UC Irvine
ICS Technical Reports

Title
Behavioral synthesis from VHDL using structured modeling

Permalink
https://escholarship.org/uc/item/77k5s631

Authors

Lis, Joseph S.
Gajski, Daniel D.

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/77k5s631
https://escholarship.org
http://www.cdlib.org/

Notice: This Material G
/
may be protected ¢3
by Copyright Law o no. {105
(Title 17 u.S.C.)

Behavioral Synthesis from VHDI,
Using Structured Modeling_/

Joseph S. Lis_
Daniel D. Gajski

Technical Report #91-05
January, 1991

Dept. of Information and Computer Science
University of California, Irvine
Irvine, CA 92717
(714) 856-7063

Abstract

This dissertation describes work in behavioral synthesis involving the development of a
VHDL Synthesis System VSS which accepts a VHDL behavioral input specification and per-
forms technology independent synthesis to generate a circuit netlist of generic components.
The VHDL language is used for input and output descriptions. An intermediate representa-
tion which incorporates signal typing and component attributes simplifies compilation and
facilitates design optimization.

A Structured Modeling methodology has been developed to suggest standard VHDL
modeling practices for synthesis. Structured modeling provides recommendations for the use
of available VHDL description styles so that optimal designs will be synthesized. .

A design composed of generic components is synthesized from the input description
through a process of Graph Compilation, Graph Criticism, and Design Compilation. Ex-
periments were performed to demonstrate the effects of different modeling styles on the
quality of the design produced by VSS. Several alternative VHDL models were examined for
each benchmark, illustrating the improvements in design quality achieved when Structured
Modeling guidelines were followed.

UNIVERSITY OF CALIFORNIA
IRVINE

Behavioral Synthesis from VHDL
Using Structured Modeling

DISSERTATION
submitted in partial satisfaction of the requirements for the degree
DOCTOR OF PHILOSOPHY
in Information and Computer Science
by

Joseph Stephen Lis

Dissertation Committee:
Professor Daniel D. Gajski, Chair .
Professor Lubomir Bic

Professor Nikil D. Dutt

1991

©1991
Joseph Stephen Lis
ALL RIGHTS RESERVED

The dissertation of Joseph Stephen Lis is approved,
and is acceptable in quality and form for

~ publication on microfilm: -

Nt Dt
Do o

Committee Chair -

University of California, Irvine

1991

i1

Dedication
This dissertation is dedicated to my parents,
Stephen J. and Virginia M. Lis, who have given

me the strong foundations of love and support

necessary to handle the ups and downs of life.

This dissertation is also dedicated to my
grandmother Jeannette Lis, whose constant
prayers and encouragement have been a source

of inspiration for me throughout this ordeal.

i

Contents

List of Figures vi
List of Tables L. Vil
Acknowledgements ix
Abstract x1i
Chapter 1 Problem Description. 1
1.1 Introduction 1
1.2 Contributions e 4
1.3 Thesisoverview 6
Chapter 2 Synthesis Design Process 8
2.1 Design Process 8
2.2 Modeling Methodology 22
2.3 Definition of Design Models25
2.4 Hardware Description Languages29
2.5 Design Representation 30
Chapter 3 Previous WOrK . o o oo 32
3.1 Armstrong’s Process Graph Model S 32
3.2 VSYNTH 35
3.3 IBM VHDL Design System 39
3.4 Physical Design using VHDL 42
3.5 Summary e e e 43
Chapter 4 Structured Modeling 46
4.1 VHDL 47
4.2 Problems for Synthesis Posed by VADL 58
4.3 Structured Modeling for Synthesis 61
Chapter 5 Design Representation 79
5.1 Control/Data Flow Graph 79
5.2 Partial Design Representation 103
v

Chapter 6 Synthesis System Framework

6.1 Graph Compiler
6.2 Representation Optimizations
6.3 Design Compiler
6.4 Control Logic Compiler. |
6.5 Interface to Logic Synthesis
6.6 Simulation Interface
6.7 UserInterface
Chapter 7 Experiments
7.1 Rockwell Counter '
7.2 DRACO
7.3 AM2910 Microprogram Controller
7.4 8251 USART
Chapter 8 Conclusions R
8.1 Summary of Contributions

82 Future Work

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

5.1
5.2
5.3
9.4
5.5
5.6
5.7

List of Figures

Behavioral Synthesis Design Process 9
Behavioral Description E 10
Flow Graph Representation 12
Flow Graph after Optimization 13
Allocation L 15
Scheduling 16
Resource Binding 18
Register Merging and Operand Exchange 19
Symbolic Microcode 20
Typical Design Practice 23
Control Unit/Data Path Design Model 27
Armstrong’s Process Model Graph 34
VSYNTH System Block Diagram 36
VHDL Design Hierarchy E 50
VHDL Design Entity Block Structure 52
Controlled Counter Block Diagram 55
VHDL Description of Controlled Counter 357
VHDL Controlled Counter Chip Model 59
Virtual Multiplexor Problem 60
VHDL Full Adder Descriptions 63
VHDL Functional Descriptions e e e 66
Register Transfer State Table 70
State Table Block Description 71
State Transitions/Register Transfers Description 72
Alternative VHDL State Table Descriptions 73
Behavioral Description Using VHDL Process Statement 76
Block Statement Flowgraph Representation C e e e 84
A Simple Conditional Signal Assignment 86
Guarded Signal Assignment 88
Conditional Signal Assignment 90
Selected Signal Assignment 91
Process Statement Flowgraph Representation 94
If Statement e e e e e 96

vi

5.8
5.9
5.10
5.11
5.12
5.13

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

VHDL Description of the ALU Function Select Logic

Case Statement L

For Loop Statement g

While Loop Statement
Procedure Call Statement
Wait Statement : e e e e e e e
GENUS Partial Design Entlty Object '

VSS Block Dlagram
Block Statement Compilation
Concurrent Statement Processing Algorithm -
Compilation of Variable Assignments in a Process
Graph Critic Cleanup Rule P
Graph Critic Optimization Rule T
IF Statement Transformation
Design Compiler o
State Assignment Across Conditional Branches :
Frequency Based Binding Algorithm SN
Usage Frequency Cost Function ['
Microarchitecture Connection Cost Function
Layout Connection Cost Function =
Gain Based Binding Example
Compatibility Graph oo 0o
Computation of Gain Value e e e e e L
Clique Forest, .
VSS Interface to Logic Synthesis
Flowgraph and Netlist Display Utility

Rockwell Counter Block Diagram
Rockwell Counter Count Sequence
Structure Produced by VSS for Functional Model

Design for Rockwell Counter Behavioral Description (CU/DP) 170
Design for Transformed Behavioral Description 171
Design for Transformed Behavioral Description with CSA 172
DRACO Block Diagram e e e e e e e e e 177
DRACO State Diagram P 179
Am2910 Block Diagram 188
8251A Block Diagram e e e 193

vil

7.1
7.2
7.3
7.4
7.5

List of Tables

Benchmarks Synthesized by VSS 158
VSS Results for the Rockwell Counter Benchmark 174
VSS Results for the DRACO Benchmark 184
VSS Results for the AM2910 Benchmark 190
VSS Results for the 8251A Benchmark 194

viii

| Acknowledgements

When I first arrived at U.C. Irvine after being lured from the flatlands of the
Midwest by Prof. Danjel Gajski, the CADLAB consisted of one empty room with a
bookshelf bolted to the wall and a single desk in the middle of the room. After numer-
ous iterations of partition construction, workstation setups, and dreaded “moving”
escapades, I feel that I have been a part of the establishment of 4 first-class operation
over the past four years. Along the way, Prof. Gajski has taught me a great deal
about our common obsession of behavioral synthesis, as well as thing or two about
life in general. Although we haven’t always agreed on how to get from point A to
point B, I respect and admire his dedication and vision, and I fee] privileged to have
had the opportunity to work with him. Thank you, Prof. Gajski; I hope you have
the same good memories of our accomplishments here as I know I will.

I would like to thank my committee members, and Prof, Lubomir Bic and Prof.
Nikil Dutt, for their interest, guidance and probing questions. I have shared the
unique experiences of graduate study with Nikil when we were colleagues during my
days at the University of Illinois. The fact that he has remained involved with the

[would like to acknowledge the members of the CADLAB fraternity whose
comaraderie have made my graduate research experience not only tolerable, but most
enjoyable. Thanks to Allen Wu, Tedd Hadley, Nels Vander Zanden, Sanjiv Narayan,
Frank Vahid, Elke Rundensteiner, Rajesh Gupta, Loganath Ramachandran, Viraphol

I would also like to €Xpress my appreciation for the efforts of Bob Larsen of
Rockwell International who has shown enthusiasm and strong support for the design
synthesis work at U.C. Irvine. Bob has been instrimental in pulling the necessary
“corporate strings” so that we could validate our work using industrial examples.
Thanks for all you've done, Bob.

Another valuable resource at UCI has been the computer support group, with
special thanks to Sam Horrocks. I appreciate the time you've spent installing new
software, fixing networking problems, and dealing with the demands placed on the
machines which have been vita] to the operation of CADLAB.

I know I wouldn’t have been able to climb this mountain without the counse]
and support I received from my family. I thank you for being there when I needed
that encouraging word. _ -

' This work was supported through grants from Texas Instruments, TRW and
funding from SRC 90-DJ-146 and NSF MIP-8922851 contracts.

ix

Curriculum Vitae

Education:

1991: Ph.D. in Computer Science
® Department of Information and Computer Science
e University of California, Irvine
e Dissertation Topic: Behavioral Synthesis from VHDL
e Advisor: Professor Daniel D. Gajski

1985: M.S. in Computer Science
1983: B.S. in Computer Science

e Department of Computer Science
e University of Illinois at Urbana-Champaign
e Master’s Thesis Advisor: Professor Daniel D. Gajski

Experience:

1.

2.

3.

4.

1987-91: Research Assistant, Department of Information and
Computer Science, University of California, Irvine

1985-86: Member of the Technical Staff, Gould Inc., Gould Research
Center, Electronic & Computer Systems Laboratory, Rolling Meadows, IL

1984-85: Teaching Assistant, Department of Computer Science,
University of Illinois at Urbana-Champaign

1982-84: Summer Engineering Intern, Northrop Corporation, Defense
Systems Division, Rolling Meadows, IL

Refereed Conference and Workshop Papers:

Potasman, R., Lis, J., Nicolau, A., and Gajski, D., “Percolation Based Synthesis”.
In Proceedings of the 27th Design Automation Conference (pp. 444-449), Orlando,
FL, June 1990.

Lis, J. and Gajski, D., “Structured Modeling for VHDL Synthesis”, invited
speaker, Fourth International Workshop on High-Level Synthesis, Kennebunkport,
ME

Lis, J. and Gajski, D., “VHDL Synthesis Using Structured Modeling”. In
Proceedings of the 26th Design Automation Conference (pp. 606-609), Las
Vegas, NV, June 1989.

Lis, J. and Gajski, D., “Synthesis from VHDL”. In Proceedings of the International
Conference on Computer Design (pp. 378-381), Rye Brook, NY, October 1988.

Technical Reports:

Lis, J. and Gajski, D., “Structured Modeling for VHDL Synthesis”, Technical
Report 89-14, University of California at Irvine, June 1989

Lis, J. and Gajski, D., “VHDL Design Representation in the VHDL Synthe51s
System”, Technical Report 89-15, University of California at Irvine, June 1989

Lis, J. and Gajski, D., “VSS: A VHDL Synthesis System”, Technical Report
88-13 University of Cahforma at Irvine, May 1988

Invited Talks:

“Design Synthesis from VHDL”, tutorial presented at the 1989 VHDL Users’
Group Meeting, Redondo Beach, CA, October 22, 1989

“VHDL Synthesis Using Structured Modeling”, invited speaker, VHDL Users’
Group Meeting, Las Vegas, NV, June 29, 1989

VHDL Synthesis System prototype, invited demonstratlons 27th Design
Automation Conference (Orlando, FL 1990), 26th Design Automation Conference
(Las Vegas, NV 1989), 25th Design Automation Conference (Anaheim, CA 1988)

Honors, Professional Activities and Societies:

e Regents’ Dissertation Fellowship, University of California at Irvine, Winter
Quarter 1990

e Dean’s List, College of Engineering, University of Illinois at Urbana—Champalgn,
7 sernesters (Fall 1980 through Fall 1983)

o Reviewed papers for IEEE/ACM Design Automation Conference IEEE
Conference on Computer-Aided Design

e Member IEEE Computer Society, ACM SIGDA, Tau Beta Pi

xi

Abstract of the Dissertation

Behavioral Synthesis from VHDL
Using Structured Modeling
| by
Jbseph Stephen Lis
DAoctbr of Philosophy in Information and Computer Science
University of California, Irvine, 1991 |

Professor Daniel D. Gajski, Chair

This dissertation describes work in behavioral synthesis involving the develop-
ment of a VHDL Synthesis System VSS which accepts a VHDL behavioral input
speciﬁcation and performs technology independent synthesis to generate a circuit
netlist of generic components. The VHDL language is used for input and ’output
descriptions. An intermediate representation which incorporates signal typing and

component attributes simplifies compilation and facilitates design optimization.

A Structured Modeling methodology has been developed to suggest standard
VHDL modeling practices for synthesis. Four design models currently understood and
used in practice by designers have been identified: combinational logic, functional

descriptions (involving clocked components such as counters), register transfer (data

“

path) descriptions, and behavioral (instruction set processor) designs. Structured

modeling provides recommendations for the use of available VHDL description styles

. (structural, dataflow and behavioral) so that optimal designs will be synthesized.

A design compdsed of generic components is synthesized from the input de-

scription through a process of Graph Compilation, Graph Criticism, and Design

X1i

Compilation. Graph Compilation parses the VHDL input description into an internal
Control/Data Flow Graph representation. The Graph Critic removes inefficiencies in-
troduced by certain language constructs and makes local optimizations in the flow

graph structure.

The Design Compilation process iﬁvolves a collection of algorithms which map
the internal representation to a co;résponding structura.l implementation. Portions
of thé input description may be modeled using different Structured Modeling design
models; the Design Compiler will alppl‘y the appropriate‘ synthesis algorithxﬁ to each
section. Behavioral descriptions are i)rocessed using algqrithﬁs which consider the
interrelated effects of storage and function unit allocation on interconnect and total
chip area. The VSS system generates a VHDL structural netlist for the data path,

- and a state table which captures control information.

Experiments were performed to demonstrate the effects of different modeling
styles on the quality of the design produced by VSS. Several alternative VHDL models
were examined for each benchmark, illustrating the improvements in design quality

achieved when Structured Modeling guidelines were followed.

xiii

Chaptef 1

Problem Description

1.1 Introduction

In order to successfully exploit new VLSI design technologies, the problems
of rapid prototyping of new systems and redesigning old parts must be solved. To
solve these problenis? a new generation of design tools that capture human design
knowled’ge must be developed. Unfortunately, the knowledge required to translate
functional specifications to structural representations and sfructural representations
into physical design is not sufficiently well understood to allow the development of
computer-aided design (CAD) tools based on simple algorithms. To make the problem
even more complicated, the functional specifications are often incomplete and given

with conflicting design goals.

High;level or behavioral synthesis involves the transformation of a speciﬁeation
of the behavior requirea of a hardware system to be designed gi{/en a set of constraints
on the implementativon into a structure that implements the behavior and satisfies the
constraint requirements. The desired “black box” behavior of a design is represented
by a mapping of the system’s inputs to its outputs over tlme A programming lan-

guage [GK84, JR*+89) or a hardware description language (HDL) such as ISPS [Bar81]

2

or VHDL [IEE87] is used to specify this behavioral d'escriptio‘n. The description con-
tains as little detail about the system’s implemer;j:ation as poésible. Examples of such
specifications are an instruction set for a special purpose processor, a set of register
transfers for an application specific integrated circuit (ASIC) data path, or boolean
equations used to describe combinational logic. Const»rain‘tsvarel expressed in '.terms
of limitations on the time (the individual clock cycle or total execution time), the
“area (a total design area or a specified set of functional units, storage elements and

interconnects) and/or the power attributes of the design to be implemented.

The resultant structure produced by behavioral synthesis is a set of intercon-
nected components often represented as a netlist. Depending on the level of ab-
straction and corresponding component library, the netlist can consist of component
primitives which are complex processors or memories, microarchitecture components
such as ALUS, registers and multiplexors, or in some cases simple transistors and

wires.

The design process proceeds through several stages of an abstraction hierarchy
[GK83], from the a.lgorithl;nic speciﬁéation down to layout mask information used to
implement the design in silicon. At each. level of this process, the speciﬁc.ation is
refined to add implementation details which are further refined at subsequent levels
until the design is completed. High-level synthesis performs the first phase of this
refinement to produce a registef—transfer level (RTL) structure. The details of this

design process will be elaborated in subsequent chapters of this dissertation.

The behavioral synthesis task is complicated by the fact that it is difficult to
develop a general purpose synthesis system that will produce quality results for a

variety of target applications. Existing systems have focused their capabilities on a

3
restricted domain so as to reduce the complexity of the design task. Unfortunately,
these systems are often too specialized or inflexible to apply to a majority of real
world designs. A synthesis methodology which addresses these needs has the following
primary requirements: well-defined design models and modeling practices, a flezible

design representation, and an eztendable system framework.

In order to successfully perform behavioral synthesis, the abstract functionality
expressed in the input description must be mapped onto a physical implementation
or architecture that has a known model of execution or computation. One design
model which is appropriate for every situation is difficult to define; it may be more
feasible for a synthesis tool to produce designs targeted to a Set of a few design models
representing a majority of real world designs. When using an existing language or
developing one’s own language for the representation of a particular design model, a
semantics must be determined for synthesis. This will allow the tools to use a, consis-
tent method of interpreting what the designer meant when a particular construct of
the language is used, and more importantly, how the tool will interpret this statement.
Because there can be no guarantee of uniqueness of descriptions written in a particu-
lar language, it is necessary to establish modeling practices. These guidelines should
provide a consistent interpretation of the language constructs used by the designer

(in writing the models) and the synthesis tool (in synthesizing the description).

The synthesis process requires an intermediate design representation or data
base which captures the intent of the behavioral description. This format can be
manipulated by the synthesis system and transformed into a structure consistent with
the chosen design model. Synthesis tools usually begin as an implementation of an
initial idea or algorithm. As this approach is refined, the design representation must

be flexible enough to satisfy the information storage and manipulation requirements

4
of new algorithms. Similarly, the synthesis system framework should allow for easy

integration of new modules which operate on this common design representation.

1.2 Contributions .

This thesis describes an appr\o'ach to behavioral synthesis which uses the VHDL
language [IEE87], the IEEE standard language for hardware description. An ex-
amination of the issues involved in behavioral modeling is presented, as well as an
evaluation of various modeling praf;tices and their effects on the quality of a synthe-
sized design. To demonstrate the fea;sibility of this approach, the implementation of
the VHDL Synthesis System (VSS)\ will be discussed. The novel contributions

of this work are described below.

1.2.1 Use of the VHDL Language for Synthesis

While VHDL has been used for modeling for the purpose of simulation and
has been adapted for use as a front eﬁd language to existing synthesis systems, this
work is novel in that from the outset, VHDL was selected as the input and output
specification language for synthesis. The syntax of the language has been preserved,
and the underlying design model of VHDL has been étudied. A synthesis semantics
has been developed which uses existing language constmct_s to represent common

hardware models and characteristics.

1.2.2 Design Models

Our synthesis system supports four design models: combinational logic, func-
tional descriptions (involving clocked components such as counters), register trans-
fer (instruction set or data path) descriptions, and behavioral (processor) designé.
Previous synthesis systems have been limited by a narrow problem domain (e.g., dig-
ital signal processing (DSP) compilers such as Cathedral II [DR*86]). While these
systems are effective in synthesizing designs in this restricted subset, a majority of
real world designs cannot be processed by such systems (e.g., interface or glue logic,

designs controlled by asynchronous events).

A potential application for Beha.vioral synthesis is a design description consisting
of some previously designed modules as well as portions of behavioral specification.
Alternatively, the description could consist of portions which are to be targeted to
different design models, requiring that different synthesis algorithms be apph'e'd to
different éortions of the description. The collection of design models used in this

work allows for synthesis of a broader range of designs. -

1.2.3 Design Representation

An internal design representation was developed to allow for the mapping of
VHDL behavioral models (representing different design models) to a common inter-
nal format (CDFG) which can be manipulated by synthesis tools. This design rep-
resentation can be manipulated via behavioral level transformations which recognize

design optimizations early in the synthesis process.

1.2.4 Structured Modeling

This work introduces a new methodology termed Structur;ad Modeling which
was developed to provide modeling guidelines for use of an existing language (VHDL).
Structured modeling provides a synthesis semantics for VHDL which identifies pre-
ferred representations that will synthesize to high quality designs. This dissertation
will illustrate how the qu.ality of a design as well as the complexity of the synthesis
process are directly related to the style of description chosen to represent a particular

design model.

1.2.5 Synthesis framework

The implernentatioﬁ»of this design methodology allows for the integration of the
different procedures and the development of control strategies required for synthesis
of each design model. The VSS system framework facilitates installation of new
subtask algorithms and modules which operate on the common design representation.
Thus, a collection of techniques can be made available to the designer, allowing some
interactivity in the design process through the selection of synthesis procedures to be

aﬁplied.

1.3 Thesis overview

This thesis is organized as follows. Chapter 2 discusses the main issues involved
in behavioral synthesis. Chapter 3 surveys previous work in the areas of behavioral

modeling, its application to synthesis, and in particular, the use of VHDL for these

7
purposes. Chapter 4 presents the Structured Modeling methodology. Chapter 5
details the design representation developed. Chapter 6 describes the organization
and major components of the VHDL Synthesis System prototype. Chapter 7 presents
the results of experiments performed using Structured Modeling guidelines to develop
models synthesized by the VSS system. Chapter 8 summarizes the accomplishments

of this research and outlines future work.

Chapter 2

Synthesis Design' Process

There are several concepts which influence the behavioral synthesis approach
described in this thesis. This chapter presents the major issues which form the foun-
dation of our approach, and it provides a common terminology which will be used to

compare existing behavioral synthesis approaches to this work.

2.1 Design Process

The design process for behavioral synthesis is shown in Figure 2.1. The tasks

which compose this process are described in the following subsections.

2.1.1 Representation Compilation

Representation compilation [TW+88] involves parsing a design description and
translating it into an internal representation. This representation organizes infor-
. mation extracted from the input specification necessary for synthesis. It is created,

manipulated, and optimized by the synthesis system so that a netlist or other output

Behavioral
Description

[tepresentation
Compiler

Internal
Representation
(CDFG)

Critic/
ansformation

Optimized
Representation

l

Design Compiler

' Allocator ' l Scheduler . ' Resource

Binder

r

RTL Design
r———"™—"71 r=———717
| Data Path | | Control I
Structure Specification ==

R I S

Controller
. Synthesis

Figure 2.1: Behavioral Synthesis Design Process

10
specification can be produced. Different optimizations are applied to this representa-

tion depending on the design style and design goals.

One common design representation used in several synthesis systems is the con-

trol/data flow graph (CDFG) [OGS86] or value trace [McF78]. The control flow

entity EX is
port (B,C,D,F.H.I in BIT_.VECTOR(7 downto 0);

E,G: out BIT_-VECTOR(15 downto 0))
end EX;

)

architecture BEHAVIOR of EX is
begin
process

variable A: BIT_VECTOR(15 downto 0);
begin

A:=(B+C)*D;

E:=F* (B + Q)

G:=A+ (H-TI)

end process;

end BEHAVIOR,;

Figure 2.2: Behavioral Description

graph represents sequencing information. Each “state” in the behavioral description

is represented as a sequence of actions to be performed, and based on the evaluation of

11

a condition, the next state to which execution is to be advanced is indicated. Control
dependencies implied in the semantics of the behavioral description (for example,
loop and if-then-else constructs) are preserved in the control flow graph. Figure 2.2
shows an e_xa.mple input description u‘sing the VHDL hardware déscription language.

Figure 2.3 presents a corresponding flow graph representation.

The sequence of actions to be performed (arithmetic, logical, shifting operators)
is represented using data flow graphs. A data flow graph indicates data dependencies

that exist between variable accesses in assignment statements.

The data flow graph exposes the parallelism in the input description. A control
flow node representing a state or basic block [LDSM80] will have a data flow graph

associated with it.

Most input languages are procedural; they describe data manipulations with
assignment statements and organize sequences of these statements into blocks us-
ing standard controll constructs for sequential execution, conditional execution and
iteration. An execution ordering is implied by this language paradigm which is main-
taingd in the design representation using control and data dependencies. -Control
dependencies are used to sequence control of the design between sequences of assign-
ment statements. Da.fa dependencies ensure that variable assignments and accesses

occur in the order specified in the input description.

2.1.2 OptimizatAion of the Internal Representation

Once the design representation is created, global optimizations such as standard

language compiler data flow analysis (dead code elimination, constant propagation,

READ READ READ READ READ READ
PORT PORT PORT PORT PORT PORT
F B C D H I

* *
WRITE READ
EGISTER = a4 REGISTER
A A
WRITE WRITE
PORT PORT
E G

data dependency

@ am = &= control dependency

Figure 2.3: Flow Graph Represéntation

13

common subexpression elimination, inline expansion of procedures, loop unrolling)
are often applied [Tri87, TW*88]. Figure 2.4 shows the results of applying such

optimizations to the ﬂow‘graph of Figure 2.3.

WRITE READ
EGISTER {= s REGISTER
A A

WRITE
PORT

Figﬁre 2.4: Flow Graph after Optimization

In addition, local, hardware-specific transformations’ such as the identification

of signals and registers provide additional information to aid the synthesis task. The

4

local transformations can be applied to the internal rbepresenta.tion by a graph critic
module [Tri87, LG88] to replace the behavioral information derived from the input
~ description with information which is relevant to the synthesis process (for example,
the identification of a v;),ria.ble used as a clock signal). This optimization task sim-
bliﬁes the ﬁrocess of mapping hardware components to the operations in the internai

representation.

2.1.3 Allocation

A high-level synthesis system generally assumes that generic or technology-
independent functional units from a defined library are available to execute the ab-
stract operators in the input description. Libraries provide estimates of component

area and propagation delays. One such generic library is GENUS [Dut8s].

Resource allocation determines the number and type of functional units, storage
elements and cornmunicatién paths to be used in the design. In some high-level syn-
thesis systems, the designer supplies the allocation [BG87, DN89, Kow85]. Other sys-
tems [T*83, GK84, PPMS86] provide only component costs via the component library
which the scheduler uses to determine the allécation necessary to satisfy scheduling
constraints. In this case, the resource binding task generate's the actual allocation

required.

Figure 2.5 shows two possible allocations for the example. The first is a maxi-
mally parallel allocation where there is one unit for every operator in the behavioral
description. Alternatively, a user specified allocation is shown which corresponds to

the minimal area point of the design space curve for this example.

L5

number of variables
. stored across
any state boundary

Maximally parallel User Constrained

Figure 2.5: Allocation

2.1.4 Scheduling

Scheduling performs state binding, or the assignment of operations in the be-
havioral description to control steps. This state binding must maintain the correct
execution order as specified in the input description. If the scheduling reorders opera-
tions such that a variable is overwritten before its previous value needs to be accessed,
an incorrect result is produced. Scheduling is a critical step in the synthesis process
[GDP86] which affects the interrelated task of component allocation. The scheduler
tries to execute as many operétions as possible in each machine state (i.e., extract as

much parallelism as possible).

There are two main approa.ches to scheduling based on the constraints supplied.

In the first case, a limit on time is imposed, either by a specification of the machine’s

16

Resources: 1 add/sub, 1 multiplier

F B C D H I
—— i s 0TI o IR Ao S
State 1
il S ot o T T, G SR NS
State 2
State 3
E G
Time Constrained Resource Constrained

Figure 2.6: Scheduling

clock cycle duration or by the specification of the total execution time. Here, the
design must sequence through as few states as possible when executing the behavior. If
the scheduler is constrained by a fixed number of machine states, this implies that the
scheduler determines the necessary hard@are resources required to meet the imposed
time constraints (based on function unit, storage element and interconnect costs),
if this schedule is possible. A second approach limits the resources the scheduler
may use in any state. In this case, the scheduler tries to maximize the utilization
of available resources in order to minimize the number of control steps required.

Figure 2.6 illustrates one schedule using each of the constraint approaches.

L7

2.1.5 Resource Binding

The task of binding or behavior-to-structure mapping assigns specific instances
of functional, storage and interconnect units to the abstract operations and variables
in the behavioral description (or more correctly, the design representation). This task
also decides how each component and connection of the data path is to be realized,

given possibly several alternatives from the component library.

After state binding maps operations to states, unit binding maps each operation
to a component which performs the desired function during the particular state.
Operators which are not executed in the same state can be mapped to the same
functional unit if they are considered compatible (for example, some synthesis systems
[TS83] allow the merging of “+” and “*” operators into a common unit, while other

systems associate a high cost with such a merge that would favor two separate units).

If a variable is used in more than one state, register binding must be performed to
assign this variable to a storage element. Lifetime analysis [ASU86] is often performed
for each variable in the input description to determine which variables can share a
storage element. A variable is “live” from the time of its definition to the time of
its last use; the variable is dead from the time of its last use to the time of its next
definition. Fach variable may be mapped to a separate register, or the number of
registers can be optimized by sharing (mapping several variables to the same register

if the “live” periods of the variables do not overlap).

Connectivity binding allocates a connection between hardware components in
order to perform the required data and control transfers. Connections can be point-

to-point (using a multiplexor component at function unit and register inputs to select

13

A
o e e

\Mux1 / \ muxz / \Muxa /' \ muxs / T1(R8) = B(R1) + C(R3)
l - [

A(R9) = T1(R8) * D(R6)
‘T2(R7) = H(R2) - I(R4)

E(R9) = F(R5) * T1(R8)
G(R7) = A(R9) + T2(R7)

Figure 2.7: Resource Binding

one of several data inputs) or bused (equivalent to multiplexors at inputs and outputs,
where one of several function unit or register outputs can be selected and transmitted
on a wire or bus). The bus model allows greater interconnection sharing by creating a
larger number of paths for the same number of connections. Connectivity binding can
take advantage of the commutativity of operators by performing opérand exchanges

which will minimize interconnect.

