
UC Irvine
ICS Technical Reports

Title
Behavioral synthesis from VHDL using structured modeling

Permalink
https://escholarship.org/uc/item/77k5s631

Authors
Lis, Joseph S.
Gajski, Daniel D.

Publication Date
1991
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/77k5s631
https://escholarship.org
http://www.cdlib.org/


Notice: This Materiai f ^
may be protected ^^
by Copyright Law r^O, Î-03
(Title 17 U.S.C.)

Behavioral Synthesis from VHDL
Using Structured Modeling

Joseph S. Li^
Daniel D. Gajski

Technical Report #91-05
January, 1991

Dept. of Information and Computer Science
University of California, Irvine

Irvine, CA 92717
(714) 856-7063

Abstract

behavioral synthesis involving the development of aVHDL Synthesis System VSS which accepts aVHDL behavioral input specification and per-
independent synthesis to generate a circuit netlist of generic components.

Ihe VHDL language is used for input and output descriptions. An intermediate representa
tion which incorporates signal typing and component attributes simplifies compilation and
tacilitates design optimization.

AStructured Modeling methodology has been developed to suggest standard VHDL
naodeling practices for synthesis. Structured modeling provides recommendations for the use
ot available VHDL description styles so that optimal designs will be synthesized.

Adesign composed of generic components is synthesized from the input description
through a process of Craph Compilation, Craph Criticism, and Design Compilation Ex
periments were performed to demonstrate the effects of different modeling styles on the
quality of the design produced by VSS. Several alternative VHDL models were examined for
each benchmark, illustrating the improvements in design quality achieved when Structured
Modeling guidelines were followed.





UNIVERSITY OF CALIFORNIA

IRVINE

Behavioral Synthesis from VHDL

Using Structured Modeling

DISSERTATION

submitted in partial satisfaction of the requirements for the degree

DOCTOR OF PHILOSOPHY

in Information and Computer Science

by

Joseph Stephen Lis

Dissertation Committee:

Professor Daniel D. Gajski, Chair

Professor Lubomir Bic

Professor Nikil D. Dutt

1991



©1991

Joseph Stephen Lis

ALL RIGHTS RESERVED



The dissertation of Joseph Stephen Lis is approved,

and is acceptable in quality and form for

publication on microfilm:

-U.

y ComnCommittee Chair -

University of California, Irvine

1991



Dedication

This dissertation is dedicated to my parents,

Stephen J. and Virginia M. Lis, who have given

me the strong foundations of love and support

necessary to handle the ups and downs of life.

This dissertation is also dedicated to my

grandmother Jeannette Lis, whose constant

prayers and encouragement have been a source

of inspiration for me throughout this ordeal.

Ill



Contents

List of Figures vi

List of Tables viii

Acknowledgements ix

Abstract xii

Chapter 1 Problem Description 1
1.1 Introduction 1
1.2 Contributions 4
1.3 Thesis overview g

Chapter 2 Synthesis Design Process 8
2.1 Design Process g
2.2 Modeling Methodology 22
2.3 Definition of Design Models 25
2.4 Hardware Description Languages 29
2.5 Design Representation 30

Chapter 3 Previous Work 32
3.1 Armstrong's Process Graph Model 32
3.2 VSYNTH 35
3.3 IBM VHDL Design System 39
3.4 Physical Design using VHDL 42
3.5 Summary 43

Chapter 4 Structured Modeling 46
4.1 VHDL ' ^ 47
4.2 Problems for Synthesis Posed by VHDL 58
4.3 Structured Modeling for Synthesis 61

Chapter 5 Design Representation 79
5.1 Control/Data Flow Graph 79
5.2 Partial Design Representation 103

IV



Chapter 6 Synthesis System Framework 108
6.1 Graph Compiler HO
6.2 Representation Optimizations Hg
6.3 Design Compiler 126
6.4 Control Logic Compiler 151
6.5 Interface to Logic Synthesis 151
6.6 Simulation Interface 155'
6.7 User Interface

Chapter 7 Experiments 15-^
7.1 Rockwell Counter 159
7.2 DRACO "^ ^ ^' 175
7.3 AM2910 Microprogram Controller Igj
7.4 8251 USART ^ . 191

Chapter 8 Conclusions 195
8.1 Summary of Contributions I95
8.2 Future Work igg



List of Figures

2.1 Behavioral Synthesis Design Process 9
2.2 Behavioral Description ]^0
2.3 Flow Graph Representation 12
2.4 Flow Graph after Optimization I3
2.5 Allocation I5
2.6 Scheduling Ig
2.7 Resource Binding Ig
2.8 Register Merging and Operand Exchange 19
2.9 Symbolic Microcode 20
2.10 Typical Design Practice 23
2.11 Control Unit/Data Path Design Model 27

3.1 Armstrong's Process Model Graph 34
3.2 VSYNTH System Block Diagram 35

4.1 VHDL Design Hierarchy 59
4.2 VHDL Design Entity Block Structure 52
4.3 Controlled Counter Block Diagram 55
4.4 VHDL Description of Controlled Counter 57
4.5 VHDL Controlled Counter Chip Model 59
4.6 Virtual Multiplexor Problem gO
4.7 VHDL Full Adder Descriptions g3
4.8 VHDL Functional Descriptions gg
4.9 Register Transfer State Table 70
4.10 State Table Block Description 71
4.11 State Transitions/Register Transfers Description 72
4.12 Alternative VHDL State Table Descriptions 73
4.13 Behavioral Description Using VHDL Process Statement 76

5.1 Block Statement Flowgraph Representation 84
5.2 A Simple Conditional Signal Assignment 86
5.3 Guarded Signal Assignment 88
5.4 Conditional Signal Assignment 90
5.5 Selected Signal Assignment 91
5.6 Process Statement Flowgraph Representation 94
5.7 If Statement gg

VI



5.8 Case Statement 97

5.9 For Loop Statement 98
5.10 While Loop Statement 99
5.11 Procedure Call Statement 100

5.12 Wait Statement 101

5.13 GENUS Partial Design Entity Object 106

6.1 VSS Block Diagram 109
6.2 Block Statement Compilation 113
6.3 Concurrent Statement Processing Algorithm 115
6.4 Compilation of Variable Assignments in a Process 117
6.5 Graph Critic Cleanup Rule 119
6.6 Graph Critic Optimization Rule 120
6.7 IF Statement Transformation 124

6.8 Design Compiler 128
6.9 State Assignment Across Conditional Branches 133
6.10 Frequency Based Binding Algorithm . . 140
6.11 Usage Frequency Cost Function 141
6.12 Microarchitecture Connection Cost Function 142

6.13 Layout Connection Cost Function 143
6.14 Gain Based Binding Example 145
6.15 Compatibility Graph 146
6.16 Computation of Gain Value , 148
6.17 Clique Forest . 149
6.18 VSS Interface to Logic Synthesis 152
6.19 Flowgraph and Netlist Display Utility 156

7.1 Rockwell Counter Block Diagram 160
7.2 Rockwell Counter Count Sequence ". 162
7.3 Structure Produced by VSS for Functional Model 167
7.4 VHDL Description of the ALU Function Select Logic 168
7.5 Design for Rockwell Counter Behavioral Description (CU/DP) .... 170
7.6 Design for Transformed Behavioral Description 171
7.7 Design for Transformed Behavioral Description with CSA 172
7.8 DRACO Block Diagram 177
7.9 DRACO State Diagram 179
7.10 Am2910 Block Diagram 188
7.11 8251A Block Diagram . 193

Vll



7.1

List of Tables

Benchmarks Synthesized by VSS ;[58
7.2 VSS Results for the Rockwell Counter Benchmark 174
7.3 VSS Results for the DRACO Benchmark ]^84
7.4 VSS Results for the AM2910 Benchmark ]^90
7.5 VSS Results for the 8251A Benchmark I94

Vlll



Acknowledgements

Midwest^by flatlands of the
bookshelf bolted to the waH and Isfn.E desk^^^ aous iterations of partition construcS After numer-
escapades, Ifeel that Ihave been apart of the esuSshmTt'of'̂ fi'̂ ?^? '̂̂ "moving"
over the past four years. Alone the wav Prof S. ^ ^first-class operation
about our common obsession of behavioral svnthpdt n ^ deal
life in general. Although we Wn'Hlwt^v/ ^ ^ ^wo aboutpoint B, Irespect anHmTre hrdediiSanTv^^^ ^ tohad the opportunity to work with him. Thank you'°ProT Gatski^l'
the same good memories of our accomplishments^e^e as Iknow Iwill

Nikil Dutt, for tfieir interSt^/g™Sn"rand™p^robb^^^

behavioral synthesis projects initiated bv Prnf P^ ^^^^^med involved with thesomething worthwhile SS be haTpentg at UW ^o the fact that
friendship. happening at UGI. Thank you for your advice and

comaridTri'e hiv^madrmy^^^^^^^^ CADLAB fraternity whoseenjoyable. Thanks to Allen Wu Tedd HadTev^Ne?f most
Frank Vahid, Elke Rundensteiner RalSfPw J Vander Zanden, Sanjiv Narayan,
Chaiyakul, and Jim Fradkin for vonr rn + Ramachandran, Viraphol

me have helped to preserve my sanity duringVtrjng toe's SuTe^toy""''

RcckierinterSS IhoTTsLTn tnC"'™ ^ob Larsen ofsynthesis work at UC Irvine Bob has r̂ strong support for the design"corporate strings" so thl'e ^ould "hdate'ou/ '̂̂ '?'"^
Thanks for all you've done, B^b. mdustrial examples.

special thanks to Sam S^SrTck^s ^pm computer support group, with
software, fixing networking problems and dpal' T® installing newmachines whici have bKttt^rpla&'SlVLAB.^^^ ""
and support Ireceivrf'from^my^fttoy 'fthimk P°™!™ without the counsel
that encouraging word ^ when I needed

funding Lmlac M-Djiubtn^Nlf^ cratots.'''™®"'®'

IX



Curriculum Vitae

Education:

1991: Ph.D. in Computer Science
• Department of Information and Computer Science
• University of California, Irvine
• Dissertation Topic: Behavioral Synthesis from VHDL
• Advisor: Professor Daniel D. Gajski

1985: M.S. in Computer Science
1983: B.S. in Computer Science

• Department of Computer Science
• University of Illinois at Urbana-Champaign
• Master's Thesis Advisor: Professor Daniel D. Cajski

Experience:

1. 1987-91: Research Assistant, Department of Information and
Computer Science, University of California, Irvine

2. 1985-86: Member of the Technical Staff, Could Inc., Could Research
Center, Electronic &: Computer Systems Laboratory, Rolling Meadows, IL

3. 1984-85: Teaching Assistant, Department of Computer Science,
University of Illinois at Urbana-Champaign

4. 1982-84: Summer Engineering Intern, Northrop Corporation, Defense
Systems Division, Rolling Meadows, IL

Refereed Conference and Workshop Papers:

Potasman, R., Lis, J., Nicolau, A., and Cajski, D., "Percolation Based Synthesis".
In Proceedings of the 27th Design Automation Conference (pp. 444-449), Orlando,
FL, June 1990.

Lis, J. and Cajski, D., "Structured Modeling for VHDL Synthesis", invited
speaker. Fourth International Workshop on High-Level Synthesis, Kennebunkport,
ME

Lis, J. and Cajski, D., "VHDL Synthesis Using Structured Modeling". In
Proceedings of the 26th Design Automation Conference (pp. 606-609), Las
Vegas, NV, June 1989.

Lis, J. and Cajski, D., "Synthesis from VHDL". In Proceedings of the International
Conference on Computer Design (pp. 378-381), Rye Brook, NY, October 1988.

Technical Reports:

Lis, J. and Cajski, D., "Structured Modeling for VHDL Synthesis", Technical
Report 89-14, University of California at Irvine, June 1989



Lis, J. and Gajski, D., "VHDL Design Representation in the VHDL Synthesis
System", Technical Report 89-15, University of California at Irvine, June 1989
Lis, J. and Gajski, D., "VSS: A VHDL Synthesis System", Technical Report
88-13, University of California at Irvine, May 1988

Invited Talks:

"Design Synthesis from VHDL", tutorial presented at the 1989 VHDL Users'
Group Meeting, Redondo Beach, CA, October 22, 1989

"VHDL Synthesis Using Structured Modeling", invited speaker, VHDL Users'
Group Meeting, Las Vegas, NV, June 29, 1989

VHDL Synthesis System prototype, invited demonstrations, 27th Design
Automation Conference (Orlando, FL 1990), 26th Design Automation Conference
(Las Vegas, NV 1989), 25th Design Automation Conference (Anaheim, CA 1988)

Honors, Professional Activities and Societies:

• Regents' Dissertation Fellowship, University of California at Irvine, Winter
Quarter 1990

• Dean's List, College of Engineering, University of Illinois at Urbana-Champaign,
7 semesters (Fall 1980 through F^I 1983)

• Reviewed papers for lEEE/ACM Design Automation Conference, IEEE
Conference on Computer-Aided Design

• Member IEEE Computer Society, ACM SICDA, Tau Beta Pi

XI



Abstract of the Dissertation

Behavioral Synthesis from VHDL

Using Structured Modeling

by

Joseph Stephen Lis

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 1991

Professor Daniel D. Gajski, Chair

This dissertation describes work in behavioral synthesis involving the develop

ment of a VHDL Synthesis System VSS which accepts a VHDL behavioral input

specification and performs technology independent synthesis to generate a circuit

netlist of generic components. The VHDL language is used for input and output

descriptions. An intermediate representation which incorporates signal typing and

component attributes simplifies compilation and facilitates design optimization.

AStructured Modeling methodology has been developed to suggest standard

VHDL modeling practices for synthesis. Four design models currently understood and

used in practice by designers have been identified: combinational logic, functional

descriptions (involving clocked components such as counters), register transfer (data

path) descriptions, and behavioral (instruction set processor) designs. Structured

modeling provides recommendations for the use ofavailable VHDL description styles

{structural, dataflow and behavioral) so that optimal designs will be synthesized.

A design composed of generic components is synthesized from the input de

scription through a process of Graph Compilation, Graph Criticism, and Design

Xll



Compilation. Graph Compilation parses the VHDL input description into an internal

Control/Data Flow Graph representation. The Graph Critic removes inefficiencies in

troduced by certain language constructs and makes local optimizations in the flow

graph structure. , ^

The Design Compilation process involves a collection of algorithms which map

the internal representation to a corresponding structural implementation. Portions

of the input description may be modeled using different Structured Modeling design

models; the Design Compiler will apply the appropriate synthesis algorithm to each

section. Behavioral descriptions are processed using algorithms which consider the

interrelated effects of storage and function unit allocation on interconnect and total

chip area. The VSS system generates a VHDL structural netlist for the data path,

and a state table which captures control information.

Experiments were performed to demonstrate the effects of different modeling

styles on the quality of the design produced by VSS. Several alternative VHDL models

were examined for each benchmark, illustrating the improvements in design quality

achieved when Structured Modeling guidelines were followed.

Xlll



Chapter 1

Problem Description

1.1 Introduction

In order to successfully exploit new VLSI design technologies, the problems

of rapid prototyping of new systems and redesigning old parts must be solved. To

solve these problems, a new generation of design tools that capture human design
knowledge must be developed. Unfortunately, the knowledge required to translate

functional specifications to structural representations and structural representations

into physical design is not sufficiently well understood to allow the development of

computer-aided design (CAD) tools based on simple algorithms. To make the problem

even more complicated, the functional specifications are often incomplete and given

with conflicting design goals.

High-level or behavioral synthesis involves the transformation of a specification

of the behavior required of a hardware system to be designed given a set of constraints

on the implementation intoa structure that implements the behavior and satisfies the

constraint requirements. The desired "black box" behavior of a design is represented

by a mapping of the system's inputs to its outputs over time. Aprogramming lan

guage [GK84, JR+89] or ahardware description language (HDL) such as ISPS [Bar81]



or VHDL [IEE87] is used to specify this behavioral description. The description con

tains as little detail about the system's implementation as possible. Examples of such

specifications are an instruction set for a special purpose processor, a set of register

transfers for an application specific integrated circuit (ASIC) data path, or boolean

equations used to describe combinational logic. Constraints are expressed in terms

of limitations on the time (the individual clock cycle or total execution time), the

area (a total design area or a specified set of functional units, storage elements and

interconnects) and/or the power attributes of the design to be implemented.

The resultant structure produced by behavioral synthesis is a set of intercon

nected components often represented as a netlist. Depending on the level of ab

straction and corresponding component library, the netlist can consist of component

primitives which are complex processors or memories, microarchitecture components

such as ALUs, registers and multiplexors, or in some cases simple transistors and

wires.

The design process proceeds through several stages of an abstraction hierarchy

[GK83], from the algorithmic specification down to layout mask information used to

implement the design in silicon. At each level of this process, the specification is

refined to add implementation details which are further refined at subsequent levels

until the design is completed. High-level synthesis performs the first phase of this

refinement to produce a register-transfer level (RTL) structure. The details of this

design process will be elaborated in subsequent chapters of this dissertation.

The behavioral synthesis task is complicated by the fact that it is difficult to

develop a general purpose synthesis system that will produce quality results for a

variety of target applications. Existing systems have focused their capabilities on a



3

restricted domain so as to reduce the complexity of the design task. Unfortunately,

these systems are often too specialized or inflexible to apply to a majority of real

world designs. Asynthesis methodology which addresses these needs has the following
primary requirements: well-defined design models and modeling practices, a flexible

design representation, and an extendable system framework.

In order to successfully perform behavioral synthesis, the abstract functionality

expressed in the input description must be mapped onto a physical implementation

or architecture that has a known model of execution or computation. One design

model which is appropriate for every situation is difficult to define; it may be more

feasible for asynthesis tool to produce designs targeted to aset of afew design models

representing a majority of real world designs. When using an existing language or

developing one's own language for the representation of a particular design model, a
semantics must be determined for synthesis. This will allow the tools to use a consis

tent method of interpreting what the designer meant when a particular construct of

the language is used, and more importantly, how the tool will interpret this statement.

Because there can be no guarantee of uniqueness of descriptions written in a particu

lar language. It is necessary to establish modeling practices. These guidelines' should

provide a consistent interpretation of the language constructs used by the designer
(in writing the models) and the synthesis tool (in synthesizing the description).

The synthesis process requires an intermediate design representation or data

base which captures the intent of the behavioral description. This format can be

manipulated by the synthesis system and transformed into a structure consistent with

the chosen design model. Synthesis tools usually begin as an implementation of an

initial idea or algorithm. As this approach is refined, the design representation must

be flexible enough to satisfy the information storage and manipulation requirements



of new algorithms. Similarly, the synthesis system framework should allow for easy

integration of new modules which operate on this common design representation.

1.2 Contributions

This thesis describes an approach to behavioral synthesis which uses the VHDL

language [IEE87], the IEEE standard language for hardware description. An ex

amination of the issues involved in behavioral modeling is presented, as well as an

evaluation of various modeling practices and their effects on the quality of a synthe

sized design. To demonstrate the feasibility of this approach, the implementation of

the VHDL Synthesis System (VSS) will be discussed. The novel contributions

of this work are described below.

1.2.1 Use of the VHDL Language for Synthesis

While VHDL has been used for modeling for the purpose of simulation and

has been adapted for use as a front end language to existing synthesis systems, this

work is novel in that from the outset, VHDL was selected as the input and output

specification language for synthesis. The syntax of the language has been preserved,

and the underlying design model of VHDL has been studied. A synthesis semantics

has been developed which uses existing language constructs to represent common

hardware models and characteristics.



1.2.2 Design Models

Our synthesis system supports four design models: combinational logic, func
tional descriptions (involving clocked components such as counters), register trans
fer (instruction set or data path) descriptions, and behavioral (processor) designs.
Previous synthesis systems have been limited by anarrow problem domain (e.g.. dig
ital signal processing (DSP) compilers such as Cathedral II [DR+86]). While these

systems are effective in synthesizing designs in this restricted subset, a majority of
real world designs cannot be processed by such systems (e.g., interface or glue logic,
designs controlled by asynchronous events).

Apotential application for behavioral synthesis is adesign description consisting
of some previously designed modules as well as portions of behavioral specification.

Alternatively, the description could consist of portions which are to be targeted to
different design models, requiring that different synthesis algorithms be applied to
different portions of the description. The collection of design models used in this

work allows for synthesis of a broader range of designs.

1.2.3 Design Representation

An internal design representation was developed to allow for the mapping of
VHDL behavioral models (representing different design models) to a common inter

nal format (CDFG) which can be manipulated by synthesis tools. This design rep

resentation can be manipulated via behavioral level transformations which recognize

design optimizations early in the synthesis process.



1.2.4 Structured Modeling

This work introduces a new methodology termed Structured Modeling which

was developed to provide modeling guidelines for use of an existing language (VHDL).

Structured modeling provides a synthesis semantics for VHDL which identifies pre

ferred representations that will synthesize to high quality designs. This dissertation

will illustrate how the quality of a design as well as the complexity of the synthesis

process are directly related to the style of description chosen to represent a particular

design model.

1.2.5 Synthesis framework

The implementation of this design methodology allows for the integration of the

different procedures and the development of control strategies required for synthesis

of each design model. The VSS system framework facilitates installation of new

subtask algorithms and modules which operate on the common design representation.

Thus, a collection of techniques can be made available to the designer, allowing some

interactivity in the design process through the selection of synthesis procedures to be

applied.

1.3 Thesis overview

This thesis is organized as follows. Chapter 2 discusses the main issues involved

in behavioral synthesis. Chapter 3 surveys previous work in the areas of behavioral

modeling, its application to synthesis, and in particular, the use of VHDL for these



purposes. Chapter 4 presents the Structured Modeling methodology. Chapter 5

details the design representation developed. Chapter 6 describes the organization

and major components of the VHDL Synthesis System prototype. Chapter 7presents

the results of experiments performed using Structured Modeling guidelines to develop

models synthesized by the VSS system. Chapter 8 summarizes the accomplishments

of this research and outlines future work.



Chapter 2

Synthesis Design Process

There are several concepts which influence the behavioral synthesis approach

described in this thesis. This chapter presents the major issues which form the foun

dation of our approach, and it provides a common terminology which will be used to

compare existing behavioral synthesis approaches to this work.

2.1 Design Process

The design process for behavioral synthesis is shown in Figure 2.1. The tasks

which compose this process are described in the following subsections.

2.1.1 Representation Compilation

Representation compilation [TW"'"88] involves parsing a design description and

translating it into an internal representation. This representation organizes infor

mation extracted from the input specification necessary for synthesis. It is created,

manipulated, and optimized by the synthesis system so that a netlist or other output



Design
ronstraintsJ

Behavioral

Description

Internal

Representation
(CDFG)

Critic/
ansformatio

Optimized

Representation
omponent

Library

Design Compiler

n I 1 I ^
I Allocator | | Scheduler | | Resource |

1 I I

RTL Design

1 1 1 n

1 Data Path | 1 Control 1—
Structure Specification

L 1 1 j

Controller

Synthesis

Figure 2.1: Behavioral Synthesis Design Process



10

specification can be produced. Different optimizations are applied to this representa
tion depending on the design style and design goals.

One common design representation used in several synthesis systems is the con
trol/data flow graph (CDFG) [OG86] or value trace [McF78]. The control flow'

entity EX is

port (B,C,D,F,H,I: in BIT-VECT0R(7 downto 0);

E,G: out BIT_VECT0R(15 downto 0));

end EX;

architecture BEHAVIOR of EX is

begin

process

variable A: BIT.VECT0R(15 downto 0);

begin

A := (B + C) * D;

E := F * (B + C);

G := A + (H - I);

end process;

end BEHAVIOR;

Figure 2.2: Behavioral Description

graph represents sequencing information. Each "state" in the behavioral description
is represented as asequence of actions to be performed, and based on the evaluation of



11

a condition, the next state to which execution is to be advanced is indicated. Control

dependencies implied in the semantics of the behavioral description (for example,

loop and if-then-else constructs) are preserved in the control flow graph. Figure 2.2

shows an example input description using the VHDL hardware description language.

Figure 2.3 presents a corresponding flow graph representation.

The sequence of actions to be performed (arithmetic, logical, shifting operators)

is represented using data flow graphs. A data flow graph indicates data dependencies

that exist between variable accesses in assignment statements.

The data flow graph exposes the parallelism in the input description. A control

flow node representing a state or basic block [LDSM80] will have a data flow graph

associated with it.

Most input languages are procedural] they describe data manipulations with

assignment statements and organize sequences of these statements into blocks us

ing standard control constructs for sequential execution, conditional execution and

iteration. An execution ordering is implied by this language paradigm which is main

tained in the design representation using control and data dependencies. Control

dependencies are used to sequence control of the design between sequences of assign

ment statements. Data dependencies ensure that variable assignments and accesses

occur in the order specified in the input description.

2.1.2 Optimization of the Internal Representation

Once the design representation is created, global optimizations such as standard

language compiler data flow analysis (dead code elimination, constant propagation.



READ
PORT

F

WRITE
PORT

E

5

>

READ

PORT

C

READ

PORT

D I
READ
PORT

H

\ WRITE READ /
^REGISTER register/

/ A ^ \

data dependency-

control dependency

WRITE
PORT

G

Figure 2.3: Flow Graph Representation

12

PORT



13

common subexpression elimination, inline expansion of procedures, loop unrolling)

are often applied [Tri87, TW+88]. Figure 2.4 shows the results of applying such

optimizations to the flow graph of Figure 2.3.

WRITE

PORT

E )

>

\ WRITE READ /
REGISTER REGISTERS

r A \

WRITE

PORT

G

Figure 2.4: Flow Graph after Optimization

\ READ
> PORT

/

-

In addition, local, hardware-specific transformations such as the identification

of signals and registers provide additional information to aid the synthesis task. The



,14

local transformations can be applied to the internal representation by a graph critic
module [Tri87, LG88] to replace the behavioral information derived from the input
description with information which is relevant to the synthesis process (for example,
the identification of a variable used as a clock signal). This optimization task sim

plifies the process of mapping hardware components to the operations in the internal

representation.

2.1.3 Allocation

Ahigh-level synthesis system generally assumes that generic or technology-
independent functional units from a defined library are available to execute the ab

stract operators in the input description. Libraries provide estimates of component

area and propagation delays. One such generic library is GENUS [Dut88].

Resource allocation determines the number and type of functional units, storage
elements and communication paths to be used in the design. In some high-level syn
thesis systems, the designer supplies the allocation [BG87, DN89, Kow85]. Other sys
tems [T+83, GK84, PPM86] provide only component costs via the component library
which the scheduler uses to determine the allocation necessary to satisfy scheduling
constraints. In this case, the resource binding task generates the actual allocation

required.

Figure 2.5 shows two possible allocations for the example. The first is a maxi

mally parallel allocation where there is one unit for every operator in the behavioral

description. Alternatively, a user specified allocation is shown which corresponds to
the minimal area point of the design space curve for this example.



Maximally parallel

Figure 2.5; Allocation

# regs = max.

number of variables

stored across

any state boundary

User Constrained

lo

2.1.4 Scheduling

Scheduling performs state binding, or the assignment of operations in the be

havioral description to control steps. This state binding must maintain the correct

execution order as specified in the input description. If the scheduling reorders opera

tions such that a variable is overwritten before its previous value needs to be accessed,

an incorrect result is produced. Scheduling is a critical step in the synthesis process

[GDP86] which affects the interrelated task of component allocation. The scheduler

tries to execute as many operations as possible in each machine state (i.e., extract as

much parallelism as possible).

There are two main approaches to scheduling based on the constraints supplied.

In the first case, a linoit on time is imposed, either by a specification of the machine's



State 1

State 2

State 3

B C D H I

State 1

State 2

State 3

Time Constrained

Resources; 1 add/sub, 1 multiplier

E G

Resource Constrained

Figure 2.6: Scheduling

16

clock cycle duration or by the specification of the total execution time. Here, the
design must sequence through as few states as possible when executing the behavior. If
the scheduler is constrained by afixed number of machine states, this implies that the
scheduler determines the necessary hardware resources required to meet the imposed
time constraints (based on function unit, storage element and interconnect costs),
if this schedule is possible. Asecond approach limits the resources the scheduler
may use in any state. In this case, the scheduler tries to maximize the utilization

of available resources in order to minimize the number of control steps required.
Figure 2.6 illustrates one schedule using each of the constraint approaches.



2.1.5 Resource Binding

The task of binding or behavior-to-structure mapping assigns specific instances

of functional, storage and interconnect units to the abstract operations and variables

in the behavioral description (or more correctly, the design representation). This task

also decides how each component and connection of the data path is to be realized,

given possibly several alternatives from the component library.

After state binding maps operations to states, unit binding maps each operation

to a component which performs the desired function during the particular state.

Operators which are not executed in the same state can be mapped to the same

functional unit if they are considered compatible (for example, some synthesis systems

[TS83] allow the merging of "+" and operators into a common unit, while other

systems associate a high cost with such a merge that would favor two separate units).

If a variable is used in more than one state, register binding must be performed to

assign this variable to a storage element. Lifetime analysis [ASU86] isoften performed

for each variable in the input description to determine which variables can share a

storage element. A variable is "live" from the time of its definition to the time of

its last use; the variable is dead from the time of its last use to the time of its next

definition. Each variable may be mapped to a separate register, or the number of

registers can be optimized by sharing (mapping several variables to the same register

if the "live" periods of the variables do not overlap).

