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Confipurntion Interaction Iffects in ﬁN Confipurations*
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and
. . T
- B. G. WYBOURNE

- Lawrence Radiation Laboratory, University of California

Berkeley, Californis and Arpgonne Nstional Laboratory

Argonneé, Illinois

ABSTRACT
The effects of configuration interactiohé on the energy levels ol con-

fjgurations of tﬁe type zN have beén studied. In previous work the linear tnocory

v

two—body scalar interactions. It has been Tound that by choosing suitable scalar
interactions it is possible to include, to second-order, all eleétrostatiC>inter-‘
aétions wiﬁh‘configurations hé&iﬂv two electrons’exciﬁed from the 2N‘c6nfiwura-
iion. U51ng perturbation theory it has bcen found poos1ble to derive erlL lu*y
-tne form of the scalar 1ntcractlons togcthcr w1th the analytlcal form of their
radial parts. Effective three~-body interactlons are 1ntroduced to account ror
the perturbétions.due‘to Qne—electroﬂ excitétidns. The physical significance’of

the parametefs associated with the linear theory is clarified.
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1. INTRODUCTION

The theoretical understanding of complex spectra commenced with the classi-
cal paper of Slater.l In this paper he presentéd a method for calculating the
electrostatic energies of the LS terms of electron configurations expressing them
as a linear function of a few radial integrals, usually conslderably fewer than
the number of terms of the configuration. The calculation of the énergy levels
of atoms and ions was further improved by Condon'62 suggestion of including the
effects of spin-orbit interactions. With the development of the powerful techni-

3-6 1t became possible to calculate the

ques of tensorial operators by Rdcah
complete elecfrostatic and spin:orbit 1nterac£ion energy matrices of virtually
any electron configuration. o

It soon became evident that the diagonalization of the qombined electro-
stétic and spin-orbit Interaction energy matrices for a particular electron con-
figuration yielded energy levels that deviated by several hundred to a thousand
wave-numbers from the observed energy levels even when the radial integrals were
treated as freely variable parameters.Y_lj These deviations were usually ascribed
to the effects of configuration interaction. Following the realizétion that the
assumption of pure electron configurations was inadequate, nuﬁErous attembts have
been made to include the effects of configuration interaction. The moét obvious

approach was to diagonalize energy matrices which included all the electrostatic

interactions within and between several connected configurations. While thi;

approach has met with some successg 1t has been found to be a very cumbersome
method requiring the construction of extremely large matrices, a great increase
in the number of radial integrals and the assumption that only one or two perturb-
ing configurations need to be considered. |

In more recent times considerable attention has been directed towards thé
possibility of modifying the energy matrices of the principal electronvcdnfigura-
tion in such a way as to include the greater part of the effects of all the

perturbing configurations. This approach has had the great advantage of requiring
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- no increase in the dimensions of the energy matrices and relatively few additional
parameters.

Particular attention has been given to the so called.";gzggg”‘theory of
configuration interaction following the pbservation of Bacher and Goudamitluthat

most confighratiop interactions which are second-order effects may be added

linearly. In the linear the@ry}the Hamiltonien of the N electron system has been
augmented with additional two-body gealar interactlion terms, " Associated with
each interaction is an adjustable constent which has been det@imined from the
experimental data., 1In general the number of additional interactions has béen
chosen so that the total number of adjustable paremeters equals the number of
allowed IS terms ocgurring in all’distinct two-electron eonfigurations f@rﬁ@d by
deleting N-2 of the electrons from the c@nfigur@tion und@f study.

While the linear theory has had sém@ measure of su@g@sggth@ agr@@m@nt with
the observed energy levels has not been ae good ap would be desirable, Th@r@ hes
been coneiderable confusion &s to the physieal signifiecanee of the additionsl tW@é
bedy interactions and to the validity ef the methed.

In the present paper & detailed study of the effeets of eenfigurétion
interactions on the energy levels of eonfigurations of the type & is mede. It
is shown that both two- and three-body int@r@@t;@ns must be @@ﬂ@id@?@d.éﬁd that
the linear theory alene ie insuffieient, The physieal gigﬂifi@aﬁ@@ of the effecis
of eenfiguratien interaetion 'ig elarified. Partisular attentien has bééﬁ,givgn
to the treatment of eonfiguratien interaectiens in:gy§£@m§ eentaining fN |

eonfiguratioens,
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2. THE SECOND ORDER THEORY OF CONFIGURATION INTERACTION

For the doubly and triply ionized lanthanides the th configuration is genersally
isolated from the nearest interacting configurations by many thousands of wave numbch.QZ»
The deviations between the calcﬁlated and experimentally determined energy levels arc
appreciable, though still quite small when expressed as & percentage of the width of the
th configuration, Thus‘it would appear justifiable to treat the effects of confipuration
interaction in the doubly and triply lonized 1anthanides‘by second~order perturbation
theory. The analogous doubly and higher ionized actinides can undoubtedly be likewise
trecated. 1In the lower stages of ionization the spacings of the interacting configufations
will be quite small and it will not always be appropriate to use second-order.pertur~
bation theory. Hpﬁever, in these cases it should be possible to construct enerpgy matrices
giving all the configﬁration interactions of the nearest configurations, diagonalizc
them, and then consider the effects of the highef perturbing configurations by second-
order perturbation theory. |

For generality we shall consider the effect of second-order coﬁfiguration intens
action perturbvations on some configuration EN. Lel two particular states, [aSL) and
'la'SL), of 2N be designated by, |¢), and |¢f), and consider a perturbing state, |m),
from some interacting configuration (i.e., having the same parity and whose,electron

: _ ' N
coordinates differ in not more than two electrons). If |m) lies above £ by an energy

