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SPECIAL REPORT

Phenotyping the Spectrum of Traumatic Brain Injury:
A Review and Pathway to Standardization
Mary Jo Pugh,1,2,* Eamonn Kennedy,1,2 Eric M. Prager,3 Jeffrey Humpherys,1,2 Kristen Dams-O’Connor,4 Dallas Hack,3

Mary Katherine McCafferty,1,2 Jessica Wolfe,3 Kristine Yaffe,5–7 Michael McCrea,8 Adam R. Ferguson,9,10

Lee Lancashire,3 Jamshid Ghajar,11,13 and Angela Lumba-Brown12,13

Abstract
It is widely appreciated that the spectrum of traumatic brain injury (TBI), mild through severe, contains dis-
tinct clinical presentations, variably referred to as subtypes, phenotypes, and/or clinical profiles. As part of
the Brain Trauma Blueprint TBI State of the Science, we review the current literature on TBI phenotyping
with an emphasis on unsupervised methodological approaches, and describe five phenotypes that appear
similar across reports. However, we also find the literature contains divergent analysis strategies, inclusion
criteria, findings, and use of terms. Further, whereas some studies delineate phenotypes within a specific
severity of TBI, others derive phenotypes across the full spectrum of severity. Together, these facts con-
found direct synthesis of the findings. To overcome this, we introduce PhenoBench, a freely available
code repository for the standardization and evaluation of raw phenotyping data. With this review and tool-
set, we provide a pathway toward robust, data-driven phenotypes that can capture the heterogeneity of
TBI, enabling reproducible insights and targeted care.

Keywords: clinical profiles; clustering; coma; concussion; meta-analysis; phenotypes; subclassification; subtypes;
traumatic brain injury

Introduction
Traumatic brain injury (TBI) represents a spectrum of

micro- and macroscopic brain injury, traditionally classi-

fied as mild, moderate, or severe.1 However, scientific

literature supports that the spectrum of TBI also contains

distinct clinical presentations or phenotypes that are

dependent upon pre-morbid, post-morbid, and injury-

related factors.2–5 TBI phenotypes include age, sex,

genetics, baseline health, injury-related factors (e.g., se-

verity of injury and coexisting injuries), past medical his-

tory, and comorbidities. Over time, persisting symptoms

may give rise to adverse outcomes6,7 and divergent re-

covery pathways (Fig. 1). Cumulatively, this heterogene-

ity creates challenges for efficiently strategizing TBI care

and predicting recovery.

To address the need for improved prognostication,

researchers have applied a range of approaches for iden-

tifying TBI phenotypes (Table 1). We review these ap-

proaches, aggregate trends, and describe consistencies

across reports, but also note diverging methodologies,

varying descriptions of phenotypes, inconsistent use

of terms, and a general lack of shared standards.
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Further, whereas many studies include the full spectrum

of TBI severity in a single analysis (i.e., identifying

traits/outcome similarities regardless of severity), oth-

ers explore phenotypes within just one severity window

(e.g., mild TBI only). Although we note differences in

measure collection, inclusion criteria, and analytical

framework throughout the literature, addressing short-

comings in TBI phenotyping offers opportunities to

enhance precision health, enable targeted care, and im-

prove patient outcomes.

Phenotyping terminology
Throughout medical literature, the term ‘‘phenotype’’

is interchangeably used to refer to classifications,

symptoms, subtypes, clinical profiles, clusters, and ob-

servations (Inset 1). In this review, we define pheno-

types to be: any trait(s) or characteristic(s) that

distinguish a specific state [TBI], or any of its sub-

types.8 In clinical settings, a cluster often refers to an

aggregation of cases with correlated pathology (e.g.,

correlated through contact). Separately, ‘‘clustering’’

also refers to a wide category of algorithms for group-

ing observations according to data similarity (Inset 1);

we use the latter definition in this work. Epidemiologi-

cally, a clinical phenotype may arise from the expres-

sion of one gene or, more broadly, as a correlated set

of symptoms. When discussing a subtype/subclassifica-

tion, we mean a pathologic variant, and when discus-

sing its phenotype, we mean the traits that describe it.

For example, a subtype may represent a pathologic var-

iant and the trait(s) describing the variant represent its

phenotype.

Phenotyping methods
Practical approaches to phenotyping broadly divide into

three areas: 1) model-based approaches such as latent

class analysis (LCA), which constructs a model that as-

signs each case to its most representative phenotype

using maximum likelihoods; 2) supervised machine-

learning methods, which identify phenotypes associated

with labeled data (e.g., by constructing decision tree en-

sembles); and 3) unsupervised machine-learning methods

(typically non-parametric clustering) that search for in-

herent patterns and similarities between observations

without the need for labels (e.g., without needing to

know clinical outcomes).

Model-based approaches like LCA can uncover multi-

ple distinct latent classes within TBI observations.9 In

FIG. 1. Conceptual overview of the
progression and divergence of traumatic brain
injury (TBI) phenotypes. TBI phenotypes
(rectangles) emerge statistically (1–4) from the
presence and duration of symptoms/
impairments. The prevalence (rectangle size) of
phenotypes can vary and evolve over time and
can signal recovery or decline. Color image is
available online.

Inset 1: Definitions of terms.

Subclassification
A pathological variant of a disease or condition.

Cluster
A set of persons with similar traits or characteristics.

Symptom Cluster
A set of traits or characteristics that occur in correlation.

Phenotype
Any trait(s) or characteristic(s) that distinguish a spe-

cific state (e.g., a disease), or any of its subtypes.

Phenotyping
Processes for identifying a state or substates, distinct

set of traits or characteristics.

Supervised learning
Algorithms for learning a function that maps input-

output pairs based on a set of training examples. The

function can then predict the outputs of previously un-

seen data.

Unsupervised learning
Algorithms for characterization or inference of data with-

out labeled states. Examples include clustering and latent

variable modeling for dimensionality reduction.

