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Abstract

Background—This study sought to predict postsurgical seizure freedom from pre-operative 

diagnostic test results and clinical information using a rapid automated approach, based on 

supervised learning methods in patients with drug-resistant focal seizures suspected to begin in 

temporal lobe.

Method—We applied machine learning, specifically a combination of mutual information-based 

feature selection and supervised learning classifiers on multimodal data, to predict surgery 

outcome retrospectively in 20 presurgical patients (13 female; mean age±SD, in years 33±9.7 for 

females, and 35.3±9.4 for males) who were diagnosed with mesial temporal lobe epilepsy (MTLE) 

and subsequently underwent standard anteromesial temporal lobectomy. The main advantage of 

the present work over previous studies is the inclusion of the extent of ipsilateral neocortical gray 

matter atrophy and spatiotemporal properties of depth electrode-recorded seizures as training 

features for individual patient surgery planning.

Results—A maximum relevance minimum redundancy (mRMR) feature selector identified the 

following features as the most informative predictors of postsurgical seizure freedom in this 

study's sample of patients: family history of epilepsy, ictal EEG onset pattern (positive correlation 
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with seizure freedom), MRI-based gray matter thickness reduction in the hemisphere ipsilateral to 

seizure onset, proportion of seizures that first appeared in ipsilateral amygdala to total seizures, 

age, epilepsy duration, delay in the spread of ipsilateral ictal discharges from site of onset, gender, 

and number of electrode contacts at seizure onset (negative correlation with seizure freedom). 

Using these features in combination with a least square support vector machine (LS-SVM) 

classifier compared to other commonly used classifiers resulted in very high surgical outcome 

prediction accuracy (95%).

Conclusions—Supervised machine learning using multimodal compared to unimodal data 

accurately predicted postsurgical outcome in patients with atypical MTLE.

Keywords

Mesial temporal epilepsy; surgical outcome prediction; supervised learning; mutual information

1. Introduction

1.1. Background

Mesial temporal lobe epilepsy (MTLE) is a common type of chronic, medically intractable 

epilepsy. The recommended treatment for patients with pharmacoresistant MTLE is surgery 

to remove brain area(s) necessary and sufficient for generating spontaneous seizures, 

conceptually referred to as the epileptogenic zone (EZ) [1], [2]. However, surgery does not 

always result in the elimination or complete control of seizures even after patients had 

standard or tailored resection of the suspected EZ. A review of the literature indicates that a 

comprehensive diagnostic evaluation that considers results from multiple modalities, for 

example electrophysiology, neuroimaging, neuropsychological testing, clinical history and 

semiology, may more accurately delineate the EZ that could improve the likelihood for 

postsurgical seizure freedom, particularly in cases with complicated MTLE [3], [4], [5], [6], 

[7], [8], [9]. The inherent differences in brain structure and function of different patients 

(even those with similar diagnosis), absence of one or more of preoperative data modalities, 

and lack of a standard multimodal data analysis scheme even when all or majority of these 

data are available make surgical outcome prediction a nontrivial task. In cases like these, 

machine learning techniques could be useful because such techniques could perceive 

obscure associations between multimodal preoperative results and postsurgical outcome in 

MTLE surgery candidates.

A key advantage of machine learning is the ability to objectively manipulate multimodal, 

potentially contradictory data, allowing for production of interim results that the algorithm 

can readily revise as more data becomes available. Machine learning has been used in 

diverse biomedical applications, such as intelligent patient monitoring in the operating room 

[10], identifying subtypes of cancer [11], Alzheimer's disease diagnosis [12], and 

telemedicine [13]. In early diagnosis of Alzheimer's disease, multimodal classifiers that 

fused EEG, MRI, and PET modalities showed an improvement of up to 20% compared to 

the classification performance obtained when using each individual data source separately 

[12].
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Machine learning techniques have also been utilized in epilepsy research for automated 

epilepsy diagnosis [14], [15], [16], seizure lateralization [17], [7], [18], [19], differentiation 

between mesial and neocortical temporal lobe epilepsies [20], analysis of electrophysiology-

hemodynamics connectivity in epileptic patients [21], [22], and in several studies to predict 

postsurgical seizure freedom [23], [24], [25], [26], [27], [28], [29], [30], [31].

1.2. Purpose

The goal of this study was to computationally evaluate results from preoperative diagnostic 

tests (intracranial EEG and MRI) and clinical data using supervised learning methods to 

predict surgical outcome. The premise is to train a computer algorithm by giving it features 

(preoperative data) along with corresponding labels (surgical outcome score). The computer 

algorithm tries to find patterns between features that are exclusively associated with the 

given label. Usually such patterns are not obvious from visual inspection of the data. After 

the algorithm learns, it will be able to classify new subjects (i.e., predict their surgical 

outcome) based on features only. The main advantage of the present work over previous 

studies is the inclusion of the extent of ipsilateral neocortical gray matter atrophy and 

spatiotemporal properties of depth electrode-recorded seizures as training features for 

individual patient surgery planning.

1.3. Significance

The proposed method is objective, automated and fast. In the present study, it is used to 

predict one of the two classes of seizure free or not seizure free outcome in drug resistant 

epileptic patients. If used in a multi-classes manner (e.g., (1) 0-25%, (2) 25-50% chance, (3) 

50-75% chance, (4) 75-100% chance of seizure freedom), the proposed method can quantify 

the probability of favorable surgery outcome for a (test) patient based on his/her pre-

operative multimodal data and the pre-operative and surgical outcome data of previous 

(training) patients. Also, it can quantify the likelihood of patient membership to various 

surgical outcome classes. Expandability and capacity to improve accuracy are other 

advantages of this strategy, as it can learn from previous patients’ multimodal data to 

increase the classification accuracy for new patients iteratively. Ultimately, these methods 

may provide a basis for a standardized approach for the pre-surgical evaluation of suspected 

temporal lobe epilepsy or other type of epilepsy as long as the required features are available 

and can be entered as input to the classifier. Recent work presented at last year's American 

Epilepsy Society Annual Meeting emphasized a need for a more formal approach in the 

diagnosis and treatment of non-lesional epilepsy [32]. It would appear that epileptologists 

need direction on how to approach more difficult cases of epilepsy, including complex cases 

of MTLE.