AE , the electrostatic matrix element (szGj zNu/") is subject to the correction -

c = - (vdclz%(mlglw“) ’ | | (1)

m

where G is the operator representing the configuration intersction, 3 ed/r In
1<

N N oy
general there may be several perturbing states and *he total correction to (£ylcloy™)

13"

will be given by -

¢ - .y Gl Glm) a1y | (2)

m m
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ane snmnation in.(a) is severelyireStriotea sinoe'the mstrix_eienents of confiéursnion
Vintersotion areidiagonai in»L and S. Nerertheless; for.thezcomnlex'oonfigurations we .
 shall be considering, there ‘may be several perturbing states having the same L and S
and it is desirable to be able to simpllfy the summation as much as possible. In most
of the cases we_shsll be'considering, the separation, AEm,-of the interacting terms
will be quite'large_and.ituoecones a ressonable approximstion to sssume-the oonnectea

sﬁateslarendegenerate}‘ Within ‘thie approximation Eq. (2) may be written as

¢ - 3 glolmmlly . - ()
The placing of the‘energyrdenOminator in BEq. (2) outside'the-summation over m; as
in Eg. (3), makes it possible to search for explicit expressions for the sum over
the-perturbing states lm) - Our task conveniently divides into two distinct steps:
(1) Expressions must be obtained that will permit the evaluation of the matrlx ele-
ments of the configuration 1nteractions.v (i1) Using these expressions in their
7sump1est possible form, perform the sum over m in Eq. (5)

The basic techniques for performing step (1) have been outlined in &n earlier
: paper;23 Before commencing to derive the explicit' formules of step (1i) we must
consider_what possible configurations may interact with & configuration BN; There
are oniy five basic typés:i ‘ ' |
(a) ZN 2(2,)2 and o az.zn (b).(z.)hz' N+2 'd'(z )hz'+1(£")hz"+1 e
(e) (E)uz +l Nz“, (a) Pl 12' and (e) (z')hz H o ‘The interactions (b) (c) and
(e) are core excitations where an electron is promoted from a closed ‘shell to either

an unfilled shell or to the partially filled zN shell.
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3. CiOSED FORMULAS FOR CONFIGUﬁATION INTERACTIONS
(a) 2 with 272 (42 or N 2pryn,

We shall consider the interaction of states of the configuration zN'z(E')Q
with & particular state y of the zN éonfiguration ag illustrative oflthe general method

of obtaining closed formulas for thevsummationsvof Eq.'(3). A typical matrix element

will be of the forme’+
2 ,rf<k- k k N2~ 2 ' |
(| ZL, E: ok Gy S £y, ((2)” ¢58L) (W)
k' i<y , .

’

where ¢ symbolizes the totel spin (g) and orbital (X) quantum numbers of the states of

(e ) and w stands for the quantum numbers defining the particular state of EN 2

Using & result due to Racal’ (his Eq. 33c) we may write (4) as

oo

i "1/2 . X ’ .
A B 7 e L N[ LN e

L » S

The two electron matrix elements may be readily evaluateéy+ to yield

. |
T £ L'k
(£°p]e® r.k+l (G - gr 1)%) = (1) . m{ (o] 16" 121)%6 (4, 27)  (6)

>

where Gk(z,z') is the usual Slater radial integral arising from, the radial parts of the

left hand side. Inserting (6) in (5) we obtain

(2| y Z ’kﬂ (cr gy )15, (g 5m)

Ckad

(ol1g"14)% ¢(a,20).
(1)

1 1

kg'e'

) \1/2 . :
z{’N(N—l).‘ ) Py 8% V2 2p;sL)(-1)4H4
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.Thus for this particular configuratlon interaction Eq. (3) becomes
¢ = . _(IL_). Y % %), Pesse) |
VAN

(R Besy L U (el 1G )2 Ceg )% (8,80 )65 (s, 21) -
| k£'2') |k's1g - I ()

ek o
- Using the Biedenharn-Elliott sum rule we get -

p—

’ ) . : } ' — (82t
c = - g%;ﬁ é,; (%ZN?Pf-IﬁN"z w,z2.¢;SL)‘(lN¢'(|zN'2 ¥y 220;SL) \{yx

X L8] () (e
. kk?

(11 t)2" 5 x
} (zuc uz ) (z;L nz )G (z z )G (z 2! )
Txxt e . (9)

- where A now appears in only one 6-j symbol and the symbol [t] =2t +1 has been intro-

duced, Noting that’
@l 2 @b ghdhy - MG L (%, o)
| i<y ~J U
W
y (M(lz“,m,sm(l)"{ | o

we may now write Eq. (9) as

X(ﬂ 2/fl> : -)\IZNV:I/") (] (51)*c

i<
T M €)% , Y -
X ZE}" ). | 7 (zngkuz')al(zllgk.||z')Gk(z,/z')_Gk (£,2")
K k' ) kk'2'|
- - K (s m7. (O I DR D NCI BN
. 1<J ’

" where the function X(t) is defined by
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L VT (e e)? Ky \2r k' 2K k! - o
X(t) == /. Lelig e )= (ellc™ |le")G (2,2 )" (£,0'). | (12)
kk'|kk'L' '
N |
N } b %ty N , -
The expression (£ |/, (Qi . gj)[z ¥') eppearing in Eq. (11) will contain both teérms
1< !
even in t and odd in t.: .  We consider first the even terms.
The coefficients ft of the Slater integrals Ft appearing in the electrostatic

energy matrices of the zN configuration are given by

N _ XN
< . <

Ly = (KNV/L) (,Q,'t : 21-;)|14N111')' = (£Ig"19)? (F1 2. (u; - Ht)lﬂNw'),‘ (13)
i<y ™ iy O r ™ .

and hence,for even tyEq. (11) may be written as

L et

 en * C LX) SEVGEWS

Thus the corrections to the matrix elements ofoN arising from the terms in even t
are proportional to the coeffilcients of the ‘Slater.radial integrals Ft.