Connectivity binding allocates a connection between hardware components in

order to perform the required data and control transfers. Connections can be point-

to-point (using a multiplexor component at function unit and register inputs to select



R4 R5 R6

\ MUXl / \ MUX2 / MUX3 MUX4

R8 R9

Figure 2.7: Resource Binding

18

T1(R8) = B(Rl) + C(R3)

A(R9) = Tl(R8) • D(R6)

T2(R7) = H(R2) - I(R4)

E(R9) = F(R5) • Tl(R8)

G(R7) = A(R9) + T2(R7)

one of several data inputs) or hused (equivalent to multiplexors at inputs and outputs,

where one of several function unit or register outputs can be selected and transmitted

on a wire or bus). The bus model allows greater interconnection sharing by creating a

larger number of paths for the same number of connections. Connectivity binding can

take advantage of the cornmutativity of operators by performing operand exchanges

which will minimize interconnect.

Figure 2.7 shows one possible resource binding for the example using the resource

constrained schedule. The number of registers in this example (9) can be reduced

through register sharing since the minimum number of registers required is equal to

the maximum number of variables to be stored across any state boundary in the



19

schedule of Figure 2.6 (6). Also, an operand exchange at the multiplier inputs will

result in an interconnect savings. A resource binding with these modifications is

shown in Figure 2.8.

mm mm

\ MUX4/
^—I—'

\mux? /

^R3 ^R4

1 ,
\MUXi/ \MUX2/

0

>R2

E
z

+/-
3.

0 0
\ MUX6/

~~T '
^R5 I |̂ R6

E
\MUX3/

VX7

0

Tl(Rl) = B(R1) + C(R3)

.4(R6) = Tl(Rl) * D(R6)

T2(R4) = H(R2) - I(R4)

E(R6) = F(R5) • Tl(Rl)

G(R1) = A(R6) + T2(R4)

Figure 2.8: Register Merging and Operand Exchange

Notice that by sharing registers, additional interconnect is required (six multi

plexors versus four in the previous design). Cost functions trading off storage element

area for interconnect will guide the high-level synthesis system when making such re

source binding decisions.

2.1.6 Controller synthesis

The results of state assignment must be captured in some format so that a

controller which sequences the data path as required can be generated. In essence,



20

this description is a behavioral description for the controller. One comnion format

for this specification is a set of boolean equations specifying each required control

signal. The controller description can be oriented toward the realization of some

specific control logic implementation such -as random logic gates, a programmable

logic array (PLA), or a microprogram sequencer. This specification can be input to

logic synthesis systems such as those described in the next subsection, or a finite state

machine compiler [Kin87] to produce the hardware which implements the controller.

Current

State Condition

Next

State Ops

1 True 2

MUXl-SELECT = INPUTO, MUX2.SELECT = INPUTO

ALU-OP = ADD

MUX4.SELECT = INPUTO

RlXOAD = 1

2 TVue 3

MUX3.SELECT = INPUTl, MUX6.SELECT = INPUT!

R6X0AD = 1

MUXl-SELECT = INPUTl, MUX2-SELECT = INPUTl

ALU-OP = SUB

MUX5-SELECT = INPUTl

R4X0AD = 1

3 TVue
-

MUX3-SELECT = INPUTO, MUX6-SELECT = INPUTl

R6X0AD = 1

MUXl-SELECT = INPUT2, MUX2.SELECT = INPUTl

ALU-OP = ADD

MUX4.SELECT = INPUTO

RlXOAD = 1

Figure 2.9: Symbolic Microcode

A more abstract description of the control unit can be captured in the form of

symbolic microcode or a state table [DHG89, Har87]. For each machine state,



21

one or more triplets specify actions to be performed. Each triplet consists of a con

dition under which operations are performed, a next state transition, and a set of

operations. Figure 2.9 illustrates the state table which controls and sequences the

design of Figure 2.8 to perform the desired function.

2.1.7 Logic and Layout Synthesis

The register-transfer design produced by high-level synthesis is pa.ssed to lower

level design tools which perform further optimizations and technology mapping and

eventually produce an implementation in silicon. Logic synthesis systems such as

MILO [VG88], MIS [BRSVA87] and SOCRATES [GBdH86] transform a functionally

correct design consisting of generic components into one that has been optimized to

meet a designer's constraints for a given component library.

Logic synthesis employs two techniques: refinement and optimization [VG88].

Refinemeiit involves transforming the input description into an initial design; the

input description (usually in the form of boolean equations) is minimized using alge

braic techniques. Technology mapping maps the minimized equations to a technology-

specific design at the gate level consisting of logic gate and flipflop components.

Optimization transforms the initial design into one that meets some set of constraints

(time, area, power). Critical paths (the longest path from input to output in a cir

cuit, or a path which has a critical time constraint) are examined and optimized using

strategies which make tradeoffs to meet the specified constraints.

Layout synthesis produces silicon layout from the gate level descriptions gener

ated by logic synthesis. Automatic layout consists of two primary tasks: deternaining



22

the position of components on the layout surface, called placement, and interconnect
ing the components with wiring, aproblem termed Touting [PL88|. Components at
the layout level can be standard cells (predesigned blocks of silicon which implement
alogic function), elements of agate array (a regular array of simple logic gates),
or custom layout (cells designed by hand or by generators which tailor the cells to
supplied parameters [LG87]).

2.2 Modeling Methodology

Ideally, the purpose of behavioral modeling is to describe the functionality of a
design while remaining independent ofaparticular implementation. The design model
to which the design is to be mapped must first be selected. An appropriate modeling
style which reflects this design model is then used to develop the behavioral model.
Once the designer's intent is captured in the behavioral description, the synthesis
tool can use available methodologies to create adesign targeted to the appropriate
technology. The goal is that this model should not have to be changed significantly
as the design is targeted to new implementations.

Figure 2.10 shows the typical use of modeling or specification in current design
practice. Initial design descriptions are textual specifications which enumerate the
desired features of the design to be implemented. This textual specification is often
incomplete with respect to information necessary for the design process (especially
for synthesis); for example, timing information at the level of detail necessary for
automated synthesis is often omitted. Ahigh level behavioral model may be written
from the initial specification; however, this model is primarily used to verify the



Textued

System

Specification

Chip
Architect

System

Block

Diagram

Logic
Designer

RTL

Logic
Schematic

High Level
Modeler

Desired

Synthesis
Model

Synthesis
Tool

Low Level

Modeler

Current design practice

^ Proposed methodology

Figure 2.10; Typical Design Practice

High Level
Behavioral

Model

Logic Level
Structural

Model

23



24

conceptuality of the design through simulation and will not map directly to an efficient

implementation.

The Chip Architect relies on his experience and expertise to interpret the speci

fication and provide the missing information necessary to produce a logic or register-

transfer level design. The ,initial specification is refined and partitioned to produce

a System Block Diagram. This refined textual description and top level schematic

are then passed on to the Logic Designer who implements the design using compo

nents from a selected component library. Researchers in behavioral synthesis have

been working over the past two decades to capture and encode the design knowledge

employed by the Chip Architect and Logic Designer in tools which attempt to auto

mate this design process, or at least allow the designer to evaluate several alternative

designs without having to manually design each one.

Once an initial design at the RTL or logic level has been completed, a low level

behavioral model which reflects the structure and organization of the logic schematic

is then developed to aid in the verification of the design. This model is inappropriate

as input to behavioral synthesis since most of the design decisions have already been

made.

Herein lies another major issue in synthesis from a behavioral specification:

there currently exists no standard methodology for development of a synthesizable

behavioral model. The focus of the high level modeler is todevelop a functionally cor

rect simulation model without concern for how easily that model can be synthesized.

The low level modeler extracts the logic model from an already completed design. A

level of modeling is missing which captures the desired functionality of a design using

a modeling style which can be efficiently mapped to hardware. Given this model, a



25

designer can use a synthesis tool which will appropriately interpret the model and

aid in the production of several design alternatives which approach human quality.

The focus of the design effort can then be shifted from interpretation of the design

specification requirements to improvement of portions of the design which require

specialized human design knowledge that has not been sufficiently captured in the

synthesis tool.

2.3 Definition of Design Models

I

Every high-level synthesis system assumes an underlying design model or target

architecture for the synthesized structure. This section defines several commonlyused

design models and describes the operation of each model.

2.3.1 Combinational Logic Model

The design model for combinational logic consists of a network of logic gates. In

this model, concurrent evaluation of all signal values is assumed. It is often desirable

to specify point to point timing constraints in this model for optimization purposes

(for example, critical path timing constraints). The most common method used to

describe combinational logic designs is boolean equations.



26

2.3.2 Functional Model

The functional design model consists of combinational logic as well as storage
elements (registers, counters). It may include a mixture of synchronous and asyn
chronous events which trigger operations in the data path (for example, the loading of
storage elements). It cannot be guaranteed that these events are mutually exclusive;
an asynchronous event such as a register reset can occur concurrently with a synch
ronous load of the same register. The functional design can be described in VHDL

using block and process statements. Thus, this design model represents a functional

partitioning of the design into one or more functional blocks. The complete operation

of a hardware component can be described under the effects of several events in one

functional block. Alternatively, the effect of each event can be described individually
in afunctional block, resulting in adistributed description of acomponent's exclusive

functions across functional blocks.

2.3.3 Register Transfer Model

Register transfer descriptions involve the specification of operations to be per
formed within a processor for each machine state of a design. A common method

for describing this behavior uses a state table [DHG89]. This model describes the

designs using a temporal partitioning, rather than a structural or functional parti
tioning.

For each state, one or more triplets specify actions to be performed. Each triplet
IS composed of a condition, a next state specification, and a set of operations. The

condition tests a boolean expression. Within each state, one or more conditions may



27

evaluate to true. The actions corresponding to each true condition are performed in

the state. If the result of the test is true, a specified set of operations or register

transfers is performed. Finally, control is transferred to the specified next state upon

completion of the current state operations.

2.3.4 Control Unit/Data Path Model

The design model to which most behavioral synthesis tools map their designs is

the control unit/data path model shown in Figure 2.11 [PL88].

CONTROL UNIT

CONTROL

LOGIC

DATA PATH CONTROL UNIT

CONTROL

LOGIC

Figure 2.11: Control Unit/Data Path Design Model

DATA PATH

MEM

Adesign in this model is composed of communicating processing elements (PEs).

Each PE consists of a Control Unit (CU) and Data Path (DP). Because a behavioral



•28

description may require one or several machine cycles (states) to execute the desired

function, the microarchitecture implementation uses the DP to perform computations

and the CU to sequence the machine through the necessary states and control the

operations performed in the DP for each state. The CU contains a state register

for storing the current state of the machine and control logic which controls the DP

and communicates with other PEs. The DP consists of storage elements (registers,

counters, memories) and functional units (ALUs, counters, shifters) and interconnect

units (multiplexers, buses).

Access to registers, units or I/O ports is controlled by the CU. If several buses

are used as sources to a storage or functional unit, a selector controlled by the CU

must be added to the input. Some DP models use only point-to-point connection

with selectors only and no buses. Processes also communicate via global signals. PEs

communicate through DP ports to the CU or DP (nets a and hin Figure 2.11) or

through CU ports to the CU or DP (nets c and d).

Note that in this model, an adder may be represented as a PE with no CU

but with a DP (having one output port, two input ports, and no storage elements).

Similarly, a flip-flop can be modeled as a DP with no functional units or as a CU

with no DP and no control logic. Thus, this model is complete in the sense that it

can model any synchronous digital system.

The composition of the data path is another feature which varies among high-

level synthesis systems. Some systems target the design to a fixed architecture which

consists of a standard microprocessor or a standard data path organization. For

example, a strip architecture convention may be used where functional units are

placed between two buses which are used for inter-component communication.



29

2.4 Hardware Description Languages

There are two choices for selecting a language for behavioral modeling: either an

existing language can be used, or a language can he created to suit the particular ap--

plication. The advantage of using an existing language is that there are often support

utilities such as compilers, syntax parsers or simulators which aid in the verification

of descriptions written in the language. A particular semantics is often associated

with these languages in the context of their primary use; for example, a language

used primarily for simulation will associate a meaning with each language construct

that affects the execution of the underlying simulator. The disadvantage of using a

language for a purpose other than its primary application is that there is often a mis

match between the available language features and the desired hardware attributes to

he modeled. Certain language features may have no hardware realization; conversely,

it may be difficult or impossible to model a particular hardware attribute given a

fixed set of language constructs.

The alternative of creating one's own synthesis language alleviates the problem

of modeling attributes of the selected design model(s). The language can be tailored

to the explicit needs of the synthesis or simulation application. If the language has an

unambiguous syntax and semantics, behavioral models written in the language would

serve as important documents of the design decisions made and the conceptual oper

ation of the design throughout its lifetime. However, the problem of standardization

and portability of models written in a variety of non-standard languages presents

several difficulties. First, additional effort would have to be expended in building

verification tools or in translating this description into other languages which have



30

such support. In addition, the ability to transmit design information between inde

pendently developed tools will be lost if a standard interchange format is not used.

A consequence of using high level languages for behavioral modeling is that at

this higher level of abstraction, it is possible to describe the same functionality using

several language style or construct alternatives. This presents a fundamental problem

for the synthesis tool - recognition of this equivalent functionality which should be

mapped to the same hardware implementation. Current approaches to behavioral

synthesis often restrict the use of the language via subsets in order to avoid the

difficulties of equivalent descriptions.

2.5 Design Representation

Behavioral synthesis cannot be accomplished by a straightforward mapping of

language constructs to RTL components. Information necessary for synthesis must

be extracted from the input specification and organized in a representation which can

be interpreted and transformed by algorithms within a synthesis tool. The design

representation stores the status of the partial design as it is constructed and modified

by the synthesis subtasks. It is possible that several versions and alternatives for the

design will need to be maintained, and the hierarchy of the design has to be managed.

The design representation maintains the following views of the design: behavior,

structure and control. The synthesis process begins with a representation of the input

behavior (in the form of a flow graph, for instance) and completes by producing a

"partial design yvhich consists of a structura,! netlist (a graph of interconnected com

ponents) and a control specification. At intermediate steps in the synthesis process,



31

these views of the design exist concurrently and are interrelated. There is a need to

maintain behavior-to-structure links; for example, the resource binder needs to know

which variables have been previously bound to a register to determine if the current

variable can be bound to that register. The questions of unified versus orthogonal

design representations of behavior, structure and control [CT88], as well as the de

gree of linkage between behavioral and structural views [BTK88] is an active research

topic in high level synthesis.



Chapter 3

Previous Work

This chapter surveys previous work in the areas of behavioral modeling, its

application to synthesis, and in particular, the use of VHDL for these purposes.

3.1 Armstrong's Process Graph Model

Armstrong [Arm88, Arm89] illustrates how VHDL can be used to model hard

ware at the various levels of abstraction. His work focuses on methods for represent

ing various behavioral aspects of chip level modeling. At this level, a component is a

complete VLSI chip such as a microprocessor, memory chip, or UART. The chip is

modeled as a single entity (not constructed hierarchically from morebasic primitives)

which performs a sequence of micro-operations coded in an HDL. The model defines

the input/output response of the device by specifying the algorithm the chip is to

implement. Because logic signals flow in parallel, any hardware model must include

a provision for concurrency of execution. The VHDL language handles this notion of

simultaneity with the use of the process statement. Each process represents a block

of logic, with all processes executing in parallel.

32



33

3.1.1 Design Representation

Armstrong defines a graph representation termed the process modelgraph. Nodes

of the graph represent a partitioning of the functionality of the model into subfunc-

tions. Arcs between nodes represent intercommunication between processes via sig

nals. A timing specification may be associated with each arc indicating the delay

associated with the transmission of a signal from one process to another. Figure 3.1

shows the general process graph model.

The process or subfunction represented by each node in the process model graph

may be decomposed further according to functionality. For example, a node repre

senting a register with synchronous load and asynchronous clear attributes can be

modeled by two processes, one representing the effects of the load operation, the

other reflecting the effects of the clear operation. In Figure 3.1, Process 3 is decom

posed into .three functional blocks: Fl, F2 and F3.

3.1.2 Use of VHDL

Armstrong uses VHDL process statements to develop behavioral models for each

process graph node. Signals appearing in the process sensitivity list are used to model

timing delays and input/output or: sequencing relationships between subfunctions. A

VHDL process becomes activated on a change of value of any signal appearing in

it's sensitivity list; thus, any change of a signal value produced by the behavioral

description of a process graph node will cause the execution of the behavioral model

for other process graph nodes which have this signal in their sensitivity list.



CHIP

INPUTS

PROCESS

F1

F2

F3

PROCESS

3

S(DELJS) Interprocess
Signal

PROCESS
Ol

CHIP

OUTPUTS

PROCESS
02

Figure 3.1; Armstrong's Process Model Graph

34



35

If a process graph node is functionally decomposed, each function of the node

can be modeled using a process statement. Alternatively, since each signal assignment

statement in VHDL can be considered a concurrent process, a process graph node

function can also be modeled using the VHDL guarded signal construct. In this VHDL

statement, a boolean expression ov block guard which evaluates to TRUE enables the

assignment of a data value to the signal; otherwise, no assignment is performed.

3.2 VSYNTH

3.2.1 Synthesis System

The VSYNTH system [Bha86, HKL89] provides a VHDL input interface to

the existing MIMOLA Synthesis System (MSS) [Z+SO]. It seeks to improve upon

the drawbacks of the MIMOLA system: to remove the burden of decomposing the

behavioral description into operations to be performed in individual control states,

and to perform global data flow analysis which minimizes the required number of

operators and storage elements. Figure 3.2 shows a block diagram of the VSYNTH

system.

A Process Graph Analyzer accepts a VHDL behavioral input and generates a

process graph by decomposing each statement and expression into a simple form (one

operator and at most two operands). Compiler techniques (constant folding, local

code optimization, code motion, common subexpression elimination) are used to op

timizethis description. The Control State Generatorpartitions the process graph into

control states, introducing parallelism where possible. A reverse transformation from



BOUND

VHDL

MODEL

PGA

VHDL

MODEL

Process

Graph
Analyzer

MSS

VHDL

MODEL

MIMOLA

Synthesis

System

STRUCTURAL

VHDL

MODEL

Figure 3.2: VSYNTH System Block Diagram

36

the process graph to legal VHDL syntax is performed by a translator. This descrip

tion consists of a set of process statements, with each process describing operations

to occur in a single control state.

The MIMOLA design system is intended to be an interactive design aid. To that

end, the Design Representation is a database where the output of the Process Graph

Analyzer is stored for designer interaction. The designer is allowed to modify the

Design Representation by adding hardware bindings or constraints before presenting



37

the description to MSS for synthesis. When MSS is invoked, an implementation is

generated by binding hardware components to operators and variables in the repre

sentation. -A. statistical analyzer provides information such as component utilization

to aid the designer in determining constraints to meet design goals.

3.2.2 Use of VHDL

The VSYNTH system uses VHDL to represent four models of hardware, where

models in this context refer to description styles. There are two input description

styles, the Process Graph Analyzer (PGA) Modeland the MIMOLA Synthesis System

(MSS) Model. The output description styles include a Structural Model and a Binding

Model.

The PGA Model uses a single VHDL process description with behavioral con

structs (excluding wait statements). A restricted form of subprograms are allowed; ei

ther the procedure must be represented using a single control state data flow graph, or

the multi-state subprogram must be in-line expanded into the PGA model. Variables

declared local to the process are used to represent wire connections and therefore

are not bound to storage elements. Signals declared within the architecture body of

which the process is a part represent storage elements which retain their value across

executions of the process.

An MSS Model is generated from the PGA model by the Process Graph Analyzer.

The MSS Model describes the input behavior in terms of a finite state machine design

model. This description consists of arbitrarily complex expressions whose arguments

are storage devices (registers, memories). Several restrictions are placed on the use

of VHDL to describe this model:



38

• At most one assignment to each storage element is permitted in each state

• A next state assignment to the variable RP is required in each state

• The finite state machine is represented using a single case statement within a

single process statement.

• Only if, signal assignment and variable assignment constructs are allowed within

the case alternatives. The if statement allows specification of control flow within

the data path (i.e., assignment to the same variable or signal under exclusive

conditions).

• As in the PGA model, signals represent wires, and variables represent storage

elements.

• Attributes are used to specify component attributes (e.g., the functions to be

performed by an ALU) and synthesis tool directives.

The Structural Model uses the VHDL structural description style to represent

the netlist of interconnected components synthesized by the MIMOLA system. Use

of the generic construct in VHDL allows for the specification of parameterizable tem

plates for component classes such as multiplexors. This facilitates the use of a general

model for components with similar functionality which differ only in attributes such

as bit width or number of inputs. The control for the synthesized design is rep

resented either as a hardwired control box with its behavior specified using VHDL

signal assignments (boolean equations). An alternative representation of the control

is a microstore component, where attributes of the control store are specified using the

generic construct, and the contents of the store are specified in a constant declaration.



39

To indicate the binding of operations and variables in the MSS model to bard-

ware generated by the MIMOLA system, the Binding Model replaces behavioral op

erators with VHDL functions whose name and attributes reflect component bind

ings. The function name is formed from the corresponding component name in the

Structural Model. An instantiation parameter identifies the particular instance (in

the event of multiple instantiations of the component). Other parameters include

the function being performed by the component instance for this operation, and the

component inputs.

3.3 IBM VHDL Design System

The IBM VHDL Design System [Sau87] consists of a collection of tools which

use the VHDL language for hardware description, design management, simulation

and synthesis. The tool set is built around the VHDL Version 7.2 language with

language extensions added (e.g., memoried signal assignments, simulator test case

control statements), some of which were a part of the IEEE Draft Standard that was

evolving at this time. This system has been in production use within IBM. Research

on the evaluation of VHDL for high-level synthesis has been conducted at the T.J.

Watson Research Center [CT88, CST88].

3.3.1 Synthesis System

The Synthesis Subsystem [Sau87] performs register-transfer level synthesis of

concurrent VHDL statements. This system maps VHDL operators in the description

to primitive RTL elements (logic gates, ALUS, registers, multiplexors, etc.) which



• 40

are in the component library that can be operated on by subsequent logic synthesis

tools. The design model to which this system is targeted is a Level Sensitive Scan

Design (LSSD) methodology [EW77], a strategy which that allows test stimuli to be

loaded into registers which aresurrounded bycombinational logic inorder to facilitate

observability and testability of potential faults in the circuit. VHDL memoried signal

assignments (guarded signals in IEEE standard VHDL) aremapped to LSSD registers,

while non-memoried signal assignments are mapped to combinatorial components.

These components are technology independent; the generic design is later refined and

mapped to technology specific components in the Logic Transformation System (LTS)

[Ben83].

3.3.2 Use of VHDL

The use of VHDL for synthesis in the IBM VHDL Synthesis System is restricted

to concurrent signal assignments. A restricted template form is used to specify a

clocked LSSD register; each register update is modeled as a memoried signal assign

ment, where the block guard is the clocking signal.

Camposano et. al. [CST88] evaluate the feasibility of high-level synthesis from

a behavioral, sequential description in VHDL. Their evaluation is based on the high-

level synthesis design process associated with the Yorktown Silicon Compiler [BC+88].

3.3.3 Design Representation

The design representation proposed by Camposano and Tabet [CT88] for syn

thesis of behavioral VHDL consists of two models: a hierarchymodel and a behavior



41

and structure model. The hierarchy model is a directed acyclic graph (DAG) which

reflects the behavioral nesting of VHDL processes and procedures.

Because the behavioral and structural domains of both the data path and con

trol portions of a design are interrelated, the behavior and structure design model

presented consists of four graphs with links established between the graphs. The data

flow graph (DFG) represents the operations and data dependencies present in the in

put behavioral description. A control flow graph (CFG) consists of nodes which rep

resent the same operations found in the DFG; edges represent predecessor-successor

relationships in the control sequencing of the operations rather than the input/output

relationships of the DFG edges. The data path graph (DPG) consists of nodes which

represent functional, storage and interconnect units and edges which reflect the inter

connection of these units (i.e., a netlist). A control automaton graph (GAG) represents

the state transition graph for the finite automaton to be implemented in the design,

where nodes represent machine states and edges the state transitions.

Four types of links between the various behavior/structure graphs are created

and manipulated by different synthesis tasks. The links between a CFG and DFG are

derived from the explicit sequencing found in the VHDL input description. Scheduling

involves the construction of the GAG and the association of CFG nodes to state

nodes in the CAG. Resource binding introduces links between the DFG and DPG as

behavioral operators and their input and output variables are assigned to hardware

units; in addition, links between the CAG and DPG indicate function and data select

signals that must be supplied to the data path during each state of the design's

execution.



42

3.4 Physical Design using VHDL

Researchers at the University of Pittsburgh and Pennsylvania State University

have cooperated in the development of a system which performs layout synthesis from

a restricted form of VHDL behavioral models [LMOI89].

3.4.1 Synthesis System

The design system consists of three types of tools: simulation, decomposition

and transformation and translation. Input to the system is in the form of VHDL text

or a schematic graphical description. The output produced is a two dimensional gate

matrix layout (in form compatible with the layout system MAGIC [SHM086]).

3.4.2 Use of VHDL

The Pittsburgh/Penn State system currently processes only restricted VHDL

models consisting of VHDL data flow and structural description styles. The purpose

of restricting the use of VHDL to concurrent statements is to emphasize modeling the

design at the structural level. For example, registers are specified at the gate level in

terms of boolean equations (VHDL concurrent signal assignment statements). This

fulfills their requirements of accurately and consistently mapping a VHDL construct

to a primitive component at the level of physical design. Primitive component "behav

iors" are instantiated as building blocks in a structured hierarchy. Work is in progress

on the extension of this limited subset of VHDL toward the ability to synthesize more

complex VHDL behavioral descriptions.



43

3.4.3 Design Representation

The VHDL input description is parsed into an intermediate VHDL format (IVF)

which is used primarily for simulation. A second gate level description language

(GLUE) is used for circuit descriptions within the physical design tools.

3.5 Summary

In summarizing the existing approaches to synthesis which use VHDL in various

capacities, the following observations can be made:

1. The efforts which use VHDL for the primary purpose of simulation utilize a

modeling style which does not lend itself to synthesis.

While the style of VHDL description used for modeling, such as those devel

oped by Armstrong, may correctly simulate the behavior of the hardware at

the behavioral level, it presents several problems when viewedfrom the synthe

sis perspective. First, the separation of the description of a single component

into several process statements complicates the task of collecting and identify

ing attributes to be associated with that component. Second, this description

style relies on the VHDL simulator's notion of a container to assign the correct

value to a signal at any given time based on one or more drivers. A container

represents signal nets as well as registers, making the task of identifying these

entities difficult for the compiler. Often, complicated language constructs are

used to combine these drivers which result in a suboptimal design when mapped

to logic components. Finally, the modeling practices such as those developed

for Process Graph descriptions intermix signals and variables which axe used to



44

sequence the model with those which are involved in data computations. The

synthesis tool requires a clear distinction between data and control operations

in order to produce a design of acceptable quality.

2. The design models to •which existing systems are targeted are limited.

Current systems tend to limit the applications or design models which can be

processed by the tool to one of the design models mentioned in the previous

chapter. The Pittsburgh/Penn State physical design system is currently tar

geted to a gate level (combinational) design model. The IBM VHDL Synthesis

System uses VHDL for a limited functional design model. The adaptation of

VHDL to the Yorktown Silicon Compiler system is targeted to VHDL behav

ioral descriptions only. The MIMOLA system has a specific design model to

which it is targeted, namely, a synchronous finite state machine composed of

a control unit and data path. Other commercial systems such as Synopsis or

SilcSyn [BFR85] target VHDL process level descriptions to designs which fall

more under the realm of logic synthesis (combinational and limited functional

as in [Sau87] rather than high-level synthesis.

3. VHDL has been attached as a front end description language to existing systems.

For example, the VSYNTH system adapts VHDL to the input and output

requirements and models of the existing MIMOLA system. It does not take

complete advantage of the language features. For features of the MIMOLA

system and its design methodology where VHDL does not fit the systems needs

appropriately, the descriptions are clumsy. The authors admit in [HKL89] that

their use of VHDL functions to indicate synthesis bindings may not be the most

straightforward way of representing such information.



45

4. There is no well defined synthesis semantics for VHDL.

The work by Camposano et. al. analyzes the feasibility of attaching some

synthesis semantics to each of the VHDL behavioral constructs. However, the

published works stops short of presenting modeling situations in hardware de

sign where these constructs could be used.

From these observed shortcoinings of current efforts to synthesize from VHDL,

the following goals of the research presented in this thesis can be stated:

• Identification of design models to be modeled using VHDL.

• Development of a set of guidelines for writing such models with the primary

intent of synthesis.

• Definition and development of a framework which uses VHDL as the primary

design description and interchange format and can accommodate a variety of

design styles and tasks.

• Evaluation of the effects of modeling style on the quality of the synthesized

design.

The remainder of this dissertation will present the details of the approach that

has been taken to achieve these goals.



