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Food Microbiology | Minireview

Bacterial interactions on nutrient-rich surfaces in the gut lumen
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ABSTRACT The intestinal lumen is a turbulent, semi-fluid landscape where microbial 
cells and nutrient-rich particles are distributed with high heterogeneity. Major questions 
regarding the basic physical structure of this dynamic microbial ecosystem remain 
unanswered. Most gut microbes are non-motile, and it is unclear how they achieve 
optimum localization relative to concentrated aggregations of dietary glycans that 
serve as their primary source of energy. In addition, a random spatial arrangement of 
cells in this environment is predicted to limit sustained interactions that drive co-evolu
tion of microbial genomes. The ecological consequences of random versus organized 
microbial localization have the potential to control both the metabolic outputs of the 
microbiota and the propensity for enteric pathogens to participate in proximity-depend
ent microbial interactions. Here, we review evidence suggesting that several bacterial 
species adopt organized spatial arrangements in the gut via adhesion. We highlight 
examples where localization could contribute to antagonism or metabolic interdepend
ency in nutrient degradation, and we discuss imaging- and sequencing-based technolo
gies that have been used to assess the spatial positions of cells within complex microbial 
communities.

KEYWORDS cell adhesion, polysaccharides, gut microbiota, food particle, toxin 
secretion systems, syntrophy

R esource harvesting by resident gut bacteria occurs in an environment with unique 
features. The density and diversity of bacterial species is high, leading to a large 

number of prospective positive and negative microbe–microbe interactions. In addition, 
the continuous motion of luminal contents has the potential to disrupt juxtapositions of 
microbial cells on timescales much faster than microbial doubling time. These features 
pose a significant challenge for the pairwise coevolution of microbial genomes in the gut 
and may restrict strong coevolution to the species that possess adhesion and migration 
systems, affording them frequent and sustained physical proximity to one another. 
For species that are stochastically dispersed, there may be therapeutic opportunities 
to intentionally direct them into spatial arrangements that enhance microbe–microbe 
interactions and promote functions that benefit human hosts. Gut biogeography across 
scales including organ compartments (10–100 cm) and distance from the mucosal 
epithelium (along the radial axis) act as major habitat subdivisions for microbes (1). 
These habitats support distinct collections of species that may evolve together based on 
their shared accumulation as a result of proliferation. However, there are large numbers 
of distinct species and strains in each of these habitats, raising the question of whether 
or not these organisms are stochastically distributed at the micron scale (1). Here, we 
review the existing evidence for micron-scale spatial organization of gut microbes with 
a particular focus on whether accumulations of dietary nutrients in the lumen could 
enable reproducible microbial interspecies interactions that lead to co-evolution of gut 
bacterial species.
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DIETARY FIBER IS A HETEROGENEOUSLY DISTRIBUTED CARBOHYDRATE 
RESOURCE IN THE GUT

The chemical structures of dietary plant polysaccharides impact both their physical 
distribution in the intestinal lumen and their ability to serve as a carbon source for 
gut bacteria (2, 3). These complex carbohydrates are often derived from cell walls or 
energy storage structures (such as starch granules) and are resistant to hydrolysis in the 
upper gastrointestinal tract (4). Many of the biochemical pathways by which gut bacteria 
degrade dietary fiber have been described in detail (5–9). The spatial distributions of 
common fiber types and the impact of heterogeneous accumulations of these nutrients 
on the localization of the bacterial species that consume them are less well-understood.

Classes of fibers that are fully soluble are likely to be homogeneously distributed 
in the fluid phase of the intestinal lumen at the sub-micron scale. These include some 
inulins, pectic fragments, mannan, and some gums and mucilages that are naturally 
present in human foods and can also be added as partially purified components during 
food processing (10). These fiber types often have short polysaccharide chain lengths, 
charges, or other chemical features that limit interactions between chains (11–15). 
Such fibers are subject to degradation as bacteria encounter them stochastically after 
ingestion and, considering host intestinal mixing, are not likely to support reproducible 
physical associations between bacteria, as has been modeled using simplified systems 
(16). However, these fiber types may exist in a particulate or aggregated form when they 
are associated with the insoluble fibers discussed below.