Benchmarking
The act of performing additional reference analyses,

so that new systems/methods can be interpreted within

a familiar context.
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Table 1. TBI Phenotypes

Study
Phenotype

domain
Dim.

reduction Age Population
Injury stage

at assessment Severity Measures Subgroups or clusters Approach

1. DeJong and
Donders,
2010

Cognitive No 16–79 Civilian Chronic All severities CVLT-II Six subgroups: four
replicated in mTBI; five
replicated in severe TBI

Clustering (fastclus);
Agglomerative
clustering on
variance; k-means
labeling

2. Mottram and
Donders,
2006

Cognitive No 6–16 Civilian Chronic All CVLT-C Four clusters based on
level and pattern of
performance

Clustering (fastclus);
Complete linkage
procedure
(reliability check)

3. Sherer et al.,
2017

Cognitive No 16–70 Civilian Chronic All TBI-QOL, NSI,
EQOL,
FADGF,
PART-O

Five clusters that had
significantly different
results on PART-O
scale

Clustering;
agglomerative
clustering on
variance; k-means
labeling

4. Pugh et al.,
2019

Comorbid factors No 18–65 Military/
Veterans

Chronic Mild GCS, diagnosed
health
conditions

Five comorbidity
trajectories: moderately
healthy stable;
moderately healthy
decline; mental health,
polytrauma stable;
polytrauma with
improvement

LCA, logistic
regression

5. Lumba-Brown
et al., 2020

Post-
concussive
symptom
focused

No 6+ All
populations

Acute Mild Concussion
Symptom
Scales and
other
indicators

Five concussion subtypes:
cognitive, ocular-
motor, headache/
migraine, vestibular,
anxiety/
mood (sleep disturbance
also associated)

Literature review and
meta-
analysis

6. Maruta et al.,
2018

Symptom No 12–30 Civilian
athletes

Acute Mild RPQ Six classes of symptoms:
cognitive/
fatigue, vestibular,
oculomotor,
anxiety/mood, migraine,
cervical/sleep

Binomial tests; expert
assignment;
subtype prevalence
overlap analysis

7. Velikonja
et al., 2010

Emotional and
behavioral

No 15–69 Canadian
clinical
cohort

Chronic All PAI Seven clusters: multiple
symptoms,
somatic/depressive
symptoms, normal,
depression, substance
use/antisocial, normal
(minimizing), multiple
symptoms/bipolar

Split sample; three
clustering methods;
hierarchical,
agglomerative,
k-means, linkage,
iteration

8. Warriner et al.,
2003

Emotional and
behavioral

No 15–69 Canadian
clinical
cohort

Chronic Mild-moderate
(75% of
patients)

MMPI Six injury outcome
subtypes: normal
function, mild
somatic/pain concerns,
disinhibition/
externalizing behavior,
internalizing behavior,
externalizing and
somatic behavior

Split sample; three
clustering methods;
hierarchical,
agglomerative,
k-means, linkage,
iteration

9. Juengst et al.,
2017b

Emotional,
cognitive, and
behavioral

No 16–70 Civilian Chronic All PHQ-9; PANAS;
NTB; FSBS

Temporal evolution of
emotional, cognitive
and behavioral clusters;
<6-month injury:
clustered along
continuum of
emotion/behavior
symptoms; >6-month
injury: complex
symptom patterns

Cross-lagged panel
analysis, structural
equation modeling

10. Nielson et al.,
2017

Outcome,
biomarkers

Yes 43.3 – 18.5 Civilian Chronic All Injury character,
neuroimaging,
PTSD
Checklist;
WAIS; CVLT

Two broad topological
node groups, six nodal
extrema. One mTBI
node reflecting
unfavorable outcomes
on GOSE 3–6 months,
(including PTSD)
associated with PARP1,
ANKK1, COMT, and
DRD2

Topological data
analysis with third-
party software,
linear models

11. Goldsworthy
and Donders,
2019

Personality No 18–75 Civilian Chronic All MMPI-2-RF Four clusters: clusters 1
and 4 differed by profile
elevations; clusters 2
and 3 varied in pattern.
Pre-morbid factors
separated clusters.

Clustering (fastclus)

12. Kennedy
et al., 2015

Personality No 19–49 Military Chronic Mild PAI Four clusters: high distress,
moderate distress,
somatic distress, no
distress

Clustering,
hierarchical, and
k-means

(continued)
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Table 1. (Continued)

Study
Phenotype

domain
Dim.

reduction Age Population
Injury stage

at assessment Severity Measures Subgroups or clusters Approach

13. Hellstrom
et al., 2013

Symptom No 16–55 Civilian Chronic Mild RPQ Four clusters: low
symptoms, high
symptoms, cognitive,
somatic

Clustering,
hierarchical, and
k-means

14. Polimanti
et al., 2017

Symptoms No 18–46 Military
post-9/11

Chronic Unknown GWAS; PCS No significant association
of post-concussive
symptoms (PCS) with
any genetic
components; high infant
HC-PRS was correlated
with better recovery
from concussion.

Genome-wide cross-
phenotype analysis
with PRSice,
linkage
disequilibrium,
enrichment,
regression

15. Stein et al.,
2016

Symptom No 18–46 Military
post-9/11

Chronic Mild PCS Severity of PCS associated
with five traits: history
of TBI, stress, more
severe deployment-
related events, LOC
lapse of memory vs. LO
attention

Zero-inflated negative
binomial regression

16. Ensign et al.,
2012

Psychosocial No 6–20 Civilian Chronic Mild-severe BASC-2 Six: two primary: Normal,
Pervasive emotional
difficulties; four less
reliable: Mild
Externalizing with 1)
Depression, 2) Attention
Problems, 3) Mild
Depression, and 4) Mild
Anxiety

Agglomerative
hierarchical cluster
analysis and simple
UPGMA, Ward’s
methods

17. Hayman-
Abello et al.,
2003

Psychosocial No 12–18 Civilian Chronic Mild-severe CBCL Four groups: Normal,
Attention, Delinquent,
and Withdrawn-
Somatic

Q-factor analysis

18. Folweiler
et al., 2020

Severity Yes 18–70 Civilian Acute Mild-severe GCS Three patient phenotypes,
two replicated across
studies

GLRM; Gower’s
dissimilarity matrix
K-nearest neighbor

19. Gravesteijn
et al., 2020

Severity Yes 50a [30, 66] Civilian Acute Mild-severe Injury Mechanism
Extracranial
Injury GCS