We now consider the terms odd in t. Limiting ourselves to f electrons (£=3) we

may write
| < [ 1 |
Pl @ gy = sly) (HER L w (158)
gy LN | l_ 10 ] |
X |
B T B N o fente y o
(£ zplif<J (g gj) | £y = sly,p') '5G(R7) b c(c))- W -g/lh (1513)
and

: |
(fN‘“'>"“‘ (a3 - H?) %) = s(y,p') |28 6(c,) - L__(gﬂ) oW ;/14*
< | 'L I
| (15¢)



-8- . "UCRL-10742 -

where G(R7)'and G(Gé) are the eigenvalues of Casimir's operstors for the groups R, and

Ge;respectively. 'These eigenvalues'are gi&en by

((ulu22lG(G2)l(ulu2)) =..[u$ +,ulué + ug + 50 +.§ué]/l2 : .“(l6a)b
and . ((wl 5 3)IG(R )l(wl ¥ 3 = [wl(wl+5) + wz(w2+3) + wj(w3+1)’]/1o, o  (16v)

6

where (u ) and (w w_) are the integers used by Radah " to label the irreducible

l 2 3
representations of the groups R,

T

and G which in turn were used to classif/ the states
vw of the fN configurations.
Inserting the resulte of Eq. (15) into Eq. (11) the corrections to the diagonal'

matrix elements due to the odd t terms may be written as

Cs cag = Li(L“rl)[X(l)A - X(5)1/56 + 2(;(<32) [x(5) -‘-‘x(3)] + 2 "G(R_{v)'XV(B)»v

- S %) - 7(3) +11.X(5)] - (1)
- L(L+1) + B G(Ga) ;»yG(R?) + 8 a ‘ (1{3)

vhere O = 1x) - X(5)1/56 | B .='2[X(5) - X(})] '
y = 2X(3) e 4 0XQ) - ™) + 11 %(5)) . (19)

i
and X(t) is given by Eq. (12).
From Eqs. (14) and (18) we obtain the total correction to the matrix elements -

(W|Gly') of the £ configuration perturbed hy all the interacting states of the

£-2(41)2 configuration as

¢ = \ ) x(t) £y 1) /(3||g" ||3)2 + Bly,y') om(m) + Ba(0,) + V(R * ¢ i (20)
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® shifts all terms of the fN configuration by & constant amount as does the contri-
bution for t = O in the summation. Where our interest is restricted to the relative

s b N :
shifts of terms within the f configuration we may write

eam
Y,

' - L X, GG ¢ sv) | cnn) « poey) w(RQE )

(21)
where t assumes the values 2, 4 and 6.
We note that for pchonfigurations}(£=i) Eq. '(21) has the form
‘ 21112 e
¢' = - 3X(2)r,/(1lic7)" + a'n(ia) ,
where Q' = Xél). (23)
For d" configurations (4=2) Eg. (21) assumes the form
o' = - }—,_.,X_(t)ft [61/C2lig”l12)% + s(y,u') ;'\'La"L(m) + B'G(RS)} ;o (e
-b .
where t'= 2 and L and
a* = [x(1) - x(3)1/10. 8" =3x(3), (25)

where G(R5),is the eigenvalue of Casimir's operator for the group Ré. G(R5) is easily

evaluated by means of Egqs. (18) and (19) of Racah.b:

;ﬁ% '(12—N)——Q-S(S+l)]

W+

G(R5) -

where Q is the seniority operator.
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In the particuiar case of a configuration_zN interacting with a configuration

72 52 the correction to Wlcly') of & s given by

| , e | v
C = -q(N,v) [G”(z,o)/m] s(ysv'), | (26)

wherer(N‘,v) = (N-v) (l&£+1+-N—v)/’+‘ | ‘ | .(27)

and v is the seniority number5 6f ‘the state y of ,ZN.
" In a similar manner it can be shown that the energy shifts produced by inter-
action with the states of & configuration £ 24'f" is identical with that of Eq. (11)

_apart from a redefinition of the functions X(t) which must now be written as

ew -5 2 [0 1 ﬂ Celghe) o™ f7)
kk' k k' k k'2
x | (znc lle") (£Ic" Hz") R®(41,4'2") BF (zz 22", | | ~ (28)
) & with (z')hﬂ' A2 ana (z')h£'+l(ﬂ")hz"+lﬂn+2
These types of j.nteraction- correspond:’ ,tb "core e;’ccitations "where .two électrons

‘hay' be regarded as béing "pi‘binéted‘from closed. shells into’ the partially -

filled I,N shell. The basic matrix element coupling a state of I,N with a state of-
' k

bigt A bgre 1
(¢7) 2 !

may be written as (E vSL(£') ‘S;SLI Z Z < (g . Q) |
k i<y K+l J
s () o SL) = E:‘WVKN+2)(~fl){£ %{2 ]

>

1 LI
x  (8ysLifon; s L'l] P2 g gy (g )AL 48 -8

(29)

PNANAN o x
(g nc uz) G (2,2').
1k 2
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o N L
The correction to the matrix element (y|G|y") of £ due to this interaction is then

¢ = - 1/2(N+2)(N+l) Z, X (i, X" );;{Hﬁyj(ﬂ WP L |} N+2w )

nj/'crh

SYAVDICWIFY
N+2 ) J

) ' (30)
L‘g 2 X'2 4

X (zNw"ﬂedk;S'L']}ﬂ

where ¥ and ¥' stand for the quantum numbers ySL and y'S'L' respectively and X(k,k')

is defined by

Klekr) = (1/a8)0(s, 20065 (o, 20 (IR0 g N2 (31)