Chapter 4

Structured Modeling

This chapter describes a proposed modeling style for the use of the VHSIC

Hardware Description Language (VHDL) in design synthesis. The operations and un

derlying assumptions of four design models currently understood and used in practice

by designers are described. These design models include: combinational logic, func

tional descriptions (involving clocked components such as counters), register transfer

(data path) descriptions, and behavioral (instruction set orprocessor) designs. We will

illustrate the various uses of the VHDL description styles {structural, dataflow and

behavioral) to represent characteristics of each of these design models. This chapter

identifies how the VHDL language can be used for synthesis in VSS. Through the use

ofsignal typing and attribute annotations, it will be shown how a VHDL description

for simulation can be enhanced to provide necessary information for synthesis. The

structural, dataflow and behavioral description styles of VHDL will be investigated.

Emphasis is placed on how VHDL constructs should be used in order to synthesize

optimal designs.

46



47

4.1 VHDL

4.1.1 Introduction

VHDL [IEE87] is the IEEE standard language for hardware description. However,

the VHDL language does not guarantee uniqueness of descriptions; designs can be

described in several ways and at several different levels of abstraction. The process

of defining the conventions used to create these different descriptions is called mod

eling. Unfortunately, models perfectly suitable for one application can be unsuitable

for another.

VHDL can be used in three basic application areas: simulation, fault mod

eling and test generation, and synthesis and silicon compilation. Each application

area requires a different modeling style which satisfies the particular goals of of the

application.

The goal of simulation is to validate the correctness of the description by mea

suring output response to input stimuli. Thus, generation of correct values on all

signal lines over time is the most important goal. A secondary goal is the efficiency

of the simulation; examining only the parts of the design affected by changes in the

input values reduces the complexity and run time of the simulation. A high level

(algorithmic or process-level) description is preferable for this application since such

a model captures the high-level functionality.

In fault modeling, a fault is injected into the model. Thisfault is then sensitized,

and its effects are propagated to an observable output in the description. Sensitization

and propagation involves tracing data paths through the description. Consequently,



48

a structural or dataflow description is better suited to this application since it more

closely reflects the structure of the hardware to be tested.

For synthesis, the primary objective is to process an algorithmic description in

order to generate a structural description of components from a given library. Here,

emphcLsis is placed on the proper connection of pins on components to implement the

desired functionality.

4.1.2 Description Styles

VHDL provides three description styles: structural, dataflow, and behavioral.

The structural description consists of component declarations, interconnect signal

declarations, and component instantiations with port maps. This description style is

suitable for describing a captured schematic after a design is completed, and it should

be used to describe the design generated by a behavioral synthesis tool.

The dataflow description style is not as closely tied to the actual structural

implementation of the design. This description style allows for the specification of

concurrent events (data transformations and register transfers) under the control of

synchronous (clock) or asynchronous signals. It can be used for combinatorial or

functional logic models. The synthesis tool must optimize the design for a given

component library. In the case of functional logic, components and connections are

shared in time. The machine states are already speicified in the description using

conventions of the modeling style such as one block statement per state.

Behavioral descriptions are void of any implementation detail. They specify

output values in terms of input values over time using an abstract algorithm. The



49

statements execute sequentially in the order of their occurrence. A synthesis tool

must allocate components, schedule operations into machine states, and interconnect

components for these specifications.

4.1.3 Design Model

The underlying design model assumed for a VHDL description is the control

unit/data path model that was described in section 2.3 (Figure 2.11).

The design entity is the primary hardware abstraction in VHDL. It represents a

portion of the hardware design that has well-defined inputs and outputs and performs

a well-defined function. A design entity may represent an entire system, a sub-system,

a board, a chip, a macro-cell, a logic gate, or any level of abstraction in between. A

configuration can be used to describe how design entities are put together to form a

complete design as shown in Figure 4.1.

A design entity may be described in terms of a hierarchy of blocks, each of which

represents a portion of the whole design. The top-level block in such a hierarchy is

the design entity itself; such a block is an external block that resides in a library and

may be used as a component of other designs. Nested blocks in the hierarchy are

internal blocks, defined by process or block statements. A structural, dataflow or

behavioral description style can be used to express the functionality of an internal

block.

Successive decomposition of a design entity into components, and binding of

those components to other design entities that may be decomposed in like manner,



CONFIGURATION

DESIGN

ENTITY

DESIGN

ENTITY

DESIGN

ENTITY

DESIGN ENTITY

Dataflow Block:

Component behavior
described using

concurrent statements

Process Block:

Sequential behavior

Structure Block:

Instantiated Components
and connections

Figure 4.1: VHDL Design Hierarchy

DP

•50



•51

results in a hierarchy of design entities representing a complete design. Such a collec

tion of design entities is called a design hierarchy. The bindings necessary to identify

a design hierarchy can be specified in a configuration of the top-level entity in the

hierarchy. The design hierarchy concept is illustrated in Figure 4.1.

A VHDL description which represents such a design hierarchy is shown in

Figure 4.2. Each design entity description is composed of two major sections; the

entity block and the architecture body. The entity block contains the specification of

external input/output port connections to the hardware to be designed.

The architecture body defines the body (structure and/or behavior) of a design

entity. It specifies the relationships between inputs and outputs of the design en

tity, and may be expressed using a mixture of the three styles mentioned previously

(structural, dataflow, behavioral). ;

4.1.4 Design Model Representation

The three description styles (behavioral, dataflow, structural) use concurrent

statements to describe a portion of the complete design model shown above. Each

concurrent statement in a VHDL description may be used to describe a piece (one

or more components) of a design. Alternatively, more than one statement can be

used to describe the functionality of the same design section if the behaviors are

non-overlapping (exclusive).

The design sections represented by the concurrent statements communicate via

global signals. These signals are defined in the declaration section of the architecture

body. A global signal may be read (input) to several blocks or processes, but should



DESIGN ENTITY

(external block)

Entity Block Architecture Body

internal

blocks

Structure

|~Dataflow (concurrent)

process (sequential)

Figure 4.2: VHDL Design Entity Block Structure

52



53

be written to (updated by) only one block or process at any given time. In the event

that it is desirable to have more than one active driver for a signal simultaneously

(to model a bus, for example), a resolution function must be written and associated

with the signal to determine its proper value for simulation.

Behavior

A VHDL description using the behavioral style consists of process statements

and concurrent procedure calls. The most straightforward mapping of process state

ments representing behavior in algorithmic form to hardware is a microarchitec

ture implementation which uses the complete control unit/data path design model.

Control constructs (IF, CASE and LOOP statements) are implemented via control

unit sequencing. Variables within a process may represent storage components or

interconnect wires. Local signals are used to communicate between the CU and DP.

Assignment to variables occur in the order in which they appear in the specification,

implying data dependencies between statements.

Interprocess communication follows these conventions:

1. The following subtypes are defined for descriptions to be used for synthesis:

subtype data is BIT;
subtype control is BIT;

Signals of type data are used to interface with the data path. Signals of type
control interface with the CU.

2. By default the following signal types/accesses are allowed:

Input

• signal/port reads within the data path description
• conditional bit signals iiiput to the descriptions of control logic



•54

Output

• constant signals output from control logic (boolean, binary, integer)

• computed signals output from DP

Timing is expressed as a part of the output signal assignments. Data computa

tions within the process are made with variable assignment statements.

Dataflow

Dataflow descriptions consist of concurrent signal assignment statements. They

describe only the data path portion of the VHDL design model. The data path is a

structure of components, where each component is described by one or more state

ments. Conditional signal assignments represent control embedded in the data path.

The ordering of conditional clauses within these assignment statements indicates the

priority of the events (as specified in the conditional expressions which selects the

value to be assigned).

Structure

The VHDL structural design style utilizes component instantiation and generate

statements. Here, the data path portion of the design model is described through

the instantiation and interconnection of component primitives or previously defined

design entities.



00

4.1.5 Mixture of VHDL Design Styles

This section illustrates a mixture of the VHDL structural, dataflow and behav

ioral description styles in a single description. Figure 4.3 shows a block diagram for

a controlled counter functional description adapted from [Arm89].

LOAD.LIMIT
~ ~ .7," 1

LIMIT.CHK

DATA LIM
EN

STRB
BNIT

CONREG.OUT OR

CON
CNT.OUT

CNT.CLR

DECCONREG
CNT

DECODE
CNT.UPJDOWN

Figure 4.3: Controlled Counter Block Diagram

The operation of the controlled counter can be described as follows. On the

rising edge of the STRB signal, an internal control register CONREG is loaded with

the value on CON. The CONREG value is decoded to perform one of four functions:

clear the counter, load a limit register, count up to a limit, or count down to a limit.

The counter runs synchronously under an input clock, and the counting functions are



56

enabled by the internal signal EN. The DATA value is loaded into the limit register

LIM on the falling edge of STRB if the control register contains the value '00'.

The VHDL description is shown in Figure 4.4.

This description consists of four concurrent statements, each of which describes

a portion of the design: the decoding of the CONREG value, the loading of the limit

register (LIM), the asynchronous clear and the synchronous up/down count of the

counter (CTR), and a limit test.

The DECODE block statement describes the functionality of more than one

functional block (the CONREG register and the decoder). A structural description

style is used which specifies component declarations, interconnect signal declarations,

component instantiations, and component interconnection (via the port map clause

of the component instantiation statement).

The VHDL dataflow description style is used for the description of blocks

LOADXIMIT and CNT_UP_OR-DOWN. The block guard is used to enable an up

date of the LIM and CNT register values. Note that these descriptions do not ex

plicitly specify the structure of the components to be used in the implementation.

However, the format of the guarded and conditional signal assignment statements

suggest a mapping to storage elements (registers, counters) under conditional con

trol.

The LIMIT-CHK block is described behaviorally with a process statement. This

particular description represents a conditional signal assignment to the EN signal

modeled using a behavioral IF statement.



entity CONTROLLED_CTR is
port (

CLK.STRB: in BIT;
CON: in BIT_VECT0R(1 downto 0);
DATA: in BIT_VECT0R(3 downto 0);
CNT.QUT: out BIT_VECT0R(3 downto 0));

end CONTROLLED.CTR;

architecture MIXED of

CONTROLLED_CTR is

subtype nibble is BIT_VECT0R(3 downto 0);
signal C05SIG: nibble := B"0000":
signal LIM: nibble register := B"0000";
signal ENIT: BIT := '0';
signal EN: BIT := '0';
signal CNT: nibble register := B"0000";
signal CNT_CLR: BIT;

begin

DECODE: block (STRB = '1')

component register
port (D: in BIT_VECT0R(1 downto 0);

CLK: in BIT;
q: out BIT_VECTGR(1 downto 0));

end component;
component decoder

port (D: in BIT_VECT0R(1 downto 0);
Q: out BIT_VECT0R(3 downto 0));

end component;
component or2

port (A,B: in BIT;
0: out BIT);

end component;
signal CONREG_OUT: BIT_VECT0R(1 downto 0);

begin

C0NRE6: register
port map (CON,CLK, CONREG_OUT);

DEC: decoder

port map (CONREG_OUT,CONSIG);

57

0R_1: or2
port map (C0NSIG(2),C0NSIG(3).

ENIT);
CNT_CLR <= CONSIG(O);

end block} DECODE;

LOAD.LIMIT: block (CONSIG(l)='l'
and STRB='0' and not STRB'STABLE)

begin

LIM <= guzurded DATA after 10 ns;

end block LOAD.LIMIT;

CNT_UP_DOWN: block ((CLK = '1' and
not CLK'STABLE) or (CNT.CLR = '1'))

begin
CNT <= guarded

B"OCOO" after 5 ns

when CNT_CLR = '1' else
CNT when EN = '0' else

CNT + B"0001" after 12 ns
when C0NSIG(2) = '1' else

CNT - B"00bl" after 12 ns
when C0NSIG(3) = '1' else

CNT;

end block CNT_UP_DOWN;

LIMIT_CHK: process (ENIT,CNT)
begin

if ((CNT /= LIM) and (ENIT = '1'))
then

EN <= '1' after 12 ns;
else

EN <= '0' after 5 ns;
end if;

end process LIMIT_CHK;

CNT.OUT <= CNT;

end MIXED;

Figure 4.4: VHDL Description of Controlled Counter



58

4.2 Problems for Synthesis Posed by VHDL

The VHDL language provides the designer with a powerful description language

with many alternative ways to model the same functionality. When viewed from a

synthesis perspective, this presents several problems, including:

• Identification of storage elements and signals

• Language constructs with no hardware realization

• Collection and identification of component attributes

• Specification of asynchronous events

• Use of multiple blocks/processes to describe one component

• Functional versus temporal partitioning of the design functionality

• Processing of slices of a bit vector quantity (e.g., the update of selected bits of

a control word register)

• Hierarchical decomposition of the design into communicating processes using a

mixture of description styles and design models

For example. Figure 4.5 shows a VHDL description which uses separate state

ments to model the asynchronous clear and synchronous up/down count of a con

trolled counter [Arm89].

The drivers (CNTl, CNT2) generated to represent the effects of each event

on the register's output value are combined using a conditional signal assignment

statement MUXl. Note that MUXl is a virtual component which should have no

hardware realization. The sole purpose of the statement is to collect the multiple

drivers for simulation such that the value of OUT.TMP is properly updated.



Architecture PROCESS_IMPL of CDNTROLLED.CTR is

signal CLK,EN: BIT;
signal CONSIG: BIT_VECTDR(0 to 3);
signal 0UT_TMP,CNT1,CNT2: BIT_VECT0R(0 to 3);

CLEAR.CTR: block (CONSIG(O) = '1' and not CONSIG(O)'stable)
begin

CNTl <= guarded "0000" after CLRDEL;
end block CLEAR.CTR;

CNT_UP_OR_DOWN: process (CLK,EN)

variable CNT: BIT_VECT0R(0 to 3);
variable CLKE; BOOLEAN;

begin
if EN'stable then

if EN = '0' then

CLKE := TRUE;
else

CLKE := FALSE;
end if;

end if;
if (CLK = '1' and not CLK'stable and CLKE) then

if (C0NSIG(2) = '1') then
CNT := INC(CNT);

else if (C0NSIG(3) = '1') then
CNT := DEC(CNT);

end if;
end if;
CNT2 <= CNT after CNTDEL;

end process CNT_UP_OR_DOWN;

MUXl: GUT.TMP <= CNTl when not CNTl'quiet else
CNT2;

end block PROCESS.IMPL;

Figure 4:5: VHDL Controlled Counter Chip Model

59



60

Two approaches may be taken to translate this behavioral description into hard

ware: direct mapping of VHDL constructs to appropriate microarchitecture compo

nents, or recognition of certain VHDL construct patterns as a representation of a

particular hardware concept. If a straightforward mapping of VHDL constructs is

performed, inefficient hardware will often result as shown in Figure 4.6.

NOT

CNTl'QUIET

0000 \ CNTl

MUX

0

/
OUT.TMP

Figure 4.6: Virtual Multiplexor Problem

In the above example, an unnecessary multiplexor will be introduced when

mapping the MUXl statement to hardware, with each driver as a data input and

complicated selection logic. A sophisticated logic critic would then be needed to

transform this design into an optimal one (i.e., a register with up/down count and

clear control inputs). The latter method of translation requires identification of the

type of signals used to select the input driver. Since VHDL allows the designer to

express the same functionality in many different ways, the ta^k of developing a rule set

which recognizes all valid VHDL representations of a desired set of hardware concepts



61

would be extremely difficult, if not impossible. The compilation process becomes

simplified if the descriptions are not allowed to contain such virtual components.

4.3 Structured Modeling for Synthesis

4.3.1 Introduction

The quality of a design as well as the complexity of the synthesis process are

directly related to the style of description chosen to represent a particular design

model. Certain VHDL constructs or description styles are better suited to describe

a particular design model than others. Because VHDL allows the designer several

ways of describing the same functionality, it is important to set standard modeling

practices for designers using VHDL. These standards should guarantee high quality

of synthesized design, while divergence from the standard will result in a description

that is simulatable, but a synthesized design that is not optimal.

The following sections describe the design models supported within the VSS

system. For each model, the level of abstraction or type of input specification is

identified. The VHDL modeling practices for each model are then presented.

4.3.2 Combinational Logic

Design Model

The design model for combinational logic consists of a network of logic gates.

The most common method used to describe combinational logic designs is boolean



62

equations. In this model, concurrent evaluation of all signal values is assumed. A

boolean equation representation facilitates synthesis tasks such a.s algebraic minimiza

tion (e.g., MIS [BRSVA87]) or optimization (e.g., SilcSyn [BFR85]).

A combinational logic design involves path delays through the interconnected

components. When specifying timing constraints, the combinational logic model

should be able to express input to output timing for critical path constraints. These

constraints guide the synthesis tool in selecting the appropriate components when

tradeoffs are possible. In some instances, the designer may wish to specify more

detailed timing constraints on particular operators or paths between some internal

points in the design.

VHDL Alternatives

One alternative in VHDL for expressing the combinational logic model is a

dataflow description. The combinational circuit can be represented as a set of boolean

equations in the form of concurrent assignment statements. Figure 4.7(a) illustrates

a dataflow description of a full adder.

The dataflow description offers the following advantages:

1. The description style would be familiar to designers who generally think of

design at this level in terms of boolean equations.

2. The description is readable - a straightforwaxd mapping exists between opera

tors and logic components.

3. In performing synthesis, the description is easily translatable to netlist format

(either EDIF or structural VHDL, for example).



entity FULL_ADDER is
port (X,Y: in BIT;

CIH: in BIT;
SUM: out BIT;
COUT: out BIT);,

end FULL.ADDERI
rsmge 0 to 3 := 0;

architecture DATA_FLOW_IMPL of
FULL.ADDER is

— local signal declarations
signal SI,52,S3: BIT;

begin
51 <= X xor Y;
SUM <= SI xor cm after 3 ns;
52 <= X and Y;
53 <= Si and CIN;
COUT <= S2 or S3 after 5 ns;

end DATA_FLOW_IMPL;

(a) Dataflow Description

architecture BEHAVIORAL IMPL

of FULL.ADDER is
begin

process (X,Y,cm)
variable S: BIT_VECT0R(1 to 3);
variable HUM,I: INTEGER

begin
S := X ft Y ft CIN;
for I := 1 to 3 loop

if (S(I) = '1') then
Hum := Num + 1;

end if;
end loop;
case Num is

when 0 => COUT <

when 1 => COUT <=

when 2 => COUT <=

when 3 => COUT <=

end case;
end process;

end BEHAVIORAL.IMPL;

SUM <=

SUM <=

SUM <=

SUM <=

(b) Behavioral Description

Figure 4.7: VHDL Full Adder Descriptions

63

Note that timing information is associated with output signal assignments only.

If the VHDL description is to remain correct for simulation, timing constraints cannot

be specified for internal signals using the after clause mechanism. This is due .to the

fact that all concurrent assignment statements have their drivers evaluated at the

current simulation time using the current value of all signals. Thus, a new value for

an internal signal which becomes effective after some delay will not contribute to the

computation of a new output value (evaluated at the current simulation time) which

depends on it.

An alternative way to describe the functionality of combinational logic is an

algorithmic description as shown in the example of the full adder in Figure 4.7(b)



64

While expressing the same behavior as the dataflow description, the algorithmic

description has the following deficiencies:

• The algorithmic description is not the natural way to think of logic. Operators

manipulate variables (integers) with extended ranges (number representations)

other than boolean. The algorithm requires manipulations of index and other

variables. Type conversions from bit quantities to integer and back to perform

a counting operation clutter the description and contribute to a suboptimal

design generated by the synthesis tool.

• Synthesis yields inefliciencies. When the VHDL algorithmic description is used

as input for synthesis, the logic that is designed will initially contain some un

necessary hardware. This results from the translation of language constructs

associated with simulator efficiency such as the type conversions mentioned

above, or control constructs such as loops which were meant to represent repli

cation of a design section. Additional effort must be spent in the synthesis

process to recognize inefficiencies in the design. Some of the inefficiency may

never be removed because of costly global optimization.

The following modeling practices for combinational logic are recommended;

Proposition 1

Use the dataflow model for synthesis of combinational logic.

Proposition 2

Use an after clause only for assignments made to output signals. This delay

represents the maximum allowed delay from any input to the next particular output,

and it will be used as a constraint during synthesis.



65

4.3.3 Functional Model

Design Model

The functional design model consists of combinational logic as well as storage

elements (registers, counters). It may include a mixture of synchronous and asyn

chronous events for loading storage elements. An event is defined as the transition of

a clock or any other signal. It cannot be guaranteed that these events are mutually

exclusive; an asynchronous event such as a register reset can occur concurrently with

a synchronous load of the same register.

The design is a structure of functional blocks such as ALUs, shift registers,

counters, comparators, memories and buses. Each block performs transformations on

its inputs with or without latching or storing. Each block is a combinatorial function

or a finite state machine (FSM) where the state is determined by the values in storage

elements.

The controlled counter [Arm89] shown in Figure 4.3 is an example of such a

design. On the rising edge of the STRB signal, an internal control register CONREG

is loaded with the value on CON. The CONREG value is decoded to perform one

of four functions: clear the counter, load a limit register, count up to a limit, or

count down to a limit. The counter runs synchronously under an input clock, and the

counting functions are enabled by the internal signal EN. The DATA value is loaded

into the limit register LIM on the falling edge of STRB if the control register contains

the value '00'.



66

VHDL Alternatives

The functional design can be described in VHDL using block or process state

ments. When modeling such a design, one or more functional blocks can be described

with one block or process. The counting function of the counter in Figure 4.3 is

described by the block in Figure 4.8(a). The same function is described by process

statement in Figure 4.8(b).

CNT_UP_QR_DOWN: block (CLK = '1' and not CLK'STABLE)
begin

CNT <= guarded
CNT when EN = '0' else

CNT + "0001" after INCDEL when C0NSIG(2) = '1' else
CNT - "0001" after INCDEL when C0NSIG(3) = '1' else
CNT;

end block CNT_UP_OR_DOWN;

(a) Block Statement Representation

CNT_UP_0R_D0WN: process (CLK,C0NSIG(2),C0NSIG(3),EN)
variable CNT.REG: BIT_VECT0R(3 downto 0);

begin
if (CLK = '1' and not CLK'STABLE) then

if (EN = '1') then
if (C0NSIG(2) = '1') then

CNT.REG := CNT_REG + "0001";
elsif (C0NSIG(3) = '1') then

CNT.REG := CNT.REG - "0001";

end if;
end if;

end if;
CNT <= CNT.REG after INCDEL;

end process CNT.UP.OR.DOWN;

(b) Process Statement Representation

Figure 4.8: VHDL Functional Descriptions



67

Modelingeach functional block with more than one process may become difficult

if the description is to remain simulatable. If assignments are made to the same signal

in multiple processes such that the signal may have multiple drivers, a resolution

function is required to determine the appropriate value of the signal. The solution to

this problem, proposed by Armstrong [Arm89], is to introduce a virtual multiplexor

outside of both processes. This solution, although acceptable in simulation, is difficult

to implement in real hardware. Thus, multiprocess modeling of the same functional

block should not be used for synthesis.

Functional blocks can be described with more than one VHDL block state

ment. However, the behavior described in each block statement should be indepen

dent of other blocks. Examples of exclusive functions are the synchronous up count

ing and asynchronous reset of a synchronous up-counter with asynchronous reset.

Furthermore, assignment to the same guarded signal under different guard expres

sions (representing different clocks) in different VHDL blocks should not be allowed.

.Although two guard expressions (i.e., two clocks) can be mutually exclusive, control

ling selection of the input signals to the same register may generate timing hazards.

To achieve uniformity, the timing should be assigned only to output signals

according to Proposition 2. For each functional block, the following four timing

constraints can be used:

1. the clock cycle, specified with a VHDL attribute statement,

2. propagation delay from inputs to (clocked or asynchronously controlled) storage

elements. Since this path can contain only combinational logic, a local signal

can be defined to designate the storage element input data value. A timing



68

specification (either an attribute or possibly an after clause) can be used for a

signal assignment to this local signal.

3. propagation delay from storage elements to outputs, and

4. propagation delay from inputs to outputs (in the case where there are no storage

elements on the path from input to output).

In order to properly connect VHDL declared signals to components in the given

library, all signals should be typed. The following five types should be defined: clock,

set, reset, test, data and control. Typing will be used to identify the function of

event signals appearing in in the block guards. The merging of assignments to the

same variable in different blocks is possible during the synthesis process since signal

types are known and synchronous/asynchronous behavior is clearly distinguished.

The following guidelines should be followed when developing a functional model

description for synthesis:

Proposition 3

One or more functional blocks should be described by one VHDL block state

ment. Several block statements could be used to describe exclusive behavior (synch

ronous and asynchronous behavior of the same functional block).

Proposition 4

The guard expression should contain only signals of type clock, set or reset.

Proposition 5

All signals should be typed. Signal types should include clock, reset, set, test,

data and control.



69

4.3.4 Register Transfer Model

Design Model

Register transfer descriptions involve the specification of operations to be per

formed within a PE (as shown in the design model of Figure 2.11) for each machine

state of a design. For each state, one or more triplets specify actions to be performed.

Each triplet is composed of a condition, a next state specification, and a set of op

erations. The condition tests a boolean expression. Within each state, one or more

conditions may evaluate to true. The actions corresponding to each true condition

are performed in the state. If the result of the test is true, a specified set of operations

or register transfers is performed. Finally, control is transferred to the specified next

state upon completion of the current state operations.

Figure 4.9 illustrates a simple example of a state table which specifies the con

ditional statement if X = 0 then A = A + 1 else B = A -|- B.

Timing in register transfer descriptions is dependent on two parameters: the

clock cycle duration, and the maximum time required to perform all operations spec

ified for any state. In this case, it is not necessary to supply timing information in the

statements which represent register transfers. If the clock cycle is supplied by the user

(using a VHDL attribute for the design entity), the synthesis system will attempt to

select units which will perform the desired operations in each state within the spec

ified clock cycle. If the clock cycle duration is not specified, the fastest components

are selected from the available library, and the clock cycle duration is determined by

the longest delay path in the design necessary to implement any state.



Current Next

State Condition State Ops

SO True SI cond <= (X = 0);

. SI cond S2

cond' S3

S2 True S4 A <= A -|- Ij

S3 True S4 B <= A + B;

S4

Figure 4.9: Register Transfer State Table

70

In VHDL, block statements may be used to represent the state table using the

following conventions:

1. Every block represents a different state.

2. The block guard specifies clock, while the body of the block sets the state

variable to the appropriate next state and performsoperations under the desired

conditions.

Figure 4.10 shows the corresponding block description for the state table of

Figure 4.9. This VHDL block representation allows for the expression of parallelism.

Concurrent actions may be specified for a given condition within the block statement.

A second use of the block representation to describe the register transfer state

table is shown in Figure 4.11.



clock.edge <= CLK = '1' and not CLK'STABLE;

State.O: block (clcck.edge)
begin

state <= guarded SI when (state = SO) else state;
cond <= (X = 0) when (state = SO), else cond;

end block State.O;

State.l: block (clock.edge)
begin

state <= guarded
52 when (state = SI aind cond) else
53 when (state = SI aind not cond) else state;

end block State.l;

State_2: block (clock.edge)
begin

state <= guarded S4 when (state = S2) else state;
A <= guarded A + "0001" when (state = S2) else A;

end block State_2;

State.S: block (clock.edge)
begin

state <= guarded S4 when (state = S3) else state;
B <= guarded A + B when (state = S3) else B;

end block State_3;

71

Figure 4.10: State Table Block Description

This description separates the state transition portion of the description (asso

ciated with the control unit) from the register transfers to be performed in each state

(data path operations). While this description simulates properly, it has one difficulty

from the synthesis perspective: identification of the clock. Assignment to the state

variable is made via guarded signal assignments in which the current state, rather

than a common clock, is used. The time interval that elapses between changes in the

state (the clock period) is modeled with the after clause. The data operations ap

pearing in block statements are also clocked by the state. This description is difficult

to synthesize since the clock for register assignments is not explicitly specified.



72

State_l: block (state = SO) FO: block (state = SO)
begin begin

state <= guarded Si after CLK_PERIOD; cond <= guarded (X = '0');
end block; end block;
State_2: block (state = SI and cond) F2: block (state = S2)
begin begin

state <= guarded S2 after CLK.PERIOD; A <= guarded A + "0001";
end block; end block;
State_3: block (state = SI and not cond) F2; block (state = S3)
begin begin

state <= guarded S3 after CLK.PERIOD; B <= guarded A + B;
end block; end block;
State_4: block (state = S2 or state = S3)
begin

state <= guarded S4 after CLK.PERIOD;
end block;

(a) state transitions (b) data operations

Figure 4.11: State Transitions/Register Transfers Description

The description of the state table using the VHDL behavioral description style

(process statement) is shown in Figure 4.12(a).

Here, each process represents a state. Problems associated with this represen

tation with respect to synthesis include:

1. One signal variable per state is required. Since each process is triggered by a

change in the state variable found in its sensitivity list, detection of this signal

change and state decoding are difficult to implement.

2. The same storage element may need to be updated in more than one process.

Using block statements, this can be handled with guarded signal assignments;

the process, however, provides no clean method of expressing this concept.

