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Dong Min Roh, 915520552

Abstract

The dissertation focuses on nonlinear eigenvector algorithms for generalized Rayleigh quotient

optimizations and their applications. A well-known result in linear algebra and optimization is the

connection between the Rayleigh quotient optimization and a linear eigenvalue problem. Conse-

quently, linear eigensolvers can solve the Rayleigh quotient optimization. Another known result is

the characterization of the trace ratio optimization by an eigenvector-dependent nonlinear eigen-

value problem (NEPv). The NEPv formulation of the trace ratio optimization can be solved using

the self-consistent field (SCF) iteration. However, in the case of addressing the generalized variants

of the Rayleigh quotient optimization, it remains an active area of research. We explore the non-

linear generalization of the Rayleigh quotient optimization in the context of the robust common

spatial pattern, an algorithm used for signal processing in brain-computer interface system. Within

this framework, the nonlinear Rayleigh quotient optimization is associated with a NEPv. We pro-

pose to solve this NEPv using the SCF iteration. The numerical advantages of this approach over

existing methods are demonstrated using real-world datasets. Afterwards, we discuss Wasserstein

discriminant analysis, a bi-level optimization for dimensionality reduction that is formulated as a

nonlinear trace ratio optimization. We present an eigenvector algorithm for Wasserstein discrim-

inant analysis that leverages the NEPv formulations of the inner and outer optimizations. We

demonstrate convergence and scalability of our proposed eigenvector algorithm for Wasserstein

discriminant analysis.
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CHAPTER 1

Introduction

1.1. Motivation and Background

Central to many machine learning problems is the concept of optimizing the contrast between

two quantities, which often leads to the optimization problem of the Rayleigh quotient or its

generalized variants. Classical examples of this concept include principal component analysis and

Fisher’s linear discriminant analysis [48]. Solving the Rayleigh quotient optimization is often relied

on the fundamental result that its solution corresponds to an eigenvector of a linear eigenvalue

problem [36,49,84,101]. Consequently, the solution of the Rayleigh quotient optimization is found

by linear eigensolvers. Meanwhile, the trace ratio optimization can be addressed by its equivalent

eigenvector-dependent nonlinear eigenvalue problem formulation [124, 126]. This formulation is

efficiently solved using the self-consistent field iteration [25,125].

Addressing the nonlinear generalizations of the Rayleigh quotient optimization and the trace

ratio optimization, however, remains an active area of research. The application of the nonlinear

Rayleigh quotient optimization includes the robust Rayleigh quotient optimization for modeling

data uncertainty, such as robust Fisher LDA [61], robust generalized eigenvalue classifier [119], and

robust common spatial pattern [59]. The nonlinear trace ratio optimization arises in Wasserstein

discriminant analysis [45,72,90], a bi-level optimization for dimensionality reduction.

From a linear algebra perspective, the discussion of these nonlinear generalizations revolves

around the eigenvector-dependent nonlinear eigenvalue problem (NEPv) in which the matrices

depend nonlinearly on the eigenvector(s). NEPv arises in various engineering domains, such as

the Kohn-Sham equation of density functional theory in electronic structure calculations [29,77,

92, 105] and the Gross-Pitaevskii equation in modeling particles in Bose-Einstein condensates

[12,54]. NEPv also emerges in many machine learning problems, including dimensionality reduction
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[30,48,115,120,124], spectral clustering [5,109,110], and applications of robust Rayleigh quotient

optimization [11].

The self-consistent field (SCF) iteration is the most commonly used algorithm to solve NEPv

[9,10,25,26,27,28,73,74,111,121,122]. Some of the applications for which it is prominently

applied includes the Kohn-Sham equation [77, 92], the trace ratio optimization [115, 124], and

robust Rayleigh quotient optimization [11]. In essence, the SCF iteration iteratively solves the

linear eigenvalue problems that arise from fixing the eigenvector dependence at the current iterate.

The SCF iteration can be efficiently implemented by the use of fast Krylov subspace methods such

as the implicitly restarted Arnoldi algorithm [100] for solving the linear eigenvalue problems.

1.2. Contributions and Organization

The dissertation is organized as follows. In Chapter 2, we review the Rayleigh quotient op-

timization and the trace ratio optimization, along with their respective linear eigenvalue problem

and NEPv formulations. Moreover, we discuss the Dinkelbach’s algorithm for tackling the trace

ratio optimization. In Chapter 3, we extend the Rayleigh quotient optimization to a nonlinear

setting and demonstrate its occurrence in a specific application called the robust common spatial

pattern, a signal processing algorithm in brain-computer interface system. Additionally, we provide

the NEPv formulation of the robust common spatial pattern. In Chapter 4, we present an algo-

rithm based on the SCF iteration for solving this NEPv formulation. Extensive numerical results

supplement the proposed algorithm. Chapters 5 and 6 are based on the preprint [11], co-authored

with Prof. Zhaojun Bai and Prof. Ren-Cang Li. In Chapter 5, we introduce Wasserstein discrimi-

nant analysis, a bi-level optimization for dimensionality reduction which can consider both global

and local interconnections between data classes. We show that Wasserstein discriminant analysis

is formulated as a nonlinear trace ratio optimization. In Chapter 6, we propose an eigenvector

algorithm to solve Wasserstein discriminant analysis. The proposed algorithm leverages the NEPv

formulations of the inner and outer optimizations of Wasserstein discriminant analysis. In addi-

tion, the convergence analysis as well as the scalability of the proposed algorithm are presented. In

Chapter 7, we conclude the dissertation and address remaining open questions. The dissertation

also includes two appendices: Appendix A discusses vector and matrix calculus that are primarily

2



utilized in Chapter 3 and Appendix B introduces the Dinkelbach’s algorithm, which is applied to

the trace ratio optimization in Chapter 2.

My own contributions to this dissertation include:

‚ A detailed derivation and explicit formulations of the eigenvector-dependent nonlinear

eigenvalue problems for the robust common spatial pattern (Section 3.4). Extensive nu-

merical results on convergence behavior and classification rate of the SCF-based algorithm

using real-world data (Section 4.2).

‚ Presenting a novel eigenvector algorithm for Wasserstein discriminant analysis (Section 6.2),

along with numerical results showcasing its convergence, classification performance, and

scalability (Section 6.3).

1.3. Notation

Rn and Rnˆm denote the sets of all real vectors of size n and all nˆm real matrices, respectively.

With the addition of the ‘+’ in the subscript, Rn
` and Rnˆm

` represent the sets of vectors and

matrices, respectively, whose components are non-negative. Capital letters (e.g., A,B) are reserved

for matrices while lower-case letters (e.g., x) are reserved for vectors.

1n P Rn denotes the vector whose components are all ones, and Ip P Rpˆp denotes the identity

matrix. δij denotes the Kronecker delta, i.e., δij “ 1 only if i “ j and δij “ 0 otherwise. The

notation ¨T denotes the transpose of a vector or a matrix, while ¨´1 denotes the inverse of a square

matrix. A ą 0 and A ľ 0 indicate that the symmetric matrix A (with AT “ A) is positive definite

and positive semi-definite, respectively. Similarly, A ă 0 and A ĺ 0 denote that the symmetric A is

negative definite and negative semi-definite. Throughout, λ is reserved for denoting an eigenvalue,

except in Chapter 5 and Chapter 6 where it represents a regularization parameter.

Given a vector x of size n, }x}2 :“
?
xTx denotes the Euclidean vector norm, and }x}W “

?
xTWx denotes the weighted vector norm under the matrix W P Rnˆn. The notation xA,By :“

TrpATBq represents the Frobenius inner product between matrices A,B P Rnˆm, where the symbol

Tr denotes the trace operator on a square matrix. Dpxq P Rnˆn represents a diagonal matrix

constructed from the vector x P Rn, where the elements of x are placed on the diagonal. The

symbol .{ denotes element-wise division between vectors of the same dimension. ∇x and ∇X denote

3



gradient operators with respect to vector x and matrix X, respectively. If there’s no ambiguity,

the subscript notation of the gradient operators is dropped.
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CHAPTER 2

Preliminaries

2.1. Rayleigh Quotient Optimization (RQopt)

Many scientific problems involve optimization of the ratio of two quadratic forms. In mechanics,

for example, the ratio between potential energy xTAx and kinetic energy xTBx is often maximized.

Consequently, a key function in these type of problems is the Rayleigh quotient:

(2.1) qpxq :“
xTAx

xTBx

defined for all x ‰ 0 where A,B P Rnˆn are symmetric matrices with B positive definite pB ą 0q.

2.1.1. Rayleigh Quotient and Eigenvalues. There exists a fundamental relation between

the Rayleigh quotient qpxq (2.1) and the eigenvalues of the following linear eigenvalue problem

(2.2) Ax “ λBx,

where the matrices A and B correspond to matrices in (2.1). Namely, the eigenvalues of (2.2)

are characterized as the minmax/maxmin optimizations of the Rayleigh quotient qpxq (2.1). This

result is known as the Courant-Fischer minimax theorem [84, Theorem 10.2.1].

Theorem 2.1.1 (Courant-Fischer minimax theorem). Let W denote a subspace of Rn. If A,B P

Rnˆn are symmetric matrices with B positive definite such that the eigenvalues of the matrix pair

pA,Bq are ordered as λ1pA,Bq ě λ2pA,Bq ě ¨ ¨ ¨ ě λnpA,Bq, then

(2.3) λipA,Bq “ min
dimpWq“n´i`1

max
wPW

wTBw“1

wTAw

and

(2.4) λipA,Bq “ max
dimpWq“i

min
wPW

wTBw“1

wTAw
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for i “ 1, 2, . . . , n.

The generalization of the Courant-Fischer minimiax theorem to the sum of eigenvalues is the

result presented in [43, Theorem 1], known commonly as Ky Fan’s maximum principle or Ky Fan

trace theorem.

Theorem 2.1.2 (Ky Fan trace theorem). If A,B P Rnˆn are symmetric matrices with B positive

definite such that the eigenvalues of the matrix pair pA,Bq are ordered as λ1pA,Bq ě λ2pA,Bq ě

¨ ¨ ¨ ě λnpA,Bq, then

(2.5)

p
ÿ

i“1

λipA,Bq “ max
XTBX“Ip

TrpXTAXq

and

(2.6)
d

ÿ

i“d´p`1

λipA,Bq “ min
XTBX“Ip

TrpXTAXq

for p “ 1, 2, . . . , n. X is a solution to the maximum problem in (2.5) if and only if X is an or-

thonormal eigenbasis corresponding to the p largest eigenvalues of pA,Bq. Similarly, X is a solution

to the minimum problem in (2.6) if and only if X is an orthonormal eigenbasis corresponding to

the p smallest eigenvalues of pA,Bq.

2.1.2. RQopt and Linear Eigenvalue Problem. We consider the problem of maximizing

the Rayleigh quotient, which we refer to as RQopt:

(RQopt) max
x‰0

"

qpxq :“
xTAx

xTBx

*

.

(RQopt) arises in various applications, such as the study of vibrations analysis, buckling, elas-

ticity, etc. In machine learning, it arises in problems such as generalized eigenvalue classifiers [76],

common spatial pattern [17], and Fisher’s linear discriminant analysis [48].

As a direct consequence of Theorem 2.1.1 (the Courant-Fischer minimax theorem), we have the

following result between (RQopt) and the linear eigenvalue problem (2.2).

Theorem 2.1.3. x is a global maximizer of (RQopt) if and only if x is an eigenvector of (2.2)

with respect to the largest eigenvalue.
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2.1.3. RQopt Algorithms. To solve (RQopt), we can compute the eigenvector of (2.2) cor-

responding to the largest eigenvalue.

There are several strategies and algorithms available for computing the largest eigenpair of (2.2).

One approach involves transforming (2.2) into a standard linear eigenvalue problem by applying

Cholesky decomposition, where B is decomposed as LLT . After this transformation, classical

algorithms such as the Power method, Shift-and-invert method, Lanczos method, and Jacobi-

Davidson method can be applied to the matrix L´1AL´T [8,49,84]. Additionally, other algorithms,

including the implicitly restarted Arnoldi algorithm [100], the Krylov-Schur algorithm [102], and

LOBPCG [64], can be employed to compute the largest eigenpair of (2.2).

2.1.4. Nonlinear Generalization of RQopt. The nonlinear Rayleigh quotient optimization

(NRQopt) is a nonlinear generalization of (RQopt) in which the matrices depend nonlinearly on

the vector. It is defined as:

(NRQopt) max
x‰0

"

qpxq :“
xTApxqx

xTBpxqx

*

,

where, similar to (RQopt), Apxq, Bpxq P Rnˆn are symmetric matrices with Bpxq positive definite.

(NRQopt) can arise from the robust Rayleigh quotient optimization, where the data matrices

of the of the Rayleigh quotient are influenced by uncertainties [11]. Some of the applications for

the robust Rayleigh quotient optimization include the robust Fisher LDA [61], robust generalized

eigenvalue classifier [119], and robust common spatial pattern [59]. In Chapter 3 and Chapter 4,

we discuss (NRQopt) in the context of the robust common spatial pattern, a signal processing

technique in brain-computer interface system. The robust common spatial pattern improves the

robustness of the standard common spatial pattern by taking into account the nonstationarity of the

data. In this context, (NRQopt) is formulated as an eigenvector-dependent nonlinear eigenvalue

problem (NEPv). Subsequently, we employ the self-consistent field (SCF) iteration to solve the

resulting NEPv.

2.2. Trace Ratio Optimization (TRopt)

2.2.1. Trace Ratio. Many dimensionality reduction and feature extraction problems in pat-

tern recognition, computer vision, and machine learning concern the trace ratio optimization
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(TRopt). In TRopt, the goal is to maximize the trace ratio qpXq, subject to the orthonormal-

ity constraint:

(TRopt) max
XTX“Ip

"

qpXq :“
TrpXTAXq

TrpXTBXq

*

.

(TRopt) is defined for symmetric matrices A,B P Rnˆn, where B is positive definite. 1 Here, p is

typically much smaller than n.

(TRopt) predominantly arises in problems such as Fisher’s linear discriminant analysis (LDA)

[48], Marginal Fisher analysis (MFA) [120], and Local discriminant embedding [30], where the goal

is to maximize one quantity while minimizing another. In LDA, for example, the objective is to find

an orthonormal projection X that maximizes the dispersion between classes while minimizing the

dispersion within classes. This objective leads to (TRopt), where A corresponds to the between-

class scatter matrix Sb, and B corresponds to the within-class scatter matrix Sw.

2.2.1.1. TRopt is not RTopt. While sometimes overlooked, it is crucial to differentiate between

(TRopt) and the ratio trace optimization (RTopt), defined as:

(RTopt) max
XPRnˆp

Tr
`

pXTBXq´1XTAX
˘

.

The solution of (RTopt) is an eigenbasis of (2.2) corresponding to the p largest eigenvalues [48]. On

the other hand, the solution of (TRopt) corresponds to an eigenbasis of an eigenvector-dependent

nonlinear eigenvalue problem (NEPv).

The use of the surrogate model (RTopt) often leads to a suboptimal solution of (TRopt).

Moreover, in dimensionality reduction and feature extraction problems, an additional challenge

of discriminability arises, especially when posterior classification or clustering is important. The

discriminant capability of (RTopt) is generally inferior to that of (TRopt), resulting in (RTopt)

achieving inferior classification and clustering performance compared to (TRopt) [51,79,115].

2.2.2. Relation between TRopt and NEPv. The following lemma states that a local

maximizer of (TRopt) is an orthonormal eigenbasis of a NEPv corresponding to some p eigenvalues.

1While we defined (TRopt) for a positive definite B, it is possible to relax the positive definiteness of B to positive
semi-definiteness. As long as the rank of B is at least n ´ p ` 1, it can be positive semi-definite to guarantee that
TrpXTBXq ą 0 [79].
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Lemma 2.2.1 ( [124,126]). If X is a local maximizer of (TRopt), then it is an orthonormal

eigenbasis of the following NEPv:

(2.7) HpXqX “ XMX ,

where

(2.8) HpXq :“ A ´ qpXqB with qpXq “
TrpXTAXq

TrpXTBXq
,

and MX :“ XTHpXqX is an eigenblock. Moreover, the sum of the eigenvalues of HpXq corre-

sponding to the orthonormal eigenbasis X is zero.