We note that ¢ and y" may differ only in the quentum numbers ~v- Using Eq. (32) ofiRacahs'

to evaluate the 2-particle c¢.f.p., Eq. (30) becomes -

: —-<m+a><m+1>§3 i) EAED @pnEIEGET
W'oh |
vy

8 s 52 s s § (L-z L] |L4T

X , ) (gl }41‘”1«#)(/& V') MG
8 s'i) s S'g tf L'A ) L'} :
. | ﬁi VA A z'
xR (17 oy w L (32) -

. , - ' ol :
By performing the sum over ¢ and using the Biedenharn-Elliott sum rule on the 6-j

symbols involving L and again to sum over A, we obtain
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S co= ‘(N““a)(m)k; X(k,k')L—-lL—-l [t].\/‘ftf]"[’f?--']i ‘('-'1')'1'_'1*1.‘*'5*5" :

oL TS
w w ¢ :
} uNme*‘mu zp"mN“ ></zN"‘l 11421

'With Eq (53) in this form the summation over the connected states zN w' cannot be

- carried out explicitly However, if we note Eq. (19) of Racah,5

(z 1//158 L |]zN+l

(4 g+2-N)[S1[L] L4l '+4+8-8-8"
’J/ ) _(N'H.)[S'][L']l -(—,l) 8

(s luz+1 N, ,ZSLl]Ehz+2wa),' o . B T (3

we may convert the c.f. p. involving (£N+l| N+2) to those involving their conjugate
states in terms of which the sum over w may be carried out explicitly. States_of zN
N+1 ' |

or k. mey then be_recovered,by making use of the relation

R e Tt Ve

" vhich holds for all k £ 0. Using Eqs. (34) and (35), Eq. (33) becomes
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. e E .= ) '(N+l)/2 Z X(k,k')' .%_]L'F_%]l ‘\’[i]{ﬁ (_l)l+£+L+-I: :

v
0

'1;'1{‘1{"'2 t 4L o o - Tk
Re } { E j ) (B 1 (.
R A LT | ‘

Ssig

| The t = O term in the sum over t may be readily shown to give an additioﬂal carrection

o - . (u.z+1-N)-(gz+2-N)4 Z X(k k) a(w,w")
2(24] k  [k]

which contributes only & linear shift of all terms of £N.‘
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The 1dentity (Eq. (68 )) derived in the appendix can now be used to convert

: the matrlx element involving states of ZN 1 tovonevinvolving states of zN. This giveg f

tkk'fa

'z'z/zj

| C = ...- 3 (N+l) z X(k k' [tllgnil ,(;l)l+.e+L+f+t
| : Xk 't£0 - [SIL] .

v

N

(sT1) |
7 ( wl}ﬂ“*l ) uN*l téyy 'y z§ Wty

N1

N A(_l)‘,e;;m, (Y w)/u] .

tlz ) (z w"m (36) |

© Again eonverting to conjugate states, summing over’ @,and feGOnVerting to states zN

"1?

we get
: N  ‘. - L+ e .
él- y 1; k’_)i[‘t](-l)t z K{ﬁ-)- (/3 R 1!/"')
kk . ?l/".
. £ A B Ny ()-I-,Z + 2 - N) o I - =)
X Aeyuieyr) - = 2T sly,y") | | (37) .
: Application‘of the elosure‘propertyhf gives.
. N kx|
¢ = -3 ) X(ic, k') (£ 1) f y (ﬂﬁll(v ) lle zp")- (M+2-N)8(1//,w")/m
. “ kk't#0 NS
. if‘weflet
X(6) =gp 66,0006 (6,8 ) (e Ig a2t 102
. ) kk:l : .
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The total correction becomes

C+C'= - Z‘X(t)(—l)t[t] {(EN\VH(gt . gt)l!z#W") + (N-2/&~l)a(w,\lf”)/[/&]}
t . '

L)) ) X gy, (38)
2(4] k (k]

The first term is identical with Eq. (ll), the expression for the depression of 4 by
N-2 2 .
£ (£')°. Thus, as in case (a) the terms even in t will scale the Slater integrals

Fk while, for £ = £ = 3, the terms odd in t may be written as

oL(L+1) + aG(Gz) + YG(R7) + 5

{see Eq. (18)). The second and third terms in Eq. (38) merely produce a linear shift
of all the terms of fN.

The correction for the effects produced by intgractions'with the

) 1 ")_‘_u . ‘
(Z')uz +l(£ ) 27+ ez configuration are identical to those of Eq. (38) if the

substitution

X(t) = & Beg,200") B (20,00") (2lG™ ) ol E")

K' 1y ovg ek ey 6k k') T6 K K
x (2Ng™ Har)(£lig™ fla™) {z'z 2 } 2" z.}

is made.

] t
) (a2 N ikn (argr)*EH N

This is another '"core excitation' corresponding to an electron £' being pro-

' .
moted from tiie closed (n'z')uz +a shell to some empty n'"£" shell. A typical matrix

element coupling N witn ﬂN(n'z')uE ot gs given by
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((nﬁ)NY‘S'L'[(n'z')uz +ln"z"] S,Lo; SL | }: EL ? T« (¢ - ¢
o R k+l J
>

YA

(nz} YSL (n'2') 3;SL)

= I“Ei Ny (2 N (Iﬂ ) (A1 (o) ([51[3'1)1/2

Vk o
2 ( Y Y[ |
o o - L2n)|{Sssf|T 2 L] |Bss
\ ] ¢ >
X ({L 'L, 1(8)(8 ][s-z})l/2 (-1)% 9 £0"L,( Vs s 8,01 £ 40 0 5
. 7
’ Iran| |4 Lo o o8
\ \ / ! » /
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" A ' L) ' A
L4\ ‘ , L'+a . ' .
X [(-1) Sk EF+Q K 20 g Ez] : (39)

where

=
!

