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Controlling a phase of matter by coherently manipulating specific vibrational modes has long 

been an attractive and yet elusive goal for ultrafast science. Solids with strongly correlated 

electrons, in which even subtle crystallographic distortions can result in colossal changes of the 

electronic and magnetic properties, may indeed be directed between competing ground-state 

phases by selective vibrational excitation. In this way, new insight into the underlying physics 

can be gained and the dynamics in the electronic ground state of the system become accessible. 

Here, we report on the ultrafast switching of the electronic phase of a magnetoresistive 

manganite via direct excitation of a phonon mode at 17-THz. A prompt, 

five-order-of-magnitude drop in resistivity is observed, associated with a non-equilibrium 

transition from the stable insulating phase to a metastable metallic phase.  In contrast with 

light-induced1-3 and current-driven4 phase transitions, the vibrationally-driven bandgap 

collapse observed here is not related to hot-carrier injection and is uniquely attributed to a 

large-amplitude Mn-O distortion. This corresponds to a perturbation of the 

perovskite-structure tolerance factor, which controls the electronic bandwidth via inter-site 

orbital overlap.5-6  Phase control by coherent manipulation of selected metal-oxygen phonons 

will find extensive application in other complex solids, notably in cuprate superconductors in 

which the role of Cu-O vibrations on the electronic properties is controversial. 



2

Manganites exhibit a number of exotic phenomena, including charge-ordered and striped 

phases, orbital and magnetic ordering, half-metallicity, phase separation and colossal 

magnetoresistance (CMR). 5- 6 Most of these phenomena stem from the strong interaction between 

lattice, charge, orbital and spin degrees of freedom, which compete on similar energy scales to 

determine the ground state of the system.7 Arguably, the most striking aspect of the physics of 

manganites is the occurrence of a number of metal-insulator transitions, initiated for instance via 

perturbations of temperature, magnetic field, pressure, and irradiation with light.  

Pr1-xCaxMnO3 (PCMO) is a unique example among manganites, exhibiting insulating 

behavior over the entire chemical composition (x) and temperature range.8 This is a consequence of 

the small ionic radius of Ca, which results in a pronounced orthorhombic distortion (Fig. 1) that 

favors charge localization.6 Notably, the insulating phase at x=0.3 adjoins a “hidden” metallic state 

of the system, characterized by enormous changes in resistivity.  

In ABO3 perovskites, the orthorhombic distortion is quantified by the geometric “tolerance 

factor” that depends on the average A-O (A=Pr,Ca) and B-O (B=Mn) distances: 

(A O)
2(Mn O)

where 1corresponds to an ideal cube, while 1  reflects a compression of the Mn-O bond 

and an elongation of the A-O bond.  Moreover, <1 indicates a Mn-O-Mn angle  that is smaller 

than 180 , consistent with a symmetry-lowering rotation leading to orthorhombic or rombohedral 

structures.  The tolerance factor is related to the electronic properties of the solid via the one 

electron bandwidth (W), since the capacity for 3d-electrons to hop between neighboring Mn-atoms 

depends on a super-transfer process via O(2p) states and on the degree of overlap between orbitals in 

neighboring sites.6, 9-10  The hopping matrix element is maximum at 180  (cubic), and 

decreases with , vanishing at =90 . Systematic studies of several A0.7A’0.3MnO3 compounds show 
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that the tolerance factor controls the competition between ferromagnetic metallic, paramagnetic 

insulating, and ferromagnetic insulating phases.11

Here we show that coherent THz excitation of specific infrared-active modes can control the 

electronic phase of a manganite via direct modulation of the tolerance factor.  Figure 1(b) shows 

the low-temperature optical conductivity spectrum of Pr0.7Ca0.3MnO3 with three dominant phonon 

modes (23, 42, and 71 meV)12 corresponding to the three (F2u) infrared active vibrational modes of a 

cubic perovskite.13  The two highest frequency vibrations are assigned to the Mn-O-Mn bending 

mode and the Mn-O stretching mode respectively.14 Both vibrational modes affect the geometrical 

parameters determining the tolerance factor and are thus expected to have a strong coupling to the 

electronic properties of the system. Here we focus on the highest-frequency Mn-O stretching 

vibration at 17 m (17 THz or 580 cm-1) and study the effect of coherent large-amplitude excitation 

of this mode with intense femtosecond mid-infrared pulses.  The material response is investigated 

