-order-dependence

of the interlayer phonons and thus interlayer coupling. From these spectra, we derive the

material elastic properties (shear, bulk moduli) and develop a complementary analytical

model of the low-frequency Raman spectra.

5.1.3 Methodology

We fabricated both 2H- and 3R-MoS2 flakes with layer number N = 1L–13L by

mechanical exfoliation of bulk crystals onto SiO2(285 nm)/Si substrates. We grew bulk

3R-MoS2 crystals by chemical vapor transport using the method detailed by J. Shi et al.

[99]. Bulk natural We used natural bulk 2H crystals (HQ Graphene). We measured all

Raman spectra shown using a commercial LabRam HR Raman microscope (Horiba) in a

backscattering geometry. With this system, we are able to resolve Raman spectra to within

∼ 5 cm−1 of the excitation laser energy with spectral resolution of 0.5 cm−1. For all mea-

surements, we use a 532-nm continuous laser with incident on-sample power ≤ 1 mW and

spot diameter ∼ 1 µm. In addition to unpolarized Raman spectra, we measure both co-

(VV) and cross-linear-polarized (HV) Raman spectra. We vary the linear polarization of the
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incident laser using a variable-rotation half-wave plate and detect only scattered light with

vertical polarization using a fixed linear polarizer. We note that the shear modes (which fea-

ture perpendicular in-plane displacements) are energetically degenerate due to the in-plane

isotropy of MoS2 but are only Raman active for cross-polarized and co-polarized geome-

tries, respectively. Thus, the shear mode appears equally in both polarization schemes. The

breathing mode, however, is Raman active only in the co-polarized scheme.

5.1.4 Experimental Low-Frequency Raman Spectra

We first examine the low-frequency Raman spectra of bilayer 2H- and 3R-MoS2.

Our experimental results are shown in Figure 5.2(a, c) for each stacking order, respectively.

In both, we identify two low-frequency Raman features which we assign to the doubly de-

generate interlayer shear (S) mode and the breathing (B) mode. For ease of comparison, we

normalize the Raman spectra to the shear mode height. The shear features are remarkably

similar for both stacking configurations (ω = 22 cm−1). In contrast, the 3R breathing mode

(37 cm−1) is lower in energy than the 2H breathing mode (40 cm−1). The interlayer phonon

frequency serves as a measure of interlayer coupling strength, so this difference in breathing

mode energy suggests that 3R layers may be less strongly bound than 2H. The relative

intensities of the shear and breathing modes also differ between the stacking configurations

– the 2H breathing mode has significantly lower relative intensity (∼ 25%) as compared to

3R (∼ 70%).

For comparison, we calculated unpolarized low-frequency Raman spectra for both

stacking orders via density functional theory (DFT). The calculated spectra are plotted
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Figure 5.2: Experimental (a, c) and calculated (b, d) Raman spectra of the interlayer
shear (S) and breathing (B) modes for 2H- (a, b) and 3R- (c, d) MoS2 bilayer. The
theoretical spectra are obtained by first-principle calculations based on density functional
theory (DFT); they are presented as Gaussian functions of the same line width as the
experimental spectra. The dashed lines highlight the different frequency separation between
the shear and breathing modes in the 2H and 3R polytypes.

in Figure 5.2(b, d). For details of this calculation, see the supplementary material [112].

Although the absolute frequency of each feature is shifted, the calculated spectra nonetheless

reproduce the two primary experimental results. The frequency separation between the

shear and breathing modes is 3 cm−1 greater in 3R as compared to 2H, which is identical

to our experimental findings. Further, the relative intensities of the breathing and shear

modes are in good agreement with experiment. Thus, we have demonstrated a quantitative

distinction between the low frequency Raman spectra of 2H- and 3R-MoS2.
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Figure 5.3: (a)–(d) Parallel-polarized (VV) and cross-polarized (HV) Raman spectra of
the shear modes (S; red dots) and breathing modes (B; blue squares) for 3R-MoS2 (solid
symbols) and 2H-MoS2 (open symbols) with layer number N = 1L − 13L. The breathing
modes appear only in the VV geometry, whereas the shear modes appear in both the VV
and HV geometries. We have subtracted the broad Raman background and plot the spectra
in the logarithmic scale to display the weak interlayer modes.
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Layer-Dependent Low-Frequency Raman Spectra

Expanding on this investigation of bilayer MoS2, we examine the low-frequency

Raman spectra for thicker 2H and 3R samples. Figure 5.3 shows log-scaled spectra with

parallel polarization (VV) and cross-polarization (HV) for 3R and 2H samples with layer

number 2L – 13L and bulk. For clarity, we systematically subtracted a broad Raman

background from each spectrum to highlight the interlayer Raman features. As in a classical

model of nearest-neighbor coupled oscillators, a system of N masses will host N −1 normal

modes. Thus, for an N -layered sample there are N − 1 breathing modes and N − 1 doubly

degenerate shear modes due to the in-plane isotropy of MoS2. We note, however, that not

all interlayer vibration modes are observable in our experiment. We discuss the detailed

Raman activity of the interlayer phonons later in this section. Nonetheless, we observe up

to three shear mode branches (labeled in red) and four breathing mode branches (labeled

in blue) in thick MoS2 samples. The observed breathing modes of both stacking orders

exhibit qualitatively similar behavior – each breathing branch redshifts with increasing

layer number. In contrast, the observed shear modes of 2H and 3R crystals exhibit distinct

behavior. To isolate the shear mode features, we measure the cross-polarized (HV) Raman

spectra where the breathing mode features are suppressed. The 3R shear mode features

redshift with increasing layer number, similar to the breathing modes, whereas the 2H

shear modes exhibit qualitatively opposite behavior and blueshift towards a bulk limit of

∼31 cm−1.
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5.1.5 Frequency Analysis via Linear Chain Model

An N -layer system of rigid vdW layers is well-described by the classical model of

coupled oscillators – a linear chain model. As in literature [102], we assume that each layer

is identical and interacts only with its nearest neighbors through an identical restoring force.