= I (oM RN, 0n)

E

5 (z"cknz') (z"Uckuz) Rk(zz”,z'z).

Carrying out the summs except those over k and V, the right hané side of Eq. (39) becomes

}: () 5(k,t)5(Sz’O)Vﬁs](BNW”Ut”BNW,) .

- NZ TATE )
> TARNNTY ® |

=
t
2}
[92]
W

R r )L 5 £ e" x
) VIL'Itl[s 108,] (-1) ‘ E (ko)

x (N ()N

S
E
£y
w
[€2]
0
w
1SN
t

where Y =L +L + £+ s +S+S+1+k+t, t=L_ aend t is even. Esch value of t
corresponds to a different perturbing state. The sum over V in the secdnd term may

be written as a matrix element of a double tensor wssz-as defined by Judd,25

N fialay N " . - e
(¢ 9 ="2)g°y ). However, the form given in Eg. (40) is more convenient for the

t

et caleulations.

If we let

Xk

i

coefficlent of El
k ) o
Y coefficient of Ez,

N N
the totsl correction to the matrix elements of £ due to states of 4 (n'l‘)

hz'+1nazn

is of the form

>
wl”

1 —

o k' }ﬁ Kk v ok (s
E:' xExE g Kp ys (Y‘Yk EzkEzk + 2xKyE ElkEZk ()
VISt 1 v T | |
2

k_kl
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. Using the closure property to sum over ¢', the first term in Eq. (41) may réadily
be showh to be '

(k)

) . — - . .,
. . . { N . . 1"
o(m) = - 2 2l gt Ty + s ey )J ( |
Carrying out the sumé over 82 and t, the term in YkYk!jbecomes
o(B) = R %p(ssx)(w{u P K ()
vy o
1{/X
RED frxan) ferm s o
X ﬁ 4 ot 17
‘. 2 z(/“x, s x xel L N el B ()
U U J v |
[Lr][s® (A)L‘"L (y ! i\} g K K o - (b3)
X 131 - L T2 P2 o |
L' 2
\ J

Again changing to conjugate>states in order to carry out the sum on ', we obtain

— o
o(By) = ¥ 7712 P() (I R (1)
A :
Kk*
X%Q
. - xi’- Lt x| . ] | ) _ k(2
x (R // . S0 . Z Bo ) swam, ()
SR A - 0 k)
where F(x) is given by
9 T (x] j'x 45 .)/;c ) / . , -
"(x = ...‘_. / K ‘ - E R ;_5
o |2 L/Z”k i 22 |

and k + k! is even.
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The identity (Eq. (68 ))again allows us to convert the sum over reduced matrix

elements. of states of £ %o & similer sum over states of £ Bq. (44) then becomes

C:(Ee) = N %; F(jd):(zN?ll"[lﬂN l— Z ( l)ﬁ + Lt l+x [%"] f(ﬂNwm“zN-lE’)

kk?
x#0
if‘e Lmi'g\ L ) :
x4 1GR9 | - Wtz ) _ ;w;)a/m 5(p,1")

L £ x| O (4]

.

e T L I N W LS
§§: NE [£] k ,
X
where x may be evgn or odd.

The third term in Eq. (41) is given by

| T 1 L Lt'gl. -1
oleyz) = 1 ). e Z‘/[L][L ] () )
. W't )’ L_J
x Iy, R
2 }ﬂ L k" k k‘

vhere X(k',t) = -—-

i ’“j

Carrying out the sums on ¢ and y?', Eq. (47) may readily be rewritten as

| . | 7
C=,By) = 1{2 X' ,8) (-1)" [e(z“wng’“f AR IO AR LD

N

l . L"zi-‘.l 1" n
The total correction to the matrlx elements of 4 by £ (Z ) n'f

is then

given by the sum of Eas (h2), (h@) and (48). The net effect of this interaction is
to modify thgﬂsiater integrals Fk, introduce the parameters o, P and vy (for fN) and
produce a“i&ﬁea& shift of all the levels of the configuration. ‘The relative correctior
producéd by this interaction are then of the same form as the corrections to the

matfix elements of £ produced by interaction with zN'ez'z", Egs. (11) and (28).
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“(d) Pl with AL g

wybourne 3has shown that the matrix elements of this configuration interaction 7 

may be. written as M?l'v
(‘ W’SL' 1§<J k+l (‘gik "8y ).‘zN IV'S'L'E!SL)” e
....... < 1>I‘*" “ J’N uug uzwnc ||z-> R (u i ) Z (z“wu

L L

If the summation ‘over wl is evaluated by means of the identity in Appendix I

L (Eq, (68 )) the right hend side of Eq (h9) beccmes

= 'g(“ﬁﬂ"w Y ("",“fgk,””f’,’,"ﬁ']_‘!tm ") | () *"{// [ [L]/[L])l/2 |

x (AN R e L)
ooy (P (MM | . S

‘For 4 # £' when the second term in Eq. (50) is zero, we may write the

correctlons “to the matrix elements of E as

c %u_" x(k, k' L][L 1/2/[1,])@ w{I
| vy

t'[

zL“‘L."“' e
x wm { j f o }.u“wugkuz”w
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x  (wIglag (51)
where
Xlk,k') = (zngknwngknz'><z||gk'||z><z||¢k'um'
% R(06,22') R (28,02')/AE. o O (52)

: N-
Performing the summation over the states of £ l,e' which connect a particilar

state ¢ of ZN we obtain

AN k" k) (k K" k‘l
St Kk 'k" '41' KA/ L i( \WRIVE|
v RIS

x (WU T 1T T g ). (53)

Using a result due to Raca.h]‘L (this Eq. 33) we note :

W] P Y )

\

- /Z P g B G ) /)
[/

—

Y : K K" k') e o .
N N PO L {“ U @ @ B G e/ w
] ' L'L Lj .