Gel-forming fiber types concentrate carbohydrates into discrete regions within the 
gut lumen due to their semi-solid phase. For example, pectin is a widely consumed 
gelling agent and a major component of the primary cell wall in plants, particularly 
edible fruits (17). Pectic polysaccharides exist in three main structural forms: homogalac
turonan (HG), rhamnogalacturonan I (RG1), and rhamnogalacturonan II (RG2). All three 
forms have a backbone of charged α-1,4-linked D-galacturonic acid units (alternating 
with L-rhamnose in the case of RG1), with sidechains of arabinan, galactan, or arabino
galactan common in RG1 and RG2 (18, 19). The negatively charged galacturonic acid 
in pectins triggers gel formation under acidic conditions when bound with positively 
charged ions like calcium (20). Pectin gels remain undigested and stable in simulated 
gastric conditions (21) and are actively under investigation as encapsulating agents for 
gastric digestion susceptible food ingredients, drugs, and bioactive compounds (22–25).

Gels can also be formed by resistant starch, an alpha-glucan that resists breakdown 
by mammalian amylases in the upper digestive tract (26, 27). Resistant starch 4 (RS4) is 
a subtype of resistant starch that is chemically modified by phosphorylation, acetylation, 
or etherification. While acetylated and phosphorylated RS4 is soluble (28) and etherifi-
cation produces insoluble compounds (29), all three modifications lower gelatinization 
temperature, making them more susceptible to gel formation than their unmodified 
counterparts (28, 30). Like alpha-glucans, purified beta-glucans (with variably alternating 
1,3 and 1,4 bonds) also form dense gels in conditions that simulate the small intestine 
(31). The stability of the colloidal gels formed by these fibers allows them to transit the 
intestine as dietary particles available for bacterial catabolism (32, 33).

Fiber types classified as insoluble are highly likely to form particles in the gut and 
serve as a source of polysaccharides that provide an advantage to bacteria that can 
colonize their surfaces. Fibers typically defined as insoluble include cellulose, hemicellu
lose, and several types of resistant starch (RS1, RS2, and RS3). Cellulose is the primary 
component of the cell wall of terrestrial plants (34) and consists of linear chains of 
glucose subunits connected by beta-1,4 bonds. When these chains self-associate, they 
form rigid crystalline fibrils that reduce their solubility in water (35). Although gut 
bacterial taxa capable of degrading cellulose have been detected in humans, including 
those in the Clostridium, Eubacterium, Butyrivibrio, and Ruminococcus genera (36), the 
degradation process is inefficient compared to that in microbial communities from other 
mammals such as ruminants (37). Hemicellulose is found in the primary and secondary 
cell walls of plants and typically contains xylans (often beta-1,4-linked xylose with diverse 
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side chains) and mixed-linkage glucans formed from interspersed beta-1,4 and beta-1,3 
glucose (38). These polysaccharides are abundant in dietary plant cell wall fragments, 
though high degrees of sidechain substitution can increase their solubility in water (38, 
39). Despite being chemically resistant and tightly associated with cellulose, hemicellu
lose is known to be degraded in the large intestine by several bacterial taxa, including 
Bacteroides species (40, 41). Lignin, a class of highly insoluble polyphenolic compounds 
that are physically associated with hemicellulose and cellulose, can also be broken down 
by some specialized gut bacteria (42). Resistant starch 1 and 2 are not integral to the 
plant cell wall but nonetheless have very limited solubility and are likely to introduce 
heterogeneity into the gut nutrient landscape (26). RS1 is sequestered in intact plant 
cells, while RS2 is present in compact starch granules most abundant in plants such as 
potatoes and bananas. RS3, also known as retrograde starch, is made up of granules 
that gelatinize after heating and recrystallize after cooling, resulting in material that is 
partially insoluble in water (26). All three types of resistant starch are fermentable by the 
microbiota (9, 43–45) and likely provide selective pressure to access and exploit these 
resources.