The main advantage of the present work compared to previous related studies is the 

inclusion of the extent and spatial distribution of neocortical atrophy and intracranial 

electrophysiological recordings as training features [33]. In addition, it is anticipated the 

proposed strategy could be used to identify patients that might predict a postsurgical 

outcome other than completely seizure-free, (e.g., improved with 90%, 75%, etc. reduction 

in seizures), and in these cases, consider the potential benefits from other treatments such as 
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vagal or trigeminal nerve stimulation or deep brain stimulation. To this end, prognosis data 

from a pool of patients who underwent non-surgical treatment options is required.

2. Materials and methods

2.1. Subjects

Twenty patients with drug resistant focal seizures suspected to arise from temporal lobe 

were subjects for this study (13 female). All subjects were candidates for epilepsy surgery, 

but required presurgical depth electrode to localize the brain area where seizures began 

because results from non-invasive tests were inconclusive. Depth EEG implantations were 

bilateral. Mean age ± SD, in years was 33±9.7 for females, and 35.3 ±9.4 for males. All 

patients gave verbal and written informed consent prior to participating in these research 

studies, which were approved by the UCLA Office for Protection of Research Subjects 

Medical Institutional Review Board. The surgery outcome for each patient was labeled as 

either 1 (seizure free ~ Engel class I with and without auras) or 2 (not seizure free ~ Engel 

class II or higher) [1]. Table 1 summarizes the demographic and postsurgical outcome 

information for the study's subjects (epilepsy duration: 22.6±10.5 years, seizure onset age: 

11.3±8.8 years, follow up at which outcome classes were determined: 50.3±32.4 months). 

The electrophysiological and neuroimaging data from patients in the current study were used 

in a different study that analyzed cortical gray matter thickness in relation to depth 

electrode-recorded hypersynchronous (HYP) and low voltage fast (LVF) ictal EEG onset 

patterns [34].

2.2. Feature selection

2.2.1. Features—A combination of 88 demographic, clinical, electrophysiological, and 

structural magnetic resonance imaging (MRI) features were extracted for each patient as 

shown in Table 2, which also includes the definition and extraction method for each of these 

features. These features were selected based on an extensive literature search and included 

those most commonly cited and used in the presurgical evaluation of drug resistant focal 

epilepsy (e.g., [1], [3], [8], [35], [36], [37], [38], [39], [40], [41]), as well as consultation 

with expert epileptologists. The preoperative MRI modality features (features 77 to 80 in 

Table 2 denote the rate and distribution of gray matter thickness reduction per year of 

epilepsy duration, when hemispheres ipsilateral to seizure onset were grouped together 

(features 77 and 79), or when hemispheres contralateral to seizure onset were grouped 

together (features 78 and 80). GM thickness reduction per each year of epilepsy was 

determined as the magnitude of the interaction between ictal EEG onset pattern and epilepsy 

duration on cortical gray matter thickness after controlling for age and gender. For each 

feature, missing values were replaced by the mean value of that feature column.

2.2.2. Feature selection algorithm options—The purpose of feature selection is to 

minimize the number of parameters in the final machine learning model to improve 

performance and generalizability [42]. The central assumption when using a feature 

selection technique is that the data contains redundant or irrelevant features. Redundant 

features are those which provide no more information than the currently selected features, 

and irrelevant features provide no useful information in any context [43]. Feature selection 
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is also useful as part of the data analysis process, showing which features are important for 

prediction, and how these features are related [44]. Many feature selection techniques have 

been created, and generally are grouped into one of three categories: “filter” [45], [46], [47], 

[44], [48], [49], “wrapper” [50], [51], [52], [53], or “embedded” [54], [55], [56] feature 

selection methods. The filter approach often selects features by testing whether some preset 

conditions about the features and the target class are satisfied [49]. For example, these 

conditions can be measures of distance, information (or uncertainty), dependence, 

consistency, or classifier error rate. A wrapper is a feature selector that convolves with a 

classifier (e.g., naïve Bayes classifier) and evaluates the goodness (i.e., classification 

accuracy) of subset of features being selected by optimizing a criterion (usually minimizing 

the classification error) [49], [53]. In the embedded feature selection approach, feature 

selection is built into the inductive algorithm and so the structure of the class of functions 

under consideration plays a crucial role [55].

2.2.3. Rationale for using the selected feature selection algorithm—Generally, 

while a wrapper feature selection approach can yield high classification accuracy for a 

particular classifier, it has the disadvantage of high computational complexity and less 

generalization of the selected features on other classifiers [49]. The complexity of filter 

methods is much lower than wrappers, and selected features return comparable classification 

errors for different classifiers [43], [49]. Between the available filter approaches, the current 

study used the minimal-redundancy-maximal-relevance algorithm (mRMR) because of its 

advantages in terms of both feature selection complexity and feature classification accuracy 

[49]. In this method, relevant features and redundant features are considered simultaneously, 

i.e., as formulized in formula (1), it seeks to maximize the relevance of a feature set for a 

specific class and minimize the redundancy of all features in the feature set. Relevance is 

defined by the average value of all mutual information (MI) values between the individual 

feature (xj) and the specific class (c). In formula (1), Sm−1 is a feature set with m−1 features. 