Figure 2.7 shows one possible resource binding for the example using the resource
constrained schedule. The number of registers in this example (9) can be reduced
through register sharing-éince the minimum number of registers required is equal to

the maximum number of variables to be stored across any state bdunda.ry in the

19

schedule of Figure 2.6 (6). Also, an operand exchange at the multiplier inputs will

result in an interconnect savings. A resource binding with these modifications is

shown in Figure 2.8.

Rl Em__l [>R4 Drs | Drs |

\\wm / \Mmuxz2 /

T1(R1) = B(R1) + C(R3)

A(R8) = T1(R1) * D(RS)
T2(R4) = H(R2) - I(R4)

E(R6) = F(RS) * T1(R1)
G(R1) = A(RS) + T2(R4)

Figure 2.8: Registef Merging and Operand Exchange

Notice that by sharing registers, additional interconnect is required (six multi-

plexors versus four in the previous design). Cost functions trading off storage element

area for interconnect will guide the high-level synthesis system when making such re-

source binding decisions.

2.1.6 Controller synthesis

The results of state assignment must be captured in some format so that a

controller which sequences the data path as required can be generated. In essence,

20
this description is a behavioral description for the controller. One common format’
for this specification is a set of boolean equations specifying each required control
signal. The controller description can be oriented toward the realization of some

specific control logic implementation such .as random logic gates, a programmable

logic array (PLA), or a microprogram sequencer. This specification can be input to

logic synthesis systems such as those described in the next subsection, or a finite state

machine compiler [Kin87] to produce the hardware which implements the controller.

Current Next
State Condition | State Ops

MUX1_SELECT = INPUT0, MUX2.SELECT = INPUTO

1 True 2 ALU_OP = ADD
MUX4_SELECT = INPUTO
R1.LOAD =1
MUX3_SELECT = INPUT1, MUX6_SELECT = INPUT1
R6_LOAD =1

2 True 3 MUX1._SELECT = INPUT1, MUX2_SELECT = INPUT1
ALU_OP = SUB
MUXS5_SELECT = INPUT1
R4LOAD =1
MUX3_SELECT = INPUTO, MUX6_SELECT = INPUT1
R6.LLOAD =1

3 True - MUX1_SELECT = INPUT?2, MUX2.SELECT = INPUT1
ALU_OP = ADD
MUX4_SELECT = INPUTO
R1LOAD =1

Figure 2.9: Symbolic Microcode

A more abstract description of the control unit can be captured in the form of

symbolic microcode or a state table [DHG89, Har87]. For each machine state,

21

<

one or more triplets specify actions to be performed. Each triplet consists of a con-
dition under which operations are performed, a nest state transition, and a set of
operations. Figure 2.9 illustrates the state table which controls and sequences the

design of Figure 2.8 to perform the desired function.

2.1.7 Logic and Layout Synthesis

The régister-transfer design produced by high-level synthesis is pa,sséd to lower
level design tools which perform further optimizations and technology mapping and

eventually produce an implementation in silicon. Logic synthesis systems such as

MILO [VG88], MIS [BRSVA8T7] and SOCRATES [GBdH86] transform a functionally
correct design consisting of generic components into one that has been optimized to

meet a designer’s constraints for a given component library.

Logic synthesis employs two techniques: refinement and optimization [VG8S).
Reﬁnemenﬁ involves transforming the input description into an initial design; the
input descﬂption (usually in the form of boolean equations) is minimized using alge-
. braic techniques. Technology mapping maps the minimized equations to a techﬁology-
specific design at the gate level consisting of logic gate and flipflop components.
Optimization transforms the initial design into one that meets some set of constraints
(time, area, power). Critical paths (the longest path from input to output in a cir-
cuit, or a path which has a critical time constraint) are examined and optimized using

strategies which make tradeoffs to meet the specified constraints.

Layout synthesis produces silicon layout from the gate level descriptions gener-

ated by logic synthesis. Automatic layout consists of two pﬁmary tasks: determining

22
the position of components on the layout surface, called placement, and interconnect.-
ing the components with wiring, a problem termed routing [PL88]. Components at
the layout level can be standard cells (predesigned blocks of silicon which implement
a logic function), elements of a gate array (a regular array of simple logic gates),
or custom layout (cells designed by hand or by generators which tailor the cells to

supplied parameters [LG87)).

2.2 Modeling Methodology

Ideally, the purpose of behavioral modeling is to describe the functionality of a
design while remaining independent of a particular implementation. The design model
to which the design is to be mapped must first be selected. An appropriate modeling
style which reflects this design model is then used to develop the behavioral model.
Once the designer’s intent is captured in the behavioral description, the synthesis
tool can use available methodologies to create a design targeted to the appropriate
technology. The goal is that this model should not have to be changed significantly

as the design is targeted to new implementations.

Figure 2.10 shows the typical use of modeling or specification in current design
practice. Initial design descriptions are textual specifications which enumerate the
desired features of the design to be implemented. This textual specification is often
incomplete with respect to information necessary for the design process (especially
for synthesis); for example, timing information at the leve] of detail necessary for
automated synthe51s is often omitted. A high level behavioral model may be written

from the initial specification; however, this model is primarily used to verify the

Textual

High Level

System
Specification

Chip

Architect

System
Block
Diagram

Logic
Designer

RTL
Logic
Schematic

anesss——fy

Figure 2.10: Typical Design Practice

Modeler

High Level
Behavioral
Model

r====+=1

- - d Desired
Synthesis

Model l

Synthesis
Tool

Low Level
Modeler

Logic Level
Structural
Model

Current design practice

Proposed methodology

24

conceptuality of the design through simulation and will not map directly to an efficient

implementation.

The Chip Architect relies on his experiénce and expertise to interpret the speci-
fication and provide the missing information necessary to produce a logic or register-
transfer level design. The initial specification is refined and partitioned to produce
a System Block Diagram. This reﬁned textual description and top le\/;el schematic
are then passed on to the Logic Designer who implements the design using compo-
nents from a selected component library. Researqhers in behavioral synthesis have
been working over the past two decades to capture and encode the design knowledge
employed by the Chip Architect and Logic Designer in tools v;lhich attempt to auto-

mate this design process, or at least allow the designer to evaluate several alternative

designs without having to manually design each one.

Once an initial design at the RTL or logic level has been completed, a low level
behavioral model which reflects the structure and organization of the logic schematic
is then developed to aid in the verification of the'desvign. This model is inappropriate -
as input to behavioral synthesis since most of the design decisions have élready been

made.

- Herein lies another major issue in synthesis from a behavioral specification:
there currently exists no standard methodology for development of a synthesizable
behavioral model. The focus of the high level modelef is to develop a functionally cor-
rect sirﬁulation mode] without concern for how easily that model can be synthesized.
The low level modeler extracts the logic model from an already completed design. A
level of modeling is missing which captures the desired functionality of a design using

a modeling style which can be efficiently mapped to hardware. Given this model, a

25
designer can use a synthesis tool which will appropriately interpret the model and
aid in the production of several design alternatives which approach human quality.
The focus of the design effort can then be shifted from interpretation of the design
specification requirements to improvement of portions of the design which require
specialized human design knowledge that has not been sufficiently captured in the

synthesis tool.

2.3 Definition of Design Models

Every high-level synthesis system assumes an underlying design model or target
- architecture for the synthesized structure. This section defines several commonly used

design models and describes the operation of each model.

2.3.1 Combinational Logic Model

The design model for combinational logic consists of a network of logic gates. In
this model, concurrent evaluation of all signal values is assumed. [t is often desirable
to specify point to point timing constraints in this model for optimization purposes
(for example, critical path timing constraints). The most commoﬂ method used to

describe combinational logic designs is boolean equations.

| 26
2.3.2 Functibnal Model

The functional design model consists of combinational logic as well as storage
elements (registers, counters). It rha.y include a mixture of synchrdnous and asyn-
chronous events which trigger operations in the data path (for exampl.e, the loading of
storage elements). It cannot be guaranteed that these events are mutually exclusive;
an asynchronous event such as a register reset can occur concurrently with a synch-
ronous l.oa.d of the same registér. The functional design can be described in VHDL
using block and process statements. Thus, this design model represents a functional
partitioning of the design into one or more functional blocks. The complete opération
of a hardware component can be described under the effects of several events in one
functional block. Alternatively, the effect of each event can be described individually
in a functional block, resulting in a distributed description of a component’s exclusive

functions across functional blocks.

2.3.3 Register Transfer Model

Register transfer descriptions involve the specification of operations to be per-
formed within a processor for each machine state of a design. A common method
for describing this behavior uses a state table [DHGS9]. This model déscribes the
designs using a temporal partitioning, rather than a structural or functional parti-

tioning.

For each state, one or more triplets specify actions to be performed. Each triplet
is composed of a condition, a nezt state specification, and a set of operations. The

condition tests a boolean expression. Within each state, one or more conditions may

27
evaluate to true. The actions corresponding to each true condition are performed in
the state. If the result of the test is true, a specified set of operations or register

transfers is performed. Finally, control is transferred to the specified next state upon

completion of the current state operations.

2.3.4 Control Unit/Data Path Model

The design model to which most behavioral synthesis tools map their designs is

the control unit/data path model shown in Figure 2.11 [PL88].

CONTROL UNIT DATA PATH

) CONTROL | MEM
: LOGIC —'—’#
PE

1
|
]
|
1
|
]
|
|
1
. Ex3 PN
[}
[}
1 . STATE
{
]
]
]
]
{
1

DATA PATH CONTROL UNIT

»|CONTROL [
™ LogIC

—_— e — - -]

STATE

1
1
1
!
1
1
! C ALU
1
1
1
1
1

- joe

Figure 2.11: Control Unit‘/ Data Path Design Model

A design in this model is composed of communicating processing elements (PEs).

Each PE consists of a Control Unit (CU) and Data Path (DP). Because a behavioral

28
description may require one or several machine cycles (states) to execute the desired
' function, the microarchitecture implementation uses the DP to perférm computations
and the CU to sequence the machine through the necessary states and control the
operations performed in the DP for each state. The CU‘contains a state register
for storing the current state of the machine and control logic which controls the DP
and communicates with other PEs. The DP consists of storage elements (registers,
counters, memories) and functional units (ALUs, counters, shifters) and interconnect

units (multiplexers, buses).

Access to registers, units or I/O ports is controlled by the CU. If several buses
are used as sources to a storage or functional unit, a selector controlled by the CU
must be added to the input. Some DP models use only point-to-point connection -
with selectors only and no buses. Processes also communicate via global signals. PEs
commumcate through DP ports to the CU or DP (nets a and b in Flgure 2.11) o
- through CU ports to the CU or DP (nets c and d).

Note that in this model, an adder may be reprt;sented as a PE with no CU
but with a DP (having one output port, two input ports, and ﬁo storage elementé).
Similarly, a flip-flop can be modeled as a DP with no functional units or as a CU
with no DP and no control logic. Thus, this model is complete in the sense that it

can model any synchronous digital system.

The composition of the data path is another feature which varies among high-
level synthesis systems. Some systerné target the design to a fized architecture which
consists of a standard microprocessor or a standard data path 6rga.niza.tion. For
example, a strip architecture convention may be used where functional units are

placed between two buses which are used for inter-component communication.

2.4 Hardware Description Lariguages

There are two choices for selecting a language for behavioral modeling: either an
existing language can be used, or a language can be created to suit the particular ap-.
plication. The advantage of using an existing language is that there are often support
utilities such as compilers, syntax parsers or simulators which aid in the verification
of descriptions written in the language. A particular semantics is often associated
with these languages in the context of their primary use; for example, a language
used primarily for simulation will associate a meaning with each language construct
that affects the execution of the underlying simulator. The disadvantage. of using a
language for a purpose other than its primary application is that there is often a mis-
match between the available language features and the desired hardware attributes to
be modeled. Certain language features may have no hardware realization; conversely,
1t may be difficult or impossible to model a particular hardware attribute given a

fixed set of language constructs.

The alternative of creating one’s own synthesis language alleviates the problem
of modeling attributes of the selected design model(s). The language can be tailored
to the explicit needs of the synthesis or simulation application. If the language has an
unambiguous syntax and semantics, behavioral models written in the language would
serve as important documents of the design decisions made and the conceptual oper-
ation of the design throughout its lifetime. However, the problem of standardization
and portability of models written in a variety of non-standard languages presents
several difficulties. First, additional effort would have to be expended in building

- verification tools or in-translating this description into other languages which have

30

_such support. In addition, the ability to transmit design information between inde-

pendently developed tools will be lost if a standard interchange format is not used.

A consequence of using high level languages for behavioral modeling is that at
this higher level of aBstraction, it is possible to déscfribe the same functionality using
several language style or construct alternatives. This presents a fundamental problem
for the synthesis tool — recognition of this equivalent functionality which should be
" mapped to the same hardware implenientation. Current approaches to behavioral
synthesis often restrict the use of the language via subsets in order to avoid the

difficulties of equivalent descriptions.

2.5 Design Representation

Behavioral synthesis cannot be accomplished by a straightforward mapping of
language constructs to RTL components. Information necessary for synthesis must
be extracted from the input specification and organized in a representation which can
be interpreted and transformed by algorithms within a synf,hesis tool. The design
representation stores ‘the status of the partial design as it is constructed and modified
by the synthesis subtasks. It is possible that severél versions and alternatives for the

design will need to be maintained, and the hierarchy of the design has to be managed.

The design representation maintains the following views of the design: behavior,
structure and controi. The synthesis process begins with a representation of the input
~ behavior (in the form of a flow graph, for instance) and completes by producing a
partial design which consists of a structural netlist (a‘ graph of interconnected com-

ponents) and a control specification. At intermediate steps in the synthesis process,

31
these views of the design exist concurrently and are interrelated. There is a need to
maintain behavior-to-structure li'nks; for example, the resource binder nee;{s to know
which variables have been preViously BOund to a register to determine if the current
Variablé can >be bound to that register. The questions of unified versus orthogonal
design representations of behavior, structure and control [CT88], as well as the de-
gree of linkage between behavioral and structural views [BTK88] is an active research

topic inbhigh level synthesis.

Chapter 3

Previous Work

This chapter surveys previous work in the areas of behavioral modeling, its

application to synthesis, and in particular, the use of VHDL for these purposes.

3.1 Armstrong’s Process Graph Model |

Armstrong [Arm88, Arm89] illustrates how VHDL can be used to model hard-
ware at the various levels of abstraction. His work focuses on methods for represent-
ing various behavioral aspects of chip level modeling. At this level, a component is a
complete VLSI chip such as a microprocessor, memory chip, or UART. The chip is
modeled as a single entity (ﬁot constructed hierarchically from more basic primitives)
which performs a sequence of _micro-operations coded in an HDL. The model defines
the input/output response of the device by specifying the algorithm the chip is to
implement. Because logic signals ﬂow-in parallel, any hardware model must include
a provision for concurrency of execution. The VHDL language handles this notion of
simultaneity with the use of the process statement. Each process represents a block

of logic, with all processes executing in parallel.

32

33

3.1.1 Desigh Representation

Armstrong defines a graph representation termed the process model graph. Nodes
of the graph represent a partitioning of the functionali.ty' of the model into subfunc-
tions. Arcs between nodes represeﬁt intercommunication between processes via sig-
nals. A timing specification may be associated with each arc indicating the delay
associated with the transmission of a signal from one process to a.nothér. Figure 3.1

shows the general process graph model.

- The proceés or subfunction represented by each node in the process model graph
may be decomposed further according to functionality. For example, a node repre-
senting a register with synchronous load and asynchronous clear attributes can -be
modeled by two processes, one representing the effects of the load operation, the
other reflecting the effects of the clear operation. In Figure 3.1, Process 3 is decom-

posed into three functional blocks: F1, F2 and F3.

3.1.2 Use of VHDL

Armstrong uses VHDL process statements to develop behavioral models for ea;:h
process graph node. Signals appearing in the process sensitivify list are used to model
timing delays and input/ output or:sequencing relationships betwéen subfunctions. A
~ VHDL process becomes activated on a change of value of Any signal appearing in
it’s sensitivity list; thus, any change of a signal value produced by the behavioral
description of a process graph nodé will cause the execution of the behavioral model

for other process graph nodes which have this signal in their sensitivity list.

34

S(DEL.S) ./ I;itge;ilrocess

n PROCESS PROCESS o1
N CHIP
INPETS OUTPUTS
I2 PROCESS 02
4

PROCESS
3

Figure 3.1: Armstrong’.s Process Model Graph

35

If a process graph node is functionally decomposed, each function of the node

can be modeled using a process statement. Alternatively, since each signal assignment
statement in VHDL can be considered a concurrent process, a process graph node
function can also be modeled using the‘ VHDL guarded signal construct. In this VHDL
statement, a boolean expression or block guard which evaluates to TRUE enables the

assignment of a data value to the signal; otherwise, no assignment is performed.

3.2 VSYNTH

3.2.1 Synthesis System

The VSYNTH system [Bha86, HKL89] provides a VHDL input interface to
the existing MIMOLA Synthesis System (MSS) [Z*80]. It seeks to improve upon
the drawbacks of the MIMOLA system: to remove the burden of decomposing the
behavioral description into operations to be performed in individual control states,
and to perform global data flow analysis which minimizes the required number of
operators and storage elements. Figure 3.2 shows a block diagram of the VSYNTH

system.

A Process Graph Analyzer accepts a VHDL behavioral input and generates a
process graph by decompoéing éach statement and expression int(; a ‘simple form (one
operator and at most two opérands). Compiler techniques (constant folding, local
code optimization, code motion, common subexpression elimination) are used to op-
timize this description. The Control State Generator parfitions the process graph into

control states, introducing parallelism where possible. A reverse transformation from

Process
Graph
Analyzer

MSS
VHDL
MODEL

MIMOLA
Synthesis
System

BOUND STRUCTURAL
VHDL VHDL
MODEL MODEL

Figure 3.2: VSYNTH System Block Diagram

the process graph to legal VHDL syntax is performed by a translator. This descrip-
tion consists of a set of process statements, with each process describing operations

to occur in a single control state.

The MIMOLA design system is intended to be an interactive design aid. To that.
end, the Design Representation is a database where the output of the Process Graph
Analyzer is stored for designer interaction. The designer is allowed to modify the

Design Representation by adding hardware bindings or constraints before presenting

37

the description to MSS for synthesis. When MSS is invoked, an implementation is
generated by binding hardware components to operators and variables in the repre-
sentation. A statistical analyzer provides information such as component utilization

to aid the designer in determining constraints to meet design goals.

3.2.2 Use of VHDL

The VSYNTH systerﬁ uses VHDL to represent four models of hardware, where
models in this context refer to description styles. There are two input description
styles, the Process Graph Analyzer (PGA) Model and the MIMOLA Synthesis System
(MSS) Model. The output description styles include a Structural Model and a Binding
Model.

The PGA Model uses a single VHDL process description with behavioral con-
structs (excluding wait étatements)._ A restricted form of subprograms are allowed; ei-
ther the procedure must be represented using a-single control state data flow graph, or
the multi-state subprogram must be in-line expanded into the PGA model. Variables
declared local to the proéess are ﬁsed to represenf wire connections and therefore
are not bound to storage elements. Signals declared within the a,rch'itecture body of
‘which the prdcess is a part represent storage elements which retain their value across

executions of the process.

An MSS Model is generated from the PGA model by the Process Graph Analyzer.

The MSS Model describes the input behavior in terms of a finite state machine design
model. This description consists of arbitrarily complex expressions whose arguments

are storage devices (registers, memories). Several restrictions are placed on the use

of VHDL to describe this model:

38
e At most one assignment to each storage element is permitted in each state
o A next state assignment to the variable RP is required in each state

e The finite state machine is represented using a single case statement within a

single process statement.

e Only if, signal assignment and variable assignment constructs are allowed within
the case alternatives. The if statement allows specification of control flow within
the data path (i.e., assignment to the same variable or signal under exclusive

conditions).

e As in the PGA model, signals represent wires, and variables represent storage

elements.

o Attributes are used to specify component attributes (e.g., the functions to be

performed by an ALU) and synthesis tool directives.

The Structural Model uses the VHDL structural description style to represent
the netlist of interconnected components synthesized by the MIMOLA system. Use
of the generic construct in VHDL allows for the specification of parameteriéable tem-
plates for component classes such as multiplexors. This facilitates the use of a general
model for components with similar functionality which differ only in attributes such
as bit width or number of inputs. The control for the synthesized design is rep-
resented either as a hardwired control box with its behavior specified using VHDL
signal assignments (boolean equations). An alternative representation of the control
is a microstore component, where attributes of the control store are specified using the

generic construct, and the contents of the store are specified in a constant declaration.

39

To indicate the binding of operations and variables in the MSS model to hard-
ware generated by the MIMOLA system, the Binding Model replaces behavioral op-
efa.tors with VHDL functions whose name and attributes reflect component bind-
ings. The function name is formed from the corresponding component name in the
Structural Model. An instantiation parameter identifies the particular instance (in
the event of multiple instantiations. of the component). Other parameters include
the function being performed by the component instance for this operation, and the

component inputs.

3.3 IBM VHDL Design System

The IBM VHDL Design System [Sau87] consists of a collection of tools which
use the VHDL language for hardware description, design management, simulation
and synthesis. The tool set is built around the VHDL Version 7.2 language with
language extensions added (e.g., memoried signal assignments, simulator test case
control statements), some of which were a part of the IEEE Draft Standard that was
evolving at this time. This system has been in production use within IBM. Research
on the evaluation of VHDL fof high-level synthesis has been conducted at the T.J.
Watson Research Center [CT88, CST88]. |

3.3.1 Synthesis System

The Synthesis Subsystem [Sau87] performs register-transfer level synthesis of
concurrent VHDL statements. This system maps VHDL operators in the descri‘ption

to primitive RTL elements (logic gates, ALUS, registers, multiplexors, etc.) which

10
are in the component library that can be operated on by subsequent logic synthesis
tools. The design model to which this syétern is targeted is a Level Sensitive Scan
Design (LSSD) methodology [EW77], a strategy which that allows test stimuli to be
loaded into registers which are surrounded by combinational logic in order to facilitate
obsyervabil?ty and testability of potential faults in the circuit. VHDL memoried signal
assignments (guarded signals in IEEE standard VHDL) are mapped to LSSD registers,
while non-memoried signal assignments are mapped to combinatorial components.
These components are technology independent; the generic design is later refined and
mapped to technology specific components in the Logic Transformation System (LTS)

[Ben83].

3.3.2 Use of VHDL

The use of VHDL for synthesis in the IBM VHDL Synthesis System is restricted
to concurrent signal assignments. A restricted template form is used to ‘specify a
clocked LSSD register; each register update is modeled as a memoried signal assign-

ment, where the block guard is the clocking signal.

Camposano et. al. [CSTSSj evaluate the feasibility of high-level synthesis from
a behavioral, sequential description in VHDL. Their evaluation is based on the high-

level synthesis design process associated with the Yorktown Silicon Compiler [BC*88].

3.3.3 Design Representation

The design representation proposed by Camposano and Tabet [CT88] for syn-

thesis of behavioral VHDL consists of two models: a hierarchy model and a behavior

41

and structure model. The hierarchy model is a directed acyclic graph (DAG) which

reflects the behavioral nesting of VHDL processes and procedures.

Because the behavioral and structural domains of both the data path and con-
trol portions of a design are interrelated, the behavior and structure design model
presented consists of four graphs with links established between the graphs. The data
flow graph (DFG) represents the operations anci data dependencies present in the in-
put behavioral description. A conty'rolﬂow graph (CFG) consists of nodes which rep-
resent the same operations found in the DFG; edges represent predecessor-successor
relationships in the cgntrol sequencing of the operations rather than the input/output
relationships of the DFG edges. The data path graph (DPG) consists of nodes which
represent functional, storage andA interconnect units and edges which reflect the inter-
connection of these unité (i.e., a netlist). A control automaton graph (CAG) represents
the state transition graph for the finite automaton to be implemented in the design,

where nodes represent machine states and edges the state transitions.

Four types of links between the various behavior/structure graphs are created
and manipulated by different synthesis tasks. The links between a CFG and DFG are
" derived from the explicit sequencing found in the VHDL input description. Scheduling

involves the construction of the CAG and the association of CFG nodes to state
nodes in the CAG. Resource binding introduces links between the DFG and DPG as
behavioral operators and their input and output variables are assigned to hardware
" units; in addition, links between the CAG and DPG indicate function and data select
signals that must be supplied to the data path during each sfa.te of the design’s

execution.

42

3.4 Physical Design using VHDL

Researchers at the University of Pittsburgh and Pennsylvania State University

have cooperated in the development of a system which performs layout synthesis from

a restricted form of VHDL behavioral models [LMOI89].

3.4.1 Synthesis System

The design system consists of three types of tools: simulation, decomposition
and transformation and translation. Input to the system is in the form of VHDL text
or a schematic graphical description. The output produced is a two dimensional gate

matrix layout (in form compatible with the layout system MAGIC [SHMOS6)).

3.4.2 Use of VHDL

. The Pittsburgh/Penn State system currently processes only restricted VHDL
models consisting of VHDL data flow and structural description styles. The purpose
of restricting the use of VHDL to concurrent statements is to emphasize modeling the
design at the structural level. For example, registers are specified at the gate level in
terms of boolean equations (VHDL concurrent signal assignment statements). This
fulfills their requirements of accurately and consistently mapping a VHDL construct
to a primitive component at the level of physical design. Primitive component *behav-
iors” are instantiated as building blocks in a structured hierarchy. Work is in progress
on the extension of this limited subset of VHDL toward the ability to synthesize more

complex VHDL behavioral descriptions.

3.4.3 Design Representation

The VHDL input description is parsed into an intermediate VHDL format (IVF)
which is used primarily for simula,tion_. A second gate level descriptiovi language

(GLUE) is used for circuit descriptions within the physical design tools.

3.5 Summary

In summarizing the existing approaches to synthesis which use VHDL in various

capacities, the following observations can be made:

1. The efforts which use VHDL for the primary purpose of simulation utilize a
modeling style which doesl not lend itself to synthesis. '
~ While the style of VHDL description used for modeling, such as those devel-
oped by Armstrong, rnz;y correctly simulate the behavior of the hardware at
the behavioral level, it presents sévera,l problems when vi('ewed from the synthe-
sis perspective. First, the separation of the description of a single .component
into severall process statements complicates the task of collecting and identify-
ing attributes to be associated with that component. Second, this description
style relies on the VHDL simulator’s notion of a container to assign the correct
value to a signal at any given time based on one or more drivers. A container
represents signal nets as well va,s registers, making the ta,sk'bf identifying these
entities difficult for the compiler. Often, complicated language constructs are
used to combine these drivers which result in a suboptimal design when mapped
to logic components. Finally, the modeling practices such as those developed

for Process Graph descriptions intermix signals and variables which are used to

44
sequence the model with those which are involved in data computations. The

synthesis tool requires a clear distinction between data and control operations

in order to produce a design of acceptable quality.

. The design models to which existing systems are targeted are limited.

Current systems tend to limit the applications or design models which can be
processed by the-tool to one of the design models mentioned in the previous
chapter. The Pittsburgh/Penn State physical design system is currently tar-
geted to a gate level (combinational) design model. The IBM VHDL Synthesis
System uses VHDL for a limited functional design model. The adaptation of
VHDL to the Yorktown Silicon Compiler system is targeted to VHDL behav-
ioral descriptions only. The MIMOLA system has a specific design model to.
which it is targeted, namely, a synchronous ﬁnite state machine composed of
a control unit and da.ta ‘path. Other commercial systéms such as Synopsis or
SileSyn [BFR85] target VHDL process level descriptions to designs which fall
more under the realm of logic synthesis (combinatioﬁal and limited functional

as in [Sau87] rather than high-level syn‘thesis.

. VHDL has been attached as a front end description language to existing sf/stems.
For exé.mple, the VSYNTH system adapts VHDL to the input and output
requirements énd rnddels of the existing MIMOLA system. It does not take
complete advantage of the language features. For features of the MIMOLA
system ‘;md its design methodology where VHDL does not fit the systems needs
appropriately, the descriptions are clumsy. The authors admit in [HKL89] that
 their use of VHDL functions to indicate syﬁthesi_s bindings may not be the most

straightforward way of representing such information.

4. There is no well defined synthesis semantics for VHDL.
Tﬁe work by Camposano et. al. analyzes the feasibility of attaching some
synthesis semantics to each of the VHDL behavioral constructs. However, fhe
published works stops short of pfesenting modeling situations in hardware de-

sign where these constructs could be used.

From these observed shortcomings of current efforts to synthesize from VHDL,

the following goals of the research presented in this thesis can be stated:

¢ Identification of design models to be modeled using VHDL.

o Development of a set of guidelines for writing such models with the primary

intent of synthesis.

¢ Definition and development of a framework which uses VHDL as the primary
design description and interchange format and can accommodate a variety of

design styles and tasks.

e Evaluation of the effects of modeling style on the quality of the synthesized

- design.

The remainder of this dissertation will present the details of the approach that

has been taken to achieve these goals.

Chapter 4

Structured Modeling

This chapter describes a proposed modeling style for the use of the VHSIC
Hardware Description Language (VHDL) in design synthesis. The operatiohs and un-
derlying assumptions of four design models currently understood and used in practice
by designers are described. These design models include: combinational logic, func-
tional descriptions (involving clocked components such as counters), register transfer
(data path) descriptions, and behavioral (instruction set or processor) designs. We will
illustrate the various uses of the VHDL description styles (structural, dataflow and
behavioral) to represent characteristics of each of these design models. This chapter
identifies how the VHDL language can be used for synthesis in VSS. Through the use
of signal typing and attribute annotations, it will be shown how a VHDL description
for simulation can be enhanced to provide necessary information for synthesis. The
structural, détaﬂow and behavioral description styles of VHDL will be investigated.
Emphasis is placed on how VHDL constructs should be used in order to synthesize

optimal designs.