Four clusters of severity
associated with
differential long-term
outcomes

Bootstrap resampling
with replacement;
PCA and Gower’s
distance

20. Masino et al.,
2018

Severity Yes 18–70 Civilian Chronic Mild-severe Baseline <24 h,
CT scan, other
intake history

Four distinct patient
phenotypes that were
associated with 90-day
outcomes on 12
assessments

GLRM feature
selection, Gower’s
distance,
dissimilarity matrix

21. Si et al., 2018 Severity No 16+ Civilian Acute Mild GCS, clinical
variables,
GOSE, WAIS

Five mTBI subgroups:
general, cognitive,
functional, emotional,
and somatic

Sparse hierarchical
clustering with
automated feature
rejection/
selection

22. Kucukboyaci
et al., 2018

Comorbid and
vulnerability

No 16–70 Civilian Unspecified Not specified Demographics,
psychosocial

Four clusters: 1) high
substance use and
psychiatric history; 2)
race/ethnic minority,
limited English
proficiency; 3) minority
with substance use,
incarceration, and
homelessness; and 4)
elderly with complex
comorbidity

Two-
step clustering with
log-linear
differences and
k-means

23. Yeates et al.
2019

General post-
concussion

No 8–18
(8–12, 13–18)

Civilian Acute -
chronic

Mild Pre-morbid,
clinical. ACE,
PCSI, SAC,
and BESS

Four clusters found using
pre-morbid history.
Four clusters found
using clinical data.
Assessment at 4 and 12
weeks. Age, female sex,
(anxiety), phenotypes
increase PPCS risk.

LCA

24. Bailie et al.
2016

Psychosocial,
cognitive,
behavioral

No 18–56 Military Chronic Mild Neurobehavioral
Symptom
Inventory and
PTSD
Checklist-
Civilian
Version (PCL-
C)

Four subtypes: primarily
psychiatric (post-
traumatic stress
disorder) group, a
cognitive group, a
mixed symptom group,
and a good recovery
group

Two-step clustering
procedure
(hierarchical
clustering and
k-means labeling)
using average
linkage/Pearson
correlation as the
proximity measure

(continued)
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LCA, each case is assigned to any one of a set of pre-

defined classes, according to its position on latent variable

scale(s) derived from multi-variate data. To do this, LCA

finds a set of model parameters estimated by the maxi-

mum likelihood method that optimally fits the case data.

LCA is controllable and intuitive, although there is empir-

ical evidence that rudimentary machine-learning methods

can outperform LCA for medical phenotyping.10

Supervised learning methods, such as binomial regres-

sion, can also be used to infer predictors of TBI sub-

types.11,12 Decision trees and random forests are also

popular examples of supervised learning for TBI classifica-

tion.7 Whereas supervised approaches predict states from a

set of labeled observations, unsupervised methods—like

principal component analysis (PCA) and topological data

analysis13—allow us to probe natural patterns within data.2

More-recent unsupervised methods,14 such as hierarchi-

cal density-based scanning (HDBSCAN),15 can improve

noise tolerance beyond traditional methods like k-means

clustering, while also allowing for the separation of arbi-

trary cluster shapes (e.g., non-normal cluster presentations).

Novel dimensionality reduction techniques, such as uni-

form manifold approximation and projection (UMAP),16

can complement clustering and phenotyping in high dimen-

sions, because they can preserve the distances between

high-dimensional observations in a more easily visualized,

low-dimensional representation, while also maintaining a

degree of global stability. However, more-sophisticated un-

supervised methods, such as UMAP and HDBSCAN, have

yet to be applied to TBI phenotyping.

Review methodology
We present an expert consensus-directed, selected review

of TBI classification with an emphasis on unsupervised ap-

proaches that encompass recent trends in TBI phenotyping.

The database search used MEDLINE with PubMed and

was limited by publication type, dates January 1, 2003 to

January 1, 2020, and language (English only). Excluded

publication types were comments, editorials, patient educa-

tion handouts, newspaper articles, biographies, autobiogra-

phies, case reports/series, and animal studies. The literature

search used the following terms: human, traumatic brain in-

jury, phenotype, subtype, cluster, subclassification, clinical

profile, and spanning. Upon expert consensus, 28 scientific

publications were selected for applicability to the objective

of this work, providing a state-of-the-science report of

advanced approaches to TBI phenotyping (Table 1). Lever-

aging expert consensus, we parsed the phenotyping litera-

ture into domain subsections, presented below in order

as: 1) Severity, Sources, and Populations; 2) Identified

Phenotypes; 3) Severity-Based Profiles; 4) Predominantly

Post-Concussion Symptom Profiles; 5) Studies Using

Only Cognitive Measures; 6) Studies Using Diverse Post-

TBI Measures; 7) Comorbid and Vulnerability-Based

Table 1. (Continued)

Study
Phenotype

domain
Dim.

reduction Age Population
Injury stage

at assessment Severity Measures Subgroups or clusters Approach

25. Zimmermann
et al. 2015

Cognitive,
executive
function

No 18+ Civilian Chronic All severities Multiple
Executive
Function tasks

Three clusters: 1)
inhibition, flexibility,
and focused attention;
2) inhibition, flexibility,
working memory, and
focused attention; and
3) no expressive
executive deficits

Hierarchical cluster
analysis, tasks
Z-scores, ANOVA

26. Howell et al.
2019

Post-concussive
symptom
focused

No 7–30 Civilian Acute-chronic Mild Post-Concussion
Symptom
Scale

Five symptom domains: 1)
somatic, 2) emotional,
3) sleep, 4) cognitive,
and 5) vestibular-ocular

Linear regression
model

27. Kontos et al.
2019

Post-concussive
symptom
focused

No 11–40 Civilian Unspecified Mild Medical history,
injury, clinical
interview/
examination
notes,
cognitive/
vestibular/
ocular tests

Six profiles: 1) cognitive/
fatigue, 2) vestibular, 3)
ocular, 4) post-traumatic
migraine, 5) anxiety/
mood, and 6) cervical

Blinded chart reviews
by six clinicians
determining the
primary and
secondary clinical
profiles

28. Feddermann-
Demont et al.
2017

Post-concussive
symptom
focused

No Teens-adults
(mean age 17)

Athletes Unspecified Mild Symptom scales,
neurocognitive
tests, balance

Five domains: cognition,
dizziness and balance,
emotions, headache, and
vision

Clinical comparison of
post-concussive
symptoms;
subanalysis of
predominant
symptoms

aInterquartile range.