Thus, the N -layer system will host N−1 normal vibration modes for each degree of freedom.

In this case of rigid layers, one out-of-plane breathing vibration and two degenerate in-plane

shear vibrations with mode frequencies given by:

ω
(j)
N = ω0cos(

jπ

2N
) (5.1)

where N is the layer number, j = 1, 2, 3, . . . N − 1 is the branch index, and ω0 is the

frequency of the highest shear (breathing) branch in the bulk limit. N is known, thus ω0

and j are the free parameters with which to fit our data.

For quantitative analysis, we fit each spectrum in Figure 5.3 with a series of

Lorentzian functions and extract the center frequency of each observed Raman feature.

The extracted frequencies for 3R- and 2H-MoS2 are plotted in Figure 5.4 as solid and open

shapes, respectively. We fit the complete set of shear modes for each stacking order sepa-

rately to obtain a single shear bulk frequency, ω0, for each stacking configuration. The fitted

shear mode branches are plotted as red lines. Solid and dashed lines indicate shear mode

branches which are observed or are unseen, respectively. As suggested by previous research

and our symmetry analysis of interlayer Raman modes in the 2H crystal, we find the best fit

where alternating shear branches are not observable with our experimental configuration.

We note that similar symmetry-group-based analysis is not effective for 3R-MoS2 due to its

reduced symmetry. We discuss two alternative approaches to predict the Raman activity
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Figure 5.4: Frequencies of the observed shear modes (S; red) and breathing modes (B;
blue) in Figure 5.3 as a function of MoS2 layer number. The solid (open) symbols are
experimental data for 3R- (2H-) MoS2 . The blue (red) lines are the predicted frequencies
of the breathing (shear) modes by the linear chain model, as described in the text. The
solid (dashed) lines denote the Raman active (inactive) branches. The 2H breathing modes
are consistently higher in frequency than the 3R breathing modes, whereas the shear modes
have almost the same frequencies for both polytypes.

of the interlayer phonons later in this section. Regardless, the 3R shear modes appear to

follow the trend of alternating Raman activity in successive shear branches.

As alluded to in our qualitative discussion above, we find that the most intense

shear mode feature in 2H is the highest-frequency branch whereas the lowest-frequency

branch is most intense in 3R. Thus, the shear mode activity in the two stacking orders is

distinctly opposite – in 2H the branches j = N − 1, N − 3, N − 5, . . . are Raman active

whereas in 3R the branches j = 1, 3, 5, . . . are Raman active. Despite the contrasting

behavior evident in the Raman activity of the shear modes, we find remarkable similarity
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between the fitted ω0,S values in 3R (31.85 cm−1) and 2H (32.85 cm−1) stacking orders. In

bulk 2H-MoS2, the highest-frequency shear mode is directly observed with frequency 32.9

cm−1 which is nearly identical to our fitted value.

5.1.6 Calculation of Interlayer Force Constant and Elastic Moduli

The interlayer phonon frequencies are intimately tied to the interlayer force con-

stant and related mechanical properties like the elastic moduli. Thus, we may estimate

relevant mechanical properties from our low-frequency Raman results. The interlayer force

constant, K, is related to the j = 1 branch bulk phonon frequency, ω0, by:

K = (ω0πc)
2µ (5.2)

where c is the speed of light in vacuum and µ = 3.068 · 10−6 kg-m−2 is the mass per unit

area of the MoS2 monolayer [102,103]. Using the fitted bulk shear frequencies, ω0,S , we find

the shear interlayer force constants for 3R (Kx = 2.76 ·1019 Nm−3) and 2H (Kx = 2.94 ·1019

N-m−3). In the same way, we estimate the out-of-plane interlayer force constants for 3R

(Kz = 7.89 · 1019 N-m−3) and 2H (Kz = 8.98 · 1019 N-m−3). The elastic force modulus C is

further related to the relevant interlayer force constant, K:

C = Kt (5.3)

The interlayer distance, t, is slightly different for the 3R (6.123 Å) and 2H (6.148 Å). We

thus estimate the elastic moduli which correspond to in-plane (shear modulus) and out-of-

plane compression (bulk modulus). The calculated elastic moduli, along with the interlayer

force constants and bulk interlayer phonon frequencies are summarized in Table 5.1. The

mechanical properties of 2H MoS2 have been studied previously and are in good agreement
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Table 5.1: Elastic parameters of 2H- and 3R-MoS2 calculated from the interlayer phonon
frequencies.

Elastic parameters 3R-MoS2 2H-MoS2

Shear properties ω0,S (cm−1) 31.85 32.85

Kx (1019 Nm−3) 2.76 2.94

C44 (GPa) 16.90 18.08

Compressive properties ω0,B (cm−1) 53.85 87.40

Kz (1019 Nm−3) 7.89 8.98

C33 (GPa) 48.32 55.19

with our results [103,104]. We note, as well, that the 14% reduction in compressive modulus

in 3R MoS2 relative to the 2H stacking is in line with recent theoretical predictions [113].