46

4.1 VHDL

4.1.1 Introduction

VHDL [[EE87] is the IEEE standard language for hardware description. However,
the VHDL lé,nguage does not gu‘a.rantee uniqueness of descriptions; designs can be
described in several ways and at several different levels of abstraction. The process
of defining the conventions used to create these different descriptions 1s called mod-
eling. Unfortunately, models perfectly suitable for one application can be unsuita,ble.

for another.

VHDL can be used in three basic application areas: simulation, fault mod-
eling and test generation, and synthesis and silicon compilation. Each application
area requires a different modeling style which satisfies the particular goals of of the

application.

The goal of simulation is to validate the correctness of the description by mea-
suring output response to input stimuli. Thus, generation of correct values on all
signal lines over time‘is the most important goal. A secondary goal is the efﬁciency
of the simulation; examining only the parts.vof the design affected by changes in the
input values reduces the complexity and run time of the simulation. A high‘level
(algorithmic or process-level) description is preferable for this application since such

a model captures the high-level functionality.

In fault modeling, a fault is injected into the model. This fault is then sensitized,
and its effects are propagated to an observable output in the description. Sensitization -

and propagation involves tracing data paths through the description. Consequently,

43

a structural or dataflow description is better suited to this application since it more

closely reflects the structure of the hardware to be tested.

For synthesis, the primary objective is to process an algorithmic description in
order to generate a structural description of components from a given library. Here,
emphasis is placed on the proper connection of pins on components to implement the

desired functionality.

4.1.2 Description Styles

VHDL provides three description styles: structural, dataflow, and behavioral.
The structural description consists of component declaratibns,' interconnect signal
declarations, and component instantiations with port maps. This description style is
suitable for describing a captured schematic after a design is completed, and it should

be used to describe the design generated by a behavioral synthesis tool.

The dataflow description style is not as closely tied to the actual structural
implementation of the design. This description style allows for the specification of
concurrent events (data transformations and register transfers) under the control of
synchronous (clock) or asyrnchronous signals. It can be used for combinatorial or
functional logic models. The synthesis tool must optimize the design for a given
component library. In the case of functional logic, components and connections are
shared in time. The machine states are already specified in the description using

conventions of the modeling style such as one block statement per state.

Behavioral descriptions are void of any implementation detail. They specify

output values in terms of input values over time using an abstract algorithm. The

49
statements execute sequentially in the order of their occurrence. A synthesis tool

must allocate components, schedule operations into machine states, and interconnect

components for these specifications.

4.1.3 Design Model

The underlying design model assumed for a VHDL description is the control

unit/data path model that was described in section 2.3 (Figure 2.11).

The design entity is the prim@ry hardware abstraction in VHDL. It represents a
poftion of the hardware desigh that has well-defined inputs and outputs and performs
a well-defined function. A design en.tityk may represent an entire system, a sub-system,
a board, a chip, a macro-cell, a logic gate, or any level of abstraction in between. A
configuration can be used to describe how design entities are put together to fofm a

‘complete design as shown in Figure 4.1.

A design entity may be described in terms of a hierarchy of blocks; each of whiéh
represents a portion of the whole c}esign. The top-level block in such a hierarchy is
the design entity itself; such a bl'ock is an ezternal block that resides in a library and
may be used as a component of other designs. Nested blocks in the hierarchy are
internal blocks; defined by process or block statements. A structural, dataflow or
behavioral description style can be used to express the functionality of an internal

block.

Successive decomposition of a design entity into components, and binding of

those components to other Idesign entities that may be decomposed in like manner,

CONFIGURATION
DESIGN DESIGN
ENTITY ENTITY
DESIGN ENTITY
DESIGN
ENTITY Dataflow Block:
described using

and

concurrent statements CU DP

Structure Block:
Instantiated Components

[

Process Block:

Component behavior Sequential behavior

connections

Figure 4.1: VHDL Design Hierarchy

31

results in a hierarchy of design entities representing a complete design. Such a collec-
tion of design entities is called a design hierarchy. The bindings necessary to identify
a design hierarchy can be specified in a configuration of the top-level entity in the

hierarchy. The design hierarchy concept is illustrated in Figure 4.1.

A VHDL description which represents such a design hierarchy is shown in
Figure 4.2. Each design entity description is composed of two major sections: the
entity block and the architecture body. The entity block contains the specification of

external input/output port connections to the hardware to be designed.

The architecture body defines the body (structure and/or behavior) of a design
entity. It specifies the relationships between inputs and outputs of the design en-
tity, and may be expressed using a.zrnixture of the three styles mentioned previously

(structural, dataflow, behavioral).

4.1.4 Design Model Representation

The three description styles (beha,vioral; dataflow, structural) use concurrent
statements to describe a portibon of the complete design model shown above. Each
concurrent statement in a VHDL description may be used to describe a piece (one
or more components) of a design. Alternatively, more thé.n one statement can be
used to describe the functionality of the same design section if the behaviors are

non-overlapping (exclusive).

The design sections representgéd by the concurrent statements communicate via
global signals. These signals are defined in the declaration section of the architecture

body. A global signal may be réa.d}(input) to several blocks or processes, but should

(]}
o

DESIGN ENTITY

~ (external block)

Entity Block Architecture Body

/-

- Structure

internal

Dataflow (concurrent)
blocks -

Process (sequential)

N\

Figure 4.2: VHDL Design Entity Block Structure

33
be written to (updated by) only one block or process at any given time. In the event
that it is desirable to have more than one active driver for a signal simultaneously

(to model a bus, for example), a resolutibn Sfunction must be written and associated

with the signal to determine its proper value for simulation.

Behavior

A VHDL description lising the behavioral style consists of process statements
- and concurrent procedure calls. The most straightforward mapping of process state-
ments representing behavior in algorithmic form to hardware is a microarchitec-
ture implementation which uses thé complete control unit/data path design model.
Control constructs (IF, CASE and.LOOP statements) are implemented via control
unit sequencing. Variables within ia, process may represent storage components or
interconnect wires. Local signals are used to communicate between the CU and DP.

Assignment to variables occur in the order in which they appear in the specification,

implying data dependencies between statements.

Interprocess communication follows these conventions:

1. The following subtypes are defined for descriptions to be used for synthesis:

subtype data is BIT,
subtype control is BIT;

Signals of type data are used to interface with the data path. Signals of type
control interface with the CU.

2.- By default the following signé,l types/accesses are allowed:

Input

e signal/port reads within the data path description
e conditional bit signals iniput to the descriptions of control logic

Output

e constant signals output from control logic (boolean, binary, integer)

e computed signals output from DP

Timing is expressed as a part of the output signal assignments. Data computa- -

tions within the process are made with variable assignment statements.

Dataflow

Dataflow descriptions consist of concurrent signal assignment statements. They
describe only the data path portion of the VHDL design model. The data path is a
structure of components, where each component is described by one or more state-
ments. Conditional signal assignments represent control embedded in the data path.
The ordering of conditional clauses within these assignment statements indicates the
priority of the events (as specified in the conditional expressions which selects the

value to be assigned).

Structure

The VHDL structural design style utilizes component instantiation and generate
statements. Here, the data path portion of the design model is described through
the instantiation and interconnection of component primitives or previously defined

design entities.

4.1.5 Mixture of VHDL Design Styles

This section illustrates a mixture of the VHDL structural, dataflow and behav-

ioral description styles in a single description. Figure 4.3 shows a block diagram for

a controlled counter functional description adapted from [Arm39].

STRB

CON

f-==ee-ceme—-- b

! LoAD.LIMIT | I~ "LIMITCHK |

}] 1]

] | T [1
| LM I B ;

| 1 [} 3 1 EN
. [} ' R I P |

heccchcadacaad

ENIT

R N

t] r

' CONREG.OUT , @ ' Vo

1 1 |

1 ’ 3 1 "

! T >

(: 2 \ i
——»{ CONREG o DEC | 1 ! : R

: 0 ! CNT.CLR !

1] [

! DECODE ! !

e cccccccccccccecrcnacaccscnan] L

CNT

CNT.UP DOWN

Figure 4.3: Controlled Counter Block Diagram

CNT.OUT

Leccccndccece-

The operation of the controlled counter can be described as follows. On the

rising edge of the STRB signal, an internal control register CONREG is loaded with

the value on CON. The CONREG value is decoded to perform one of four functions:

clear the counter, load a limit register, count up to a limit, or count down to a limit.

The counter runs synchronously under an input clock, and the counting functions are

56

enabled by the internal signal EN. The DATA value is loaded into the limit register

LIM on the fallihg edge of STRB if the control register contains the value '00’.

The VHDL description is shown in Figure 4.4.

This deséription consists of four concurrent statements, each of which describes
a portion of the design: the decoding of the CONREG value, the loading of the limit
register (LIM), the asynchronous clear and the synchronous up/down count of the

counter (CTR), and a limit test.

The DECODE block statement describes the functionality of more than one
functional block (the CONREG register and the decoder). A structural description
style is used which specifies component declarations, interconnect signal declarations,
component instantiations, and component interconnection (via the port map clause

of the component instantiation statement).

The VHDL dataflow description style is used for the description of blocks
LOAD_LIMIT and CNT_UP_.OR_DOWN. The block guard is used to enable an up-
. date of the LIM and CNT register values. Note that these descriptions do not ex-
plicitly specify the structure of the components to be used in the implementation.
However, the format of the guarded and conditional signal assignment statements
suggest a nia.pping to storage elements (registers, counters) under conditional con-

trol.

The LIMIT_CHK block is described behaviorally with a process statement. This
particular description represents a conditional signal assignment to the EN signal

modeled using a behavioral IF statement.

entity CONTROLLED_CTR is
port (’
CLK,STRB: in BIT;
CON: in BIT_VECTOR(1 downto 0);
DATA: in BIT_VECTOR(3 downto 0);
CNT_QUT: out BIT_VECTOR(3 downto 0));
end CONTROLLED_CTR;

architecture MIXED of
CONTROLLED_CTR is

subtype nibble is BIT_VECTOR(3 downto 0);

signal CONSIG: nibble := B"0000";
signal LIN: nibble register := B'"0000";
signal ENIT: BIT := ’0’;

signal EN: BIT := '0’;

signal CNT: nibble register

:= B"0000";
signal CNT_CLR: BIT;

begin
DECODE: block (STRB = ’1’)

component register
port (D: in BIT_VECTOR(1 downto 0);

CLK: in BIT;

Q: out BIT_VECTOR(1 downto 0));
end component; '
component decoder ’

port (D: in BIT_VECTOR(1 downto 0);

Q: out BIT_VECTOR(3 downto 0));
end component;
component or2

port (A,B: in BIT;

0: out BIT);
end component;
signal CONREG_OUT: BIT_VECTOR(1 downto 0);

begin

CONREG: register

port map (CON,CLK, CONREG_OUT);
DEC: decoder

port map (CONREG_OUT,CONSIG);

OR_1: or2
port map (CONSIG(2),CONSIG(3),
ENIT);
CNT_CLR <= CONSIG(0);
end block} DECODE;

LOAD_LIMIT: block (CONSIG(1)="1'’
and STRB='0’ and not STRB’STABLE)

begin

LIM <= guarded DATA after 10 ms;
end block LOAD_LIMIT;

CNT_UP_DOWN: block ((CLK = *1’ and
not CLK’STABLE) or (CNT_CLR = ’1’))
begin
CNT <= guarded
B"0000" after 5 ns
when CNT_CLR = 1’ else
CKRT when EN = ’0’ else
CNT + B"0001" after 12 ns
vhen CONSIG(2) = ’1’ else
CRT - B"0001" after 12 ns
when CONSIG(3) = ’1’ else
CNT;

end block CKT_UP_DCWN;

LIMIT_CHEK: process (ENIT,CNT)
begin
if ((CET /= LIM) and (ENIT = ’1’))
then
EN <= 1’ after 12 ns;
else
EN <= ’0’ after 5 uns;
end if;

end process LIMIT_CHK;
CNT_OUT <= CNT;

end MIXED;

Figure 4.4: VHDL Description of Controlled Counter

4.2 Problems for Synthesis Posed by VHDL

The VHDL language provides the designer with a powerful description language

with many alternative ways to model the same functionality. When viewed from a

synthesis perspective, this presents several problems, including:

Identification of storage elements and signals

~Language constructs with no hardware realization

Collection and identification of component attributes

Specification of é,synchl;onous events

Use of multiple blocks/ processes to describe one component
Functional versus temporal partitioﬁing of the design functionality

Pfocessing of slices of a bit vector quantity (e.g., the update of selected bits of

a control word register)

Hierarchical decomposition of the design into communicating processes using a

mixture of description styles and design models

For example, Figure 4.5 shows a VHDL description which uses separate state-

ments to model the asynchronous clear and synchronous up/down count of a con-

trolled counter [Arm89).

The drivers (CNT1, CNT2) generated to represent the effects of each event

on the register’s output value are combined using a conditiondl signal assignment

statement MUX1. NoteAtha,t MUX1 is a virtual component which should have no

hardware realization. The sole purpose of the statement is to collect the multiple

drivers for simulation such that the value of OUT_TMP is properly updated.

Architecture PROCESS_IMPL of CONTROLLED_CTR is

signal CLK,EN: BIT;
signal CONSIG: BIT_VECTOR(O to 3);
signal OUT_TMP,CNT1,CNT2: BIT_VECTOR(O to 3);

CLEAR_CTR: block (CONSIG(0) = ’'1’ and not CONSIG(0)’stable)
begin
CNT1 <= guarded "0000" after CLRDEL;
end block CLEAR_CTR;

CNT_UP_OR_DOWN: process (CLK,EN)

variable CNT: BIT_VECTOR(Q to 3);
variable CLKE: BOOLEAN;

begin
if EN’stable then
if EN = 0’ then
CLKE := TRUE;
else
CLKE := FALSE;
end if;
end if;
if (CLK = ’1’ and not CLK’stable and CLKE) then
if (CONSIG(2) = ’1’) then
CNT := INC(CNT);
else if (CONSIG(3) = ’1’) then
CNT := DEC(CNT);
end if;
end if;
CNT2 <= CNT after CNTDEL;
end process CNT_UP_OR_DOWN;

MUX1: OUT_TMP <= CNT1 when not CNT1l’quiet else
CNT2;

end block PROCESS_IMPL;

Figure 4:5: VHDL Controlled Counter Chip Model

60

‘Two approaches may be taken to translate this behavioral description into hard-
ware: direct mapping of VHDL constructs to appropriate micrc;architeCture compo-
nents, or recoghition of certain VHDL construct patterns as a representation of a
particular hardware concept. If a straightforward mdpping of VHDL constructs is

perforrnéd, inefficient hardware will often result as shown in Figure 4.6.

- 0000 CNT1

NOT
CNT1’QUIET MUX

777

OUT.TMP

Figure 4.6: Virtual Multiplexor Problem

In the above example, an unnecessary multiplexor will be intro_duced when
mapping the MUXI1 statement to hardware, with each driver as a data input and
complicated selection logic. A sophisticated logic critic would 'then be needed to
transform this design into an optimal one (i.e., a regisfer with up/down count and
clear control inputs). The latter method of translation requires identification of the
type of signals used to select the input driver. Since VHDL allows the designer to
express the same functionality in many different ways, the task of developing a rule set

which recognizes all valid VHDL representations of a desired set of ha.rdwaré concepts

61

would be extremely difficult, if not impossible. The compilation process becomes

simplified if the descriptions are not allowed to contain such virtual components.

4.3 Structured Modeling for Synthesis

4.3.1 Introduction

The quality of a désign as well as the complexity of the synthesis process are
directly related to the style of description chosen to represent a pa.rticuiar design
model. Certain VHDL constructs or description styles are better suited to describe
a particular design model than others. Because VHDL allows the designer several
ways of describing the same functionality, it is important to set standard modeling
practices for designers using VHDL. These standards should guarantee high quality
of synthesized design, while divergence from the standard will result in a description 4

that is simulatable, but a synthesized design that is not optimal.

The following sections describe the design models supported within the VSS

system. For each model, the level of abstraction or type of input specification is’ {
, I |
identified. The VHDL modeling practices for each model are then presented. 4
' |

|

4.3.2 Combinational Logic
Design Model

The design model for combinational logic consists of a network of logic gates.

The most common method used to describe combinational logic designs is boolean

62
equations. In this model, concurrent evaluation of all signal values is assumed. A

boolean equation representation facilitates synthesis tasks such as algebraic minimiza-

tion (e.g., MIS [BRSVAS87]) or optimization (e.g., SilcSyn [BFR85)).

A combinational logic design involves path delays through the interconnected
components. When specifying timirig constraints, the combinational logic model
should be able to express input to output timing for critica.i path constraints. These
constraints guide the synthesis tool in selecting the éppropria’ce components when
fradeoﬁ's are possible. In some instances, the designer may wish to specify more
detailed tirhing consfraints on particular operatoré or paths between some internal

points in the design.

VHDL Alternatives

One alternative in VHDL for expressing the combinational logic model is a
dataflow description. The combinational circuit can be represented as a set of boolean
equations in the form of concurrent assignment statements. Figure 4.7(a) illustrates

a dataflow description of a full adder.

The dataflow description offers the following advantages:

1. The description style would be familiar to designers who generally think of

design at this level in terms of boolean equations.

2. The description is readable - a straightforward mapping exists between opera-

tors and logic components.

3. In performing synthesis, the description is easily translatable to netlist format

(either EDIF or structural VHDL, for example).

63

" entity FULL_ADDER is architecture BEHAVIORAL_IMPL
port (X,Y: in BIT; of FULL_ADDER is
CIN: in BIT; ' begin
SUM: out BIT; ' : process (X,Y,CIN)
COUT: out BIT); “variable S: BIT_VECTOR(1 to 3);
end FULL_ADDER; } variable NUM,I: INTEGER
range 0 to 3 := 0;)
begin
architecture DATA_FLOW_IMPL of S :=X&Y & CIN;
FULL_ADDER is for I := 1 to 3 loop
-- local signal declarations if (S(I) = ’1’) then
signal S51,S2,S83: BIT; _ Num := Num + 1;
begin . end if;
S1 <= X xor Y; end loop;
SUM <= S1 xor CIK after 3 ns; case Num is
S2 <= X and Y; ' when 0 => COUT <= ’0Q’; SUM <= ’07;
S3 <= S1 and CIN; : ' when 1 => COUT <= '0’; SUM <= ’1’;
COUT <= S2 or S3 after 5 ns; ‘ when 2 => COUT <= ’1’; SUM <= '0’;
end DATA_FLOW_IMPL; . when 3 => COUT <= ’1°; SUM <= °1°;
- end case;

end process;
end BEHAVIORAL_IMPL;

(a) Dataflow Description =~ (b) Behavioral Description

Figure 4.7: VHDL Full Adder Descriptions

Note that timing infor"ma.tion is associated with output signal as"signments only.
If the VHDL description is to remain correct for simulation, timing Constraint; cannot
be specified for internal signals using the after clause mechanism. This is due to the
fact that all concurrent assignment statements have their drivers evaluated at the
current simulation time using the current value of all signals. Thus, a new value for
an internal signal which becomes effective after some delay will not contribute to the
computation of a new output value (evaluated at the current simulation time) which

depends on it.

An alternative wé,y to describe the functionality of combinational logic is an

algorithmic description as shown in the example of the full adder in Figure 4.7(b)

‘64
While expressing the same behavior as the dataflow description, the algorithmic

descripti'on has the following deficiencies:

e The algorithmic descripfion 1s not the natural way to think of logic. Operators
manipulate ‘variables_(integers) with extended ranges (number representations)
other than boolean.‘ The algorithm requires manipulations of index and other
variables. Type conversions from bit quantities to integer and back to perform
a counting operation clutter the description and contribute to a suboptimal

‘design generated by the synthesis tool.

° Syﬁthesis yields inefficiencies. When the VHDL algorithmic description is used
as input for synthesis, the logic that is designed will initially contain some un-
necessary hardwafe. This results from the translation of laﬁguage constructs
associated with simulator efficiency such as the type conversions mentioned
above, or control constructs such as loops which were meant to represent repli-
cation of .a design section. Additional effort must be spent in the synthesis
process‘to recognize inefficiencies in the design. Some of the inefficiency may

never be removed because of ‘costly global optimization.

The following modeling practices for combinational logic are recommended:
Propos.ition 1

Use the dataflow model for synfhesis of cor;lbinationa,l logic.
Proposiﬁon 2

Use an after clause only for assignments made to output signa{l,s. This delay
‘ i
represents the maximum allowed delay from any input to the next particular output,

and it will be used as a constraint during synthesis.

4.3.3 = Functional Model
Design Model

The functional design model consists of combinational logic as well as storage

elements (registers, counters). It may include a mixture of synchronous and asyn-

chronous events for loading storage elements. An event is defined as the transition of

a clock or any other Vsigna,l. It cannot be guaranteed that these events are mutually
exclusive; an asynchronous event s{;ch as a register reset can occur concurrently with

a synchronous load of the same register.

The design is a structure of functional blocks such as ALUs, shift registers,
counters, comparators, memories and buses. Each block performs transformations on
its inputs with or without latching or storing. Each block is a combinatorial function
or a finite state machine (FSM) where the state is determined by the values in storage

elements.

The controlled counter [Arm89] shown in Figure 4.3 is an example of such a

design. On the rising edge of the STRB signal, an internal control register CONREG

is loaded with the value on CO-N.‘ The CONREG value is decoded to perform one
of four functions: clea,r’thq(v:ounter, load a limit register, count up to a limit, or
count down to a limit. The coun’_céf runs synchr(;nously under an input clock, and the
counting functions are enabled by the internal signal EN. The DATA value is loaded
into the limit register LIM on the feﬂling edge of STRB if the control register contains
the value ‘00°. | |

" VHDL Alternatives

66

\

The functional design can be described in VHDL using block or process state-

ments. When modeling such a design, one or more functional blocks can be described

with one block or process. The counting function of the counter in Figure 4.3 is

described by the block in Figure 4.8(a). The same function is described by process

staternent in Figure 4.8(b).

| CNT_UP_OR_DOWN: block (CLK = ’1’ and not CLK’STABLE)
‘ begin)
‘ CNT <= guarded

CNT when EN = 0’ else

CNT + "0001" after INCDEL when CONSIG(2)

CNT - "0001" after INCDEL when CONSIG(3)

CNT;

end block CNT_UP_OR_DOWN,;

)1)
)1)

(a) Block Statement Representation

CNT_UP_OR_DOWN: process (CLK,CONSIG(2),CONSIG(3),EN)
variable CNT_REG: BIT_VECTOR(3 downto 0);
begin
if (CLK = ’1’ and not CLK’STABLE) then
if (EN = ’1’) then
if (CONSIG(2) = ’1’) then
CNT_REG := CNT_REG + "0001";
elsif (CONSIG(3) = ’1’) then
CNT_REG := CNT_REG - "0001";
end if;
end if;
end if;
CNT <= CNT_REG after INCDEL;

(b) Process Statement Representation

Figure 4.8: VHDL Functional Descriptions

else
else

| end process CNT_UP_OR_DOWN;

67

Modeling each functional block with more than one process may become difficult
if the description is to remain simulatable. If assignments are made to the same signal

in multiple processes such that the éignal may have multiple drivers, a resolution

function is required to determine the appropriate value of the signal. The solution to

this problem, proposed by Armstrong [Arm89], is to introduce a virtual multiplexor
outside of both processes. This solution, although acceptable in simulation, is difficult
to implement in real hardware. Thus, multiprocess modeling of the same functional

block should not be used for synthesis.

Functional blocks can be described with more than one VHDL block state-
ment. However, the behavior described in each block statement should be indepen-
dent of other blocks. Examples of éxclusive functions are the synchronous up count-
ing and asynchronous reset of a synchronous up-counter with asynchronous reset.
Furthermore, assignment to the same guaided signal under different guard expres-
sions (representing different clocks)l in different VHDL blocks should not be allowed.
Although two guard expressions (i.e., two clocks) can be mutually exclusive, control-

ling selection of the input signals to the same register may generate timing hazards.

To achieve uniformity, the timing should be assigned only to output signals

according to Proposition 2. For each functional block, the following four timing

constraints can be used:

1. the élock cycle, specified with a VHDL attribute statement,

2. propagation delay ffom inputs to (clocked or asynchronously controlled) storage
elements. Since this path can contain only combinational logic, a local signal

can be defined to designate the storage element input data value. A timing

68
specification (either an attribute or possibly an after clause) can be used for a
signal assignment to this local signal.

3. propagation delay from storage elements to outputs, and

4. bropaga.tion delay from inputs to outputs (in the case where there are no storage

elements on the path from input to output).

In order to properly c>onnect VHDL declared signals to components in the given
library, all signals should be.typed. The following five types should be defined: clock,
set, reset, test, data and control. Typing will be used to identify the function of
event signals appearing in in the block guards. The merging of assignménts to the
same variable in different blocks is possible during the synthesis process since signal

types are known and synchronous/asynchronous behavior is clearly distinguished.

The following guidelines should be followed when developing a functional model

description for synthesis:
Proposition 3

One or more functional blocks should be described by one VHDL block state- -
ment. Several block statements could be used to describe exclusive behavior (synch-

ronous and asynchronous behavior of the same functional block).
Proposition 4

The guard expression should contaip only signals of i?ype clock, set or reset.
" Proposition 5

All signals should be typed. Signal types should inchideyclock, reset, set, test,

_ data and control.

69

4.3.4 Register Transfer Model
Design Model

Register transfer descr_ip;f,ions(involve the specification of operations to be per-
formed within a PE (as shown in the design model of Figure 2.11) for each machine
state of a design. For each staté, on? or more triplets specify actions to be performed.
Each triplet is composed of a condition, a nezt state specification, and a set of op-
erations. The condition tests a booleah expression. Within each state, one or more
conditions may evaluate to true. The actions corresponding to each true condition
are performed in the state. If the result of the test is true, a speciﬁéd set of operations
or register transfers is perfbrmed. Einally, control is transferred to the specified next

state upon completion of the current state operations.

Figure 4.9 illustrates a simple example of a state table which specifies the con-

ditional statement if X = 0 then A =A+1 else B = A + B.

Timing in register transfer descriptions is dependent on two parameters: the
clock cycle duration, and the maximum time required to perform all operatior'ls‘ spec-
ified for any state. In this case, it is not necessary to supply timing information in the
statements which represenﬁ register:transfers. If the clock cycle is supplied by the user
(using a VHDL attribute for the design entity), the synthesis system will attempt to
select units which will perform the desired operations in each state within the spec-
ified clock cycle. If the clock cycle duration is not specified, the fastest components
are selected from the available library, and the clock cycle duration is determined by

the longest delay path in the design necessary to implement any state.

Current Next
State | Condition State Ops
SO True S1 cond <= (X = 0);
- S1 cond S2
cond’ S3
S2 True S4 |A<=A+1;
S3 True S4 B <= A + B;
S4

Figure 4.9: Register Transfer State Table

In VHDL, block statements may be used to represent the state table using the

following conventions:

1. Every block represents a different state.

2. The block guard specifies clock, while the body of the block sets the state

variable to the appropriate next state and performs operations under the desired

conditions.

Figure 4.10 shows the corresponding block description for the state table of
Figure 4.9. This VHDL block representation allows for the expression of parallelism.

Concurrent actions may be specified for a given condition within the block statement.

A second use of the block representation to describe the register transfer state

table is shown in Figure 4.11.

clock_edge <= CLK = ’1’ and not CLK’STABLE;

State_0: block (clock_edge)

begin ‘

state <= guarded S1 when (state = SO) else state;
cond <= (X = 0) when (state = S0) else cond;

end block State_0;

State_1: block (clock_edge)
begin
state <= guarded
S2 when (state
S3 when (state
end block State_1;

S1 and cond) else
S1 and not cond) else state;

State_2: block (clock_edge)

begin R ‘

state <= guarded S4 when (state = S2) else state;
A <= guarded A + "0001" when (state = S2) else A;

end block State_2; '

State_3: block (clock_edge)

begin '

state <= guarded S4 when (state = S3) else state;
B <= guarded A + B when (state = S3) else B;

end block State_3;

Figure 4.10: State Table Block Description

This descriptién separates the state transition portion of the description (asso-
ciated with the control unit) from the register transfers to be performed in each sta,té
(data path operations). While this desérii)tion simulates properly, it has one difficulty
from the synthesis perspective: identification of the clock. Aésignment to the state
variable is made via guarded signal assignments in which the current state, rather
than a common clock, is used. The time interval that elapses between changes in the
state (the clock period) is modeled with the after clause. The data operations ap-
pearing in block statements are also clocked by the state. This description is difficult

to synthesize since the clock for register a.ssignménts is not explicitly specified.

State_1: block (state = S0)
begin
state <= guarded S1 after CLK_PERIOD;
end block;
State_2: block (state =
begin
state <= guarded S2 after CLK_PERIOD;
end block;
State_3: block (state =
begin : v
state <= guarded S3 after CLK_PERIOD;
end block;

S1 and cond)

S1 and not cond)

=1

(S

FO: block (state = SO)
begin
cond <= guarded (X = ’0’);
end block;)
F2: block (state = S2)
begin

A <= guarded A + "0001";
end block;
F2: block (state =
begin

B <= guarded A + B;
end block;

S3)

State_4: block (state = S2 or state = S3)
begin

state <= guarded S4 after CLK_PERIOD;
end block;

(a) state transitions (b) data operations

Figure 4.11: State Transitions/Register Transfers Description

The description of the state table using the VHDL behavioral description style

(process statement) is shown in Figure 4.12(a).

Here, each process represents a state. Problems associated with this represen-

tation with respect to synthesis include:

1. One signal variable per state is required. Since each process is triggered by a
change in the state variable found in its sensitivity list, detection of this signal

change and state decoding are difficult to impiement.