Proof. The Lagrangian function of (TRopt) is defined as

(2.9) LpX,Γq “
TrpXTAXq

TrpXTBXq
´ TrpΓpXTX ´ Ipqq,

where Γ P Rpˆp is symmetric and contains the Lagrange multipliers. By the result ∇TrpXTAXq “

2AX for symmetric A (Lemma A.0.1(c)), the gradient of LpX,Γq with respect to X yields

∇XLpX,Γq “
p2AXqpTrpXTBXqq ´ pTrpXTAXqqp2BXq

pTrpXTBXqq2
´ 2XΓ

“
2

TrpXTBXq
HpXqX ´ 2XΓ.(2.10)

The first-order necessary conditions [82, Theorem 12.1, p.321] of (TRopt),

∇XLpX,Λq “ 0 and XTX “ Ip,

imply

(2.11) Γ “
1

TrpXTBXq
XTHpXqX.

Substituting Γ (2.11) into (2.10) and setting it to 0 we obtain

HpXqX “ XpXTHpXqXq.

9



Moreover, the sum of the eigenvalues of HpXq corresponding to the orthonormal eigenbasis X is

TrpMXq “ TrpXTHpXqXq “ TrpXTAXq ´ qpXqTrpXTBXq “ 0.

□

A local maximizer X of (TRopt) is an orthonormal eigenbasis of HpXq such that the corre-

sponding p eigenvalues sum to zero. However, the eigenvalue ordering is unknown, meaning that

we do not know which of the eigenvalues of HpXq these p eigenvalues correspond to.

Fortunately, when X is a global maximizer, the eigenvalue ordering is known.

Theorem 2.2.1 ( [124, 126]). X is a global maximizer of (TRopt) if and only if X is an

orthonormal eigenbasis of the NEPv (2.7) corresponding to the p largest eigenvalues of HpXq.

Proof. Let X be a global maximizer of (TRopt). By Lemma 2.2.1, X is an orthonormal

eigenbasis of the NEPv (2.7). Suppose, on the contrary, that the eigenvalues corresponding to X

are not the p largest eigenvalues of HpXq. Instead, let V be an orthonormal eigenbasis of HpXq

corresponding to the p largest eigenvalues. Then, according to Theorem 2.1.2 (the Ky Fan trace

theorem), V is a solution to

max
Y TY “Ip

TrpY THpXqY q

while X is not. Thus, we have

TrpV THpXqV q ą TrpXTHpXqXq “ 0.

The inequality indicates that qpV q ą qpXq, which is a contradiction since X is a global optimizer of

(TRopt). Therefore, X must be an orthonormal eigenbasis of HpXq corresponding to the p largest

eigenvalues.

Conversely, suppose that X is an orthonormal eigenbasis of HpXq corresponding to the p largest

eigenvalues. Then, for any orthonormal V , we have

0 “ TrpXTHpXqXq ě TrpV THpXqV q “ TrpV TAV q´qpXqTrpV TBV q “ TrpV TBV qpqpV q´qpXqq.

10



Since TrpV TBV q ą 0 due to the positive definiteness of B, this implies qpXq ě qpV q, indicating

that X is a global maximizer of (TRopt). □

2.2.3. TRopt Algorithms. A widely used approach for solving (TRopt) is through the ap-

plication of parametrization techniques. Research efforts [51, 55, 79, 80, 115, 124, 128] in this

approach utilize the fact that the maximal value of (TRopt) corresponds to the unique root of the

parametric function fpqq, defined as

(2.12) fpqq :“ max
XTX“Ip

TrpXT pA ´ qBqXq, q P R.

Notably, an efficient iterative method proposed in [115] computes the root of fpqq by solving the

nonlinear parametrization programming (2.12) at each iteration. This iterative method can be

interpreted as the Newton–Raphson method for solving fpqq “ 0 [55, 79], as well as the self-

consistent field (SCF) iteration for solving the NEPv (2.7) [25,125].

Interestingly enough, applying the Dinkelbach’s algorithm [37], designed for nonlinear fractional

programming, to (TRopt) also yields an equivalence with this iterative method. This connection

has not been previously explored in the literature. In light of this, we provide an overview of the

Dinkelbach’s algorithm for solving (TRopt). Afterwards, we discuss the Newton–Raphson method

and the SCF iteration, and establish the equivalence of the Dinkelbach’s algorithm to these two

methods.

2.2.3.1. Dinkelbach’s Algorithm. We provide a summary of the Dinkelbach’s algorithm in Ap-

pendix B for a general nonlinear fractional programming.

Note that TrpXTAXq and TrpXTBXq are continuous and real-valued functions defined over

tX P Rnˆp : XTX “ Ipu, a compact and connected subset. In addition, we have TrpXTBXq ą 0.

Therefore, according to Lemma B.1.1:

‚ The parametric function fpqq (2.12) is a continuous and strictly monotonic decreasing

function.

‚ fpqq has a unique root.

Furthermore, as stated in Theorem B.1.1:

‚ q˚ is the maximal value of (TRopt) if and only if q˚ is the root of fpqq.
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‚ X˚ is a global maximizer of (TRopt) if and only if X˚ is a global maximizer of the

parametrization programming (2.12) at q “ q˚.

In other words, we have

q˚ “
TrpXT

˚ AX˚q

TrpXT
˚ BX˚q

“ max
XTX“Ip

TrpXTAXq

TrpXTBXq

and

0 “ fpq˚q “ TrpXT
˚ pA ´ q˚BqX˚q “ max

XTX“Ip
TrpXT pA ´ q˚BqXq.

At each iteration, the Dinkelbach’s algorithm computes the following steps:

(1) qk “
TrpXT

k AXkq

TrpXT
k BXkq

.

(2) Xk`1 “ argmaxXTX“IptTrpXT pA ´ qkBqXqu.

According to Theorem 2.1.2 (the Ky Fan trace theorem), Xk`1 in the second step corresponds to

the orthonormal eigenbasis of the matrix A ´ qkB corresponding to the p largest eigenvalues.

The convergence proof of Dinkelbach’s algorithm in Appendix B.2.1 guarantees that tqku is

a strictly monotonic increasing sequence converging to the root q˚ of fpqq, or equivalently, the

maximal value of (TRopt).

2.2.3.2. Newton-Raphson Method. Applied to computing the root of the parametric function

fpqq (2.12), the Newton-Raphson method makes an update according to

(2.13) qk`1 “ qk ´
fpqkq

f 1pqkq
,

where f 1 denotes the derivative of f . In the following, we derive f 1pqkq.

To each q P R, we can express the following eigenvalue problem

pA ´ qBqXpqq “ XpqqDpqq,

where Xpqq is an orthonormal eigenbasis of A´ qB corresponding to the p largest eigenvalues, and

Dpqq is a diagonal matrix containing these eigenvalues. Thus, we can denote fpqq as

(2.14) fpqq “ TrpXpqqT pA ´ qBqXpqqq.

12



Additionally, since the matrix A ´ qB is symmetric and differentiable with respect to q P R, the

orthonormal eigenbasis Xpqq is differentiable with respect to q P R as well [58, Chapter II, section

6]. We outline the steps to compute the derivative of (2.14).

First, we have

d

dq
pXpqqT pA ´ qBqXpqqq “

d

dq
pXpqqTAXpqqq ´

d

dq
pqXpqqTBXpqqq

“
dXpqq

dq

T

AXpqq ` XpqqTA
dXpqq

dq

´ XpqqTBXpqq ´ q

ˆ

dXpqq

dq

T

BXpqq ` XpqqTB
dXpqq

dq

˙

“
dXpqq

dq

T

pA ´ qBqXpqq ` XpqqT pA ´ qBq
dXpqq

dq
´ XpqqTBXpqq

“
dXpqq

dq

T

XpqqDpqq ` DpqqXpqqT
dXpqq

dq
´ XpqqTBXpqq.(2.15)

Furthermore, the orthonormality of Xpqq implies

0 “
dpXpqqTXpqqq

dq
“

dXpqq

dq

T

Xpqq ` XpqqT
dXpqq

dq
,

which indicates that dXpqq

dq

T
Xpqq has zero diagonals. Consequently, by taking the trace of (2.15),

we obtain

dfpqq

dq
“ 2Tr

ˆ

dXpqq

dq

T

XpqqDpqq

˙

´ TrpXpqqTBXpqqq

“ ´TrpXpqqTBXpqqq.

Therefore, the Newton-Raphson method (2.13) is:

qk`1 “ qk ´
TrpXpqkqT pA ´ qkBqXpqkqq

´TrpXpqkqTBXpqkqq

“
TrpXpqkqTAXpqkqq

TrpXpqkqTBXpqkqq
.

In summary, at each iteration, the Newton-Raphson method computes the following steps:

(1) Compute Xpqkq as the orthonormal eigenbasis of A ´ qkB corresponding to the p largest

eigenvalues.
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(2) qk`1 “
TrpXpqkqTAXpqkqq

TrpXpqkqTBXpqkqq
.

2.2.3.3. SCF Iteration. In Theorem 2.2.1, we established that a global maximizer of (TRopt)

corresponds to an orthonormal eigenbasis of the NEPv (2.7) associated with the p largest eigenval-

ues. A commonly employed approach for solving a NEPv problem is the self-consistent field (SCF)

iteration.

Applied to solving the NEPv (2.7), the SCF iteration can be summarized as follows:

(2.16) Xk`1 ÐÝ eigenvectors of the p largest eigenvalues of A ´ qpXkqB.

2.2.3.4. Equivalence of Algorithms. As evident from the discussion, when applied to solving

(TRopt), the Dinkelbach’s algorithm shares the same updating scheme as the Newton-Raphson

method (2.13) and the SCF iteration (2.16) despite not relying on differentiability or addressing

eigenvector-dependent nonlinear eigenvalue problems.

We provide the summary of the algorithm in Algorithm 1.

Algorithm 1 (TRopt) Solver

Input: Initial X0 P S, tolerance tol.

Output: A global maximizer X˚ of (TRopt).

1: for k “ 0, 1, . . . do

2: Set qk “
TrpXT

k AXkq

TrpXT
k BXkq

.

3: Compute an orthonormal eigenpair pXk`1,Λk`1q of A ´ qkB corresponding to the p largest

eigenvalues.

4: if TrpΛk`1q ď tol then

5: return X˚ “ Xk`1.

6: end if

7: end for

The stopping criteria in line 4 of Algorithm 1 can be interpreted in two ways: either as checking

whether the root of the parametric function fpqq (2.12) has been found or as verifying that the

sum of the p largest eigenvalues of the NEPv (2.7) is zero.
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Algorithm 1 is globally convergent to a global maximizer of (TRopt) [37,79,115,124] and has

a local quadratic convergence [25,124].

2.2.4. Nonlinear Trace Ratio Optimization (NTRopt). Similar to the generalization of

(RQopt) to (NRQopt), the nonlinear trace ratio optimization (NTRopt) is a nonlinear generaliza-

tion of (TRopt). It is defined as the maximization of the nonlinear trace ratio qpXq, subject to the

orthonormality constraint:

(NTRopt) max
XTX“Ip

"

qpXq :“
TrpXTApXqXq

TrpXTBpXqXq

*

,

where ApXq, BpXq P Rnˆn are symmetric with BpXq positive definite. As in (TRopt), p is typically

much smaller than n.

One instance where (NTRopt) can arise is in the effort to enhance the robustness of the data

matrices of (TRopt) which are subject to uncertainties. Similar to how (NRQopt) is derived from

(RQopt), (NTRopt) can also be derived from the robust trace ratio optimization using the same

methodology.

However, more generally, (NTRopt) can be encountered in a bi-level optimization of the trace

ratio involving inner and outer optimizations. In Chapter 5 and Chapter 6, we discuss dimen-

sionality reduction application called Wasserstein discriminant analysis (WDA), which follows the

structure of bi-level optimization and is formulated as (NTRopt). WDA can account for both global

and local interconnections between data classes by using the underlying principles of optimal trans-

port. We introduce an eigenvector algorithm that solves WDA by leveraging the bi-level structure

within the framework of eigenvector-dependent nonlinear eigenvalue problems.
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CHAPTER 3

Robust Common Spatial Pattern Analysis: NRQopt and NEPv

3.1. Introduction

3.1.1. BCI, EEG, and ERD. Brain-computer interface (BCI) is a system that translates

the participating subject’s intent into control actions, such as control of computer applications or

prosthetic devices [41,69,118]. BCI studies have utilized a range of approaches for capturing the

brain signals pertaining to the subject’s intent, from invasive (such as brain implants) and partially

invasive (inside the skull but outside the brain) to non-invasive (such as head-worn electrodes).

Among non-invasive approaches, electroencephalogram (EEG) based BCIs are the most widely

studied due to their ease of setup and non-invasive nature.

In EEG based BCIs, the brain signals are often captured through the electrodes (small metal

discs) attached to the subject’s scalp while they perform motor imagery tasks. An EEG-BCI

session typically involves two phases: the calibration phase and the feedback phase [17]. During

the calibration phase, the preprocessed and spatially filtered EEG signals are used to train a

classifier. In the feedback phase, the trained classifier interprets the subject’s EEG signals and

translates them into control actions, such as cursor control or button selection, often occurring in

real-time.

The translation of the subject’s motor imagery into commands is based on the phenomenon

known as the event-related desynchronization (ERD) [17,88]. Processing of motor imagery com-

mands causes an ERD, a decrease in the rhythmic activity over the sensorimotor cortex. Specific

locations in the sensorimotor cortex are related to corresponding parts of the body. For example,

the left and right hands correspond to the right and left motor cortex, respectively. Consequently,

the cortical area where an ERD occurs indicates which motor task is taking place.

3.1.2. CSP. Spatial filtering is a crucial step to uncover the discriminatory modulation of an

ERD [17]. One popular spatial filtering technique in EEG-based BCIs is common spatial pattern
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(CSP) analysis [17,65,75,89]. The CSP is a data-driven approach that computes subject-specific

spatial filters to increase the signal-to-noise ratio in EEG signals and uncover the discrimination

between two motor imagery conditions [95]. Mathematically, the principal spatial filters that

optimally discriminate the motor imagery conditions can be expressed as solutions to Rayleigh

quotient optimizations.

3.1.3. Robust CSP and Existing Work. However, the CSP is often subject to poor per-

formance due to the nonstationary nature of EEG signals [17,95]. The nonstationarity of a signal

is influenced by various factors such as artifacts resulting from non-task-related muscle movements

and eye movements, as well as between-session errors such as small differences in electrode positions

and a gradual increase in the subject’s tiredness. Consequently, some of the EEG signals can be

noisy and act as outliers. This leads to poor average covariance matrices that do not accurately

capture the underlying variances of the signals. As a result, the CSP, which computes its principal

spatial filters using the average covariance matrices in the Rayleigh quotient, can be highly sensitive

to noise and prone to overfitting [89,123].

There are many variants of the CSP that seek to improve its robustness. One approach in-

volves regularizing the CSP to ensure its spatial filters remain invariant to nonstationarities in the

signals [14,95], or by first removing the nonstationary contributions before applying the CSP [94].

Another approach includes the use of divergence functions from information geometry, such as the

Kullback–Leibler divergence [6] and the beta divergence [93], to mitigate the influence of outliers.

Reformulations of the CSP based on norms other than the L2-norm also seek to suppress the effect

of outliers. These norms include the L1-norm [71,114] and the L21-norm [50]. Another approach

aims to enhance the robustness of the covariance matrices. This includes the dynamic time warp-

ing approach [7], the application of the minimum covariance determinant estimator [123], and the

minmax CSP [59,60].

3.2. Common Spatial Pattern Analysis

3.2.1. Data Preprocessing and Data Covariance Matrices. An EEG-BCI session in-

volves collecting trials, which are time series of EEG signals recorded from electrode channels

placed on the subject’s scalp during motor imagery tasks. Data preprocessing steps of the trials

17



include channel selection, bandpass filtering, and time interval selection. Channel selection involves

choosing the electrode channels around the cortical area corresponding to the motor imagery ac-

tions to increase the signal-to-noise ratio. Bandpass filtering is used to filter out low and high

frequencies that may originate from non-EEG related artifacts. Time interval selection is used to

choose the time interval in which the motor imagery takes place. By applying these preprocessing

steps, the quality of the EEG signals is improved, leading to better performance of CSP [17,40,78].