5.1.7 Group-Theory Analysis

Our first approach to understand the Raman activity of each interlayer phonon

mode is to examine the symmetry of the crystal and of each vibration [17]. In this way,

we can identify the Raman active interlayer phonon modes at the Brillouin zone center (Γ)

which may be detected in our experimental backscattering measurement geometry. From

the point group of the crystal (D3d for even-layered 2H-MoS2; D3h for odd-layered), we can

determine the vibrational representation expressed as a sum of irreducible representations:

ΓD3d
=

3N

2
(Eg + Eu +A1g +A2u) (5.4)

ΓD3h
=

3N + 1

2
(E′ +A′′2) +

3N − 1

2
(E′′ +A′1) (5.5)

which indicate the representation of allowed vibrations in the crystal. Consulting the char-

acter table for even (odd) layers, we find that only shear modes with Eg (E′) representation

and breathing modes with A1g (A′1) representation are Raman active and detectable in
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our measurement configuration. We examine the symmetry of each interlayer vibrational

mode to determine the representation. Thus, we find that the shear modes with odd branch

number (j = 1, 3, 5, ... where j = 1 is the highest frequency mode) are observable for all

layer numbers and breathing modes with odd (even) branch number are observable for even

(odd) layer numbers. This analysis qualitatively explains the alternating Raman activity

observed for 2H-MoS2 in Figure 5.4. The 3R-MoS2 crystal, however, has reduced symmetry

for which this group-theory-based approach is not effective.

5.1.8 Qualitative Description of Raman Activity

Although the standard group-theory-based approach described above fails for the

3R stacking configuration, we can directly examine the symmetry of each interlayer phonon

mode to gain a qualitative understanding of its Raman tensor elements and thus the Raman

activity. The Raman intensity of a phonon mode, k, is proportional to: [114,115]

Ik =
(nk + 1)

ωk
|êi · R̃k · êsT |2 (5.6)

where ωk is the phonon frequency, nk is the phonon population from the Bose-Einstein

distribution, êi and ês are the polarization unit vectors of the incident and scattered light,

respectively, and R̃k is the Raman tensor. Classically, R̃k is given by:

R̃k =
∂α̃

∂Qk
|Qk=0∆Qk (5.7)

where α̃ is the polarizability tensor, Qk is the normal coordinate of the vibration mode,

and ∂α̃/∂Qk is the derivative of the polarizability tensor at the equilibrium lattice position

(Qk = 0). Thus, the change in polarizability of the lattice between the positive (Q > 0)
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and negative (Q < 0) normal displacements of a vibration is related to the magnitude of

the Raman tensor element.

Figure 5.5(a) illustrates the interlayer atomic configurations of the shear modes in

3L MoS2 (S1
3 and S2

3) at positive and negative normal displacement, Q. Immediately, we

see that the 3R and 2H stacking configurations have distinct relative layer position during

the vibration. In 3R-MoS2, the highest frequency shear mode (S1
3) exhibits identical total

layer displacement for Q > 0 and Q < 0. The differential polarizability ∂α̃/∂Qk is thus

zero which indicates that the vibration mode is Raman inactive. In 2H-MoS2, however,

the same S1
3 mode exhibits distinct total layer displacement under normal vibration. It

therefore has a non-zero R̃k and is Raman active. For the lower frequency shear mode (S2
3),

our qualitative analysis indicates opposite activity - S2
3 is Raman active in 3R-MoS2 and

Raman inactive in 2H-MoS2. Similar analysis of Raman activity is applicable to interlayer

vibrations in other vdW materials (e.g., graphene). [105,116]

5.1.9 Quantitative Bond Polarizability Model

We can quantify the above qualitative analysis using the so-called bond polarizabil-

ity model which allows general calculation of the Raman tensor elements given knowledge

of the relevant bond strengths and geometries [114, 115]. The model considers the distor-

tion (change in polarizability) of the interlayer bonds by the interlayer vibration modes.

As alluded to in Equation 5.7, the Raman tensor elements are related to the change in

bond polarizability. In a multi-bond system, each Raman tensor element is the sum of all

relevant bond distortions. In relation to our experiment, the diagonal tensor element Rxx
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Figure 5.5: (a) Layer displacement of the two shear modes in 3R- and 2H-MoS2 trilayers. By
comparing the atomic configuration at opposite normal displacements (Q > 0 and Q < 0)
near the equilibrium position (Q = 0), we can deduce whether the differential polarizability
(∂α̃/∂Q) (hence, the Raman tensor) is zero or finite. (b) and (c) The experimental and
simulated cross-polarized Raman shear modes for trilayer 2H- and 3R-MoS2 . In the simu-
lation, the shear-mode frequency is predicted by the linear chain model (highlighted by the
yellow bars) and the relative mode intensity is determined by the bond polarizability model.
The high and low shear modes appear exclusively in the 2H and 3R trilayer, respectively.
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is responsible for the parallel-polarized Raman response and the off-diagonal element Rxy

is responsible for the cross-polarized Raman response. For a shear mode k with x-direction

layer displacement in an N -layer structure, we can express the Raman tensor elements Rµν

(µ, ν = x, y, z) as:

Rµν(k) =
N−1∑
l=1

α′l(xl − xl+1) (5.8)

where l is the layer index, xl is the layer displacement of the layer from the equilibrium

position, and αl is the µν-element of the polarizability tensor of the interlayer bond between

adjacent layers. α′l = ∂αl/∂xl denotes the derivative of αl with respect to xl. For shear

vibration SjN of an N -layered system, the layer displacement xl is estimated as:

xl ∝ cos
[

(N − j)(2l − 1)

2N
π

]
(5.9)

We note that the 3R and 2H stacking configurations have the same relative layer

displacements for each vibration mode, but the interlayer bond geometries are distinct. The

interlayer bond structure of 3R-MoS2 is shown schematically in Figure 5.6(a). Each of the

layers have the same orientation and identical interlayer bonds relative to their neighbors -

α′l is the same for all layers. From Equation 5.8, then, the 3R-MoS2 Raman tensor elements

for shear vibration depend only on the displacement of the top and bottom layers.