2. The same storage element may need to be upd@ted in more than one process.
Using block statements, this can be handled with guarded signal assignments;
the process, however, provides no clean method of expressing this concept.
Variables are local to the process and can be used to represent va, storage el-

ement within one process only. Guarded signal assignments are not allowed

architecture P1 of STATE_TBL is
signal S0,S1,52,S3,S54: BIT;
signal S4_1,54_ 2 BIT
signal A,A1,B1: BIT_ VECTOR(B downto 0);
begin
State_0: process (S0)
begin |
cond <= (X = 0);
S1 <= not S1 after CLK_ PERIOD
end process State_0;

State_1: process (S1)
begin -
if (cond) then
S2 <= not S2 after CLK_PERIOD;
else
S3 <= not S3 after CLK_PERIOD;
end if;
end process State_1;
end if;
State_2: process (52)
begin
A1l <= A + "0001";
S4_1 <- not S4 after CLK_ PERIOD
end process State_2;

State_3: process (S3)
begin

Bl <= A + B;

S4_2 <= not S4 after CLK_PERIOD;
end process State_3;

A <= A1 when not A1’QUIET else
A; .
B <= B1 when not B1’QUIET else
B; :
S4 <= S4_1 when not S4_1’QUIET else

end P1;

.(a) process graph description

S4_2 when not S4_2'QUIET else S4;

architecture P2 of STATE_TBL is
type STATE_VAL is (S0,S1,S2,
$3,54);signal cond: BOOLEAN;
signal cond: BOOLEAK;
signal state: STATE_VAL;
signal new_state: STATE VAL
begin

process(state)

begin

when SO => cond <= (X = 0);
new_state <= Si;
when S1 => if (cond) then
new_state <= S2;
else
new_state <= S3;

when S2 => A := A + 1;
new_state <= S4;
when S3 => B := A + B; -
new_state <= S4;
when S4 => ...) ’
end case;

étate <= new_state
after CLK_PERIOD;

end process;

end P2;

(b) sigle process

Figure 4.12: Alternative VHDL State Table Descriptions

74

within processes. Virtual muxes must be added to accommodate the update of
the same signal in more than one state. This introduces unnecessary hardware

which violates good design practice.

A second use of the process statement to represent register transfers is shown in’
Figure 4.12(b). The single process contains a case statement to specify an instruction
set like description. This description can’t express parallelism for operations associ-
ated with one condition since the process is inherently sequential. On the other hand,
if we assume for synthesis that all statements appearing within a case alternative are
executed in parallel, the VHDL simulation of the input description will not reflect
the true behavior of the synthesized design. The solution is to use additional signals
of type wire. The following VHDL code fragment illustrates the equivalent sequential

statements for the concurrent interchange of the values of A and B:

variable A,B: BIT;
signal temp: BIT;

em A;

o > ot
s
= A

we o

In order to describe register transfer designs for synthesis, the following modeling

practice is recommended:
Proposition 6

Each state of a register transfer design should be described with block statements
containing condition, next state assignment and all register transfers with the clock
specified in the guard expression. Alternatively, a single process with a case statement

can be used.

~1
(@]

4.3.5 Behavioral Design

Design Model

The design model shown in Figure 2.11 is also assumed for the algorithmic

design model. ‘A behavioral description allows the designer to describe the design

as a black box with well defined interfaces. Variables within a description can be
allocated storage by default, or the synthesis system can determine which variables

require storage. As in the combinational model, input to output timing is expressed.

VHDL Alternatives

Figure 4.13 shows a simple VHDL behziviorai description. The process state-
ment is the only suitable method in VHDL for expressing behavior in algorithmic
form. Each VHDL process will be lsynthesized into a CU/DP pair. Data computa-
tions within the process are made with variable assignment statements. Its similarity

to a programming langﬁage allows for the coding of algorithms using typical control

constructs (IF, CASE, FOR and WHILE loops).

Input to output timing is expressed as a part of the output signal assignments.

The wait statement can be used within the process statement to express timing. A -

statement of the form
wait until <condition>

will model a design state which loops on itself until the specified condition evaluates

to TRUE. The state table entry for this state will advance the state register to the

architecture BEHAVIOR of STATE_TBL is
signal B_port: BIT_VECTOR(3 downto 0);
begin

process (X)
variable A,B: BIT_VECTOR(3 downto 0);

begin
if (X = ’0’) then
A = A + "0001";
else
B :=B + A;
end if;

B_port <= B after 20 ns;
end process;
end block;

Figure 4.13: Behavioral Description Usiflg VHDL Process Statement

next state in sequence when the condition is TRUE. The second form of the wait

statement,
wait for <time>

models a design state which loops on itself for the specified time duration. For
synthesis, the time duration must be a multiple of a known quantity of time such
as a clock cycle. This model requires a count variable initially set to zero which is
incremented 6n every execution of the state. When the count reaches the specified

number of clock cycles, the state register is advanced to the next state.

The recommended modeling practice for algorithmic design can be summarized

as follows:

Proposition 7

Behavioral designs are modeled by VHDL process statements. Signal assign-
ments are used to represent output port assignments. Signals may also be used to
hold temporary values (for example, the swapping of register contents) in order to’

model concurrent events within the sequential process.

4.3.6 Summary

‘This chapter presented the details of a proposed structured modeling method-
ology which does not restrict VHDL to a particular subset but recommends several
writing styles for different design models. This methodology is based on the following

principles:

1. Appropriate constructs in VHDL should be used for appropriate levels of design.

2. Guard expressions for block statements are used to represent clocks, or signals

that enable storage.

3. Unguarded signal assignments should be used to model wires. Guarded signal
assignments should be used for register and bus assignments. These constructs

should not be mixed so that the model remains consistent for synthesis.

4. Design hierarchy and partitioning should be reflected in the description, al-

though not with the same granularity.

5. It is believed that this structured modeling methodology will result in reduced .
modeling effort, allow portability of models, and facilitate synthesis of high

quality designs.

78
Appendix A presents the VHDL coding practices and conventions for Structured

Modeling as implemented in the VHDL Synthesis System.

Chapter 5

Design Representation

This chapter describes internal representation of the VHDL input description
and the synthesized structural description used in the VSS system. The Design
Representation con31sts of two views of the design: the behavioral view which is cap-
tured in a Control/Data Flow Graph (CDFG) representation, and a structural
view which is maintained in the form of a GENUS Partial Design representa-
tion. The use of this representation to capture characteristics of four different design

models (combinational, functional, register transfer, behavioral) will be illustrated.

5.1 Control/Data Flow Graph

5.1.1 Introduction

A design representation or data base is the internal representation used by a
synthesis tool. It organizes information extracted from the input specification neces-
sary for synthesis. This representation is created, manipulated, and optimized by the

system so that a netlist or other output specification can be produced.

S0

One common design representation used in several synthesis systems is the con-
trol/data flow graph [OG86]. The control flow graph represents sequencing infor-
mation. Each "state” in the behavioral description is represented as a sequence of
actions to be performed, and based on the evaluation of a condition, the next state to
which execution is to be advanced is indicated. Control dependencies implied‘in the
semantics of the behavioral description (for example, loop and if-then-else constructs)

are preserved in the control flow graph.

The sequence of actions to be performed (arithmetic, logical, shifting operators)
is represented using data flow graphs. A data flow graph indicates data dependencies
that exist between variable accesses in assignment statements. The data flow graph
exposes the parallelism in the input description. A control flow node representing a

state will have a data flow graph associated with it.

5.1.2 Motivation

In synthesis, we are interested in generating a structural description of com-
ponents from a given library from a behavioral description. Here, we are interested
in proper_ly connecting all pins on all components instead of observing signal values
6n some of the pins. The behaviora.l description must be parsed into a design rep-
resentation which can be operated on by a variety of synthesis tools. This design
representation should be well defined and should capture uniquely the functionality
and intention of several equivalent behavioral descriptions in a format appropriate
for synthesis. The representation must allow for the transformation of behavioral in-
formation (simulatable functionalify) to structural information (library components

and their attributes).

81

This section details the corresponding internal representation (control and/or

data flowgraph) produced as the VSS input compiler parses each VHDL statement.
The various interpretations of’ VHDL étatements used to represent characteristics
of each of the desigﬁ models mentioned in our structured modeling methodology

(combinational, functional, register transfer, behavioral) will be illustrated.

5.1.3 VHDL Design Representation in VSS

This subsection describes how each VHDL statement is processed by the VHDL
Synthesis System (VSS) in order to generate and maintain an internal representation
appropriate for synthesis. The control/data flow graph (CDFG) which is used as -
this internal representation is constructed as each statement is ‘p‘arsed. The portions
of data and control flow graphs corresponding to the statements in a block or process
are appropriately interconnected according to the design style used in the VHDL

description.

- Structural Description Style

A designer can specify an initial design, fully or partially, using a structural
description mixed with behavior. When sections of the design are described using
structural VHDL (for example, previously synthesized modules), these portions are
copied intact to the output produced by the VSS system. The partial structural de-
scription is énha.nced with additional components necessary to implement the sections

of the design described using the data flow and behavioral styles.

32
When synthesis is completed, the VSS system produces a VHDL structural
description of the design, using component declarations and instantiations derived

from an Intelligent Component Data Base (ICDB) [Che90]. VHDL behavioral models

for these components are available from the data base.

Dataflow Description Style

The dataflow description style emphasizes the flow of information between stor-

age and gating elements.
Concurrent Statements

Concurrent statements are used to define interconnected blocks (components,
possibly of different complexity) that jointly describe the overall behavior or structure
of a deéign. Concurrent statements execute asynchronously with respect to each other.

The following concurrent statements are found in VHDL:

concurrent_statement ::=
block_statement
| process_statement
| concurrent_procedure_call
| concurrent_assertion_statement
| concurrent_signal_assignment_statement
| component_instantiation_statement
| generate_statement

Block Statement

The primary VHDL construct used for the dataflow description style is the
block statement. A block statement defines an internal block representing a portion

ofa design. It has the following syntax: V

block_statement ::=
block [(guard_expression)]
block_header
block_declarative_part
begin :
block_statement_part
end block;
block_header ::=
[generic_clause
[generic_map_aspect;]]
[port_clause
[port_map_aspect;]]

block_declarative_part ::=
{ block_declarative_item }

block_statement_part ::=
{ concurrent_statement }

The optional guard_ezpression defines an implicit signal GUARD which is of
type BOOLEAN for simulation. If the guard_expression evaluates to TRUE, all signal
assignments with a guarded qualifier appearing in the block_statement_part will have
their RHS evaluated, and a driver is placed on the event queue to update the signal
values at the appropriate time. For synthesis, the guard_expression is used to specify

a synchronous or asynchronous event which results in a signal update.

The block_header explicitly identifies certain values or signals that are to be
imported from the enclosing environment into the block and associated with formal

generics or ports.

The block_declarative_part defines all local signals, types and subtypes, con-

stants, components and attributes.

One or more concurrent statements constitute the block_statement_part. Blocks
may be hierarchically nested to support design decomposition [IEE87]. The block

statement groups together other concurrent statements such as signal assignments

84

which assign values to signals. Nested blocks are flattened for synthesis to facilitate

resynthesis with optimization.

The flow graph representation, for a block statement in shown in Figure 5.1.

BLK_START

STMT_BLK

:BLK_END

Figure 5.1: Block Statement Flowgraph Representation

It consists of BLK_START and BLK_END demarcation nodes, and a STMT _BLK
node which represents the body of the block statement. The data flow graphs gen-.

erated for each concurrent statemert appearing in the block are associated with the

STMT_BLK.
Signal Assignment

A signal assignment statement is used to assign or update values for a signal

driver. The basic format of an assignment statement is the following:

target <= [guarded | <RHS-expression>

85

Each a551gnrnent made to a target or left hand side (LHS) 51gnal/var1able is
represented by a WRITE node in the flow graph. Similarly, each access of a signal or
variable appearing as a part of the right hand side (RHS) expression of an assignment

statement is represented by a READ node.

READ and WRITE nodes for signals of can be of type PORT, REGISTER or
WIRE (WIRE is the default for any variable declared as a SIGNAL). If a signal is
of mode internal (that .is, it was declared locally within somé block statement) and
a WRITE and READ node for that signal are connected when DFG sections are

merged, the nodes can be coalesced, producing a signal net of type WIRE.
Conditional Signal Assignment

The conditional signal assignment statement has the following syntax:

signal <= [guarded] { <waveform> when <condition> else }
<waveform> ;

<waveform> ::= <expression> [after <delay>]

The conditional signal assignment will occur in one of the following forms:
a) signal <= <waveform> ;

This is the simplest form of assignment statement. The VHDL simulator inter-
prets this statement as a directive to compute the value of <expression> and schedule
the activation of this driver for the signal value at time <current-simulation-time>

+ <delay> (if no delay is specified, the driver is activated immediately).

From the CDFG perspective, a dataflow graph is constructed for the RHS
expression, and the result is input to a WRITE node for the signal. Associated

with each graph arc (connection) is a signal type (bus, register, port, wire), mode

86

(in/out/inout (for ports only), internal), bit width (number of bits), and represen-
tation (integer, ﬂoa.tingv point, 1’s complement, 2’s complement, sign/magnitude).
The optional delay specification indicates the time which elapses between the READ
of all signals/variables'Which apﬁgar on the RHS of the assignment statement and
the ;Lppearance (WRITE) of the updated expression value at the register/port/wire
represented by the signal. F igure‘5.2 shows a typical signal assignment statement

and the corresponding flowgraph with delays.

entity EXAMPLE is
port (B,C: in BIT_VECTOR(3 downto 0);

architecture EX of EXAMPLE is

signal A: BIT_VECTOR(3 downto 0); :z'gg;:p&"
bit width: 4
A <= B + C after 3 ns; rep: mag

end EX;

WRITE
SIGNAL
A

type: wire
mode: internal
bit width: 4
rep: mag

Figure 5.2: A Simple Conditional Signal Assignment

b) signal <= guarded <waveform> ;

87

The guarded assignment involves the conditional assignment of the evaluated
<wavef<;rm> to the signal based on the value of the guard expression which appears
at the beginning of the enclosing VHDL block statement. When the guard expression
evaluates to TRUE, the VHDL simulator activates the signal driver and places its
value on the simulator event queue so that the signal is updated at the specified

simulation time.

For the purposes of CDFG generation and synthesis, a guarded signal assign-
ment is used for signals declared with the bus or register signal kind qualifier. A
data flow graph is generated for the RHS expression and is connected to the true
input of a CHOOSE-VALUE nodé. The CHOOSE-VALUE node represents the se-
lection of a data element based on the value of a guard (select) input. The guard
input is a data flow graph representing the block guard expression. The output of
the CHOOSE-VALUE node is used as the input to z; WRITE node for the signal.

Figure 5.3 shows an example of this construct.

If the signal is declared as a bus, the CHOOSE-VALUE will be mapped to a
tri-state driver for the bus signal. If the signal is a register under a guard expression
of type CLOCK, the CHOOSE-VALUE will be removed, and the select line will be
connected to the clock input of the WRITE_REG node. The function of each signal
appearing in the guard expression is determined by its signal type. In the case of
multiple signals in the guard expression (clock and set, for example), an optimization

step will connect each signal to the appropriate control input.

c) signal <= [guarded] .
waveforml when conditionl else .
waveform2 when condition? else '

waveformM when conditionN else
waveformN;

88

entity CONTROLLED_CTR is
port (CLK: in CLOCK;

architecture DATAFLOW of
CONTROLLED CTR is

DATA: in BIT_ZVECTOR(3 downto 0);

signal CNT: BIT_VECTOR(3 downto 0) register;

CNT_UP: block (CLK = ‘1’ and not CLK’STABLE)

begin

CNT <= guarded CNT + “0001” after 10 ns;

end DATAFLOW;

ATTRIB
STABLE

READ
" REG
CNT

WRITE
REG
CNT

Figure 5.3: Guarded Signal Assignment

89

This statement corresponds to a nested if arrangement of aésignments to the
same signal based on different boolean conditions. The VHDL simulator will evaluate
waveform/condition pairs in thé order in which they appear and will schedule the
assignment of the first waveform value to the signal wheﬁ its associated condition

evaluates to true.

The conditional assignment statement can be useful in representing an assign-
ment to a signal based on prioritized conditions. For example, the statement in
Figure 5.4 might be used to represent a register for which the CLEAR is of high-
est priority, followed by PRESET and CLOCKed assignment. Figure 5.4 shows the

flowgraph generated for the statement.

A chain of CHOOSE-VALUES is constructed to form the data flow graph for
the nested if construct. The bottom most CHOOSE-VALUE is guarded by the first
condition encountered, the CHOOSE-VALUE above the bottom one is guarded by the
next condition, etc. The output of the bottom most CHOOSE-VALUE is connected
to the WRITE node input.

Selected Signal Assignment

The format of the selected signal assignment is shown in Figure 5.5. This is
equivalent to the case statement available as a sequential statement within the process
construct. The choices are exclusive conditions (either integer or boolean values) such
that only the waveform matching the value of the <expression> is evaluated and
scheduled for assignment by the VHDL simulator. Figure 5.5 éhows the flowgraph

generated for the general form of this statement.

block (CLR = ‘0’ or SET = ‘1’ or CLK = ‘1’)
begin .

A <= guarded

‘0’ when (CLR. = ‘0’) else

‘1’ when (SET1 = ‘1’) else

DATA when (CLK = ‘1’) else

READ
PORT

CLR

A

end block;
READ READ
CONST PORT

Figure 5.4: Conditional Signal Assignment

WRITE
REG

. 91
The data flow graph construct associated with this statement is the multiple
input CHOOSE-VALUE guarded by the <expression>. Each waveform will have a

corresponding data flow graph generated for its expression value, and the guard test

for each input will be stored in the input net.

with <expression> select
signal <= {guarded}
- <waveform1> when choicel,
<waveform2> when choice2,

<waveformN> when choiceN;

< waveform2>

<waveforml> [KwaveformN >

< expression >

< guard expression>

WRITE
signal

Figure 5.5: Selected Signal Assignment

Behavioral Description Style

A behavioral description is a sequentially executed, procedural style of code
typical of common programming languages. A behavioral specification specifies, with 7
any desired degree of precision, what a device does (its function) without specifying

how it does it (its structure) [CAD87].
Process Statement

The primary VHDL construct used for the behavioral description style is the
process statement. A process statement defines an independent sequential process

representing the behavior of some 'ﬁortionA of the design. It has the following syntax:

process_statement ::=
process [(sensitivity_ list)]
process_declarative_part
begin
process_ statement_part
end process;

process_declarative_part ::=
{ process_declarative_ item }

process_statement_part ::=
{ sequential_statement }

The execution of a process statement consists of the repetitive execution of
its sequence of sequential statements. Af_ter the last statement in the sequence of
statements of a process statement is executed, execution will immediately continue

with the first statement in the sequence of statements [IEE87].

A sensitivity list mé.y be specified for each process. By specifying a sensitivity
list of one or more sigﬁa.ls, the proéess statement is assumed to contain an implicit
wait statement as the last in the sequence of statements. This wait statement will

suspehd execution of the process statement until an event (change) occurs involving

93

one of the signals in the sensitivity list. The sensitivity list is ignored by the VSS

synthesis tool.

The process_declarative_part defines all local signals, variables, types and sub-

types, constants and attributes.

One or more sequential statements comprise the process_statement_part. The
sequential statements which may appear in the description are listed in the next

section.

The flow graph representation for an example process statement is shown in
Figure 5.6. Note that a STMT_BLK node is a control node which has an associated
data flow graph. These data flow graphs are constructed for sequential signal and

variable assignment statements.
Sequential Statements

The sequence of statements within a process statement may contain one or more

of the following statement types:

sequential_statement ::=

wait_statement

| signal_assignment_statement

| variable_assignment_statement

| procedure_call_statement

| if_statement

| case_statement

| loop_statement

As mentioned above, data flow graph sections for assignments of values to sig-
nals and variables are created as in the case of concurrent signal assignments and

associated with STMT BLK nodes. Control flow graph sections are created for each

of the behavioral control constructs. These control flow graph sections are nested

94

process
begin
while (stop = ‘0°)

PROC_START

PI := M(CR)(15 downto 0); STMT.BLK
S := PI(15 downto 3); ST
case PI(2 downto 0) is

when 0 => CR := M(S);
when 1 => Acc := Acc - M(S);
P_TES
when 6 => if (Acc < 0) then 1 0
CR := CR + 1;
when 7 => stop <= ‘1’ Y
end case;
end loops STMT_BLK
end process;
ASE_SEL
0 1 6 7

i_'J l [—l—v Y

STMTBLK | |sT™MT.BLK | |sTMT BLK | |sTMT_BLK
F_TEST
1 0
-
- STMT,.B’ZKﬂ

Figure 5.6: Process Statement Flowgraph Representation

95

and interconnected to model the flow of control implicit in the sequential, behavioral

description.
Signal Assignment

The syntax of the signal assignment statement for a sequential process is iden-
tical to form (a) of the conditional signal assignment in a concurrent block. A data
flow graph similar to the representation generated for a concurrent signal assignment

(see Figure 5.2) is created.
Variable Assignment

A variable assignment statement replaces the current value of a variable with a

new value specified by an expression. The statement has the following syntax:
target := <expression> ;

This statement cannot use the after clause to specify timing relationships as
in the signal assignment statement. A data flow graph is genera:ted to represent the

variable assignment.
If Statement

One construct used to model conditional execution in the VHDL process state-
ment is the if statement. The if statement performs a conditional branch based on

the value of a boolean signal.

The control flow graph section created to represent the if statement consists of
three parts: (1) a TEST (or SELECT) node which selects the control branch to be
taken based on the test signal; (2) for each control branch, one or more control nodes

representing a sequence of statements to be performed in that branch; (3) a JOIN

96
node which signifies the end of each conditional branch and connects to the flowgraph

section for the next sequential statement. Figure 5.7 shows the control flow graph

sections created for the if construct.

. . STMT_BLK
if (boolean_expression) luat
then o , (ev ':’ N
seq-of_statements_1 test bit)
else
seq_of_statements_2
end if;

— —

seq. of seq. of
statements.1 statements 2

= A

IF_JOIN

Figure 5.7: If Statement

Case Statement

The case statement selects between two or more conditional branches based on
the value of an integer select signal. Figure 5.8 shows the ﬂowgra,pvh representation

for the case statement.

97

case (integer_expression) is.

when choice_1 => STMT BLK
seq-of_statements_1 (evaluate

test signal)

when choice_ N =>
seq_of_statements_N

end case;
seq. of seq. of
statements_1 statements_IN
CASE_JOIN
Figure 5.8: Case Statement
For Loop

A loop statement includes a sequence of statements that is to be executed

repeatedly, zero or more times.

The for loop construct uses an index variable whose value steps through a
specified range for each iteration of the loop. The index variable is set to the first
value in the range prior to entering the loop. A test is made to determine if the
index value is within the range; if so, the loop body is entered. Once the loop body

statements are executed, the index variable assumes the next value in the specified

98

range, and control is returned to the loop entry test. If the test returns FALSE, control

passes to the next sequential statement. Figure 5.9 shows the for loop representation.

for identifier in discrete_range loop STMEI'BLK
seq_of_statements : ' (S.ed o0P
end loop; index)
LP_TEST .
1 0
seq. of
statements next
statement
index :=
next value in
discrete_range
Figure 5.9: For Loop Statement
While Loop

The while loop construct tests a boolean condition, and if it is TRUE, passes

control to the first control node of the flowgraph section implementing the sequence

of statements for the loop body. Once the loop body statements are executed, control

returns to the condition test which is repeated. If the condition evaluates to FALSE,

99
control passes to the sequential statement following the while loop. Figure 5.10 shows

the representation corresponding to a while loop.

while (boolean_expression) loop 1
seq-of_statements STMT.BLK
end loop; (evaluate
test signal)

LOOP_TEST
] 1 0
seq. of _ next
statements
statement

Figure 5.10: While Loop Statement

Procedure Call

The procedure call has the following syntax:

procedure_name (<parameterlist>);

Procedure calls are used in a VHDL description to invoke a procedure body con-
sisting of sequential statements which are used one or more times in the description.

Figure 5.11 shows the flow graph representation for a procedure call.

The procedure call may be processed in one of two ways:

100

|

CALL
proc_name

o

Figure 5.11: Procedure Call Statement

proc_name (<parameter_list>);
|
|
|
|

1. In-line expansion éf.each call may be performed, where the statements of the
procedure body are substituted for the procedure call statement. A template
flowgraph created for the procedure body is inserted, with actual parameters
replacing occurrences of formal parameters. When this description is synthe-

sized, each procedure call invocation can be mapped to available hardware in
the data path, or a rnicrbcode implementation in control can be implemented.

Annotations in the VHDL description will determine the implementation style.

2. The procedure body is treated as a description of a block in the design. A
flowgraph is created for the ﬁrocedure body. Hardware is synthesized for this
description, and each procedure call supplies the values of actual parameters as

inputs to the procedure body hardware. .

Wait Statement

"The wait statement has the fdllovVing syntax:

wait [<condition_clause>] [<timeout_clause>] ;

until <boolean_expression>
for <time_expression>

<condition_clause> ::
<timeout_clause>

101

wait until cond_expr
for time;

|

C <= cond_expr;
TIMER := 0;

TIMER :=
TIMER + 1;
C <= cond_expr;
next
statement

Figure 5.12: Wait Statement

102

A wait statement is used to suspend the execution of a process statement until

a specified condition is TRUE, or a timeout period elapses. Figure 5.12 shows the
control flow graph sections created for a wait statement with condition and timeoﬁt
clauses. This statement is implemented in control and is synchronized with the system

clock; time 1s measured in multiples of the clock period.

5.1.4 Annotations

In some instances, it is necessary to indicate to the VSS system which design
process should be used for a given VHDL description. This is accomplished through

the use of annotations in the form of special VHDL comments as shown below:
VSS: functional description

Annotations are used in the following situations:

1. To indicate the structured modeling style used in the VHDL description.

2. To indicate that a CFG to DFG transformation is to be applied to a process
control construct (IF, CASE or LOOP). For example, it may be desirable to
unwind a loop, where iterations are flattened into a sequence of assignments,

rather than implementing indexing or conditional tests in control.

3. To denote a next state in process descriptions. This can be used to define
state boundaries for a register transfer description consisting of a sequence of ‘

assignment statements.

103

5.2 Partial Design Representation

The partial design representation stores the data path structure and the control
specification produced by VSS. The data path structure is represented using the three
levels of hierarchy of a GENUS [Dut88] component description; these levels will be
described briefly in the next section. The control unit specification is derived from in-
formation stored in the flow graph design representation. State and resource bindings
performed by the scheduling and resource binding modules of the Design Compiler
annotate the flow graph with state and component assignments for register transfer
and behavioral designs. This information can be extracted, formatted, and presented
to the designer in the form of Behavioral Intermediate Format (BIF) [DHG89] state

tables.

5.2.1 GENUS Partial Design Representation

The_GENUS generic component library consists of three levels of hierarchy:
generators, compénent classes, and component instances. A generator is used to
represent a family of similar components and instances. The generator descriptor
maintains a list of all possible parameters and a specification of each operation per-
formed by the generated component. The component class is the product of a call
to a parent generator with a particular set of parameters. For example, a 4-bit reg-
ister component class is generated by calling the register generator with a bit width
parameter of 4. The component class representation is maintained by the VSS tool

as a part of the design data base which stores the partial design being synthesized.

" Instances are “carbon copies” of a parent component class, distinguished by an unique

104

name. Each instance corresponds to an actual component in the partial design. The
instance inherits its attributes from the parent component; consequently, the primary
information stored in this level of the GENUS hierarchy involves the connectivity of

the instance.

i

[t is often desira'ble to repfesent a hierarchical decomposition of a design, where
the top level of the hierarchy c’ont;i.ins a small number of combonents which have
been constructed from more primitive elements. For example, the VHDL structural
description style allows for a hierarchical description using entity/architecture pairs
to describe portions of the design and. configuration statements to indicate the de-
composition of component'instanceé. This hierarchy must be distinguished from the
hierarchy presenf in the'GENUS component representation; the latter is associated
with the representation of a single c6mponent, while the former refers to the represen-
tation of the entire design which at any intermediate level may consist of a mixture of
simple GENUS component i'nsta.nceys and »groupings of instances which are expanded
in lower levels. The configuration specification indicates the expansion of a complex
component in the higher levels of the design hierarchy in terms of more primitive
components, where the leaf level components ih the hierarchy are constructed using

the most basic elements (pure GENUS components).

The GENUS component repre.séntafion has been adapted aﬁd extended to suit-
the requirements of partial design representatio-n in VSS. In order to represent the
partial design hierarchy as it is synthesized from the VHDL input descfiption, an
entity object has been defined to repiesen‘p a collection of component instances at any
level of the abstraction. Componer;ts within an entity may themselves be entities;
allowing for structural decomposition of the partial design.” Associated with each en-

tity object are lists of GENUS component classes and GENUS component instances. |

105

If a cémponent in this entity is to be decomposed further, links are rna.intaiﬁed in an
entity hierarchy. Figure 5.13 shows an example partial design netlist and the corre-
sponding representation in terms of eﬁtity objects and GENUS component instances.
The entity object hierarchy is easily translatable into the entity/érchitecture pair..

hierarchy of a VHDL structural description or netlist.

Available component generators are introduced to VSS using a GENUS gen-
erator input parser. This parser reads a textual file of GENUS generic component
generator specifications written using the LEGEND language [Dut90] and produces
an internal data structure‘which maintains the generator information. Upon com-
pletion of and integration with the Intelligent'Corﬁponent Data Base [Che90], this

information will be obtained through data base queries.

5.2.2 State Tables

The format used to capture the sequencing infofmation present in the con-
trol flow graph aﬁd present it to the designer in readable form is the Behavioral
Intermediate Format (BIF) [DHG90]. These tables are derived from a traversal of
fhe control/data flow graph; branching conditions for loop, if and case conditional
constructs become the conditional event under which data ﬂo§v and/or sequencing
operations are performed. The task of state scheduling annbtates the CDFG with
state binding information; this ihformation is reflected in the current and next state

assignments speciﬁed in the BIF tables.