We use Y
piq
c to denote the preprocessed ith trial for the motor imagery condition c, where

c P t´,`u represents the condition of interest, such as left hand and right hand motor imagery.

Each trial Y
piq
c is a nˆ t matrix, where a row corresponds to an EEG signal sampled at an electrode

channel with t many sampled time points. We assume that the trials are scaled and centered, i.e.,

Y piq
c ÐÝ

1
?
t ´ 1

Y piq
c pIt ´

1

t
1t1

T
t q.

The data covariance matrix for the trial Y
piq
c is defined as

(3.1) Σpiq
c “ Y piq

c Y piq
c

T
P Rnˆn.

Denoting Nc as the number of trials, the average of the data covariance matrices is given by

(3.2) Σc “
1

Nc

Nc
ÿ

i“1

Σpiq
c P Rnˆn.

Assumption 3.2.1. We assume that the average covariance matrix Σc (3.2) is positive definite,

i.e.,

(3.3) Σc ą 0.

Assumption 3.2.1 is reasonable given that Σc is the average of the data covariance matrices Σ
piq
c

which are positive semi-definite.

3.2.2. Spatial Filters and Linear Eigenvalue Problems. The principle of CSP is to find

spatial filters such that the variance of the spatially filtered signals under one condition is minimized,

while that of the other condition is maximized. Let the columns of X P Rnˆn denote the n spatial

filters. X is defined such that the following couple of properties hold [17,65]:
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(i) The average covariance matrices Σ´ and Σ` are simultaneously diagonalized such that

XTΣ´X “ Λ´,

XTΣ`X “ Λ`,
(3.4)

where Λ´ and Λ` are diagonal matrices.

(ii) The spatial filters X are scaled such that

(3.5) XT pΣ´ ` Σ`qX “ Λ´ ` Λ` “ In.

Let Z
piq
c denote the spatially filtered trial of Y

piq
c , i.e.,

(3.6) Zpiq
c :“ XTY piq

c .

Then,

(i) By the property (3.4), the average covariance matrix of Z
piq
c is diagonalized:

(3.7)
1

Nc

Nc
ÿ

i“1

Zpiq
c Zpiq

c

T
“

1

Nc

Nc
ÿ

i“1

XTY piq
c Y piq

c

T
X “ XT

´ 1

Nc

Nc
ÿ

i“1

Σpiq
c

¯

X “ XTΣcX “ Λc.

This indicates that the spatially filtered signals between electrode channels are uncorre-

lated.

(ii) The diagonals of Λc (3.7) correspond to the average variances of the filtered signals in

condition c. Since both Σ´ and Σ` are positive definite by Assumption 3.2.1, the prop-

erty (3.5) indicates that the variance of either condition must lie between 0 and 1, and

that the sum of the variances of the two conditions must be 1. This indicates that a small

variance in one condition implies a large variance in other condition, and vice versa.

The properties (3.4) and (3.5) together imply that the spatial filters X correspond to the

eigenvectors of the eigenvalue problem

(3.8)

$

’

&

’

%

Σ´X “ pΣ´ ` Σ`qXΛ´

XT pΣ´ ` Σ`qX “ In,
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or, equivalently, the eigenvectors of the eigenvalue problem

(3.9)

$

’

&

’

%

Σ`X “ pΣ´ ` Σ`qXΛ`

XT pΣ´ ` Σ`qX “ In.

3.2.3. Principal Spatial Filters and Rayleigh Quotient Optimizations. In practice,

only a small subset of the spatial filters, rather than all n of them, are necessary for CSP [17,59].

In this paper, we consider the computations of the principal spatial filters x´ and x`, where

x´ minimizes the variance of condition ‘´’ and x` minimizes the variance of condition ‘`’.

By the equivalence of the spatial filters X to the eigenvectors of the eigenvalue problems (3.8)

and (3.9), x´ is the eigenvector of of the matrix pair pΣ´,Σ´ ` Σ`q with respect to the smallest

eigenvalue, and x` is the eigenvector of of the matrix pair pΣ`,Σ´ ` Σ`q with respect to the

smallest eigenvalue.

By Theorem 2.1.1 (the Courant-Fischer minimax theorem), x´ is the solution of the Rayleigh

quotient optimization (RQopt)1

(3.10) min
x‰0

xTΣ´x

xT pΣ´ ` Σ`qx

and x` is the solution of the Rayleigh quotient optimization

(3.11) min
x‰0

xTΣ`x

xT pΣ´ ` Σ`qx
.

3.3. Minmax CSP

The minmax CSP proposed in [59,60] improves CSP’s robustness to the nonstationarity and

artifacts present in the EEG signals. Instead of being limited to fixed covariance matrices as in (3.10)

and (3.11) for CSP, the minmax CSP considers the sets Sc, for c P t´,`u containing candidate

covariance matrices. The so-called robust principal spatial filters x´ and x` are computed by

1Strictly speaking, the solution of the Rayleigh quotient optimization (3.10) may not satisfy the normalization con-

straint xT
pΣ´ ` Σ`qx “ 1. But, in this case, we can always normalize the obtained solution by applying the

transformation x ÐÝ x?
xT pΣ´`Σ`qx

to obtain x´. Hence, we can regard the Rayleigh quotient optimization (3.10)

as the optimization of interest for computing the principal spatial filter x´.
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solving the minmax optimizations2

(3.12) min
x‰0

max
Σ´PS´

Σ`PS`

xTΣ´x

xT pΣ´ ` Σ`qx

and

(3.13) min
x‰0

max
Σ´PS´

Σ`PS`

xTΣ`x

xT pΣ´ ` Σ`qx
,

respectively. The sets Sc are called the tolerance sets and they are constructed to reflect the

regions of variability of the covariance matrices. The inner maximization in (3.12) and (3.13)

corresponds to seeking the worst-case Rayleigh quotient within all possible covariance matrices in

the tolerance sets. Optimizing for the worst-case behavior is a popular paradigm in optimization

to obtain solutions that are more robust to noise and overfitting [13].

3.3.1. Tolerance Sets of the Minmax CSP. We consider the data-driven approach to

construct Sc as the set of covariance matrices described by the interpolation matrices derived from

the data covariance matrices tΣ
piq
c u

Nc
i“1 (3.1). The tolerance sets in this approach can effectively

capture the variability present in the data covariance matrices and eliminate the need for additional

assumptions or prior information [59,60].

Given the average covariance matrix Σc (3.2), the symmetric interpolation matrices V
piq
c P Rnˆn

for i “ 1, . . . ,m, and the weight matrix Wc P Rmˆm with positive weights w
piq
c ,

(3.14) Wc :“ diag
`

wp1q
c , wp2q

c , . . . , wpmq
c

˘

,

the tolerance sets of the data-driven approach are constructed as

Sc :“

#

Σcpαcq “ Σc `

m
ÿ

i“1

αpiq
c V piq

c

ˇ

ˇ

ˇ

ˇ

}αc}W´1
c

ď δc

+

,(3.15)

2We point out that in [59, 60], the optimizations are stated as equivalent maxmin optimizations. For in-
stance, maxx‰0 minΣ´PS´

Σ`PS`

pxTΣ`xq{pxT
pΣ´ ` Σ`qxq is equivalent to our minmax optimization (3.12) using

pxTΣ`xq{pxT
pΣ´ ` Σ`qxq “ 1 ´ pxTΣ´xq{pxT

pΣ´ ` Σ`qxq.
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where δc ą 0 denotes the tolerance set radius. }αc}W´1
c

is a weighted vector norm defined as3

(3.16) }αc}W´1
c

:“

b

αT
c W

´1
c αc.

The symmetric interpolation matrices tV
piq
c umi“1 and the weight matrix Wc are parameters that are

obtained from the data covariance matrices tΣ
piq
c u

Nc
i“1 (3.1) to reflect their variability.

3.3.1.1. Why Σcpαcq of Sc (3.15) increases robustness. The average covariance matrix Σc tends

to overestimate the largest eigenvalue and underestimate the smallest eigenvalue [68]. For CSP,

which relies on the average covariance matrices, this effect can significantly influence the variance

of two conditions. On the other hand, the covariance matrices Σcpαcq of the tolerance set Sc (3.15)

reduce the relative impact of under- and over-estimations by the addition of the term Σm
i“1α

piq
c V

piq
c

to Σc. As a result, Σcpαcq can robustly represent the variance of its corresponding condition.

Another factor contributing to the robustness of Σcpαcq is the adequate size of the tolerance set Sc.

If the radius δc of Sc is zero, then Σcpαcq is equal to Σc, the covariance matrix used in the standard

CSP. If δc is set to be large, then one can capture the influence of the outliers. By selecting an

appropriate δc, Σcpαcq can capture the intrinsic variability of the data while ignoring outliers that

may dominate the variability.

3.3.1.2. Computing V
piq
c and weight matrix Wc. One way to obtain the interpolation matrices

V
piq
c and the weight matrix Wc is by performing the principal component analysis (PCA) on the

data covariance matrices tΣ
piq
c u

Nc
i“1 (3.1). The following steps outline this process:

(1) Vectorize each data covariance matrix Σ
piq
c by stacking its columns into a n2-dimensional

vector, i.e., obtain vecpΣ
piq
c q P Rn2

.

(2) Compute the covariance matrix Γc P Rn2ˆn2
of the vectorized covariance matrices tvecpΣ

piq
c qumi“1.

(3) Compute the m largest eigenvalues and corresponding eigenvectors (principal components)

of Γc as tw
piq
c umi“1 and tν

piq
c umi“1, respectively.

(4) Transform the eigenvectors tν
piq
c umi“1 into n ˆ n matrices, i.e., obtain matpν

piq
c q, then sym-

metrizing afterwards to obtain the interpolation matrices tV
piq
c umi“1.

(5) Form the weight matrix Wc :“ diag
`

w
p1q
c , w

p2q
c , . . . , w

pmq
c

˘

.

3In [59,60], the norm (3.16) was referred to as the PCA-based norm, reflecting the derivation of the weights tw
piq
c u

m
i“1

from the PCA applied to the data covariance matrices. However, we recognize the norm (3.16) as a weighted vector

norm defined for general values of w
piq
c .
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The interpolation matrices V
piq
c and the weights w

piq
c obtained in this process correspond to the

principal components and variances of the data covariance matrices tΣ
piq
c u

Nc
i“1, respectively. Conse-

quently, the tolerance set Sc (3.15) has a nice geometric interpretation as an ellipsoid of covariance

matrices that is centered at the average covariance matrix Σc and spanned by the principal com-

ponents V
piq
c . Moreover, note that a larger variance w

piq
c allows a larger value of α

piq
c according

to the norm (3.16). This implies that more significant variations are permitted in the directions

indicated by the leading principal components. Therefore, the tolerance set Sc obtained in this

process effectively captures the variability of the data covariance matrices.

We point out that the covariance matrix Γc may only be positive semi-definite if the number

of data covariance matrices is insufficient. In such cases, some of the eigenvalues w
piq
c may be zero,

causing the norm definition (3.16) to be ill-defined. To address this issue, we make sure to choose

m such that all tw
piq
c umi“1 are positive.

3.3.2. Minmax CSP and Nonlinear Rayleigh Quotient Optimization. We first note

that a covariance matrix Σcpαcq of the tolerance set Sc (3.15) can be characterized as a function

on the subspace Ωc Ď Rm:

(3.17) Ωc :“
!

αc P Rm
ˇ

ˇ }αc}W´1
c

ď δc

)

.

Consequently, we can express the optimizations (3.12) and (3.13) of the minmax CSP as

min
x‰0

max
α´PΩ´

α`PΩ`

xTΣ´pα´qx

xT pΣ´pα´q ` Σ`pα`qqx
(3.18)

and

min
x‰0

max
α´PΩ´

α`PΩ`

xTΣ`pα`qx

xT pΣ´pα´q ` Σ`pα`qqx
,(3.19)

respectively.

Assumption 3.3.1. We assume that each covariance matrix in the tolerance set (3.15) is pos-

itive definite, i.e.,

(3.20) Σcpαcq ą 0 for all αc P Ωc.
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Assumption 3.3.1 holds in practice for a small tolerance set radius δc. If Σcpαcq fails the positive

definiteness property, we may set its negative eigenvalues to zero, add a small perturbation term

ϵI, or perform the modified Cholesky algorithm (as described in [31]) to obtain a positive definite

matrix.

In the following, we show that the minmax CSP (3.18) and (3.19) can be formulated as nonlinear

Rayleigh quotient optimizations [11,59,60].

Theorem 3.3.1. Under Assumption 3.3.1,

(i) The minmax CSP (3.18) is equivalent to the following OptNRQ´:

(3.21) min
x‰0

"

q´pxq :“
xTΣ´pxqx

xT pΣ´pxq ` Σ`pxqqx

*

where, for c P t`,´u,

(3.22) Σcpxq “ Σc `

m
ÿ

i“1

αpiq
c pxqV piq

c ą 0.

α
piq
c pxq is a component of αcpxq : Rn Ñ Rm, a vector-valued function of x, defined as

(3.23) αcpxq “ ´
cδc

}vcpxq}Wc

Wcvcpxq,

where Wc is the weight matrix defined in (3.14) and vcpxq : Rn Ñ Rm is a vector-valued

function defined as

(3.24) vcpxq :“

»

—

—

—

—

—

—

—

–

xTV
p1q
c x

xTV
p2q
c x
...

xTV
pmq
c x

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

tV
piq
c umi“1 are the interpolation matrices.

(ii) The minmax CSP (3.19) is equivalent to the following OptNRQ`:

(3.25) min
x‰0

"

q`pxq :“
xTΣ`pxqx

xT pΣ´pxq ` Σ`pxqqx

*
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where, for c P t`,´u,

(3.26) Σcpxq “ Σc `

m
ÿ

i“1

αpiq
c pxqV piq

c ą 0.

α
piq
c pxq is a component of αcpxq : Rn Ñ Rm, a vector-valued function of x, defined as

(3.27) αcpxq “
cδc

}vcpxq}Wc

Wcvcpxq,

where Wc is the weight matrix defined in (3.14) and vcpxq is a vector defined in (3.24).

tV
piq
c umi“1 are the interpolation matrices.

Proof. We show the proof for result (i). Result (ii) follows the proof of result (i) by swapping

the roles of ‘´’ and ‘`’.

By Assumption 3.3.1, it follows that

(3.28) max
α´PΩ´

α`PΩ`

xTΣ´pα´qx

xT pΣ´pα´q ` Σ`pα`qqx
“

max
α´PΩ´

xTΣ´pα´qx

max
α´PΩ´

xTΣ´pα´qx ` min
α`PΩ`

xTΣ`pα`qx
.

For both c P t´,`u, we have

xTΣcpαcqx “ xTΣcx `

m
ÿ

i“1

αpiq
c pxTV piq

c xq “ xTΣcx ` αT
c vcpxq

with vcpxq as defined in (3.24). Thus, the solutions to the two optimizations in (3.28) are found by

optimizing

(3.29) argmax
α´PΩ´

αT
´v´pxq and argmin

α`PΩ`

αT
`v`pxq.

We have

|αT
c vcpxq| “ |αT

c W
´1{2
c W 1{2

c vcpxq| “ |pW´1{2
c αcq

T pW 1{2
c vcpxqq|

ď }W´1{2
c αc}2 ¨ }W 1{2

c vcpxq}2 “

b

αT
c W

´1
c αc ¨

b

vcpxqTWcvcpxq(3.30)

ď δc ¨ }vcpxq}Wc(3.31)
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where the inequality (3.30) follows from the Cauchy-Schwarz inequality and the inequality (3.31)

follows from the constraint }αc}W´1
c

ď δc of the subspace Ωc (3.17).

With the choice of αcpxq “ ˘ cδc
}vcpxq}Wc

Wcvcpxq in Ωc, we have |αT
c vcpxq| “ δc ¨ }vcpxq}Wc .

Therefore, the solutions to the two optimizations in (3.29) correspond to the αcpxq as defined

in (3.23). □

In the rest of this chapter, we focus our discussion and analysis on OptNRQ´ (3.21) associated

with the principal spatial filter x´ for simplicity. The results for OptNRQ` (3.25) associated with

the principal spatial filter x` can be obtained by swapping the sign ‘´’ with ‘`’.