using both ultrafast pump-probe spectroscopy and transient conductivity measurements to 

characterize the insulator-metal transition.2-3, 15-18

In the pump-probe spectroscopy studies, Pr0.7Ca0.3MnO3 samples19 at 30 K are excited by 200 

fs laser pulses centered at 17 m, and the transient changes in reflectivity are measured over a broad 

spectral range (visible to near-infrared) in order to identify the characteristic spectral signatures and 

formation time of the metallic phase.  Figure 2(a) shows the transient reflectivity ( R/R) at 800 nm 

following impulsive vibrational excitation (at a fluence of ~1mJ/cm2) and compared with 

above-bandgap pulsed excitation. The reflectivity responses are identical, with large long-lived 

changes in reflectivity developing within 1 ps of excitation.  Moreover, these changes exhibit 

threshold and saturation dependence on the pump fluence, characteristic of a phase transformation to 

the metallic state, as previously established for above-bandgap excitation.16

Figure 2(b) shows the spectral dependence of the R/R signal (at 1 ps delay) for the case of 
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17 m pump wavelength. The spectrum of the reflectivity changes exhibits identical features as in 

previous optical studies in Pr0.7Ca0.3MnO3,18 which showed that the transition to the conducting 

phase (induced by either applied magnetic field, or by above-bandgap transient optical excitation) is 

characterized by decreased reflectivity at photon energies in the 0.5-1.9 eV range and increased 

reflectivity at higher photon energies. Such reflectivity changes have been interpreted as 

consequence of melting of the charge order and of the collapse of the 0.3 eV insulating gap leading 

to the formation of a pseudo plasma edge in the metallic state.12  Our observation of the ultrafast 

formation of a metallic-like reflectivity spectrum following 17 m pump excitation provides the first 

evidence that the metallic state is formed promptly (within the 300 fs experimental resolution) via 

direct vibrational excitation,20 and that this state persists for 100’s of picoseconds. 

Figure 2(c) shows the dependence of the reflectivity change (1 ps delay, 800 nm probe) on the 

pump wavelength, in the vicinity of the phonon resonance.  The observed reflectivity change 

clearly vanishes when the pump wavelength is tuned outside the 17 m phonon absorption band.  

The magnitude of R/R is maximum when the excitation wavelength is resonant with the Mn-O 

stretching mode, providing further evidence of an ultrafast vibrationally-induced phase transition. 

In addition to the optical measurements, changes in the sample conductivity are directly 

monitored by measuring the transient sample resistance following mid-IR excitation.  Gold 

electrodes with a 200 m-wide gap are deposited on the sample surface, and are DC-biased at 30 V.  

Measurements are performed at 30 K, where the charge-ordered, anti-ferromagnetic phase exhibits 

strong insulating character.  Laser pulses at 17 m are used to excite the sample (under conditions 

identical to those described above), with the laser spot fully covering the space between the 

electrodes.  The current flowing through the sample was monitored by measuring the voltage drop 

across a 50-  resistor.  Mid-infrared excitation results in a dramatic 1000-fold increase in current 

(Fig. 3, upper panel), corresponding to a resistance drop from 2 G  to 1.25 M .  The high 
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conductivity state develops within the 4-ns resolution of the electronics21 and exhibits a similar 

resonance behavior as observed in the optical measurements (Fig. 2c).  Figure 3 shows the increase 

of the sample conductivity derived from the measured transient resistance by assuming that the 

transition to the conductive state is uniform throughout the excited sample volume.  Given the laser 

spot size at the electrodes (200×300 m2) and the penetration depth of the mid-infrared light (~0.5 

m),12 the sample conductivity increase is estimated to exceed 105, from ~3 10-8 cm-1 to 

~5 10-3 cm-1. In these measurements, contributions from interband carrier excitations are 

negligible since five photons at 17 m (70 meV) are required to span the 0.3-eV insulating-bandgap 

of PCMO.  The moderate temperature jump due to laser excitation (estimated at <2 K) can also be 

ruled out as the origin of the resistivity drop.  As emphasized in the introduction, in Pr0.7Ca0.3MnO3

an insulator-to-metal phase transition cannot be induced by temperature.8

Our results clearly show that resonant excitation of the Mn-O phonon vibration in 

Pr0.7Ca0.3MnO3 drives the system on a femtosecond timescale into a metastable, nanosecond-lived, 

high-conductivity phase.  It is noteworthy that this occurs in the electronic ground state of the solid 

and no electronic excitation is involved.  These results strongly suggest that coherent modulation of 

the ‘tolerance factor’ gives rise to dramatic changes in the electron hopping probability, providing 

important new insight into the physics underlying the behavior of this strongly correlated material. 