Upon completion of the scheduling task of éynthesis of a VHDL behavioral
model, an operation based state table (OBST) is generated. The behavioral operations

that are performed in each state are specified in the action field of the table.

106

CLK X Y
|
MAIN
CLK crrl[x] [y
|
1 CuU DP I R
2
nli S S3 > Ri r
n2 n3 —E MUX3
ns5
BN e
c2 —E ALU4
pons
. C3 0 . LI Rs
n | I
<] =
]
I_Cl'_l Lz]
Z
Hierarchical Structure
MAIN
subentities = | i {
CU DP
input ports: CLK, C
output ports: S, F
net table: component/instance lists:
net source dest component instances
nl CLK.00 SR.CLK INPUT _PORT1 CLK, C
nz C1.00 SR.I0 OUTPUT_PORT1S, F
n3 SR.0O0 C2.1I1, C3.Io0, C1.I1 REGISTER1 SR
n4 C.00 C1.I0, C3.1I1 XOR C1
n5 C2.00 S.Io INV C2
né C3.00 F.I0 NAND Cs3

Entity Object Hierarchy

Figure 5.13: GENUS Partial Design Entity Object

107

The unit based state table (UBST) captures the assignment of behavioral opera-

tors to units in the partial designlstructure on a state-by-state basis a;fter the resource
allocation and binding tasks have been performed. For each state, all units which per-
form an operation in that state are listed in the action field. The unit performing
the operation, its opera,nds; the' operation to be performed, and the destination are
specified for each unit usage. This specification links the behavioral operator from
t‘he CDFG to a specific instance of a functional or‘storage element in the GENUS

Partial Design Representation.

Chapter 6

Synthesis System Framework

This chapter describes the system architecture of the VHDL Synthesis System

(VSS), providing details of its major components. The block diagram of the VSS

system is shown in Figure 6.1.

The VSS system consists of four subcomponents: a Graph Compiler com-
ponent, a Representation Optimization component, a Design Compiler com-
ponent, and an Output Generation component. The Graph Compiler module
accepts a VHDL description and generates the Control Data Flow Graph (CDFG)
internal representation which is operated on by subsequent components of the VSS
system. Various local and global transformations are applied to the CDFG within the
Representation Oﬁtimz’zation component. These optimizations restructure> the inter-
nal representation in ordér to facilitate efficient synthesis as performed by the Design

Compiler.

The optimized flow graph is then processed by the Design Compiler. The Design
Compiler consists of a collection of algorithms which perform the allocation, schedul-
ing and resource binding tasks of high-level synthesis. An appropriate sequence of

synthesis procedures is determined by the selected design model and by directives

108

109

VHDL Input
Description

Graph
Compiler
CDFG

Representation Optimizations

Graph : Graph

| Critic | l Transformations '

!

Optimized
CDFG

Design Compiler

re===a r====a r-===1

l Allocator ' ' Scheduler | . Resource '

L by L Dimder

' '

Annotated GENUS Partial
CDFG Design Repres.

Output Generation

FeEs==9 r<==="

' State Table l Netlist
Generator
Generator

Control Logic
Compiler '

Figure 6.1: VSS Block Diagram

BIF State
Table

VHDL
Netlist

110

specified through annotations in the input description which are recorded in the de-
sign representation. Allocation constraints are supplied to the Design Compiler algo-
rithms via a textual file. As each subtask within the Design Compiler completes, the
synthesized structure of the design is generated using components from the GENUS
generic component library [Dut88]. This structural view of the design is maintained
in the GENUS Partial Design Representation described in section 5.2.1. In addi-
tion, the CDFG is annotated with information that relates the binding of behavioral

operators and variables to the corresponding structural components.

Results of the synthesis process to be examined by the designer are created
by the Output Generation module. The GENUS Partial Design Representation is
presented in textual form via a VHDL structural description. If a multiple state
design is produced, a specification of the control sequencing required is generated in
the textual form of a BIF [DHG89)] unit based state table derived from the annotated
CDFG.

A Control Logic Compiler utility derives a description of the behavior of control
unit components from a BIF state table. This specification is synthesized to produce

an implementation of the control unit, thereby completing the design structure.

6.1 Graph Compiler

The Graph Compiler parses the VHDL input description into the Control/Data
flow graph representation used internally in the VSS system. The Graph Compiler
operates in one of two modes, concurrent or sequential, depending on the VHDL

concurrent statement (block, signal assignment, process or procedure) currently being

111

processed. The primary difference in these operation modes involves the processing
and interconnection of signal or variable assignment statements. When processing a
VHDL block statement, the assumed deéign model dictates that signal assignments
are concurrent; therefore, the Graph Compiler does not introduce data dependencies
between the update of a signal and subsequent accesses of that signal in the same
block. Conversely, in eequential mode, the design model requires the enforcement of
data dependencies in a sequence of assignment statements occurring within a VHDL
process statement; in this case, data dependency arcs are introduced in the data flow

graph representation.

Each VHDL concurrent statement is processed in order of occurrence in the
input description, producing a corresponding Control and/or Data flow graph repre-
sentation. The hierarchy of the VHDL description (e.g., nesting of block and process
statements) is preserved in the internal representation. Annotations e;lcountered in

the input description are used to guide the Graph Compiler in the following cases:

o Typing of signals - if the designer wishes to bind a variable in the description
to a hardware element (register, bus, etc.), an annotation appearing just prior
to the signal/variable definition (see section 5.1.4) will appropriately type-all

references in the representation.

o Selection of design style - if it is desired to implement a block or process using
a particular design model, a comment annotation appearing just prior to the
statement will result in the selection of the appropriate Graph Compiler mode

and application of subsequenﬁ optimizations and transformations.

112

e Control construct transformations - if such a directive is encountered in the
description, the annotated sequential statement will be markéd, and transfor-
mations will be applied to convert this statement to an equivalent concurrent

(data flow) representation.

6.1.1 Block Statement Compilation

For signal assignments appearing in a block statement, flowgraph sections gen-

~ erated for each statement are interconnected once all statements have been processed.

This corresponds to the concurrent data flow style where all operations are assumed

~ to be executed in parallel. Variables appearing on the left hand side (LHS) of an

assignment statement are assigned the value of the variable prior to the execution of
the block statement. Figure 6.2 shows a VHDL code fragment consisting of several

concurrent assignment statements, the flow graphs created for each statement, and

the final interconnected flow graph.

The sections of DFG representing each signal assignment will be appropri-
ately interconnected based on the signal type. It is the signal kind that will define
whether a VHDL signgl (container) represents a memory element, port, bus or wire.
Guarded signal assignments indicate that the assignment target signal is of signal
kind REGISTER (if the block guard is of typé CLOCK, SET or RESET) or BUS.
Unguarded signal assignments signify SIGNAL (or wire) targets when access to these
signals occurs within the scope of the block being processed (i.e., the signal must be
defined within the current block, and a READ and WRITE of the signal occur in the
block); otherwise, the signal access will be ma.pped‘ to a PORT in subsequent Design

Compiler processing.

113

<

I

+ G
*”

-

o>

B
A
D

< E
< - A

-

VHDL Concurrent Statements

Individual Statement Flow Graphs

Interconnected Flow Graphs

Figure 6.2: Block Statement Compilation

114

Structured Modeling recommends that for concurrent (block level) descriptions,
a single block should be used for a signal update, or multiple blocks are allowed to
specify mutually exclusive updates to a signal. In the case where multiple blocks
are used to describe exclusive functionality of a component, Design Compilation may
require the flattening of these multiple blocks into a single DFG to facilitate mapping
to GENUS components. In order to a.ccc’)rnplish this, the signal kind is used’ to
determine the interconnect protocol which results when multiple sources for the same

VHDL signal are encountered within a DFG section.

Multiple WRITEs (sources) to a signal of signal kind SIGNAL indicate that
a WIRED-OR node should be created with each WRITE node as an input. Any
READ nodes for this signal should be connected to the output of the WIRED-OR

' node. This DFG construct will be mapped to a wired-or connection during design

compilation.

Siniilarly, recognition of multiple WRITE:s to a signal of signal kind BUS should
produce a BUS node to which all WRITE nodes are connected. Since each WRITE
node for a signal of type bus was created when a guarded signal assignment was 'made,
each input is controlled by some guard. This flow graph pafctern will be mapped to a
bus connection, where each CHOOSE-VALUE controlling a WRITE input becomes

a tri-state bus driver.

Accesses to signals of type register are merged into a single WRITE access node.
The inputs are muxed on the data input if they are synchronous, or are applied to

different inputs (e.g., load and clear) if they are asynchronous.

The compilation algorithm for concurrent statements is summarized in the pro-

cedure interconnect_concur_stmts shown in Figure 6.3 below.

interconnect_concur_stmnts ().

{
merge duplicate READ (SIGNAL,REGISTER,CONSTANT) nodes
for (each WRITE node)
. switch (signal kind) A
case SIGNAL : if (WIRED-OR node does not exist)
create WIRED-OR node
- attach data input of WRITE node as input to
WIRED-OR node :
case BUS : if (BUS node does not exist)
: create BUS node
attach data input of WRITE node (from a
CH-VALUE node) as input to BUS node
_case REGISTER: if (another WRT_REG node for same var exists)
merge WRT_REG nodes, connecting appropriate
control lines
look at all WRITE nodes and appropriately connect them to READ
nodes for the same signal
invoke Graph Critic
}

Figure 6.3: Concurrent Statement Processing Algorithm

6.1.2 Process Stateméni; Compilation

Unlike concurrent statements which are interconnected once all statéments in
the block have been processed, s}eéuential statements appearing within a; process
statement are interconnected as they are encountered. Each control flow graph sec-
tion corresponding to a sequential statement (STMT_BLK, if, case, loop, wait and
procedure call) has a single entry po!int and single éxit point. As these statements are
processed, the exit poinf of the previoﬁs statement is connected to theA entry point
of the current statement. Since the control flow graph sections of most sequential

statements are hierarchically constructed from other sequential statements, a stack is

116

used to maintain the control flow node to which the current control flow node is to

be aptached.

When processing conditional branching constructs (IF, CASE and LOOP state-
ments), the CU/DP design model used in VSS .as‘sumes that the branching condition
evaluates to‘either a BOOLEAN value (in the case of IF and LOOP statements) or
an integer/binary value in a discrete range (in the case of CASE statements). If a
branching condition is an expression consisting of one or more operations, a DFG
which computes this expression value must occur in a STMT_BLK preceding the
decision node. The)value is assigned to a temporary variable created by the Graph

 Compiler, and the decision node is annotated with the name of the variable on which

the conditional depends.

Assignment statements are associated with the current STMT_BLK. Thus, a
sequence of assignment statements is grouped initially into the same STMT_BLK
control node until state binding is performed by the scheduling subtask of design

compilation. A STMT_BLK is created if the current CFG node is not a STMT_BLK

when an assignment statement is encountered.

] For signal or variable assignments appearing in a process statement, data flow
graph sections are’ generated for each statement. The location of the last update
(WRITE) of all signals and variables is maintained. Variables appearing on the left
hand side (LHS) of an assignment statement are assigned this last ul;date' value. If

a value is updated and subsequently accessed within the same STMT BLK, the data

flow WRITE and READ nodes, respectively, are interconnected.

A:=B + C;
D:= A *E;
X:=D-A;

VHDL Variable Assignment Statements

Interconnected Sequential Statements

Figure 6.4: Compilation of Variable Assignments in a Process

118

Figure 6.4 shows the same VHDL code fragment from the previous section as it
would appear in a process statement consisting of several variable assignment state-
ments. Notice that the sequential nature of the process imposes data dependencies

on the variable accesses, resulting in a different interconnected flow graph.

6.2 Representation Optimizations

6.2.1 Graph Critic

Because VHDL allows the designer to express the same functionality in many
different abstract ways, a Graph Critic module is needed to transform these various
representations into an unique representation which captures the hardware concept
being described. The initial parsing of the VHDL input description into the CDFG
Design Represengation produces an abundance of DF Gﬁexpgféssi»owin? trees which are
deri;s/ed from event specifications such as block guards and condition clauses of signal
assignment statements. These expressions..:j;epl.esenh‘:at_tri,hu,te__s of signals and. hard-
ware components, rather than boi;ieé;h funct.iéﬁs rv>vhic}~1 réquire logic gate implemen-
tation. Left unoptimized, these expression trees will.be mapped to unnecessary logic.
In addition, the interconnection of DFG sections which represent individual VHDL

statements often requires additional manipulation of the CDFG representation.

The Graph Critic contains two rule sets which perform local optimizations.
Cleanup rules eliminate redundant constructs in the flowgraph. For example, the
WRITE of a signal of type REGISTER followed by the READ of that signal will be

represented as a WRITE node connected to a READ node via a data dependency arc.

119

One Graph Critic rule recognizes such a pattern and merges the READ and WRITE

nodes into a single node. Figure 6.5 illustrates the operation of this rule.

T

WRITE

REGISTER

X

WRITE/READ
X
READ
EGISTER
X

5

Figure 6.5: Graph Critic Cleanup Rule

Optimization rules systematically replace behavioral constructs with those which
more closely resemble library components and their attributes. For example, a rising
edge event must be described as follows in VHDL: (X = ‘1’ and not X’STABLE).
The Graph Compiler will initially produce a data flow graph containing comparison
and logic operation nodes for this expression. A Graph Critic rule will then be ap-
plied, replacing the expression tree with a POSITIVE EDGE sensitivity attribute on
the output arc of the READ X node. Figure 6.6 shows the results of applying this

optimization rule.

The Graph Critic is applied to each STMT_BLK which contains data flow nodes

upon completion of graph compilation for that data flow block. This optimization

120

READ * READ READ
SIGNAL CONSTANT CONSTANT
X 1 STABLE

READ
SIGNAL
X

sensitivity; EDGE
active edge: POSITIVE

Figure 6.6: Graph Critic Optimization Rule

121

task simplifies the assignment of generic logic components to corresponding operation

nodes in the flowgraph representation.

6.2.2 Graph Transformations

When appropriate, global transformations are applied to the flow graph repre-
sentation. Flow graph transformations aid the synthesis process by facilitating the

application of Design Compiler algorithms in the following situations:

e Transforming descriptions which are not written using the preferred Structured
Modeling guidelines for the intended target design model. For example, a Functional
design which is described using VHDL process constructs will initially be rep-
resented as a control flow graph with embedded data flow. Synthesis of such
descriptions will yield a design that is of poorer quality than one which is gen-

erated from a concurrent data flow representation.

o Making architectural tradeoffs in the design to be synthesized. Due to area or
speed constraints placed on the design, the designer may wish to evaluate the
effects of isolating control logic or embedding this control logic in the data path.
Isolated control logic will result when synthesizing a Behavioral description in
VSS which will be mapped to a control unit/data path design model. Embedded
control logic is produced when a Functional description consisting of conditional

signal assignments is synthesized.

o Identifying situations where resources can be shared under mutually exclusive
conditions. As mentioned earlier in the Design Synthesis Process chapter, one
goal of synthesis is to extract the maximum amount of parallelism in a design

in order to share resources. Resources can be shared under two conditions: (1)

122
they are not used in the same machine state, or (2)’if they are used within the
same state, they must not be used under the same condition (as determined by
conditional branching in control ﬂow. or conditional signal assignment in data
flow). While determihing shareability in the former case is straightforward, the

latter case presents difficulties in identification of shareable resources.

By applying transformations, the CDFG can be converted to a preferred repre-
sentation that is efficiently processed by the Design Compiler so that a higher quality
design will result. The transformations described below are examples of such opti-

mizations which have been integrated 1nto the VSS frarnework

Control Flow to Data Flow Transformations

In order to determine the impact of graph transformations motivated by the
the first two situations presented above, a package of CDFG transformations was
developed [Gup9l]. These transformations are applied to control flow constructs
which have been annotated by the designer in the input description. Such statements
are appropriately marked in the design representation such that the transformation

package will process them as the CFG is traversed.

The following types of transformations can be applied:

1. IF and CASE statements
This transformation will form a DFG section equivalent to a conditional_signal
assignment for every variable to which an assignment is made in any conditional
branch of the construct. Such a DFG section consists of a CHOOSE-VALUE

node that provides alternative data values to a WRITE node for the variable,

123
one value per conditional branch of the transformed control construct. The
exi)ression which selected the conditional branch in the control construct is
used to select the corresponding data value which is assigned in that confrol

branch. Figure 6.7 illustrates the application of this transformation.

2. FOR LOOP statements '
This transformation can be applied to the CFG section which represents a
"FOR loop with known iteration bounds. The transformation performs loop
unrolling through replication of the DFG that represents the actions féund in
the loop body. For each copy of the loop body, references to the loop index
are replaced with the appropriate value for that iteration. Data dependencies

between iterations are introduced in the expanded flowgraph.

Upon completion of the transformations, a corresponding concurrent data flow
representation will be constructed to replace the marked control constructs in the

CDFG Design Representation.

Component Synthesis Algorithrh

Functional descriptions describe the behavior of one or more RTL components;
often, these components perform mtﬂtiple functions (for example, an arithmetic logic
unit, or ALU). These descriptions don’t require scheduling; they are, in effect, single
state designs in which the occurrence of an event signifies entrance into the state.
Action(s) to be performed are determined via the selection of a function to be per-
formed by some functional unit or a data value to be passed through an interconnect

unit (multiplexor, bus). The Functional modeling style of Structured Modeling advo-

cates the use of VHDL conditional signal assignment statements for these descriptions,

if (X = 0) then

A:=B + C;
D:=B-C;
else
D: =D+ 1;
end if;

VHDL Input Description

READ

X 0
RITE;
T1

EEAD
D ‘ 1

WRITE;
D

[READ

TMT_BLK
[READ [READ
B C F_TEST
STMT.BLK TMT_BLK
WRITE| tvnnq N
A D
F_JOIN,
Control Data Flow Graph Representation
READ EAD
e
RE}?D o

[READ

b

NRITEI
A

1 0 1 0
H_VALU ‘ H_VALU
]
D

RITE]

Transformed Concurrent Data Flow Graph

Figure 6.7: IF Statement Transformation

125
where the target of the assignment is the output of the component. These statements

often consist of the selection of one expression from among several alternatives based

on the value of one or more conditions.

One method of synthesizing such a design would be to supply functional units
which would perform the necess;'iry dperations to produce a value for each expres-
sion alternative and each condition expression; the appropriate value for assignment
would then be selected based on the conditional value(s). This would often result
in an inefficient design since rilost of the computed values would not be used. If
it can be determined that there is mutually exclusive selection of only one of these
alternatives at any time, then designs which share functional units across mutually
exclusive expression alternatives can be evaluated. These designs would tend to show

a reduction in area and improvement in the utilization of components.

In order to improve the quality of Functional designs, the following problems

need to be addressed:

e Complex functions supported by RTL components (for example, ALUs) should
be utilized by the synthesis process, even when the VHDL input descriptions

contain language operators that do not correspond directly to these functions.

o Mutually exclusive operators within the input description should be mapped to
the same component when the cost of such a mapping indicates an improvement

in the design quality.

A Component Synthesis Algorithm (CSA) [RGB90] was developed to perform
these optimizations on the Design Representation. CSA operates on a data flow graph
(DFG) generated from a VHDL Functional description. Two optimization procedures

are applied to the DFG:

126

1. Functionality Recognition - This procedure merges DFG expression subtrees
into single function nodes for which there is an available component to perform
that function. It is driven by the components available in the library and the

~ functions they can perform.. Component library specific information is main-
tained in a functionality table which stores the DFG expression subtree patterns

corresponding to the available component functions.

Functionality recognition solves the functionality mismatch problem. Language
operators (or a sequence of language operators) are mapped to component func-

tions. For example, the éxpression A+B+1 maps to the complex ALU function

ADD-INCREMENT.

2. Component Mapping - This procedure solves the problem of merging mufua.lly
exclusive DFG operator nodes into multi-function operator nodes using a clique
partitioning approach. Costs associated with the merging of DFG operation
nodes are cdmputed in terms of gate counts associated with‘the corresponding
functional unit that will implement the DFG operation node. These costs func-
tions take into account additional decoding logic that will be required to select

the function of a multi-function unit as well as connection (multiplexor) cost.

Each operator node in the resultant DFG can now be mapped to an appropriate

component from the supplied library (in this case, a GENUS generic component).

6.3 Desig’n Compiler

- The Design Compiler performs the central synthesis task of mapping the be-

havior captured in the CDFG Design Representation to a structure specified in the

127

form of a GENUS Partial Design Representation which implements the desired func-

tionality. A block diagram of the Design Compiler subsystem is shown in Figure 6.8,

The Design Compiler consists of three major components: an Allocator, a

Scheduler and a Resource Binder. Input to this subcomponent consists of the op- -

timized CDFG Design Representaﬁion and user supplied allocation constraints. User
specified allocation constraints are entered using a textual file which determines the
number and types of resources (function units, registers and interconnect units) to
be used by the Scheduler and Resource Binder modules. The constraint file is parsed
by the Constraz'ﬁt Input Parser, and the appropriate corﬁponents are instantiated in

- the GENUS Partial Design Representation. -

As described in section 2.1, the Scheduler performs the assignment of operations

to control steps given the constraints of a unit allocation. These state bindings are
recorded through annotations made to the CDFG. As the Resource Binder creates or
‘upgrades function, storage and interconnect units, entity, componenf class and com-
ponent instance information is added to the GENUS Partial Desigﬁ Representation.
The binding of DFG operations, data accesses and DFG node interconnections to
GENUS component instances an(i‘ component connections are also recorded in the

CDFG Design Representation.

Within the VSS framework, Design Compilation results are maintained in the
GENUS Partial Design Representation and the annotated CDFG. In order to allow
the designer to review these results in textual form, BIF state tables are generated
by the State Table Generator. Results of Scheduling are reflected in the Operation

Based State Table, while resource bindings are shown in the Unit Based State Table.

128

Constraint
Input Parser

‘)
Scheduler

Resource
Binder

Optimized
CDFG
Design
: ENUS Partia Annotated
Compller Fesign Repres, CDFG

BIF

State Tablg

GENUS Partial
Design Repres.

Annotated
CDFG

Figure 6.8: Design Compiler

129

The various Structured Modeling design models are processed differently within

the Design Compiler. For example, in processing Behavioral designs, an explicit
ordering of the allocation, scheduling and resource binding tasks is maintained, while
the allocation and resource binding tasks for Functional designs are performed in the
same procedure. The following sﬁbsections will detail the processing steps performed

by the Design Compiler for each design model.

6.3.1 Combinational and Functional Design Compilation

The concurrent nature of the CDFG Design Representation for Combinational
and Functional designs implies that there will be no opportunity to share hardware
resources among operators. Unlike Behavioral designs where the Resource Binder
performs a many-to-one mapping of opera.f;ion nodes to a hardware component, syn-
thesis of these designs involves a mapping of each DFG node to a single or combina-
tion of components available in the GENUS library. This underlines the importance -
of Representation Optimizations which are applied to minimize the number of op-
eration and _déta; access nodes in the DFG sections. The Graph Critic and Graph
Transformations perform the majority of the optimization work on Combinational

and Functional Designs.

Because concurrent descriptions can be considered single state designs in which
one or more events trigger one or more actions in the data path, there is no concept
of machine states as defined by a system clock. Consequently, the Scheduler module

of the Design Compiler is not required for Combinational and Functional Designs.

130

Thus, the primary task of the Design Compiler in the case of Combinational and
Functional designs becomes the allocation and binding of appropriate GENUS com-
ponents to each DFG node. As each DFG node is processed, the Allocator extracts
parameters for attributes such as bit width, a functionality list, and edge sensitiv-
ity and passes them to GENUS generators. The GENUS component liBrary server
instantiates and returns the desired combonent class (ALU, register, multiplexor,
etc.) with thé minimal functionality required. Instances of this component class are
_instantiated by the Resource Binder, and the mapping of DFG nodes to these compo-
nent instances is annotated in the design representation. The GENUS Partial Design

Representation maintains this structural view of the design.

" As mentioned in the Graph Compilation section, the hiérarchy of the VHDL
input description as defined by the nesting of block statements is reflected in the
hierarchy of the CDFG Design Representation. One problem a hierarchical represen-
tation poses to the Design Compiler is that of mult';iple assignments to the same signal.
If this signal is to represent one storage element, mapping each WRITE node to. an
unique GENUS register (in order to maintain a structural hierarchy éorresponding
to that of the Design Representation) will produce redundant hardware (and most
likely, an incorrect design). Conversely, creating a “flattened” structure by mapping
all accesses to a signal to the same component without first restructuring the Design

Representation may lead to an inefficient and/ or incorrect design.

To avoid these problems, the designer can direct the Resource Binder to process

the Design Representation in one of two modes:

o flattened
e hierarchical

131
In flattened modé, all DFGs'correspdnding to VHDL blocks as specified in the

input description are combined into a single DFG. This DFG is then mapped to
GENUS components.

When the hierarchical mode is selected, the hierarchy of the input description
is preserved; each block is mapped to GENUS components individually. Here, it is
assumed that all assignments made to a signal occur within a single block. A VHDL
entity/architecture pair is created for each DFG block. The partial design hierarchy
is maintained using the entity object of the GENUS Partial Design Representation

as described in section 5.2.1.

6.3.2 Register Transfer and Behavioral Design Compilation

6.3.2.1 Allocation

The Allocation module allows the designer to input the number and fypes of
resources (function units, registers and interconnect units) to be used when synthe-
sizing a register transfer or behavioral design. The following component attributes
can be specified: operation class, 6pera,tion types, bit width and operation delay.
The operation delay can be expressed in terms of fractions or multiples of a clock
cycle; this allows for chaining of operations in the same machine state or multi-cycle
operations. These units are entered into the GENUS Partial Design Representation,
and this information is accessed byv the Scheduler module in order to determine the

available units.

132

6.3.2.2 Scheduling

Two schedulers have been developed and integrated into the VSS framework: a

Mobility Based Scheduler and the Percolation Based Scheduler.
Mobility Based Scheduler

The primary scheduler used in VSS$ is a variant of the SLICER [PG87] sched-
uler which calculates the as-soon-as-possible (ASAP) and as-late-as-possible (ALAP)
schedules in order to determine the range of machine states to which an operation can
be assigned. The scheduler actually consists of two parts: a macro scheduler which
traverses the CFG and assigns states to control point nodes, and the SLICER sched-
uler which is applied to all STMT BLKs encountered. The first state to be assigned
to the STMT _BLK is passed to the SLICER scheduler, along with the DFG nodes in
the STMT_BLK, and the scheduled STMT_BLK is returned.

Two techniques can be employed for the assignment of states across conditional
branches. Figure 6.9 presents a simple conditional branch example with the schedule
produced using each of these techniqﬁes. The first technique assigns unique states in
each conditional branch. This results in a control strategy in which a conditional test
is made 'in one machine state, and based on the result of this test, a branch is made to
the first state of the appropriate branch. No actions are performed in this branching
state. The advantage of this scheme is that in the current state, no knowledge is
required of previous conditional values which resulted in the entry into this state. A
disadvantage is that an overhea.d’ in the number of states is required, since operations
in different conditional branches will never share the same state assignment, even

though they are mutually exclusive. Alternatively, each conditional branch can be

>

ni)

=

T
a

‘

<

STATE |COND |ACTIONS |[NEXT | |STATE| COND |ACTIONS [NEXT
1 T1 =1 2 1 Ti=1| A 2
T1 =0 6 Tl =0 D 3
TRUE | A 3 2 |Ti=18 B 4
T2 =1 4 —)
T2 = 0 5 o=y c 3
4 TRUE| B 7 n
5 TRUE | C 7
8 TRUE| D 7
7 |
SAME INITIAL STATE
UNIQUE STATES ACROSS BRANCHES IN EACH BRANCH

Figure 6.9: State Assignment Across Conditional Branches

134

labelled beginning with the same state assignment. This approach offers the savings
in the number of machine states with the cost of increasing the complexity of the

condition evaluation associated with each mutually exclusive action in the same state.
Percolation Based Scheduler

- A Percolation Based Scheduling algorithm [PLNG90] has been integrated into
the VSS system framework. This scheduler is used to perform scheduling on VHDL
input descriptions which consist primarily of loops. Percolation scheduling utilizes
techniques which compact flow graphs beybnd basic block (straight line code segment)
limits, potentially resulting in an order of magnitude speedup over serial execution.
In order to schedule uﬁder resource constraints, the optimal schedule (without con-
straints) is first determined. Next, heuristics are added to map the optimal schedule
onto a system with limited resources. Starting from the optimal schedule is a key
feature of this approach because it provides a realistic lower bound to the sched-
uler which can be used to tune the heuristics employed to determine the resource

constrained schedule.

Percola;tion Scheduling is a system of semantics-preserving transformations that
convert an original program graph ! into a more ﬁarallel one. Its core consists. of 4
transformations (Move-op,Move-cj,delete and unify) which are defined in terms of
adjacent nodes in the program graph. The transformations are atomic and thus can
be combined with a variety of guidance rules (heuristics). to direct the optimization

process. Repeatedly applying the transformations allows data-independent operations

1Here, program-graph is an extension of the conventional notion of control-flow graphs, in that a
node may contain one or more operations, including conditional-jumps. The program-graph corre-
sponds to an execution model in which all operations in a node can execute in parallel. If conditional
jumps are present in the node, their evaluation combines to yield the unique successor node that
executes next. The exact mechanisms by which control-flow is determined in a node is unimportant
in this discussion. The interested reader is referred to [EN89].

to “percolate” towards the top of the program graph from the various parts of the

code—hence the name Percolation Scheduling. Operations are packed together in
nodes (states) as PS is applied to a program graph, thereby yielding more parallel
code. The details of the transformations deal with maintaining the semantic integrity.
of all affected paths. Detailed discussions of percolation scheduling and its extension

to multicycle and pipelined operations can be found in [AN88] and [PLNG90].