3.3.3. Equivalent Constrained Optimizations. Due to the homogeneity of αcpxq (3.23),

for both c P t´,`u, the covariance matrix Σcpxq (3.22) is a homogeneous function, i.e.,

(3.32) Σcpγxq “ Σcpxq

for any nonzero γ P R. The homogeneous property (3.32) enables OptNRQ´ (3.21) to be described

by the following equivalent constrained optimization

(3.33)

$

’

&

’

%

min xTΣ´pxqx,

s.t. xT pΣ´pxq ` Σ`pxqqx “ 1.

Alternatively, OptNRQ´ (3.21) can be described by the following equivalent optimization on

the unit sphere Sn´1 :“ tx P Rn : xTx “ 1u:

(3.34) min
xPSn´1

xTΣ´pxqx

xT pΣ´pxq ` Σ`pxqqx
.

While the constrained optimizations (3.33) and (3.34) are equivalent in the sense that an appro-

priate scaling of the solution of one optimization leads to the solution of the other, the algorithms

for solving the two optimizations differ. In next section, we start with the optimization (3.33), and

show that it can be tackled by solving the associated eigenvector-dependent nonlinear eigenvalue

problem (NEPv) using the self-consistent field (SCF) iteration.

The optimization (3.34) can be addressed using matrix manifold optimization methods (refer

to [1] for a variety of algorithms). In Section 4.2.3, we provide examples of convergence for the
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Riemannian conjugate gradient algorithm and the trust region algorithm, applied to solving the

optimization (3.34). We demonstrate that the SCF iteration proves to be more efficient than the

two manifold optimization algorithms.

3.4. NEPv Formulations

In this section, we begin with a NEPv formulation of OptNRQ´ (3.21) by utilizing the first

order optimality conditions of the constrained optimization (3.33). Unfortunately, this first NEPv

formulation encounters a so-called “eigenvalue ordering issue”.4 To resolve this issue, we derive an

alternative NEPv by considering the second order optimality conditions of (3.33).

3.4.1. First Order Optimality Conditions.

3.4.1.1. Preliminaries. To facilitate the conveyance of the results of this section, we introduce

a new vector ηcpxq as

(3.35) ηcpxq :“
1

}vcpxq}Wc

Wcvcpxq.

Consequently, αcpxq in (3.23) is

αcpxq “ ´cδcηcpxq

and Σcpxq in (3.22) is

(3.36) Σcpxq “ Σc ´ cδc

m
ÿ

i“1

ηpiq
c pxqV piq

c .

In the following Lemma, we present the gradients of functions vcpxq, }vcpxq}Wc and ηcpxq.

Lemma 3.4.1. Let vcpxq P Rm and ηcpxq P Rm be as defined in (3.24) and (3.35), respectively.

Then,

(a) ∇vcpxq “

”

2V
p1q
c x 2V

p2q
c x ¨ ¨ ¨ 2V

pmq
c x

ı

.

(b) ∇}vcpxq}Wc “ ∇vcpxqηcpxq.

(c) ∇ηcpxq “ 1
}vcpxq}Wc

ˆ

´ ∇vcpxqηcpxqηcpxqT ` ∇vcpxqWc

˙

.

4Given an eigenvalue λ, we use the terminology eigenvalue ordering to define the position of λ among the eigenvalues
λ1 ď λ2 ď ¨ ¨ ¨ ď λn.
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Proof. (a) For i “ 1, 2, . . . ,m, the ith column of ∇vcpxq P Rnˆm is ∇v
piq
c pxq P Rn, the

gradient of the ith component of vcpxq. By Lemma A.0.1(b), ∇v
piq
c pxq “ ∇pxTV

piq
c xq “

2V
piq
c x, and the result follows.

(b) By definitions,

∇}vcpxq}Wc “ ∇
b

vcpxqTWcvcpxq “
∇pvcpxqTWcvcpxqq

2
a

vcpxqTWcvcpxq
“

2∇vcpxqWcvcpxq

2
a

vcpxqTWcvcpxq
(3.37)

“ ∇vcpxqηcpxq(3.38)

by using the chain rule and Lemma A.0.2(a) in (3.37), and the definition of ηcpxq (3.35)

in (3.38).

(c) We apply Lemma A.0.2(c) with apxq “ 1
}vcpxq}Wc

and ypxq “ Wcvcpxq to obtain

(3.39) ∇ηcpxq “ ∇
ˆ

1

}vcpxq}Wc

˙ˆ

vcpxqTWc

˙

`

ˆ

1

}vcpxq}Wc

˙

∇
ˆ

Wcvcpxq

˙

.

By the chain rule and applying the result ∇}vcpxq}Wc in Lemma 3.4.1(b), we have

(3.40) ∇
ˆ

1

}vcpxq}Wc

˙

“ ´
1

}vcpxq}2Wc

∇vcpxqηcpxq.

For ∇pWcvcpxqq, note that

Wcvcpxq “

»

—

—

—

—

—

—

—

–

w
p1q
c pxTV

p1q
c xq

w
p2q
c pxTV

p2q
c xq

...

w
pmq
c pxTV

pmq
c xq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

so that its gradient is

(3.41) ∇pWcvcpxqq “

”

2w
p1q
c V

p1q
c x 2w

p2q
c V

p2q
c x ¨ ¨ ¨ 2w

pmq
c V

pmq
c x

ı

“ ∇vcpxqWc

by using ∇vcpxq in Lemma 3.4.1(a).
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With results (3.40) and (3.41), ∇ηcpxq (3.39) is

∇ηcpxq “ ´
1

}vcpxq}2Wc

∇vcpxqηcpxqvcpxqTWc `
1

}vcpxq}Wc

∇vcpxqWc

“ ´
1

}vcpxq}Wc

∇vcpxqηcpxqηcpxqT `
1

}vcpxq}Wc

∇vcpxqWc.(3.42)

where the equality (3.42) follows from the definition of ηcpxq (3.35).

□

We introduce the following quantity scpxq for representing the quadratic form of the matrix

Σcpxq:

(3.43) scpxq :“ xTΣcpxqx, for both c P t´,`u.

Lemma 3.4.2. Let scpxq be the quadratic form as defined in (3.43). Then, its gradient is

(3.44) ∇scpxq “ 2Σcpxqx.

Proof. By the definition of Σcpxq (3.36) and the definition of vcpxq (3.24), we have

scpxq “ xTΣcx ´ cδc

m
ÿ

i“1

ηpiq
c pxqpxTV piq

c xq “ xTΣcx ´ cδcηcpxqT vcpxq

“ xTΣcx ´ cδc}vcpxq}Wc(3.45)

where the second term ηcpxqT vcpxq was simplified to }vcpxq}Wc .

By Lemma A.0.1(b), the gradient of the first term xTΣcx of (3.45) is 2Σcx. For the second

term, we use the result ∇}vcpxq}Wc “ ∇vcpxqηcpxq in Lemma 3.4.1(b). Therefore, by combining

the gradients of the two terms in (3.45), the gradient of scpxq is

∇scpxq “ 2Σcx ´ cδc∇vcpxqηcpxq(3.46)

“ 2Σcx ´ 2cδc

m
ÿ

i“1

ηcpxqV piq
c x(3.47)

“ 2Σcpxqx.(3.48)
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where the equality (3.47) follows from the result ∇vcpxq in Lemma 3.4.1(a) and the equality (3.48)

follows from the definition of Σcpxq (3.36). □

3.4.1.2. NEPv with Unknown Eigenvalue Ordering. We proceed to state the first order necessary

conditions of OptNRQ´ (3.21) in Theorem 3.4.1 and derive a NEPv.

Theorem 3.4.1. Under Assumption 3.3.1, if x is a local minimizer of OptNRQ´ (3.21), then

x is an eigenvector of the NEPv:

(3.49)

$

’

&

’

%

Σ´pxqx “ λpΣ´pxq ` Σ`pxqqx

xT pΣ´pxq ` Σ`pxqqx “ 1,

for some eigenvalue λ ą 0.

Proof. Let us consider the equivalent problem, the constrained optimization (3.33) of OptNRQ´ (3.21).

The Lagrangian function of the constrained optimization (3.33) is defined as

(3.50) Lpx, λq “ xTΣ´pxqx ´ λpxT pΣ´pxq ` Σ`pxqqx ´ 1q.

By Lemma 3.4.2, the gradient of (3.50) with respect to x is

(3.51) ∇xLpx, λq “ 2Σ´pxqx ´ 2λpΣ´pxq ` Σ`pxqqx.

Then, the first-order necessary conditions [82, Theorem 12.1, p.321] of the constrained optimiza-

tion (3.33),

∇xLpx, λq “ 0 and xT pΣ´pxq ` Σ`pxqqx “ 1,

imply that a local minimizer x is an eigenvector of the NEPv (3.49).

The eigenvalue λ is positive due to the positive definiteness of Σcpxq under Assumption 3.3.1. □

Remark 3.4.1. Note that while a local minimizer of OptNRQ´ (3.21) is an eigenvector of the

NEPv (3.49) corresponding to some eigenvalue λ ą 0, the eigenvalue ordering is unknown. That is,

we do not know in advance which of the n eigenvalues of the matrix pair pΣ´pxq,Σ´pxq ` Σ`pxqq

corresponds to the eigenvalue λ. To address this, we introduce an alternative NEPv for which the

eigenvalue ordering of λ is known in advance.
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3.4.2. Second Order Optimality Conditions.

3.4.2.1. Preliminaries.

Lemma 3.4.3. Let scpxq be the quadratic form as defined in (3.43). Then, its Hessian matrix is

(3.52) ∇2scpxq “ 2pΣcpxq ` rΣcpxqq,

where

(3.53) rΣcpxq :“ ´
1

2
cδc∇ηcpxq∇vcpxqT

with ∇ηcpxq and ∇vcpxq as defined in Lemma 3.4.1(c) and Lemma 3.4.1(a), respectively.

Proof. We compute the gradients of the two terms of ∇scpxq in (3.46) to compute the Hessian

matrix ∇2scpxq. The gradient of the first term 2Σcx of (3.46) is 2Σc by Lemma A.0.1(a). For the

second term, we apply Lemma A.0.2(b) with Bpxq “ ∇vcpxq and ypxq “ ηcpxq:

∇p∇vcpxqηcpxqq “

m
ÿ

i“1

pηpiq
c pxqqp2V piq

c q ` ∇ηcpxq∇vcpxqT .

Therefore, by combining the gradients of the two terms in (3.46) together, we have

∇2scpxq “ 2Σc ´ 2cδc

m
ÿ

i“1

ηpiq
c pxqV piq

c ´ cδc∇ηcpxq∇vcpxqT

“ 2

ˆ

Σc ´ cδc

m
ÿ

i“1

ηpiq
c pxqV piq

c ´
1

2
cδc∇ηcpxq∇vcpxqT

˙

“ 2pΣcpxq ` rΣcpxqq(3.54)

where the equality (3.54) follows from the definition of Σcpxq (3.36) and rΣcpxq (3.53). □

Lemma 3.4.4. Let Gcpxq P Rnˆn be defined as

(3.55) Gcpxq :“ Σcpxq ` rΣcpxq.

Then, the following properties for Gcpxq hold:

(a) Gcpxq is symmetric.

(b) Gcpxqx “ Σcpxqx.
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(c) Under Assumption 3.3.1, G´pxq ą 0.

Proof. (a) Since Σcpxq is symmetric, we only need to show that rΣcpxq is symmetric.

From the result of ∇ηcpxq in Lemma 3.4.1(c) and ∇vcpxq in Lemma 3.4.1(a), we obtain

(3.56) ∇ηcpxq∇vcpxqT “ ´
1

}vcpxq}Wc

ˆ

∇vcpxqηcpxqηcpxqT∇vcpxqT ´ ∇vcpxqWc∇vcpxqT
˙

,

which is a symmetric matrix in Rnˆn. Therefore, by the definition of rΣcpxq in (3.53),

rΣcpxq is symmetric.

(b) We prove that rΣcpxqx “ 0. From the equation ∇ηcpxq∇vcpxqT in (3.56), we have the

following:

∇ηcpxq∇vcpxqTx “ ´
1

}vcpxq}Wc

ˆ

2∇vcpxqηcpxqηcpxqT vcpxq ´ 2∇vcpxqWcvcpxq

˙

(3.57)

“ ´2∇vcpxqηcpxq ` 2∇vcpxqηcpxq(3.58)

“ 0

by applying ∇vcpxqTx “ 2vcpxq for the equality (3.57), and applying ηcpxqT vcpxq “

}vcpxq}Wc and the definition of ηcpxq (3.35) for the equality (3.58). Therefore, by the

definition of rΣcpxq in (3.53), rΣcpxqx “ 0.

(c) We first show that rΣ´pxq is positive semi-definite while rΣ`pxq is negative semi-definite.

Then, since G´pxq is defined as the sum of Σ´pxq, a positive definite matrix, and rΣ´pxq,

a positive semi-definite matrix, it is positive definite.

By the definition of rΣcpxq in (3.53) and the equation of ∇ηcpxq∇vcpxqT in (3.56), we

have

(3.59) rΣcpxq “
1

2
cδc ¨

1

}vcpxq}Wc

ˆ

∇vcpxqηcpxqηcpxqT∇vcpxqT ´ ∇vcpxqWc∇vcpxqT
˙

for both c P t´,`u. We consider the definiteness on the matrix inside the parenthesis

of (3.59). That is, for a nonzero y P Rn we check the sign of the quantity

(3.60) yT
ˆ

∇vcpxqηcpxqηcpxqT∇vcpxqT ´ ∇vcpxqWc∇vcpxqT
˙

y.
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By the definition of ηcpxq (3.35) and the equation ∇vcpxq in Lemma 3.4.1(a), we can show

that the quantity (3.60) is equal to

4

}vcpxq}2Wc

ˆ m
ÿ

i“1

wpiq
c pxTV piq

c xqpyTV piq
c xq

˙2

´ 4
m
ÿ

i“1

wpiq
c pyTV piq

c xq2

“ 4

«

`
řm

i“1w
piq
c pxTV

piq
c xqpyTV

piq
c xq

˘2

řm
i“1w

piq
c pxTV

piq
c xq2

´

m
ÿ

i“1

wpiq
c pyTV piq

c xq2

ff

.(3.61)

With vectors ac, bc P Rm defined as

(3.62) ac :“

»

—

—

—

—

—

—

—

–

b

w
p1q
c pxTV

p1q
c xq

b

w
p2q
c pxTV

p2q
c xq

...
b

w
pmq
c pxTV

pmq
c xq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, bc :“

»

—

—

—

—

—

—

—

–

b

w
p1q
c pyTV

p1q
c xq

b

w
p2q
c pyTV

p2q
c xq

...
b

w
pmq
c pyTV

pmq
c xq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

the quantity (3.61) is further simplified as:

(3.63) 4

„

paTc bcq
2

}ac}22
´ }bc}

2
2

ȷ

.

By the Cauchy-Schwarz inequality we have paTc bcq
2 ď }ac}

2
2 ¨ }bc}

2
2 so that

(3.64) 4

„

paTc bcq
2

}ac}22
´ }bc}

2
2

ȷ

ď 4

„

}ac}
2
2 ¨ }bc}

2
2

}ac}22
´ }bc}

2
2

ȷ

“ 0.

Therefore, according to the equation of rΣcpxq in (3.59), for any nonzero y P Rm we have

yT rΣ´pxqy ě 0, yT rΣ`pxqy ď 0.

Therefore, rΣ´pxq is positive semi-definite and rΣ`pxq is negative semi-definite.

□

3.4.2.2. NEPv with Known Eigenvalue Ordering. Utilizing Lemma 3.4.4, we derive another

NEPv. The eigenvalue ordering of this alternative NEPv can be established using the second order

optimality conditions of OptNRQ´ (3.21).

Theorem 3.4.2. Under Assumption 3.3.1,
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(i) If x is a local minimizer of OptNRQ´ (3.21), then x is an eigenvector of the NEPv, referred

to as OptNRQ-nepv:

(3.65)

$

’

&

’

%

G´pxqx “ λ
`

G´pxq ` G`pxq
˘

x

xT
`

G´pxq ` G`pxq
˘

x “ 1,

corresponding to the smallest positive eigenvalue λ.