Variables are local to the process and can be used to represent a storage el

ement within one process only. Guarded signal assignments axe not allowed



axchitecture PI of STATE_TBL is
signal SO,SI,32,S3,S4: BIT;
signal S4_1,S4_2: BIT;
signal A,A1,B1: BIT_VECT0R(3 downto 0);

begin
State_0: process (SO)
begin

cond <= (X = 0);
SI <= not SI after CLK_PERIOD;

end process State_0;

State_l: process (SI)
begin

if (cond) then
52 <= not S2 after CLK_PERIOD;

else

53 <= not S3 after CLK_PERIOD;
end if;

end process State_l;
end if;

.State_2: process (S2)
begin

A1 <= A + "0001":
S4_l <= not S4 after CLK_PERIOD;

end process State_2;

State_3: process (S3)
begin

31 <= A + B;
S4_2 <= not S4 after CLK.PERIOD;

end process State_3;

A <= A1 when not Al'QUIET else
A;

B <= B1 when not Bl'QUIET else
B;

S4 <= S4_l when not S4_l'QUIET else
S4_2 when not S4_2'QUIET else S4;

end PI;

(a) process graph description

73

architecture P2 of STATE_TBL is
type STATE_VAL is (S0,S1,S2,

S3,S4);signal cond; BOOLEAN;
signal cond: BOOLEAN;
signal state: STATE_VAL;
signed, new.state: STATE.VAL;

begin

process(state)

begin

when SO => cond <= (X = 0);
new_state <= SI;

when SI => if (cond) then
new_state <= S2;

else

new_state <= S3;

when S2 => A := A + 1;
new_state <= S4;

when S3 => B := A + B;
new_state <= S4;

when S4 => ...

end case;

state <= new_state

after CLK.PERIOD;

end process;

end P2;

(b) sigle process

Figure 4.12: Alternative VHDL State Table Descriptions



74

within processes. Virtual muxes must be added to accommodate the update of

the same signal in more than one state. This introduces unnecessary hardware

which violates good design practice.

A second use of the process statement to represent register transfers is shown in

Figure 4.12(b). The single process contains a case statement to specify an instruction

set like description. This description can't express parallelism for operations associ

ated with one condition since the process is inherently sequential. On the other hand,

if we assume for synthesis that all statements appearing within a case alternative are

executed in parallel, the VHDL simulation of the input description will not reflect

the true behavior of the synthesized design. The solution is to use additional signals

of type wire. The following VHDL code fragment illustrates the equivalent sequential

statements for the concurrent interchange of the values of A and B:

variable A,B: BIT;
signal temp: BIT;

temp <= A;
A := B;
B := A;

In orderto describe register transfer designs for synthesis, the following modeling

practice is recommended:

Proposition 6

Each state of a register transfer design should be described with block statements

containing condition, next state assignment and all register transfers with the clock

specified in the guard expression. Alternatively, a singleprocesswith a case statement

can be used.



10

4.3.5 Behavioral Design

Design Model

The design model shown in Figure 2.11 is also assumed for the algorithmic

design model. A behavioral description allows the designer to describe the design

as a black box with well defined interfaces. Variables within a description can be

allocated storage by default, or the synthesis system can determine which variables

require storage. As in the combinational model, input to output timing is expressed.

VHDL Alternatives

Figure 4.13 shows a simple VHDL behavioral description. The process state

ment is the only suitable method in VHDL for expressing behavior in algorithmic

form. Each VHDL process will be synthesized into a CU/DP pair. Data computa

tions within the process are made with variable assignment statements. Its similarity

to a programming language allows for the coding of algorithms using typical control

constructs (IF, CASE, FOR and WHILE loops).

Input to output timing is expressed as a part of the output signal assignments.

The wait statement can be used within the process statement to express timing. A

statement of the form

wait until <condition>

will model a design state which loops on itself until the specified condition evaluates

to TRUE. The state table entry for this state will advance the state register to the



architecture BEHAVIOR of STATE_TBL is
signal B_port: BIT_VECTDR(3 downto 0);

begin

process (X)
variable A,B: BIT_VECT0R(3 downto 0);

begin
if (X = '0') then

A := A + "0001";
else

B := B + A;
end if;
B_port <= B after 20 ns;

end process;
end block;

76

Figure 4.13: Behavioral Description Using VHDL Process Statement

next state in sequence when the condition is TRUE. The second form of the wait

statement,

wait for <time>

models a design state which loops on itself for the specified time duration. For

synthesis, the time duration must be a multiple of a known quantity of time such

as a clock cycle. This model requires a count variable initially set to zero which is

incremented on every execution of the state. When the count reaches the specified

number of clock cycles, the state register is advanced to the next state.

The recommended modeling practice for algorithmic design can be summarized

as follows:



77

Proposition 7

Behavioral designs are modeled by VHDL process statements. Signal assign

ments are used to represent output port assignments. Signals may also be used to

hold temporary values (for example, the swapping of register contents) in order to

model concurrent events within the sequential process.

4.3.6 Summary

This chapter presented the details of a proposed structured modeling method

ology which does not restrict VHDL to a particular subset but recommends several

writing styles for different design models. This methodology is based on the following

principles:

1. Appropriate constructs in VHDL should be used for appropriate levels of design.

2. Guard expressions for block statements are used to represent clocks, or signals

that enable storage.

3. Unguarded signal assignments should be used to model wires. Guarded signal

assignments should be used for register and bus assignments. These constructs

should not be mixed so that the model remains consistent for synthesis.

4. Design hierarchy and partitioning should be reflected in the description, al

though not with the same granularity.

5. It is believed that this structured modeling methodology will result in reduced

modeling effort, allow portability of models, and facilitate synthesis of high

quality designs.



Appendix A presents the VHDL coding practices and conventions for Structured

Modeling as implemented in the VHDL Synthesis System.



Chapter 5

Design Representation

This chapter describes internal representation of the VHDL input description

and the synthesized structural description used in the VSS system. The Design

Representation consists of two views of the design: the behavioral view which is cap

tured in a Control/Data Flow Graph (CDFG) representation, and a structural

view which is maintained in the form of a GENUS Partial Design representa

tion. The use of this representation to capture characteristics of four different design

models (combinational, functional, register transfer, behavioral) will be illustrated.

5.1 Control/Data Flow Graph

5.1.1 Introduction

A design representation or data base is the internal representation used by a

synthesis tool. It organizes information extracted from the input specification neces

sary for synthesis. This representation is created, manipulated, and optimized by the

system so that a netlist or other output specification can be produced.

79



so

One common design representation used in several synthesis systems is the con

trol/data flow graph [OG86]. The control flow graph represents sequencing infor

mation. Each "state" in the behavioral description is represented as a sequence of

actions to be performed, and based on the evaluation of a condition, the next state to

which execution is to be advanced is indicated. Control dependencies implied in the

semantics of the behavioral description (for example, loop and if-then-else constructs)

are preserved in the control flow graph.

The sequence of actions to be performed (arithmetic, logical, shifting operators)

is represented using data flow graphs. A data flow graph indicates data dependencies

that exist between variable accesses in assignment statements. The data flow graph

exposes the parallelism in the input description. A control flow node representing a

state will have a data flow graph associated with it.

5.1.2 Motivation

In synthesis, we are interested in generating a structural description of com

ponents from a given library from a behavioral description. Here, we are interested

in properly connecting all pins on all components instead of observing signal values

on some of the pins. The behavioral description must be parsed into a design rep

resentation which can be operated on by a variety of synthesis tools. This design

representation should be well defined and should capture uniquely the functionality

and intention of several equivalent behavioral descriptions in a format appropriate

for synthesis. The representation must allow for the transformation of behavioral in

formation (simulatable functionality) to structural information (library components

and their attributes).



81

This section details the corresponding internal representation (control and/or

data flowgraph) produced as the VSS input compiler parses each VHDL statement.

The various interpretations of VHDL statements used to represent characteristics

of each of the design models mentioned in our structured modeling methodology

(combinational, functional, register transfer, behavioral) will be illustrated.

5.1.3 VHDL Design Representation in VSS

This subsection describes how each VHDL statement is processed by the VHDL

Synthesis System (VSS) in order to generate and maintain an internal representation

appropriate for synthesis. The control/data flow graph (CDFG) which is used as

this internal representation is constructed as each statement is parsed. The portions

of data and control flow graphs corresponding to the statements in a block or process

are appropriately interconnected according to the design style used in the VHDL

description.

Structural Description Style

A designer can specify an initial design, fully or partially, using a structural

description mixed with behavior. When sections of the design are described using

structural VHDL (for example, previously synthesized modules), these portions are

copied intact to the output produced by the VSS system. The partial structural de

scription is enhanced with additional components necessary to implement the sections

of the design described using the data flow and behavioral styles.



82

When synthesis is completed, the VSS system produces a VHDL structural

description of the design, using component declarations and instantiations derived

from an Intelligent Component Data Base (ICDB) [Che90]. VHDL behavioral models

for these components are available from the data base.

Dataflow Description Style

The dataflow description style emphasizes the flow of information between stor

age and gating elements.

Concurrent Statements

Concurrent statements are used to define interconnected blocks (components,

possibly of different complexity) that jointly describe the overall behavior or structure

of a design. Concurrent statements execute asynchronously with respect to each other.

The following concurrent statements are found in VHDL:

concurrent.statement ::=

block.statement
process.statement
concurrent.procedure.call
c oncurrent.assert ipn.statement
concurrent.s ignal_as s ignment.stat ement
component _instant iat ion.st at ement
generate.statement

Block Statement

The primary VHDL construct used for the dataflow description style is the

block statement. A block statement defines an internal block representing a portion

of a design. It has the following syntax:



block_statement : : =
block [ (guard_expression) ]

block_hea<ier
block_declarative_part

begin
block_statement_part

end block;

block_header ::=
[ generic_clause
[ generic_map_aspect; ] ]
[ port_clause
[ port_map_aspect; ] ]

block_declarative_part ::=
{ block_declarative_item }

block_statement_part ::=
{ concurrent_statement }

83

The optional guard-expression defines an implicit signal GUARD which is of

type BOOLEAN for simulation. If the guard-expression evaluates to TRUE, all signal

assignments with a guarded qualifierappearing in the block-Statement_part willhave

their RHS evaluated, and a driver is placed on the event queue to update the signal

values at the appropriate time. For synthesis, the guard-expression is used to specify

a synchronous or asynchronous event which results in a signal update.

The block-header explicitly identifies certain values or signals that are to be

imported from the enclosing environment into the block and associated with formal

generics or ports.

The hlock-declarative-part defines all local signals, types and subtypes, con

stants, components and attributes.

One or more concurrent statements constitute the blockstatement-part. Blocks

may be hierarchically nested to support design decomposition [IEE87]. The block

statement groups together other concurrent statements such as signal assignments



84

which assign values to signals. Nested blocks are flattened for synthesis to facilitate

resynthesis with optimization.

The flow graph representation, for a block statement in shown in Figure 5.1.

BLK_START

STMT_BLK

BLK_END

Figure 5.1: Block Statement Flowgraph Representation

It consists of BLK-START and BLK_END demarcation nodes, and a STMT-BLK

node which represents the body of the block statement. The data flow graphs gen

erated for each concurrent statement appearing in the block are associated with the

STMT_BLK.

Signal Assignment

A signal assignment statement is used to assign or update values for a signal

driver. The basic format of an assignment statement is the following:

target <= [ guarded ] <RHS-expression>



85

Each assignment made to a target or left hand side (LHS) signal/variable is

represented by a WRITE node in the flow graph. Similarly, each access of a signal or

variable appearing as a part of the right hand side (RHS) expression ofan assignment

statement is represented by a READ node.

READ and WRITE nodes for signals of can be of type PORT, REGISTER or

WIRE (WIRE is the default for any variable declared as a SIGNAL). If a signal is

of mode internal (that is, it was declared locally within some block statement) and

a WRITE and READ node for that signal are connected when DFG sections are

merged, the nodes can be coalesced, producing a signal net of type WIRE.

Conditional Signal Assignment

The conditional signal assignment statement has the following syntax:

signal <= [ guarded ] { <wavefonii> when <condition> else }
<waveform> ;

<waveform> : := <expression> [ after <delay> ]

The conditional signal assignment will occur in one of the following forms:

a) signal <= <waveform> ;

This is the simplest form of assignment statement. The VHDL simulator inter

prets this statement as a directive to compute the value of <expression> and schedule

the activation of this driver for the signal value at time <current-simulation-time>

-|- <delay> (if no delay is specified, the driver is activated immediately).

From the CDFG perspective, a dataflow graph is constructed for the RHS

expression, and the result is input to a WRITE node for the signal. Associated

with each graph axe (connection) is a signal type (bus, register, port, wire), mode



86

(in/out/inout (for ports only), internal), bit width (number of bits), and represen

tation (integer, floating point, I's complement, 2's complement, sign/magnitude).

The optional delay specification indicates the time which elapses between the READ

of all signals/variables which appear on the RHS of the assignment statement and

the appearance (WRITE) of the updated expression value at the register/port/wire

represented by the signal. Figure 5.2 shows a typical signal assignment statement

and the corresponding flowgraph with delays.

entity EXAMPLE is
port (B,C: in BIT_VECTOR(3 downto 0);

architecture EX of EXAMPLE is

signal A: BIT_VECTOR(3 downto 0);

A <= B + C after 3 ns;

end EX;

WRITE

type: port
mode: in

bit width: 4
rep: mag

type: wire
mode: internal
bit width: 4
rep: mag

Figure 5.2: A Simple Conditional Signal Assignment

b) signal <= guarded <waveform> ;



87

The guarded assignment involves the conditional assignment of the evaluated

<waveform> to the signal based on the value of the guard expression which appears

at the beginning of the enclosing VHDL block statement. When the guard expression

evaluates to TRUE, the VHDL simulator activates the signal driver and places its

value on the simulator event queue so that the signal is updated at the specified

simulation time.

For the purposes of CDFG generation and synthesis, a guarded signal assign

ment is used for signals declared with the bus or register signal kind qualifier. A

data flow graph is generated for the RHS expression and is connected to the true

input of a CHOOSEl-VALUE node. The CHOOSE-VALUE node represents the se

lection of a data element based on the value of a guard (select) input. The guard

input is a data flow graph representing the block guard expression. The output of

the CHOOSEl-VALUE node is used as the input to a WRITE node for the signal.

Figure 5.3 shows an example of this construct.

If the signal is declared as a bus, the CHOOSE-VALUE will be mapped to a

tri-state driver for the bus signal. If the signal is a register under a guard expression

of type CLOCK, the CHOOSE-VALUE will be removed, and the select line will be

connected to the clock input of the WRITE_REG node. The function of each signal

appearing in the guard expression is determined by its signal type. In the case of

multiple signals in the guard expression (clock and set, for example), an optimization

step will connect each signal to the appropriate control input.

c) signal <= [ guarded ]
waveforml when conditioni else

waveform2 when condition2 else

waveformM when conditionN else

wavefomiN;



entity CONTROLLED-CTR is
port (CLK: in CLOCK;

DATA: in BIT_VECTOR(3 downto 0);

architecture DATAFLOW of

CONTROLLED-CTR is

signal CNT: BIT_VECTOR(3 downto 0) register;

CNT-UP: block (CLK = '1' and not CLK'STABLE)
begin

CNT <= guarded CNT + "0001" after 10 ns;

end DATAFLOW;

WRITE

REG
CNT

Figure 5.3: Guarded Signal Assignment

88



89

This statement corresponds to a nested if arrangement of assignments to the

same signal based on different boolean conditions. The VHDL simulator will evaluate

waveform/condition pairs in the order in which they appear and will schedule the

assignment of the first waveform value to the signal when its associated condition

evaluates to true.

The conditional assignment statement can be useful in representing an assign

ment to a signal based on prioritized conditions. For example, the statement in

Figure 5.4 might be used to represent a register for which the CLEAR is of high

est priority, followed by PRESET and CLOCKed assignment. Figure 5.4 shows the

flowgraph generated for the statement.

A chain of CHOOSE-VALUES is constructed to form the data flow graph for

the nested if construct. The bottom most CHOOSE-VALUE is guarded by the first

condition encountered, the CHOOSE-VALUE above the bottom one is guarded by the

next condition, etc. The output of the bottom most CHOOSE-VALUE is connected

to the WRITE node input.

Selected Signal Assignment

The format of the selected signal assignment is shown in Figure 5.5. This is

equivalent to the case statement available as a sequential statementwithin the process

construct. The choices are exclusive conditions (either integer or boolean values) such

that only the waveform matching the value of the <expression> is evaluated and

scheduled for assignment by the VHDL simulator. Figure 5.5 shows the flowgraph

generated for the general form of this statement.



READ
PORT

CLR

block (CLR = '0' or SET = '1' or CLK = '1')
begin

A <= guarded
'0' when (CLR = '0') else
'1' when (SETl = '1') else

DATA when (CLK = '1') else
A;

end block;

READ
CONST

0

READI

PORT

SETl

READ

CONST

1

READ

PORT

DATA

©

90

read/
REG<

A \

WRITE

Figure 5.4: Conditional Signal Assignment



91

The data flow graph construct associated with this statement is the multiple

input CHOOSE-VALUE guarded by the <expression>. Each waveform will have a

corresponding data flow graph generated for its expression value, and the guard test

for each input will be stored in the input net.

with < expression> select
signal <= {guarded}

<waveforml> when choicel,
<waveform2> when choice2,

<waveformN> when choiceN;

< waveform2 >

<waveforml> <waveformN>

<expre88ion>

< guard expression >

WRITE

signal

I READ I
signal

T - J

Figure 5.5: Selected Signal Assignment



92

Behavioral Description Style

A behavioral description is a sequentially executed, procedural style of code

typical of common programming languages. A behavioral specification specifies, with

any desired degree of precision, what a device does (its function) without specifying

how it does it (its structure) [CAD87].

Process Statement

The primary VHDL construct used for the behavioral description style is the

process statement. A process statement defines an independent sequential process

representing the behavior of some portion-of the design. It has the following syntax:

process_statement ::=
process [ (sensitivity_list) ]

process_declarative_part
begin

process_statement_part
end process;

process_declarative_part ::
{ process_declarative_item }

process_statement_part
{ sequential_statement }

The execution of a process statement consists of the repetitive execution of

its sequence of sequential statements. After the last statement in the sequence of

statements of a process statement is executed, execution will immediately continue

with the first statement in the sequence of statements [IEE87].

A sensitivity list may be specified for each process. By specifying a sensitivity

list of one or more signals, the process statement is assumed to contain an implicit

wait statement as the last in the sequence of statements. This wait statement will

suspend execution of the process statement until an event (change) occurs involving



93

one of the signals in the sensitivity list. The sensitivity list is ignored by the VSS

synthesis tool.

The process.declarative.part defines all local signals, variables, types and sub

types, constants and attributes.

One or more sequential statements comprise the process^tatement-part. The

sequential statements which may appear in the description are listed in the next

section.

The flow graph representation for an example process statement is shown in

Figure 5.6. Note that a STMT-BLK node is a control node which has an associated

data flow graph. These data flow graphs are constructed for sequential signal and

variable assignment statements.

Sequential Statements

The sequence of statements within a process statement may contain one or more

of the following statement types:

sequential_statement ::=
wait.statement
signal_assignment_Statement
variable_assignment_statement
procedure_call_statement
if.statement
case.statement

loop.statement

As mentioned above, data flow graph sections for assignments of values to sig

nals and variables axe created as in the case of concurrent signal assignments and

associated with STMT_BLK nodes. Control flow graph sections are created for each

of the behavioral control constructs. These control flow graph sections axe nested



process

begin
while (stop = '0')
PI := M(CR)(15 downto 0);

S := PI(15 downto 3);
case PI (2 downto 0) is

when 0 => CR := M(S);
when 1 =:> Acc := Acc - M(S);

when 6 => if (Acc < 0) then
CR := CR + 1;

when 7 => stop < = '1';
end case;

end loop;
end process;

STMT.BLK

STMT_BLK

STMT-BLK STMT.BLK

r_JOIN

Figure 5.6: Process Statement Flowgraph Representation

94



95

and interconnected to model the flow of control implicit in the sequential, behavioral

description.

Signal Assignment

The syntax of the signal assignment statement for a sequential process is iden

tical to form (a) of the conditional signal assignment in a concurrent block. A data

flow graph similar to the representation generated for a concurrent signal assignment

(see Figure 5.2) is created.

Variable Assignment

A variable assignment statement replaces the current value of a variable with a

new value specified by an expression. The statement has the following syntax:

target := <expression> ;

This statement cannot use the after clause to specify timing relationships as

in the signal assignment statement. A data flow graph is generated to represent the

variable assignment.

If Statement

One construct used to model conditional execution in the VHDL process state

ment is the if statement. The if statement performs a conditional branch based on

the value of a boolean signal.

The control flow graph section created to represent the if statement consists of

three parts: (1) a TEST (or SELECT) node which selects the control branch to be

taken based on the test signal; (2) for each control branch, one or more control nodes

representing a sequence of statements to be performed in that branch; (3) a JOIN



96

node which signifies the end of each conditional branch and connects to the flowgraph

section for the next sequential statement. Figure 5.7 shows the control flow graph

sections created for the if construct.

if (boolean_expression)
then

seq_of_statements_l
else

seq_of_statements_2

end if;

STMT_BLK

(evaluate
test bit)

-X1f_TESt\w
1 0

H
seq. of seq. of

statements-l statements.2

s
IF-JOIN

Figure 5.7: If Statement

Case Statement

The case statement selects between two or more conditional branches based on

the value of an integer select signal. Figure 5.8 shows the flowgraph representation

for the case statement.



case (integer_expression) is.
when choice_l =>

seq_of_statements_l

when choice_N =>
seq_of_statements_N

end case;

STMT-BLK

(evaluate
test signal)

^^ASEJSELEC
chl ch2 chN

seq. of

statements-!

CASEJOIN

Figure 5.8: Case Statement

seq. of

statements_N

97

For Loop

A loop statement includes a sequence of statements that is to be executed

repeatedly, zero or more times.

The for loop construct uses an index variable whose value steps through a

specified range for each iteration of the loop. The index variable is set to the first

value in the range prior to entering the loop. A test is made to determine if the

index value is within the range; if so, the loop body is entered. Once the loop body

statements are executed, the index variable assumes the next value in the specified



98

range, and control is returned to the loop entry test. If the test returns FALSE, control

passes to the next sequential statement. Figure 5.9 shows the for loop representation.

for identifier in discrete_range loop
seq_of.jstatements

end loop;

STMT_BLK

(set loop
index)

seq. of
statements

index :=

next value in

discrete-range

LP.TEST

next

statement

Figure 5.9: For Loop Statement

While Loop

The while loop construct tests a boolean condition, and if it is TRUE, passes

control to the first control node of the flowgraph section implementing the sequence

of statements for the loop body. Once the loop body statements are executed, control

returns to the condition test which is repeated. If the condition evaluates to FALSE,



99

control passes to the sequential statenient following the while loop. Figure 5.10 shows

the representation corresponding to a while loop.

while (boolean_expression) loop
seq_of_statements

end loop; STMT_BLK

(evaluate
test signal)

LOOP_TEST

seq. of

statements
next

statement

Figure 5.10: While Loop Statement

Procedure Call

The procedure call has the following syntax:

procedure_name (<parameterJist>);

Procedure calls are used in a VHDL description to invoke a procedure body con

sisting of sequential statements which are used one or more times in the description.

Figure 5.11 shows the flow graph representation for a procedure call.

The procedure call may be processed in one of two ways:



proc_name (<parameterJist>); i
CALL

proc_name

T
Figure 5.11: Procedure Call Statement

100

1. In-line expansion of each call may be performed, where the statements of the

procedure body are substituted for the procedure call statement. A template

flowgraph created for the procedure body is inserted, with actual parameters

replacing occurrences of formal parameters. When this description is synthe

sized, each procedure call invocation can be mapped to available hardware in

the data path, or a microcode implementation in control can be implemented.

Annotations in the VHDL description will determine the implementation style.

2. The procedure body is treated as a description of a block in the design. A

flowgraph is created for the procedure body. Hardware is synthesized for this

description, and each procedure call supplies the values of actual parameters as

inputs to the procedure body hardware. .

Wait Statement

The wait statement has the following syntax:

wait [ <condition_clause> ] [ <timeout_clause> ] ;

<condition_clause> ::= until <booleaii_expression>
<timeout_clause> ::= for <time_expression>



wait until cond_expr
for time;

C <= condjexpr;
TIMER := 0;

next

statement

riMER
> time

TIMER :=

TIMER + 1;

C <= cond-fixpr;

Figure 5.12: Wait Statement

101



102

A wait statement is used to suspend the execution of a process statement until

a specified condition is TRUE, or a timeout period elapses. Figure 5.12 shows the

control flow graph sections created for a wait statement with condition and timeout

clauses. This statement is implemented in control and is synchronized with the system

clock; time is measured in multiples of the clock period.

5.1.4 Annotations

In some instances, it is necessary to indicate to the VSS system which design

process should be used for a given VHDL description. This is accomplished through

the use of annotations in the form of special VHDL comments as shown below:

VSS: functional description

Annotations are used in the following situations:

1. To indicate the structured modeling style used in the VHDL description.

2. To indicate that a CFG to DFG transformation is to be applied to a process

control construct (IF, CASE or LOOP). For example, it may be desirable to

unwind a loop, where iterations are flattened into a sequence of assignments,

rather than implementing indexing or conditional tests in control.

3. To denote a next state in process descriptions. This can be used to define

state boundaries for a register transfer description consisting of a sequence of

assignment statements.



103

5.2 Partial Design Representation

The partial design representation stores the data path structure and the control

specification produced by VSS. The data path structure is represented using the three

levels of hierarchy of a GENUS [Dut88] component description; these levels will be

described briefly in the next section. The control unit specification is derived from in

formation stored in the flow graph design representation. State and resource bindings

performed by the scheduling and resource binding modules of the Design Compiler

annotate the flow graph with state and component assignments for register transfer

and behavioral designs. This information can be extracted, formatted, and presented

to the designer in the form of Behavioral Intermediate Format (BIF) [DHG89] state

tables.

5.2.1 GENUS Partial Design Representation

The GENUS generic component library consists of three levels of hierarchy:

generators, component classes, and component instances. A generator is used to

represent a family of similar components and instances. The generator descriptor

maintains a list of all possible parameters and a specification of each operation per

formed by the generated component. The component class is the product of a call

to a parent generator with a particular set of parameters. For example, a 4-bit reg

ister component class is generated by calling the register generator with a bit width

parameter of 4. The component class representation is maintained by the VSS tool

as a part of the design data base which stores the partial design being synthesized.

Instances are "carbon copies" of a parent component class, distinguished by an unique



104

name. Each instance corresponds to an actual component in the partial design. The

instance inherits its attributes from the parent component; consequently, the primary

information stored in this level of the GENUS hierarchy involves the connectivity of

the instance. ,

It is often desirable to represent a hierarchical decomposition of a design, where

the top level of the hierarchy contains a small number of components which have

been constructed from more primitive elements. For example, the VHDL structural

description style allows for a hierarchical description using entity/architecture pairs

to describe portions of the design and configuration statements to indicate the de

composition of component instances. This hierarchy must be distinguished from the

hierarchy present in the GENUS component representation; the latter is associa,ted

with the representation of a single component, while the former refers to the represen

tation of the entire design which at any intermediate level may consist of a mixture of

simple GENUS component instances and groupings of instances which are expanded

in lower levels. The configuration specification indicates the expansion of a complex

component in the higher levels of the design hierarchy in terms of more primitive

components, where the leaf level components in the hierarchy are constructed using

the most basic elements (pure GENUS components).

The GENUS component representation has been adapted and extended to suit

the requirements of partial design representation in VSS. In order to represent the

partial design hierarchy as it is synthesized from the VHDL input description, an

entity object has been defined to represent a collection of component instances at any

level of the abstraction. Components within an entity may themselves be entities,

allowing for structural decomposition of the partial design. Associated with each en

tity object are lists of GENUS component classes and GENUS component instances.



105

If a component in this entity is to be decomposed further, links are maintained in an

entity hierarchy. Figure 5.13 shows an example partial design netlist and the corre

sponding representation in terms of entity objects and GENUS component instances.

The entity object hierarchy is easily translatable into the entity/architecture pair

hierarchy of a VHDL structural description or netlist.

Available component generators are introduced to VSS using a GENUS gen

erator input parser. This parser reads a textual file of GENUS generic component

generator specifications written using the LEGEND language [Dut90] and produces

an internal data structure which maintains the generator information. Upon com

pletion of and integration with the Intelligent Component Data Base [Che90], this

information will be obtained through data base queries.

5.2.2 State Tables

The format used to capture the sequencing information present in the con

trol flow graph and present it to the designer in readable form is the Behavioral

Intermediate Format (BIF) [DHG90]. These tables are derived from a traversal of

the control/data flow graph; branching conditions for loop, if and case conditional

constructs become the conditional event under which data flow and/or sequencing

operations are performed. The task of state scheduling annotates the CDFG with

state binding information; this information is reflected in the current and next state

assignments specified in the BIF tables.

Upon completion of the scheduling task of synthesis of a VHDL behavioral

model, an operation basedstaie table (OBST) is generated. The behavioral operations

that are performed in each state are specified in the action field of the table.