AUDIT, Alcohol Use Disorders Identification Test; BDI-II, Beck Depression Inventory II; BASC-2, Behavior Assessment System for Children, Second Edition; UPGMA, between-group
linkage; CVLT-C, California Verbal Learning Test–Children’s Version; CVLT-II, California Verbal Learning Test–Second Edition; CBCL, Child Behavior Checklist; EQOL, Economic
Quality of Life Scale; ESL, English as Second Language; FADGF, Family Assessment Device General Functioning Scale; FSBS, Frontal Systems Behavior Scale; GLM, general linear
model; GLRM, generalized low-rank models; GWAS, genome-wide association study; GCS, Glasgow Coma Scale; GOSE, Glasgow Outcome Score-Extended; IHC, infant head circumfer-
ence; LCA, latent class analysis; LOOCV, leave one out sample cross-validation; MMPI-2-RF, Minnesota Multiphasic Personality Inventory–2–Restructured Form; NSI, Neurobehavioral
Symptom Inventory;,NTB, Neuropsychological Test Battery; PART-O, Participation Assessment with Recombined Tools-Objective; PHQ-9, Patient Health Questionnaire-9; PAI, Personality
Assessment Inventory; PRS, Polygenic Risk Score; PANAS, Positive and Negative Affect Schedule; PCS, post-concussive symptoms; PTSD, post-traumatic stress disorder; PCA, principal
component analysis; ROI, region of interest; RAVLT, Rey Auditory Verbal Learning Test; RPQ, Rivermead Post-Concussion Symptoms Questionnaire; SNP, single-nucleotide polymor-
phism; SHC, sparse hierarchical clustering; TBI-QOL, TBI Quality of Life; TDA, topological data analysis; UPGMC, unweighted pair-group method using centroid averages; WAIS, Wechs-
ler Adult Intelligence Scale; ZNB, zero-inflated negative binomial.
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Profiles; 8) Studies Using Longitudinal, Serial Measures; 9)

Studies with Postmortem Neuropathological Endpoints;

and 10) TBI Phenotypes in Pediatrics.

State of the Science
Severity, sources, and populations
The majority of data classifying TBI focuses on post-

concussion symptom predictors and profiles spanning

acute through chronic injury. Acute injury was defined

for this review as <2 weeks post-injury. For simplicity,

chronic injury includes subacute injury and is defined as

any assessment point beyond 2 weeks post-injury. Eight

studies focused on the acute phase of injury, whereas 16

focused on chronic indicators. Fourteen studies assessed

a range of injury severity, whereas 10 exclusively addressed

mild TBI. Some studies noted that missing data pre-

cluded authors from categorizing patients based on

injury severity.17

Population characteristics differed by age and whether

participants were civilians, military, or athletes. Ages of

participants in the included studies spanned exclusively

from pediatric participants,17,18 to exclusively adults,12,19

to both pediatric and adult populations3,20; the majority

of studies described TBI in adults ages ‡16 years. Civilian,

active military personnel, and/or Veterans21–24 as well as

participants with sports-specific TBI were assessed in

these studies.3,11 Data for participants were derived from

various sources, including earlier clinical trials,4,19 cohort

studies,12,13,23,25 and observational health system data.24

Identified phenotypes
Surprisingly, despite the diversity of populations, sources,

analyses, and approaches described, the number of sub-

classifications were relatively consistent throughout the

literature, but the interpretation of subtypes and their traits

varied. Phenotypes described more than once included: 1)

moderately healthy, with mild or transient symptoms, but

otherwise broadly similar to controls across most mea-

sures; 2) predominantly healthy, but presumed normal,

with some persistent conditions, or normal with measur-

able decline; 3) somatic/functional issues with moderate

distress, withdrawal, pain, oculomotor, migraine, cogni-

tive, sleep, or vestibular persistent symptoms; 4) mental

health and behavioral concerns indicated by long-term de-

pression, post-traumatic stress disorder (PTSD), migraine,

substance use, and/or affective issues, often associated

with higher severity; and 5) a mixed set of traits, drawn

from combinations of the above, exhibiting mixed mental

health, behavioral, and long-term functional concerns.

Notably, within this literature base, no mechanism-driven

phenotypes were reported.

Severity-based profiles
Several studies used data from the Transforming

Research Clinical Knowledge in Traumatic Brain Injury

(TRACK-TBI) Longitudinal Study pilot and Citicoline

Brain Injury Treatment (COBRIT) trial to identify

acute injury phenotypes in adults.4,13,19,25 These studies

adopted different analytical approaches with similar

types of injury data (e.g., computed tomography [CT]

scan, physiological measures, vital signs within 24 h of

injury, and medical history). Nielson and colleagues

used topological data analysis to examine TBI injury

characteristics (acute neuroimaging results) and 6-

month outcomes for PTSD diagnosis and neuropsycho-

logical testing (processing speed and verbal learning) to

identify subtypes of persons with mild TBI in TRACK-

TBI pilot data.13 Their results identified a subtype of

persons with unfavorable outcomes on the Glasgow Out-

comes Scale-Extended (GOSE) who also had high rates

of PTSD at 6 months and who also had genetic polymor-

phisms associated with striatal dopamine processing, cel-

lular stress, and DNA damage.

Si and colleagues used sparse hierarchical cluster-

ing and outcome selection on TRACK-TBI pilot data

using 53 clinical variables, each collected at baseline

and through emergency/hospital care. Variables tested

included demographic characteristics, prior history, in-

jury characteristics, results of lab/radiology tests in the

first 24 h, loss/alteration of consciousness, or post-

traumatic amnesia.25 They report five subtypes of mild

TBI that were primarily distinguished by CT results

(see Table 1). The subtypes include: 1) admission

blood pressure; 2) alcohol and tobacco history; and 3)

history of neurological and psychological history. Sub-

classes differed in outcomes after 6 months, with vary-

ing general cognitive, emotional, and physical function.