The task is to select the mth feature from the set {X – Sm−1}. This is done through an 

incremental search method by selecting the feature that maximizes the condition inside the 

square brackets. Redundancy is the average value of all MI values (denoted with I in 

formula (1)) between the individual feature and every other feature it the set (xi). 

Furthermore, the mRMR algorithm is suitable for unprocessed data, where the features 

selected in this way will have more or less correlation with each other. This is because 

mRMR does not intend to select features that are independent of each other. Instead, at each 

step, it tries to select a feature that minimizes the redundancy and maximizes the relevance 

[49].

(1)

The interpretation of the mRMR output (ranked features) may be better clarified with an 

example. Consider a small three variable data set, for which the mRMR output has ranked 

the features from highest to lowest as follows: 2, 1, and 3. This result means that the 

combination of features 2 and 1 is better than the combination of 2 and 3. It also means 2 is 

the best feature if you only want one feature, and both “2 and 1” are the best combination if 
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you want two features. However, this does not mean 3 is the least relevant or most 

redundant feature. If features are selected without considering the relationship between all 

the features, but only between individual features and the target class variable, results may 

even show that 3 is more relevant than 1. However the combination of 2 and 1 is better than 

that of 2 and 3 [57]. mRMR has been tested on a number of medical datasets, namely HDR 

MultiFeat [58], Arrhythmia [58], NCI [59], [60], and Lymphoma [61], and led to promising 

improvement on classification accuracy. These studies involved datasets with large number 

for features, combination of discrete and continuous data, and different classifiers. 

Considering that our dataset has similar attributes, we were inspired to use the mRMR 

feature selection method for the present study.

2.3. Classifiers

Five widely used supervised learning classifiers [62], [63], [64] were tested in this study: (1) 

Linear Discriminant Analysis (LDA), (2) Naïve Bayes (NB), (3) support vector machines 

(SVM) with radial basis function kernel (SVM-rbf), (4) SVM with multilayer perceptron 

kernel (SVM-mlp), and (5) Least-Square SVM (LS-SVM). One or more of these classifiers 

were utilized in previous studies on supervised learning based prediction of MTLE surgery 

outcome [23], [24], [25], [26], and we chose these classifiers to build up on previous work 

and show the potential superiority of our proposed scheme. The normality of data was 

checked for the LDA and NB algorithms. The common premise of all these classifiers is to 

train a computer algorithm by giving it features (preoperative data) along with 

corresponding labels (surgery outcome score). The computer algorithm tries to find patterns 

between features that are exclusively associated with the given label. Usually such patterns 

are not obvious from manual inspection of the data. After the algorithm learns, it will be 

able to classify a new subject (i.e., predict his/her surgery outcome) based on his/her 

preoperative features only. A leave-one-out cross-validation scheme was used to train and 

test each classifier. In other words for each classifier, the prediction accuracy was computed 

as the average of twenty iterations (as there were twenty subjects), where at each iteration 

one patient was left out as the test subject and the remaining nineteen patients were used for 

training the classifier. This procedure was repeated twenty times until every patient was 

used as a test subject. It should be noted that feature selection was performed only on the 

training data, i.e., feature selection repeated in each leave one out iteration.

In the case of the LS-SVM classifier, we tested the prediction accuracy of the classifier with 

three different kernels, namely linear, polynomial, and RBF. To verify the optimal range of 

parameter values for the kernel function, we repeated the prediction task 1000 times and 

computed the histograms for the average regularization parameter and average kernel 

bandwidth over those iterations.

2.3.1. Convergence criterion—In order to select the optimal number of features and 

classification accuracy for each classifier, an iterative approach was implemented. For all 

classifiers, classification started with one feature (top ranked feature determined from 

mRMR), and in each iteration, another feature (in the order of ranking) was added. This 

process terminated, when the following criteria were satisfied:
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(2)

where C is the classification accuracy, and i is the number of features used. Upon 

satisfaction of this criterion, (i−1) and Ci−1 were selected as the optimal number of features 

and optimal classification accuracy respectively.

3. Results

In a related, but separate study, we measured cortical gray matter (GM) thickness in a group 

of patients diagnosed with unilateral MTLE that had either depth electrode-recorded HYP 

(hypersynchronous) or LVF (low voltage fast) ictal EEG onset patterns [34]. These MRI-

based measures of cortical GM thickness and electrophysiological data, as well as clinical 

information obtained from medical histories, were used as data in the current analysis. Table 

3 provides a list of the ten most informative features determined by the mRMR feature 

selection algorithm. According to Table 3, family history of epilepsy, the maximum 

ipsilateral GM thickness reduction per each year of epilepsy, and the ratio of the number of 

seizures that first appeared in the ipsilateral amygdala to total number of seizures were 

collectively the strongest predictors of surgical outcome in this dataset. Table 3 also lists the 

extent and direction of impact of each of these features on postsurgical outcome. Outcome 

was one of 1 = seizure free, 2= not seizure free. A positive correlation indicates that an 

increase in the state of the feature correlates with an increase in the state of the postsurgical 

outcome, while a negative value indicates an increase in the state of the feature correlates 

with a decline in the state of the postsurgical outcome. For example, patients with a family 

history of epilepsy (feature state 1 = family history of epilepsy ‘yes’, see Table 2, last 

column, feature #84) were more likely to have seizure free postsurgical outcome (outcome 

state 1 = seizure free with or without aura).