The optimal schedule without constraints is obtained using the OPT procedure.
OPT is a loop parallelization technique for a loop which does not contain conditional
jumps in its body. It applies to both unicycle and pipelined operations. The idea
beilind OPT is simple: the loop is incrementally unwound. As new iterations are
brought in, operations are allowed to migrate upwards (without regard to iteration
boundaries) in the ezpandable program-graph formed by the unwinding of the loop.
This migration is only limited by the data-dependencies between the operations. If
all operations in the loop body are either involved in some data-dependence cycle, or
depend on operations involved in such a cycle, then a repeating pattern will provably
emefge after a polynomial (a,nd in practice small) number of iterations have been
parallelized in this manner. This pattern will then repeat, as long as more iterations
are forthcoming, so that in effect more unwinding of the loop will not yield further
parallelism. Replacing the original loop body with the pattern discovered (proper
startup and wind-down code is trivially derived in the process of finding the pattern)
then yields a compact expression of the mazimum parallelism available in the original

loop, subject to the given data-dependencies and operation latencies.

The operation of the Percolation Scheduling algorithm can be summarized as

follows:

136

1. Find the optimal schedule. Scheduling begins from the optimal schedule (the
schedule without resource constraints). This schedule is derived by the OPT

algorithm explained above.

9. Find each operations’ mobility and reorder operations. 1f the number of oper-
ations in one state exceeds the number of available resources, some operations
have to be delayed. The mobility [PG86] of each operation has been chosen
as the criterion for delaying operations. Operations with higher mobility are
delayed first because their delay will not hecessarily “stretch” the schedule.
After finding the mobility of each operation, the operations are sorted in non-
decreasing order. The last operations in this order are the ﬁrst to be delayed

(if necessary).

3. Make reservations. The scheduler deals with two kinds of machines: pipelined
and non-pipelined. In the pipelined version, operations are scheduled assuming
that the execution unit can handle a new operation every cycle (state). In that
way, it is not necessary to wait for the execution unit to flush before issuing
the next operation. The non-pipelined version requires such a wait; therefore,
states are reserved so that latency times are not violated. This procedure is

responsible for the insertion of "empty” states where needed.

4. Adjust state I. This procedure delays operations from state | due to resource
constraints. An operation which has to be delayed is moved to the next available

state in the program.

5. Percolate operations from l’s successor. After (possibly) delaying some oper-
“ation from state 1, there is a possibility that some of the operations from I's
successor will percolate up. This percolation of operations is due to the addi-

tion of "new” states between the ”original” | and its successor. As a result,

137
there are cases in which we can hoist operations from 1’s successor. Operations

are moved up if data dependencies are preserved and resources are available in

earlier states.

6.3.2.3 Resource Binding

;I‘wo algorithms which perform the resource binding task of high-level synthé'sis
for Behavioral designs can be invoked by the VSS Design Compiler: a Frequency
Based Binder and a Gain Based Binder. These algorithms trade off the extent of the
design state space being examined at one time (from a single state through the entire
state space) with the execution time of the algorithm and the resultant design quality.
The main goal of the Frequency Based binder is the assignment of operators which
share similar connection pattefﬁs (input and output) to the same functional unit
such that the amount of interconnect is minimized. The Gain Based Binder weighs
the effects of making a binding which offers local gain in the current processing step
on the potential gain that can be achieved upon c.ompletion of the design after this

binding has been made.
Frequency Based Binder
Algorithm Overview

The Frequency Based Binder creates input/output connection patterns for each
operation in the DFG. A usage frequency (a measure of the reuse of common con-
nection patterns) is used to establish the order in which patterns will be considered
for binding to units. Binding costs consider the tradeoffs‘of adding functionality to

existing components versus instantiating new components.

138

A DFG section associated with a STMT_BLK which has been annotated with
state bindings is used as the input to the Frequency Based Binding algorithm. Patterns
are created for each operation. These patterns are tuples consisting of the following

information:

assigned state of operation
operation type

inputs

outputs

control flow condition under which operation is performed

The input/output connection patterns for each operation in the low graph are
examined to compute a usage frequency for each pattern.. This measure is used to
determine the order in which operations are to be considered for binding to functional
units. Candidate patterns are sorted by their usage frequency; those with a higher
usage frequency correspond to operations which will tend to reuse existing connec- -
tions. In this manner, the most frequently used components will be aJlocated first,

and a larger number of operations will be bound to them.

After an operation is selected for binding, an appropriate unit to which this
operation is to be bound is chosen. A binding cost is computed for each existing unit
that is available during the operation’s assigned time step. This cost consists of two

components:

1. functionality cost - the cost (in terms of area) associated with adding the desired
functionality to the unit such that the operation under consideration can be

performed by that unit.

2. connection cost - an estimate of the interconnection cost based on the rough
placement of datapath components in the eventual layout. This cost function

is described in more detail in the following section.

139

One alternative which is always evaluated is to create a new unit; if no existing
unit is available, a new unit is instantiated. Binding is then performed by updating
the Partial Design representation with the necessary unit and connection information.

The above procedure iterates until all patterns are bound.

The allocator/binder generates a unit based state table reflecting the binding of
operations to units and the required control that is to be supplied to all components
in each machine state. In addition, the interconnected register transfer structure of

the datapath is produced.
Figure 6.10 presents an outline of the Frequency Based Binding algorithm.
Pattern Creation

The following processing options affect the types of patterns created and the

statistics generated by the pattern creation function:

1. operator commutativity - whether or not commutativity of operations is to be

considered affects the common inputs count.

2. register sharing - if storage units are to be shared as function units are, patterns

are created for READ/WRITE variable accesses.

3. operator classes - this parameter determines if units of different classes (e.g.,
LOGICAL (and,or,nand,nor,not), ADDING (+,-), MULT, DIV) are to be con-

sidered mergeable into the same functional unit.

Usage Frequency Function

The usage frequency is computed by a weighted sum of the frequency of the op-

eration type and the number of common connections for a particular operator. The

140

allocate_and_bind()
{

create_pattern_lisf();

pattern = first pattern on list;

while (there are patterns to bind)
{

j = assigned_state(pattern);

/* Examine all existing components and compute the cost for */
/* binding of current operation to available components. */

for (i = 1 to num_of_units)
if (unit i available in state j)
cost{i] = functionality_cost() + connection_cost();
else :
cost[i]

MAX_COST;
/* Compute cost of creating a new unit. */
cost[num_units + 1] = new_unit_cost() + connection_cost();

/* Select unit with smallest associated cost as candidate %/
/* for binding. _ */

unit = min_cost_unit();
update_partial_design();

/* process remaining patterns */

pattern = next pattern on list;

}

Figure 6.10: Frequency Based Binding Algorithm

141

function used to compute the usage frequency is shown in Figure 6.11. The num-
ber_of_same_ops function returns the total count of operations of the same type in the
design specification (for example, addition operations). The number_of_pattern_matches
function returns the number of patterns which match the current pattern in the num-
ber of places specified by the second argument (where places are defined as inputl,

input2 or output of the operation).

usage_frequency(op,pattern)

{
wl
w2
w3
wi
wb

.73
.3;

WL OO

)
s
)

uf = (w1l * number_of_same_ops(op)) + (w2 *
((w3 * number_of_pattern_matches(pattern,1)) +
(w4 * number_of_pattern_matches(pattern,2)) +
(w5 * number_of_pattern_matches(pattern,3)));
return(uf);
}

Figure 6.11: Usage Frequency Cost Function

Microarchitecture Connection Cost Function

The microarchitecture connection cost function currently used by the Frequency
Based binder is shown in Figure 6.12. This function estimates a ﬁoint-to-point in-
terconnect cost for a specified source to destination connection. An Arbitrary cost
is assigned for connections in which either the source or destination unit is not yet
bound. If other connections exist to the destination input, an estimate of the multi-

plexing cost for multiple inputs is included in the cost computation.

142

m_arch_connection_cost(src,dest,input)

{

/* find units associated with src, dest fg nodes; if units */
/* have not yet been bound, find_src_unit returns -1 */

src_index = find_src_unit(src);
dest_index = find_dest_unit{(dest);

if (src_index == -1 || dest_index == -1)
/* assign UNBOUND_COST */
cost = UNBOUND_CONN_COST;
else
if (connection_exists(src_index,dest_index))
cost = 0;
else
if (dest has .no other input connections)
cost = SINGLE_CONN_COST;
else
/* If adding a new conn requires a new multiplexor */
. /* with additional inputs, add a MUX_UPGRADE_COST. */
if (# of dest input conns % 2 == 0 ||

dest input coans == 1)
cost = MUX_UPGRADE_COST + SINGLE_CONN_COST;
else
cost = SINGLE_CONN_COST;
return(cost);

¥

Figure 6.12: Microarchitecture Connection Cost Function

Layout Architecture Model

A strip layout architecture is assumed for the data path. The component width
(pitch) for each bit slice is fixed; the height of the component may vary. Each com-
ponent has a fixed number of tracks (13) running vertically in metal2 over each bit
slice of the component. These tracks are used to route the interconnect between
components. As‘ components are created, they are placed in a column. This column
is arranged by decreasing bit width of the component (the largest components are at

the top of the column).

143

Layout Connection Cost Function

The layout connection cost function is shown in Figure 6.13. It seeks to minimize
the track density across the entire design. A count of tracks which cross each cell

boundary is maintained.

layout_connection_cost()
{
for (i = each possible position of new component)

{
for (j = each existing component)
density[j] = number of tracks crossing lower boundary;
cost[i] = MAX(density[1..<# components>]);
}

return(MIN(cost[1..<# components>]));
} ,

Figure 6.13: Layout Connection Cost Function

As a new component is to be inserted in the sorted data path column, each
possible placement of the new component is evaluated. The track density at each
component’s lower boundary is computed by counting the number of tracks used
to make connections to components in lower rows of the column. After all possible
placements are evaluated, the minimum cost is returned, and the component is placed

in the row of the layout which yields this minimum connection cost.

The procedure is physically restricted by the fixed number of tracks per bit slice;
when this limit is reached, the data path must be partitioned. This partitioning is
not done within the allocation process. It is handled later within the SLAM [WCGI0]

partitioner. The cost function can be extended to include a penalty associated with

144

this condition in order to influence the allocator/binder to seek to increase the number

of units in order to minimize track density.
Gain Based Binder
Algorithm Overview

The Gain Based Binder performs the binding of variables and operations in a
Behavioral description to storage, functional and interconnect units in a data path.
The behavioral description is represented by a data flow graph which reflects the data
dependencies and operation sequence inherent in the description. It is assumed that

scheduling has been performed.

A data flow graph annotated with state bindings is used as the input to the
gain based binding algorithm. Figure 6.14 shows a behavioral description and a

corresponding flowgraph representation which indicates the results of scheduling.

A clique partitioning approach is used on the vertices of a compatibility graph
G (with V vertices and E edges) into K (<= V) disjoint cliques which cover the
grdph. Figure 6.15 presents the compatibility graph corresponding to the behavioral

description shown above.

~ Each vertex of the compatibility graph represents an operation or variable
access in a data flow graph. An edge between vertices indicates that the opera-
tions (variables) represented by the nodes can be bound to the same hardware unit.
Operations are compatible if they are of the same operation class (for example, if ad-
dition and subtraction are of operation class ADDING and multiplication is of class
MULTIPLYING, addition and subtraction are mergeable while addition and multi-

plication are not) and if they are not assigned to the same control state. Variables

ul := u * dx;

u2 1= 5 * x;
u4 := ul - u2;
ué := u * udg;

- e an an u — dx - - 5
STATE 1
opl
STATE 2
op3

STATE 3

Figure 6.14: Gain Based Binding Example

146

Figure 6.15;' C'érgga,

are considered compatible (mergeable) if their lifetimes do not overlap. Thus, the.
compatibility graph can be represented as.separate graphs, one for operations and
another for variables, or it can be though,.f:‘ of as a single graph in which there will

never be edges between operation and variable nodes.

The cliques formed for the compatibility graph represent function units (storage.
elements) in the partial design to which the member operations (variables) of the:

cliques are bound.

X

A gain value vis;,s-s;)‘c»ia.hte-(‘i with eachedgem th=e compatlb;lltygraph ThlS
gain value indicates a potential connection cost savings in the partial design if the
elements represented by the vertices connected by the edge are assigned to the same
hardware unit (the gain value may be 0,1,2). For example, if two operatiobns have
a common input and are mergeable, the gain value assoc¢iated with the edge in the

compatibility graph is 1. Figure 6.16 illustrates this concept by showing the potential

gain that can be achieved if opl and op4 are merged. Since the operation nodes have

147
a common data input, one multiplexor input is saved. This savings is annotated on

the compatibility graph as indicated by the weight of 1 on the edge between nodes

opl and op4.

A clique forest is constructed to generate all possible cliques. The clique forest
is constructed in a bottom-up fashion; the first (leaf) level of the clique tree consists
of the single nodes of the compatibility graph. The second level consists of nodes
which represent a compatible pair of leaf nodes; each lez;f node of the pair becomes
a child node of these nodes. Subsequent levels of the clique forest are constructed
by examining each clique of the previoﬁs level. The leaf nodes compatible with each
element of the clique are examined. If a new leaf element is -compatible with all
elements of the clique, a new clique is added. This procedure is repeated until all
cliques are generated. Figure 6.17 shows the clique forest generated for the example
presented above. The first row represents the leaf cliques, the second row compatible
pairs of leaf nodes, and the third row, compatible triplets. Arcs between the nodes in
this diagram represent the derivation of a larger clique by adding one new leaf node

to a clique from the previous level.

A gain value for each clique is then computed. Like the gain value associated
with edges in the compatibility graph, this metric reflects the possible cost savings
in the partial design which would result if the hardware element represented by this

clique is used.

The cliques are then sorted by their gain value. Several strategies may be
employed to select a seed clique which begins the selection process for covers (sets of
disjoint cliques). For example, the cliques containing the largest number of elements

“or those with the largest associated gain values may be used as seeds. Once a seed is

148

u dx u u4
ul ué
r
input is |
mergeable |
gain =1
1
L
dx u4
u
ul ué
Figure 6.16: Computation of Gain Value

149

ul u2 u4 ué opl op2 op3d op4

OO\
on
O

opl,op4 op2,0p4

ul,u4,ub u2,u4,ué

Figure 6.17: Clique Forest

selected, the remaining available cliques which do not contain an element common to
the seed are examined to form a complete cover of the compatibility graph vertices.

Each cover becomes a partial design binding alternative.
Algorithm Details and Alternatives Investigated

The following parameters had an influence on the decisions made during the
clique formation procedure and the selection of cliques used to form clique covers of

the compatibility graphs:

1. Determination of Cliques. The degree to which operation nodeé were to be
considered compatible depended on the determination of which operations could
be merged into the same clique (and ultimately, the same functional unit).
This parameter could be varied from the extremes of allowing the merging of
any two operators to the more realistic level which allows merging of selected

arithmetic/logic operations found in typical ALUs.

130

2. Selecting a seed clique. The results of cover formation were influenced greatly
by the selection of the seed clique. Intuitively, it would seem preferable to
select a seed clique which contained the largest number of elements, or had the
largest associated gain values. Due to ties in the cost function values at critical
decision points in the procedure, the results obtained did not always validate

this assumption.

3. Cover formation strategies. The following cover formation strategies were ex-

amined:

o first fit - The first clique which satisfied the selection criteria at the current

processing step was used.

o user selected partial cover - The designer was allowed to select one or more
cliques from the clique forest. The Gain Based Binder would then select

the remaining cliques necessary to complete the compatibility graph cover.

" o ezhaustive search - The algorithm attempted to examine all possible com-
patibility graph covers. Naturally, the computational expense of this op-

tion was prohibitive in most cases.

4. Cost functions. Several cost functions were used to evaluate each design pro-
duced by the pairing of a variable cover with an operator cover. These functions

included:

e maximum gain - a summation of the gains associated with each clique

belonging to the selected cover.
e number of multiplexors and multiplexor inputs

e function unit area cost

6.4 Control Logic Compiler

Upon completion of the Design Compilation phase for Behavioral designs, a
BIF unit based state table is produced which serves as a behavioral description of
the controller. In order to generate either a boolean equation description (in the
form of VHDL concurrent signal assignment statements) or control unit structure (in
the form of a VHDL structural description) in the current VSS system framework,
a Control Logic Compiler module is invoked. This tool generates a VHDL dataflow
description from the BIF state table. A second pass through the VSS system targeted
to the Functional design mbdel will produce a structural description consisting of logic
gates and a state register. Either speciﬁcation' of the control unit is incorporated into

the GENUS Partial Design representation for the design.

6.5 Interface to Logic Synthesis

In order to pass the results produced by VSS to the MILO system [VGS88] tech-
nology mapping and optimization, the GENUS Partial Design Representation must
be captured in textual form. The selected interchange format is a VHDL structural
netlist. In addition, the coupling of MILO to the Intelligent Component Database
(ICDB) [Che90] reqﬁires that the netlist must be preprocessed in order to install the
design in the database and provide links to the necessary component information
required by the logic synthesis tools. Figure 6.18 shows the modules required for

integration of VSS with the MILO microarchitecture and logic optimization tool.

Partial Design Representation

r—- ==
GENUS B
Partial Design | cprag |

L _S_trgvitgre_ 4J4 L - -1- - -

Figure 6.18:

Netlist
Generator

State Table
Generator

VHDL Netlist
GENTUS comps)

BIF Unit
Based State
Table

Netlist
Flattener

Flattened
VHDL Netlist

ICDB
Translator

VHDL Netlist
(ICDB comps)

VSS Interface to Logic Synthesis

6.5.1 Netlist Generator

The Netlist Generator processes the GENUS Partial Design RepreséntationAin
order to generate a text ﬁle for the VHDL structural netlist specification of the syn-
thesized design. A VHDL entity/architecture pair is used to represent each level of
the design’s structural hierarchy. If the netlist contains hierarchy, a VHDL configura-
tion statement is génerated to link components in higher levels of the hierarchy with

their corresponding decomposition as defined in lower level entity/architectures.

6.5.2 State Table Generator

The BIF State Table Generator traverses the control flow graph and embedded
data flow graphs to produce either an operation based or unit based state table. Each
VHDL process which is synthesized to a control unit/data, path structure will have

BIF tables generated for the behavior of the control unit.

6.5.3 Netlist Flattener

Since the MILO system can currently process only a single level of hierarchy
in the inpu.t netlist, the design produced by VSS must first be flattened. Thié is ac-
complished using a Netlist Flattener. Given a hierarchical VHDL netlist, all complex
components are replaced with their equivalent structure in terms of the lowest level
components, in this case GENUS generic components. The output of the flattener is

a single entity/architecture VHDL structural description.

6.5.4 ICDB Translator

Some VHDL structural descriptions produced by VSS will consist either of a
structural hierarchy or z; mixture of structural components and behavior of com-
ponents. For example, a Functional design processed by the Componenf Synthesis
Algorithm will generate a behavioral description of a random logic component which
provides the function select lines for a multi-function unit. Similarly, the VHDL de-
scription of a control unit produced by the Control Logic Compiler might be present
in the VHDL netlist generated by VSS. For each component found in the netlist, the
MILO system requires that a boolean equation level description of the component

must be present in the Intelligent Component Database (ICDB).

In order to enter these component behavioral descriptions in the databése and
identify the components with their corresponding descriptions, the ICDB Translator
is invoked. This module will accept two input formats: either a flattened netlist pro-
duced by the Netlist Flattener, or a netlist with at most two levels of hierarchy, the
topmost level consisting of a VHDL structural description with leaf levels (such as the
function select logic or control unit components) described using VHDL concurrent
dataflow statements. A modified VHDL netlist is produced which renames compo-
nents so that they can be appropriately accessed through ICDB queries. Appropriate
ICDB calls are made to generate the behavioral descriptions corresponding to each

component necessary for processing by MILO.

6.6 Simulation Interface

VHDL input descriptions have been simulated using the Vantage Analyst com-
mercial VHDL simulator [Van90]. At present, input test patterns are generated man-.
ually. A post-processing step adds VHDL mod_els for the GENUS components used in
the VHDL structural netlist description produced by VSS synthesis. The structural
description can then be exercised with the same test pattern stimuli to verify the

functional correctness of the synthesized design.

6.7 User Interface

A graphical display under either the Suntools or X Windows environments pro-
vides the capability to view results generated by the synthesis process such as hierar-
chical CDFGs and VHDL structural netlists. The utility accepts two input formats:
either a file containing a textual “netlist” format of a CDFG, or a VHDL structural
netlist file. Options such as node expansion, window panning, highlighting of node
sources and destinations and.zooming allow the designer to visually examine the

Design Representation created by VSS.

.Figure 6.19 shows a display generatéd by this utility.

V5SS Options and invocation
SetOptions Purge DB Exscuta VSS ICDB Transiator Control Logic Complier

g S gy

VHDL Source T
Partlal Design »

BIF State Table

K Xdp arms_cntr finaldgm

:
B sraat

Figure 6.19: Flowgraph and Netlist Display Utility

Chapter 7

Experiments |

This chapter presents experiments-performed using the VHDL Synthesis System
(VSS) described in the previous chapter. Table 7.1 lists the benchmarks which were
used to verify the operation of VSS and validate the modeling guidelines of Structured
Modeling. A brief describtion of each benchmark is provided which indicates the
va,rlety of designs which can be synthesized by VSS. In addltlon a count of VHDL
source lines in the input description is spec1ﬁed Wthh gives an indication of the

complexity of the benchmark.

The experiments listed in this table were used to demonsfra.te thé effect of differ-
ent modeling stﬂes on the quality of the design produce;i by 'VSS. Results prodﬁced
for four representative benchmarks (Rockwell counter, DRACO,-AM2910. and-8251
USART) are presented in this chapter. Several altern";a.‘t.i;é VHDL models are exam-
ined for each benchmark, and it is shown that when applicable Structured Modeling
considerations are applied to models which do not comply with the standards, the

quality of the design is improved. Another aspect to be considered in these experi-

ments is a comparison of the human versus synthesized designs, since the examples

Benchmark Description VHDL source lines
Functional | Behavioral
Markl simple CPU 30
HAL diff. eqn. computation 35
Rockwell counter count sequence 40 42
Elliptic filter DSP data path 40
Bus interface microprocessor peripheral 45
Booth multiplier multiplication élgorithm 54
FACET data-dependent data ops 55
Armstrong counter | up/down counter to limit 92
AM2910 Iﬁicroprogram controller 165 260
AM2901 bit-sliced ALU 333
Multi-process arbiter | bus arbitration 440 267
DRACO peripheral interface chip 845 657
8251 | 953

USART

Table 7.1: Benchmarks Synthesized by VSS

159
examined in detail model commercial or application specific circuits. A third motiva-

tion for these experiments is to observe the effects on the quality of the synthesized

design when using a Functional versus a Behavioral modeling style.

7.1 Rockwell Counter

This experiment was conducted as a part of a case study which investigated the
design process and synthesis tools used in the UC Irvine CADLAB design environ-
ment [GLVW90], of which VSS is a part. The benchmark was supplied by Rockwell

International as a member of the Silicon Research Consortium (SRC).

Although this benchmark is of minimal complexity, we sought to investigate the

following objectives in synthesizing this benchmark using VSS:

e Given a VHDL description developed without knowledge of the Structured
Modeling, what modeling styles and VHDL language comstruct preferences

would be used by the modeler?

e Could VSS synthesize the specification provided? If so, what processing steps
were required? If not, could Structured Modeling practices be used to rewrite

the description such that it would be synthesizable by VSS?

e What differences in the quality of the produced design would result from the

application of various Representation Optimizations?

e What modeling style (Functional or Behavioral) is appropriate for this type of

design?

160

7.1.1 Problem Description

A block diagram of this conceptual design is shown in Figure ‘7.1. There are
four input and one output ports used for external communication. CLK is the system
clock. RST is a one bit control line (active high) which indicates that a synchronous
reset is to be performed. LDE is a one bit control line (active high) which indicates
that a data value DTI (a.n infeger in the range 0 to 4095) is to be loaded into the

counter.

DTI

RST -——#t—=ai Control Counter Value

Logic Computation
Data Path

: =

. t
— Curren

Counter
CLK - - > Value

&

LDE ——pt—=

DTO

Figure. 7.1: Rockwell Counter Block Diagram

The circuit to be synthesized has the following specification:

161
e The counter has a start count of 0 and a terminal count of 3327.

e For each clock (CLK) strobe, the counter increases by 208. If the count is
greater than 3327, the counter will start at the previous beginning of the count
-plus 26 (in this case 0 + 26); if the previous beginning of the count plus 26 is

greater than 207, then the count will start at the previous sequence plus 1.

e Portions of the first two count sequences are shown in Fi igure 7.2. The complete
counting pattern of the counter consists of a tota.l of 26 sequences. The counter
counts the first column of the first sequence top to bottom, then the second

column, and so on. When it reaches 3327, it will wrap arou_nd' back to 0.

o The counter also has an active high load enable (LDE), which loads a data value
(DTI) synchronously with the rlsmg edge of the clock. The state machme must

N AT YT,

adjust to the new state so as to keep the same countmg sequence.

o The counter must also have a synchronous reset (RST).

7.1.2 VHDL Behavioral Model

A VHDL description of the Rockwell counter written using the VHDL behavioral

design style can be found in Appendix B.

This model eonsists of a nested IF statement which represents the conditional
assignment to the counter value DTO REG. If transformations are not applied to
this deseription, VSS will target it to a CU/DP implementation. In this case, the
s_ynthesized'design would consist of 8 machine states. The reason for this is that the
CU/DP design model requires one state for the evaluation of a conditional branch

expression, and a second state for branching based on the expression value.

162
0000 0026 0052 0078 0104 0130 0156 0182 0208 0001 0027 ... 0183 0209
0208 0234 0380 0209
0416 0442 : 0598 0417
0624 0650 0806 0625
0832 0858 1014 0833
1040 1066 - 1222 1041
12481274 1430 1249
1456 1482 _ 1638 1457
1664 1690 1846 1665
1872 1898 2054 1873
2080 2106 2262 2081
2288 2314 2470 2289
2496 2522 _ 2678 2497
2704 2730 2886 2705
2912 2938 : 3094 2913
3120 3146 3172 3198 3224 3250 3276 3302 3121
3328 3354 3380 3406 3432 3458 3484 3510 3329 3355 ... 3511

Figure 7.2: Rockwell Counter Count Sequence”

The application of Control Flow to Data Flow transformations restructures the
CDFG Design Representation such that it will be mapped to a Functional design
model. As the synthesis results show, this representation results in a cleaner, more
efficient design than would be achieved by targeting this design to the CU/DP design
model. When transformations are applied, the control of the conditional assignment
has been moved from the contfol unit into the data path. In this example, the expres-
sions used to determine branching conditions are generated by logic found in the data
path. For the Behavioral model, these conditionsn are evaluated in the appropriate
machine state and é,re stored in latches, and the latched values are input to control
logic that implements a finite state machine (FSM). This FSM requires several clocks
to perform the conditional branching as specified in each IF and ELSIF clause in the
input description. After tra.nsfbrma.tions are applied, the design becomes a concur-

rent model in which all conditional expressions are evaluated simultaneously; these

163

signals are used to select the appropriate data value to be assigned to DTO_REG on

each clock.

7.1.3 VHDL Functional Model

The process description using sequential statements was converted to a descrip-
tion with concurrent statements in order to conform to Structured Modeling guide-
lines. An explanation of our reasoning for this modeling style is given in the next

subsection.

The following modifications were necessary in order to convert the process level

description into a synthesizable functional description:

1. Assignment to the output port is made via a signal assignment. This follows the
Structured Modeling practice of using variables to represent values involved in
data operations (which may require storage elements) and signals to represent

the transfer of stored values (via wires) to the output port.

2. The Graph Compiler for VSS does not perform constant propagation optimiza-
tions currently. In order to reduce the amount of unnecessary hardware that
would be generated for computations such as the addition and subtraction of
constants, these optimizations were performed manually on the input descrip-

tion.

The equivalent dataflow (block) description which is preferred when using our

Structured Modeling methodology can be found in Appendix B.

7.1.4 Structured Modeling Considerations

This design is classified as a Functional description in the Structured Modeling

design style taxonomy. This functional design is a “single state” design where several

conditions are tested on each clock event. The counter is a synchronous design; de-
pending on the control signal values (RST and LDE), a reset, load or count operation

will occur (with reset given the first priority, load second and count third).

In investigating the alternatives for modeling a Functional design using VHDL,
Structured Modeling favors a VHDL block description as the most appropriate method

for describing such a design. Some reasons for the preference in this example include:

1. Clock (CLK) and reset (RST) signals can be identified using subtypes defined

within our VHDL synthesis package.

2. The VHDL block statement provides a convenient template which allows the
synthesis tool to identify the storage class and function of various signals.
Following the Structured Modeling guidelines, the block guard is used to repre-

sent an event such as a positive edge transition of the CLK signal.

3. Conversely, the process description seems to be more appropriate for describing
sequential, multi-state designs. The design model for such designs consists of
a cleanly partitioned control unit/data path pair. The process description for
the benchmark of this particular case study presents the following problems for

synthesis:

4. Identification of clocked storage elements is difficult. While the VHDL dataflow
description style provides the guarded signal assignment in which the clock
event can be expressed in the block guard (an explicit control of .any assign-

ment made to the guarded signal), no comparable construct exists in the VHDL

165
behavioral description style. Thus, it is impossible for the synthesis tool to dis-
tinguish which variables in a Behavioral (process) description should be mapped
to registers and which should be mapped to wires. This ambiguity led to the es-
tablishment of the Structured Modeling convention that variables defined within
a process are mapped to registers, while signals are used for inter-process com-

munication.

5. Assignments to the same signal/variable are distributed among conditional
branches. Unlike the dataflow descriptions, where a single conditional assign-
ment statement is used to enumerate all assignments of data values to a variable
under d corresponding condition, the behavioral description distributes variable
assignment information throughout the description. Therefore, the synthesis
tool must collect all of these assignments made under all conditions and make
an assignment to a single variable. In the Rockwell counter example, assignment

to the DTO_REG variable is made in every conditional branch.

7.1.5 VSS Synthesis Results

Functional Model Processing

The Functional (block) model of the Rockwell counter benchmark shown in
Appendix B was first synthesized by VSS without invoking the Component Synthesis
Algorithm (CSA). This design is referred to as rw_cntr_func in the following discus-
sion. A second run was performed which invoked the CSA algorithm. This design is

called rw_cntr_func_csa.