SPATIAL DISTRIBUTION OF DIETARY AND HOST-DERIVED NITROGEN

Due to the abundance of carbon sources in the mammalian gut, nitrogen often serves as 
a limiting nutrient for microbes (46). Nitrogen is an essential element for the growth of 
bacteria and contributes to the synthesis of proteins, nucleic acids, and peptidoglycan. 
Soluble nitrogen sources, including dietary nitrate and excreted urea, are harvested by 
bacteria in the intestine. Isotype tracing studies demonstrated that Firmicutes obtain 
nitrogen from host urea while Bacteroidota (formerly Bacteroidetes) rely more on host 
mucin in a simplified diet context (47). Although the delineation of nitrogen sources that 
support gut microbes in a typical, complex human diet context is not easily determined, 
the importance of nitrogen is made clear by the expression of nitrogen acquisition genes 
induced by fiber supplementation (48).

Dietary proteins from plants, including protein-rich cereals and pulses (49), can form 
insoluble (and thus highly concentrated) aggregates. Cereal proteins (from wheat, rye, 
barley, maize, oats, and rice) and pulse proteins (from peas, beans, lentils, and chick
peas) are generally categorized as either albumins, globulins, glutelins, or prolamins 
based on their solubility (via Osborne fractionation) at standardized salinity, pH, and 
ethanol concentrations (50). The human gastrointestinal tract provides the conditions 
required to solubilize many plant proteins, especially when food processing techniques 
are employed, including cooking and soaking (51). However, certain classes of proteins 
have low scores for digestibility (52, 53) and form aggregates that escape digestion in 
the stomach and small intestine (54). Additionally, proteins that do not typically survive 
transit to the large intestine can be rendered stable in the gut by trypsin and chymotryp
sin inhibitors present in plant tissues (51) and alterations to the digestive tract such 
as increases in gastric pH (55). These variables influence whether or not plant protein 
aggregates are available to bacteria in the colon.

Animal-derived foods typically contain higher total protein content than plant foods, 
and as such, the majority of protein in most adult human diets comes from consuming 
mammals, fish, poultry, and dairy (56). While host proteases are capable of breaking 
down a majority of the protein from animal-derived foods, collagen is not highly soluble 
in water (57), and has been shown to survive digestion processes (58). Bacteria from 
the Staphylococcus, Streptococcus, Enterococcus, and Bacillus genera have been shown to 
encode proteins that bind to human collagen for tissue colonization and host infection 
(59), demonstrating that collagen can act as a substratum for adhesion. In addition, mice 
fed a high-fat diet supplemented with collagen from fish skin exhibited an increase in the 
abundance of Bacteroides, Streptococcus, Faecalibaculum, and Clostridium in the intestine 
(60), raising the possibility of potential competitive interactions that are centered around 
collagen metabolism.
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Bacteria can also obtain nitrogen from sources originating from the epithelium. 
The epithelial mucus layer undergoes constant renewal as mucin glycoproteins are 
secreted and form a gel in the gut lumen (61). Some human gut microbes are known 
to utilize mucin as a nitrogen source, including Akkermansia muciniphila and members 
of the Bacteroides genus (62, 63). Akkermansia and B. thetaiotamicron compete with 
one another in vitro and in vivo, and genes involved in carbohydrate metabolism, 
glycan biosynthesis, and antimicrobial activity were associated with their interactions 
(64). In addition to secreted proteins, epithelial cells themselves that are sloughed 
into the lumen (65) contain abundant protein, nucleic acids, glycosaminoglycans, and 
membrane-derived phospholipids, such as phosphatidylethanolamine, that can form 
concentrated regions rich in nitrogen-containing compounds (66, 67). Phosphatidyletha
nolamine in the membranes of these cells can be broken down by phosphodiesterases 
into ethanolamine and glycerol, which provide nutrient sources for certain gut microbes, 
including species in the Pseudomonadota (formerly Proteobacteria) phylum (66–68). 
Nonpathogenic E. coli strains were observed to outcompete pathogenic E. coli (EHEC) 
when cultivated in minimal media containing ethanolamine plus glucose or glycerol 
(68), raising the prospect that epithelial cell-derived lipids in the gut could contribute to 
microbial competition.