MAIN

MAIN

subentities

CLK

-Do^S

CLK X Y

1 1

ALU4

Hierarchical Structure

CU

input ports: CLK, C
output ports: S, F
net table: component/instance lists:

net source dest component instances
nl CLK.OO SR.CLK INPUT-PORTl CLK, C
n2 Cl.OO SR.IO OUTPUT_PORT1 S, F
n3 SR.OO C2.I1, C3.I0, Cl.Il REGISTERl SR
n4 C.OO Cl.IO, C3.I1 XOR C1
nS C2.O0 S.IO INV C2
n6 C3.O0 F.IO NAND C3

Entity Object Hierarchy

Figure 5.13: GENUS Partial Design Entity Object

106



107

The unit basedstate table (UBST) captures the assignment of behavioral opera

tors to units in the partial design structure on a state-by-state basis after the resource

allocation and binding tasks have been performed. For each state, all units which per

form an operation in that state are listed in the action field. The unit performing

the operation, its operands, the operation to be performed, and the destination are

specified for each unit usage. This specification links the behavioral operator from

the CDFG to a specific instance of a functional or storage element in the GENUS

Partial Design Representation.



Chapter 6

Synthesis System Framework

This chapter describes the system architecture of the VHDL Synthesis System

(VSS), providing details of its major components. The block diagram of the VSS

system is shown in Figure 6.1.

The VSS system consists of four subcomponents: a Graph Compiler com

ponent, a Representation Optimization component, a Design Compiler com

ponent, and an Output Generation component. The Graph Compiler module

accepts a VHDL description and generates the Control Data Flow Graph (CDFG)

internal representation which is operated on by subsequent components of the VSS

system. Various local and global transformations are applied to the CDFG within the

Representation Optimization component. These optimizations restructure the inter

nal representation in order to facilitate efficient synthesis as performed by the Design

Compiler.

The optimized flow graph is then processed by the Design Compiler. The Design

Compiler consists of a collection of algorithms which perform the allocation, schedul

ing and resource binding tasks of high-level synthesis. An appropriate sequence of

synthesis procedures is determined by the selected design model and by directives

108



VHDL Input
Description

Graph

Compiler

Representation Optimizations

r
Graph

• • Transformations

Allocation

onstraints

Graph

Critic

Annotated

CDFG

BIF State

Table

Optimized

CDFG

Design Compiler

r 1 I 1 I 1
I Allocator | | Scheduler | | Resource |

Binder

GENUS Partial

Design Repres.

Output Generation

I 1
I State Table I . ^
' • • Generator

Netlist ^
I I

Control Logic
Compiler

VHDL

Netlist

Figure 6.1: VSS Block Diagram

GENUS

omponent

Library

109



110

specified through annotations in the input description which are recorded in the de

sign representation. Allocation constraints are supplied to the Design Compiler algo

rithms via a textual file. As each subtask within the Design Compiler completes, the

synthesized structure of the design is generated using components from the GENUS

generic component library [Dut88]. This structural view of the design is maintained

in the GENUS Partial Design Representation described in section 5.2.1. In addi

tion, the CDFG is annotated with information that relates the binding of behavioral

operators and variables to the corresponding structural components.

Results of the synthesis process to be examined by the designer are created

by the Output Generation module. The GENUS Partial Design Representation is

presented in textual form via a VHDL structural description. If a multiple state

design is produced, a specification of the control sequencing required is generated in

the textual form of a BIF [DHG89] unit based state table derived from the annotated

CDFG.

A Control Logic Compiler utility derives a description of the behavior of control

unit components from a BIF state table. This specification is synthesized to produce

an implementation of the control unit, thereby completing the design structure.

6.1 Qraph Compiler

The Graph Compz'/er parses the VHDL input description into the Control/Data

flow graph representation used internally in the VSS system. The Graph Compiler

operates in one of two modes, concurrent or sequential, depending on the VHDL

concurrent statement (block, signal assignment, process or procedure) currently being



Ill

processed. The primary difference in these operation modes involves the processing

and interconnection of signal or variable assignment statements. When processing a

VHDL block statement, the assumed design model dictates that signal assignments

are concurrent; therefore, the Graph Compiler does not introduce data dependencies

between the update of a signal and subsequent accesses of that signal in the same

block. Conversely, in sequential mode, the design model requires the enforcement of

data dependencies in a sequence of assignment statements occurring within a VHDL

process statement; in this case, data dependency arcs are introduced in the data flow

graph representation.

Each VHDL concurrent statement is processed in order of occurrence in the

input description, producing a corresponding Control and/or Data flow graph repre

sentation. The hierarchy of the VHDL description (e.g., nesting of block and process

statements) is preserved in the internal representation. Annotations encountered in

the input description are used to guide the Graph Compiler in the following cases:

• Typing of signals - if the designer wishes to bind a variable in the description

to a hardware element (register, bus, etc.), an annotation appearing just prior

to the signal/variable definition (see section 5.1.4) will appropriately type all

references in the representation.

• Selection of design style - if it is desired to implement a block or process using

a particular design model, a comment annotation appearing just prior to the

statement will result in the selection of the appropriate Graph Compiler mode

and application of subsequent optimizations and transformations.



112

• Control construct transformations - if such a directive is encountered in the

description, the annotated sequential statement will be marked, and transfor

mations will be applied to convert this statement to an equivalent concurrent

(data flow) representation.

6.1.1 Block Statement Compilation

For signal assignments appearing in a block statement, flowgraph sections gen

erated for each statement are interconnected once all statements have been processed.

This corresponds to the concurrent data flow style where all operations are assumed

to be executed in parallel. Variables appearing on the left hand side (LHS) of an

assignment statement are cissigned the value of the variable prior to the execution of

the block statement. Figure 6.2 shows a VHDL code fragment consisting of several

concurrent assignment statements, the flow graphs created for each statement, and

the final interconnected flow graph.

The sections of DFG representing each signed assignment will be appropri

ately interconnected based on the signal type. It is the signal kind that will define

whether a VHDL signal (container) represents a memory element, port, bus or wire.

Guarded signal assignments indicate that the assignment target signal is of signal

kind REGISTER (if the block guard is of type CLOCK, SET or RESET) or BUS.

Unguarded signal assignments signify SIGNAL (or wire) targets when access to these

signals occurs within the scope of the block being processed (i.e., the signal must be

defined within the current block, and a READ and WRITE of the signal occur in the

block); otherwise, the signal access will be mapped to a PORT in subsequent Design

Compiler processing.



A <= B + C;

D <= A * E;
X <= D - A;

VHDL Concurrent Statements

Individual Statement Flow Graphs

Interconnected Flow Graphs

Figure 6.2: Block Statement Compilation

13



114

Structured Modeling recommends that for concurrent (block level) descriptions,

a single block should be used for a signal update, or multiple blocks are allowed to

specify mutually exclusive updates to a signal. In the case where multiple blocks

are used to describe exclusive functionality of a component, Design Compilation may

require the flattening of these multiple blocks into a single DFG to facilitate mapping

to GENUS components. In order to accomplish this, the signal kind is used to

determine the interconnect protocol which results when multiple sources for the same

VHDL signal are encountered within a DFG section.

Multiple WRITEs (sources) to a signal of signal kind SIGNAL indicate that

a WIRED-OR node should be created with each WRITE node as an input. Any

READ nodes for this signal should be connected to the output of the WIRED-OR

node. This DFG construct will be mapped to a wired-or connection during design

compilation.

Similarly, recognition of multiple WRITEs to a signal of signal kind BUS should

produce a BUS node to which all WRITE nodes are connected. Since each WRITE

node for a signal of type bus was created when a guarded signal assignment was made,

each input is controlled by some guard. This flow graph pattern will be mapped to a

bus connection, where each CHOOSE-VALUE controlling a WRITE input becomes

a tri-state bus driver.

Accesses to signals of type register are merged into a single WRITE access node.

The inputs axe muxed on the data input if they are synchronous, or are applied to

different inputs (e.g., load and clear) if they are asynchronous.

The compilation algorithm for concurrent statements is summarized in the pro

cedure interconnect_concur_stmts shown in Figure 6.3 below.



115

interconnect_concur_stmnts()
{

merge duplicate READ (SIGNAL,REGISTER,CONSTANT) nodes

for (each WRITE node)
switch (signal kind)

case SIGNAL : if (WIRED-GR node does not exist)
create WIRED-OR node

attach data input of WRITE node as input to
WIRED-OR node

case BUS : if (BUS node does not exist)
create BUS node

attach data input of WRITE node (from a
CH-VALUE node) as input to BUS node

case REGISTER: if (another WRT_REG node for same var exists)
merge WRT_REG nodes, connecting appropriate

control lines

look at all WRITE nodes and appropriately connect them to READ
nodes for the same signal

invoke Graph Critic
}

Figure 6.3: Concurrent Statement Processing Algorithm

6.1.2 Process Statement Compilation

Unlike concurrent statements which are interconnected once all statements in

the block have been processed, sequential statements appearing within a process

statement are interconnected as they are encountered. Each control flow graph sec

tion corresponding to a sequential statement (STMT_BLK, if, case, loop, wait and

procedure call) has a single entry point and single exit point. As these statements are

processed, the exit point of the previous statement is connected to the entry point

of the current statement. Since the control flow graph sections of most sequential

statements are hierarchically constructed from other sequential statements, a stack is



, 116

used to maintain the control flow node to which the current control flow node is to

be attached.

When processing conditional branching constructs (IF, CASE and LOOP state

ments), the CU/DP design model used in VSS assumes that the branching condition

evaluates to either a BOOLEAN value (in the case of IF and LOOP statements) or

an integer/binary value in a discrete range (in the Ccise of CASE statements). If a

branching condition is an expression consisting of one or more operations, a DFG

which computes this expression value must occur in a STMT_BLK preceding the

decision node. The value is assigned to a temporary variable created by the Graph

Compiler, and the decision node is annotated with the name of the variable on which

the conditional depends.

Assignment statements are associated with the current STMT_BLK. Thus, a

sequence of assignment statements is grouped initially into the same STMT_BLK

control node until state binding is performed by the scheduling subtask of design

compilation. A STMT_BLK is created if the current CFG node is not a STMT_BLK

when an assignment statement is encountered.

For signal or variable assignments appearing in a process statement, data flow

graph sections are generated for each statement. The location of the last update

(WRITE) of all signals and variables is maintained. Variables appearing on the left

hand side (LHS) of an assignment statement are assigned this last update value. If

a value is updated and subsequently accessed within the same STMT_BLK, the data

flow WRITE and READ nodes, respectively, are interconnected.



A := B + C;
D := A * E;
X := D - A;

VHDL Variable Assignment Statements

Interconnected Sequential Statements

Figure 6.4: Compilation of Variable Assignments in a Process

117



118

Figure 6.4 shows the same VHDL code fragment from the previous section as it

would appear in a process statement consisting of several variable assignment state

ments. Notice that the sequential nature of the process imposes data dependencies

on the variable accesses, resulting in a different interconnected flow graph.

6.2 Representation Optimizations

6.2.1 Graph Critic

Because VHDL allows the designer to express the same functionality in many

different abstract ways, a Graph Critic module is needed to transform these various

representations into an unique representation which captures the hardware concept

being described. The initial parsing of the VHDL input description into the CDFG

Design Representation produces an abundance of DFG expression trees which are

derived from event specifications such as block guards and condition clauses of signal

assignment statements. These expressions jepresent,,attrih-Utes pLsignals and hard

ware components, rather than boolean functions which require logic gate implemen

tation. Left unoptimized, these expression txees wilLbe rnapped. tp unnecessary logic.

In addition, the interconnection of DFG sections which represent individual VHDL

statements often requires additional manipulation of the CDFG representation.

The Graph Critic contains two rule sets which perform local optimizations.

Cleanup rules eliminate redundant constructs in the flowgraph. For example, the

WRITE of a signal of type REGISTER followed by the READ of that signal will be

represented as a WRITE node connected to a READ node via a data dependency axe.



119

One Graph Critic rule recognizes such a pattern and merges the READ and WRITE

nodes into a single node. Figure 6.5 illustrates the operation of this rule.

?
WRITE

REGISTER

X

READ

EGISTER

WRITE/READ

z

Figure 6.5: Graph Critic Cleanup Rule

Optimization rules systematically replace behavioral constructs with those which

more closely resemble library components and their attributes. For example, a rising

edge event must be described as follows in VHDL: (X = '1' and not X'STABLE).

The Graph Compiler will initially produce a data flow graph containing comparison

and logic operation nodes for this expression. A Graph Critic rule will then be ap

plied, replacing the expression tree with a POSITIVE EDGE sensitivity attribute on

the output arc of the READ X node. Figure 6.6 shows the results of applying this

optimization rule.

The Graph Critic is applied to each STMT_BLK which contains data flow nodes

upon completion of graph compilation for that data flow block. This optimization



READ

SIGNAL

X

READ

CONSTANT

1

NOT

AND

READ

CONSTANT

STABLE

READ

SIGNAL

X

120

sensitivity: EDGE
active edge: POSITIVE

Figure 6.6: Graph Critic Optimization Rule



121

task simplifies the assignment of generic logic components to corresponding operation

nodes in the flowgraph representation.

6.2.2 Graph Transformations

When appropriate, global transformations are applied to the flow graph repre

sentation. Flow graph transformations aid the synthesis process by facilitating the

application of Design Compiler algorithms in the following situations:

• Transforming descriptions which are not written using the preferred Structured

Modeling guidelines for the intended target design model. For example, a Functional

design which is described using VHDL process constructs will initially be rep

resented as a control flow graph with embedded data flow. Synthesis of such

descriptions will yield a design that is of poorer quality than one which is gen

erated from a concurrent data flow representation.

• Making architectural tradeoffs in the design to be synthesized. Due to area or

speed constraints placed on the design, the designer may wish to evaluate the

effects of isolating control logic or embedding this control logic in the data path.

Isolated control logic will result when synthesizing a Behavioral description in

VSS which will be mapped to a control unit/data path design model. Embedded

control logic is produced when a Functional description consisting of conditional

signal assignments is synthesized.

• Identifying situations where resources can be shared under mutually exclusive

conditions. As mentioned earlier in the Design Synthesis Process chapter, one

goal of synthesis is to extract the maximum amount of parallelism in a design

in order to share resources. Resources can be shared under two conditions: (1)



122

they are not used in the same machine state, or (2) if they are used within the

same state, they must not be used under the same condition (as determined by

conditional branching in control flow or conditional signal assignment in data

flow). While determining shareability in the former case is straightforward, the

latter case presents difficulties in identification of shareable resources.

By applying transformations, the CDFG can be converted to a preferred repre

sentation that is efficiently processed by the Design Compiler so that a higher quality

design will result. The transformations described below are examples of such opti

mizations which have been integrated into the VSS framework.

Control Flow to Data Flow Transformations

In order to determine the impact of graph transformations motivated by the

the first two situations presented above, a package of CDFG transformations was

developed [Gup91]. These transformations are applied to control flow constructs

which have been annotated by the designer in the input description. Such statements

are appropriately marked in the design representation such that the transformation

package will process them as the CFG is traversed.

The following types of transformations can be applied:

1. IF and CASE statements

This transformation will form a DFG section equivalent to a conditional signal

assignment for every variable to which an assignment is made in any conditional

branch of the construct. Such a DFG section consists of a CHOOSE-VALUE

node that provides alternative data values to a WRITE node for the variable,



123

one value per conditional branch of the transformed control construct. The

expression which selected the conditional branch in the control construct is

used to select the corresponding data value which is assigned in that control

branch. Figure 6.7 illustrates the application of this transformation.

2. FOR LOOP statements

This transformation can be applied to the CFG section which represents a

FOR loop with known iteration bounds. The transformation performs loop

unrolling through replication of the DFG that represents the actions found in

the loop body. For each copy of the loop body, references to the loop index

are replaced with the appropriate value for that iteration. Data dependencies

between iterations are introduced in the expanded flowgraph.

Upon completion of the transformations, a corresponding concurrent data flow

representation will be constructed to replace the marked control constructs in the

CDFG Design Representation.

Component Synthesis Algorithm

Functional descriptions describe the behavior of one or more RTL components;

often, these components perform multiple functions (for example, an arithmetic logic

unit, or ALU). These descriptions don't require scheduling; they are, in effect, single

state designs in which the occurrence of an event signifies entrance into the state.

Action(s) to be performed are determined via the selection of a function to be per

formed by some functional unit or a data value to be passed through an interconnect

unit (multiplexor, bus). The Functional modeling style ofStructured Modeling advo

cates the use ofVHDLconditional signal assignment statements for these descriptions,



READ READ

B C

VRITE
A

VRITE
D

if (X = 0) then

A := B + C;
D := B - C;

else

D := D + 1;

end if;

VHDL Input Description

3TMT-BLK

STMT.BLK 3TMT.BLK

FJOIN

READ
X 0

VRITE

READ

D 1

Control Data Flow Graph Representation

READ

X 0

1 0

H.VALU

1 0

H.VALU

Transformed Concurrent Data Flow Graph

Figure 6.7: IF Statement Transformation

124



125

where the target of the assignment is the output of the component. These statements

often consist of the selection of one expression from among several alternatives based

on the value of one or more conditions.

One method of synthesizing such a design would be to supply functional units

which would perform the necessary operations to produce a value for each expres

sion alternative and each condition expression; the appropriate value for assignment

would then be selected based on the conditional value(s). This would often result

in an inefficient design since most of the computed values would not be used. If

it can be determined that there is mutually exclusive selection of only one of these

alternatives at any time, then designs which share functional units across mutually

exclusive expression alternatives can be evaluated. These designs would tend to show

a reduction in area and improvement in the utilization of components.

In order to improve the quality of Functional designs, the following problems

need to be addressed:

• Complex functions supported by RTL components (for example, ALUs) should

be utilized by the synthesis process, even when the VHDL input descriptions

contain language operators that do not correspond directly to these functions.

• Mutually exclusive operators within the input description should be mapped to

the same component when the cost of such a mapping indicates an improvement

in the design quality.

A Component Synthesis Algorithm (CSA) [RGB90] was developed to perform

these optimizations on the Design Representation. CSA operates on a data flow graph

(DFG) generated from a VHDL Functional description. Two optimization procedures

are applied to the DFG:



126

1. Functionality Recognition - This procedure merges DFG expression subtrees

into single function nodes for which there is an available component to perform

that function. It is driven by the components available in the library and the

functions they can perform. Component library specific information is main

tained in a functionality table which stores the DFG expression subtree patterns

corresponding to the available component functions.

Functionality recognition solves the functionality mismatch problem. Language

operators (or a sequence of language operators) are mapped to component func

tions. For example, the expression A-fB+l maps to the complex ALU function

ADD-INCREMENT.

2. Component Mapping - This procedure solves the problem of merging mutually

exclusive DFG operator nodes into multi-function operator nodes using a clique

partitioning approach. Costs associated with the merging of DFG operation

nodes are computed in terms of gate counts associated with the corresponding

functional unit that will implement the DFG operation node. These costs func

tions take into account additional decoding logic that will be required to select

the function of a multi-function unit as well as connection (multiplexor) cost.

Each operator node in the resultant DFG can now be mapped to an appropriate

component from the supplied library (in this case, a GENUS generic component).

6.3 Design Compiler

The Design Compiler performs the central synthesis task of mapping the be

havior captured in the CDFG Design Representation to a structure specified in the



127

form of a GENUS Partial Design Representation which implements the desired func

tionality. A block diagram of the Design Compiler subsystem is shown in Figure 6.8.

The Design Compiler consists of three major components; an Allocator, a

Scheduler and a Resource Binder. Input to this subcomponent consists of the op- '

timized CDFG Design Representation and user supplied allocation constraints. User

specified allocation constraints are entered using a textual file which determines the

number and types of resources (function units, registers and interconnect units) to

be used by the Scheduler and Resource Binder modules. The constraint file is parsed

by the Constraint Input Parser, and the appropriate components are instantiated in

the.GENUS Partial Design Representation.

As described in section 2.1, the Scheduler performs the assignment of operations

to control steps given the constraints of a unit allocation. These state bindings are

recorded through annotations made to the CDFG. As the Resource Binder creates or

upgrades function, storage and interconnect units, entity, component class and com

ponent instance information is added to the GENUS Partial Design Representation.

The binding of DFG operations, data accesses and DFG node interconnections to

GENUS component instances and component connections are also recorded in the

CDFG Design Representation.

Within the VSS framework. Design Compilation results are maintained in the

GENUS Partial Design Representation and the annotated CDFG. In order to allow

the designer to review these results in textual form, BIF state tables are generated

by the State Table Generator. Results of Scheduling are reflected in the Operation

Based State Table, while resource bindings are shown in the Unit Based State Table.



Allocation

'onstraint!

'GENUS 1
lomponent]
•Library j

Design
Compiler

Constraint

Input ParsM

Allocator

Scheduler

Resource

Binder

SENUS Partia

Design Repres.

GENUS Partial

Design Repres.

Optimized
CDFG

Annotated

CDFG

Annotated

CDFG

Figure 6.8: Design Compiler

128

BIF

State Table

[state
Table

1Gen

Ops
Based

Unit

Based



129

The various Structured Modeling design models are processed differently within

the Design Compiler. For example, in processing Behavioral designs, an explicit

ordering of the allocation, scheduling and resource binding tasks is maintained, while

the allocation and resource binding tasks for Functional designs are performed in the

same procedure. The following subsections will detail the processing steps performed

by the Design Compiler for each design model.

6.3.1 Combinational and Functional Design Compilation

The concurrent nature of the CDFG Design Representation for Combinational

and Functional designs implies that there will be no opportunity to share hardware

resources among operators. Unlike Behavioral designs where the Resource Binder

performs a many-to-one mapping of operation nodes to a hardware component, syn

thesis of these designs involves a mapping of each DFG node to a single or combina

tion of components available in the GENUS library. This underlines the importance

of Representation Optimizations which are applied to minimize the number of op

eration and data access nodes in the DFG sections. The Graph Critic and Graph

Transformations perform the majority of the optimization work on Combinational

and Functional Designs.

Because concurrent descriptions can be considered single state designs in which

one or more events trigger one or more actions in the data path, there is no concept

of machine states as defined by a system clock. Consequently, the Scheduler module

of the Design Compiler is not required for Combinational and Functional Designs.



130

Thus, the primary task of the Design Compiler in the case of Combinational and

Functional designs becomes the allocation and binding of appropriate GENUS com

ponents to each DEC node. As each DFG node is processed, the Allocator extracts

parameters for attributes such as bit width, a functionality list, and edge sensitiv

ity and passes them to GENUS generators. The GENUS component library server

instantiates and returns the desired component class (ALU, register, multiplexor,

etc.) with the minimal functionality required. Instances of this component class are

instantiated by the Resource Binder, and the mapping of DFG nodes to these compo

nent instances is annotated in the design representation. The GENUS Partial Design

Representation maintains this structural view of the design.

As mentioned in the Graph Compilation section, the hierarchy of the VHDL

input description as defined by the nesting of block statements is reflected in the

hierarchy of the CDFG Design Representation. One problem a hierarchical represen

tation poses to the Design Compiler is that of multiple assignments to the same signal.

If this signal is to represent one storage elernent, mapping each WRITE node to. an

unique GENUS register (in order to maintain a structural hierarchy corresponding

to that of the Design Representation) will produce redundant hardware (and most

likely, an incorrect design). Conversely, creating a "flattened" structure by mapping

all accesses to a signal to the same component without first restructuring the Design

Representation may lead to an inefficient and/or incorrect design.

To avoid these problems, the designer can direct the Resource Binder to process

the Design Representation in one of two modes:

• flattened

• hierarchical



131

In flattened mode, all DFGs corresponding to VHDL blocks as specified in the

input description are combined into a single DFG. This DFG is then mapped to

GENUS components.

When the hierarchical mode is selected, the hierarchy of the input description

is preserved; each block is mapped to GENUS components individually. Here, it is

assumed that all assignments made to a signal occur within a single block. A VHDL

entity/architecture pair is created for each DFG block. The partial design hierarchy

is maintained using the entity object of the GENUS Partial Design Representation

as described in section 5.2.1.

6.3.2 Register Transfer and Behavioral Design Compilation

6.3.2.1 Allocation

The Allocation module allows the designer to input the number and types of

resources (function units, registers and interconnect units) to be used when synthe

sizing a register transfer or behavioral design. The following component attributes

can be specified: operation class, operation types, bit width and operation delay.

The operation delay can be expressed in terms of fractions or multiples of a clock

cycle; this allows for chaining of operations in the same machine state or multi-cycle

operations. These units are entered into the GENUS Partial Design Representation,

and this information is accessed by the Scheduler module in order to determine the

available units.



132

6.3.2.2 Scheduling

Two schedulers have been developed and integrated into the VSS framework: a

Mobility Based Scheduler and the Percolation Based Scheduler.

Mobility Based Scheduler

The primary scheduler used in VSS is a variant of the SLICER [PG87] sched

uler which calculates the as-soon-as-possible (ASAP) and as-late-as-possible (ALAP)

schedules in order to determine the range of machine states to which an operation can

be assigned. The scheduler actually consists of two parts: a macro scheduler which

traverses the CFG and assigns states to control point nodes, and the SLICER sched

uler which is applied to all STMT_BLKs encountered. The first state to be assigned

to the STMT_BLK is passed to the SLICER scheduler, along with the DEC nodes in

the STMT_BLK, and the scheduled STMT_BLK is returned.

Two techniques can be employed for the assignment of states across conditional

branches. Figure 6.9 presents a simple conditional branch example with the schedule

produced using each of these techniques. The first technique assigns unique states in

each conditional branch. This results in a control strategy in which a conditional test

is made in one machine state, and based on the result of this test, a branch is made to

the first state of the appropriate branch. No actions are performed in this branching

state. The advantage of this scheme is that in the current state, no knowledge is

required of previous conditional values which resulted in the entry into this state. A

disadvantage is that an overhead in the number of states is required, since operations

in different conditional branches will never share the same state assignment, even

though they are mutually exclusive. Alternatively, each conditional branch can be



13:^

D

p

h

s

STATE COND ACTIONS NEXT

1 T1 = 1 2

T1 = 0 6

2 TRUE A 3

3 T2 = 1 4

T2 = 0 5

4 TRUE B 7

5 TRUE C 7

6 TRUE D 7

7

UNIQUE STATES ACROSS BRANCHES

STATE COND ACTIONS NEXT

1 T1 = 1 A 2

T1 = 0 D 3

2 T1 = 1 & B 3
T2 = 1

T1 = 1 & C 3

to

II

o

3

SAME INITIAL STATE

IN EACH BRANCH

Figure 6.9: State Assignment Across Conditional Branches



134

labelled beginning with the same state assignment. This approach offers the savings

in the number of machine states with the cost of increasing the complexity of the

condition evaluation associated with each mutually exclusive action in the same state.

Percolation Based Scheduler

A Percolation Based Scheduling algorithm [PLNG90] has been integrated into

the VSS system framework. This scheduler is used to perform scheduling on VHDL

input descriptions which consist primarily of loops. Percolation scheduling utilizes

techniques which compact flow graphs beyond basic block (straight line code segment)

limits, potentially resulting in an order of magnitude speedup over serial execution.

In order to schedule under resource constraints, the optimal schedule (without con

straints) is first determined. Next, heuristics are added to map the optimal schedule

onto a system with limited resources. Starting from the optimal schedule is a key

feature of this approach because it provides a realistic lower bound to the sched

uler which can be used to tune the heuristics employed to determine the resource

constrained schedule.

Percolation Scheduling is a system of semantics-preserving transformations that

convert an original program graph ^ into a more parallel one. Its core consists of 4

transformations (Move-op,Move-cj,delete and unify) which are defined in terms of

adjacent nodes in the program graph. The transformations axe atomic and thus can

be combined with a variety of guidance rules (heuristics) to direct the optimization

process. Repeatedly applying the transformations allows data-independent operations

^Here, program-graph is an extension of the conventional notion of control-flow graphs, in that a
node may contain one or more operations, including conditional-jumps. The program-graph corre
sponds to an execution model in which all operationsin a node can execute in parallel. If conditional
jumps are present in the node, their evaluation combines to yield the unique successor node that
executes next. The exact mechanisms by which control-flow is determined in a node is unimportant
in this discussion. The interested reader is referred to [EN89].



135

to "percolate" towards the top of the program graph from the various parts of the

code—hence the name Percolation Scheduling. Operations are packed together in

nodes (states) as PS is applied to a program graph, thereby yielding more parallel

code. The details of the transformations deal with maintaining the semantic integrity,

of all affected paths. Detailed discussions of percolation scheduling and its extension

to multicycle and pipelined operations can be found in [AN88] and [PLNG90].

The optimal schedule without constraints is obtained using the OPT procedure.

OPT is a loop parallelization technique for a loop which does not contain conditional

jumps in its body. It applies to both unicycle and pipelined operations. The idea

behind OPT is simple: the loop is incrementally unwound. As new iterations are

brought in, operations are allowed to migrate upwards (without regard to iteration

boundaries) in the expandable program-graph formed by the unwinding of the loop.

This migration is only limited by the data-dependencies between the operations. If

all operations in the loop body are either involved in some data-dependence cycle, or

depend on operations involved in such a cycle, then a repeating pattern will provably

emerge after a polynomial (and in practice small) number of iterations have been

parallelized in this manner. This pattern will then repeat, as long as more iterations

are forthcoming, so that in effect more unwinding of the loop will not yield further

parallelism. Replacing the original loop body with the pattern discovered (proper

startup and wind-down code is trivially derived in the process of finding the pattern)

then yields a compact expression of the maximum parallelismavailablein the original

loop, subject to the given data-dependencies and operation latencies.