Figure 1 shows the prediction accuracy of each of the five classifiers versus number of 

features selected for training. Each graph converges to the maximum prediction accuracy for 

that classifier. The optimal number of features for each classifier was found based on 

equation (1) and correspond to features 1-5 in Table 3. Three of the classifiers (LDA, NB, 

and SVM-mlp) converged to their optimal prediction accuracy (80%, 80%, and 85% 

respectively) with the smallest number of features for training (i.e., 3 features). LS-SVM 

required the greatest number of training features (i.e., 5 features) to reach its optimal 

prediction accuracy of 95%. We tested the significance of this result by running a Mann-

Whitney U test between prediction accuracy values (20 values for the 20 iterations of the 

cross-validation scheme) computed by the LS-SVM classifier trained on our data and 

prediction by chance. The results indicated a statistically significant difference between the 

predication accuracy of our prediction method from chance at 5% significance level 

(p=0.0082). However, using a similar approach it was found that at their optimal prediction 

accuracy, the performance of the tested classifiers was not statistically significant from each 

other (p-values > 0.05 for all possible pairs of classifiers).

Prediction accuracy for each of the classifiers in relation to the different feature categories is 

shown in Figure 2. In this analysis, all features belonging in one category were used to train 
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the classifiers. There were a total of four runs, one for each of the four feature categories, 

i.e., electrophysiology, MR imaging, clinical history, and demographic data. LDA and NB 

prediction accuracies could not be calculated with electrophysiological features only 

because the pooled covariance of the training data was not positive definite. The highest 

prediction accuracy for an individual feature category was achieved using the SVM-rbf 

classifier with MRI data (80%), whereas only 25% prediction accuracy was found using the 

SVM-mlp classifier with these same MRI data, which was the lowest value of any classifier 

and feature category. With respect to feature category, clinical features were associated with 

the highest average prediction accuracy across all classifiers (mean: 65%), while the lowest 

was found with MRI data and an average accuracy of 56%. The LS-SVM classifier did the 

best or nearly the best with each of the feature categories (mean: 70%).

The prediction accuracy of the LS-SVM classifier with various kernels is presented in Table 

4. The RBF kernel resulted in the highest prediction accuracy (95%). Figure 3a shows a 

sample histogram of the optimal regularization parameter estimated by the LS-SVM model 

with this kernel (RBF) across the twenty cross validation iterations (because there were 

twenty subjects). It can be seen that the most frequent estimate of the regularization 

parameter was in the range of 0 to 5. Histogram of the optimal RBF kernel bandwidth 

estimated by the LS-SVM model across the twenty cross validation iterations is depicted in 

Figure 3b, with the interval 5 to 15 being the most frequent estimated range of this 

parameter. A larger kernel bandwidth indicates a stronger smoothing. Figures 3a and 3b 

show the histograms for the average regularization parameter and average kernel bandwidth 

over 1000 repeated iterations of the prediction task. The optimal range of parameter values 

for the kernel function is further confirmed from this repeated test. The average value of the 

regularization parameter estimated by the LS-SVM model fell in the 0 to 5 interval in 91% 

of the iterations (914 out of 1000). The average value of the estimated kernel bandwidth fell 

in the 5 to 15 interval in 99.4% of the iterations (994 out of 1000).

4. Discussion

Results from the current study showed that a machine learning-based approach using data 

from multiple modalities could predict with high accuracy postsurgical seizure freedom in 

patients with atypical unilateral MTLE. Furthermore, the proposed approach using a 

combination of intracranial EEG, quantitative MRI, and clinical data did a significantly 

better job of predicting outcome than machine learning using intracranial EEG (Phase II) or 

imaging (MRI SPM) alone.

Between the investigated classifiers, results suggest LS-SVM is the most promising based 

on its high classification accuracy using a small number of features. Machine learning 

models that achieve similar accuracy by operating on a selected set of features are preferred 

in investigative research over machine learning models that are saturated with input features 

[42]. LS-SVM enjoys the sparseness of SVM solutions but is also more computationally 

efficient, i.e., is not limited by the time and memory consumed optimization [65]. Our 

results confirm the results of a previous study that showed the power of LS-SVM for the 

purpose of surgical outcome prediction in TLE [23]. Using a data fusion approach and a set 

of eleven features for each subject that study succeeded to prospectively predict that surgery 
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was the best solution for a patient in more than 90% of the cases. The [23] study examined 

pre-operative interictal and ictal scalp EEG findings, age of onset, gender, duration of 

epilepsy, risk factors, family history, and physical resected tissue as features, but did not 

discuss the strength of each feature in predicting postsurgical outcome. A recent study also 

used supervised classification data mining to predict surgical outcome from common clinical 

features and neuropsychological and pathological evaluations in a group of 23 MTLE 

patients with HS [25]. The analysis revealed that outcome could be predicted with an 

estimated accuracy of almost 90% using some clinical and neuropsychological features, 

which confirms the promise of machine learning for surgery outcome prediction. It should 

be noted that the aforementioned study was specific to MTLE patients with unilateral HS 

only. In our study patients included those with and without HS and a broader range of 

features (most importantly quantitative structural MRI measurements) were used that could 

be informative in difficult cases of MTLE.

An advantage of the SVM-based methods is their flexibility to customize the classifier's 

kernel function and regularization parameter to achieve optimum results for the data in hand. 

The task of fine-tuning the SVM-based models is instrumental for one to achieve optimal 

performance [66]. Because of its superior performance compared to the rest of the 

classifiers, we focused on fine-tuning the LS-SVM method to optimize prediction accuracy. 