MEASURING BACTERIAL CELL LOCALIZATION IN THE INTESTINE AT THE 
MICRON SCALE

The development of a working model for the physical organization of the gut microbiota 
has been hindered by several factors: (i) the large number of individual species that 
must be tracked; (ii) the difficulty in tagging the highly heterogeneous dietary substrata 
that serve as nutrient landmarks; (iii) the necessity to study spatial organization in the 
host, as opposed to in cell culture systems; and (iv) the dynamic nature of the highly 
mixed intestinal contents. The transit of luminal contents through the large intestine is 
facilitated by smooth muscle contractions that create backflow, redistributing dietary 
compounds and bacteria at up to 1,000-fold the rate of simple diffusion (69, 70). Such 
extensive mixing introduces highly stochastic distributions of different bacterial species 
and food particles relative to one another in the large intestine, making histological 
characterization difficult. Several recently developed experimental approaches seek to 
address these challenges.

Fluorescence in situ hybridization (FISH) microscopy has revealed that bacteria in 
many turbulent environments, such as in the oral microbiota, can adopt spatial patterns 
(71, 72), raising the prospect that certain species in the intestine are found in reprodu
cible arrangements. Recent work has revealed heterogeneously distributed bacterial 
clusters in the gut environment using gnotobiotic mice colonized with human gut 
microbiota (73). In the context of a standard diet containing plant polysaccharides, 
distinct clusters of bacteria from the broad phylogenetic groups Bacteroidales and 
Bacillota (formerly Firmicutes) were observed spatially excluded from one another. 
However, a diet lacking plant polysaccharides induced more homogeneously distributed 
taxa, possibly due to the increased reliance on mucin, resulting in the thinning of the 
mucin layer and decreased bacteria–epithelial cell distance. Combinatorial Labeling and 
Spectral Imaging (CLASI)-FISH detects probes with a unique fluorophore combination, 
significantly increasing the number of species that can be imaged simultaneously (74). 
CLASI-FISH applied to gnotobiotic mice colonized with a model human gut microbiota 
consisting of 15 type-strains demonstrated substantial mixing of bacteria in the colon 
with enrichment of subsets of strains in the lumen versus at the epithelium (75). 
HiPR-FISH, high-phylogenetic-resolution microbiome mapping by fluorescence in situ 
hybridization, is an advanced form of CLASI-FISH that relies on sequential labeling and 
multiplexing to identify over 1,000 unique fluorescence signals. When applied to mouse 
colon tissue sections, small multicellular clusters of the same strain were observed (76).

Recent sequencing technologies have also provided insights into bacterial spatial 
organization in the intestine. MaP-Seq, metagenomic plot sampling by sequencing, 
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captures spatial information by embedding a microbial community in gel and fragment
ing the sample into particles of defined size. By sequencing the barcoded 16S rRNA 
amplicons from individual particles, data describing the identity and physical proximity 
of microbial cells are obtained. MaP-Seq using mouse intestinal segments with and 
without dietary fiber intervention identified the formation of distinct clusters of different 
bacterial groups that are heterogeneously distributed as well as co-associations between 
groups on the scale of tens of microns (77). Importantly, the technologies described 
above assess only a single temporal snapshot of this densely populated and actively 
mixed system and are unable to distinguish transient juxtaposition from sustained 
proximity. Supplementing these approaches to identify long-lived spatial structural 
features in the gut requires time-lapse imaging modalities (78) or physical isolation of the 
units of structure such as aggregations of bacterial cells and nutrients.