Rµν(k) = α′R [(x1 − x2) + (x2 − x3) + ...+ (xN−1 − xN )] = α′R(x1 − xN ) (5.10)

In contrast, adjacent layers in 2H-MoS2 have opposite orientation as illustrated in Fig-

ure 5.6(b). The interlayer bonds thus have alternating lateral orientation for neighboring

layer pairs such that α′l = −α′l+1. If we define the differential bond polarizability of the
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Figure 5.6: Schematic representation of interlayer bonds for (a) 3R- and (b) 2H-MoS2 .
The interlayer bonds have the same lateral orientation for 3R stacking, but alternate lateral
orientation for 2H stacking, resulting in their distinct shear-mode Raman response. The
blue/red dashed lines highlight the interactions between adjacent layers.

bottom layer pair as α′l=1 = α′H , the general bond polarizability for layers l and l+1 is thus

(−1)l+1α′H . From Equation 5.8, the 2H-MoS2 Raman tensor elements for shear vibration:

Rµν(k) =
N−1∑
l=1

(−1)l+1α′H(xl − xl+1) = α′H [(x1 − x2)− (x2 − x3) + ...(xN−1 − xN )] (5.11)

Finally, we can combine the three above equations with Equation 5.6 to calcu-

late the Raman intensity for each shear vibration mode. We thus find general analytic

expressions for the Raman intensities of the 3R and 2H shear modes, k:

I3R(k) ∝ nk + 1

ωk
|α′R|2sin2

[
(N − j)(N − 1)

2N
π

] [
1− (−1)N−j

]
(5.12)

I2H(k) ∝ nk + 1

ωk
|α′H |2sin2

(
N − j

2N
π

)
tan2

(
N − j

2N
π

)[
1− (−1)j

]
(5.13)
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We note that in Equation 5.12, the final term 1 − (−1)N−j is zero when N − j is even

leading to non-zero Raman intensity of the shear modes in 3R-MoS2 for branch indices

j = N − 1, N − 3, N − 5, .... Similarly, the final term in Equation 5.13 is zero when j is

even. Thus, we expect non-zero Raman intensity of the shear modes in 2H-MoS2 for branch

indices j = 1, 3, 5, .... Both predictions are accurately reflected in our experimental data as

shown in Figure 5.4.

Quantitative Calculation of Relative Raman Intensity

Beyond qualitatively accounting for the observed activity of the interlayer phonon

modes, Equation 5.12 and Equation 5.13 allow us to quantitatively model the Raman inten-

sity of shear vibrations for each layer number and stacking order. To simulate the complete

low-frequency Raman spectra, we use the linear chain model(Equation 5.1) to determine

the mode frequencies and the bond polarizability model to determine the relative Raman

intensity of each phonon mode. Each Raman mode contributes to the total spectrum as a

Gaussian function whose width is matched to the corresponding experimental feature. For

direct comparison, we plot the experimental and calculated cross-polarized Raman spectra

for 2H- and 3R-MoS2 in Figure 5.5 and Figure 5.7. To illustrate the good agreement with

experiment, we show data for samples with 3L, 5L, and 9L thickness. In each case, the

experimental relative Raman intensities are accurately reflected in the model calculation.

We can further extend the model calculation to include the out-of-plane breathing

modes by redefining the differential polarizaility as that of the out-of-plane bonding (α′l =

∂αl/∂zl) where zl is the vertical displacement of layer l during the course of vibration. The
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Figure 5.7: Comparison of the cross-polarized (HV) experimental and simulated shear-mode
Raman spectra for 5L and 9L MoS2 in both 3R and 2H phases. In the simulation, the shear-
mode frequency is predicted by the linear chain model (highlighted by the yellow bars) and
the relative mode intensity is determined by the bond polarizability model.
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Figure 5.8: (a) The experimental parallel-polarized spectrum of 10L 3R MoS2 . The four
major peaks are the breathing modes. (b) The simulated breathing-mode spectrum for 10L
MoS2 by the linear chain model and the bond polarizability model. The yellow (blue) bars
denote the Raman active (inactive) breathing modes.

out-of-plane bond symmetry is identical for both 2H- and 3R-MoS2 as it does not depend

on the lateral layer orientation. Thus, α′l is the same for all layer pairs for both stacking

orders. This is similar to the symmetry of α′l for the 3R shear modes, so the breathing mode

Raman intensity expression follows the form of the 3R shear modes with modified value of

α′l.