The LS-SVM algorithm computes the optimal regularization parameter such that the 

complexity of the model is minimized, while good fitting of the training data points is 

achieved. It can be seen from Figure 3a that the most frequent estimate of the regularization 

parameter was in the range of 0 to 5. This agrees with the fact that SVM models with low 

values of regularization parameter tend in general to achieve better performance than those 

with high values of this parameter [66]. As depicted in Figure 3b, the interval 5 to 15 was 

the most frequent estimated range for the optimal RBF kernel bandwidth. A larger kernel 

bandwidth indicates a stronger smoothing. For investigative purposes, we repeated the 

prediction task 1000 times and computed the histograms for the average regularization 

parameter and average kernel bandwidth over those iterations (Figures 3(c) and 3(d)). The 

optimal range of parameter values for the kernel function was further confirmed from this 

repeated test. The average value of the regularization parameter estimated by the LS-SVM 

model fell in the 0 to 5 interval in 91% of the iterations (914 out of 1000). The average value 

of the estimated kernel bandwidth fell in the 5 to 15 interval in 99.4% of the iterations (994 

out of 1000).

To the best of our knowledge, this is the first study that included cortical GM thickness 

measurements computed through quantitative structural MRI analysis for individual MTLE 

patient surgical outcome prediction [33]. The information associated with these MRI data 

likely contributed to the higher prediction accuracy because evidence from MRI studies 

suggests that the presence of extra-temporal lobe lesions can reduced the likelihood for 

postsurgical seizure freedom [67], [8], [68], [69], [70]. Quantitative MRI techniques have 

been used to investigate changes in hippocampal [71], [72], [73] or extra-hippocampal [74], 

[75], [76] GM thickness between patient groups and controls, or between different epilepsy 

patient groups. However, since results from these studies were based on group averaged 

differences, it is difficult to extend these results to surgical planning in individual patients. 

By utilizing machine learning, we have presented an approach to use quantitative MRI 
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derived from individual subjects. To this end, the extent and spatial distribution of cortical 

atrophy compared to age and gender matched controls, computed using a sophisticated 

quantitative cortical pattern matching technique [77] were employed among the input 

features to the supervised learning classifiers. Maximum cortical GM thickness reduction 

per each year of epilepsy ipsilateral to hemisphere of onset proved to be a very informative 

predictor of surgical outcome (ranked 2 by mRMR; Table 3). It can be seen from Figure 2 

that the MRI features alone yield an accuracy of 80% with SVM-rbf classifier, which further 

signifies the importance of these of features in surgical outcome prediction.

Presurgical intracranial studies are needed when non-invasive studies, i.e., scalp EEG, MRI, 

PET, SPECT, are inconclusive. Another novelty of this study was inclusion of features from 

patients’ intracranial EEG recordings for post surgery outcome prediction. Five of the top 10 

selected features by the mRMR algorithm (proportion of seizures to total seizures that first 

appeared in the ipsilateral amygdala and anterior region of middle temporal gyrus, ictal EEG 

onset pattern, delay in seconds from initial seizure activity to appearance at other recording 

sites in ipsilateral hemisphere, and number of contacts at seizure onset), belong to the set of 

intracranial EEG (electrophysiological) features. Based on these findings, amygdala was 

more predictive than any other mesial structure. While electrophysiological features alone 

predicted the correct surgical outcome in 50% to 70% of the cases (Figure 2; SVM-rbf: 

70%, SVM-mlp: 50%, LS-SVM: 70%), together with their preceding ranked features, they 

yielded a classification accuracy of 85% or higher with the SVM classifiers (Figure 1; SVM-

rbf: 90%, SVM-mlp: 85%, LS-SVM: 95%). These results highlight the added value in 

employing electrophysiological features in addition to the imaging and clinical features and 

corroborate the intracranial EEG procedure carried out in some major hospitals as part of the 

preoperative evaluation protocol. In patients who have an MRI that indicates extra-temporal 

lobe abnormalities, electrophysiological studies are carried out to confirm the 

epileptogenicity of a lesion [71]. In some cases, intracranial EEG recordings are required to 

directly record from structural abnormalities that could exist on mesial and lateral surfaces 

of each cerebral hemisphere. Deep brain electrical activity recorded through implantation of 

intracranial electrodes reveals important information about the sites of seizures, number of 

seizures at each site, onset pattern of seizures, and the latency of seizure propagation from 

onset site to other ipsilateral and contralateral structures. While phase II recordings can be 

very informative, it is not comprehensive as it suffers from the limitation of discrete spatial 

coverage. i.e., depth electrodes are not implanted in all brain areas, and even this partial 

implant configuration is not consistent among all patients. Moreover, a potential drawback 

of the proposed approach is that it may not be comparably effective without the availability 

of the intracranial EEG recordings, which is in fact not collected in all hospitals. The 

association of greater number of contacts at seizure onset with a higher chance of seizure 

freedom post surgery, as well as the association of greater number of seizures recorded in 

the ipsilateral amygdale with a higher chance of seizure freedom post surgery confirms the 

benefit of amygdalohippocampectomy to this patient population.

Other studies have pointed to the importance of seizure onset pattern in surgical outcome 

prediction. In the present study, the onset pattern was one of the two most common MTLE 

seizure onset patterns, namely hypersynchronous (HYP) and low voltage fast (LVF). As 

reflected in Table 1, seizure-free outcome was more likely in patients with HYP ictal onset 
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(89% in HYP patients, 64% in LVF). In another study, we found that a larger proportion of 

HYP than low voltage fast (LVF) onset seizures terminate with EEG suppression or 

irregular slowing [34]. Another potential reason for better post surgical outcome in patients 

with HYP ictal onset pattern might be the presence of non-epileptogenic areas of atrophy. 

While this group had more diffuse GM atrophy compared to the LVF group, the atrophic 

areas are not necessarily the source of epilepsy. It has been shown that extra temporal 

lesions on MRI are not always the source of epileptic activity and may simply be incidental 

and unrelated to the seizure [78].