For instance, one of the subtypes displayed normal CT,

but significantly more tobacco use. For this subset, neu-

rological and psychiatric history had significantly worse

outcomes than the other groups on the Brief Symptom

Inventory, Weschler Adult Intelligence Scale (WAIS),

and the Trails Making Tests.

Two studies used COBRIT trial data to explore acute

injury/treatment data collected in the first 24 h after a TBI

(e.g., fluid intake, blood tests, and CT scan measures).

Both studies included persons with non-penetrating TBI

and positive baseline CT, but each study used a different

analysis and found slightly different phenotypes. Masino

et al. identified four phenotypes that were associated

with 90-day outcomes on cognitive, emotional and other

functional outcomes4, whereas Folweiler et al. used similar

methods and measures but identified three phenotypes19.

Separately, Folweiler et al. reported three phenotypes

using supervised k-means clustering on TRACK-TBI

data. Two out of the three phenotypes were similar in

both the COBRIT and TRACK-TBI samples.

An analysis of acute care data collected (including im-

aging characteristics in the first 24 h) was undertaken in

adults from the CENTER-TBI European cohort study.22

PHENOTYPING THE SPECTRUM OF TBI 3227



By applying PCA and then clustering on the reduced

dimensional outputs with bootstrap resampling, they

revealed four stable clusters of TBI severity (Table 1).

These clusters were distinguished by 1) injury mecha-

nism, 2) presence of extracranial injury, and 3) Glasgow

Coma Scale (GCS). The results implied treating interme-

diate (moderate) severities as two distinct groups (upper

and lower), that is, 1) mild, 2) moderate lower, 3) moder-

ate upper, and 4) severe. Traditional severity categories

are broad and encompass very different pathologies, and

so research into further gradations asserted by Gravesteijn

et al. could find value for assisting differential diagnosis,

and/or quantifying cases where additional diagnostics

are/are not necessary.

Predominantly post-concussion
symptom profiles
Several studies examined post-concussion symptom pro-

files using a variety of measures and analytical techniques

to derive phenotypes that inform prevalence, predictors of

recovery, and/or target potential treatments. Lumba-Brown

and colleagues convened a multi-disciplinary expert work-

group to define common subtypes of concussion in pediat-

ric and adult populations and identify clinical questions

related to prevalence and recovery. Using these key clin-

ical questions, the group conducted a systematic review

and meta-analysis of concussion subtype prevalence.26

The meta-analysis of multiple measures (clinical signs,

symptomology, neurocognitive and vestibulo-oculomotor

testing, etc.) informed the varying acute prevalence of the

following subclassifications, populated predominantly

with post-concussive symptoms: 1) headache/migraine,

2) cognitive, 3) vestibular, 4) anxiety/mood, and 5) oculo-

motor impairments.

Maruta and colleagues examined post-concussive symp-

tom clustering in a sample of adolescent through adult ath-

letes participating in a variety of sports.11 Athletes were

evaluated with a modified Rivermead Post-Concussion

Symptoms Questionnaire (RPQ) at baseline and at 2

weeks after a physician diagnosed concussion. Using a

binomial test to compare baseline and post-injury post-

concussive symptoms, the investigators identified six phe-

notypes with varying degrees of overlap: 1) cognitive/

fatigue, 2) vestibular, 3) oculomotor, 4) anxiety/mood, 5)

migraine, and 6) sleep. Findings were similar for adult

and pediatric samples.

Stein and colleagues identified persistent post-

concussive symptoms (PPCS), with a focus on physical

and cognitive/emotional PPCS symptom components, at

3 and 9 months after mild TBI. They used zero inflated

negative binomial regression to identify risks for PPCS

reporting that loss of consciousness (LOC) and post-

traumatic amnesia strongly indicated PPCS compared

to persons with alteration of consciousness alone.

Other significant predictors included history of TBI,

psychological stress before deployment, and severe

deployment-related stress. Polimanti and colleagues ex-

amined polygenic risk scores for PPCS and found no

significant moderate or large effect predicting PPCS,23

suggesting that there is no moderate-to-large degree of

shared genetic components between PPCS and psychiat-

ric or neurodegenerative disorders.

Hellstrom and colleagues used k-means clustering

analysis and identified four mild TBI profile clusters

based on indicators from the RPQ in relationship to neu-

roimaging results, reported levels of anxiety, depression,

and global function.27 Classifications were differentiated

by the presence of radiological findings and were 1) gen-

eral low level of symptoms, 2) general high level of

symptoms, 3) high level of cognitive symptoms, and 4)

high level of somatic and frustration symptoms. The

study found that the cognitive cluster group had lower

levels of both anxiety and depression compared to the

high symptom cluster group. The high-level group gener-

ally had more complaints and high absence from work

than other groups, potentially attributed to pre-existing

conditions.

Yeates and colleagues, on behalf of Pediatric Emergency

Research Canada, used acute injury clinical data and previ-

ous history to predict post-concussive symptoms at 4 and 12

weeks after injury in a large sample (n = 2,323).9 Separate

latent class models were constructed for pre-morbid and

clinical groups, and data were acquired for clinical, acute,

post-concussion, and pre-morbid history measures. Both

the pre-morbid and clinical latent class models supported

four subclassifications. Pre-morbid history variables were

associated with a higher risk of symptoms at both times, in-

cluding older age, female sex, and subgroup membership.

Group membership in the LCA, based on just clinical pre-

sentation data, did not elicit strong independent predictors

of symptoms at either testing time.