IZ(k) ∝ nk + 1

ωk
|α′Z |2sin2

[
(N − j)(N − 1)

2N
π

] [
1− (−1)N−j

]
(5.14)

For clarity, the magnitude of the out-of-plane bond polarizability α′Z is an empirical material

property that may be different for different stacking orders. We compare the experimental

and model parallel-polarized Raman spectra for 10L 2H- and 3R-MoS2 in Figure 5.8. As

with the shear modes, we find that the model quantitatively reproduces the experimental

spectrum.
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5.1.10 Conclusion

In summary, we conducted a comprehensive experimental investigation of the in-

terlayer phonons in 3R- and 2H-MoS2 via ultralow-frequency Raman spectroscopy. We

measured the layered dependent Raman spectra and used a linear chain model to extract

the interlayer coupling constants and elastic moduli of each stacking order. We find that the

in-plane coefficients are similar, but the 2H-MoS2 is ∼ 14% stiffer to out-of-plane compres-

sion than 3R-MoS2. We next examine the Raman activity of both crystals via symmetry

analysis and implement a bond-polarizability-based model to calculate the Raman tensor el-

ements and thus Raman intensities of the interlayer phonons. Together, our results provide

experimental comparison of the mechanical properties of the 3R and 2H stacking config-

urations in MoS2 and a simple experimental and numerical approach to simultaneously

characterize the thickness and stacking order of 2D materials with layer number . 20.

5.2 Interlayer Breathing and Shear Modes in NbSe2 Atomic

Layers

Like MoS2, Niobium diselenide (NbSe2) is another transition metal dichalcogenide

(TMD). In contrast to semiconducting MoS2, however, NbSe2 is a conductor which under-

goes two electronic phase transitions as it is cooled to low temperature. In the bulk, NbSe2

undergoes a charge-density-wave (CDW) transition at 33.5 K and becomes superconduct-

ing at 7.2 K. [117,118] Our motivation to study the interlayer interactions in this material

stems from the distinct thickness dependence of these phase transitions [119–121], as well

as the emergence of new properties (e.g., Ising superconductivity [121]) in the monolayer
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limit. Counter-intuitively, the CDW transition is enhanced with decreasing thickness but

the superconducting phase appears to be suppressed. Such a significant layer-dependence

of the electronic properties suggests that interlayer interactions play a crucial role in the

electronic phase transitions in this material.

In this section, we conduct a similar layer-dependent measurement to the previous

section of the interlayer phonons in 2H-NbSe2 via ultralow-frequency Raman spectroscopy.

Using a linear chain model, we extract the interlayer coupling coefficient and force constants

for in-plane and out-of-plane displacement. We under the observed Raman activity of shear

and breathing modes using group theory, qualitative symmetry analysis, and comparison

to DFT-calculated interlayer phonon frequencies.

5.2.1 Methodology

NbSe2 samples with layer number N = 1 − 15L were fabricated by mechanical

exfoliation of high-quality bulk NbSe2 crystals onto polydimethylsiloxane (PDMS) stamps

and then transferred onto clean SiO2/Si substrates [120]. Sample thickness was preliminarily

determined via optical contrast and confirmed by the interlayer phonon frequency analysis

presented below. NbSe2 is susceptible to degradation with exposure to ambient conditions.

To minimize this degradation, we capped some samples with thick BN flakes (10−20 nm) and

stored all samples in vacuum aside from short inter-chamber transfer time. We measured

all Raman spectra shown using a commercial LabRam HR Raman microscope (Horiba)

in a backscattering geometry. With this system, we are able to resolve Raman spectra to

within ∼ 5 cm−1 of the excitation laser energy with spectral resolution of 0.5 cm−1. For all

measurements, we use a 532-nm continuous laser with incident on-sample power ≤ 5 mW
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and spot diameter ∼ 2 µm. Through measurement, the samples were contained within a

helium-cooled optical cryostat with controllable temperature T = 8− 300 K.

5.2.2 Crystal Structure of NbSe2

We first analyze the crystal structures of 2H-NbSe2 using the convention by Wilson

and Yaffe [122]. We present similar analysis of 2H-MoS2, for comparison. As with MoS2,

each NbSe2 monolayer is composed of three layers (chalcogen, transition metal, chalcogen),

the relative arrangement of which can be specified. In this convention, the relative positions

of the chalcogen layers are denoted by upper case characters (A,B,C) where “B” indicates

linear translation by one unit length relative to “A” and “C” indicates linear translation

of two unit lengths. Relative positions of the middle transition metal layer is similarly

represented by lower case characters (a,b,c). Thus, the monolayer structure AbA indicates

that the chalcogen layers are aligned and the transition metal layer is offset by one unit

length. Figure 5.9 shows a schematic of the crystal structures of bilayer MoS2 (b) and

NbSe2. The bilayer MoS2 has structure AbA BaB (2Hc), while bilayer NbSe2 has structure

AcA BcB (2Ha). Thus, the crystal structures differ only in the relative placement of the

transition metal layer.

Despite the differing crystal structure, symmetry analysis shows that bilayer 2H-

NbSe2 and 2H-MoS2 belong to the same symmetry group. Indeed, the crystals share sym-

metry group for all thicknesses: D3d with inversion symmetry for even layer numbers and

D3h with planar mirror symmetry for odd layer numbers.
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Figure 5.9: Comparison of the crystal structure of bilayer NbSe2 and MoS2. (a) The
schematic of 2Ha-NbSe2, with both top and side views. The atom location is specified by
a, b, c (or A, B, C) points of a triangular lattice, as denoted in the top view. The 2Ha
structure is thus (AcA BcB), where the upper and lower cases denote the chalcogen and
transition metal atoms, respectively. (b) The schematic 2Hc structure of MoS2.