Our results suggest that some clinical factors play a critical role in the success of epilepsy 

surgery. Family history of epilepsy was selected as the top rank feature by mRMR. Presence 

of family history of MTLE correlates with a higher chance of seizure freedom post surgery 

(Table 3). This is in agreement with previous studies that reported family history of epilepsy 

as a predictor of remission [79], [80], [81], [82]. Another important clinical feature was 

epilepsy duration. In a study to quantify the epileptogenicity of brain structures recorded 

with depth electrodes, Bartolomei et al found a statistically significant correlation between 

the duration of epilepsy and the number of structures disclosing high epileptogenicity, 

suggesting that MTLE is a gradually evolving process in which the epileptogenicity of the 

temporal lobe tends to increase with time [83]. Our results indicate a statistically 

insignificant negative correlation between epilepsy duration and post surgical seizure 

freedom (Table 3), implying that longer duration of epilepsy prior to surgery was correlated 

with a higher chance of seizure freedom post surgery. While this counters the results 

reported by [84] that favorable long-term surgical outcome was associated with shorter 

epilepsy duration, it is more in line with more recent studies that found no significant 

associations between post surgical outcome and duration of epilepsy [85], [86], [87]. The 

discrepancy could be due to the variable length of the follow-up across studies, as the 

chance of seizure remission after surgery can be significantly affected by when the follow-

up assessment is performed [3]. Moreover, comparing the columns “age” (patient's age at 

time of surgery) and epilepsy duration “number of years of epilepsy prior to surgery” in 

Table 1 shows that nearly all of the patients had epilepsy for half of their life and 12 of them 

(out of 20), had epilepsy for over two thirds of their life. This reflects the clinical 

institution's willingness to operate on older patients, and could be because this was an 

atypical population of patients, with longstanding epilepsy who did not consider surgery 

earlier because it was relatively mild, while the other patients may have had earlier surgery 

because they had more severe epilepsy and were desperate.

In the present study, mean age at time of surgery of patients who achieved seizure freedom 

(Engel class I) at least 47 months after surgery was older than the mean age of those patients 

whose follow-up indicated an Engel class II or higher. Previous studies pointed to early age 

of seizure onset as a risk factor for poor prognosis after surgery [41], [88], [9]. In the present 

study, age at seizure onset was not available for all patients, and hence the impact of this 

feature on postsurgical outcome prediction could not be verified.

While the correlation coefficients listed in Table 3 are useful in revealing the direction of the 

association of each feature and postsurgical outcome, the small value of the coefficients as 

well as the rather large p-values give the impression that the strength of each feature-
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outcome correlation was not impressive. In spite of this, through the use of supervised 

learning classifiers, the combination of these features predicted postsurgical outcome very 

successfully. This further highlights the importance of multimodal machine learning in 

extracting associations and patterns that are not obvious from visual inspection of the data.

It should be noted that subjects of the present study were all patients who were suspected to 

have temporal lobe epilepsy and thus surgical candidates. Depth electrode studies localized 

the seizure onset zone to mesial temporal structures, which in most cases had MRI signal 

abnormalities, and all had anteromesial temporal lobectomy [89]. The question whether this 

approach works in individuals with neocortical epilepsy remains to be investigated.

5. Future Work

This is a retrospective study, with a selected of number MTLE surgery candidates. To make 

definitive statements and potentially use it in clinical practice, a prospective study (have the 

algorithm predict outcome before surgery) with a larger population seems necessary. As for 

any supervised learning scheme, a larger training sample space (ideally 88 subjects, i.e., the 

number of features, or more) is expected to improve the classification accuracy. We expect 

this improvement to be more significant for the linear classifiers (LDA and Naïve Bayes) 

compared to the SVM classifiers, as the latter group already yielded a very high prediction 

accuracy of 90% or higher, even with the present smaller sample space. The algorithms can 

be extended to address multi-class classification (e.g., prediction of post surgical Engel class 

instead of ‘seizure free’ or ‘not seizure free’ outcome).

Weights can be given to features based on the significance of their effect on epilepsy 

experts’ decision making about surgery. This can be tailored to the specific profile of each 

case. For example, in a patient with extra-temporal spread damage, even more emphasis 

should be put on depth electrode EEG recordings to increase the likelihood of a favorable 

surgery outcome. The assignment of weights can be objectively based on the information 

content (mRMR ranking) of the features or manually through expert clinician's input.

Upon availability of required facilities in health care centers, new features can be added to 

the feature space, which in turn may enhance the outcome prediction accuracy further. Such 

features include but not limited to scalp EEG (this might be a difficult feature since there is 

not a consensus on how it is interpreted among different centers), Positron Emission 

Tomography (PET) results, magnetoencephalography (MEG) results, seizure semiology and 

patient's behavioral features during seizures, and seizure etiology (e.g., head trauma, 

infections such as encephalitis). The latter two features may be less reliable, since in the 

absence of detailed medical reports, they are either subjective or based on the recollection of 

patient or his/her family. FDG-PET and MRI are common in presurgical evaluation and 

provide important information in diagnosis of MTLE. Typically, when patients are PET and 

MRI negative, i.e., subtle or no evidence for interictal temporal lobe hypometabolism or HS 

respectively, they are further evaluated through depth electrode studies. These features 

should certainly be added to the feature space in future analyses.

Inclusion of more comprehensive neuropsychological test results or a continuous rather than 

discrete spectrum of neuropsychological features may further enhance the prediction 
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accuracy of the classifiers. It has been suggested that personality style features from 

Rorschach test results are linked with post surgical outcome in epilepsy patients, such that 

the majority (85%) of extroversive (EB2) patients had successful (Engel I) outcome [25].