The operation of the Percolation Scheduling algorithm can be summarized as

follows:



136

1. Find the optimal schedule. Scheduling begins from the optimal schedule (the

schedule without resource constraints). This schedule is derived by the OPT

algorithm explained above.

2. Find each operations' mobility and reorder operations. If the number of oper

ations in one state exceeds the number of available resources, some operations

have to be delayed. The mobility [PG86] of each operation has been chosen

as the criterion for delaying operations. Operations with higher mobility are

delayed first because their delay will not necessarily "stretch" the schedule.

After finding the mobility of each operation, the operations are sorted in non-

decreasing order. The last operations in this order are the first to be delayed

(if necessary).

3. Make reservations. The scheduler deals with two kinds of machines: pipelined

and non-pipelined. In the pipelined version, operations are scheduled assuming

that the execution unit can handle a new operation every cycle (state). In that

way, it is not necessary to wait for the execution unit to flush before issuing

the next operation. The non-pipelined version requires such a wait; therefore,

states are reserved so that latency times are not violated. This procedure is

responsible for the insertion of "empty" states where needed.

4. Adjust state I. This procedure delays operations from state 1 due to resource

constraints. An operation which has to be delayedis moved to the next available

state in the program.

5. Percolate operations from I's successor. After (possibly) delaying some oper

ation from state 1, there is a possibility that some of the operations from I's

successor will percolate up. This percolation of operations is due to the addi

tion of "new" states between the "original" I and its successor. As a result,



137

there are cases in which we can hoist operations from I's successor. Operations

are moved up if data dependencies are preserved and resources are available in

earlier states.

6.3.2.3 Resource Binding

Two algorithms which perform the resource binding task of high-level synthesis

for Behavioral designs can be invoked by the VSS Design Compiler: a Frequency

Based Binder and a Gain Based Binder. These algorithms trade off the extent of the

design state space being examined at one time (from a single state through the entire

state space) with the execution time of the algorithm and the resultant design quality.

The main goal of the Frequency Based binder is the assignment of operators which

share similar connection patterns (input and output) to the same functional unit

such that the amount of interconnect is minimized. The Gain Based Binder weighs

the effects of making a binding which offers local gain in the current processing step

on the potential gain that can be achieved upon completion of the design after this

binding has been made.

Frequency Based Binder

Algorithm Overview

The Frequency Based Binder creates input/output connection patterns for each

operation in the DFG. A usage frequency (a measure of the reuse of common con

nection patterns) is used to establish the order in which patterns will be considered

for binding to units. Binding costs consider the tradeoffs of adding functionality to

existing components versus instantiating new components.



138

A DFG section associated with a STMT-BLK which has been annotated with

state bindings is used as the input to the Frequency BasedBindingalgorithm. Patterns

are created for each operation. These patterns are tuples consisting of the following

information:

• assigned state of operation
• operation type

• inputs

• outputs

• control flow condition under which operation is performed

The input/output connection patterns for each operation in the flow graph are

examined to compute a usage frequency for each pattern. This measure is used to

determine the order in whichoperations are to be considered for binding to functional

units. Candidate patterns are sorted by their usage frequency; those with a higher

usage frequency correspond to operations which will tend to reuse existing connec

tions. In this manner, the most frequently used components will be allocated first,

and a larger number of operations will be bound to them.

After an operation is selected for binding, an appropriate unit to which this

operation is to' be bound is chosen. A binding cost is computed for each existing unit

that is available during the operation's assigned time step. This cost consists of two

components:

1. functionality cost - the cost (in terms of area) associated with adding the desired

functionality to the unit such that the operation under consideration can be

performed by that unit.

2. connection cost - an estimate of the interconnection cost based on the rough

placement of datapath components in the eventual layout. This cost function

is described in more detail in the following section.



139

One alternative which is always evaluated is to create a new unit; if no existing

unit is available, a new unit is instantiated. Binding is then performed by updating

the Partial Design representation with the necessary unit and connection information.

The above procedure iterates until all patterns are bound.

The allocator/binder generates a unit based state table reflecting the binding of

operations to units and the required control that is to be supplied to all components

in each machine state. In addition, the interconnected register transfer structure of

the datapath is produced.

Figure 6.10 presents an outline of the Frequency Based Binding algorithm.

Pattern Creation

The following processing options affect the types of patterns created and the

statistics generated by the pattern creation function;

1. operator commutativity - whether or not commutativity of operations is to be

considered affects the common inputs count.

2. register sharing - if storage units are to be shared as function units are, patterns

are created for READ/WRITE variable accesses.

3. operator classes - this parameter determines if units of different classes (e.g.,

LOGICAL (and,or,nand,nor,not), ADDING (+,-), MULT, DIV) are to be con

sidered mergeable into the same functional unit.

Usage Frequency Function

The usage frequency is computed by a weighted sum of the frequency of the op

eration type and the number of common connections for a paxticulax operator. The



140

allocate_and_bind()

{
create_patterii_list() ;
pattern = first pattern on list;
while (there are patterns to bind)

{
j = assigned_state(pattern);

/* Examine all existing components and compute the cost for */
/* binding of current operation to available components. */

for (i = 1 to num_of_units)
if (unit i available in state j)

costCi] = functionality_cost() + connection_cost();
else

costCi] = MAX.COST;

/* Compute cost of creating a new unit. */

cost[num.units + 1] = new_unit_cost() + connection_cost();

/* Select unit with smallest associated cost as candidate */
/* for binding. */

unit = min_cost_unit();
update_partial_design();

/* process remaining patterns */

pattern = next pattern on list;
}

Figure 6.10: Frequency Based Binding Algorithm



141

function used to compute the usage frequency is shown in Figure 6.11. The num-

ber-of-same-ops function returns the total count of operations of the same type in the

design specification (for exarnple, addition operations). The number-of-pattern-matches

function returns the number of patterns which match the current pattern in the num

ber of places specified by the second argument (where places are defined as inputl,

input2 or output of the operation).

usage_frequency(op,pattern)

{
wl = 0.7;
w2 = 0.3;
w3 = 1;
w4 = 2;
w5 = 3;

uf = (wl * number_of_same_ops(op)) + (w2 *
((w3 * number_of_pattern_matches(pattern,1)) +

(w4 * number_of_pattGrn_matches(pattern,2)) +
(w5 * number_of_pattern_matches(pattern,3)));

return(uf);
>

Figure 6.11: Usage Frequency Cost Function

Microarchitecture Connection Cost Function

The microarchitecture connection cost function currently used by the Frequency

Based binder is shown in Figure 6.12. This function estimates a point-to-point in

terconnect cost for a specified source to destination connection. An arbitrary cost

is assigned for connections in which either the source or destination unit is not yet

bound. If other connections exist to the destination input, an estimate of the multi

plexing cost for multiple inputs is included in the cost computation.



142

m_arch_connection_cost(src,dest,input)

/* find units associated with src, dest fg nodes; if units */
/* have not yet been bound, find_src_unit returns -1 */

src_index = find_src_unit(src);
dest_index = find_dest_unit(dest);

if (src_index == -1 || dest_index == -1)
/* assign UNBOUND.COST */
cost = UNBOUND_CONN_COST;

else

if (connection_exists(src_index,dest_index))
cost = 0;

else

if (dest has no other input connections)
cost = SINGLE_CONN_COST;

else

/* If adding a new conn requires a new multiplexor */
/* with additional inputs, add a MUX_UPGRADE_COST. */
if (# of dest input conns */, 2 == 0 I I

# dest input conns == 1)
cost = MUX_UPGRADE_COST + SINGLE_CONN_COST;

else

cost = SINGLE.CONN.COST;
return(cost);

>

Figure 6.12: Microarchitecture Connection Cost Function

Layout Architecture Model

A strip layout architecture is assumed for the data path. The component width

(pitch) for each bit slice is fixed; the height of the component may vary. Each com

ponent has a fixed number of tracks (13) running vertically in metal2 over each bit

slice of the component. These tracks are used to route the interconnect between

components. As components are created, they are placed in a column. This column

is arranged by decreasing bit width of the component (the largest components are at

the top of the column).



143

Layout Connection Cost Function

The layout connection cost function is shown in Figure 6.13. It seeks to minimize

the track density across the entire design. A count of tracks which cross each cell

boundary is maintained.

layout_connection_cost()

{
for (i = each possible position of new component)

{
for (j = each existing component)

density[j] = number of tracks crossing lower boundary;
cost[i] = MAX(density[1..<# components>]);
>

}

return(MIN(cost[!..<# components>])) ;

Figure 6.13; Layout Connection Cost Function

As a new component is to be inserted in the sorted data path column, each

possible placement of the new component is evaluated. The track density at each

component's lower boundary is computed by counting the number of tracks used

to make connections to components in lower rows of the column. After all possible

placements are evaluated, the minimum cost is returned, and the component is placed

in the row of the layout which yields this minimum connection cost.

The procedure is physically restricted by the fixed number of tracks per bit slice;

when this limit is reached, the data path must be partitioned. This partitioning is

not done within the allocation process. It is handled later withinthe SLAM [WCG90]

partitioner. The cost function can be extended to include a penalty associated with



144

this condition in order to influence the allocator/binder to seek to increase the number

of units in order to minimize track density.

Gain Based Binder

Algorithm Overview

The Gain Based Binder performs the binding of variables and operations in a

behavioral description to storage, functional and interconnect units in a data path.

The behavioral description is represented by a data flow graph which reflects the data

dependencies and operation sequence inherent in the description. It is assumed that

scheduling has been performed.

A data flow graph annotated with state bindings is used as the input to the

gain based binding algorithm. Figure 6.14 shows a behavioral description and a

corresponding flowgraph representation which indicates the results of scheduling.

A clique partitioning approach is used on the vertices of a compatibility graph

G (with V vertices and E edges) into K (<= V) disjoint cliques which cover the

graph. Figure 6.15 presents the compatibility graph corresponding to the behavioral

description shown above.

Each vertex of the compatibility graph represents an operation or variable

access in a data flow graph. An edge between vertices indicates that the opera

tions (variables) represented by the nodes can be bound to the same hardware unit.

Operations are compatible if they are of the same operation class (for example, if ad

dition and subtraction are of operation class ADDING and multiplication is of class

MULTIPLYING, addition and subtraction are mergeable while addition and multi

plication are not) and if they are not assigned to the same control state. Variables



STATE 1

STATE 2

STATE 3

u6

ul

u2

u4

u6

dx

opl

ul

u4

op4

:= u * dx;
5 * x;

~ ul - u2;

;= u * u4;

u2

op3

Figure 6.14: Gain Based Binding Example

14"

op2



...:',n&Jf-
il' .-"v _:-i,. j"- '• :- '̂̂

Figure 6.15: Com
laSftr-

146

% *^^,— • * • • '* •f

"" -

are considered compatible (mergeable) if their lifetimes do not overlap. Thus, the

compatibility graph can be represented as.separate graphs, one for operations and

another for variables, or it can be thought of as a single graph in which there will

never be edges between operation and variable nodes.

The cliques formed for the compatibility graph represent function units (storage,

elements) in the partial design to which the member operations (variables) of the!

cliques are bound.

---JS
• ...

A gain value is associated with each edge in the compatibility graph. This

gain value indicates a potential connection cost savings in the partial design if the

elements represented by the vertices connected by the edge are assigned to the same

hardware unit (the gain value may be 0,1,2). For example, if two operations have

a common input and are mergeable, the gain value associated with the edge in the

compatibility graph is 1. Figure 6.16 illustrates this concept by showing the potential

gain that can be achieved if opl and op4 are merged. Since the operation nodes have



147

a common data input, one multiplexor input is saved. This savings is annotated on

the compatibility graph as indicated by the weight of 1 on the edge between nodes

opl and op4.

A clique forest is constructed to generate all possible cliques. The clique forest

is constructed in a bottom-up fashion; the first (leaf) level of the clique tree consists

of the single nodes of the compatibility graph. The second level consists of nodes

which represent a compatible pair of leaf nodes; each leaf node of the pair becomes

a child node of these nodes. Subsequent levels of the clique forest are constructed

by examining each clique of the previous level. The leaf nodes compatible with each

element of the clique are examined. If a new leaf element is compatible with all

elements of the clique, a new clique is added. This procedure is repeated until all

cliques are generated. Figure 6.17 shows the clique forest generated for the example

presented above. The first row represents the leaf cliques, the second row compatible

pairs of leaf nodes, and the third row, compatible triplets. Arcs between the nodes in

this diagram represent the derivation of a larger clique by adding one new leaf node

to a clique from the previous level.

A gain value for each clique is then computed. Like the gain value associated

with edges in the compatibility graph, this metric reflects the possible cost savings

in the partial design which would result if the hardware element represented by this

clique is used.

The cliques are then sorted by their gain value. Several strategies may be

employed to select a seed clique which begins the selection process for covers (sets of

disjoint cliques). For example, the cliques containing the laxgest number of elements

or those with the largest associated gain values may be used as seeds. Once a seed is



u dx u u4

input is '
mergeable I
gain = 1 I

u u dx u4

dx u4

Figure 6.16: Computation of Gain Value

148



5

O

X

O

dx

O

u

O

ul,u4

149

op4

4,u6 opl,op4 op2,op4

ul,u4,u6 u2,u4,u6

Figure 6.17: Clique Forest

selected, the remaining available cliques which do not contain an element common to

the seed are examined to form a complete cover of the compatibility graph vertices.

Each cover becomes a partial design binding alternative.

Algorithm Details and Alternatives Investigated

The following parameters had an influence on the decisions made during the

clique formation procedure and the selection of cliques used to form clique covers of

the compatibility graphs:

1. Determination of Cliques. The degree to which operation nodes were to be

considered compatible depended on the determination of which operations could

be merged into the same clique (and ultimately, the same functional unit).

This parameter could be varied from the extremes of allowing the merging of

any two operators to the more realistic level which allows merging of selected

arithmetic/logic operations found in typical ALUs.



150

2. Selecting a seed clique. The results of cover formation were influenced greatly

by the selection of the seed clique. Intuitively, it would seem preferable to

select a seed clique which contained the largest number of elements, or had the

largest associated gain values. Due to ties in the cost function values at critical

decision points in the procedure, the results obtained did not always validate

this assumption.

3. Cover formation strategies. The following cover formation strategies were ex

amined:

• first fit - The first clique which satisfied the selection criteria at the current

processing step was used.

• user selected partial cover - The designer was allowed to select one or more

cliques from the clique forest. The Gain Ba^ed Binder would then select

the remaining cliques necessary to complete the compatibility graph cover.

• • exhaustive search - The algorithm attempted to examine all possible com

patibility graph covers. Naturally, the computational expense of this op

tion was prohibitive in most cases.

4. Cost functions. Several cost functions were used to evaluate each design pro

duced by the pairing of a variable cover with an operator cover. These functions

included:

• maximum gain - a summation of the gains associated with each clique

belonging to the selected cover.

• number of multiplexors and multiplexor inputs

• function unit area cost



15 i

6.4 Control Logic Compiler

Upon completion of the Design Compilation phase for Behavioral designs, a

BIF unit based state table is produced which serves as a behavioral description of

the controller. In order to generate either a boolean equation description (in the

form of VHDL concurrent signal assignment statements) or control unit structure (in

the form of a VHDL structural description) in the current VSS system framework,

a Control Logic Compiler module is invoked. This tool generates a VHDL dataflow

description from the BIF state table. A second pass through the VSS system targeted

to the Functional design model will produce a structural description consisting oflogic

gates and a state register. Either specification of the control unit is incorporated into

the GENUS Partial Design representation for the design.

6.5 Interface to Logic Synthesis

In order to pass the results produced by VSS to the MILO system [VG88] tech

nology mapping and optimization, the GENUS Partial Design Representation must

be captured in textual form. The selected interchange format is ,a VHDL structural

netlist. In addition, the coupling of MILO to the Intelligent Component Database

(ICDB) [Che90] requires that the netlist must be preprocessed in order to install the

design in the database and provide links to the necessary component information

required by the logic synthesis tools. Figure 6.18 shows the modules required for

integration of VSS with the MILO microarchitecture and logic optimization tool.



Partial Design Representation

n I 1

I I CDFG I
I I

I
GENUS

I Partial Design
L _Stmc^r^ J

Netbst

Generator

VHDL Netlist

^GENUS comps)

Netlist

Flattener

Flattened

VHDL Netlist

ICDB

Translator

VHDL Netlist

(ICDB comps)

MILO

State Table

Generator

BIF Unit

Based State

Table

Figure 6.18: VSS Interface to Logic Synthesis

152



153

6.5.1 Netlist Generator

The Netlist Generator processes the GENUS Partial Design Representation in

order to generate a text file for the VHDL structural netlist specification of the syn

thesized design. A VHDL entity/architecture pair is used to represent each level of

the design's structural hierarchy. If the netlist contains hierarchy, a VHDL configura

tion statement is generated to link components in higher levels of the hierarchy with

their corresponding decomposition as defined in lower level entity/architectures.

6.5.2 State Table Generator

The BIF State Table Generator traverses the control flow graph and embedded

data flow graphs to produce either an operation based or unit based state table. Each

VHDL process which is synthesized to a control unit/data path structure will have

BIF tables generated for the behavior of the control unit.

6.5.3 Netlist Flattener

Since the MILO system can currently process only a single level of hierarchy

in the input netlist, the design produced by VSS must first be flattened. This is ac

complished using a Netlist Flattener. Given a hierarchical VHDL netlist, all complex

components are replaced with their equivalent structure in terms of the lowest level

components, in this case GENUS generic components. The output of the flattener is

a single entity/axchitecture VHDL structural description.



154

6.5.4 ICDB Translator

Some VHDL structural descriptions produced by VSS will consist either of a

structural hierarchy or a mixture of structural components and behavior of com

ponents. For example, a Functional design processed by the Component Synthesis

Algorithm will generate a behavioral description of a random logic component which

provides the function select lines for a multi-function unit. Similarly, the VHDL de

scription of a control unit produced by the Control Logic Compiler might be present

in the VHDL netlist generated by VSS. For each component found in the netlist, the

MILO system requires that a boolean equation level description of the component

must be present in the Intelligent Component Database (ICDB).

In order to enter these component behavioral descriptions in the database and

identify the components with their corresponding descriptions, the ICDB Translator

is invoked. This module will accept two input formats: either a flattened netlist pro

duced by the Netlist Flattener, or a netlist with at most two levels of hierarchy, the

topmost level consisting of a VHDL structural description with leaflevels (such as the

function select logic or control unit components) described using VHDL concurrent

dataflow statements. A modified VHDL netlist is produced which renames compo

nents so that they can be appropriately accessed through ICDB queries. Appropriate

ICDB calls are made to generate the behavioral descriptions corresponding to each

component necessary for processing by MILO.



155

6.6 Simulation Interface

VHDL input descriptions have been simulated using the Vantage Analyst com

mercial VHDL simulator [Van90]. At present, input test patterns are generated man-,

ually. A post-processing step adds VHDL models for the GENUS components used in

the VHDL structural netlist description produced by VSS synthesis. The structural

description can then be exercised with the same test pattern stimuli to verify the

functional correctness of the synthesized design.

6.7 User Interface

A graphical display under either the Suntools or X Windows environments pro

vides the capability to view results generated by the synthesis process such as hierar

chical CDFGs and VHDL structural netlists. The utility accepts two input formats:

either a file containing a textual "netlist" format of a CDFG, or a VHDL structural

netlist file. Options such as node expansion, window panning, highlighting of node

sources and destinations and zooming allow the designer to visually examine the

Design Representation created by VSS.

Figure 6.19 shows a display generated by this utility.



07
t)f BLKlDai

QuR I Help • Display Flit • CtMnge dir

Opcons ind fnwcstfon

SetOpOont Purge DB Execute VSS ICDBTranslator Control Logic CcmpUtr

VHDL Source

Flowgnph

Partial Design

B P State Tab e

i

Figure 6.19: Flowgraph and Netlist Display Utility

156



Chapter 7

Experiments

This chapter presents experiments performed using the VHDL Synthesis System

(VSS) described in the previous chapter. Table 7.1 lists the benchmarks which were

used to verify the operation of VSS and validate the modeling guidelines of Structured

Modeling. A brief description of each benchmark is provided which indicates the

variety of designs which can be synthesized by VSS. In addition, a count of VHDL

source lines in the input description is specified which gives an indication of the

complexity of the benchmark.

The experiments listed in this table were used to demonstrate the effect of differ

ent modeling styles on the quality of the design produced by VSS. Results produced

for four representative benchmarks (Rockwell counter, DRACO,aAM2910-and 8251

USART) are presented in this chapter. Several alternative VHDL models are exam

ined for each benchmark, and it is shown that when applicable Structured Modeling

considerations are applied to models which do not comply with the standards, the

quality of the design is improved. Another aspect to be considered in these experi

ments is a comparison of the human versus synthesized designs, since the examples

157



158

Benchmark Description VHDL source lines

Functional Behavioral

Markl simple CPU 30

HAL diff. eqn. computation 35

Rockwell counter count sequence 40 42

Elliptic filter DSP data path 40

Bus interface microprocessor peripheral 45

Booth multiplier multiplication algorithm 54

FACET data-dependent data ops 55

Armstrong counter up/down counter to limit 92

AM2910 microprogram controller 165 260

AM2901 bit-sliced ALU 333

Multi-process arbiter bus arbitration 440 267

DRACO peripheral interface chip 845 657

8251 USART 953

Table 7.1: Benchmarks Synthesized by VSS



159

examined in detail model commercial or application specific circuits. A third motiva

tion for these experiments is to observe the effects on the quality of the synthesized

design when using a Functional versus a Behavioral modeling style.

7.1 Rockwell Counter

This experiment was conducted as a part of a case study which investigated the

design process and synthesis tools used in the UC Irvine CADLAB design environ

ment [GLVW90], of which VSS is a part. The benchmark was supplied by Rockwell

International as a member of the Silicon Research Consortium (SRC).

Although this benchmark is of minimal complexity, we sought to investigate the

following objectives in synthesizing this benchmark using VSS:

• Given a VHDL description developed without knowledge of the Structured

Modeling, what modeling styles and VHDL language construct preferences

would be used by the modeler?

• Could VSS synthesize the specification provided? If so, what processing steps

were required? If not, could Structured Modeling practices be used to rewrite

the description such that it would be synthesizable by VSS?

• What differences in the quality of the produced design' would result from the

application of various Representation Optimizations?

• What modeling style (Functional or Behavioral) is appropriate for this type of

design?



160

7.1.1 Problem Description

A block diagram of this conceptual design is shown in Figure 7.1. There are

four input and one output ports used for external communication. CLK is the system

clock. RST is a one bit control line (active high) which indicates that a synchronous

reset is to be performed. LDE is a one bit control line (active high) which indicates

that a data value DTI (an integer in the range 0 to 4095) is to be loaded into the

counter.

RST

LDE

CLK

Control

Logic

DTI

Counter Value

Computation
Data Path

Current

Counter

Value

DTO

Figure 7.1: Rockwell Counter Block Diagram

The circuit to be synthesized has the following specification:



161

• The counter has a start count of 0 and a terminal count of 3327.

• For each clock (CLK) strobe, the counter increases by 208. If the count is

greater than 3327, the counter will st^t at the previous beginning of the count

plus 26 (in this case 0 + 26); if the previous beginning of the count plus 26 is

greater than 207, then the count will start at the previous sequence plus 1.

• Portions of the first two count sequences are shown in Figure 7.2. The complete

counting pattern of the counter consists of a total of 26 sequences. The counter

counts the first column of the first sequence top to bottom, then the second

column, and so on. When it reaches 3327, it will wrap around back to 0.

• The counter also has an active high loadenable (LDE), which loads a data value

(DTI) synchronously with the rising edge of the clock. The state machine must

adjust to the new state so as to keep the same counting sequence.

• The counter must also have a synchronous reset (RST).

7.1.2 VHDL Behavioral Model

A VHDL description ofthe Rockwell counter written using the VHDL behavioral

design style can be found in Appendix B.

This model consists of a nested IF staterrient which represents the conditional

assignment to the counter value DTOJREG. If transformations are not applied to

this description, VSS will target it to a CU/DP implementation. In this case, the

synthesized design would consist of 8 machine states. The reason for this is that the

CU/DP design model requires one state for the evaluation of a conditional branch

expression, and a second state for branching ba^ed on the expression value.



162

0000 0026 0052 0078 0104 0130 0156 0182 0208 0001 0027 ... 0183 0209
0208 0234 0390 0209
0416 0442 0598 0417
0624 0650 0806 0625
0832 0858 1014 0833
1040 1066 • 1222 1041
1248 1274 1430 1249
1456 1482 1638 1457
1664 1690 1846 1665
1872 1898 2054 1873
2080 2106 2262 2081
2288 2314 2470 2289
2496 2522 2678 2497
2704 2730 2886 2705
2912 2938 3094 2913
3120 3146 3172 3198 3224 3250 3276 3302 3121

3328 3354 3380 3406 3432 3458 3484 3510 3329 3355 ... 3511

Figure 7.2: Rockwell Counter Count Sequence

The application of Control Flow to Data Flow transformations restructures the

CDFG Design Representation such that it will be mapped to a Functional design

model. As the synthesis results show, this representation results in a cleaner, more

efficient design than would be achieved by targeting this design to the CU/DP design

model. When transformations are applied, the control of the conditional assignment

has been moved from the control unit into the data path. In this example, the expres

sions used to determine branching conditions are generated by logic found in the data

path. For the Behavioral model, these conditions are evaluated in the appropriate

machine state and are stored in latches, and the latched values are input to control

logic that implements a finite state machine (FSM). This FSM requires several clocks

to perform the conditional branching as specified in each IF and ELSIF clause in the

input description. After transformations are applied, the design becomes a concur

rent model in which all conditional expressions are evaluated simultaneously; these



163

signals axe used to select the appropriate data value to be assigned to DTO-REG on

each clock.

7.1.3 VHDL Functional Model

The process description using sequential statements was converted to a descrip

tion with concurrent statements in order to conform to Structured Modeling guide

lines. An explanation of our reasoning for this modeling style is given in the next

subsection.

The following modifications were necessary in order to convert the process level

description into a synthesizable functional description:

1. Assignment to the output port is made via a signal assignment. This follows the

Structured Modeling practice of using variables to represent values involved in

data operations (which may require storage elements) and signals to represent

the transfer of stored values (via wires) to the output port.

2. The Graph Compiler for VSS does not perform constant propagation optimiza

tions currently. In order to reduce the amount of unnecessary hardware that

would be generated for computations such as the addition and subtraction of

constants, these optimizations were performed manually on the input descrip

tion.

The equivalent dataflow (block) description which is preferred when using our

Structured Modeling methodology can be found in Appendix B.



164

7.1.4 Structured Modeling Considerations

This design is classified as a Functional description in the Structured Modeling

design style taxonomy. This functional design is a "single state" design where several

conditions are tested on each clock event. The counter is a synchronous design; de

pending on the control signal values (RST and LDE), a reset, load or count operation

will occur (with reset given the first priority, load second and count third).

In investigating the alternatives for modeling a Functional design using VHDL,

Structured Modeling favors a VHDL block description as the most appropriate method

for describing such a design. Some reasons for the preference in this example include:

1. Clock (CLK) and reset (RST) signals can be identified using subtypes defined

within our VHDL synthesis package.

2. The VHDL block statement provides a convenient template which allows the

synthesis tool to identify the storage class and function of various signals.

Following the Structured Modeling guidelines, the block guard is used to repre

sent an event such as a positive edge transition of the CLK signal.

3. Conversely, the process description seems to be more appropriate for describing

sequential, multi-state designs. The design model for such designs consists of

a cleanly partitioned control unit/data path pair. The process description for

the benchmark of this particular case study presents the following problems for

synthesis:

4. Identification of clocked storage elements is difficult. While the VHDL dataflow

description style provides the guarded signal assignment in which the clock

event can be expressed in the block guard (an explicit control of any assign

ment made to the guarded signal), no comparable construct exists in the VHDL



165

behavioral description style. Thus, it is impossible for the synthesis tool to dis

tinguish which variables in a Behavioral (process) description should be mapped

to registers and which should be mapped to wires. This ambiguity led to the es

tablishment of the Structured Modeling convention that variables defined within

a process are mapped to registers, while signals are used for inter-process com

munication.

5. Assignments to the same signal/variable are distributed among conditional

branches. Unlike the dataflow descriptions, where a single conditional assign

ment statement is used to enumerate all assignments of data values to a variable

under a corresponding condition, the behavioral description distributes variable

assignment information throughout the description. Therefore, the synthesis

tool must collect all of these assignments made under all conditions and make

an assignment to a single variable. In theRockwell counter example, assignment

to the DTO_REG variable is made in every conditional branch.

7.1.5 VSS Synthesis Results

Functional Model Processing

The Functional (block) model of the Rockwell counter benchmark shown in

Appendix B was first synthesized by VSS without invoking the Component Synthesis

Algorithm (OSA). This design is referred to as rw_cntr_func in the following discus

sion. A second run was performed which invoked the CSA algorithm. This design is

called rw-cntr-func-csa.