7'/71

Equation (53) can now be rewritten as

. : ‘ /k woay
ool et g “l
kk 'k | U ) zj

X (zNy,\({gkgk“}k' gk') |y | (54)
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" We note that Eq. (54) contains 34particle terms of the type

W' Z ( - kf‘~h>lzw")

i<J<h
The first is given by

2! two.additibnal terms must be added to C.

QZ

-k k'y' w
e T :
x (gt \f _) a9,
N

where X(k,k') is given by Eq. (L7)

using the closure property to sum over ¢, we obtain

. When-Ivs
K1)/ La)(- 1)“““ ([L]/[L])l/e(i" w(lz Ly

Evaluating the summation over y' and then

o = Z x‘('k,kw_/m[u<f‘%/zuy,k'~ ykllzNw">'+?[—Nﬁs(w,w")} 5)

The sécond term is mereiy

¥')/14) =-Nk; ([;]') (w -’

¢, = - YO Xl > My (8 (Mg
(56)
Adding Egs. (55) aﬁd (56) we dbﬁéin |
(57)

- | .

. o | N
o' = e xox)/0) MRS - Y - gy st |
N-lzf is represented

£', interaction of IN with £

i

Thus we see that when £
scalar 2-body interaction proportional to the co-

by a 3-body interaction, plus a

efficients of the Slater integral,Fk and a linear shift of all the terms in the

configuration.
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. |
() A itn u,)hz+l£1\l+l

This type of interaction corresponds to a '"core excitation" where an electron

Y AR

4t from a closed (£') shell is regarded as being promoted into the partially

filled BN shell. A typical matrix element coupling a state of the zN configuration

1 ’ .
with a state of (z')“ ﬂzN*l configuration will be of the form
N k
N hgw2 .1 Y 2 T« kK ky N+l obgra
(£ ysL; [(2") 178;8L| . Z e e (IR | AV R AT OAD SL)
K i<j r, v

a re ‘
- ,(N+1>1/2(-1)S"S‘1/2[ IR .A.J'l/e (zl\gkllz)% (2 (1859

(s]{L]
(f X L\> ,
x (271 14%) ‘fwz } (211G ) ~8 (2, 2) (2 (147)
x (ag¥a) (108 T 1) iju,z,u-) , - (58)

where the principel quantum numbers are of course always different.
In order to obtain an expression for C, we again consider first the case ot

£ # 8'. The total correction is then

¢ o= (1) L on&,k') B (M M Gyl

Kty
P!
- L |
‘ LkIL L'k'L .
X (TIEN) (g) i l v (59)
. L'L'L) Lf‘ L' f/

where X(k,k') is again given by Eq. (52). We may now use Eg. (34) to convert to
conjugate states and carry out the sums over y', E, and E'. Converting back to

N N+1 "
states of £ and £ by means of Eq. (75), for k"#0, Eq. (59) becomes
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- k'+k"+1, o ~k k! kﬁh
C =' - }.. X k,k' (:'1) ‘ i [k l j (
S Xk ( ) o N Lf ; z:f

_ - - r o

N k".k' k', N, VE: Lg+2-N)¥(k,k N kg N o,y -

T L bl VB M G L LA
. k .

N .1 "
+ [V S(V»W.)} -
where k and k' are even and £ # £'. The first term differs only by some multiplicative
' N -
factors from the interaction of £ with zN lﬂ', Eq. (54), while the last two terms

: - N
give a scalar two-body interaction and a linear shift of all terms of £ . .

When £ = £' we again have two additionsl terms.

< 5 N e - L .
o =2 /o X(owv) 2o EMISTILT (e Ny Ly ) Sy
1 &y 4 (810 | :
- , Tk _ ’
x  (-1)b AT «\( O P P | (61)
U'L"e "‘" A

Again converting to conjugate states to carry out the sum on ¢’ "and using the
-closure property, we obtain

C. = - /. X (e k!
kk' . 4]

: | \ )
{“(ﬂNwH(gk‘ g @/l | (62)

J

Using Bq. (20) of Racah,5 C. is readily seen to be

2
c, = - ‘=) ) %), (63)
(2] Kk !
For the case of £ = £' we must then add to Eq. (60) the expression
— (61)
\

. ﬁ' X(};g};‘ ;;..)_L(EN_WH (Ek . “U,'k)]lﬂNil/") + (N+l+.£+2)‘/[z]5(’¢)w.”)‘ }

-

The.total correction then nas the same form as Eq. (57). Thus when £ = £' the inter-
action of £ with (2') R represented in the same way as the interaction
of £ witn N1y . - . ‘

’ £', i.e., as a 3-body interaction plus a scalar 2-bodv interactien and a
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linear shift of all the terms of sz

L. EVALUATION OF THE RADIAL PARAMETERS

If radial functions were available for both the ground state and excited
orbltals it would now be possible to calculate the perturbation due to the varlous
excited configurations. One must, however, be sure that the perturbation to be
calculated has not already been included in the calculation of the wave functions
used. The use of perturbaﬁion theory starting from Hartree-Fock functions has Begn
discussed in some detail by Nesbe‘c«26 His method of symmetry and‘equivalence
restrictions, used by Watson and Freeman 27ih their HF calculations for the rare
earths, includes configuration interaction involving promotion of any electron to
another state of the same symmetry, e.g.; 4Lf to 5f, 5p to 6p, etc. Because the
angular part of each function is fixed and only the radial parté are allowed to
vary, one electron excitations to states of different symmetry, which would be in-
cludea in an unrestricted HF calculation, must be treated as a perturbation-on