(ii) If λ is the smallest positive eigenvalue of OptNRQ-nepv (3.65) and is simple, then the cor-

responding eigenvector x of OptNRQ-nepv (3.65) is a strict local minimizer of OptNRQ´ (3.21).

Proof. For result (i): Let x be a local minimizer of the equivalent problem the constrained

optimization (3.33) of OptNRQ´ (3.21). By Theorem 3.4.1, x is an eigenvector of the NEPv (3.49)

for some eigenvalue λ ą 0. By utilizing the property Gcpxqx “ Σcpxqx in Lemma 3.4.4(b), x is also

an eigenvector of OptNRQ-nepv (3.65) corresponding to the same eigenvalue λ ą 0.

Next, we show that λ must be the smallest positive eigenvalue of OptNRQ-nepv (3.65) using

the second order necessary conditions of a constrained optimization [82, Theorem 12.5, p.332].

Both G´pxq and G`pxq are symmetric by Lemma 3.4.4(a), and G´pxq ą 0 by Lemma 3.4.4(c).

The positive definiteness of G`pxq and G´pxq ` G`pxq, however, are not guaranteed. This implies

that the eigenvalues of the matrix pair pG´pxq, G´pxq`G`pxqq are real (possibly including infinity)

but not necessarily positive. We denote the eigenvalues as λ1 ď λ2 ď ¨ ¨ ¨ ď λn and the corresponding

eigenvectors as v1, v2, . . . , vn so that

(3.66) G´pxqvi “ λipG´pxq ` G`pxqqvi, for i “ 1, . . . , n.

We take the eigenvectors to be G´pxq-orthogonal, i.e.,

(3.67) vTi G´pxqvj “

$

’

&

’

%

1 if i “ j

0 otherwise.

As pλ, xq is an eigenpair of OptNRQ-nepv (3.65), we have

(3.68) λ “ λj0 , x “ vj0
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for some 1 ď j0 ď n. We will deduce the order of λ from the second order necessary conditions of

the constrained optimization (3.33) for a local minimizer x:

(3.69) zT∇xxLpx, λqz ě 0, @z P Rn such that zT pΣ´pxq ` Σ`pxqqx “ 0

where Lpx, λq is the Lagrangian function as defined in (3.50). Let z P Rn be a vector satisfying the

condition (3.69), i.e., zT pΣ´pxq ` Σ`pxqqx “ 0. We can write the expansion of z in terms of the

eigenbasis tviu
n
i“1:

z “

n
ÿ

i“1

aivi

where ai “ zTG´pxqvi by using (3.67). In particular, we have aj0 “ zTG´pxqvj0 “ λj0z
T pG´pxq `

G`pxqqvj0 “ λzT pΣ´pxq ` Σ`pxqqx “ 0 by (3.66) and (3.68). So, z can be written as

z “

n
ÿ

i“1,i‰j0

aivi.

We use Lemma 3.4.3 to compute the gradient of ∇xLpx, λq in (3.51):

∇xxLpx, λq “ 2G´pxq ´ 2λpG´pxq ` G`pxqq.

So, the inequality of (3.69) becomes

(3.70) 2 ¨ zT
´

G´pxq ´ λpG´pxq ` G`pxqq

¯

z “ 2
n

ÿ

i“1,i‰j0

a2i

ˆ

1 ´
λj0

λi

˙

ě 0

by using (3.67) and substituting λ “ λj0 from (3.68). Since (3.70) holds for arbitrary ai, the

inequality (3.70) implies that 1 ´
λj0
λi

ě 0, @i “ 1, . . . , n with i ‰ j0. As λ “ λj0 ą 0, this

establishes λi ě λ for all positive eigenvalues λi.

For result (ii): If λ “ λj0 is the smallest positive eigenvalue of OptNRQ-nepv (3.65), and λ is

simple, then for the corresponding eigenvector x of OptNRQ-nepv (3.65) we have

zT∇xxLpx, λqz ą 0, @z P Rn such that zT pΣ´pxq ` Σ`pxqqx “ 0 and z ‰ 0
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which is precisely the second order sufficient conditions [82, Theorem 12.6, p.333] for x to be a strict

local minimizer of the constrained optimization (3.33). Consequently, x is a strict local minimizer

of OptNRQ´ (3.21). □

In the following example, we highlight the contrast in certainty concerning the order of the

eigenvalue λ with respect to the NEPv (3.49) and OptNRQ-nepv (3.65). Specifically, we demon-

strate that while the order of λ for the NEPv (3.49) cannot be predetermined, it consistently

corresponds to the smallest positive eigenvalue for OptNRQ-nepv (3.65).

Example 3.4.1. (Eigenvalue ordering issue.)

We consider solving OptNRQc ((3.21) and (3.25)), for conditions c P t´,`u, using the synthetic

dataset (see Section 4.2.1 for its description). We generate trials Y
piq
c P R10ˆ200 with 50 trials for

each condition. For both conditions, we choose two out of the 10 sources to be discriminative.

That is, we have sn1 P R8 for the nondiscriminative sources and sn2 P R2 for the discriminative

sources. The first discriminative source is sampled from N p0, 0.2q5 for condition ‘´’ and N p0, 1.8q

for condition ‘`’. The second discriminative source is sampled from N p0, 1.4q for condition ‘´’

and N p0, 0.6q for condition ‘`’. For both conditions, all 8 nondiscriminative sources are sampled

from N p0, 1q and the 10 nonstationary noise sources of ϵ are sampled from N p0, 2q. Finally, the

tolerance set radius is set as δc “ 6 for both conditions.

Let px´ and px` denote the solutions of OptNRQ´ (3.21) and OptNRQ` (3.25), respectively.

These solutions are obtained using the algorithm OptNRQ-nepv (discussed in Section 4.1.2) and

verified by the Riemannian trust region algorithm.

Consider the NEPv (3.49). For px´, the first two eigenvalues of the matrix pair pΣ´ppx´q,Σ´ppx´q`

Σ`ppx´qq are

λ1 “ 0.3486, λ2 “ 0.4286,

where the eigenvector corresponding to the underlined eigenvalue is px´. Meanwhile, for px`, the

first few eigenvalues of the matrix pair pΣ`ppx`q,Σ´ppx`q ` Σ`ppx`qq are

λ1 “ 0.3035, . . . , λ6 “ 0.5120,

5N pµ, σ2
q denotes the Gaussian distribution where µ is the mean and σ2 is the variance.
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where the eigenvector corresponding to the underlined eigenvalue is px`. As we can see, the eigen-

value ordering of the NEPv (3.49) for px´ is different from that of px`. Based on this observation, we

conclude that we could not have known in advance the order of the eigenvalue of the NEPv (3.49).

Next, let us consider the OptNRQ-nepv (3.65). For px´, the first two eigenvalues of the matrix

pair pG´ppx´q, G´ppx´q ` G`ppx´qq are

λ1 “ 0.4286, λ2 “ 0.5155,

where the eigenvector corresponding to the underlined eigenvalue is px´. Meanwhile, for px`, the

first three eigenvalues of the matrix pair pG`ppx`q, G´ppx`q ` G`ppx`qq are

λ1 “ ´4.7463, λ2 “ 0.5120, λ3 “ 0.5532,

where the eigenvector corresponding to the underlined eigenvalue is px`. As we can see, for both

pxc, the corresponding eigenvalue is the smallest positive eigenvalue of the OptNRQ-nepv (3.65). l

Remark 3.4.2. We do not pursue solving the NEPv (3.49) due to the challenge posed by its

unknown eigenvalue ordering. This uncertainty makes it difficult to determine which eigenvector

of the NEPv (3.49) to compute. Instead, we opt to solve OptNRQ-nepv (3.65), for which we can

always compute the eigenvector associated with the smallest positive eigenvalue.
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CHAPTER 4

Robust Common Spatial Pattern Analysis: Algorithms and

Numerical Results

4.1. Algorithms

In this section, we discuss the algorithms for OptNRQ´ (3.21) to compute the principal spatial

filter x´. The algorithms for OptNRQ` (3.25) associated with the principal spatial filter x` is

obtained by swapping the sign ‘´’ and ‘`’. We consider two algorithms. The first algorithm

is a fixed-point type iteration scheme on OptNRQ´ (3.21). The second algorithm employs the

self-consistent field (SCF) iteration on OptNRQ-nepv (3.65) formulation of OptNRQ´ (3.21).

4.1.1. Fixed-point Iteration. As presented in [59], one natural idea for solving OptNRQ´ (3.21)

is using the following fixed-point type iteration:

(4.1) xk`1 ÐÝ argmin
x‰0

xTΣ´pxkqx

xT pΣ´pxkq ` Σ`pxkqqx
.

The minimization in (4.1) is a Rayleigh quotient optimization. We refer to this scheme asOptNRQ-

fp. By Theorem 2.1.1 (the Courant-Fischer minimax theorem), xk`1 of OptNRQ-fp (4.1) is the

eigenvector of the eigenvalue problem

(4.2) Σ´pxkqx “ λ
`

Σ´pxkq ` Σ`pxkq
˘

x,

corresponding to the smallest eigenvalue. In other words, OptNRQ-fp (4.1) is equivalent to

(4.3) xk`1 ÐÝ an eigenvector w.r.t. the smallest eigenvalue of
`

Σ´pxkq,Σ´pxkq ` Σ`pxkq
˘

.

This is the self-consistent field (SCF) iteration for solving the NEPv (3.49) where the corresponding

eigenvalue is the smallest.

There are two issues with OptNRQ-fp (4.3):
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(i) OptNRQ-fp (4.3) often fails to converge and arrives at suboptimal solutions (illustrated

in Section 4.2.3).

(ii) As illustrated in Example 3.4.1, the solution of OptNRQ´ (3.21) may not be an eigenvec-

tor with respect to the smallest eigenvalue of the NEPv (3.49). Consequently, even when

OptNRQ-fp (4.3) converges, its converged vector may not be the solution of OptNRQ´ (3.21).

4.1.2. Self-consistent Field Iteration.

4.1.2.1. Plain SCF. Applied to OptNRQ-nepv (3.65), the SCF iteration is given by

(4.4)

xk`1 ÐÝ an eigenvector w.r.t. the smallest positive eigenvalue of pG´pxkq, G´pxkq ` G`pxkqq.

The converged solution of the SCF iteration (4.4) is an eigenvector with respect to the smallest

positive eigenvalue of OptNRQ-nepv (3.65). According to Theorem 3.4.2, if the corresponding eigen-

value is simple, then the solution is guaranteed to be a strict local minimizer of OptNRQ´ (3.21).

4.1.2.2. Line search. An issue with the plain SCF iteration (4.4) is that the value of the objective

function q´pxq of OptNRQ´ (3.21) may not decrease monotonically. That is, denoting rxk`1 as the

next iterate of xk in the plain SCF iteration (4.4), it may occur that q´prxk`1q ć q´pxkq.

To address this issue, we employ the line search method. In the line search method, the search

direction dk is computed, and the step size β is determined to specify the distance to move along

the search direction from the current iterate xk. The updated iterate is then given by

xk`1 “ xk ` βdk

to satisfy the condition

(4.5) q´pxk`1q ă q´pxkq.

The effectiveness of the line search method relies on making appropriate choices of the search

direction dk and the step size β. A desirable search direction is a descent direction, in which case

we can find a step size β such that xk`1 “ xk ` βdk satisfies (4.5) [82, p.21,22]. dk is descent
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direction of q´pxq at xk if

(4.6) dTk∇q´pxkq ă 0,

where, by applying Lemma 3.4.2, the gradient of q´pxq is

(4.7) ∇q´pxq “
2

xT pΣ´pxq ` Σ`pxqqx

ˆ

Σ´pxq ´ q´pxqpΣ´pxq ` Σ`pxqq

˙

x.

In the following, we discuss a strategy for choosing a descent direction dk. In this strategy, we first

consider the search direction to be

(4.8) dk “ rxk`1 ´ xk.

dk (4.8) is always a descent direction (with a possible sign change of rxk`1) except for a rare case.

To see this, note that for the direction (4.8) we have

1

2
dTk∇q´pxkq “

`

λk`1 ´ q´pxkq
˘

rxTk`1pΣ´pxkq ` Σ`pxkqqxk

xTk pΣ´pxkq ` Σ`pxkqqxk

“
tk

xTk pΣ´pxkq ` Σ`pxkqqxk
,

where

(4.9) tk :“ pλk`1 ´ q´pxkqq ¨ rxTk`1pΣ´pxkq ` Σ`pxkqqxk.

λk`1 is the smallest positive eigenvalue of the matrix pair pG´pxkq, G´pxkq ` G`pxkqq. Since

xTk pΣ´pxkq ` Σ`pxkqqxk is always positive, the sign of tk determines whether dk (4.8) is a descent

direction.

‚ tk is negative. In this case, dk “ rxk`1 ´ xk is a descent direction.

‚ tk is positive. In this case, we can simply scale rxk`1 by ´1, i.e.,

(4.10) rxk`1 ÐÝ ´rxk`1,

which will ensure that dk “ rxk`1 ´ xk is a descent direction.

‚ tk is zero. We can assume that λk`1 ´ q´pxkq ‰ 0, as otherwise, it would indicate that

the iteration has already converged. Thus, only in the rare case where rxTk`1pΣ´pxkq `
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Σ`pxkqqxk “ 0 we have that tk “ 0. In this rare case, or more generally when rxTk`1pΣ´pxkq`

Σ`pxkqqxk is close to zero, we reset the search direction as the steepest-descent direction

(4.11) dk “ ´
∇q´pxkq

}∇q´pxkq}2
.

By adopting this strategy, we ensure that we can always choose a descent direction. Moreover,

we scarcely choose the steepest-descent direction (4.11) and avoid replicating the steepest descent

method, which can suffer from slow convergence [82].

We follow the standard line search practice where an inexact step size β is computed to satisfy

the following sufficient decrease condition (also known as Armijo condition):

(4.12) q´pxk ` βdkq ď q´pxkq ` µβ ¨ dTk∇q´pxkq,

for some µ P p0, 1q. As the objective function q´pxq is uniformly bounded below by zero, there

exists a β satisfying the sufficient decrease condition (4.12) [82, Lemma 3.1].

To obtain the inexact step size β, we apply the Armijo backtracking [82, Algorithm 3.1, p.37],

which ensures that the step size β is short enough to have a sufficient decrease but not too short.

We start with an initial β “ 1 and update the step length as β ÐÝ τβ, for some τ P p0, 1q, until

the sufficient decrease condition (4.12) is satisfied.

4.1.2.3. Algorithm pseudocode. The algorithm for the SCF iteration (4.4) with line search is

shown in Algorithm 2. We refer to Algorithm 2 as OptNRQ-nepv.
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Algorithm 2 OptNRQ-nepv

Input: Initial x0 P Rn, line search factors µ, τ P p0, 1q (e.g. µ “ τ “ 0.01), tolerance tol.

Output: Approximate solution px´ to OptNRQ´ (3.21).

1: for k “ 0, 1, . . . do

2: Set Ak “ G´pxkq, Bk “ G´pxkq ` G`pxkq, and qk “
xT
k Akxk

xT
k Bkxk

.

3: if ||Akxk´qkBkxk||2
||Akxk||2`qk||Bkxk||2

ă tol then

4: return px´ “ xk.

5: end if

6: Compute the smallest positive eigenvalue and eigenvector pλk`1, xk`1q of pAk, Bkq.

7: if q´pxk`1q ě q´pxkq then

8: Set tk “ pλk`1 ´ q´pxkqq ¨ xTk`1Bkxk.

9: if |tk| ă tol then

10: Set dk “ ´
∇q´pxkq

}∇q´pxkq}2
.

11: else if tk ą 0 then

12: Set dk “ ´xk`1 ´ xk.

13: else

14: Set dk “ xk`1 ´ xk.

15: end if

16: Set β “ 1.

17: while q´pxk ` βdkq ą q´pxkq ` µβ ¨ dTk∇q´pxkq do

18: β :“ τβ.

19: end while

20: xk`1 :“ xk ` βdk.

21: end if

22: end for

4.1.2.4. Implementation details.

‚ In line 3, the stopping criterion checks whether OptNRQ-nepv (3.65) is satisfied.

‚ The smallest positive eigenpair in line 6 can be efficiently computed using sparse eigen-

solvers such as the implicitly restarted Arnoldi method [100].
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‚ If the value of the objective function q´pxq does not decrease at the next iterate (line 7),

the algorithm takes appropriate steps (lines 8 to 15) to find a descent direction, and the

Armijo backtracking (lines 16 to 19) is used to obtain an appropriate step length β, and

consequently, the next iterate is updated in line 20.