ADHESION AS A MEANS TO ACCESS DENSELY CONCENTRATED NUTRIENTS

The majority of commensal gut bacterial taxa in healthy adult humans are non-motile. 
Bacteroides, Bifidobacteria, Ruminococcus, Lactobacillus, Faecalibacterium, and Akkerman
sia are typically not capable of directed migration in the classical sense (79–83). 
Bacteroides, which are prominent degraders of many of the heterogeneously distributed 
nutrients discussed above, lack flagella or type IV pili (84). It is posited that innate 
and adaptive immunity has suppressed the evolution of flagella in commensal gut 
microbes (85, 86) and that invading pathogens employ directed migration to outcom
pete commensal bacteria (87). Given the dynamic and heterogeneous distribution of 
nutrients and bacteria in the human intestine, adhesion may be especially valuable for 
efficient nutrient harvesting.

Biofilms are collections of cells embedded in an extracellular matrix, typically 
adhering to a biotic or abiotic surface (88). Biofilms have been observed in the 
human intestine, though the species responsible for generating the biofilm matrices 
has been difficult to establish (89–92). Saccharolytic bacteria, such as those in the genus 
Bacteroides and Bifidobacteria, were detected on undefined food residues in human 
fecal samples (93). By measuring short-chain acid production in strains isolated from 
these particles, it was observed that arabinogalactan degradation rates were higher 
in biofilm-forming communities, while the degradation rate for starch and mucin and 
the fermentation rate of soluble oligosaccharides was higher in planktonic populations 
(93). Bacteroides use an adhesive appendage designated as the type V pilus to gener
ate biofilms on non-specific surfaces, such as plastic and glass (94). Type V pili are 
similar to type I pili in Enterobacteriaceae but require lipoprotein precursors and outer 
membrane proteinases (95). These pili include stalk proteins that may accommodate 
multiple tip adhesins that could mediate attachment to nutrient-rich surfaces. In the case 
of B. thetaiotaomicron, biofilm formation is also regulated by capsular polysaccharide 
expression (96).

Carbohydrate-specific adhesion is well-documented in members of Bifidobacteria 
(97) and Ruminococcus (98). Bifidobacteria has been extensively characterized for the 
ability to adhere to and catabolize granular starch from maize, potato, and barley under 
in vitro conditions simulating the upper GI tract (99). Starch adhesion exhibited strain-
specific variation, with all highly adhesive strains also exhibiting starch degradation. 
Moreover, Bifidobacteria adhesion is inhibited by soluble starch breakdown products, low 
pH, or proteinase K pretreatment, suggesting the involvement of cell surface proteins, 
potentially the highly conserved type IVb Tad (tight adherence) pilus (99, 100). Bifido
bacteria were observed to adhere and colonize the surface and crevices of the starch 
granules in the mouse intestine using FISH (101). Ruminococcus bromii also adheres to 
starch via a starch binding and degradation system known as the amylosome, which 
is highly specific for helical glucans in amylose (102, 103). Adhesion to cellulose is a 
well-known feature of cellulosome-expressing rumen microbes (104, 105), but it has 
also been indirectly observed in Ruminococcus champanellensis, a cellulolytic species 
isolated from human fecal samples. Single-molecule force spectroscopy revealed that 
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the formation of two distinct binding complexes variable in binding strength allows 
catch-bond behavior of the bacteria to cellulose under high shear force (106).

Bacteroides also demonstrate adhesion to specific carbohydrate surfaces. The genus 
Bacteroides is highly abundant in adult humans and has adapted to degrade a diverse 
array of carbohydrates in the gut. Strain-specific carbohydrate adhesion was observed in 
roughly one-third of the 160 Bacteroides and Parabacteroides screened for their binding 
to 60 different dietary polysaccharide-rich surfaces (107). Adhesion to galactan, mucin, 
and oat hull fiber was particularly robust, and galactan adhesion was recapitulated in the 
intestines of gnotobiotic mice. However, the genes involved in specific adhesion have 
not yet been identified.