Interlayer Phonons in NbSe2

Figure 5.10(b) shows representative Raman spectra of bilayer (2L) and monolayer

(1L) NbSe2 in the ultralow frequency range 10−50 cm−1 (1−12 meV). Both spectra display

a broad feature at the lowest energies which we attribute to Rayleigh scattering, but the

bilayer exhibits two additional peak-like features. We identify these as the doubly degenerate

interlayer shear mode (19.5 cm−1) and interlayer breathing mode (33 cm−1), labeled as S

and B, respectively. The inset shows a schematic side-view of 2L NbSe2 which illustrates

the motion of the shear and breathing modes. To emphasize the interlayer phonon modes,

we systematically subtract the broad background in each Raman spectrum as illustrated

by the dashed line in Figure 5.10(b).
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Figure 5.10: (a) Optical image of an exfoliated NbSe2 flake on a SiO2/Si substrate. The
sample is partially covered by a boron nitride (BN) flake. The 2L and 3L NbSe2 regions
and the BN-capped region are indicated by red, yellow, and black dashed lines, respectively.
(b) Low-frequency Raman spectra of 1L and 2L uncapped NbSe2. The dashed baseline is
subtracted from the 2L spectrum to highlight the weak breathing mode (B). The inset
displays schematic interlayer shear (S) and breathing (B) modes. (d) Comparison of the
shear mode of 2L NbSe2 with and without BN-capping.

5.2.3 Broadening of Interlayer Phonon Raman from Sample Degradation

As mentioned in Section 5.2.1, NbSe2 is susceptible to environmental degradation

under ambient conditions. To examine the influence of atmosphere exposure to the interlayer

coupling in NbSe2, we measure the shear mode in two bilayer NbSe2 flakes, one of which is

capped with a protective BN layer immediately after exfoliation. The shear mode Raman

features from both flakes are shown in Figure 5.10(c). We fit both features with Lorentzian

functions and find that, although the center frequencies are nearly identical, the shear mode

of the exposed flake has a larger full width at half maximum (2.7 cm−1) as compared to

the flake capped with BN (1.6 cm−1). We attribute this spectral broadening of the exposed

flake to significant exposure-induced defect formation. While BN is helpful to maintain

crystal quality and thus spectral resolution of the interlayer shear mode, we note that BN

capping and encapsulation have been shown to suppress the breathing mode [106], likely

due to damping effects. There is thus competition in experimental design between the desire
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to preserve intrinsic properties via encapsulation and the need for strong breathing mode

Raman features which are sufficiently observable given experimental considerations such

as excitation intensity, detector efficiency, and noise. For this reason, we use both capped

and bare NbSe2 samples for this study. We note that the magnitude of this damping effect

may be reduced through use of less massive capping material (e.g., thinner BN flakes), but

further study is necessary.

Layer-dependent Interlayer Raman Spectra

Figure 5.11(a) shows low frequency Raman spectra for uncapped NbSe2 samples

with thickness from 2L−15L and bulk, measured at room temperature. We use bare NbSe2

flakes to avoid suppression of the breathing modes from BN capping. The broad background

feature shown in Figure 5.10(b) is systematically subtracted from each spectrum to better

highlight the shear and breathing modes. Immediately, we see contrasting energy shift of

the observed breathing and shear modes with increasing layer number. The shear mode

blueshifts and converges towards the bulk frequency at 28 cm−1 whereas the breathing mode

dramatically red shifts with increasingly layer number such that its central frequency falls

below our minimum detection energy and is not observed in the bulk.

Our thickness-dependent data is well-described by a classical model of nearest-

neighbor coupled oscillators – a so-called linear chain model. In such a model, a system of

N layers hosts N − 1 normal modes with frequencies:

ω
(n)
N = ω0cos(

nπ

2N
) (5.15)

where n = 1, 2, . . . , N − 1 is the normal mode index order from high to low frequency and
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ω0 is the highest frequency (n = 1) bulk mode at the Brillouin zone center (Γ-point). As

noted above, we directly observe one shear mode in bulk NbSe2 at ω = 28 cm−1. We do not

observe a breathing mode in bulk NbSe2. We note, however, that the shear mode observed in

the bulk is not necessarily the bulk shear mode ω0. We resolve this issue by again examining

the bilayer shear (breathing) features – the bilayer hosts only one vibrational branch and

thus we can unambiguously identify the observed interlayer mode. From Equation 5.15 with

N = 2 , the bulk frequency ω0 is related to the mode frequency:

ω
(1)
2 = ω0cos(π/4)→ ω0 =

√
2ω

(1)
2 (5.16)

We thus estimate the n = 1 bulk shear (ω0,S) and breathing (ω0,B) frequencies as

27.6 cm−1 and 46.7 cm−1, respectively. The estimated frequency, ω0,S , is nearly identical to

that of the observed bulk shear mode. This suggests that the observed bulk shear feature

belongs to the n = 1 branch and preliminarily confirms the above estimation of ω0,S . Using

the the bulk phonon frequencies we calculate the NbSe2 interlayer force constants. We

estimate kxy = 27 · 1018 N-m−3 and kz = 78 · 1018 N-m−3 for in-plane and out-of-plane

motion, respectively. Remarkably, our results for metallic NbSe2 are similar to interlayer

force constants previously reported in semiconducting 2H-MoS2 (kxy = 28 ·1018 N-m−3 and

kz = 87 · 1018 N-m−3 for in-plane and out-of-plane vibration, respectively).