Remark 4.1.1. While a formal convergence proof of OptNRQ-nepv (Algorithm 2) is still subject

to further study, our numerical experiments demonstrate both convergence and quadratic local

convergence. For the proof of quadratic local convergence for the SCF iteration pertaining to a

general robust Rayleigh quotient optimization, we refer the reader to [11].

4.2. Numerical Experiments

The numerical experiments section is organized into four subsections. In the first subsection,

we provide descriptions of the synthetic datasets and real-world BCI datasets used in the exper-

iments. The specific experimental settings are outlined in the second subsection. In the third

subsection, we present the convergence behavior and running time of OptNRQ-nepv (Algorithm 2),

OptNRQ-fp (4.1), and manifold optimization algorithms. Lastly, the fourth subsection presents the

classification results obtained using OptNRQ-nepv, OptNRQ-fp, and CSP for both the synthetic

and real-world datasets.

4.2.1. Datasets.

4.2.1.1. Synthetic Dataset. The synthetic dataset, utilized in [11,59], comprises of trials

Y piq
c “

”

x1 x2 ¨ ¨ ¨xt

ı

P Rnˆt,

where, for i “ 1, 2, . . . , t, xi P Rn is a synthetic signal of n channels. The synthetic signals are

randomly generated using the following linear mixing model:

(4.13) xi “ A

»

–

sn1

sn2

fi

fl ` ϵ.

The matrix A P Rnˆn is a random rotation matrix that simulates the smearing effect that occurs

when the source signals are transmitted through the skull and the skin of the head and recorded

by multiple electrodes on the scalp during EEG recordings. The discriminative sources sn1 P Rn1
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represent the brain sources that exhibit changes in rhythmic activity during motor imagery, whereas

the nondiscriminative sources sn2 P Rn2 represent the brain sources that maintain their rhythmic

activity throughout. The nonstationary noise ϵ P Rn corresponds to artifacts that occur during the

experiment, such as blinking and muscle movements.

4.2.1.2. Dataset IIIa. The dataset is from the BCI competition III [15] and includes EEG

recordings from three subjects performing left hand, right hand, foot, and tongue motor imageries.

EEG signals were recorded from 60 electrode channels, and each subject had either six or nine runs.

Within each run, there were ten trials of motor imagery performed for each motor condition. For

more detailed information about the dataset, please refer to the competition’s website.1

We use the recordings corresponding to left hand and right hand motor imageries. Following

the preprocessing steps suggested in [75,95], we apply a 5th order Butterworth filter to bandpass

filter the EEG signals in the 8-30Hz frequency band. We then extract the features of the EEG

signals from the time segment from 0s to 3.0s after the cue instructing the subject to perform

motor imagery. In summary, for each subject, there are Nc “ 60 or 90 trials Y
piq
c P R60ˆ750 for

both conditions c P t´,`u.

4.2.1.3. Distraction Dataset. The distraction dataset is obtained from the BCI experiment [19,

20,21] that aimed to simulate real-world scenarios by introducing six types of distractions on top

of the primary motor imagery tasks (left hand and right hand). The six secondary tasks included

no distraction (Clean), closing eyes (Eyes), listening to news (News), searching the room for a

particular number (Numbers), watching a flickering video (Flicker), and dealing with vibro-tactile

stimulation (Stimulation). The experiment involved 16 participants and EEG recordings were

collected from 63 channels. The participants performed 7 runs of EEG recordings, with each run

consisting of 36 trials of left hand motor imagery and 36 trials of right hand motor imagery. In

the first run, motor imageries were performed without any distractions, and in the subsequent six

runs, each distraction was added, one at a time. The dataset is publicly available.2

For preprocessing the EEG signals, we use the provided subject-specific frequency bands and

time intervals to bandpass filter and select the time segment of the EEG signals. In summary, there

1http://www.bbci.de/competition/iii/desc IIIa.pdf
2https://depositonce.tu-berlin.de/handle/11303/10934.2
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are Nc “ 252 trials Y
piq
c P R63ˆt for both conditions c P t´,`u, where the number of time samples

t differs for each subject and ranges between 1, 550 to 3, 532.

4.2.1.4. Berlin Dataset. This dataset is from the Berlin BCI experiment described in [16,96],

which involved 80 subjects performing left hand, right hand, and right foot motor imagery while

EEG signals were recorded from 119 channels. The dataset consists of three runs of motor imagery

calibration and three runs of motor imagery feedback, with each calibration run comprising 75 trials

per condition and each feedback run comprising 150 trials per condition. Although the dataset is

publicly available3, it includes signals from only 40 of the subjects.

We focus on the recordings corresponding to the left hand and right hand. We preprocess the

EEG signals by bandpass filtering them with a 2nd order Butterworth filter in the 8-30Hz frequency

band and selecting 86 out of the 119 electrode channels that densely cover the motor cortex. For

each subject, there are Nc “ 675 trials Y
piq
c P R86ˆ301 for both conditions c P t´,`u.

4.2.1.5. Gwangju Dataset. The EEG signals in this dataset4 were recorded during the motor-

imagery based Gwangju BCI experiment [32]. EEG signals were collected from 64 channels while

52 subjects performed left and right hand motor imagery. Each subject participated in either 5 or

6 runs, with each run consisting of 20 trials per motor imagery condition. Some of the trials were

labeled as ‘bad trials’ either if their voltage magnitude exceeded a particular threshold or if they

exhibited a high correlation with electromyography (EMG) activity.

Following the approach in [32], we discard the bad trials for each subject and exclude the

subjects ‘s29’ and ‘s34’, who had more than 90% of their trials declared as bad trials. To preprocess

the data, we apply a 4th order Butterworth bandpass filter to the signals in the 8-30Hz frequency

range, and select the time interval from 0.5s to 2.5s after the cue instructing the subject to perform

motor imagery. For each subject, there are Nc trials Y
piq
c P R64ˆ1025 for both conditions c P t´,`u,

where the number of trials Nc differs for each subject and ranges between 83 to 240.

4.2.1.6. Summary. In Table 4.1, we summarize the datasets, which include the number of chan-

nels and time samples of each trial, as well as the number of trials and participating subjects. Among

the available motor imagery types, we italicize the ones we utilize.

3https://depositonce.tu-berlin.de/handle/11303/8979?mode=simple
4http://gigadb.org/dataset/view/id/100295/
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Table 4.1. Summary of datasets.

Name Channels(n) Time Samples (t) Trials (Nc) Subjects Motor Imagery Type

Synthetic n t Nc N/A N/A

Dataset IIIa 60 750 60 or 90 3
left hand, right hand,

foot, tongue

Distraction 63 range of 1550 to 3532 252 16 left hand, right hand

Berlin
119

(86 chosen)
301 675

80

(40 available)

left hand, right hand,

right foot

Gwangju 64 1025 range of 83 to 240
52

(50 used)
left hand, right hand

4.2.2. Experiment Setting. We solve OptNRQ´ (3.21) and OptNRQ` (3.25) to compute

the principal spatial filters x´ and x`, respectively, of the minmax CSP. Three different approaches

are considered to do so:

‚ OptNRQ-fp (4.3) solves OptNRQ´ (3.21) and OptNRQ` (3.25) directly.

‚ OptNRQ-nepv (Algorithm 2) solves the NEPv formulation, OptNRQ-nepv (3.65), of OptNRQ´ (3.21)

and OptNRQ` (3.25).

‚ Manifold optimization algorithms in Manopt [18], a popular optimization toolbox on man-

ifolds, solve the equivalent the constrained optimization (3.34) of OptNRQ´ (3.21) and

OptNRQ` (3.25).

We initialize all algorithms with the solutions of CSP, i.e., the Rayleigh quotient optimizations (3.10)

and (3.11). The stopping criteria tolerance tol is set to 10´8 for all algorithms.

We utilize the BBCI toolbox5 to preprocess the raw EEG signals. For both conditions c P

t´,`u, we choose m “ 10 as the number of interpolation matrices tV
piq
c umi“1 and weights tw

piq
c umi“1

in the formulations of OptNRQ´ (3.21) and OptNRQ` (3.25).

The experiments were conducted using MATLAB on a PC with an Apple M1 Pro processor

with 16GB of RAM. To advocate for reproducible research, we share the preprocessed datasets as

5https://github.com/bbci/bbci_public
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well as our MATLAB codes for the algorithms and the numerical experiments presented in this

paper. 6

4.2.3. Convergence Behavior and Timing.

In this section, we examine the convergence behavior of OptNRQ-nepv (Algorithm 2) in compar-

ison to OptNRQ-fp (4.3) and manifold optimization algorithms. Our findings reveal that OptNRQ-

fp fails to converge and exhibits oscillatory behavior. The manifold optimization algorithms do

converge, but they are relatively slow when compared to OptNRQ-nepv. On the other hand,

OptNRQ-nepv converges within a small number of iterations and displays a local quadratic con-

vergence.

Example 4.2.1 (Synthetic dataset). We generate trials Y
piq
c P R10ˆ200 with 50 trials for each

condition. For both conditions, we choose two out of the 10 sources to be discriminative. That is,

we have sn1 P R8 for the nondiscriminative sources and sn2 P R2 for the discriminative sources. The

first discriminative source is sampled from N p0, 0.2q for condition ‘´’ and N p0, 1.8q for condition

‘`’. The second discriminative source is sampled from N p0, 1.4q for condition ‘´’ and N p0, 0.6q for

condition ‘`’. For both conditions, all 8 nondiscriminative sources are sampled from N p0, 1q and

the 10 nonstationary noise sources of ϵ are sampled from N p0, 2q. The tolerance set radius is set

as δc “ 6 for both conditions.

Four algorithms are used to solve OptNRQ´ (3.21): OptNRQ-fp (4.3), OptNRQ-nepv (Al-

gorithm 2), the Riemannian conjugate gradient algorithm in Manopt, and the Riemannian trust

region algorithm in Manopt.

The convergence behaviors of the algorithms are depicted in Figure 4.1. Panel (a) displays

the value of the objective function q´pxq of the minmax CSP´ at each iterate xk, while panel (b)

shows the errors, measured as the difference between q´pxkq and q´px˚q, where x˚ is the solution

computed by OptNRQ-nepv.

These results demonstrate that OptNRQ-fp (4.3) oscillates between two points and fails to

converge. Thus, it computes a suboptimal solution. Meanwhile, the Riemannian conjugate gradient

algorithm takes 497 iterations to converge. The computation time is 1.416 seconds. The Riemannian

6Github page: https://github.com/gnodking7/Robust-CSP.git

47

https://github.com/gnodking7/Robust-CSP.git


trust region algorithm takes 19 iterations. The computation time is 0.328 seconds. The OptNRQ-

nepv achieves convergence in just 9 iterations with only 3 line searches. The computation time is

0.028 seconds.

OptNRQ-fp OptNRQ-nepv Conjugate Gradient Trust Region

Iteration Does not converge 9 (3) 497 19

Time (seconds) 0.05 0.028 1.416 0.328

Although the trust region algorithm demonstrates faster convergence compared to the conjugate

gradient algorithm due to its utilization of second-order gradient information, both algorithms

fall short in terms of convergence speed when compared to OptNRQ-nepv. We attribute the

swift convergence of OptNRQ-nepv to its utilization of the explicit equation associated with the

second order derivative information. Namely, OptNRQ-nepv takes advantage of solving OptNRQ-

nepv (3.65) derived from the second order optimality conditions of OptNRQ´ (3.21).

(a) (b)

Figure 4.1. Synthetic dataset: convergence behaviors of OptNRQ-fp (4.3),
OptNRQ-nepv (Algorithm 2), the Riemannian conjugate gradient algorithm in
Manopt, and the Riemannian trust region algorithm in Manopt. (a) displays the
objective value q´pxq of the minmax CSP´ at each iteration, and (b) shows the
errors between the objective values of the iterate xk and the solution x˚ obtained
by OptNRQ-nepv.

Example 4.2.2 (Berlin dataset). We continue the convergence behavior experiments on the

Berlin dataset. We focus on the subject #40 and utilize the trials from the calibration runs. For

both conditions, we set δc “ 0.4 as the tolerance set radius.
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Four algorithms are considered for solving OptNRQ´ (3.21): OptNRQ-fp (4.3), OptNRQ-nepv

(Algorithm 2), the Riemannian conjugate gradient algorithm in Manopt, and the Riemannian trust

region algorithm in Manopt.

The convergence behaviors of algorithms for this subject are shown in Figure 4.2. In panel (a),

we display the value of the objective function q´pxq of the minmax CSP´ at each iterate xk, while

in panel (b), we present the errors measured as the difference between q´pxkq and q´px˚q, where

x˚ is the solution computed by OptNRQ-nepv.

(a) (b)

Figure 4.2. Berlin dataset: convergence behaviors of OptNRQ-fp (4.3), OptNRQ-
nepv (Algorithm 2), the conjugate gradient algorithm using Manopt, and the trust
region algorithm using Manopt. (a) displays the objective values q´pxq of the min-
max CSP´ at each iteration, and (b) shows the errors between the objective values
of the iterate xk and the solution x˚ obtained by OptNRQ-nepv.

Similar to the results observed in Example 4.2.1, we find that OptNRQ-fp (4.3) exhibits oscilla-

tory behavior and fails to converge. Consequently, it finds a suboptimal solution. The Riemannian

conjugate gradient algorithm fails to converge within the preset 1000 iterations. The computation

time is 38.2 seconds. The Riemmanian trust region algorithm converges in 73 iterations. The

computation time is 73.792 seconds. Once again, OptNRQ-nepv achieves the fastest convergence.

It converges in just 14 iterations and requires only 4 line searches. The computation time is only

0.389 seconds.

OptNRQ-fp OptNRQ-nepv Conjugate Gradient Trust Region

Iteration Does not converge 14 (4) 1000+ 73

Time (seconds) 0.91 0.389 38.2 73.792
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4.2.4. Classification Results. We follow the common signal classification process in BCI-

EEG experiments:

(i) The principal spatial filters x´ and x` are computed using the trials corresponding to the

training dataset.

(ii) A linear classifier is trained using the principal spatial filters x´ and x`.

(iii) The conditions of the testing trials are determined using the trained linear classifier.

4.2.4.1. Linear classifier and classification rate. After computing the principal spatial filters x´

and x`, a common classification practice is to apply a linear classifier to the log-variance features

of the filtered signals [16, 17, 59]. While other classifiers that do not involve the application of

the logarithm are discussed in [106,107], we adhere to the prevailing convention of using a linear

classifier on the log-variance features.

For a given trial Y , the log-variance features fpY q P R2 are computed as

(4.14) fpY q “

»

–

logpxT´Y Y Tx´q

logpxT`Y Y Tx`q

fi

fl

and a linear classifier is defined as

(4.15) φpY q :“ aT fpY q ´ b

where the sign of the classifier φpY q determines the condition of Y .

The linear weights a P R2 and b P R are determined from the training trials tY
piq
c u

Nc
i“1 using

Fisher’s linear discriminant analysis (LDA). Specifically, denoting f
piq
c :“ fpY

piq
c q as the log-variance

features, and

(4.16) Cc “

Nc
ÿ

i“1

pf piq
c ´ mcqpf piq

c ´ mcq
T with mc “

1

Nc

Nc
ÿ

i“1

f piq
c

as the scatter matrices for c P t´,`u, the weights are determined by

(4.17) a “
ra

}ra}2
with ra “ pC´ ` C`q´1pm´ ´ m`q,
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and

(4.18) b “
1

2
aT pm´ ` m`q.

Note that the linear classifier φpY q (4.15) is positive if and only if aT fpY q is closer to aTm´

than it is to aTm`. Therefore, the classification of a testing trial Y
piq

´ in condition ‘´’ is counted

to be correct when φpY
piq

´ q ą 0, and similarly, a testing trial Y
piq

` in condition ‘`’ is counted to be

correctly classified when φpY
piq

` q ă 0. The classification rate of a subject is defined as:

Classification Rate “
|tφpY

piq
´ q ą 0u

N´

i“1|

N´

`
|tφpY

piq
` q ă 0u

N`

i“1|

N`

,

where |tφpY
piq

´ q ą 0u
N´

i“1| represents the number of times that φpY
piq

´ q ą 0, and |tφpY
piq

` q ă 0u
N`

i“1|

is defined similarly.