166

Figure 7.3 shows the netlist composed of GENUS generic components pro

duced by the VSS system for the rw_cntrJunc.csa design. The right half of the

schematic shows the data path synthesized to perform the counter value computa

tions. Currently, constants are treated as single word ROMs in the VSS system. The

left half of the schematic consists of glue logic used to select data inputs and ALU

functions. The COMPARATOR LOGIC block consists of random logic used to com

pute the conditional bits derived from the conditional expressions of the VHDL input

description.

Figure 7.4 presents a VHDL behavioral description produced by the CSA algo

rithm. This description specifies the behavior of the ALU select logic. VSS processes

this description in the Combinational mode in order to generate a gate level structure

for this and other SELECT LOGIC components.

Behavioral Model Processing

Three experiments were performed to synthesize the Behavioral (process) de

scription of the Rockwell counter:

1. VSS was invoked on the Behavioral input description (this design will be called

rw_cntr_beh). Since no transformation were applied to this model, the Mobility

Scheduler and Frequency Based Resource Binder were invoked to process the

Behavioral design. A multi-state design results, requiring a control unit gener

ated from the BIF state table description.

2. A second run (identified as rw_cntr_beh_trans in the subsequent discussion)

applied the CFG to DFG transformations; this results in a design in which

processing is completed using the Functional Design Compiler.



161

LDE

208 3094 3301

MUXl

SELECT LOGIC
MUXl MUX2

MUX2

SELECT LOGIC

12 12

ALU

SELECT LOGIC

12

COMPARATOR DTOJREG

LOGIC

Figure 7.3: Structure Produced by VSS for Functional Model



— TRUTH TABLE:

0621 Function

00010 1 ADD
00001 1 SUB
00000 1 SUB ,
10000 ILID
01000 ILID
00100 ILID

entity TRUTH_TABLE84 is
port (C62: in BIT_VECT0R(4 downto 0);

CADD,CSUB,LID: out BIT) ;
end TRUTH_TABLE84;

—VSS: design.style COMBINATIONAL

architecture dataflow of TRUTH_TABLE84 is
begin

CADD <=

((not C62(4)) and (not 062(3)) and (not 062(2)) and
062(1) and (not 062(0)));

CSUB <=

((not 062(4)) smd (not 062(3)) eind (not 062(2)) aind
(not 062(1)) and 062(0)) or

((not 062(4)) and (not 062(3)) and (not 062(2)) and
(not 062(1)) and (not 062(0)));

LID <=

(062(4) and (not 062(3)) and (not 062(2)) and
(not 062(1)) sind (not 062(0))) or

((not 062(4)) eind 062(3) and (not 062(2)) and
(not 062(1)) and (not 062(0))) or

((not 062(4)) and (not 062(3)) and 062(2) and
(not 062(1)) and (not 062(0)));

end dataflow;

Figure 7.4; VHDL Description of the ALU Function Select Logic

168



169

3. A third run (rw_cntr_beh_trans_csa) applies CSA to the transformed behav

ioral model.

Figure 7.5 shows the structure synthesized for the VHDL Behavioral model of

the Rockwell Counter (rw_cntr_beh). The control unit appears at the far left of the

schematic. As with the select logic generated for the Functional design to which the

CSA algorithm was applied, a gate level implementation of the control unit was also

synthesized.

Figure 7.6 shows the data path generated for the transformed description of

the rw_cntr_beh_trans design. Note that all select lines for the function unit and

multiplexor select logic have been embedded in the data path.

Finally, Figure 7.7 shows the data path generated for the transformed descrip

tion of the rw_cntr_beh_trans_csa design.



E|1 ECT

i

^3 2 ^^^5

VVVXViMkvVWWJ

1® niREC

Figure 7.5: Design for Rockwell Counter BehavioraJ Description (CU/DP)

170



171

18^^^^^^^la^pqoqoooooooo it

iQREG

T

Figure 7.6: Design for Transformed Behavioral Description



172

T

^3

Figure 7.7: Design for Transformed Behavioral Description with CSA



173

7.1.6 Analysis

Table 7.2 summarizes the VSS processing options and design metrics achieved

for each ofthe five experiments performed using the Functional and Behavioral VHDL

models of the Rockwell Counter. The transistor count metrics have been partitioned

into counts associated with functional units (FU), comparator units (COMP), multi

plexors (MUX), registers and other storage elements (REG) and random logic (RL).

Several observations can be made in analyzing these results:

1. Due to the relativelysmall sizeof this example, the transistor count is dominated

by the ALU, adder/subtracter and comparator components used (these units

account for 33 to 62 percent of the transistor count in the numbers shown).

Thus, the CSA algorithm improves the design in terms of transistor count by

merging functional units.

2. The design synthesized from the Functional model without applying CSA has

a negligibly smaller transistor count than the run which applied CSA. This

result can be explained by looking at the random logic portions of the designs.

CSA produces select logic which is suboptimal (has not been processed by logic

. synthesis).

3. The Behavioral design transistor count is actually increased by 2% when CFG

to DFG transformations are applied. This can be attributed to the fact that

the Behavioral design used a single comparator unit which could be shared

across machine states, while the transformed design requires three concurrent

comparisons. However, it is interesting to note that after CSA is applied to the

transformed design, the result is comparable in quality to the design synthesized

for the Functional model using CSA.



174

VSS Processing Options

Model Struc. Mod. CSA CFG Scheduler Resource

Style Trans. Binder

rw_cntr_func Functional no no none flat DFG

rw_cntr_func_csa Functional yes no none flat DFG

rw_cntr_beh Behavioral no no Mobility Freq. Based

rw_cntr_beh_trans Behavioral no yes none flat DFG

rw_cntr_beh_trans_csa Behavioral yes yes none flat DFG

Design Metrics

Model Transistor Count

FU COMP MUX REG RL TOTAL

rw_cntr_func 1140 1008 672 576 80 3476

rw_cntr_func_csa 672 1008 720 576 506 3482

rw_cntr_beh 792 420 1080 960 362 3614

rw_cntr_beh_trans 1140 1008 960 576 10 3694

rw_cntr_beh_trans_csa 672 1008 1032 576 202 3490

Table 7.2: VSS Results for the Rockwell Counter Benchmark



175

4. Another fact which indicates that the use of the behavioral description style

was inappropriate for this design is that in order to perform one count in the

rw-cntr_func_csa and rw_cntr_beh designs, more clocks per count .must be sup

plied to the Behavioral design versus the Functional design. This is due to

the fact that the CU/DP architecture of the rw_cntr_beh design requires extra

states to determine next state sequencing.

7.2 DRACO

This experment involves another industrially design chip developed at Rockwell

International.^ The design is more substantial in complexity, allowing for investi

gation of the following attributes of the VHDL Synthesis System and Structured

Modeling:

• The modeling of the functionality of the design using temporal partitioning

(grouping all operations whicheffect any component as a result of the occurrence

of an event) versus a functional partitioning (collecting all operations- which

occur for a component or a group of components over all time).

• What techniques or modeling guidelines are required to properly model various

storage elements (registers, buses, wires) within the same description.

• How will the partitioning of the VHDL input description (by using a hierarchy

of blocks or processes) be reflected in the synthesized design.

^Rockwell International has granted U.C. Irvine permission to study the DRACO design for
educational purposes.



176

7.2.1 Problem Description

DRACO is a peripheral interface Application Specific Integrated Circuit (ASIC)

developed by Rockwell International for numerical control applications. The behav

ioral model was generated from a data sheet of the fabricated chip, which consisted

of a description of the chip's input-output functionality, its physical and operational

characteristics, and a functional block diagram. The data sheet contained very lit

tle abstract behavioral information. The VHDL behavioral model was developed

through reverse engineering of the data sheet description, supplemented by further

consultation with designers of the DRACO ASIC at Rockwell International [GD90].

A block diagram of the DRACO chip is shown in Figure 7.8. The primary

function of the DRACO chip is to interface 16 I/O ports to a microprocessor's 8 bit

multiplexed address/data bus and control signals. The chip consists of three main

functional blocks; the address decoder section (ADRDEC), the checksum/parity/error

computation section (CSPARITY), and the input/output interface section (10).

Functional Partitioning

The ADRDEC block performs the following functions:

• latches the address byte and its associated parity bit

• generates and compares the parity on the address
• decodes the address to generate control signals

• implements the electronic key, used to control the loading of the chip's config
uration

The CSPARITYblockconsists ofhardware whichgenerates and validates check

sums and parity bits associated with incoming and outgoing data. A configuration



DATA_BUS DRACO

PARITY

POWER

CE_L

RESET_L

READ_L

WRITEJL

ALE

ERROR_L

ADRDEC

Address

Latch
Address

Decoder

TO

Output
Buffer

Clock Output
Logic Register

Direction

Register

Parity
Latch

Electronic

Key

CSPARITY

Conflg
Register

Checksum

Logic

Error

Detect

Logic

Figure 7.8: DRACO Block Diagram

177

IO_BUS

ERROR_L

PAR-CUT



178

register in this block selects the various parity and checksum error checking options

available on the DRACO chip.

The 10 interface consists of 16 bidirectional ports, and the appropriate selection

logic to enable staggered output of the chip and to control the direction of data flow.

Temporal Partitioning

The behavior of the DRACO chip can be modeled using a state diagram con

sisting of the following eight states;

1. Reset

2. Chip Enable

3. Address Cycle

4. Read Cycle

5. Write Cycle

6. Idle

7. Chip Disabled

8. Power Off

Figure 7.9 shows the state transitions possible between these states.

These eight states are combined to perform three primary operations:

• allow data to be READ out of the chip

• WRITE data into the internal registers of the chip

• set the configuration of the DRACO chip

For a data access out of DRACO, the chip passes through the Address Cycle

and the Read Cycle. For this to occur, the following events take place: the address

appears on the address/data bus, an address latch enable (ALE) signal goes low, a

read enable (READ_L) signal goes low, and data is placed on the address/data bus.



ALE

LOW

POWER

LOW

RESET_L
LOW

READ_L

LOW

POWER

UP

^OWER HIGH

CE_L

LOW

CHIP
ENABLE

WRITE_L

LOW

WRITE
CYCLE

Figure 7.9: DRACO State Diagram

179



180

For a write to DRACO, the chip sequences through the Address Cycle and the

Write Cycle. In order for this operation to execute, the address first appears on the

address/data bus, ALE transitions to low, a write enable (WRITE-L) signal falls,

data appears on the address/data bus, and WRITE_L rises. As ALE goes low, the

address (if valid) is latched into DRACO. When WRITE_L rises, data is written into

the registers of DRACO.

Setting the configuration of the DRACO chip involves the unlocking of the

electronic key, the writing of the configuration into DRACO, and the relocking of

the electronic key. The electronic key is unlocked by writing a specific data value

into a specific location. The configuration value is also written to a specific address.

Writing to an illegal address or writing an illegal data value to the electronic key will

relock the key.

7.2.2 Structured Modeling Considerations

Several Behavioral and Functional models of the DRACO chip were developed to

observe the differences in the design quality of the synthesized results. The following

subsections outline the differences of each model. A model name will be associated

with each model, and the model will be referred to by that name in subsequent

discussions.



181

Behavioral Model

draco_beh

This model was the first VHDL model derived from the data sheet specifica

tion of DRACO. It consists of a model written with VHDL behavioral constructs.

The model uses a temporal partitioning of the design into the eight states mentioned

previously. VHDL process statements were used to model each behavioral state; all

operations which occur in each state were modeling in the same process. This descrip

tion will be synthesized with and without the application of Graph Transformations.

Functional Models

draco_rw_schem

This is a VHDL structural description derived directly from the logic schematic

produced by Rockwell International. No synthesis of this model was performed; it

was used as a point of reference for comparison of gate and transistor counts of the

synthesized designs.

dracoJlogic

A Functional description was derived which described each component found in

the Rockwell logic schematic using VHDL concurrent assignment statements. As the

description was organized into a hierarchy using VHDL block statements, the par

titioning followed that of the schematic. Consequently, this model closely reflected



182

the structure of the logic schernatic. This resulted in a cleaner partitioning of as

signments made under common events (as reflected in block guards used to trigger

guarded signal updates).

draco_func2

This Functional model was created by first translating the original process level

model to an equivalent block model and then applying Structured Modeling guide

lines. In this model, a direct translation of the assignment statements found in the

Behavioral description was made in place (for example, assignments to the same sig

nal were made in various places in the description; separate concurrent assignment

statements were formed in the equivalent Functional description). These multiple

assignment statements were then combined, conditional clauses were coalesced, and

an attempt was made to collect assignments made under similar conditions and guard

conditions into the same VHDL block statement. Thus, this model differs from the

dracoJogic model in that the criteria used for partitioning the model into blocks was

assignment under common conditions, rather than common structure as reflected in

the Rockwell schematic.

draco_func3

This model is a higher level Functional model which used temporal partitioning

of the DRACO functionality into the three primary operations outlined earlier. Each

operation was modeled using a VHDL block statement.



183

7.2.3 Analysis

The number of RTL components in this design makes it impractical to include

the synthesized schematic in this context. Table 7.3 compares the results of VSS

synthesis for the various DRACO models. In addition to the breakdown of transistor

count by unit type, the last column of the Design Metrics table shows a ratio of the

total transistor count of each model to the count produced for the dracojw^chematic

which serves as a basis of comparison to human quality design.

The Functional dracoJogic model has a structural implementation that is actu

ally 7% smaller than the human design. This can be traced to additional flip flops and

random logic in the draco-rw_schem design which are used to generate clocks for the

storage elements on the DRACO chip. This special clocking logic was not specified

in the original data sheet from which the VHDL model was generated; therefore, it

does not appear in the dracoJogic model.

The draco_func2 and draco_func3 models are roughly 70% larger than the human

quality design. Factors which contribute to this difference include:

• Conditional expressions used to test for equality comparisons (for example,

a check that the address bus is carrying a particular hexadecimal value) are

implemented using full comparators by VSS. When logic optimization is per

formed on comparator units for which one input is a constant (as would be the

case in the address comparison example above), a simpler gate level structure

would result. As can be seen in the DRACO results table, the draeo_func2 and

draco_func3 designs contain three times the number of comparison units as does

the draco_rw_schem design.



184

VSS Processing Options

Model Struc. Mod. CSA CFG Scheduler Resource

Style Trans. Binder

dracoJogic Functional no no none hier. DFG

draco_func2 Functional no no none hier. DFG

draco-funcS Functional no no none hier. DFG

draco.beh Behavioral no no Mobility Freq. based

draco_beh_trans Behavioral no yes none hier DFG

Design Metrics

Model Transistor Count Ratio

FU COMP MUX REG RL TOTAL

draco_rw _schem 240 2240 64 3696 1088 7328 1.00

dracoJogic 240 2212 32 3264 1080 6828 0.93

dracoJunc2 480 6300 1440 3552 1144 12916 1.76

draco_func3 480 6636 672 3168 1238 12194 1.66

draco_beh 5040 504 6942 6960 10616 30062 4.10

draco-beh-trans 480 6328 15488 4320 2106 28722 3.92

Table 7.3: VSS Results for the DRACO Benchmark



185

Based on experiments run using VSS and MILO [VG88] which compared the

transistor counts of full (equality) comparator components to a gate level im

plementation, it was shown that the gate level implementationwas 50% smaller

than the comparator unit on the average. If this logic optimization is taken

into account in the draco_func2 (which consists of 56 8-bit comparators and

2 1-bit comparators) and the dracoJunc3 (59 8-bit comparators, 2 1-bit com

parators) models, then the optimized transistor counts would be reduced by

approximately 3200 transistors. This translates into designs which are within

34 and 21 percent, respectively, of the draco_rw_schem standard ofcomparison.

The dracoJunc2 and dracoJunc3 designs contain one more functional unit

and more random logic than does the draco_rw_schem design. VSS translates

boolean expressions found in the VHDL input description into a straightfor

ward, suboptimal gate level implementation. This random logic is reduced by

logic optimization. Since the MILO system groups certain regular components

(ALUs, comparators, etc.) along with logic gates in order to optimize random

logic, it is difficult to determine the effect of logic optimization on the various

categories of components (FU, COMP, MUX, REG, RL) shown in the VSS re

sults. However, preliminary results reported on processing of the dracoJunc2

and draco_func3 models by MILO indicate a reduction of approximately 40 to

50% in the amount of random logic remaining after optimization. Taking this

improvement into consideration for the RL category, the draco_func2 model

transistor count is reduced by 515 transistors (improving it in comparison to

the draco_rw_schem design by 8%), and the dracoJuncS transistor count is re

duced by 558 transistors (a reduction of 9% when compared to draco_rw_schem)

netlist.



186

The sizes of the designs produced by VSS from the Behavioral model are signif

icantly larger than those generated for the Functional model. This can be attributed

to the following factors:

• The VSS Graph Compiler does not perform compiler optimizations such as

common subexpression elimination. This results in replicated conditional ex

pressions in the CDFG which are mapped to redundant control logic in the

structure. Using the same estimation of improvement of the random logic tran

sistor count as above, the draco.beh model would be reduced by 5300 transis

tors after logic optimization, while the draco_beh_trans model will be reduced

by 1050 transistors.

• The partitioning of the VHDL input description into processes can at times

result in duplication of functional units. Because each process is mapped to

a separate CU/DP architecture, the design model will not allow sharing of

resources across process partitions. Thus, VSS cannot detect parallelism across

these process partitions. In this example, a checksum calculation is performed

in two processes; because it cannot be determined that these computations are

mutually exclusive, dedicated resources are allocated in each CU/DP associated

with the processes. The Functional model utilizes a functional partitioning

which shares the checksum computation resources.

• In the behavioral model, registers are being allocated for variables which should

be wires. This is a result of the difficulty in determining which variables should

have storage allocated to them and which should be implemented as wires. In

order to make this distinction. Structured Modelingguidelines were established

which map eachvariable within a process to a register. Signals (which cannot be

declared local to a process) are defined in the block which encloses the process



187

and are used for inter-process communication. In this example, the VSS system

incorrectly binds 14 variables which should be wires to registers (accounting for

816 transistors), and the .A.DD_DATA bus to a register (accounting for another

384 transistors).

The CFG to DFG transformations introduce a substantial amount of multiplex

ing. This is due to the fact that the description consists of a large number of

conditional (IF) statements. Any assignment made to a variable in any con

ditional branch will be transformed into a DFG representation consisting of a

tree of CHOOSE.VALUE nodes (mapped to multiplexor components). This

multiplexor tree is then used to select the appropriate data value based on the

branching conditions.

7.3 AM2910 Microprogram Controller

7.3.1 Problem Description

The Am2910 microprogram controller is an address sequencer which controls the

sequence of execution of microinstructions stored in microprogram memory [SBN80].

A block diagram of the Am2910 is shown in Figure 7.10. In addition to the capability

of sequential access, it provides conditional branching to any microinstructions within

its 4096-microword range. -A last-in, first-out stack provides microsubroutine return

linkage and looping capability. There are five levels of nesting allowed for microsub-

routines. Microinstruction loop-count control is provided with the count capacity of

4096.



RLD

Control

CCEN

ENABL

CLK

A MUX

Figure 7.10: Am2910 Block Diagram

STACK

5 word X

12 bit

188

FULL



189

During each microinstruction, the microprogram controller provides a 12-bit

address from one offour sources: (1) the microprogram address register (uPC), which

usually contains an address which is one greater than the previous address; (2) an

external (direct) input (D); (3) a register/counter (AR) which retains data loaded

during a previous microinstruction; or (4) a five-deep last-in, first-out stack (STACK).

7.3.2 Structured Modeling Considerations

Because this design is a microprogram sequencer which decodes an input instruc

tion, the Am2910 can be modelled in a straightforward fashion using a Behavioral

description with a CASE statement. The block diagram can be partitioned easily into

a data path consisting of the registers and register file (STACK), a multiplexor, and

an increment unit. When viewed from the Functional perspective, this design can

also be modeled as a single state machine in which on each state, appropriate control

signals are applied to the storage and data select units such that the appropriate

actions are performed. Thus, an equivalent Functional can also be used to represent

the operation of each component based on conditions evaluated by the Control Logic.

The equivalent Functional and Behavioral VHDL descriptions were developed

for this design. They can befound in Appendix B. TheFunctional model (am2910_func)

consists of one conditional signal assignment per storage element or data wire found

in the block diagram. At the time of these experiments, the VSS system did not have

CASE statement CFG to DFG transformations available; consequently, the model

which used the CASE statement (referred to as am2910-case in subsequent dis

cussions) was rewritten using a nested IF construct (the am2910Jf model) so that

transformations could be applied.



190

7.3.3 Analysis

Table 7.4 compares the results of VSS synthesis for the various models. The

following observations can be made:

VSS Processing Options

Model Struc. Mod. CSA CFG Scheduler Resource

Style Trans. Binder

am2910-func Functional no no none flat DFG

am2910_if Behavioral no no Mobility Freq. based

am2910_if_trans Behavioral no yes none flat DFG

am2910_case Behavioral no no Mobility Freq. based

Design Metrics

Model Transistor Count States

FU COMP MUX REG RL TOTAL

am2910-func 754 5250 1824 1152 596 9576 1

am2910-if 300 0 1912 3936 18378 24526 126

am2910_if_trans 2246 1890 9600 1920 368 16024 1

am2910_Ccise 198 42 1604 3552 5002 10398 97

Table 7.4: VSS Results for the AM2910 Benchmark

• These results show that given the CU/DP model to which VSS targets the

Behavioral designs, the number of states required for the am2910Jf design is

30% larger than that of the am2910_case design. This is a result of the con

trol unit model used in VSS and the difference in mapping the IF statement



191

versus the CASE statement onto this model. In the am2910 benchmark, the

am2910-case model uses a CASE statement with 16 alternatives; the equivalent

nested IF description (am2910_if) uses 15 levels of 2-way branch decision nodes.

The CU/DP model used by VSS computes the test value used to determine

branching in the state prior to the state in which the branch actually occurs.

The CASE branch can occur in two states: one state to evaluate the value of

the test condition, and one state to direct execution to the first instruction of

the appropriate branch. However, for the equivalent nested IF branching condi

tion, the am2910_if model requires 2 to 30 states to execute (depending on the

value of the condition bits and the availability of units for evaluation of these

conditional bit values).

• It is also interesting to note that the am2910_case model, even without logic

optimization, is within 10% of the transistor count of the am2910_func model.

7.4 8251 USART

7.4.1 Problem Description

The Intel 8251A is a programmable communication interface chip [TS85] or

Universal Synchronous/Asynchronous Receiver/Transmitter (USART) designed for

data communications between microprocessors. The 8251A is used as a peripheral de

vice and is programmed by the CPU to operate using a variety of serial data transmis

sion techniques. The USART accepts data characters from the CPU in parallel format

and converts them into a continuous serial stream for transmission. Simultaneously,

it can receive serial data streams and convert them into parallel data characters for



192

the CPU. The USART will signal the CPU whenever it can accept a new character

for transmission, or whenever it has received a character for the CPU.

A block diagram of the 8251A is shown in Figure 7.11.

7.4.2 Structured Modeling Considerations

A Behavioral model for the 8251A was written using three processes: MAIN,

TRANSMIT and RECEIVE. The areas of the design modeled by each process are

indicated in Figure 7.11 by the dashed boxes.

7.4.3 Analysis

Due to the size of the input description, each of the three processes in the

Behavioral model were processed by VSS separately. The transistor counts of the

synthesized results for the MAIN and TRANSMIT processes are shown in Table 7.5.

These descriptions use VHDL CASE and WHILE loop constructs which are not

processed currently by the transformations. Consequently, the effects of transforma

tions on this design cannot be evaluated. The results presented here are preliminary

in the sense that the design cannot be evaluated as thoroughly as in the previous

examples. However, the synthesis of the 8251A has aided in the verification of the

VSS software.



D7-D0

RESET

CLK

C/D

RD

CS

DSR

DTR

GTS

RTS

MAIN

DATA

BUS

BUFFER

R/W
CONTROL

LOGIC

^ MODEM

<;CONTROL

Internal

Data

Bus

TRANSMIT

TRANSMIT

BUFFER

TRANSMIT

CONTROL

RECEIVE

BUFFER

RECEIVE

CONTROL

RECEIVE

Figure 7.11: 8251A Block Diagram

193

TxD

TxRDY

TxEMPTY

TxC

RxD

RxRDY

RxC

SYNDET



VSS Processing Options

Model Struc. Mod. CSA CFG Scheduler Resource

Style Trans. Binder

main Behavioral no no Mobility Freq. Based

transmit Behavioral no no Mobility Freq. based

Design Metrics

Model Transistor Count States

FU COMP MUX REG RL TOTAL

main 0 574 8428 9936 4202 23140 91

transmit 240 49 1316 5664 3880 11149 40

Table 7.5: VSS Results for the 8251A Benchmark

194



Chapter 8

Conclusions

8.1 Summary of Contributions

This dissertation has presented an approach to behavioral synthesis which uses

the VHDL language for the modeling of the input behavior as well as the structure of

the synthesized design. An examination of the issues involved in behavioral modeling

was presented. This motivated the need for the development ofa Structured Modeling

methodology which suggests standard VHDL modeling practices for synthesis. These

modeling practices were applied to several design examples in order to evaluate the

various modeling practices and their effects on the quality of the synthesized- design.

To demonstrate the feasibility of this approach, the implementation of the

VHDL Synthesis System (VSS) was discussed. A synthesis framework was devel

oped with a Control/Data Flow Graph and Partial Design Representation at its core.

This framework provides the opportunity to incorporate various synthesis algorithms

which can be evaluated in a common design environment. Experiments were per

formed to demonstrate the effects of different modeling styles on the quality of the

design produced by VSS. Several alternative VHDL models were examined for each

195



196

benchmark, illustrating the improvements in design quality achieved when Structured

Modeling guidelines were followed.

Through this work, we have substantiated the following claims that were estab

lished as the objectives of this research:

• VHDL can be used as a language for synthesis if the proper semantics are well

defined.

• The Structured Modeling methodology serves as a useful guideline for synthesis

from VHDL in the context of the VSS synthesis framework.

• The modeling style used in the synthesis input behavioral description has a

direct effect on the quality of the synthesized output.

• With the appropriate application of representation transformations and opti

mizations, human quality design can be achieved.

8.2 Future Work

While the VHDL Synthesis System (VSS) has served as a valuable tool for the

evaluation of our synthesis methodologies, several improvements can be made to this

framework. Principal among these enhancements are:

1. Incorporation of additional representation optimizations. By performing stan

dard compiler optimization techniques such as common subexpression elimina

tion, constant folding, and in-line procedure expansion, more optimal designs

would result at the register-transfer level.



197

2. Automated design model and transformation selection. Development of a mech

anism or strategy which will select the appropriate design model and represen

tation for a supplied VHDL model would relieve the designer of making these

choices manually. These choices could be suggested by the tool, allowing the

designer to override these options if he/she so chooses.

3. Alternative input specification formats. Because the design representation was

developed with the intent ofbeing a general purpose format for capturing neces

sary information for synthesis, it is possible to map other existing hardware de

scription languages (or those under development in related work at U.C. Irvine

such as BIF [DHG89] or SpecCharts [VNG90]) to this representation. This

would allow for alternative information interchange formats between synthesis

tools.

4. System level synthesis. VSS can be adapted to the processing of system level

specifications [VNG90], where VHDL or other hardware description languages

are used to specify a set of chips which communicate via protocols.

5. Incorporation of testability measures. Industrial concerns of design verifica

tion and fault diagnosis has spawned interest in the possibility of incorporating

testability measures and practices into the synthesis design process.

6. Feedbackfrom logic and layout synthesis. While the cost functions used to make

design decisions in VSS are influenced by transistor counts and other lower level

parameters of the synthesized design, a tighter coupling with a layout synthesis

system would ensure that high level synthesis decisions have the appropriate

effects on the layout generated.



198

7. Specification of timing constraints. The design representation used within VSS

requires additional enhancements to allow for the expression of timing rela

tionships. Since the mechanisms used to express timing in VHDL are not well

defined, development of a semantics of the VHDL timing constructs is needed.



Bibliography

[AN88] A. Aiken and A. Nicolau. Perfect Pipelining: A New Loop Parallelization

Technique. In Proc. of the 1988 European Symp. on Programming^ 1988.

[Arm88] J. Armstrong. Modeling with HDLs. IEEE Design and Test, February

1988.

[Arm89] J. Armstrong. Chip Level Modeling with VHDL. Prentice-Hall, 1989.

[ASU86] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and

Tools. Addison-Wesley, 1986.

[Bar81] M. Barbacci. Instruction Set Processor Specifications (ISPS): the

Notation and its Applications. IEEE Transactions on Computers, C-

30(1), January 1981.

[BC''"88] R. Brayton, R. Camposano, et al. The Yorktown Silicon Compiler. In

D. Gajski, editor, Silicon Compilation. Addison Wesley, 1988.

[Ben83] J. Bendas. Design through Transformations. In 20th Design Automation

Conference, 1983.

[BFR85] T. Blackman, J. Fox, and C. Rosebrugh. The SILC Silicon Compiler:

Language and Features. In 22nd Design Automation Conference, 1985.