Three additional studies examined post-concussion

symptom profiles. Howell and colleagues examined

post-concussive symptom domains (somatic, vestibular-

ocular, cognitive, sleep, and emotional) among 689 pa-

tients ages 7–30 years, in relationship to symptom dura-

tion.28 The study reported longer total symptom

duration associated with more severe somatic and

vestibular-ocular symptoms in adolescents. Kontos and

colleagues conducted a retrospective, blind chart review

of 236 subjects ages 11–40 years with mild TBI within

90 days of injury from two concussion clinics.29 Primary

and secondary clinical profiles were determined based on

relevant medical history, injury information, clinical in-

terview/examination notes, reported symptoms, and cog-

nitive and vestibular/ocular test results. Feddermann-

Demont and colleagues performed a meta-analysis of

data from 2416 athletes represented by 33 prospective

studies to determine, among other things, what domains
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of clinical function should be assessed after sports-related

concussion.30 Domains identified were cognition, dizzi-

ness and balance, emotions, headache, and vision. This

study reported that clinical domains affected in the diagno-

sis of sport-related concussion included cognitive, vestibu-

lar, and headache/migraine. Overall, the studies examining

acute post-concussion symptom profiles reveal some sim-

ilarities, with symptomatic, vestibular, and cognitive

symptoms all featured repeatedly, but the measurement,

magnitudes, and associations between symptoms varying

considerably across studies.

Studies using only cognitive measures
DeJong and colleagues20 examined cognitive phenotypes

in an adult cohort based on cluster analysis of California

Verbal Learning Test (CVLT) scores and change in

CVLT trial administration among persons with mild and

moderate/severe TBI. Six subtypes were identified, each

characterized by different patterns of performance: 1) per-

formance above the mean on all components of the

CVLT; 2) improvement over the course of testing; 3)

low scores and demonstrated improvement; 4) low scores

with decline over the trial; 5) scores starting 0.5 standard

deviation above the mean on the first word recall list with

significant decline over the course of testing; and 6) per-

formance below the mean on all tasks. Subtype analyses

for those with mild TBI replicated most of the findings.

Four studies used personality measures to identify

post-concussion symptom profiles; two used the Minne-

sota Multiphasic Personality Inventory (MMPI), and

two used the Personality Assessment Inventory. Those

that used the MMPI each used different clustering tech-

niques, and each found a different number of clusters.

Warriner and colleagues used the original MMPI to ex-

amine an inpatient rehabilitation cohort from a Canadian

rehabilitation hospital who had a single TBI (fall, assault,

motor vehicle accident, bicycle accident, or pedestrian

accident) and received care for injury between 1985–

1996, with the mean time from injury up to 8.5 years.31

Using a split-sample, three-step cluster approach, they

found six injury outcome subtypes: 1) normal; 2) mild so-

matic/pain; 3) marked disinhibition/externalizing; 4)

marked internalizing; 5) externalizing; and 6) somatic.

Goldsworthy and colleagues similarly examined out-

comes in a cohort of patients who received care from a

Midwestern rehabilitation hospital21 using a two-stage

hierarchical clustering approach. Analyzing data from

the MMPI-2 restructured form, they identified four clus-

ters: 1) high symptom scores across nearly all domains,

indicating dissatisfaction with life, somatic complaints,

significant worry, and low positive emotions; 2) discour-

agement and somatic/depression symptoms; 3) minor

somatic complaints; and 4) no significant elevations on

scales (normal). Further evaluation revealed no differ-

ences for age, race/ethnicity, education, time post-injury,

or previous psychiatric history. However, there were sex

differences in cluster 3 (predominantly males) and cluster 2

(predominantly females). Comparing these studies, we note

a different number and character of clusters, but each study

explicitly identified both a normal and a mild somatic pain

cluster. However, direct comparison of the studies is diffi-

cult because of slight differences in the MMPI adminis-

tered, different chronicity, populations (United States vs.

Canada), and choice of clustering analysis.

Two studies using the Personality Assessment Inven-

tory were conducted in different populations using differ-

ent clustering approaches. Both included the full spectrum

of TBI severity. Velikonja and colleagues used a split

sample, two step clustering approach in a cohort of Cana-

dian patients who received care in an acquired brain injury

rehabilitation unit after TBI (mean time since injury 3.87

years),32 whereas Kennedy and colleagues used a two-

step cluster approach in a post-9/11 deployed U.S. mili-

tary cohort referred for neuropsychological testing after

TBI an average of 30 weeks after injury.33 Velikonja

and colleagues found seven clusters: 1) multiple high

symptoms; 2) high somatic and depressive symptoms;

3) high depression; 4) normal; 5) high substance use dis-

order with antisocial personality features; 6) presumed

normal with possible minimalization; and 7) multiple

high symptoms with borderline personality features.32

Kennedy and colleagues found four clusters: 1) high dis-

tress; 2) somatic; 3) moderate distress; and 4) no distress.

Each study found clusters consistent with high distress

and no distress/normal.33 Both studies also found that

high distress clusters were significantly older. The re-

searchers subsequently identified four clusters in a related

work,34 leveraging the Neurobehavioral Symptom Inven-

tory and PTSD Checklist-Civilian Version (PCL-C). They

identified favorable outcomes, PTSD, cognitive symp-

toms, and mixed presentation as phenotypes.

Studies using diverse post traumatic
brain injury measures
Three studies used measures of cognitive, emotional, self-

perception, and physical symptoms, in post-moderate/

severe TBI. Zimmermann and colleagues performed a

cluster analysis of higher-level cognition and executive

function of 84 adult outpatients with mild and moderate/

severe TBI.35 They identified three subtypes using hierar-

chical clustering on acute patient z-scores on a battery of

tests. The clusters identified were: 1) inhibition, flexibil-

ity, and focused attention; 2) inhibition, flexibility, work-

ing memory, and focused attention; and 3) no expressive

executive deficits. Sherer and colleagues examined out-

comes of a cohort of persons who received TBI rehabil-

itation care in different regions and who were on average

6.3 years post-injury.36 They used k-means clustering and

split half sampling, revealing five clusters: 1) normal
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cognition, good environmental support, and negative signs

and symptoms; 2) normal cognition, intermediate environ-

mental support, and higher emotional distress; 3) interme-

diate cognition, high emotional/behavioral symptoms;

4) low cognition, intermediate environmental support,

lower emotional/behavioral symptoms; and 5) low cogni-

tion, high emotional and behavioral symptoms.