166

Figure 7.3 shows the netlist composed of GENUS generic components pro-
duced by the VSS system for the rw_cntrfunc.csa design. The right half of the
schematic shows the data path synthesized to perform the counter value computa-
tions. Currently, constants are treated as single word ROMs in the VSS system. The
left half of the schematic consists of glue logic used to select data inputs and ALU
functions. The COMPARATOR LOGIC block consists of random logic used to com-
pute the conditional bits derived from the conditional expressions of the VHDL input

description.

Figure 7.4 presents a VHDL behavioral description produced by the CSA algo-
rithm. This description specifies the behavior of the ALU select logic. VSS processes

this description in the Combinational mode in order to generate a gate level structure

for this and other SELECT LOGIC components.

Behavioral Model Processing

Three experiments were performed to synthesize the Behavioral (process) de-

scription of the Rockwell counter:

1. VSS was invoked on the Behavioral input description (this design will be called
rw_cntr_b-eh). Since no transformation were applied to this model, the Mobility
Scheduler and Frequency Based Resource Binder were invoked to process the
Behavioral design. A multi-state design results, requiring a control unit gener-

ated from the BIF state table description.

2. A second run (identified as rw_cntr_beh_trans in the subsequent discussion)
applied the CFG to DFG transformations; this results in a design in which

processing is completed using the Functional Design Compiler.

167

SIHD

208 3094 3301

MUX1
SELECT LOGIC

[Al /

-----J

SELECT LOGIC 3
ALU

SELECT LOGIC

1 5
COMPARATOR
LOGIC -

ALU
+/-/L1D

k)

DTO_REG

CLK

Figure 7.3: Structure Produced by VSS for Functional Model

168

00010 | ADD
00001 | SUB
00000 | SUB
10000 |LID
01000 |LID
00100 |LID

entity

TRUTH_TABLE84 is

port (C62: in BIT_VECTOR(4 downto 0);

CADD,CSUB,LID: out BIT) ;

end TRUTH_TABLES84;

-=-VSS: design_style COMBINATIONAL

architecture dataflow of TRUTH_TABLES84 is

begin

CADD <=
((not

C62(4)) and (not C62(3)) and (not C62(2)) and

C62(1) and (not C62(0)));

CSUB <=
((not
(not
((not
(not
LID <=

C62(4)) and (not C62(3)) and (not C62(2)) and
C62(1)) and C62(0)) or

C62(4)) and (not C62(3)) and (not C62(2)) and
C62(1)) and (not C62(0)));

(C62(4) and (not C62(3)) and (not C62(2)) and

(not
((not
(not
((not
(not

C62(1)) and (not C62(0))) or

C62(4)) and C62(3) and (mot C62(2)) and
C62(1)) and (not C62(0))) or

C62(4)) and (not C62(3)) and C62(2) and
C62(1)) and (not C62(0)));

end dataflow;

Figure 7.4: VHDL Description of the ALU Function Select Logic

169

3. A third run (rw_cntr_beh_trans_ésa) applies CSA to the transformed behav-

joral model.

Figure 7.5 shows the structure synthesized for the VH]jL Behavioral model of
~ the Rockwell Counter V(rw_cntr_beh). The .control'unit appearé at the far left of the
schematic. As with the select logic generated for the Functional design to which the
CSA algorithm was a,ppliéd, a gate level implementation of the control unit was also

synthesized.

Figure 7.6 shows the data path generated for the transformed description of
the rw_cntr_beh_trans design. Note that all select lines for the function unit and

multiplexor select logic have been embedded in the data path.

Finally, Figure 7.7 shows the data path generated for the transformed descrip-

tion of the rw_cntr_beh_trans_csa design.

170

i

P o P o AP P P P A AP A ol P o

S

PP

LLLLLRRLLY

(L’

ARLLLLLRARRAY,

o3 12

b
L]
L]
-

Figure 7.5: Design for Rockwell Counter Behavioral Description (CU/DP)

171

_12 _12 g 12 OOy 12 EUYR00000000_11

EG

Figure 7.6: Design for Transformed Behavioral Description

172

ig
-
d

PP T T

Figure 7.7: Design for Transformed Behavioral Description with CSA

173
7.1.6 Analysis

Table 7.2 summarizes the VSS processing options and design metrics achieved
for each of the five experiments performed using the Functional and Behavioral VHDL
models of the Rockwell Counter. The transistor count metrics have been partitioned
into counts associated with functional units (FU), comparator units (COMP), multi-

plexors (MUX), registers and other storage elements (REG) and random logic (RL).
Several observations can be made in analyzing these results:

1. Due to the relatively small size of this example, the transistor count is dominated
by the ALU, adder/subtractor and comparator components used (these units
account for 33 to 62 percent of the transistor count in the numbers shown).
Thus, the CSAV algorithm improves the design.in terms of transistor count by

merging functional units.

2. The design synthesized from the Functional model without applying CSA has
a negligibly smaller transistor count than the run which applied CSA. This
result can be explained by looking at the random logic portions of the designs.
CSA produces select logic which is suboptimal (has not been processed by logic
synthesis).

3. The Behavioral design transistor count is actually increased by 2% when CFG
to DFG transformations are applied. This can be attributed to the fact that
the Behavioral design used a single comparator unit which could be shared
across machine states, while the transformed design requires three concurrent
comparisons. However, it is interesting to note that after CSA is applied to the
transformed design, the result is comparable in quality to the design synthesized

for the Functional model using CSA.

174

VSSV Processing Options

Model Struc. Mod. | CSA | CFG | Scheduler | Resource
Style Trans. Binder
rw_cntrfunc Functional no no none flat DFG
rw_cntr func_csa Functional yes no’ none flat DFG
rw_cntr_beh Behavioral no no Mobility | Freq. Based
rw_cntr_beh_trans Behavioral no yes none ~ flat DFG
rw.cntr.beh_trans_csa | Behavioral yes yes none flat DFG
Design Metrics
Model . Transistor Couﬁt
FU | COMP | MUX | REG | RL | TOTAL
rw_cntr func 1140 1008 672 576 80 3476
rw_cntrfunc_csa 672 1 1008 720 576 | 506 3482
rw_cntr_beh 792 420 1080 960 | 362 3614
rw_cntr_beh_trans 1140 1008 960 576 10 3694
rw_cntr.beh_trans _csa | 672 1008 1032 576 | 202 3490

Table 7.2: VSS Results for the Rockwell Counter Benchmark

175
4. Another facf which indicates that the use of the behavioral descrfption style
was inappropriate for this design is that in order to perform one count in the
rw_cntr func_csa and rw_cntr_beh designs, more clocks per count_must be sup-
plied to the Behavioral design versus the Functionai design. This is due to
the fact that the CU/DP archi;tecture of the rw_cntr_beh design requires extra

states to determine next state sequencing.

7.2 DRACO

This experment involves another industrially design chip developed at Rockwell
| International.l The design is more substantial in complexity, allowing for investi-
gation of the following attributes of thé VHDL Synthesis System and Structured
Modeling: |

- o The modeling of the functionality of the design using temporal partitioning
(grouping all operations which effect any component as a result of the occurrence
of an event) versus a functional partitioning (collecting all operations: which

occur for a component or a group of components over all time).

e What techniques or modeling guidelines are required to properly model various

storage elements (registers, buses, wires) within the same description.

e How will the partitioning of the VHDL input description (by using a hierarchy

of blocks or processes) be reflected in the synthesized design.

'Rockwell Internatmnal has granted U.C. Irvine permlssnon to study the DRACO de31gn for
educational purposes.

176

7.2.1 Problem Description

DRACO is a peripheral interface Application Specific Integrated Circuit>(A_SIC)
developed by Rockwell International for numerical cohtrol applications. The behav-
joral model was generated from a data sheet of the fabricated chip. which consisted
of é. description of the chip’s input-output functionality, its physical and operational
characteristics, and a functional block diagram. The data sheet contained very lit-
tle e;bstract behavioral information. The VHDL behavioral model was developed
through reverse engineering of the data sheet description, supplemented by further

consultation with designers of the DRACO ASIC at Rockwell International {GD90].

A block diagram of the DRACO chip is shown in Figure 7.8. The primary
function of the DRACO chip is to interface 16 I/O ports to a microproceséor’s 8 bit
multiplexed address/data bus aﬁd contrél signals. The chip consists of three main
functional blocks: the address decodér section (ADRDEC), the checksum/parity/error

computation section (CSPARITY), and the input/output interface section (10).

Functional Partitioning

The ADRDEC block performs the following functions:

latches the address byte and its associated parity bit

generates and compares the parity on the address

decodes the address to generate control signals

implements the electronic key, used to control the loading of the chip’s config-
- uration

The CSPARITY block consists of hardware which generatés and validates check-

sums and parity bits associated with incoming and outgoing data. A configuration

-~

DATA _BUS

!

PARITY .

W

Q)
o]

RESET_L

READ._L

|

WRITE_L

AL

| |

ERROR_L

|

DRACO

ADRDEC IO
Output
Address I Buffer
]
Latch Address
Decoder
Parity Clock Output
Latch Logic Register
‘ | I
——
Electronic Dll‘e?tlon
Register
Key
CSPARITY
Config Checksum
Register Logic

I0O_BUS

1

ERROR_L

l

PAR_OUT

l

Figure 7.8: DRACO Block Diagram

178
register in this block selects the various parity and checksum error checking options

available on the DRACO chip.

The IO interface consists of 16 bidirectional ports, and the appropriate selection

logic to enable staggered output of the chip and to control the direction of data flow.

Temporal Partitioning

The behavior of the DRACO chip can be modeled using a state diagram con-

sisting of the following eight states:

Reset

Chip Enable
Address Cycle
Read Cycle
Write Cycle
Idle

Chip Disabled
Power Off

SX)\]O’)CJ"%OOM»—I

Figure 7.9 shows the state transitions possible between these states.

These eight states are combined to perform three primary operations:

e allow data to be READ out of the chip
e WRITE data into the internal registers of the chip
e set the configuration of the DRACO chip

For a data access out of DRACO, the chip passes fhrough the Address Cycle
and the Read Cycle. For this to occur, the following events take place: the address

appears on the address/data bus, an address latch enable (ALE) signal goes low, a
read enable (READ_L) signal goes low, and data is placed on the address/data bus.

POWER
POWER 19) 54

LOW
POWER HIGH
______________________ =
CE_L
ilE
: CHIP
ALE ENABLE
LOW
ADDRESS
CYCLE -
READ_L WRITE_L
LOW Low
ALE ALE
HIGH . HIGH
IDLE
CE_L
HIGH

- CHIP
DISABLED

Figure 7.9: DRACO State Diagram

180

For a write to DRACO, the chip sequences through the Address Cycle and the
Write Cycle. In order for this operation to execute, the address ﬁrst' appears on the
address/data bus, ALE transitions to low, a write enable (WRITE_L) signal falls,
data appears on the address/data bus, aﬁd WRITE_L rises. As ALE goes low, the
address (if valid) is latched into DRACO. When WRITE_L rises, data is written into
the registers of DRACO.

Setting the configuration of the DRACO chip involves the unlocking of the
electronic key, the writing of the configuration into DRACO, and the relocking of
the electronic key. The electronic key is unlocked by writing a specific data value
into a specific location. The configuration value is also written to a specific address.
Writing to an illegal address or writing an illegal data value to the electronic key will

relock the key.

7.2.2 Structured Modeling Considerations

Several Behavioral and Functional models of the DRACO chip were developed to
observe the differences in the design quality of the synthesized results. The following
subsections outline the differences of each model. A model name will be associated
with each model, and the model will be referred to by that name in subsequent

discussions.

Behavioral Model

draco_beh

This model was the first VHDL model derived from the data sheet specifica-
tion of DRACO. It consists of a model written with VHDL behavioral constructs.
The model uses a temporal partitioning of the design into the eight states mentioned
previously. VHDL process statements were used to model each behavioral state; all
operations which occur in each state were modeling in the same process. This descrip-

tion will be synthesized with and without the application of Graph Transformations.

Functional Models

draco_rw_schem

This is a VHDL structural description derived directly from the logic schematic
produced by Rockwell International. No synthesis of this model was performed; it
was used as a point of reference for comparison of gate and transistor counts of the

synthesized designs.
draco_logic

A Functional description was derived which described each component found in
the Rockwell logic schematic using VHDL concurrent assignment statements. As the
description was organized into a hierarchy using VHDL block statements, the par:

titioning followed that of the schematic. Consequently, this model closely reflected

182

the structure of the logic schematic. This resulted in a cleaner partitioning of as-
signments made under common events (as reflected in block guards used to trigger

guarded signal updates).
draco_func2

This Functional model was created by first translating the original process level
model to an equivalent block model and then applying Structured Modeling guide-
lines. In this model, a direct translation of the assignment statements found in the
Behavioral description was made in place (for éxample, assignments to the same sig-
nal were made in various places in the description; separate concurrent assignment
statements were formed in the equivalent Fﬁnctional description). These multiple
assignment statements were then combined, conditional clauses were coaiesced, and
an attempt was made to collect assignments made under similar conditions and guard
conditions into the same VHDL block statement. Thus, this model differs from the
dracologic model in that the criteria used for partitioning the model into blocks was
assignment under common conditions, rather than common structure as reflected in

the Rockwell schematic.
draco_func3

This model is a higher level Functional model which used temporal partitioning
of the DRACO functionality into the three primary operations outlined earlier. Each

operation was modeled using a VADL block statement.

183

7.2.3 Analysis

The number of RTL components in this design makes it i.mpractical to include
thg synthesized schematic in this context. Table 7.3 compares the results of VSS
synthesis for the various DRACO models. In addition ‘tovthe breakdown of tra.nsisto.r
count by unit type, the last column of the Design Metrics table shows a ratio of the
totai transistor count of each rﬁodel to the count produced for the draco_rw_schematic

which serves as a basis of comparison to human quality design.

The Functional dracologic model has Va structural implementation that is actu-
ally 7% smaller than the human design. This can be traced to a.dditivonal ﬂip flops and
random logic in the draco_rw_schem design which are used to generats clocks for the
storage elements on the DRACO chip. This special clocking logic was not specified
in the original data sheet from which the VHDL model was generated; therefore, it

does not appear in the dracologic model.

The draco_func2 and draco_func3 models are roughly 70% larger than the human

quality design. Factors which contribute to this difference include:

o Conditional expressions used to test for equality compz;.risons (for example,
a check that the address bus is carrying a particular hexadec1ma.1 va,lue) are
implemented using full comparators by VSS. When logic optimization is per-
formed on comparator units for which one input is a constant (as would be the
case in the address comparison example above), a simpler gate level structure
would result. As can be seen in the DRACO results table, the draco_func2 and
draco_func3 designs contain three times the number of comparison units as does

the draco_rw._schem design.

184

VSS Processing Options
Model Struc. Mod. | CSA | CFG | Scheduler | Resource
Style - Trans. Binder
drécologic Functional no no none hier. DFG
draco_func2 Functional no no none hier. DFG
dracofunc3 Functional no no none hier. DFG
draco.beh Behavioral no no Mobility | Freq. based
draco_beh_trans | Behavioral no yes none hier DFG
Design Metrics
Model Transistor Count Ratio
| FU | COMP | MUX | REG RL | TOTAL
drACOJchhem 240 2240 64 3696 | 1088 7328 1.00
draco_logic 240 2212 32 3264 | 1080 6828 0.93
draco_func2 480 6300 | 1440 | 3552 1144 12916 1.76
draco_funcé) 480 6636 672 3168 | 1238 12194 | 1.66
draco_beh 5040 504 6942 ‘6960. 10616 | 30062 4.10
draco_beh_trans [480 | 6328 15488 | 4320 | 2106 28722 3.92

Table 7.3: VSS Results for the DRACO Benchmark

| 185
Based on experiments run using VSS and MILO [VG8S8] which compared the
transistor counts of full (equality) comparator components to a gate level im-
plementation, it was shown that the gate level implementation was 50% smaller
than the comparator unit on the a\}erage. If this logic optimization is taken
into account in the draco_func2 (which consists of 56 8-bit comparators and
2 1-bit comparators) and the dracofunc3 (59 8-bit comparators, 2 1-bit com-
parators) models, then the optimized transistor counts would be reduced by
approximately 3200 transistors. This translates into designs which are within

34 and 21 percent, respectively, of the draco_rw_schem standard of comparison.

The dracofunc2 and draco.func3 designs contain one more functional unit
and more random logic than does the draco_rw.schem design. VSS translates
boolean expressions found in‘the VHDL input descriptioln into a straightfor-
ward, suboptimal gate level implementation. This random logic is reduced by
logic optimization. Since the MILO system groups certain regular components
(ALUs, comparators, etc.) along with logic gates in ofder to optimize random
logic, it is difficult to determine the effect of logic optimization on the vaﬂous
categories of components (FU, COMP, MUX, REG, RL) shown in the VSSvre-
sults. However, preliminary results reported on processing of the draco_func2
and draco.func3 models by MILO indicate a reduction of approximately 40 to
50% in the amount of random logic remaining after optimization. Taking this
" improvement into consideration for the RL category, the dracofunc2 model
transistor count is reduced by 515 transistors (improving it in comparison to
the draco_rw.schem design by 8%), and the draco_func3 transistor count is re-

duced by 558 transistors (a reduction of 9% when compared to draco_rw_schem)

netlist.

186

The sizes of the designs produced by VSS from the Behavioral model are signif-

icantly larger than those generated for the Functional model. This can be attributed

to the following factors:

e The VSS Graph Compiler does not perform compiler optimizations such as
common subexpression elimination. This results in replicated conditional ex-
pressions in the CDFG which are ma.ppéd to redundant control logic in the
structure. Using the same estimation of improvement of the random logic tran-
sistor count as é.bove, the draco_beh model would be reduced by 5300 transis-
tors after logfevoptimization, while the draco_beh_trans model will be reduced

by 1050 transistors.

The partitioning of the VHDL input description into processes can at times
result in duplication of functional units. Because each process is mapped to
a separate CU/DP archit.ecturg, the design model will not allow sharing of
resources across process partitions. Thus, VSS cannot detect parallelism across
these process partitions. In this example, a checksum calculation is performed
in two processes; because it cannot be determined that these computations are
mutually exclusive, dedicated resources are allocated in each CU/DP associated
with the processes. The Functional model utilizes a functional partitioning

which shares the checksum computation resources.

In the behavioral model, registers are being allocated for variables which should
be wires. This is a result of the difficulty in determining which variables should
have storage allocated to. them and which should be implemented as wires. In
order to make this distinction, Structured Modeling guidelines were established
which map each variable within a process to a register. Signals (which cannot be

declared local to a process) are defined in the block which encloses the process

137

and are used for inter-process communication. In this example, the VSS system
incorrectly binds 14 variables which should be wires to registers (accounting for
816 transistors), and the ADD_DATA bus to a register (accounting for another

384 transistors).

o The CFG to DFG transformations introduce a substantial amount of multiplex-
ing. This is due to the fact that the descriptioh consists of a large number of
conditional (IF) statements. Any assignment made to a variable in any con-
ditional branch will be transformed into a DFG representation consisting of a
tree of CHOOSE_VALUE nodes (mapped to multiplexor components). This
multiplexor tree is then used to select the appropriate data value based on the

branching conditions.

7.3 AM2910 Microprogram Controller

7.3.1 Problem Description

The Am2910 microprogram controller is an address sequencer which controls the
sequence of execution of microinstructions stored in microprogram memory [SBN80].
A block diagram of the Am2910 is shown in Figure 7.10. In addition to the capability
of seduential access, it provides conditional branching to any microinstructions within
its 4096-microword range.- A last-in, first-out stack provides microsubroutine return
linkage and looping capability. There are five levels of nesting allowed for microsub-
routines. Microinstruction loop-count control is provided with the count capacity of

4096.

188

D CLK

> r

RLD

F| ™ sTack

} 5 word X
| 12 bit
| ™
I)
}
| 1 R f 'L
I l_l_MUX / | " upc
cC —1» . | ™
Control ! |
CCEN —# Logic - |
[—te -t =-—--- - INC |@—t—mCI

OE ; ;
'
ENABL Y

Figure 7.10: Am2910 Block Diagram

189

During each microinstruction, the micr’oprogramvcontroller provides a 12-bit
address from one of four sources: (1) the microprogram address register (uPC), which
usually contains an address which is one greater thah the previous address; (2) an
external (direct) input (D); (3) a register/counter (AR) which retains data loaded

during a previous microinstruction; or (4) a five-deep last-in, first-out stack (STACK).

7.3.2 Structured Modeling Considerations

Because this design is a microprogram sequencer which decodes an input instruc-
tion, the Am2910 can be modelled in a straightforward fashion using a Behavioral
description with a CASE statement. The block diagram can be bartitioned easily into
a data path consisting of the registers and register file (STACK), a multiplexor, and
an increment unit. When viewed from the Functional perspective, this design can
also be modeled as a single state machine in which on each state, appropriate control
signals are applied to the storage and data select units such that the appropriate
actions are performed. Thus, an equivalent Functional can also be used to represent

the operation of each component based on conditions evaluated by the Control Logic.

The equivaleﬂt Functional and Behavioral VHDL descriptions were developed
for this design. They can be found in Appendix B. The Functional model (am2910_func)
consists of one conditional signal assignment per storage element or data wire found
in the block diagram. At the time of these experiments, the VSS system did notbhave :
CASE statement CFG to DFG tra,nsforma,ti.ons available; consequently, the model
which used the CASE statement (referred to as arﬁ2910_c5.se in subsequent dis-
cussions) was rewritten using a nested IF construct (the am2910_if model) so that |

transformations could be applied.

190

7.3.3 Anélysis

Table 7.4 compares the results of VSS synthesis for the various models. The

following observations can be made:

- VS8S Processing Options
Model Struc. Mod. | CSA | CFG | Scheduler | Resource
Style Trans. Binder
am2910_func Functional no no none flat DFG
am2910.if Behavioral no no Mobility | Freq. based
am2910_if_trans Behavioral no yes none flat DFG
am2910_case Behavioral no no | Mobility | Freq. based

Desigh Metrics

Model Transistor Count States

FU | COMP | MUX | REG| RL | TOTAL
am2910_func 754 5250 | 1824 | 1152 | 596 9576 1
am2910_if 300 0 1912 | 3936 | 18378 | 24526 126
am2910_if trans | 2246 1890 9600 | 1920 | 368 16024 1
am?2910_case 198 42 1604 | 3552 | 5002 10398 97

Table 7.4: VSS Results for the AM2910 Benchmark

o These results show that given the CU/DP model to which VSS targets the
Behavioral designs, the number of states required for the am2910.if design is
30% larger than that of the am2910_case design. This is a result of the con-

trol unit model used in VSS and the difference in mapping the IF statement

191

versus the CASE statement onto this model. In the am2910 benchmark, the
arh2910_case model uses a CASE statement with 16 alternatives; the equivalent
nested IF description (am2910.if) uses 15 levels of 2-way branch decision nodes.
The CU/DP model u‘_sed by VSS computes the test value used to determine
branching in the_state prior to the state in which the branch actually occurs.
The CASE branch can occur in two states: one state to evaluate the value of
the test condition, and one state to direct execution to the first instruction of
the appropriate branch. However, for the equivalent nested IF branching condi-
tion, the am2910_if model requires 2 to 30 states to execute (depending on the
. value_ of the condition bits and the availability of units for evaluation of these

conditional bit values).

e It is also interesting to note that the am2910_case model, even without logic

optirhiza.tio’n, is within 10% of the transistor count of the am2910_func model.

7.4 8251 USART

' 7.4.1 Problem Description

The Intel 8251A is a programmable communication interface chip [TS85] or

Universal Synchronous/Asynchrohous Receiver./Tra.nsmitter (USART) designed for

data communications between microprocessors. The 8251A is used as a peripheral de-
vice and is programmed by the CPU to operate using a variety .of serial data transnﬁs-
sion techniques. The USART accepts data characters from the CPU in Apa‘rallel format
and converts them into a contiﬁuous serial stream for transmission. Simultaneously,

it can receive serial data streams and convert them into parallel data characters for

192
the CPU. The USART will signal the CPU whenever it can accept a new character

for transmission, or whenever it has received a character for the CPU.

A block diagram of the 8251A is shown in Figure 7.11.

7.4.2 Structured Modeling Considerations

A Behavioral model for the 8251 A was written using three processes: MAIN,
TRANSMIT and RECEIVE. The areas of the design modeled by each process are

indicated in Figure 7.11 by the dashed boxes.

7.4.3 Analysis

Due to the size of the input description, each of the three processes in the

Behavioral model were processed by VSS separately. The transistor counts of the

synthesized results for the MAIN and TRANSMIT processes are shown in Table 7.5.

These descriptions use VHDL CASE and WHILE loop constructs which are not
processed currently by the transformations. Consequently, the effects of transforma-
tions on this design cannot be evaluated. The results presented here aré preliminary
in the sense that the design cannot be evaluétgad as thoroughly as in the previous
examples. However, the synthesis of the 8251A has aided in the verification of the
VSS software.

193

RESET
CLK
c/D

RD

Cs

DSR
DTR
CTS
RTS

DATA
BUS
BUFFER

TRANSMIT
BUFFER

[|

MODEM
ICONTROL

i

Internal
Data
Bus

TRANSMIT
CONTROL

RECEIVE

BUFFER

[4

ICONTROL

RECEIVE

RECEIVE

Figure 7.11: 8251 A Block Diagram

——+# TxRDY
——— TXEMPTY
—L— Txc

194

VSS Processing Options

Model | Struc. Mod. | CSA | CFG | Scheduler | Resource
Style Trans. | Binder

main Behavioral no no Mobility | Freq. Based

transmit | Behavioral no no Mobility | Freq. based

Design Metrics

Model Transistor Count States

FU | COMP | MUX | REG | RL | TOTAL

main 0 574 8428 | 9936 | 4202 | 23140 91

transmit | 240 49 1316 | 5664 | 3880 | 11149 40

Table 7.5: VSS Results for the 8251 A Benchmark

Chapter 8

Conclusions

8.1 Summary of Contributions

This dissertation héé presented an approach to behavioral synthésis which uses
the VHDL language for the modeling of the input behavior as well as the structure of
the synthesized design. An examination of the issues involved in behavioral modeling
was presented. This motivated the need for the development of a Structured Modeling
methodology which suggests standard VHDL modeling practices for synthesis. These
modeling practices were applied to several desigh examples in order to evaluate the

various modeling practices and their effects on the quality of the synthesized: design.

To demonstrate the feasibility of this approach, the implementation of the
VHDL Synthesis System (VSS) was discussed. A Synfhesis framework was devel-
oped with a Control/Data Flow Graph and Partial Design Representation at its core.
This framework providés the opportunity to‘incorpora.te- various synthesis algorithms
which can be evaluated in a common design environment. »Experiments' were per-
formed to demonstrate the effects of different modeling styles on the quality of the

design produced by VSS. Several alternative VHDL inodels were examined for each

195

196

“benchmark, illustrating the improvements in design quality achieved when Structured

Modeling guidelines were followed.

Through this work, we have substantiated the following claims that were estab-

lished as the objectives of this research:

e VHDL can be used as a language for synthesis if the proper semantics are well

defined.

¢ The Structured Modeling methodology serves as a useful guideline for synthesis

from VHDL in the context of the VSS synthesis framework.

¢ The modeling style used in the synthesis input behavioral description has a

direct effect on the quality of the synthesized output.

e With the appropriate application of representation transformations and opti-

mizations, human quality design can be achieved.

8.2 Fiit ure Work

While the VHDL Synthesis System (VSS) has served as a valuable tool for the
evaluation of our synthesis‘methodologies, several improvements can be made to this

framework. Principal among these enhancements are:

1. Incorporation of additional representation optimizations. By performing stan-
dard compiler optimization teéhriiques such as common subexpression elimina-
tion, constant folding, and in-line procedure expansion, more optimal designs

would result at the register-transfer level.

197
. Automated design model and transformation selection. Development of a mech-
anism or strategy which will select the appropriate design model and represen-
tation for a supplied VHDL model would relieve the designer of making these
choices manually. These choices could be suggested by the tool, allowing the

designer to override these options if he/she so chooses.

. Alternative input specification formats. Because the design representation was
developed with the intent of being a general purpose format for capturing neces-
sary information for synthesis, it is possible to map other existing hardware de-
scription languages (or those under development in related work at U.C. Irvine
such as BIF [DHG89] or SpecCharts [VNG90]) to this representation. This
would allow for alternative information interchange formats between synthesis

tools.

. System level synthesis. VSS can be adapted to the processing of system level
specifications [VNG90], where VHDL or other hardware description languages

. are used to specify a set of chips which communicate via protocols.

. Incorporation of testability measures. Industrial concerns of design verifica-
tion and fault diagnosis has spawned interest in the possibility of incorporating

testability measures and practices into the synthesis design process.

. Feedback from logic and layout synthesis. While the cost functions used to make
design decisions in VSS are influenced by transistor counts and other lower level
parameters of the synthesized design, a tighter coupling with a layout synthesis
system would ensure that high level synthesis decisions have the appropriate

effects on the layout generated.

198

7. Specification of timing constraints. The design representation used within VSS
requires additional enhancements to allow for the expression of timing rela-
tionships. Since the mechanisms used to express timing in VHDL are not well

defined, development of a semantics of the VHDL timing constructs is needed.

[ANSS]

| [Arm88] |

[Arm89]

[ASUS6]

[Bar81]

[BC+88]

[Ben83]

[BFRS85]

[BG87]

. Biﬂbliography

A. Aiken and A. Nicolau. Perfect Pipelining: A New Loop Parallelization

Technique. In Proc. of the 1988 European Symp. on Programming, 1988.

J. Armstrong. Modeling with HDLs. [EEE Design and Test, February
1988.

J. Armstrong. Chip Level Modeling with VHDL. Prentice-Hall, 1989.

A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and
Tools. Addison-Wesley, 1986. '

M. Barbacci. Instruction Set Processor Specifications (ISPS): the
Notation and its Applications. IEFE Transactions on Computers, C-
30(1), January 1981.