28 includes one-electron

these functions. Similarly the SCF calculation of Ridley
excitations to states of the same symmetry.v No two-electron excitations. are in-
cluded, even in the unrestricted HF functions. HF functioms calculated for a
particular S and L can contain configuration interaction only with states of the
same S and L, in an excited configuration; Such functions may be appropriate for
estimating_perturbatiohs due to a one-electroh excitation to another state of the
same symmetry but, of different S and L. A function which is an average for a con-
figurabtion must, iﬁ some average way, ‘take into account all one-electron ekcitation:
of the same symmetry, but it is difficult to say exactly what has been included.
Thus, in computing the interactions due to various configurations one must be very

careful that all or part of that interaction has not already been included in the

computation of the radial wave functions.
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5. CONCLUSIONS
It has been shown that, to second-order, in the approximation that the
configurations are well sepaerated, all twd-particle interéctions with the con-
figuration zN may be represented by a linear shift of all the terms of the
configuration and a scalar two-body interaction. One-electron excitations,
either from the core or the unfilied zN shell, are represented by an effective
threeabody‘intefaction, a linear shift of'all the terms of zN and, in some cases,
a scalar two-body interaction.
A The scalér two-body interactioné are those arising from the linear
theory. The validity of Racath aﬁa Trees'17”treatment of the two-body scalar
interaction hés been established and, in addition, the analytical form of the

17

radial parts of the interactions determined. Racah19 and Trees™ ' have introduced
two scalar interactions to be added t6 the matrices of'dN, one prOportional to
L(L+1) and the other to the eigenvalues of the seniority operator Q. We prefer
to use the eigen#alués of Casimir's operator for the group R5 in place of the
seniority operator since the radial parameters (Eqs. (12) and (25)) are of a
simpler form. It will be noted that different choices of scalar interactions
will yielad difféféﬁﬁlcorrécﬁiOhs to the Slater Fk radial integrals. In general
we ﬁeed only introduce f parameters in addition to the f+1 Slater parameters to
include the effects of the two-particle interactions with the zN'configuration.
Raecah and Shadmiég have made a detailed study of the @ correction in dN con=
figurations and failed to obtain a substantial improvement in their energy
level calculations. Thig we believe is due to théi? neglect of the effective
three=body interactions.

The three=body interactions are of & non-linear type. For " configura-

tions where there is the excitation of a gingle s electron they may be reduced

23

- W i e 50
ecently used by Trees3 to

. T T - U . |
take into account the effect of 335&7 on 5@2§d)a Por 1 the Eotallcorrectlon

to the addition of & single parameter of the type

t6 the electrostatic matrix element is given by a change in the Slater integrals
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o plus & term of the form

Z k k' k"
¢ = on(L+l) + aG(Ge) + 'yG(R,?) + X(x,k',2")
Kk 'k" g AL

xS i, | (65)

vhere X(k,k',4') is é constant for a given k, k' and £'. The appearance of 2’

in the 6-4 symbol makes parametrization of the three-body terms more difficult

than for the two-body interactions. However,it,should be possiBle to parametrize

these three-body terms for the most significant interactions, £' = 1 and 3 forfN,

and determine the parameters X(k,k',£'), from experiment. For the p excitations

only two additional parameters, X(2,2,p) and X(k,4,p), are needed while for the

f excitations six edditlonal pevemeters, X(2,2,7), X(hh,1), X(6,6,1), X(6,2,7),%(k,2,1
and X(6,k4,f), ere requiped. Thus for the £ configurations both the two- and one-
electron excitations could be included by adding ten parameteré to supplement the-

usual Slater parameters.

Since the total correction for two electron excitations is given by the
sum of £ édditiqnal parameters, it i1s meaningless to perform a least-aquares
unnlys&s without including all of them. Thus, for fN it is unwise to consider
only a term oL(L+1) as this is only part of the correction. We have also seen
that the addition of the parameters o, B and y 1s always associated with a modi-
fication of Slater inteérals Fk. Therefore, oné should never cdo a least squares
analysis for these parameters wiﬁhout allowing the Slater integrals to vary at.
the same time.

While we have given the>parameters éssociated with the additional tﬁo-
and three-body interactions in terms of eXplicit functions of the radial integrals

for particular configurations the parameters derived from experimental data will

represent the weighted contributions of many configurations since the angular part
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of‘the interactions is independent of the principal quantum numbers n'f' of the
- exclted electroneo. Not only will the parameters absorb the effects of the bound
states but also the states of‘the continuum making it very difficultlto A8BEEE
the agreemant between the éxbérimentally deri&ed parameters and those ctaloulated
frcm.Hartree=Fock_caléulations. Thus in Treeé'30 caleulation of the effects of
3030 Ton 35254°, the effects of 36736 ks have automatically been included.
i In the cane of Low energy perturbing configurations it will still e
heceasary'to take dnto account interactions explieiltly. However,sthere will
normally only be a few such configurations eand we may parametrize the éffeétsﬁoff
all higher configurations.