Juengst and colleagues interrogated results of neuropsy-

chological testing from the PHQ-9 and other self-report

measures using two-step clustering with log-linear differ-

ences and k-means clustering for early (<6 months after

injury) and late (>6 months after injury; mean 7.2 years)

recovery cohorts37 and split half analysis. The analyses

revealed two clusters for early recovery (depressive/

behavioral symptoms; no depressive/behavioral symp-

toms) and four clusters for the late recovery cohort: 1)

poor emotional/behavioral with no cognitive impairment;

2) good emotional, average behavioral, and mild deficit to

normal cognition; 3) high positive and negative affect,

poor behavior, and mild deficit to normal cognition; and

4) good emotion, moderately poor behavior, and severe

cognitive impairment. Despite the similarity in time post-

injury and TBI characteristics between the Juengst and col-

leagues late recovery and Sherer and colleagues cohorts,

many of the phenotype descriptions vary. One possible rea-

son for this is the use of different measures in the cluster

analysis. It is also possible that the addition of environmen-

tal support variables and participation measures included

by Sherer and colleagues influenced the dispersion of

mild and intermediate cognitive deficits given that there ap-

pear to be more clear demarcations of mild and moderate

cognitive impairment in that study. Comparison of these

three studies with standardized tools truncating to shared

measures could potentially lead to synchronous results.

Comorbid and vulnerability-based profiles
Kucukboyacl and colleagues conducted two-step cluster

analysis of history of vulnerability before TBI and com-

pared inpatient rehabilitation outcomes by cluster.38 Four

clusters were revealed: 1) substance use and psychiatric

history; 2) racial/ethnic minority and some language

barrier; 3) substance use, incarceration, or homelessness

history with high language barrier; and 4) elderly with

complex medical comorbidity. The racial/ethnic minority

group had the shortest hospitalization and showed low

improvements on Functional Independence Measure

scores. This study highlights how phenotypes can evolve

over time and indicates that baseline characteristics re-

lated to vulnerability may be critical in understanding di-

vergence of phenotypes.

Studies using longitudinal, serial measures
Pugh et al. identified longitudinal comorbidity pheno-

types in post-9/11 Veterans with mild TBI who sought

regular Veterans Affairs (VA) care.24 Using health sys-

tem data, they identified 22 conditions common after

mild TBI including neurosensory, mental health, neuro-

degenerative, pain, and sleep conditions. The study con-

ducted latent class analyses in order to identify patterns of

comorbidity in the first five years after entering VA care.

These data reported five comorbidity subtypes by com-

paring data at years 1 and 5: 1) moderately healthy,

with low probabilities of any PCS, pain, or mental health-

related diagnoses; 2) moderately healthy with decline,

exhibiting low probabilities of any relevant diagnoses

for year 1 and high probabilities of mental-health–,

pain-, and PCS-related diagnoses at year 5; 3) mental

health (high probabilities of PTSD, substance use dis-

order, and depression); 4) polytrauma, with high prob-

abilities of mental health–, pain-, and PCS-related

diagnoses; and 5) polytrauma with improvement, with

initially high mental health and pain, but showing signif-

icantly lower probabilities at year 5. Suicidal ideation and

attempt were phenotypes of the mental health subtype

and were not phenotypes of the polytrauma with im-

provement subtype.

Studies with post-mortem
neuropathological end-points
There is increasing awareness of the value of studying

brain tissue collected from persons with TBI from well-

characterized clinical cohorts to permit investigation

into the neuropathological correlates of distinct TBI ex-

posure patterns and clinical presentations. The Late

Effects of TBI (LETBI) study is one such multi-center,

prospective, longitudinal study designed to characterize

in vivo phenotypes of chronic TBI and their underlying

neuropathology.39 Early investigations of brain tissue

studied using LETBI multi-modal autopsy methods

(high respolution ex vivo neuroimaging, image-guided

tissue sectioning for standard and targeted neuropatho-

logical examination, and structured family interview

complemented with medical record abstraction) reveal

the complex coexistence of multiple pathological proc-

eses associated with diverse injury exposure histories

and clinical presentations.40,41 This work underscores

the importance of collecting accurate information about

lifetime exposure to TBI of diverse etiolgoies, in addition

to deep clinical phenotyping to investigate alongside

post-mortem pathological findings. Challenges inherent

to studing the pathology of moderate-severe TBI with im-

aging biomarkers have necessitated the development of

novel methods to correct for large lesions,42 to facilitate

image processing and allow inclusion of these valuable

cases with more severe TBI in multi-modal phenotyping

studies.

As we await the maturation of prospective studies,

structured post-mortem family interview methods have
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been developed and used to examine the associations of

repetitive TBI exposure symptom profiles with chronic

traumatic encephalopathy neuropathological lesions,43

and inclusion of detailed lifetime TBI exposure ques-

tionnaires in ongoing longitudinal studies of aging

have permitted similarly impactful investigation into

the neuropathology underlying clinical symptoms of de-

mentia and other neurodegenerative diseases.44 Ongoing

investment into studies investigating the pathophysiolog-

ical underpinnings of distint TBI phenotypes will be crit-

ical for identifying novel targets for intervention and

aligning new treatments with the patients who can most

benefit from them.

Traumatic brain injury phenotypes in pediatrics
Several studies that explored pediatric cohorts have al-

ready been described in other contexts.3,9,11 In other

work, different phenotyping methods have reported dis-

tinct profiles from normal to pervasive emotional difficul-

ties after pediatric TBI.17,18 Four cognitive subtypes of

psychometric measures (including Personality Inventory

for Children Revised, the Behavior Assessment System

for Children-Second Edition [BASC-2], and the Wesch-

ler Intelligence Scale for Children-Third Edition) were

identified. Importantly, neither the work by Ensign or

Hayman found any relation between injury severity and

subtype membership.

Another study examined the results of the CVLT using a

two-stage cluster analysis method that used Ward’s mini-

mum variance agglomerative clustering technique and

k-means iterative partitioning.45 The analysis revealed

four clusters with distinct phenotypes, which differed on

z-scores of attention span, learning efficiency, long delay

free recall, and number of false positives. They were: 1)

low scores on list A, 2) low scores on list A and few

false positives, 3) similar scores across all measures, and

4) high scores on list A, long-delay free recall, and the low-

est false positive scores. Below-average groups were more

likely to have experienced extended coma.

PhenoBench: Benchmarks for Phenotyping
Our review reports strong analytical diversity throughout

the field, which presents unique challenges for the com-

parison and reproduction of phenotypes across reports.