MICROBIAL ANTAGONISM ENHANCED BY PROXIMITY

Bacterial cells that adhere to insoluble nutrient sources are poised to participate in 
competitive interactions with co-adherent strains. Many Gram-negative bacteria express 
a contact-dependent type VI secretion system (T6SS), a membrane-embedded protein 
complex that facilitates interbacterial competition through the injection of toxins into 
adjacent target cells. This molecular delivery apparatus consists of variable gene clusters 
encoding core proteins and additional accessory subunits that vary between bacterial 
taxa (108–110). The mechanism of attack involves the contraction of the needle-like 
tube–sheath complex (TTC), which propels the polymeric tube and spike complex (111) 
to penetrate the membrane of adjacent prey cells, delivering toxic effector proteins in a 
proximity-dependent manner (112, 113).

Contact with an adjacent cell triggers the assembly and firing of the T6SS at the 
contact site. The assembly, contraction, and disassembly of T6SSs occurs on the order 
of tens of seconds (114), which is consistent with the robust killing observed in cells 
cultured on solid media. Furthermore, while T6SS assembly can be localized randomly on 
the cell periphery (115), localization is disproportionately high at cell–cell contact sites 
when bacterial cells are allowed to establish sustained contact. Contact-dependent T6SS 
assembly has been observed in Pseudomonas aeruginosa (116), Acinetobacter species, 
and Burkholderia thailandensis (117) and can occur between heterologous bacterial 
species. In a process known as “tit-for-tat,” T6SS attacks from a V. cholera cell are detected 
by P. aeruginosa, which triggers T6SS assembly and firing for a counterattack at the 
contact site (118). P. aeruginosa must fire several times in response to an attacking cell in 
order for this defense to be effective, further emphasizing the need for sustained contact 
(119). The outer membrane protein OmpA, periplasmic protein TslA, and bacterial 
surface capsule production modulate contact-dependent T6SS assembly at the contact 
site (117). Thus, the juxtaposition of the outer membranes of bacterial cells adhering 
to the same molecular surfaces in the intestine may provide an enhancement of T6SS 
killing.

The T6SS has been extensively characterized in the intestinal pathogen Vibrio cholerae 
(120) and commensal gut Bacteroides. Three genetic architectures (GAs) of the T6SS 
have been identified in gut Bacteroidales, two of which are horizontally transferred 
between strains to influence interbacterial antagonism (121, 122). GA3, which is exclusive 
to Bacteroides fragilis species, is the most well-described and is known to be utilized 
for potent bacterial killing. The susceptibility of potential prey to T6SS attacks is highly 
dependent on its repertoire of immunity proteins (123). Many B. fragilis strains, including 
those that do not encode a T6SS themselves, contain immunity proteins that provide 
protection from effector proteins associated with other B. fragilis strains (124). In vitro, 
B. fragilis NTCC 9343 targets B. thetaiotaomicron (122), and further, B. fragilis NTCC 9343 
and B. fragilis 638R target numerous gut Bacteroidales strains, including other B. fragilis 
strains that do not contain the same T6SS locus (125). The expression of the T6SS 
gene cluster in the enteroaggregative E. coli sci1 is activated in iron-limited conditions 
(126), suggesting that nutrient availability in the intestine may modulate T6SS-depend
ent competitive dynamics. However, effects of dietary plant polysaccharides on T6SS 
expression have not been thoroughly investigated. Interestingly, B. fragilis binds to mucin 
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in vitro (127) and also exhibits nonspecific adhesion (107), either of which could place B. 
fragilis in proximity with target cells in the intestine.