Example 4.2.3 (Synthetic dataset). For both conditions c P t´,`u, we generate trials Y
piq
c P

R10ˆ200 from the synthetic dataset. We have sn1 P R8 for the nondiscriminative sources and

sn2 P R2 for the discriminative sources. The first discriminative source is sampled from N p0, 0.2q

for condition ‘´’ and N p0, 1.8q for condition ‘`’. The second discriminative source is sampled from

N p0, 1.4q for condition ‘´’ and N p0, 0.6q for condition ‘`’. For both conditions, all 8 nondiscrim-

inative sources are sampled from N p0, 1q. The 10 nonstationary noise sources of ϵ are sampled

from N p0, 2q for the training trials, while they are sampled from N p0, 30q for the testing trials. We

create 50 trials for training and 50 trials for testing for each condition.

We compute three sets of principal spatial filters x´ and x`:

(i) One set obtained from CSP by solving the Rayleigh quotient optimizations (3.10) and

(3.11),

(ii) Another set obtained from OptNRQ-fp (4.3) for OptNRQ´ (3.21) and OptNRQ` (3.25),

(iii) The last set obtained from OptNRQ-nepv (Algorithm 2) solving the NEPv formulation,

OptNRQ-nepv (3.65), of OptNRQ´ (3.21) and OptNRQ` (3.25).

We consider various tolerance set radii δc P t0.5, 1, 2, 4, 6, 8u for OptNRQ´ (3.21) and OptNRQ` (3.25).

When OptNRQ-fp (4.3) fails to converge, we select the solutions with the smallest objective value
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among its iterations. The experiment is repeated for 100 random generations of the synthetic

dataset.

The resulting classification rates are summarized as boxplots in Figure 4.3. In both panels (a)

and (b), the first boxplot corresponds to the classification rate of CSP. The rest of the boxplots

correspond to the classification rate results by OptNRQ-fp (4.3) in panel (a), and by OptNRQ-nepv

in panel (b) for different δc values.

(a) (b)

Figure 4.3. The boxplots of the classification rate for the synthetic dataset. The
first boxplot of both panel (a) and panel (b) correspond to the classification rate
of CSP. The rest of the boxplots correspond to the classification rates of OptNRQ-
fp (4.3) in panel (a), and by OptNRQ-nepv (Algorithm 2) in panel (b) for the
tolerance set radius δc P t0.5, 1, 2, 4, 6, 8u.

For small δc values of 0.5 and 1, OptNRQ-fp (4.3) converges, but it fails to converge for higher

δc values. This leads to suboptimal solutions and thus inaccurate principal spatial filters, and an

inability to effectively utilize the tolerance set with an appropriate radius. Consequently, the clas-

sification rate of OptNRQ-fp (4.3) deteriorates significantly for δc values larger than 1, performing

even worse than CSP.

In contrast, OptNRQ-nepv demonstrates a steady increase in performance as δc increases be-

yond 1. It reaches an appropriate radius δc that allows the tolerance set to capture the intrinsic

variability of the data while disregarding the outliers. Our observations suggest that this optimal

δc value lies between 4 and 6. At these values, OptNRQ-nepv achieves significant improvements

compared to CSP.
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δc “ 0.5 δc “ 1 δc “ 2 δc “ 4 δc “ 6 δc “ 8
For x´ 4 0 4 0 5 0 6 0 10 4 12 5
For x` 4 0 4 0 5 0 6 0 9 1 17 7

Table 4.2. Number of iterations and line searches of OptNRQ-nepv (Algorithm 2)
on the synthetic dataset. To each tolerance set radius δc, two numbers are displayed
for the principal spatial filters x´ and x`, first for the number of iterations of
OptNRQ-nepv and the second for the number of line searches invoked in OptNRQ-
nepv. Both numbers tend to increase as the radius δc increases.

Additionally, we provide the iteration profile of OptNRQ-nepv for various values of δc. Table 4.2

presents the number of iterations and line searches. The first number represents the number of

iterations, while the second number corresponds to the number of line searches. For small values

of δc, the number of iterations is typically low, and no line searches are required. However, as δc

increases, both the number of iterations and line searches also increase.

Example 4.2.4 (Dataset IIIa). In this example, we investigate a suitable range of the tolerance

set radius δc values for which the minmax CSP can achieve an improved classification rate compared

to CSP when considering real-world BCI datasets. We use Dataset IIIa, where the trials for each

subject are evenly divided between training and testing datasets, as indicated by the provided

labels.

Figure 4.4 presents the classification rate results with δc values ranging from 0.1 to 1.5 with

a step size of 0.1. The blue line represents the classification rates of the minmax CSP (solved by

OptNRQ-nepv) for different δc values, while the gray dashed line represents the classification rate

of CSP, serving as a baseline for comparison.

Our results indicate that the minmax CSP outperforms CSP for δc values less than 1. However,

when the tolerance set radius becomes too large, the performance of the minmax CSP degrades

significantly and falls below that of CSP. This decline in performance is attributed to the inclusion

of outlying trials within the tolerance set, which results in a poor covariance matrix estimation.

Based on the results in Figure 4.4, we restrict the tolerance set radii δc to values less than 1 for

further classification experiments on real-world BCI datasets.

Example 4.2.5 (Berlin dataset). For each subject, we use the calibration trials as the train-

ing dataset and the feedback trials as the testing dataset. We conduct two types of experiments:
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(a) (b) (c)

Figure 4.4. Classification rate plot for each subject. The blue line corresponds to
the classification rates of the minmax CSP (solved by OptNRQ-nepv) for different
values of the tolerance set radius δc, while the gray dashed line corresponds to the
baseline classification rate obtained from CSP.

(i) comparing the classification performance between OptNRQ-fp (4.3) and OptNRQ-nepv (Algo-

rithm 2), and (ii) comparing the classification performance between CSP and OptNRQ-nepv.

(i) We fix the tolerance set radius δc to be the same for all subjects in both OptNRQ-fp (4.3)

and OptNRQ-nepv to ensure a fair comparison. Specifically, we choose δc “ 0.4, a value

that yielded the best performance for the majority of subjects in both algorithms. When

OptNRQ-fp (4.3) fails to converge, we obtain the solutions with the smallest objective

value among its iterations. The classification rate results are presented in Figure 4.5(a),

where each dot represents a subject. The red diagonal line represents equal performance

between OptNRQ-fp (4.3) and OptNRQ-nepv, and a dot lying above the red diagonal line

indicates an improved classification rate for OptNRQ-nepv. We observe that OptNRQ-

nepv outperforms OptNRQ-fp (4.3) for half of the subjects. The average classification rate

of the subjects improved from 62.1% with OptNRQ-fp to 65.3% with OptNRQ-nepv.

(ii) For OptNRQ-nepv, we select the optimal tolerance set radius δc for each subject from a

range of 0.1 to 1.0 with a step size of 0.1. The red diagonal line represents equal perfor-

mance between the CSP and OptNRQ-nepv, and a dot lying above the red diagonal line

indicates an improved classification rate for OptNRQ-nepv. We observe that 87.5% of the

dots lie above the diagonal line, indicating a significant improvement in classification rates

for OptNRQ-nepv compared to the CSP. The average classification rate of the subjects

improved from 64.9% with CSP to 70.5% with OptNRQ-nepv.
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(a) (b)

Figure 4.5. Scatter plots comparing the classification rates for Berlin dataset:
(a) OptNRQ-fp (4.3) vs. OptNRQ-nepv (b) CSP vs. OptNRQ-nepv. Each dot
represents a subject, and if the dot is above the red diagonal line, then OptNRQ-
nepv has a higher classification rate for that subject. The percentages on the upper
left and on the lower right indicate the percentage of subjects that performs better
for the corresponding algorithm.

Example 4.2.6 (Distraction dataset). In this example, we illustrate the robustness of OptNRQ-

nepv to noises by utilizing the Distraction dataset. In particular, we measure the robustness by

the classification rate. For each subject, the trials without any distractions are set as the training

dataset and the trials from the six distraction tasks are set as the testing dataset.

We compute two sets of principal spatial filters from the training dataset: (i) one set obtained

from CSP and (ii) another set obtained from OptNRQ-nepv. For each testing dataset of distraction

task, the tolerance set radius δc is optimally selected from a range of 0.1 to 1.0 with a step size of

0.1.

The scatter plot in Figure 4.6 compares the classification rates of CSP and OptNRQ-nepv for

each subject. The red diagonal line represents the equal performance of the two algorithms, and

each dot represents a subject. A dot located above the diagonal line indicates an improvement in

the classification rate for OptNRQ-nepv compared to CSP.

We observe clear improvements in classification rates for OptNRQ-nepv compared to CSP,

particularly for the subjects with low BCI control, across all six distraction tasks. The average

classification rate of the subjects increased from 62.35% with CSP to 66.68% with OptNRQ-nepv.
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(a) (b) (c)

(d) (e) (f)

Figure 4.6. Classification rate scatter plots for 6 distraction tasks. For each sub-
ject, optimal δc are found for each distraction task. Each dot represents a subject - a
dot above the red diagonal line indicates the performance improvement of OptNRQ-
nepv (Algorithm 2) over CSP. The percentages in the upper left and lower right
corners indicate the proportion of subjects for whom OptNRQ-nepv outperforms
the CSP and vice versa, respectively.

These results demonstrate the increased robustness of OptNRQ-nepv to CSP in the presence of

noise in EEG signals.

Example 4.2.7 (Gwangju dataset). To perform a classification rate experiment on the Gwangju

dataset, we follow the cross-validation steps outlined in [32]. Firstly, the trials for each motor

condition are randomly divided into 10 subsets. Next, seven of these subsets are chosen as the

training set, and the remaining three subsets are used for testing. For each subject, this procedure

is conducted for all 120 possible combinations of training and testing datasets creation.

For each combination, we compute the principal spatial filters of CSP and OptNRQ-nepv (Al-

gorithm 2). For OptNRQ-nepv, we find the optimal tolerance set radius δc for each subject from a

range of 0.1 to 1.0 with a step size of 0.1.

The average classification rates of the 120 combinations for each of the 50 subjects are computed.

These results are shown in Figure 4.7, where the red diagonal line represents equal performance
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between the CSP and OptNRQ-nepv, and each dot represents the average classification rates of

a subject. A dot lying above the red diagonal line indicates an improved classification rate for

OptNRQ-nepv compared to CSP.

Figure 4.7. Scatter plots comparing the classification rates of CSP and OptNRQ-
nepv (Algorithm 2) for the Gwangju dataset. Each dot represents a subject, and if
the dot is above the red diagonal line, then OptNRQ-nepv has a higher classification
rate than CSP. The percentages on the upper left and on the lower right indicate
the percentage of subjects that OptNRQ-nepv performs better than CSP and vice
versa, respectively.

With the exception of one subject whose classification rates for the CSP and OptNRQ-nepv are

equal, all other subjects benefit from OptNRQ-nepv. The average classification rate of the subjects

improved from 61.2% for CSP to 67.0% for OptNRQ-nepv.
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CHAPTER 5

Wasserstein Discriminant Analysis: NTRopt

5.1. Introduction

As widely used feature extraction approaches in machine learning, dimensionality reduction

(DR) methods [23,33,46,112] learn projections such that the projected lower dimensional sub-

spaces maintain the coherent structure of datasets and reduce computational costs of classification

or clustering. The linear projection obtained from linear DR methods takes the form of a matrix

such that the embedding to the lower dimensional subspace only involves matrix multiplications.

Due to such ease in interpretation and implementation, linear DR methods are often the favored

choice among numerous DR methods. For example, principal component analysis (PCA) [48] seeks

to find a linear projection that preserves the dataset’s variation and is one of the most common

and well-known DR methods. Other well-known DR methods include Fisher linear discriminant

analysis (LDA) [48] to take into account the information of classes and compute a linear projection

that best separates different classes, and Mahalanobis metric learning [67] to seek a distance metric

that better models the relationship among dataset from a linear projection.

Wasserstein discriminant analysis (WDA) [45] is a supervised linear DR that is based on the use

of regularized Wasserstein distances [34] as a distance metric. Similar to Fisher linear discriminant

analysis (LDA), WDA seeks a projection matrix to maximize the dispersion of projected points

between different classes and minimize the dispersion of projected points within same classes. An

important distinction between LDA and WDA is that while LDA only considers the global relations

between data points [24, 44, 81, 117], WDA can dynamically take into account both global and

local information through the choice of a regularization parameter. A recent study has shown that

WDA outperforms other linear DR methods in various learning tasks, such as sequence pattern

analysis [103,104], graph classification [127], and multi-view classification [57].
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WDA is formulated as a bi-level nonlinear trace ratio optimization [45]. The inner optimization

computes the optimal transport (OT) matrices of the regularized Wasserstein distance, an essential

factor responsible for WDA’s ability to account for both global and local relations. The outer

optimization involves a nonlinear trace ratio for the dispersion of data classes.

5.2. Wasserstein Distances

We first present the background on Wasserstein distance [34,113], also known as Earth mover’s

distance [91], and its regularized variant known as regularized Wasserstein distance [45]. These

distances define a geometry over the space of probability distributions.

5.2.1. Wasserstein Distance. Given two probability vectors r P Rn
` and c P Rm

` , i.e., rT 1n “

1 and cT 1m “ 1, the following set of positive matrices

(5.1) Upr, cq :“

"

T | T P Rnˆm
` , T1m “ r, T T 1n “ c

*

is called the transport polytope of r and c. In analogy, if we consider each component of r as a pile

of sand and each component of c as a hole to be filled in, the component Tij of T represents the

amount of sand from the pile ri that gets moved to the hole cj . For this reason, a matrix T P Upr, cq

is referred to as a transport matrix of r and c.

Let M P Rnˆm be a non-negative matrix whose elements Mij ě 0 represents the unit cost of

transporting ri to cj . Then, the cost of transporting r to c using a transport matrix T and a cost

matrix M is quantified as

(5.2) xT,My “
ÿ

ij

TijMij .

Given the matrix M , the optimization problem, referred to as the optimal transport problem

[34,113],

(5.3) W pr, cq :“ min
TPUpr,cq

xT,My
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seeks a transport matrix T that minimizes the transport cost between r and c. When M is a metric

matrix, i.e., M belongs in the cone

M “

"

M | M P Rnˆm
` , Mij “ 0 ô i “ j, and Mij ď Mik ` Mkj , @i, j, k

*

,

then W pr, cq (5.3) forms a distance between r and c [113], and is called the optimal transport

distance or the Wasserstein distance1 between r and c.

5.2.2. Regularized Wasserstein Distance. Computing the Wasserstein distance, however,

is subject to heavy costs that scale in super-cubic with respect to the size of the probability vector

[86]. To reduce such heavy costs, Cuturi [34] proposed an entropic constraint on the transport

matrix that not only lowers the computation cost of the problem but also smooths the search space.

Namely, a convex subset Uαpr, cq of Upr, cq was introduced:

(5.4) Uαpr, cq :“

"

T | T P Upr, cq and hpT q ě hprq ` hpcq ´ α

*

,

where α ě 0 and hprq and hpT q are the entropy of a probability vector and the entropy of a

transport matrix, respectively, defined as

(5.5) hprq “ ´

n
ÿ

i“1

ri log ri and hpT q “ ´
ÿ

ij

Tij log Tij .

Then, Cuturi [34] defined the following distance between r and c

(5.6) Wαpr, cq :“ min
TPUαpr,cq

xT,My

as the Sinkhorn distance, such naming due to its solvability by the Sinkhorn-Knopp algorithm.

By considering the Lagrange multiplier for the entropy constraint of the Sinkhorn distance, the

optimal solution to (5.6), denoted as T λ, can be computed as the solution to the problem

(5.7) T λ “ argmin
TPUpr,cq

!

xT,My ´
1

λ
hpT q

)

.