Uncovering distinct trajectories and phenotypes can as-

sist clinicians, but the current literature sampled in this

review does not provide a clear path to operationalized

phenotypes for clinical practice. In order to address this

FIG. 2. PhenoBench data generation and example outputs from a synthetic post-traumatic epilepsy (PTE)
data set. (A) Inset table of means and standard deviations for the synthetic data set (N = 1000). Explanation
of the variables are provided in the documentation. (B) Heatmap of the correlation matrix for the 11
synthetic variables. (C) PCA two-principal component reduction of the pseudo data set, shown for two
random 50/50 split samples of the data (left, right). Trends in the global structure are similar across
subsamples, indicating good group stability, but the PTE group differences are not captured by PCA.
(D) Like (C), but with a UMAP reduction of the synthetic data set down to two dimensions. Trends in the
global structure are broadly similar, and the PTE phenotype is distinct. (E) Phenotypes are shown in a radial
plot broken out across the five clusters found by UMAP embedding in (D). PCA, principal component
analysis; UMAP, uniform manifold approximation and projection. Color image is available online.
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limitation, we provide a free, open access repository

called PhenoBench,46 that uses state-of-the-art unsuper-

vised machine-learning tools to uncover distinct pheno-

types within raw data. These tools are intended for

researchers to analyze their data offline to identify pheno-

types and subtype groups using a standardized approach.

The purpose of the repository is not to require any particu-

lar analysis pipeline, but, instead, to offer a standard set of

analysis methods that can be run in parallel to a preferred

analysis (Fig. 2). The primary output of the repository is

phenotype labels for each observation and statistical mea-

sures of ranked trait importance of subtypes, which can

be assessed across studies or data sets. The repository con-

tains 1) a synthetic data-generating tool (Fig. 2A,B) based

on TBI covariates; 2) a set of dimensionality reduction and

clustering pipelines (called PA and PB); and 3) additional

tools for statistical and graphical analysis.

Summary of features
Benchmark 1 (PA) combines PCA for dimensionality

reduction with k-means clustering, which requires

the user to specify a putative number of separable groups.

Benchmark PB implements the dimensionality reduction

algorithm UMAP16 down to two dimensions and unsuper-

vised labeling with HDBSCAN.15 PB does not require the

user to provide an estimated number of groupings and can

tolerate non-normally distributed data. The two bench-

marks (PA, PB) are purposely chosen to represent orthog-

onal perspectives (Fig. 2C,D).

The primary outputs are tables and radial plots of the

mean/median traits within each cluster/subclass identified

(Fig. 2E). After package installation, both benchmarks are

performed by running a single Python script. To compare

across data sets, summary statistics can be produced for

each data set and compared, or if both raw data sets are

available to a single user, they can be aggregated for

mega analysis.

Statistical evaluation
Figure 2 shows example output run on the included syn-

thetic data set. PhenoBench implements a generic mean

silhouette score for assessing the separability of output

clusters. To assess the stability of clusters, PhenoBench

can also perform split sampling (see Fig. 2C,D). To ascer-

tain what traits are associated with each group, we derive

the mean value of each trait broken out by cluster as a

ratio of the total sample mean (see Fig. 2E). The extent

to which a phenotype is truly distinct depends on how

uniquely a symptom profile can be attributed to a partic-

ular group, and so the likelihood of the observed means

per group is provided as a measure of statistical strength

of phenotypes.

Conclusion
The heterogeneity and complexity of TBI recovery and

prognosis extends beyond conventional severity scales.

Here, we present a literature review of recent trends in

TBI phenotyping and find that four to five phenotypes are

often indicated, irrespective of field or population, although

there are significant variations in methodology and inclusion

criteria. We detail five phenotypes that arise more than once

across studies, but most phenotypes described are inconsis-

tent across reports. In the absence of standardization, it is un-

clear how to consolidate these disparate observations. To

address this, we provide a freely available phenotyping pipe-

line (PhenoBench), to encourage standardization, bench-

marking, and statistical validation of TBI phenotyping.

The next steps include collaboration to uncover reproduc-

ible TBI phenotypes across sites, studies, and populations.

For clinical relevance, we summarize our findings with

five takeaways and four trackable recommendations that in-

clude specific action items (Table 2):

1. TBI is a heterogeneous injury with varying symp-

toms, impairments, and recovery patterns across

similar TBI severity levels.

Table 2. Actionable Research Recommendations for TBI Phenotyping

Recommendation Action

1. Establish patient phenotypes by
unifying and harmonizing data to
understand differences and
similarities across populations

� TBI research, diagnosis, management, recovery, and prognosis make use of a broad and often disparate
spectrum of measures. Where appropriate, incorporating multiple data types per study can advance our
understanding of phenotypes by promoting interdisciplinary perspectives.

2. Develop, validate, and standardize
tools and assessments

� When designing new studies, consider analysis pipelines and tools used in earlier phenotyping reports.
� Incorporate the use of common data elements to improve collaboration and synthesis of findings.
� Renew efforts toward data sharing, consistency, and collaboration to provide common reference points.

3. Develop registries or repositories,
democratize data, and prioritize
privacy

� Use public data sets to explore and validate methods and outcomes at scale.
� Adopt policies for tool sharing, which enables valuable comparisons and validation of phenotypes across

studies and data sets.
� Adopt policies for knowledge sharing of negative or contradictory results, which will allow the community to

identify contexts that confound conventional understanding.

4. Identify and integrate
constellations of phenotype data
from different modalities

� Efforts to identify phenotypes within and across populations should be driven by the need to target the right
participants into the right TBI clinical trials and accelerate treatments into practice.

TBI, traumatic brain injury.
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2. There is inconsistency in existing phenotyping ter-

minology, methods, measures, and populations; this

results in thematically distinct TBI subclassifica-

tions lacking consistent clinical relevance.

3. Establishing common methods, measures, and

means for tool sharing will help clarify our under-

standing of TBI phenotypes.

4. Recent large, deep phenotyped TBI cohort studies

offer an opportunity to develop a new taxonomy

based on mechanism.

5. Establishing shared data repositories allows for

phenotypic enrichment and can drive precision

medicine models.
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