In vivo evidence for T6SS-mediated killing in the gut has largely come from studies 
using mono- and bi-colonized gnotobiotic mice. Several bacterial species have been 
shown to gain a competitive advantage from the T6SS with respect to their colonization 
of the mouse intestine, including B. fragilis 638R (125) and Salmonella typhimurium (128). 
V. cholerae was shown to antagonize commensal E. coli using its T6SS in the mouse 
intestine (129). In the infant rabbit model, the T6SS in V. cholerae provides a competitive 
advantage, dependent upon the utilization of T6SS by other bacteria present (130). 
Direct T6SS-mediated competition between Citrobacter rodentium and commensal E. coli 
Mt1B1 was shown in the mouse intestine (128). Interestingly, Bacteroides strains that 
are susceptible to T6SS predation in vitro may avoid being targeted in vivo, suggested 
by the differential susceptibility of B. thetaiotaomicron to B. fragilis killing in vitro versus 
in vivo (124). In these in vivo studies, it is not clear whether the participating strains 
exhibit a high degree of sustained colocalization. It is likely that T6SS-expressing cells 
and susceptible prey cells would encounter one another less often in a well-mixed 
community of hundreds of species, and in such cases, co-adhesion to the same surface 
could enhance their interactions.

Intestinal bacteria also engage in contact-independent killing via antimicrobial 
peptides known as bacteriocins secreted by Gram-positive and Gram-negative bac
teria (131, 132). The activity of many bacteriocins in the intestinal environment has 
been confirmed using mouse models (133, 134). Bacteriocins can be bacteriostatic or 
bactericidal, and the majority have a narrow set of species targets that are often closely 
related to the producing strain (135). Gram-positive Ruminococcus and Lactobacillus 
secrete bacteriocins (136, 137), and Gram-negative Bacteroides, including B. ovatus and B. 
thetaiotaomicron, and Phocaeicola vulgatus produce bacteroidetocins that are related to 
class IIa bacteriocins (138–140). The bacteroidetocins have shown no effect on members 
of the other major phyla in the gut (E. coli, Lactobacillus, Enterococcus, and Bifidobacte
rium) but are highly effective against Bacteroidota (formerly Bacteroidetes), including 
Prevotella, Parabacteroides, and other Bacteroides (140). The effectiveness of bacteriocins 
is dependent on the concentration that reaches the target cell, and in the case of 
bacteroidetocin binding to its molecular target BamA, it is likely reversible, necessitating 
higher concentrations than that of an enzymatic toxin (141). In the densely populated 
gut environment, the deployment of bacteriocins may provide the strongest effect 
against co-adherent cells in proximity, especially since many gut bacteria (for example, 
E. faecalis) secrete extracellular proteases and peptidases that likely destroy bacteriocins 
before they diffuse or circulate over long distances to reach target cells (142–145).

EFFECT OF PROXIMITY ON EXCHANGES OF METABOLIC PRODUCTS AND 
GENETIC INFORMATION

Bacteria participate in commensal and mutualistic interactions via nutrient sharing, 
which can also be enhanced by proximity. Nutritional cross-feeding of metabolic 
products, known as syntrophy, has been observed in fiber degraders, such as Bacter
oides species, which can sustain the growth of non-saccharolytic members in the gut 
microbiota (146). The archeon Methanobrevibacter smithii consumes the acetate and 
hydrogen produced by B. thetaiotaomicron, relieving the growth suppression of these 
metabolites on B. thetaiotaomicron in co-cultures (147). Notably, the interaction between 
B. thetaiotaomicron and M. smithii was accompanied by the formation of multi-species 
microbial clusters of variable sizes when these bacteria were co-cultured. Bacteroides can 
also provide polysaccharide breakdown products to neighboring strains. For example, 
B. ovatus ATCC8483 was observed to secrete inulin hydrolase (incurring a fitness cost) 
to support the growth of P. vulgatus (148), despite the dispensability of this hydrolase 
for inulin degradation by B. ovatus. Ruminococcus bromii, a primary starch-degrading 
species in the gut microbiota, was increased in humans consuming a resistant potato 
starch-supplemented diet, which was associated with an increase in butyrate (149). In 
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the same subjects, a major butyrate producer, Eubacterium rectale, was correlated with 
the increase in R. bromii, raising the possibility of a cross-feeding relationship whereby 
R. bromii degrades the resistant starch and releases breakdown products for E. rectale. 
Inter-phylum cross-feeding has been observed between R. bromii and B. thetaiotaomi
cron, whereby the degradation of potato amylopectin by R. bromii produces glucose 
that can be utilized by B. thetaiotaomicron (150). In vitro co-culturing experiments also 
demonstrated that the degradation of the plant cell wall polysaccharide xylan by B. 
longum and B. pseudocatenulatum leads to the production of lactate, which is then 
utilized by Megasphaera indica for growth (151). These examples highlight the ability of 
strains with known particle-binding phenotypes to participate in cooperative microbe–
microbe interactions.