The patients in the present study were atypical cases of MTLE, which are difficult and often 

require invasive studies for surgical planning. In our future studies, we plan to select an 

equal number of patients who were, and were not, seizure free, and also include patients 

who did not go to surgery. Reliably predicting who will fail phase II, might save a lot of 

money, discomfort, and risk.

6. Conclusion

Utilization of multimodal data and machine learning can result in high accuracy surgical 

outcome prediction in patients with mesial temporal lobe epilepsy, which is not attainable 

from unimodal assessments. A combination of maximum relevance minimum redundancy 

(mRMR) feature selector and least square support vector machine (LS-SVM) classifier, 

resulted in best surgery outcome prediction accuracy. Based on the mRMR ranking, family 

history of epilepsy, rate of gray matter thickness reduction in the hemisphere ipsilateral to 

seizure onset, proportion of seizures that first appeared in ipsilateral amygdala to total 

seizures, age, epilepsy duration, seizure onset pattern, latency from initial seizure activity to 

appearance at sites in ipsilateral hemisphere, gender, and number of electrode contacts at 

seizure onset were the most informative predictors of surgical outcome.
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Summary

Mesial temporal lobe epilepsy (MTLE) is characterized by epileptic seizures that begin in 

or primarily involve mesial temporal limbic structures and is frequently associated with 

focal structural abnormalities, such as hippocampal sclerosis, which can be detected on 

neuroimaging. The recommended treatment for patients with drug-resistant MTLE is 

surgery to remove brain area(s) necessary and sufficient for generating spontaneous 

seizures, conceptually referred to as the epileptogenic zone (EZ). However, surgery does 

not always result in the elimination or complete control of seizures even after patients 

had standard or tailored resection of the suspected EZ. A review of the literature indicates 

that a comprehensive diagnostic evaluation that considers results from multiple 

modalities, for example electrophysiology, neuroimaging, neuropsychological testing, 

clinical history and semiology, may more accurately delineate the EZ that could improve 

the likelihood for postsurgical seizure freedom, particularly in cases with complicated 

MTLE. The inherent differences in brain structure and function of different patients 

(even those with similar diagnosis), absence of one or more of preoperative data 

modalities, and lack of a standard multimodal data analysis scheme even when all or 

majority of these data are available make surgical outcome prediction a non-trivial task. 

In cases like these, machine learning techniques could be useful because such techniques 

could perceive obscure associations between multimodal preoperative results and 

postsurgical outcome in MTLE surgery candidates. In this paper we computationally 

evaluate results from preoperative diagnostic tests and clinical data using supervised 

learning methods to predict surgical outcome. These methods may provide a basis for a 

standardized approach for the pre-surgical evaluation of suspected temporal lobe epilepsy 

or other type of epilepsy as long as the required features are available and can be entered 

as input to the classifier. A combination of maximum relevance minimum redundancy 

(mRMR) feature selector and least square support vector machine (LS-SVM) classifier, 

resulted in very high surgery outcome prediction accuracy (95%). Based on the mRMR 

ranking, family history of epilepsy, rate of gray matter thickness reduction in the 

hemisphere ipsilateral to seizure onset, proportion of seizures that first appeared in 

ipsilateral amygdala to total seizures, age, epilepsy duration, seizure onset pattern, 

latency from initial seizure activity to appearance at sites in ipsilateral hemisphere, 

gender, and number of electrode contacts at seizure onset were the most informative 

predictors of surgical outcome.
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Highlights

• Machine learning with multimodal data can accurately predict postsurgical 

outcome in patients with drug resistant mesial temporal lobe epilepsy.

• Features resulting from quantitative analysis of structural MRI and intracranial 

EEG are informative predictors of postsurgical outcome.

• Least-square support vector machine with radial basis function kernel resulted in 

optimal prediction.

• Clinical factors such as family history of epilepsy and duration of epilepsy 

significantly affect the chance of seizure freedom post epilepsy surgery.
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Figure 1. 
Prediction accuracy of each of LDA, NB, SVM-rbf, SVM-mlp and LS-SVM classifiers 

versus number of features selected by mRMR for training (refer to Table 3). The optimal 

number of features for each classifier was found based on equation (1). Each graph 

converges to the maximum prediction accuracy for that classifier.
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Figure 2. 
Prediction accuracy of the classifiers when trained with one feature category only. For every 

classifier, each bar represents the prediction accuracy for one features category, namely 

electrophysiological (dark blue), MRI (light blue), clinical (yellow), and demographical 

(red). LDA and NB prediction accuracies could not be calculated with electrophysiological 

features only, because the pooled covariance of the training data was not positive definite.
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Figure 3. 
A sample histogram of the optimal (a) regularization parameter, and (b) RBF kernel 

bandwidth estimated by the LS-SVM model (with the RBF kernel) across the twenty cross 

validation iterations. Panels (c) and (d) depict histogram of the average regularization 

parameter, and RBF kernel bandwidth estimated by the LS-SVM model (with the RBF 

kernel) over 1000 iterations, respectively.
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Table 2

List of features extracted for each patient.