[BG87] F. Brewer and D. Gajski. Knowledge-Bcised Control in Micro-

Architecture Design. In 24th Design Automation Conference, 1987.

199



200

[Bha86] J. Bhasker. Process Graph Analyzer: A Front End Tool for VHDL

Behavioral Synthesis. In Proceedings of the 10th Annual Honeywell

International Computer Sciences Conference^ 1986.

[BRSVA87] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A.Wang. MIS:

A Multiple-Level Logic Optimization System. IEEE Transactions on

Computer-Aided Design^ CAD-6(6), November 1987.

[BTK88] R. Blackburn, D. Thomas, and P. Koenig. CORAL II: Linking Behavior

and Structure in an IC Design System. In 25th Design Automation

Conference, 1988.

[CAD87] CAD Language Systems Inc. VHDL Tutorial for IEEE Standard 1076

VHDL, 1987.

[Che90] C. Chen. An Intelligent Component Database for Behavioral Synthesis.

In 27th Design Automation Conference, 1990.

[CST88] R. Campasano, L. Saunders, and R. Tabet. High-Level Synthesis from

VHDL. Technical Report RC 14282, IBM Research Division, T.J. Watson

Research Center, December 1988.

[CT88] R. Campasano and R. Tabet. Design Representation for the Synthesis of

Behavioral VHDL Models. Technical Report RC 14282, IBM Research

Division, T.J. Watson Research Center, December 1988.

[DHC89] N. Dutt, T. Hadley, and D. Gajski. BIF: A Behavioral Intermediate

Format for High Level Synthesis. Technical Report 89-03, University of

California at Irvine, September 1989.

[DHG90] N. Dutt, T. Hadley, and D. Cajski. An Intermediate Representation for

Behavioral Synthesis. In 27th Design Automation Conference, 1990.



201

[DN89] S. Devadus and R. Newton. Algorithms for Hardware Allocation in Data

Path Synthesis. IEEE Transactions on Computer-Aided Design^ CAD-

8(7), July 1989.

[DR+86] H. DeMan, J. Rabaey, et al. Cathedral II: ASilicon Compiler for Digital

Signal Processing. IEEE Design and Test, December 1986.

[Dut88] N. Dutt. GENUS: A Generic Component Library for High Level

Synthesis. Technical Report 88-12, University of California at Irvine,

September 1988.

[DutQO] N. Dutt. LEGEND: A Language for Generic Component Library

Description. In IEEE International Conference on Computer Languages,

1990.

[EN89] K. Ebcioglu and A. Nicolau. A Global Resource-constrained

Parallelization Technique. In Proa. ACM SIGARCHICS-89: Int. Conf.

on Supercomputing, 1989.

[EW77] E. Eichelberger and T. Williams. A Logic Design Structure for LSI

Testability. In 14th Design Automation Conference, 1977.

[GBdH86] D. Gregory, K. Bartlett, A. deGeus, and G. Hatchel. SOCRATES: A

System for Automatically Synthesizing and Optimizing Combinational

Logic. In 23rd Design Automation Conference, June 1986.

[GD90] R. Gupta and N. Dutt. Behavioral Modeling of DRACO: A Peripheral

Interface ASIC. Technical Report 90-13, University of California at

Irvine, June 1990.

[GDP86] D. Gajski, N. Dutt, and B. Pangrle. Silicon Compilation: ATutorial. In

Proceedings of the Custom Integrated Circuits Conference, 1986.



202

[GK83] D. Gajski and R. Kuhn. New VLSI Tools. IEEE Computer, December

1983.

[GK84] E. Girczyc and J. Knight. An ADA to Standard Cell Hardware Compiler

Based on Craph Grammars and Scheduling. In International Conference

on Computer Design (ICCD84), October 1984.

[GLVW90] D. Gajski, J. Lis, N. VanderZanden, and A. Wu. Synthesis from VHDL:

Rockwell-Counter Case Study. Technical Report 90-09, University of

California at Irvine, April 1990.

[Gup91] R. Gupta. Transformations for Behavioral Synthesis. Master's thesis.

Dept. of Electrical and Computer Engineering, University of California,

Irvine, January 1991.

[Har87] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science

of Computer Programming,-8, 1987.

[HKL89] P. Harper, S. Krolikoski, and Oz Levia. Using VHDL as a Synthesis

Language in the Honeywell VSYNTH System. In Ninth International

Symposium on Computer Hardware Description Languages (CHDL89),

1989.

[IEE87] IEEE. VHDL Language Reference Manual, Draft Standard 1076/B, June

1987.

[JR"''89] J.Y. Jou, S. Rothweiler, et al. BESTMAP: Behavioral Synthesis from C.

In International Workshop on Logic Synthesis, May 1989.

[Kin87] C. Kingsley. The Implementation of a State Machine Compiler. In 24th

Design Automation Conference, 1987.



203

[Kow85] T. Kowalski. An Artificial Intelligence Approach to VLSI Design. Kluwer

Academic Publishers, 1985.

[LDSM80] D. Landeskov, S. Davidson, B. Shriver, and P. Mallett. Local Microcode

Compaction Techniques. Computing Surveys, 12(3), September 1980.

[LG87] S. Lin and D. Gajski. LES: A Layout Expert System. In 24th Design

Automation Conference, June 1987.

[LG88] J. Lis and D. Gajski. Synthesis from VHDL. In International Conference

on Computer Design (ICCD88), October 1988.

[LMOI89] S. Levitan, A. Martello, R. Owens, and M. Irwin. Using VHDL as a

Language for Synthesis of CMOS VLSI Circuits. In Ninth International

Symposium on Computer Hardware Description Languages (CHDL89),

1989.

[McF78] M. McFarland. The Value Trace: A Data Base for Automated Digital

Design. Master's thesis. Dept. ofElectrical Engineering, Carnegie-Mellon

University, December 1978.

[OG86] A. Orailoglu and D. Gajski. Flow Graph Representation. 23rd- Design

Automation Conference, June 1986.

[PG86] B. Pangrle and D. Gajski. State Synthesis and Connectivity Binding

for Microarchitecture Compilation. In International Conference on

Computer-Aided Design, 1986.

[PG87] B. Pangrle and D. Gajski. Slicer: A State Synthesizer for Intelligent

Silicon Compilation. In International Conference on Computer Design

(ICCD87), 1987.



204

[PL88] B. Preas and M. Lorenzetti. Physical Design Automation of VLSI

Systems. Benjamin/Cummings, 1988.

[PLNG90] R. Potasman, J. Lis, A. Nicolau, and D. Gajski. Percolation Based

Synthesis. In 27th Design Automation Conference, 1990.

[PPM86] A. Parker, J. Pizarro, and M. Mlinar. MAHA: a Program for Datapath

Synthesis. In 23rd Design Automation Conference, 1986.

[RGB90] E, Rundensteiner, D. Gajski, and L. Bic. The Component Synthesis

Algorithm: Technology Mapping for Register Transfer Descriptions. In

International Conference on Computer-Aided Design, 1990.

[Sau87] L. Saunders. The IBM VHDLDesign System. In 24th Design Automation

Conference, 1987.

[SBN80] D. Siewiorek, C. Bell, and A. Newell. Computer Structures: Principles

and Examples. McGraw-Hill, 1980.

[SHM086] W. Scott, R. Hamachi, R. Mayo, and J. Ousterhout. Berkeley CAD

Tools User's Manual. Technical Report UCB/CSD 86/272, University of

California at Berkeley, 1986.

[T+83] D. Thomas et al. Methods of Automatic Data Path Synthesis. IEEE

Computer, December 1983.

[Tri87] H. Trickey. Flamel: A High-Level Hardware Compiler. IEEE

Transactions on Computer-Aided Design, CAD-6(2), March 1987.

[TS83] C. Tseng and D. Siewiorek. Facet: A Procedure for the Automated

Synthesis of Digital Systems. In 20th Design Automation Conference,

1983.



205

[TS85] W. Triebel and A. Sin^h. The 8086 Microprocessor Architecture, Software

and Interfacing Techniques. Prentice-Hall, 1985.

[TW'̂ 88] C. Tseng, Ruey-Sing Wei, et al. Bridge: A High Level Synthesis System

in Industry. In 25th Design Automation Conference, 1988.

[Van90] Vantage Analysis Systems. Vantage Analysis Systems Analyst User's

Guide, September 1990.

[VG88] N. VanderZanden and D. Gajski. MILO: A Microarchitecture and Logic

Optimizer. In 25th Design Automation Conference, 1988.

[VNG90] F. Vahid, S. Narayan, and D. Gajski. Synthesis from Specifications:

Basic Concepts. In TECHCON'90, 1990.

[WCG90] C. H. Wu, G. D. Chen, and D. Gajski. Silicon Compilation from

Register Transfer Schematics. In International Symposium on Circuits

and Systems, 1990.

[Z+SO] G. Zimmerman et al. MDS - The MIMOLA Design Method. Journal of

Digital Systems, IV(3), 1980.



Appendix A:

VHDL Coding Practices for

Structured Modeling

In order for the VSS system to synthesize a VHDL input description, a set of

Structured Modeling conventions were established. The following coding practices

should be adhered to for the modeling of storage elements and intercommunication

signals between design entities.

1. Variables defined within a process are mapped to registers. Signals defined

within a block with no signal-kind specification are mapped to wires. Signals

defined within a block of signal-kind REGISTER (specified using a VSS anno

tation) are mapped to registers. Signals defined within a block of signal-kind

BUS (specified using a VSS annotation) are mapped to a bus component.

2. Signals defined globally within the main architecture body are considered to be

intercommunication signals which will be mapped to wires. Similarly, signals

defined within a block (which are not of signal-kind REGISTER or BUS) are

treated as intercommunication signals within the scope of that block (for exam

ple, interconnections between sub-blocks defined within this current block).

206



207

3. Each defined global signal must have ONLY ONE source block/process and

AT LEAST ONE destination block/process. If either of these conditions is

violated, VSS will have a problem in making the interconnections between

blocks/processes.

4. The global signal may not be READ from and WRITTEN to in the same block

or process. This is due to the fact that it is difficult within VSS to recognize

bus, register and inout port components which are accessed in this manner in

the same design entity.

If a value is to be READ and WRITTEN to in the same process (block), a

variable (signal of signal kind REGISTER or BUS) should be used to perform

any data manipulations within the process (block). If this value is to be trans

mitted to other processes (blocks) in the design, an assignment of this value to

a global signal should be made at the end of the process (block). This global

signal can then be read in other processes (blocks).

Multiple updates (WRITEs) to the signal may occur within that process in

various conditional branches. A conditional or selected signal assignment can

be used in the block to assign values to a signal under different conditions.

5. All signals/variables defined within the scope of a process or block should have

an unique name. Use of the same signal/variable name locally in two different

blocks/processes is not supported in VSS.

6. If selected bit updates (WRITEs) to a signal/variable representing a storage

element are to be made, the n-bit BIT-VECTOR signal/variable should be

modeled as n 1-bit signals/variables. These 1-bit accesses may be collected

in one process/block back into a BIT-VECTOR form using a concatenation

operator. The output of this concatenation operator may be assigned to a



208

global signal which can communicate this value to other processes/blocks. A

selected bit READ access of this BIT_VECTOR can be made using the global

signal.

For example:

architecture ex of exajiple is

signal X: BIT_VECT0R(7 downto 0);

begin

blockl: block

—VSS: signal_kind REGISTER
signal X_7,X_6,X_5,X_4,X_3,X_2,X_1,X_0: BIT;

begin

X_7 <= '1';
X_4 <= '0';

X <= X_7 k X_6 & X_5 & X_4 4 X_3 & X_2 & X_1 & X_0;

end block blockl;

block2: block

signal Y: BIT;
begin

Y <= X(5) or X(2);

end block block2;

end ex;

7. Registers are modeled in a concurrent dataflow (block) model as follows:

• The signal representing the register must be annotated as being of signal

kind register (either using a VSS comment annotation just prior to the

declaration of the signal, or using the signal-kind qualifier REGISTER in

the signal definition).



209

• To model a simple clocked register, a guarded signal assignment is used.

The clocking event should appear in the block guard of the block in which

the assignment is made.

• To model asynchronous events which affect the register signal, use a guarded

conditional assignment statement. The event which triggers the action

should appear in the block guard. The block guard may consist of more

than one event expressions ORed together.

• If there are multiple events which may cause an assignment to the signal,

a waveform clause for each value/event pair should be used. The order

in which these waveform clauses appears determines the priority of the

events.

• Where possible, signals in the block guard which are used to generate the

event expression should be typed to identify their purpose. Types currently

recognized by VSS include CLOCK, SET and RESET.

For example, the following VHDL code fragment models a register update with

an asynchronous clear which overrides a synchronous count:

signal CLK: CLOCK;
signal X: RESET;

block ((CLK = '1' and not CLK'STABLE) or X = '1')

signal REG: bit register;

begin

REG <= guarded
'0' when (X = '1') else
REG + 1 when CNT_UP = '1' else
REG;

end block;



210

8. Buses are modeled in a concurrent dataflow (block) model as follows: WRITEs

to the bus are made using a single conditional signal assignment to a signal of

signal_kind BUS. The condition associated with each waveform clause should be

used to enable the data value specified in that waveform clause to be assigned

to the bus signal. The following example illustrates a signal assignment which

represents a bus:

block

—VSS: signal.kind BUS
signal a_bus: BIT_VECT0R(7 downto 0);

begin

a_bus <=
datal when enablel = '1' else

data2 when enable2 = '1' else

a_bus;

end block;

9. The use of inout ports are not currently supported in VSS. These ports must

be modeled as a pair of input/output ports (for example, an inout port 'A'

should be modeled as AJn and A_out). READs of the ports use the input port;

WRITEs use the output port.

10. VSS will handle single and two-dimensional arrays. Single dimensional ar

rays (BIT-VECTORs) are mapped to model n-bit signals and registers. Two-

dimensional arrays are mapped to a MEMORY or REGISTER_FILE GENUS

component.

The following type and signal/variable declarations should be used to model a

MEMORY or REGISTER_FILE:

type MEMORY is array (INTEGER range <>)
of BIT.VECTOR(11 downto 0);

variable STACK : MEM0RY(5 downto 0); — stack register file



•211

The above declarations define a MEMORY with 6 words. Each word con

sists of 12 bits. The type MEMORY is a special type recognized by VSS.

Signals/variables defined to be of this type are mapped to the appropriate

GENUS component.

11. VSS does not support the following VHDL language features:

• enumerated types

• aliases

• CONSTANT declarations

• null statements

• exit statements

• return statements

• loop statement with no iteration scheme, i.e.,

loop
sequence of statements

end loop;



Appendix B:

VHDL Benchmark Descriptions

This appendix contains selected VHDL source descriptions either discussed

within this dissertation or used as benchmarks to verify the operation of the VHDL

Synthesis System (VSS) and the concepts of Structured Modeling.

212



213

Behavioral Rockwell Counter Model

— Rockwell Coimter Benchmark

Modified Behavioral (process) description
Copyright (c) 1990 by Joe Lis

use work.bit_functions.all;

entity RWC is
port (CLK : in CLOCK;

RST : in RESET;
LDE : in BIT;
DTI : in INTEGER range 0 to 4095;
DTO : out INTEGER range 0 to 4095
):

end RWC;

—VSS: design_style BEHAVIORAL

Eirchitecture BEH of RWC is

begin

process (CLK)

variable DTO_REG; INTEGER range 0 to 4095;

begin

—VSS: transform

if (RST = '1') then DTO.REG := 0;
elsif (LDE = '1') then DTO.REG := DTI;
elsif (DTO.REG = 3327) then DTO.REG := 0;
elsif (DTO.REG <= 3119) then DTO.REG := DTO.REG + 208;
elsif (DTO.REG <= 3301) then DTO.REG := DTO.REG - 3094;
else DTO.REG := DTO.REG - 3301;
end if;

DTO <= DTO.REG;

end process;

end BEH;



214

Functional Rockwell Counter Model

— Rockwell Counter Benchmark

Functional (block) description
Copyright (c) 1990 by Joe Lis

use work.bit_functions.all;

entity rw_cntr_func is
port (CLK : in CLOCK;

RST,LDE : in BIT;
DTI : in INTEGER range 0 to 4095;
DTO ; out INTEGER range 0 to 4095

);
end rw_cntr_func;

—VSS: design_style FUNCTIONAL

architecture FTNAL of rw_cntr_func is
begin

main: block (CLK = '1' and not CLK'STABLE)

—VSS: signal.kind REGISTER
signal DTO_REG: INTEGER range 0 to 4096;
signal A0,A1,A2,A3: BIT;

begin
AO <= '1' when (RST = '0') AND (LDE = '1') else '0';
A1 <= '1' when (RST = '0') AND (AO = '0') AND (DTO.REG = 3327) else '0';
A2 <= '1' when (RST = '0') AND (AO = '0') AND (A1 = '0') AND

(DTO.REG <= 3119) else '0';
A3 <= '1' when (RST = '0') AND (AO = '0') AND (A1 = '0') AND

(A2 = '0') AND (DTO.REG <= 3301) else '0';

with (RST ft AO ft A1 ft A2 ft A3) select
DTO_REG <= guarded

0 when B"10000"|B"00100",
DTI when B"01000".
DTO_REG + 208 when B"00010",
DTO.REG - 3094 when B"00001",
DTO.REG - 3301 when B"00000",
DTO.REG when others;

DTO <= DTO.REG;

end block;
end FTNAL;



21(

AM2910 Functional Model

— AM2910 Microprogram Sequencer
-- Functional Model

-- Source: Adapted from an ISPS description in
"Computer Structures; Principles and Examples
by Siewiorek, Bell and Newell

Copyright (c) 1990 by Joe Lis

use work.bit_fmotions .all;

entity AM2910 is
port (

CLK

CI

CC

in CLOCK; — clock
in BIT; ~ carry in
in BIT; — condition code

CCEN : in BIT; — cond. code enable
RLD: in BIT; — R register load
D: in BIT_VECT0R(11 downto 0); -- direct inputs
I: in BIT_VECT0R(3 downto 0); — 2910 instruction
GE: in BIT; — output enable
Y_OUT: out BIT_VECT0R(11 downto 0); -- output instruction word
ENABL: out BIT_VECT0R(2 downto 0); — enable conditions
FULL: out BIT — stack full flag

):
end AM2910;

— VSS: design.style FUNCTIONAL

architecture DATAFLOW of AH2910 is

begin

main: block(CLK = '1* auid not CLK'STABLE)

—VSS: 3ignal_kind REGISTER
signal uPC: BIT_VECT0R(11 downto 0); -- microprogram counter

—VSS: signal_kind REGISTER
signal AR : BIT_VECT0R(11 downto 0); — address register

—VSS: signal_kind REGISTER
signal SP : BIT_VECT0R(2 downto 0); — stack pointer

type MEMORY is array (INTEGER range <>) of BIT_VECT0R(11 downto 0);
signal STACK : MEM0RY(5 downto 0); — stack register file
signal FAIL: BIT; — CC fail flag
signal Y: B1T_VECT0R(11 downto 0); — Y output signal



JO((nooooooooooooi.a=hv)
(..000,.a=/ds)p«B(..8..X=I))

JO(((„^„X=I)JO(„T„X=I))ptre(„00T..a=/dS))
)UBTIA„TOO..a+dS

osie(„o„X=I)..OOO..a
pepjBiiS=>dS

as-[e(

((cT<=llVd)
pire(„oOOOOOOOOOOO..a=/HV)Ptre(„i„x=I))

JO(C.T.=IIVJ)Ptre(„a.,X=I))
JO((.0<=llVd)Ptre(„v.,X=I))

JO((..000000000000..a=/HV)ptre(..8.1X=I))
)aeqn((dS)INI"01"Nia))IDVlS

esxe(
(C.T.=llVi)ptre(,.i.„x=I))

JO((,T.=llVi)Ptre(„9„x=1)))ttetiflhV
esxe(

(C.Oc=HVJ)
ptre(,,000000000000.,a=/HV)pne(„i„x=I))

JO((.0.=llVi)
P^(.,000000000000..a=HV)ptre(„i„x=I))

JO((,0.=iivi)POTS(„a„x=I))
JO(.,D.,X=I)

JO((<T.=llVi)Pire(„a„x=I))
JO((,T.=llVd)P^re(„v„X=1))

JO((..OOOOOOOOOOOO..a=HV)ptre(„6.,X=1))
JO((.,000000000000..a=HV)P^(..8..X=I))

JO((.T,=7IVi)pue(„9„x=I))
JO(..^..X=I)

JO((,T.=llVd)Pire(„e„x=1))
JO((,T,=llVd)POB(..T.,X=I)))uoHWOdn

esxe(„o„x=i)uen/i„000000000000„a
esxe(

((,T,=llVd)
pire(,,000000000000,.a=HV)Pire(„i„x=J))

JO((.0.=IIVJ)P^(,.a..X=I))
JO((.,000000000000.,a=/HV)ptre(„6„x=1))

JO((,0,=HVd)pms(„Z.,X=I))
JO((<0,=llVd)pire(„9„x=I))
JO((,0c=7IVJ)pire(„g„x=I))
JO((,0,=IIVJ)Ptre(„e„x=I))

JO(„S„X=I)
JO((,0,=XlVd)pue(„T„x=I)))ueqwq

=>A

fOOpire(N300Jou)=>xivi

:..OTT„a
ssie(„OTT.ia=I)ueqA„TOT„a
esxe(„OTOi,a=I)ubiiw„TTO„a

=>laVNH
niSeq

91?.



SP;

((SP /= B"000") and (FAIL = '0') and
((I = X"A") or (I = X"B") or (I = X"D")))

) else

217

FULL <=

'1' when ((I = X"0") or
((I = X"l") and (SP /= B"100")) or
((I = X"4") and (SP /= B"100")) or
((I = X"8") and (SP /= B"000") and

(AR = B"000000000000")) or
((I = X"A") and (FAIL = '0') and (SP /= B"000")) or
((I = X"B") and (FAIL = '0') and (SP /= B"000")) or
((I = X"B") and (FAIL = '0') and (SP /= B"000"))

) else

STACK(BIN_TO_INT(SP)) <=
uPC when ((I = X"l") or (I = X"4") or (I = X"5")) else
STACK(BIN_TO_INT(SP));

AR <= guarded
D when (((I = X"4") and (FAIL = '0')) or

(I = X"C")
) else

AR - B"000000000001" when (((I = X"8")
and (AR /= B"000000000000"))

) else
AR;

uPC <= guarded Y + (B"00000000000" 4 CI);

Y.OUT <=

Y when (OE = '0') else
B-oooooooooooo":

end block;

end DATAFLOW;



AM2910 Behavioral Model

— AM2910 Microprogram Sequencer
— Behavioral Model

— Source: Adapted from an ISPS description in
"Computer Structures: Principles and Examples
by Siewiorek, Bell and Newell

Copyright (c) 1990 by Joe Lis

use work.bit_functions.all;

entity AM2910 is
port (

CLK: in CLOCK;
CI : in BIT;
CC : in BIT;
CCEN : in BIT;
RLD: in BIT;
D: in BIT_VECTGR(11 downto 0);
I: in BIT_VECT0R(3 downto 0);
OE: in BIT;
Y: out BIT_VECT0R(11 downto 0);
ENABL: out BIT_VECT0R(2 downto 0);
FULL: out BIT

); .
end AM29iO;

~ VSS: design.style BEHAVIORAL

architecture BEHAVIOR of AM29iO is

clock

carry in
condition code

condition code enable

R register load
direct inputs
2910 instruction

output enable
output instruction word
enable conditions

stack full flag

output instruction wd signal
signal Y_sig: BIT_VECTOR(11 downto 0);
enable conditions signal
signal ENABL_sig: BIT_VECT0R(2 downto 0);
signal FULL.sig: BIT; — stack full flag

begin

—VSS: transform

process

vzuriable uPC:

variable AR

vaariable BP :

BIT.VECTORCll downto 0);
: BIT.VECTORCll downto 0);
BIT_VECT0R(2 downto 0);

-- microprogram counter
— address register

-- stack pointer

218



219

type MEMORY is array (INTEGER range <>) of BIT_VECT0R(11 downto 0);
variable STACK : MEM0RY(5 downto 0); — stack register file
variable FAIL; BIT; — CC fail flag
variable Y_var: BIT_VECT0R(11 downto 0); — output instruction wd signal

begin

if (I = B"010") then
ENABL <= B"011";

elsif (I = B"110") then
ENABL <= B"101";

else

ENABL <= B"110";
end if;

FAIL := (not CCEN) and CC;

case I is

when X"0" =>

Y.var := B"000000000000'
SP := B"000";
FULL <='!';

when X"l" =>

if (FAIL = '1') then
Y_var := uPC;

else

Y_var := D;
end if;

— JZ instruction

— CJS instruction

— push

if (SP = B"100") then
FULL <= 'C;

else

FULL <='!':

SP := SP + B"00i";
end if;
STACK(BIN_TO_INT(SP)) := uPC;

when X"2" =>

Y_V2u: := D;
when X"3" =>

if (FAIL = '1') then
Y_var := uPC;

else

Y_veu: := D;
end if;

when X"4" =>

Y_var := uPC;

— push

if (SP = B"iOO") then
FULL <= '0';

— JMAP instruction

— CJP instruction

-- PUSH instruction



else

FULL <= '1';
SP := SP + B"001":

end if;
STACK(BIN_TO_INT(SP)) := uPC;

if (FAIL = '0') then
AR ;= D;

end if;
when X"5" => -- JSRP instruction

if (FAIL = '1') then
Y_var := AR;

else

Y_var := D;

— push

if (SP = B"100") then
FULL <= '0';

else

FULL <= '1';
SP := SP + B"001";

end if;
STACK(BIN_TO_INT(SP)) := uPC;

end if;
when X"6" => — CJV instruction

if (FAIL = '1') then
Y_var := uPC;

else

Y_var := D;
end if;

when X"7" => — JRP instruction
if (FAIL = '10 then

Y_var := AR;
else

Y.var := D;
end if;

when X"8" => — RFCT instruction
if (AR = B"000000000000") then

Y_var := uPC;

— pop

if (SP /= B"000") then
SP := SP + B"001";
FULL <= '1';

end if;
else

Y.var := STACK(BIN_TO_INT(SP));
AR := AR - B"000000000001";

end if;
when X"9" => — RPCT instruction

if (AR = B"000000000000") then
Y.var := uPC;

220



else

Y_var := D;
AR := AR - B"000000000001";

end if;
when X"A" => — CRTN instruction

if (FAIL = '1') then
Y_var := uPC;

else

Y.var := STACK(BIN_TO_INT(SP));

— pop

if (SP /= B"000") then
SP := SP + B"001":
FULL <= '1';

end if;
end if;

when X"B" =>

if (FAIL = '1') then
Y_var := uPC;

else

Y.var := D;

— pop

if (SP /= B"000") then
SP := SP + B"001";
FULL <= '1';

end if:
end if;

when X"C" =>

Y.var := uPC;
AR := D;

when X"D" -=>

if (FAIL = '1') then
Y.var := STACK(BIN.TO.INT(SP));

else

Y.var := uPC;

~ pop

if (SP /= B"000") then
SP := SP + B"001";
FULL <= '1';

end if;
end if;

when X"E" =>

Y.var := uPC;
when X"F" =>

if (AR = B"000000000000") then
if (FAIL = '1') then

Y.var := D;
else

Y.var := uPC;

— CJPP instruction

— LDCT instruction

— LOOP instruction

— CONT instruction

— TWB instruction

221



— pop

if (SP /= B"000") then
SP := SP + B"001";
FULL <='!':

end if;
end if;

else

if (FAIL = '1') then
Y.var := STACK(BIN_TO_INT(SP));

else

Y_var := uPC;

— pop

if (SP /= B"000") then
SP := SP + B"001":
FULL <= '1':

end if;
end if;
AR := AR - B"000000000001";.

end if;
end case;

uPC := Y.var + (B"00000000000" ft CI);

— assignment to external ports

if (OE = '0') then
Y <= Y.var;

else

Y <= B"000000000000";
end if;

end process;

end BEHAVIOR;

222



Appendix C:

GENUS Component Transistor

Count

The following table lists the transistor counts used to evaluate the results of

VSS synthesis experiments.

In the table, n refers to the number of bits, and i represents the number of data

inputs.

The SIMPLE-ALU component performs the following functions: ADD, SUB,

LID (left identifier), RID (right identifier), AND, OR, LNOT (invert left input),

RNOT (invert right input).

223



224

GENUS Component Trans, per bit GENUS Component Trans, per bit

ADDER 32(n - 1) + 16 NAND3 6

ADD^UB 34(n - 1) + 12 NAND4 8

ADD_SUB_LID.RID 56 N0R2 4

ALU 100 N0R3 r.

AND 6 N0R4 8

BUFFER ,4 OR 6

comparj:q 14 REGISTER 48

COMPAR_LGE 35 REGISTER-FILE 54

CONSTANT 0 SHIFTER 12

DECODER 20 SIMPLEALU 92

EXTRACT 0 SUB 34(n - 1) + 12

INC-DEC 18 TRLSTATE 12-

LATCH 32 UP-COUNTER 52

MUX 6i + 'llog2 i UP-DOWN-COUNTER 58

NOT 2 XOR 10

NAND2 4 XN0R2 10