We expand this analysis to include all measured sample thicknesses to more con-

clusively identify the branch(es) to which our observed interlayer phonons belong. The ob-

served shear (breathing) features evolve smoothly with increasing thickness, which suggests

that they belong to the same branch. To test this suspicion, we fit the thickness-dependent

shear (breathing) frequency with Equation 5.15 using the integer branch index, n, as the
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Figure 5.11: (a) Low-frequency Raman spectra of NbSe2 with layer number N = 2 − 15
and bulk NbSe2. For clarity, the spectra are vertically displaced with the broad background
subtracted. The green and red dashed lines highlight the evolution of the shear (S) and
breathing (B) modes, respectively. The 2L breathing mode is magnified by a factor of three.
The orange curves in the 3L spectrum denote the fitted shear and breathing modes which
overlap with each other. (b) Fitted frequency of the shear and breathing modes as a function
of layer number. The solid lines are the predicted phonon frequencies from the linear chain
model. The open triangles are the predicted phonon frequencies from DFT calculation. (c)
The full-width at half-maximum (FWHM) of the shear and breathing modes as a function
of layer number.
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fitting parameter. We use the bulk frequencies ω0 estimated above. The observed shear

(breathing) mode frequencies and best fit lines are shown in Figure 5.11(b) in green (red).

We find good agreement with the linear chain fitting where all observed shear features be-

long to the highest-frequency (n = 1) branch and all observed breathing features belong to

the lowest-frequency (n = N − 1) branch.

Comparison with DFT-calculated Interlayer Phonon Frequencies

To further confirm this assignment, we calculate the phonon frequencies for NbSe2

crystals with thickness 1L – 3L by density functional theory (DFT). The calculations were

carried out using QuantumESPRESSO code with the Perdew-Wang local density approxi-

mation exchange-correlation function [123]. For details of this calculation, please see sup-

porting material of the publication [124]. We plot the calculated interlayer shear and breath-

ing frequencies in Figure 5.11(b) as open triangles. The calculated results exhibit similar

layer dependence to the observed shear and breathing frequencies but appear at consistently

higher frequency. Nonetheless, the calculations agree remarkably well (within 4 cm−1) with

our experimental Raman data given the computational difficulties associated with metallic

systems like NbSe2.

Symmetry Analysis of Raman Activity

Previous Raman study of interlayer phonons in 2D materials shows the remarkable

sensitivity of low-frequency Raman spectra to the layer-by-layer stacking configuration in

otherwise chemically identical materials. The ABA and ABC polytypes of graphene, for

example, share a nearly identical phonon spectrum at the Brillouin zone center but exhibit
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distinct Raman spectra [105]. Although similar phonons are present in both crystals, the

Raman scattering intensity, or Raman activity, of a particular phonon mode is intimately

tied to the symmetries of both the vibration itself and that of its host crystal. [17]

In Section 5.2.2, we compared bilayer 2Ha-NbSe2 and 2Hc-MoS2 and found that

their crystal structures differ somewhat, as indicated by the structural prefix. We would as-

sume, then, that each crystal will exhibit distinct Raman activity of its interlayer phonons.

However, our results are remarkably similar to previous low-frequency Raman study of MoS2

and other group IV TMDs. [103, 104, 108, 109]. Despite the structural difference between

2Ha-NbSe2 and 2Hc-MoS2, both crystals share the same symmetry group – inversion sym-

metric D3d group for even layer numbers and D3h group with out-of-plane mirror symmetry

for odd layer numbers. Thus, the overall Raman activity of the interlayer phonon modes

should be identical for both materials as reflected in our experiment. The group-theory-

based analysis of Raman activity in the previous section can therefore be directly applied

to NbSe2 with the same results: we find that the shear modes with odd branch number

(j = 1, 3, 5, ... where j = 1 is the highest frequency mode) are observable for all layer num-

bers and breathing modes with odd (even) branch number are observable for even (odd)

layer numbers. We observe no more than one shear (breathing) mode feature per sample

thickness and thus cannot directly verify this prediction. However, this analysis confirms

that the highest-frequency (n = 1) shear mode branch and lowest frequency breathing mode

branch (n = N − 1) are indeed observable in our experiment.

180



Such symmetry analysis can indicate if a particular phonon mode is Raman active,

but provides no information about its scattering intensity relative to other Raman active

phonons. Fundamentally, the Raman scattering intensity is proportional to the change in

the relevant polarizability of the system during the course of the vibration period. We qual-

itatively examine the layer displacement patterns associated with each interlayer phonon

mode and confirm that the highest-frequency shear mode and lowest-frequency breathing

mode have the largest change in polarizability and thus highest Raman activity. A more

detailed treatment of Raman intensity calculation is discussed in the previous section.

5.2.4 Layer-dependent Interlayer Raman Peak Broadening

In addition to the central frequency of each Raman feature, we also extract a full

width at half maximum (FWHM) as defined by a best fit Lorentzian function. FWHM

of the shear and breathing modes are plotted in Figure 5.11(c). For samples of 5L–15L

the breathing mode exhibits progressive broadening with decreasing layer number, whereas

the FWHM of the shear mode is relatively constant. In the few-layer limit, both shear and

breathing features are noticeably broadened. We attribute the thickness-dependent FWHM

to two mechanisms.

Previous studies have shown that the anharmonic decay rate of optical phonons to

lower energy acoustic phonons is positively related to the optical phonon energy and, further,

that phonon lifetime enhancement results in sharper Raman features. Thus, the significant

redshift of the breathing mode with increasing thickness should suppress anharmonic decay

and ultimately result in a reduction of FWHM at higher layer number. We expect modest

broadening of the shear mode with increasing layer number due to the observed blue shift,
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for the same reason. Contrary to this assumption, the shear mode has relatively constant

FWHM for N ≥ 5L but increases significantly for thinner samples. We attribute the

significant broadening of both shear and breathing mode features in the few-layer limit to

exposure-induced defect formation.