Category No. Feature Definition Modality Representation

Electrophysiology 1 Hemisphere of seizure onset Hemisphere where 
seizures begin

Intracranial EEG Binary (1 = L, 2 
= R)

2 Ictal EEG onset pattern HYP: high amplitude, 
low frequency (<=2 
Hz) spike or spike-and-
wave discharges lasting 
5 sec or longer LVF: 
low amplitude, high 
frequency (≥ 10 Hz) 
activity superimposed 
or not on EEG slow 
wave

Intracranial EEG Binary (1 = HYP, 
2 = LVF)

3 No. of contacts at seizure onset Number of electrode 
contacts where seizure 
activity first appeared

Intracranial EEG Continuous

4 No. of contacts ipsilateral spread Number of contacts 
from initial seizure 
activity to appearance 
at sites in ipsilateral 
hemisphere

Intracranial EEG Continuous

5 No. of contacts contralateral 
spread

Number of contacts 
from initial seizure 
activity to appearance 
at sites in contralateral 
hemisphere

Intracranial EEG Continuous

6 Latency ipsilateral spread (sec) Delay in seconds from 
initial seizure activity 
to appearance at sites 
in ipsilateral 
hemisphere

Intracranial EEG Continuous

7 Latency contralateral spread (sec) Delay in seconds from 
initial seizure activity 
to appearance at sites 
in contralateral 
hemisphere

Intracranial EEG Continuous

8 to 56 Anatomical recording site(s) 
where seizure first appeared, 
including ipsilateral amygdala; 
entorhinal cortex; anterior, 
middle, and posterior 
hippocampus; posterior 
parahippocampal gyrus; anterior, 
middle, posterior regions of 
inferior, middle, and superior 
temporal gyrus; medial, middle, 
and lateral orbitofrontal cortex, 
anterior cingulate gyrus, and 
supplementary motor cortex

Proportion of seizures 
that began at each 
ipsilateral recording 
site divided by the total 
number of seizures

Intracranial EEG Continuous

47 to 76 Anatomical recording site(s) 
where seizure first appeared, 
including contralateral amygdala; 
entorhinal cortex; anterior, 
middle, and posterior 
hippocampus; posterior 
parahippocampal gyrus; anterior, 
middle, posterior regions of 
inferior, middle, and superior 
temporal gyrus; medial, middle, 
and lateral orbitofrontal cortex, 
anterior cingulate gyrus, and 
supplementary motor cortex

Proportion of seizures 
that began at each 
contralateral recording 
site divided by the total 
number of seizures

Intracranial EEG Continuous
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Category No. Feature Definition Modality Representation

Imaging 77 GM thickness reduction 
ipsilateral (mm per year)

Maximum GM 
thickness reduction per 
each year of epilepsy 
ipsilateral

Preoperative MRI Continuous

78 No. of lobes affected with GM 
thickness reduction ipsilateral

Number of lobes 
affected with 
significant GM 
thickness reduction 
compared to controls 
(p<0.05) ipsilateral

Preoperative MRI Binary (1 = one 
lobe affected, 2 = 
more than one 
lobe affected)

79 GM thickness reduction 
contralateral (mm per year)

Maximum GM 
thickness reduction per 
each year of epilepsy 
contralateral

Preoperative MRI Continuous

80 No. of lobes affected with GM 
thickness reduction contralateral

Number of lobes 
affected with 
significant GM 
thickness reduction 
compared to controls 
(p<0.05) contralateral

Preoperative MRI Binary (1 = one 
lobe affected, 2 = 
more than one 
lobe affected)

81 Hippocampal sclerosis Presence of HS on 
MRI

Preoperative MRI Binary (1 = yes, 
2 = no)

Clinical 82 Epilepsy duration (years) Number of years of 
epilepsy prior to 
surgery

Patients' medical charts Continuous

83 Seizure frequency (per month) Number of seizures per 
month

Patients' medical charts Continuous

84 Family history Familial history of 
epilepsy

Patients' medical charts Binary (1 = yes, 
2 = no)

85 Neuropsychological test results Abnormal 
neuropsychological test 
results or psychiatric 
history (e.g., 
depression, insomnia, 
family background)

Patients' medical charts Binary (1 = yes, 
2 = no)

86 Febrile seizure History of febrile 
seizures

Patients' medical charts Binary (1 = yes, 
2 = no)

Demographical 87 Gender - Patients' medical charts Binary (1 = 
female, 2 = male)

88 Age Patient's age at time of 
surgery

Patients' medical charts Continuous
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Table 3

Top ten features linked to postsurgical outcome based on the mRMR feature selection algorithm and their 

correlation with postsurgical denoted as 1 (seizure free) or 2 (not seizure free) For each feature, r is the 

correlation coefficient between two vectors, the first vector being the value of that feature across all subjects 

and the second vector being the postsurgical outcome (seizure free or not seizure free) across all subjects.

Rank Feature number
¥ Feature name r p Interpretation of r-value with respect to seizure-free 

outcome (1)

1 84 Family history 0.38 0.10 Presence of family history of epilepsy

2 77 GM thickness reduction 
ipsilateral (in mm per year)

−0.35 0.13 Ipsilateral reduction in cortical GM thickness per year of 
epilepsy

3 8 Amygdala mesial ipsi −0.31 0.18 Greater ratio of number of seizures recorded in ipsilateral 
amygdala to total number of seizures recorded

4 88 Age −0.35 0.13 Older patient age at time of surgery

5 82 Epilepsy duration −0.35 0.13 Longer duration of epilepsy prior to surgery

6 2 Seizure onset pattern 0.29 0.21 HYP ictal EEG onset pattern

7 6 Latency ipsilateral spread (sec) −0.35 0.13 Longer delay in ipsilateral spread of ictal discharges from 
site(s) of onset

8 10 Amygdala lateral ipsi −0.13 0.59 Greater number of seizures recorded in the lateral aspect 
of anterior temporal lobe

9 87 Gender −0.18 0.44 Male patient

10 3 No. of contacts at seizure onset −0.20 0.40 Greater number of electrode contacts involved at seizure 
onset

p is the p-value for testing the hypothesis of no correlation against the alternative that there is a nonzero correlation. The continuous features were 
discretized based on a median split.

¥
This number is with reference to feature numbers in Table 2.
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Table 4

Postsurgical outcome prediction accuracy of the LS-SVM classifier with various kernel functions.

LS-SVM kernel function Prediction accuracy

Linear 85%

Polynomial 90%

RBF 95%
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