The exchange of genetic information between bacteria via horizontal gene transfer 
(HGT) is prevalent in the gut microbiota and can also be proximity-dependent. HGT can 
provide beneficial functions via the transfer of genes involved in antibiotic resistance 
(152), immunity against the antibacterial effectors (123), and nutrient utilization (153). 
HGT by conjugation is thought to be a major mechanism of information exchange 
in the gut (154, 155) and depends on the conjugative type IV pilus or the F-pilus, 
a multi-protein complex on the donor cell. Extension and contraction of the F-pilus 
draws the recipient close for mating bridge formation, and DNA transfer requires direct 
cell-cell contact (156). The conjugative pilus is encoded on plasmids that replicate 
autonomously or mobile genetic elements that require integration into the chromosome 
(157). Bacteroides species are known to serve as both donors and recipients of conjuga
tive transposons that code for a fully functional conjugative apparatus that is excised 
from the donor chromosome and integrated into the recipient chromosome during 
mating (158). In E. coli, the average length of the F-pilus is 1.7 µm, and when deployed, 
the F-pilus requires 4–5 min to reach its full length (159). These characteristics of the 
F-pilus emphasize the importance of distance between the donor and recipients and 
the requirement for both cells to maintain persistent contact. In vitro assays of E. coli 
plasmid transfer reveal higher rates of transfer in isolated intestinal mucus (160), and 
accompanying biofilm assays confirmed that conjugation is favored in positionally fixed 
immediately neighboring bacteria.

CONCLUSIONS

Both antagonistic and mutualistic microbial interactions are enhanced by proximity, 
and there is evidence for the evolution of adhesion as a localization strategy for 
bacteria in the gut (Fig. 1). Understanding the microbial interactions that occur in the 
intestine and identifying which have resulted from bacterial co-evolution may require 
knowledge of their underlying mechanisms at the micron scale (161). Although many 

FIG 1 Nutrient-rich particles in the gut lumen and microbe–microbe interactions that are enhanced 

by cell proximity. (Left) Diet-derived and host epithelium-derived particles presenting surfaces that can 

support gut bacterial adhesion. (Right) Competitive (blunted lines) and cooperative (arrows) interactions 

between gut microbes that are mediated by the listed molecular systems. T6SS, type-VI secretion system; 

SCFA, short chain fatty acids.
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forms of interspecies cooperation and competition do not require cell-to-cell contact, 
the redistribution of the bacteria and small molecules generated by intestinal mixing 
limits the effectiveness of interactions over long distances. Future model communities 
designed to reveal novel types of microbial interactions could be selected by isolat
ing particle-associated bacteria from the gut. Insights will also come from analogous 
systems, such as marine particle-attached bacterial communities (162). The discovery 
of genes and dietary substrates that control microbial localization and potentiate 
interactions may provide tools for manipulating the spatial proximity of both commensal 
and pathogenic species to optimize the health of the host.
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