As discussed in the bilayer, the shear mode of bare NbSe2 exhibits noticeable

broadening as compared to BN capped samples, which we attribute to ambient-exposure-

induced defect formation. We further assume that some component of this defect-producing

reaction (e.g., oxygen, water vapor) is unable to efficiently penetrate into the bulk crystal.

Under these assumptions we expect the formation of a defect-density gradient near the

crystal surface upon exposure, where the top-most surface layer is most affected. Interior

layers are increasingly shielded from defect formation with further separation from the

surface. Thus, both layers of a 2L sample may be similarly defected whereas the interior

layers of a thicker crystal (e.g., N = 10L) may be near-intrinsic. The total Raman spectrum

collected from a multilayer sample includes diminishing contributions from interior layers

up to roughly the penetration depth of the excitation wavelength. If the penetration depth

of the Raman probe is much greater than that of the defect formation process, we would

expect significant exposure-induced broadening in the thinnest samples which diminishes

with increasing thickness. We note that this is one possible explanation for the observed

trend and further study is necessary.
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5.2.5 Conclusion

In summary, we measured the interlayer phonon spectra of 2H-NbSe2 for layer

numbers 1L − 15L and bilayer samples with and without hexagonal boron nitride (BN)

capping. From the layer dependence, we used the linear chain model to estimate the inter-

layer force constant for shear and out-of-plane layer displacement. We found signatures of

environmental degradation of the NbSe2 layers due to ambient exposure in the interlayer

phonon Raman spectra. In the bilayer, the full width at half maximum (FWHM) of the

interlayer shear mode Raman peak was noticeably broadened in as-exfoliated samples as

compared to those with BN capping. We further measured the shear mode FWHM for

uncapped NbSe2 with layer number N = 2L to 15L and observed notable broadening of

the shear mode Raman for N ≤ 4L. We attribute this to increased contribution of the de-

graded surface layer(s) to the total Raman intensity in thin samples as compared to thicker

samples.
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Chapter 6

Conclusion

Throughout this work we presented our results in three major chapters, the results

of which we summarize here.

First, we used high-quality monolayer WSe2 gating devices under quantizing out-

of-plane magnetic field (B ≤ 31 T) to study the internal energy levels of the bright A0

exciton and the Landau-quantization-related oscillatory behavior of the bright A0 exciton

and bright trions (A+, A−). In the former, we measured the exciton Rydberg series PL from

which we determined the exciton (and excited state) g-factors, binding energies, and r.m.s.

radii. In the latter, we observed step-like gate-dependent shift of the A0 absorption energy

under high magnetic field where we identified the transition region between plateaus as the

Landau level half-filling voltage. This was supported by the simultaneous observation of

local maxima in the oscillitory A0 absorption full-width at half-maximum (FWHM). We

thus unambigously identified the Landau level filling factors via optical reflectance. We also

observed Landau-level-associated intensity oscillations in the trion, A+, PL intensity where
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the local intensity maxima correspond to the Landau level half-filling. Together, these

results gave us insight into the charge-density-dependent excitonic behavior by condensing

it into the quantized density of states and further illustrated a significant enhancement of

the valence band g-factor compared to the single-particle model prediction. This divergence

implies the influence of many-body interactions on the magnetic-field-induced energy shift

of the electronic bands in monolayer WSe2 with finite charge density. We suggest that

this enhancement may be related to an interaction-induced renormalization of the carrier

effective mass but this requires further research.

Second, we conducted a detailed study in three parts of the complex collection of

dark exciton species in monolayer WSe2 and the associated radiative relaxation pathways.

We identified the gate-tunable dark trion which we observed to have exceptionally long

radiative lifetime, approximately 100x that of the bright trion. The dark trion lifetime

was also shown to be tunable with gate voltage. Although available elsewhere, we also

derived the optical selection rules for the dark exciton (trion) which illustrate its out-of-

plane dipole and resultant in-plane, linearly polarized light coupling without valley optical

selection. As a partial remedy to the lack of valley access in the dark trion, we identified

radiative relaxation pathway for the dark exciton and trion mediated by a chiral phonon with

non-zero angular momentum - the dark exciton (trion) chiral phonon replica. This replica

luminescence exhibits valley selectivity in both the phonon and photon emission process;

thus, the dark trion valley index can be detected by this pathway. Finally, we identified the

momentum-indirect intervalley exciton in this system which cannot luminescence without a

mediating interaction. We identify two such processes; the defect-mediated relaxation and
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the intervalley chiral phonon replica process.

Finally, we used ultralow-frequency Raman spectroscopy to study the influence of

layer-by-layer stacking on the interlayer phonon spectra in 3R- and 2H-MoS2 and NbSe2.

In the former, we conducted comprehensive layer-dependent Raman measurement and ob-

served up to five shear (breathing) mode Raman features in one layer. This allowed us to

conduct detailed frequency analysis, extract the elastic moduli of both stacking configura-

tions, and implement an analytic model based on bond polarizability to calculate the Ra-

man tensor elements. We found that the 2H stacking order is slightly stiffer to out-of-plane

compression than the 3R configuration but that they share a similar shear force constant.

Together with the analytical model, our experimental results demonstrate a method for

simultaneous, non-destructive identification of layer number and stacking configuration for

2D materials.
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