Given present limitations in generating mid-infrared pulses beyond 25 m, it is not yet 

possible to assess the specificity of the Mn-O stretching vibration by comparing with excitation of 

lower frequency phonon modes, including the Mn-O-Mn bending mode, which is also likely to 

significantly modulate the tolerance factor.  Moreover, an important role in inducing the phase 

transition and subsequently stabilizing the metallic phase may be played by ultrafast vibrational 

energy redistribution via anharmonic coupling to the Mn-O-Mn bend, or to other modes (e.g. non 

infrared-active Jahn-Teller modes22) that may also influence the electron localization and 
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delocalization. 

Magneto-optic Kerr effect measurements following mid-infrared excitation will be important 

in the future to establish whether this insulator-to-metal transition is synonymous with an 

antiferromagnetic-to-ferromagnetic phase transformation, as would be expected for a 

magnetoresistive manganite where metallicity is associated with ferromagnetism through a 

double-exchange mechanism.23  This implies the possibility of inducing ferromagnetic order on a 

sub-picosecond timescale by excitation of specific vibrational degrees of freedom, a remarkable 

consequence of the strong coupling between magnetic, electronic, and lattice degrees of freedom.  

The excitation of a specific phonon mode has been demonstrated as a tool to drive the solid in 

the electronic ground state toward a competing phase of the system. The ultrafast vibrational control 

of correlated-electron phases is likely applicable in other interesting cases, opening a new window 

on their controversial physics and enabling time-resolved measurements under the unique conditions 

created by the initial localization of energy in specific vibrational modes. This approach may extend 

well beyond the case of CMR manganites, providing new insight into the behavior of complex 

matter, including the controversial nature of High-TC superconductivity and the role played by lattice 

vibrations in determining its electronic properties. 
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FIGURE CAPTIONS 

Figure 1: PCMO crystal structure and vibrational spectrum. (a) Unit cell of PCMO with pronounced 

orthorhombic distortion resulting from the small ionic radius of the Ca atoms.  The Mn-O-Mn bond is 

bent at an angle  < 180°, which varies linearly with the tolerance factor .10  The Pr/Ca doping results in 

an alternating network of Mn3+ and Mn4+ ions.  The crystal field splits the fivefold Mn-3d levels into t2g

and eg subsets.  The electron hopping occurs between 3d-eg levels of neighboring Mn3+ and Mn4+ species.  

The lattice distortion is related monotonically to the one electron bandwidth (W), since the effective 

hopping interaction of 3d-electrons between neighboring Mn-sites depends on super-transfer process via 

O(2p) states, and the p-orbital of oxygen cannot point towards two manganese atoms simultaneously if 

180 .6 (b) Low temperature optical conductivity spectrum of PCMO.  The inset shows the atomic 

displacements within the MnO6 octahedra associated with the 17- m phonon mode which modulates the 

Mn-O distance and hence the tolerance factor.  

Figure 2: Femtosecond pump/probe reflectivity studies. (a) Relative change of reflectivity at 800 nm 

( R/R) as a function of pulse delay following vibrational excitation at 17 m (solid line) and 800-nm 

photo-excitation (dotted line). (b) Spectral dependence of R/R measured 1 ps after vibrational excitation. 

(c) R/R at 800 nm measured 1 ps after excitation (squares) and absorption spectrum around the 17 m

phonon resonance (solid line). For comparison, the phonon spectrum is convolved with the spectrum of the 

broad-bandwidth pump pulses. 

Figure 3: Time-dependent transport measurement. Vibrational excitation of the Mn-O stretching 

mode results in a ~103 increase in the sample current (upper panel) and a corresponding ~105 increase in 

the sample conductivity (lower panel).  The metastable metallic phase is formed and relaxes within the 
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experimental time resolution of 4 ns. The dashed line (t<0) shows the DC conductivity of the insulating 

phase. The oscillations observed at t>0 are due to electronic ringing and hinder a precise assessment of the 

timescale for the full recovery of the insulating phase conductivity.  
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