It shou;d be pointed out that the above coneclusions hold only for 2N
ty@e configurétions and do not neceassarily hold for other cgnfiéﬁrations. TFor
example, starting from the equations of Wybourne,25 it cen readily pe shown that

the direct part of the interaction of £ with £N2" contains & term of the form

kzan{tﬁzk. '}k"uz%w

which‘is a non-gcalar two-body interaction. Such non-scalar terms may be impor=

tant when considering the interactions of such configurations aS‘de;
The’use of effeétive ;ntéractions has also been discussedlby TalmiBl in

connection with the nuclear shell model and the remarks of this paper should have

equivalent analogues where configurations of equivalent nucleons are encountered.
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Alternate Expression for the Interaction between

the Oonfigurations 4° and 4V-ig'

Tf we meke usé of the technique used by Raeah to6 ealeulate the interaction

ah* lb, another expression, equivalemt to Bq. (28),

Ne*

between thé:c@ﬁfiguraﬁi@ﬁs d® and
nay be obtained for the interaetion between the econfigurations 2‘ and £ 4'. These
‘results lead to 8n interesting idéntityzé whieh ean be shewn te6 be generally true,
even in the eape of double tengors. ‘ |

Follewilng Racah,5 we may write

¥ .
<€ k kyj N=1
EWSL § e (g s g )lz 7,/'.8'5L>
| ot .r>g+1 4 i

b l. ( Zx__:A(‘El)L-L ’VSL“ 3 ik“ﬂNV"SL") (zNVHSLH " Zi:giknzl\lr‘lwwigz)
.Yt ' i

g 2lL
L

* 5 (e L. g, 5" wlﬂ*sv'v( z'SL'“llZ ci €)Yy 2 80)
¥, 1" R

— ¥ uchizN=1w'><z||gknz°>2 8(4,4')/14 lak (28,82") - (66)

The lasl term 3n this expression arises from the faet thet Raecah's technique of rve-

placing the /. (Qik - 6 k) vy (/ gik)gl introduces extra terms which are non
1<) 4 : .

zero for (= z' and must therefore be subbtracted out.
If we use the Biedenharn-El. liett sum rule and the @rth@ggnality properties
of 6-) symbole to evaluate the sum over L', the righthand side of Eq. (66) may be

rewritten as
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-

i \'; - inTY M 1 LI - ) 41" L

E 0 AL B “Jf (g a)
z . L 2 x

‘ [\

X (ﬂlgk”ﬂ')(3NYSL“Hk“ZNy"SL") . L (1) (ﬂNWflﬂN-lwl)

noj

x g Gl ™y N

.

|
— 2006, VN (Mt ) (g ® 101 | R (08, 000) 67)
; .

Since they ere two different expressions for the same matrix element, Eq. (67) must
be identically equal to the righthand side of Eq. (49). A slight rearrangement of

terms then leads to the ldentity

PR GLE & AV | i
e IR S G ol Ve 2}
¥ Ly &4y

/

~ P

N 1/2 Bep, N M- )’z LL
(L)L) (-1) (" eyt s ;
" AR

x (Pysnlgayrse) -o(e,00) (PR Ny /10 (68)

A gimilar expression for the more general case of double tensors may be gen-

(e k
erated in the following manner. Take the tensors QK = E:l (EK )i where

- V
KhHs'B’) = 5(s,s')8(L,£'). Since the U Kig stay within a configuration £ a

(s4l[y

complete set of states is IzNﬁ”MS"MT”) where y" = y"8"L".
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Thus
Z .GN-]_“}fN ")(g 1\';1‘ am ety ")('L‘ ot /@ = typtt ((Jg)
ygmy vIDL) (5 Mysm ]S 68™ig) (L My 4m | LAL"wg) |
1\4\‘;'1\’ l“
@ ”\’IHM.L!UK ‘-lzl/mM MI”) I wm[l/p

W
oy
=1
_——
s
-
o
=
=
&
=<
=
s
633
5
g
#

. . . . N1 e mn s
The stotes with bars over tliem are all states of £ . We now multiply both =ideés

By (fELMLIf.ﬁiﬂmﬁ (T My fn lL L L ML) (SOSMslg ﬁss ms)(g”ﬁgs m;lgsS'Mé) and sun

over ﬁL’ﬁﬂ’ m m N& é 'é, m'. Using the Wigher-Eckart theoremgh on the matrix

5

elements we getb,

Lo 1) S Gy N sy (st s

wi'wm (70)

K1t

X 5(L,L") 8(8,8") = (ﬂN w,oz,wuu w',sz,w').

Because of the delta functions in 6 and L, we can multiply by (ﬂNwlﬂN-l@) and sum

over 1. Thig gives
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WX

-
v g™ ) (e ) s(u,19 s(s1,8m)

- L IR, o, s sesn)
Y :

(....m

/ - WflﬂN -1- )(- 1)L+z+L HAB+8+E 'K ([L][L ][S][S'])l/2

(Lk1) s« s
) ! Kk N 1—
x J_ 4 <z Tl v')
1T2T ! V8§
“ -/ »
N N-1-— T f+LAk+S ' +8+8+K 4 o 1/2
R VA AT AT Y SIS (1131118151 ])Y
L x L*\(‘ s kg
X § _ g b (szHU Hsz)
1 o ‘g /
(ﬁ L 4/ Lo S j
If we now multiply by
L x L';,' L5 K s"f /’Eé“,‘""] ]
- y \! - \, \
’ﬂlel{ 'isslsli} [S] [L ]
- 4L

and sum over S' and L', we obtain

(71)
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o (L 108 1]
y L x L" .jSKS"
lﬂ L'e! [s §'s!
\ ~ ( (72)
o Nee et e E'SS'Z A YA
- %—p (EN‘W”ZN l'lll)(‘l)ﬁ LV kg =g Ty § gf \)Lz 7 Ej
LS K S k .
5 (zN“l@'HgKk”zN‘J‘xT’) " (BNMlzNal;pfl')<51)14+£4-S'+s+8+k+1.+1<‘

X 8(a,00) 8(s,60)fi10s])

This is the same as (68) for the more general case of double tensors.
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