R. Brayton, R. Camposano, et al. The Yorktown Silicon Compiler. In
D. Gajski, editor, Silicon Compilation. Addison Wesley, 1988.

J. Bendas. Design through Transformations. In 20th Design Automation
Conference, 1983.

T. Blackman, J. Fox, and C. Rosebrugh. The SILC Silicon Compiler:

Language and Features. In 22nd Design Automation Conference, 1985.

F. Brewer and D. Gajski. Knowledge-Based Control in Micro-

Architecture Design. In 2/th Design Automation Conference, 1987.

199

[Bha86]

[BRSVAST]

[BTK3S]

[CADS7]

[Che90]

[CSTS8E]

[CT88]

[DHG89)

[DHG90]

200

J. Bhasker. Process Graph Analyzer: A Front End Tool for VHDL
Behavioral Synthesis. In Proceedings of the 10th Annual Honeywell

International Computer Sciences Conference, 1986.
R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A.Wang. MIS:
A Multiple-Level Logic Optimization System. [EEE Transactions on

Computer-Aided Design, CAD-6(6), November 1987.

R. Blackburn, D. Thomas, and P. Koenig. CORAL II: Linking Behavior
and Structure in an IC Design System. In 25th Design Automation
Conference, 1988. |

CAD Language Systems Inc. VHDL Tutorial for IEEE Standard 1076
VHDL, 1987. |

G. Chen. An Intelligent Compoﬁent Database for Behavioral Synthesis.

In 27th Design Automation Conference, 1990.

R. Campasano, L. Saunders, and R. Tabet. High-Level Synthesis from
VHDL. Technical Report RC 14;282, IBM Research Division, T.J. Watson

Research Center, December 1988.

R. Campasano and R. Tabet. Design Representation for the Synthesis of

Behavioral VHDL Models. Technical Report RC 14282, IBM Research

Division, T.J. Watson Research Center, December 1988.

N. Dutt, T. Hadley, and D. Gajski. BIF: A Behavioral Intermediate
Format for High Level Synthesis. Technical Report 89-03, University of

California at Irvine, September 1989.

N. Dutt, T. Hadley, and D. Gajski. An Intermediate Representation for

Behavioral Synthesis. In 27th Design Automation Conference, 1990.

[DN8Y]

[DR*86]

[Dut88§]

[Dut90]

[EN89)

[EWT7]

[GBAHS6]

[GDYO]

[GDPS6]

201

' S. Devadus and R. Newton. Algorithms for Hardware Allocation in Data

~ Path Synthesis. IEEE Transactions on Cofnputer—Aidea’ Design, CAD-.

8(7), July 1989.

H. DeMan, J. Rabaey, et al. Cathedral II: A Silicon Compiler for Digital
Signal Processing. /EFE Design and Test, December 1986.

N. Dutt. GENUS: A Generic Cdmponent Library for High Level
Synthesis. Technical Report 88-12, University of California at Irvine,
September 1988.

N. Dutt. LEGEND: A Language for Generic Component Library
Description. In IEFFE International Conference on Computer Languages,
1990.

K. Ebcioglu and A. Nicolau. A Global Resource-constrained
Parallelization Technique. In Proc. ACM SIGARCH ICS-89: Int. Conf.

on Supercomputing, 1989.

E. Eichelberger and T. Williams. A Logic Design Structure for LSI

Testability. In 14th Design Automation Conference, 1977.

D. Gregory, K. Bartlett, A deGeus, and G. Hatchel. SOCRATES: A
System for Automatically Synthesizing and Optimizing Combinational
Logic. In 23rd Design Autbmation'Conference, June 1986.

R. Gupta and N. Dutt. Behavioral Modeling of DRACO: A Peripheral
Interface ASIC. Technical Report 90-13, University of California at
Irvine, June 1990.

D. Gajski, N. Dutt, and B. Pangrle. Silicon Compilation: A Tutorial. In

- Proceedings of the Custom Integrated Circuits Conference, 1986.

[GK83)

[GK84]

[GLVW90]

[Gup91]

[Har87]

[HKLS9)

[IEES7]
[JR*89]

[Kin87]

202

D. Gajski and R. Kuhn. New VLSI Tools. [EEE Computer, December
1983.

E. Girczyc and J. Knight. An ADA to Standard Cell Hardware Compiler
Based on Graph Grammars and Scheduling. In International Conference

on Computer Design (ICCD8/), October 1984.

D. Gajski, J. Lis, N. VanderZanden, and A. Wu. Synthesis from VHDL:
Rockwell-Counter Case Study. Technical Report 90-09, University of

California at Irvine, April 1990.

R. Gupta. Transformations for Behavioral Synthesis. Master’s thesis.
Dept. of Electrical and Computer Engineering, University of California,

Irvine, January 1991.

D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science

of Computer Programming,.8, 1987.

P. Harper, S. Krolikoski, and Oz Levia. Using VHDL as a Synthesis
Language in the Honeywell VSYNTH System. In Ninth International
Symposium on Computer Hardware Description Languages (CHDLSY),
1989.

IEEE. VHDL Language Reference Manual, Draft Standard 1076/B, June
1987.

J.Y. Jou, S. Rothweiler, et al. BESTMAP: Behavioral Synthesis from C.

In International Workshop on Logic Synthesis, May 1989.

C. Kingsley. The Implementation of a State Machine Compiler. In 24th

Design Automation Conference, 1987.

[Kow85]

[LDSM80]

[LGS7]

[LGSS]

[LMOIS9]

[McF78]

[0G86]

[PGS6]

[PG87]

203
T. Kowalski. An Artificial Intelligence Approach to VLSI Design. Kluwer

Academic Publishers, 1985.

D. Landeskov, S. Davidson, B. Shriver, and P. Mallett. Local Microcode

Compaction Techniques. Computing Surveys, 12(3), September 1980.

S. Lin and D. Gajski. LES: A Layout Expert System. In 24th Design

Automation Conference, June 1987.

J. Lis and D. Gajski. Synthesis from VHDL. In International Conference
on Computer Design (ICCD88), October 1988.

S. Levitan, A. Martello, R. Owens, and M. Irwin. Using VHDL as a
Language for Synthesis of CMOS VLSI Circuits. In Ninth International

Symposium on Computer Hardware Description Languages (CHDLS89),
1989.

M. McFarland. The Value Trace: A Data Base for Automated Digital
Design. Master’s thesis, Dept. of Electrical Engineering, Carnegie-Mellon

University, December 1978.

A. Orailoglu and D. Gajski. Flow Graph Representation. 23rd- Design

Automation Conference, June 1986.

B. Pangrle and D. Gajski. State Synthesis and Connectivity Binding
for Microarchitecture Compilation. In International Conference on

Computer-Aided Design, 1986.

B. Pangrle and D. Gajski. Slicer: A State Synthesizer for Intelligent
Silicon Compilation. In International Conference on Computer Design

(ICCD87), 1987.

[PL88]
[PLNG90)
[PPMS6]

[RGB90]

[Sau87j
[SBN80] |

[SHMOS6]

[T+83]
[Trig7)

[TS83]

204

B. Preas and M. Lorenzetti. Physical Design Automation of VLSI

Systems. Benjamin/Cummings, 1988.

R. Potasman, J. Lis, A. Nicolau, and D. Gajski. Percolation Based

Synthesis. In 27th Design Automation Conference, 1990.

A. Parker, J. Pizarro, and M. Mlinar. MAHA: a Program for Datapath

Synthesis. In 28rd Design Automation Conference,V1986.

E. Rundensteiner, D. Gajski, and L. Bic. The Component Synthesis
Algorithm: Technology Mapping for Register Transfer Descriptions. In

International Conference on Computer-Aided Design, 1990.

L. Saunders. The IBM VHDL Design System. In 2/th Design Automation
Conference, 1987.

D. Siewiorek, C. Bell, and A. Newell. Computer Structures: Principles
and Ezamples. McGraw-Hill, 1980.

W. Scott, R. Hamachi, R. Mayo, and J. Ousterhout. Berkeley CAD
Tools User’s Manual. Technical Report UCB/CSD 86/272, University of
California ét Berkeley, 1986.

D. Thomas et al. Methods of Automatic Data Path Synthesis. IEEF

' Computer, December 1983.

H. Trickey. Flaxﬁel: A High-Level Hardware Compiler. [EEFE
Transactions on Computer-Aided Design, CAD-6(2), March 1987.

C. Tseng and D. Siewiorek. Facet: A Procedure for the Automated
Synthesis of Digital Systems. In 20th Design Automation Conference,
1983.

[TS85]

[TW+88]
[Van90]
[VGss)
[VNGQO]

[WCG90]

[2+80]

205
W. Triebel and A. Singh. The 8086 Microprocessor Architecture, Software

and Interfacing Techniques. Prentice-Hall, 1985.

C. Tseng, Ruey-Sing Wei, et al. Bridge: A High Level Synthesis System

in Industry. In 25th Design Automation Conference, 1988.

Vantage Analysis Systems. Vantage Analysis Systems Analyst User’s
Guide, September 1990.

N. VanderZanden and D. Gajski. MILO: A Microarchitecture and Logic

Optimizer. In 25th Design Automation Conference, 1988.

F. Vahid, S. Narayan, and D. Gajski. Synthesis from Specifications:

- Basic Concepts. In TECHCON’90, 1990.

C. H. Wu, G. D. Chen, and D. Gajski. Silicon Compilation from
Register Transfer Schematics. In International Symposium on Circuits

and Systems, 1990.

G. Zimmerman et al. MDS - The MIMOLA Design Method. Journal of
Digital Systems, IV(3), 1980.

Appendix A:

| VHDL Coding Practices for

Structured Modeling

In order for the VSS system to synthesize a VHDL input description, a set of
Structured Modeling conventions were established. The following coding practices
should be adhered to for the modeling of storage elements and intercommunication

signals between design entities.

1. Variables defined within a process are mapped to registers. Signals deﬁned
within a block with no signal kind specification are mapp?d to wires. Signals
defined within a block of signal kind REGISTER (specified using a VSS anno-
tation) are mapped to registers. Signals defined within a block of signal kind

BUS (specified using a VSS annotation) are mapped to a bus component.

2. Signals defined globally within the main architecture body are considered to be
intercommunication signals which will be mapped to wires. Similarly, signals
defined within a block (which are not of signal_kind REGISTER or BUS) are
treated as intercommﬁnication signals within the scope of that block (for exam-

ple, interconnections between sub-blocks defined within this current block).

206

207
3. Each defined global signal must have ONLY ONE source block/process and
AT LEAST ONE destination block/process. If either of these conditions is

violated, VSS will have a problem in making the interconnections between

blocks/processes.

. The global signal may not be READ from and WRITTEN to in the same block
or process. This is due to the fact that it is difficult within VSS to recognize
bus, register and inout port corhponents which are accessed in this manner in

the same design entity.

If a value is to be READ and WRITTEN to in the same process (block), a
variable (signal of signal kind REGISTER or BUS) should be used to perform
any data manipulations within the process (block). If this value is to be trans-
mitted to other processes (blocks) in the design, an assignment of this value to
a global signal should be made at the end of the process (block). This global

signal can then be read in other processes (blocks).

Multiple updates (WRITEs) to the signal may occur within that process in
various conditional branches. A conditional or selected signal assignment can

be used in the block to assign values to a signal under different conditions.

. All signals/variables defined within the scope of a process or block should have
an unique name. Use of the same signal/variable name locally in two different

blocks/processes is not supported in VSS.

. If selected bit upda.tes‘ (WRITES) to a signal/variable representing a storage
element are to be made, the n-bit BIT_-VECTOR signal/variable should be
modeled as n 1-bit signals/variables. These 1-bit accesses may be collected
in one process/block Back into a BIT_VECTOR form using a concatenation

operator. The output of this concatenation operator may be assigned to a

208

global signal which can communicate this value to other processes/blocks. A
selected bit READ access of this BIT.VECTOR can be made using the global

signal.

For example:

architecture ex of example is

signal X: BIT_VECTOR(7 downto 0);

.begin |
blockl: block

--VSS: signal_kind REGISTER ,
signal X_7,X_6,X_5,X_4,X_3,X_2,X_1,X_0: BIT;

begin

)1);
)0}; .

X_7 <
X_ 4 <
X<=X7&X6&X5&X4&X3&X2&X1&X0;
end block blocki;
block2: block
signal Y: BIT;
begin
Y <= X(5) or X(2);
end block block2;

end ex;

7. Registers are modeled in a concurrent dataflow (block) model as follows:

o The signal representing the register must be annotated as being of signal -
kind register (either using a VSS comment annotation just prior to the
declaration of the signal, or using the signal kind ‘qua.liﬁer REGISTER in

!

the signal deﬁnition).

209

To model a simple clocked register, a guarded signal assignment is used.
The clocking event should appear in the block guard of the block in which

the assignment i1s made.

To model asynchronous events which affect the register signal, use a guarded
conditional assignment statement. The event which triggers the action
should appear in the block guard. The block guard may consist of more

than one event expressions ORed together.

If there are multiple events which may cause an assignment to the signal,

a waveform clause for each value/event pair should be used. The order
in which these waveform clauses appears determines the priority of the

events.

Where p‘ossible, signals in the block guard which are used to generate the
event expression should be typed to identify their purpose. Types currently
recognized by VSS include CLOCK, SET and RESET.

For example, the following VHDL code fragment models a register update with

an asynchronous clear which overrides a synchronous count:

signal CLK: CLOCK;
signal X: RESET;

block ((CLK = 1’ and not CLK’STABLE) or X = ’1’)
signal REG: bit register;
begin
REG <= guarded
’0’ when (X = ’1’) else
REG + 1 when CNT_UP = ’1’ else
REG;

end block;

210

8. Buses are modeled in a concurrent dataflow (block) model as follows: WRITEs

10.

to the bus are made using a single conditional signal assignment to a signal of
signal_kind BUS. The condition associated with each waveform clause should be
used to enable the data value specified in that waveform clause to be assigned
to the bus signal. The following example illustrates a signal assignment which

represents a bus:

block

-=VSS: signal_kind BUS :
signal a_bus: BIT_VECTOR(7 downto 0);

begin
a_bus <=
datal when enablel = ’1’ else
data2 when enable2 = 1’ else
a_bus;
end block;

. The use of inout ports are not currently supported in VSS. These ports must

be modeled as a pair of input/output ports (for example, an inout port ‘A’
should be modeled as A_in and A_out). READs of the ports use the input port;
WRITESs use the output port. '

VS8S will handle single and two-dimensional arrays. Single dimensional ar-
rays (BIT_VECTORs) are mapped to model n-bit signals and registers. Two-
dimensional arrays are mapped to a MEMORY or REGISTER_FILE GENUS

component.

The following type and signal/variable declarations should be used to model a

MEMORY or REGISTER_FILE:

type MEMORY is array (INTEGER range <>)
of BIT_VECTOR(11 downto 0);
variable STACK : MEMORY(5 downto 0); -- stack register file

211

The above declarations define a MEMORY with 6 words. Each word con-

sists of 12 bits. The type MEMORY is a special type recognized by VSS.

Signals/variables defined to be of this type are mapped to the appropriéte

GENUS component.

11. VSS does not support the following VHDL language features:

enumerated types

aliases

CONSTANT declarations

null statements

exit statements

return statements

loop statement with no iteration scheme, i.e.,
loop

sequence of statements
end loop;

Appendix B:
VHDL Benchmark Descriptions

This appendix contains selected VHDL source descriptions either discussed
within this dissertation or used as benchmarks to verify the operation of the VHDL

Synthesis System (VSS) and the concepts of Structured Modeling.

212

Behavioral Rockwell Counter Model

~- Rockwell Counter Benchmark
-- Modified Behavioral (process) description
-- Copyright (c) 1990 by Joe Lis

use work.bit_functions.all;

entity RWC is
port (CLK : in CLOCK;

RST : in RESET;
LDE : in BIT; .
DTI : in INTEGER range O to 4095; -
DTO : out INTEGER range 0 to 4095
); :

end RWC;

--VSS: design_style BEHAVIORAL
architecture BEH of RWC is
begin
process (CLK)
variable DTO_REG: INTEGER range O to 4095;
begin
--VSS: transform
if (RST = ’1’) then DTO_REG := O;
elsif (LDE = ’1’) then DTO_REG := DTI;
elsif (DTO_REG = 3327) then DTO_REG := O;
elsif (DTO_REG <= 3119) then DTO_REG := DTO_REG + 208;
elsif (DTO_REG <= 3301) then DTO_REG := DTO_REG - 3094;

else DTO_REG := DTO_REG - 3301;
end if;

DTO <= DTO_REG;
end process;

end BEH;

Functional Rockwell Counter Model

-- Rockwell Counter Benchmark
- Functional (block) description
- Copyright (c) 1990 by Joe Lis

use work.bit_functions.all;

entity rw_cntr_func is
port (CLK : in CLOCK;
RST,LDE : in BIT;
DTI : in INTEGER range O to 4095;
DTO : out INTEGER range O to 4095
) '

end rw_cntr_func;
?-VSS: desigﬁ_style FUNCTIONAL

architecture FTNAL of rw_cntr_func is
begin

main: block (CLK = 1’ and not CLK’STABLE)

--VSS: signal_kind REGISTER
signal DTO_REG: INTEGER range O to 4096;
signal A0,A1,A2,A3: BIT;

begin
AQ <= 1’ when (RST
A1 <= 1’ when (RST
A2 <= 1’ when (RST ’0?) AND (A0 = ’0’) AND (A1 = ’0’) AND
(DTO_REG <= 3119) else ’0’;
A3 <= 1’ when (RST = ’0?) AND (A0 = ’0’) AND (A1 = ’0’) AND
(A2 = ’0’) AND (DTO_REG <= 3301) else ’0°’;

’0) AND (LDE = ’1’) else ’0’;

with (RST & A0 & A1 & A2 & A3) select
DTO_REG <= guarded

0 when B"10000"|B"00100",

DTI when B'"01000",

DTO_REG + 208 when B"00010",

DTO_REG - 3094 when B"00001",

DTO_REG - 3301 when B"00000",

DTO_REG when others;

DTO <= DTO_REG;

end block;
end FTNAL;

’0%) AND (AO = '0’) AND (DTO_REG = 3327) else 0’

214

-- AM2910 Microprogram Sequencer

-- Functional Model

-- Source: Adapted from an ISPS description in
-- "Computer Structures: Principles and Examples
-- by Siewiorek, Bell and Newell

-- Copyright (c) 1990 by Joe Lis

use work.bit_functions.all;

entity AM2910 is

port (

CLK: in CLOCK; -- clock
CI : in BIT; -- carry in
CC : in BIT; -- condition code
CCEN : in BIT; -- cond. code enable
RLD: in BIT; -- R register load
D: in BIT_VECTOR(11 downto 0); -- direct inputs
I: in BIT_VECTOR(3 downto 0); -- 2910 instruction
OE: in BIT; -- output enable
Y_OUT: out BIT_VECTOR(11 downto 0); -- output instruction word
ENABL: out BIT_VECTOR(2 downto 0); -- enable conditions
FULL: out BIT -- stack full flag

)

end AM2910;

-- VSS: design_style FUNCTIONAL
architecture DATAFLOW of AM2910 is

begin

maiﬁ: block(CLK = ’1’ and not CLK’STABLE)

--VSS: signal_kind REGISTER

signal uPC: BIT.VECTOR(11 downto 0); -- microprogram counter
--VSS: signal_kind REGISTER
signal AR : BIT_VECTOR(11 downto 0); -~ address register
--VSS: signal_kind REGISTER
signal SP : BIT_VECTOR(2 downto 0); -- stack pointer
type MEMORY is array (INTEGER range <>) of BIT_VECTOR(11 downto 0);
signal STACK : MEMORY(S downto 0); -- stack register file
signal FAIL: BIT; -- CC fail flag

signal Y: BIT_VECTOR(11 downto 0); -- Y output signal

216

begin :
ENABL <= .
B"011" when (I = B"010") else
B"101" when (I = B"110") else
Blliloll;
FAIL <= (not CCEN) and CC;
Y <=
D. when (((I = X"1") and (FAIL = °0’)) or
(I = X"2") or
((X = X"3") and (FAIL = '0’)) or
((I = X"s") and (FAIL = ’°0’)) or
((I = X"6") and (FAIL = ’0’)) or
((I = X"7") and (FAIL = ’0’)) or
((I = X"9") and (AR /= B"000000000000")) or
((I = X"B") and (FAIL = ’0’)) or
((I = X"F") and (AR = B'"000000000000") and
(FAIL = 1)) :
) else
B"000000000000" when (I = X"0") else
uPC when (((I = X"1") and (FAIL = ’1’)) or
((I = X"3") and (FAIL = ’1’)) or
(I = Xx"a") or
((I = X"6") and (FAIL = ’1’)) or
((I = X"8") and (AR = B"000000000000")) or
((I = X"9") and (AR = B"000000000000")) or
((I = X"A") and (FAIL = °1’)) or
((I = X"B") and (FAIL = ’1’)) or
(I = X"C") or
((I = X"D") and (FAIL = °0’)) or
((I = X"F") and (AR = B"000000000000") and
(FAIL = ’0’)) or
((I = X"F") and (AR /= B"000000000000") and
(FAIL = ’0’))
) else
AR when (((I = X"8") and (FAIL = 1)) or
((I = X"7") and (FAIL = ’1'))
:) else
STACK(BIN_TO_INT(SP)) when (
((I = X"8") and (AR /= B"000000000000")) or
(¢TI = X"A") and (FAIL = °0’)) or
((I = X"D") and (FAIL = ’1’)) or
((I = X"F") and (AR /= B"000000000000") and

Y;

SP <= guarded

Blloooll

(FAIL = *1°)) '

when (I = X"0") else A
SP + B"001" when ('

((SP /= B"100") and ((I = X"1") or (I = X"4"))) or
((I = X"8") and (SP /= B"000") and
(AR = B"000000000000")) or

((SP /= B"000") and (FAIL = ’0’) and
((I = qun) or (I = X”B") or (I = X”D")))
) else
SP;

FULL <= 4
’1’ when ((I = X"0") or

((I = X"1") and (SP /= B"100")) or
((I = X"4") and (SP /= B"100")) or
((I = X"8") and (SP /= B"000") and
(AR = B"000000000000")) or :
((I = X"A") and (FAIL = ’0’) and (SP /= B"000")) or
((I = X"B") and (FAIL = ’0’) and (SP /= B"000")) or
((I = X"B") and (FAIL = '0’) and {(SP /= B"000"))
) else
)o’ ;
STACK(BIN_TO_INT(SP)) <=
uPC when ((I = X"1") or (I = X"4") or (I = X"5")) else
STACK(BIN_TO_INT(SP));
AR <= guarded _
D . when (((I = X"4") and (FAIL = ’0’)) or
(I = xIICII)
) else

AR - B"000000000001" when (((I = X"8")
' and (AR /= B"000000000000"))

) else
AR;
uPC <= guarded Y + (B"00000000000" & CI);
Y_OUT <=
Y when (OE = ’0’) else
B"000000000000";
end block;

end DATAFLOW;

AM2910 Behavioral Model

-- AM2910 Microprogram Sequencer
-- Behavioral Model

-- Source: Adapted from an ISPS description in

-- "Computer Structures: Principles and Examples

-- by Siewiorek, Bell and Newell

-- Copyright (c) 1990 by Joe Lis

use work.bit_functions.all;

entity AM2910 is
port (

CLK: in CLOCK;
CI : in BIT;
CC : in BIT;
CCEN : in BIT;
RLD: in BIT; ‘
D: in BIT_VECTOR(11 downto 0);
I: in BIT_VECTOR(3 downto 0);
0E: in BIT;
Y: out BIT_VECTOR(11 downto 0);

clock

carry in

condition code
condition code enable

R register load

direct inputs

2910 instruction

output enable

output instruction word

enable conditions
stack full flag

ENABL: out BIT_VECTOR(2 downto 0); --
FULL: out BIT -
);

end AM2910;

-- V3S: design_style BEHAVIORAL

architecture BEHAVIOR of AM2910 is

-- output instruction wd signal
signal Y_sig: BIT_VECTOR(11 downto 0);
-- enable conditions signal
signal ENABL_sig: BIT_VECTOR(2 downto 0);
signal FULL_sig: BIT; -- stack full flag

begin

--VSS; transform
process

variable uPC: BIT_VECTOR(11 downto 0);
variable AR : BIT_VECTOR(11 downto 0);
variable SP : BIT_VECTOR(2 downto 0);

-- microprogram counter
-- address register
-- stack pointer

[§%]
(0 e]

type MEMORY is array (INTEGER range <>) of BIT_VECTOR(11 downto 0);

variable STACK : MEMORY(S downto 0); -- stack register file

variable FAIL: BIT; -- CC fail flag

variable Y_var: BIT_VECTOR(11 downto 0); -- output instruction wd signal
begin

if (I = B"010") then
ENABL <= B"011";
elsif (I = B"110") then
ENABL <= B"101";
else .
ENABL <= B"110";
end if;

FAIL := (not CCEN) and CC;

case I is
when X"0'" => : -- JZ instruction
Y_var := B"000000000000";
SP := B"000";
FULL <= '1’;
when X"1" => -- CJS instruction
if (FAIL = ’1’) then :
Y_var := uPC;
else
Y_var := D;
end if;
-=- push
if (SP = B"100") then
FULL <= '0?;
else
FULL <= ’17;
SP := SP + B"OO1";
end if;

STACK(BIN_TO_INT(SP)) := uPC;

> -- JMAP instruction
D;

when X"2"
Y_var :
when X"3"
if (FAIL = °1’) then
Y_var := uPC;
else
Y_var := D;
end if;
when X"4" => ‘ -- PUSH instruction
Y_var :=

-~ CJP instruction

-- push

if (SP = B'"100") then
FULL <= ’0°’;

" alse

FULL <= ’1’;

SP := SP + B"001";
end if;

STACK(BIN_TO_INT(SP)) := uPC;

if (FAIL = °0’) then
AR := D;
end if;
when X"§8" => -- JSRP instruction
if (FAIL = ’1’) then
Y_var := AR;
else
Y_var := D;
-- push
if (SP = B"100") then
FULL <= ’0?;
else
FULL <= *17;
SP := SP + B"001";
end if;
STACK(BIN_TO_INT(SP)) := uPC;
end if;
when X"6" => -- CJV instruction

if (FAIL = ’1’) then
Y_var := uPC;

else
Y_var := D;
end if;
when X"7" => -- JRP instruction
if (FAIL = ’'1’) then
Y_var := AR;
else
Y_var := D;
end if;
when X"8% => -- RFCT instruction
if (AR = B"000000000000") then
Y_var := uPC;
== pop

if (SP /= B"000") then
SP := SP + B'"001";
FULL <= ’1’;
end if;
else
Y_var := STACK(BIN_TO_INT(SP));
AR := AR - B"000000000001";
end if;
when X"9" => -- RPCT instruction
if (AR = B'000000000000") then
Y_var := uPC;

221

else
Y_var := D;
AR := AR - B"000000000001";
end if; -
when X"A" => . -=- CRTN instruction
if (FAIL = ’1’) then
Y_var := uPC;
else

Y_var := STACK(BIN_TO_INT(SP));

== pop
if (SP /= B"000") then
SP := SP + B"001";
FULL <= ’17’;
end if;
end if; .
when X"B" => -- CJPP instruction

if (FAIL = ’1’) then
Y_var := uPC;
else
Y_var := D;

-= pop

if (SP /= B"000") then
SP := SP + B"001";

FULL <= ’1°;
end if;
end if;
when X"C" => -=- LDCT instruction
Y_var := uPC;
AR := D; .
when X"D" => : -- LOOP instruction

if (FAIL = ’1°) then
Y_var := STACK(BIN_TO_INT(SP));

else
Y_var := uPC;
—-= pop

if (SP /= B"000") then
SP := SP + B"001";

FULL <= '17;
end if;
end if;
when X"E" => -- CONT instruction
Y_var := uPC; ' '
when X'"F" => -- TWB instruction

if (AR = B"000000000000") then
if (FAIL = ’1’) then
Y_var := D;
else .
Y_var := uPC;

|
|
l
|
!
|

~T pop

if (SP /= B"000") then
SP := SP + B"001";
FULL <= ’17; 3
end if;
end if;
else ' _
if (FAIL = ’1’) then
Y_var := STACK(BIN_TO_INT(SP));
else
Y_var := uPC;

- pop

if (SP /= B"000") then
SP := SP + B"001";

FULL <= '1’;
end if;
end if;
AR := AR - B"000000000001";.
end if;

end case;

uPC := Y_var + (B"00000000000" & CI);

if (OE = ’0’) then
Y <= Y_var;
else
Y <= B"000000000000";
end if;

end process;

end BEHAVIOR;

" Appendix C:

GENUS Component Transistor

Count

The following table lists the transistor counts used to evaluate the results of

VSS synthesis experiments.

In the table, n refers to the number of bits, and ¢ represents the number of data

inputs.

The SIMPLE_ALU component performs the followiqg functions: ADD, SUB,
LID (left identifier), RID (right identifier), AND, OR, LNOT (invert left input),
RNOT (invert right input).

223

GENUS Component

Trans. per bit

GENUS Component

Trans. per bit

ADDER 32(n- 1) + 16 | NAND3 6
ADD.SUB 34(n- 1) + 12 || NAND4 8
ADD_SUB_LID_RID 56 NOR2 4
ALU 100 NOR3

AND 6 NOR4 3
BUFFER 4 OR 6
COMPAR-EQ 14 REGISTER 48
COMPAR LGE 35 REGISTER.FILE 54
CONSTANT 0 SHIFTER 12
DECODER 20 SIMPLEALU 92
EXTRACT 0 SUB 34(n - 1) + 12
INC_DEC 18 TRISTATE 12-
LATCH 32 UP_.COUNTER 52
MUX 6i+ 2logs i || UP.DOWN_COUNTER 58
NOT 2 XOR 10
NAND?2 XNOR2 10

’ 4