1Strictly speaking, the correct terminology of W pr, cq (5.3) is the 1st Wasserstein distance with discrete measure
[87,113]. To be consistent with the terminology in Wasserstein Discriminant Analysis [45], we will refer to it as the
Wasserstein distance and its regularized counterpart as the regularized Wasserstein distance.
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Consistent with the terminology in [45], we refer to T λ as the optimal transport (OT) matrix

with λ as the regularization parameter, and

(5.8) Wλpr, cq :“ xT λ,My

as the regularized Wasserstein distance between the probability vectors r and c. By duality

theory, to each α in Sinkhorn distance (5.6) corresponds a λ P r0,8s in regularized Wasserstein

distance (5.8) such that

Wαpr, cq “ Wλpr, cq.

Moreover, as the regularized parameter λ Ñ 8, the regularized Wasserstein distance Wλpr, cq

approaches the Wasserstein distance W pr, cq [34].

5.2.3. Structure of the Optimal Transport Matrix. The entropy smoothed optimal

transport problem (5.7) looks to minimize the total transport cost while maximizing the entropy

of the transport matrix. Both of these terms are convex which makes the problem (5.7) a convex

problem. Thus, the OT matrix T λ exists and is unique [34]. Furthermore, the OT matrix T λ

admits a simple structure based on the first order analysis and Sinkhorn’s Theorem [98].

Theorem 5.2.1. For λ ą 0, the solution T λ to the entropy smoothed optimal transport prob-

lem (5.7) is unique and has the form

(5.9) T λ “ DpuqKDpvq,

where u P Rn
`, v P Rm

` , and K :“ e´λM is the element-wise exponential of ´λM . u and v are

uniquely defined up to a multiplication factor2 by the relation

$

’

&

’

%

u “ r.{pKvq

v “ c.{pKTuq.

(5.10)

Proof. See [34, Lemma 2]. □

Theorem 5.2.1 indicates that computing the OT matrix T λ is equivalent to the problem of

computing the vectors u P Rn
` and v P Rm

` from the given matrix K P Rnˆm
` to satisfy (5.10). Such

2Given solutions u and v to (5.9), for any positive nonzero scalar α, αu and 1
α
v are also solutions to (5.9).
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problem belongs to the class of well-known problems called the matrix balancing problems. We

leave the discussion of the matrix balancing problem and its algorithms to Section 6.2.2.

5.2.4. Costs of Wasserstein Distance and Regularized Wasserstein Distance. Com-

puting the Wasserstein distance (5.3) comes with a high computational cost. Assuming d “ n “ m

for simplicity, for any convex optimization algorithms, such as network simplex method or in-

terior point method, the cost of computing the Wasserstein distance (5.3) scales in super-cubic

Opd3 logpdqq [86]. On the other hand, as a matrix balancing problem, the regularized Wasserstein

distance (5.8) can be solved more efficiently with existing algorithms. For instance, it can be com-

puted with the Sinkhorn-Knopp (SK) iteration [97,98,99] with a linear convergence rate [47,62].

The SK algorithm only involves matrix-vector multiplications and scales as Opd2q. We will discuss

the SK iteration and its accelerated variants in Section 6.2.2.

Remark 5.2.1. As pointed out in [45], the entropy smoothed optimal transport problem (5.7)

of the OT matrix T λ can equivalently be written as

(5.11) T λ “ argmin
TPUpr,cq

!

λxT,My ´ hpT q

)

.

We adopt the formulation (5.11) for the rest of the WDA discussion.

5.3. Wasserstein Discriminant Analysis

Wasserstein discriminant analysis (WDA) seeks to find a projection matrix that maximizes the

dispersion between different classes and minimizes the dispersion within same classes. Meanwhile,

WDA can also control global and local inter-relations between data classes using a regularized

Wasserstein distance. In this section, we present the formulation of WDA as a nonlinear trace ratio

optimization. Then, we conclude the section with discussions on the advantages of WDA.

5.3.1. Data Matrices and Their Distances. Consider the datasets txciu
Nc
i“1 of data points

xci P Rd for different classes c “ 1, 2, . . . , C, where Nc denotes the number of data points in class c.

For each class c, a data matrix Xc P RdˆNc is formed by constructing its columns to be the vectors

xci in class c:

Xc “ rxc1, . . . , x
c
Nc

s.
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Without loss of generality, we assume that the data matrices Xc are standardized, i.e., each feature

is scaled such that it has mean 0 and standard deviation 1. Otherwise, we can always preprocess

Xc as

Xc Ð Xc ´
1

Nc
pXc1Ncq1TNc

to have mean 0 then divide each feature by its standard deviation to set its standard deviation

to be 1. Data standardization is a common practice in machine learning algorithms to transform

the features to a common scale while maintaining the structure of the data. This often leads to

improved performance in algorithms [52].

5.3.2. Definition of Wasserstein Discriminant Analysis. WDA introduced in [45] pre-

sumes empirical measure as the underlying probability measure of the data matrices and uses the

regularized Wasserstein distance as the distance metric. Specifically, the regularized Wasserstein

distance between two projected data matrices by an orthonormal projection P P Rdˆp (p ! dq is

defined as

WλpP TXc, P TXc1

q :“ xT c,c1

pP q,MPTXc,PTXc1 y,(5.12)

where MPTXc,PTXc1 is the cost matrix defined as the Euclidean distances between projected points:

(5.13) MPTXc,PTXc1 :“
´

r}P Txci ´ P Txc
1

j }22sij

¯

P RNcˆNc1

and T c,c1

pP q is the OT matrix, defined as the solution of the entropy-smoothed OT problem:

(5.14) T c,c1

pP q :“ argmin
TPUNc,Nc1

!

λxT,MPTXc,PTXc1 y ´ hpT q

)

,

where UNc,Nc1 is the transport polytope between P TXc and P TXc1

defined as

(5.15) UNc,Nc1 :“

"

T | T P RNcˆNc1

` , T1Nc1 “
1

Nc
1Nc , T

T 1Nc “
1

Nc1

1Nc1

*

.

The regularization parameter λ ě 0 plays a critical role in dynamically controlling the global and

local relations between data points. We highlight the role of λ in the discussion of the advantages

of WDA.
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WDA adopts the formulation of Linear discriminant analysis (LDA) to seek a projection matrix

P P Rdˆp by solving

(5.16) max
PTP“Ip

ř

c,c1ącWλpP TXc, P TXc1

q
ř

cWλpP TXc, P TXcq
.

The numerator and the denominator of (5.16) are the sums of the regularized Wasserstein dis-

tances (5.12) between the inter-classes and the intra-classes, respectively. As a maximization prob-

lem, WDA (5.16) seeks a projection that maximizes the numerator (the dispersion between different

classes) and minimizes the denominator (the dispersion within same classes).

5.3.3. Nonlinear Trace Ratio Formulation of WDA. By (5.13) and the Frobenius inner

product, the inter-class distance between data matrices P TXc and P TXc1

is

WλpP TXc, P TXc1

q “ xT c,c1

pP q,MPTXc,PT ,Xc1 y

“
ÿ

ij

T c,c1

ij pP q}P Txci ´ P Txc
1

j }22(5.17)

“
ÿ

ij

T c,c1

ij pP qTrpP T pxci ´ xc
1

j qpxci ´ xc
1

j qTP q

“ TrpP T r
ÿ

ij

T c,c1

ij pP qpxci ´ xc
1

j qpxci ´ xc
1

j qT sP q

“: TrpP TCc,c1

pP qP q,(5.18)

where

(5.19) Cc,c1

pP q :“
ÿ

ij

T c,c1

ij pP qpxci ´ xc
1

j qpxci ´ xc
1

j qT .

Similarly, the intra-class distance between P TXc to itself is a trace operator

WλpP TXc, P TXcq “: TrpP TCc,cpP qP q,(5.20)

where

(5.21) Cc,cpP q :“
ÿ

ij

T c,c
ij pP qpxci ´ xcjqpxci ´ xcjq

T .
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Thus, by (5.18) and (5.20), WDA (5.16) can be reformulated as the nonlinear trace ratio optimiza-

tion (NTRopt), which we refer to as NTRopt-WDA:

(5.22) max
PTP“Ip

"

qpP q :“
TrpP TCbpP qP q

TrpP TCwpP qP q

*

,

where CbpP q and CwpP q are defined as the between and within cross-covariance matrices, respec-

tively:

CbpP q :“
ÿ

c,c1ąc

Cc,c1

pP q “
ÿ

c,c1ąc

ÿ

ij

T c,c1

ij pP qpxci ´ xc
1

j qpxci ´ xc
1

j qT P Rdˆd,(5.23)

CwpP q :“
ÿ

c

Cc,cpP q “
ÿ

c

ÿ

ij

T c,c
ij pP qpxci ´ xcjqpxci ´ xcjq

T P Rdˆd.(5.24)

We emphasize that NTRopt-WDA (5.22) is a bi-level optimization. In order to obtain the cross-

covariance matrices CbpP q and CwpP q, the OT matrices tT c,c1

uc,c1ąc and tT c,cuc need to be com-

puted from the minimization problems (5.14).

5.3.4. Advantages of WDA. Among the number of advantages of WDA, two outstanding

ones are that WDA is a generalization of LDA and that WDA can dynamically consider both global

and local relations of the data points.

‚ When the regularization parameter λ “ 0, each relation between data points is treated

equally and NTRopt-WDA (5.22) reduces to LDA. Specifically, by (5.11), the OT matrix

is

T c,c1

:“ argmax
TPUNc,Nc1

hpT q.

The entropy maximizing matrix is simply

T c,c1

“
1

NcNc1

1Nc,Nc1 ,

and the cross-covariance matrices become

Cc,c1

“
1

NcNc1

ÿ

ij

pxci ´ xc
1

j qpxci ´ xc
1

j qT .
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Consequently, NTRopt-WDA reduces to LDA:

max
PTP“Ip

TrpP TSbP q

TrpP TSwP q

where

(5.25) Sb :“
ÿ

c,c1ąc

1

NcNc1

ÿ

ij

pxci ´ xc
1

j qpxci ´ xc
1

j qT and Sw :“
ÿ

c

1

N2
c

ÿ

ij

pxci ´ xcjqpxci ´ xcjq
T .

The between and within cross-covariance matrices Sb and Sw, respectively, indicate that

all relations between data points carry equal weight. Therefore, LDA strictly enforces

global relations among data points.

‚ Unlike other linear DR methods that are strictly based on either global relations (such

as LDA) or local relations (such as Large Margin Nearest Neighbor [117]) of the data

points, WDA can dynamically consider both global and local relations by varying the

regularization parameter λ in the regularized Wasserstein distances.

In the regularized Wasserstein distance (5.17), the transportation weight T c,c1

ij pP q quan-

tifies the importance of the quantity }P Txci ´P Txc
1

j }22, i.e., the Euclidean distance between

the projected data point xci in class c and the projected data point xc
1

j in class c1. By vary-

ing the strength of λ, the regularized Wasserstein distance is able to control the value of

the transportation weights and thus the relations between data points. Small λ puts more

emphasis on the global coherency and large λ puts more emphasis on the local structure

of the class manifold.

Figure 5.1 illustrates the impact that λ has on the transportation weights. Shown in

the figure is a synthetic dataset consisting of a class that displays a half-moon shape and

another class that is a bi-modal Gaussian distribution with a mode on each side of the

half-moon shape. The transportation weights are represented as the edges between the

data points such that their magnitudes are reflected by the visibility of the edges. The left

column shows the inter-class relations and the right column shows the intra-class relations.

Each row corresponds to a different λ value, with the first row corresponding to λ “ 0.1,

the second row to λ “ 0.5, and the third row to λ “ 1. For both inter-class and intra-class

relations, we observe that as λ increases from λ “ 0.1 to λ “ 1 the structure of the class

66



manifold shifts from globality to locality. For instance, when λ “ 0.1, if we focus on one of

the red data points on the top mode we observe that it has strong inter-class relations with

almost all the blue points and strong intra-class relations with almost all the red points.

However, when λ “ 1, the same red data point has strong inter-class relations only with

the blue points that are close-by and strong intra-class relations only with the red points

that are in the top modal.

The impact of λ on the global and local relations between the projected data points

can be explained by examining the formulation of the transportation weights and the sum

constraint imposed on them. Suppose that we have three data points xci , x
c1

j , x
c1

k such that

P Txci is closer to P Txc
1

j than it is to P Txc
1

k , i.e,

(5.26) }P Txci ´ P Txc
1

j }22 ă }P Txci ´ P Txc
1

k }22.

According to Theorem 5.2.1, the transportation weights T c,c1

ij pP q and T c,c1

ik pP q between

P Txci and P Txc
1

j and between P Txci and P Txc
1

k , respectively, are equal to

(5.27) T c,c1

ij pP q “ uc,c
1

i e´λ}PT xc
i´PT xc1

j }22vc,c
1

j and T c,c1

ik pP q “ uc,c
1

i e´λ}PT xc
i´PT xc1

k }22vc,c
1

k ,

where uc,c
1

i , vc,c
1

j , vc,c
1

k are found by an algorithm for matrix balancing problems such as the

Sinkhorn-Knopp (SK) algorithm or the accelerated SK (Acc-SK) algorithm. According

to (5.27), the condition (5.26) suggests that T c,c1

ij pP q ą T c,c1

ik pP q, with the value of λ

determining the magnitude difference between T c,c1

ij pP q and T c,c1

ik pP q. Specifically, as λ

increases, the disparity in size between T c,c1

ij pP q and T c,c1

ik pP q also increases. This indicates

that the relationship between closely-distanced data points is emphasized more than the

relationship between widely-distanced data points. Furthermore, the sum constraint on

the OT matrix T c,c1

pP q, expressed as

(5.28) T c,c1

pP q1Nc1 “
1

Nc
1Nc and T c,c1

pP qT 1Nc “
1

Nc1

1Nc1 ,

implies that satisfying the constraint (5.28) requires an inverse relationship between trans-

portation weights. When one transportation weight becomes small, the other transporta-

tion weights must become large. In other words, for large λ, the weaker data relations
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between distantly located data points contribute to the stronger data relations between

closely located data points. This leads to a more pronounced locality in the relationships

within the class manifold.

Figure 5.1. Illustration of globality and locality relations of two class datasets
as the regularization parameter takes on the values λ “ 0.1, 0.5, 1. The first plot
displays the shape of two classes, and the following left column and the following
right column illustrate inter-class relations and intra-class relations, respectively,
with each row corresponding to different λ.
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CHAPTER 6

Wasserstein Discriminant Analysis: Algorithms and Numerical

Results

6.1. Existing Algorithms

To the best of our knowledge, there are two algorithms that are specifically designed for solving

NTRopt-WDA (5.22). In this section, we provide a summary of these two algorithms and point

out their shortcomings.

6.1.1. WDA-gd. In [45], NTRopt-WDA (5.22) is solved using the projected gradient descent

method. The derivative of the OT matrix is computed as the derivative of the matrix TLpP q “

DpuLqKDpvLq obtained from a preset Lth iteration of SK algorithm (see Section 6.2.2 for the

discussion on SK algorithm). A recursion occurs in computing the derivative of TLpP q as uL

depends on vL which in turn depends on uL´1. An automatic differentiation is used to compute the

derivative of TLpP q in order to utilize the recursion scheme of SK algorithm. This derivative-based

algorithm is referred to as WDA-gd. However, WDA-gd is subject to some practical shortcomings.

‚ A large number of SK iterations may be needed to obtain the OT matrices and their

derivatives (see Example 6.2.2). If the iteration number L is not large enough, both the

OT matrices and their derivatives may be inaccurate.

‚ Computing the derivative of the objective function of NTRopt-WDA (5.22) comes with

a heavy cost that scales quadratically in the dimension size, the number of data points,

and the number of data classes. Assuming that each class has N number of data points,

at each iteration of WDA-gd, the costs of computing the derivatives of the OT matrices

from automatic differentiation are OpLpN2d2q, where L is the number of SK iterations, p

is the size of subspace dimension, and d is the size of the original dimension. The other

computation costs in the derivative of the objective function are OppC2N2dq where C is
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the number of classes. Therefore, the overall cost for computing the derivative at each

iteration is OpLpC2N2d2q.

6.1.2. WDA-eig. In [72], the authors proposed to approximate NTRopt-WDA (5.22) with

the following ratio trace surrogate model

(6.1) max
PTP“Ip

Tr

ˆ

pP TCwpP qP q´1pP TCbpP qP q

˙

,

then further approximate this surrogate model using the NEPv:

(6.2) CbpP qP “ CwpP qPΛ,

where P is the eigenvector corresponding to the p largest eigenvalues of pCbpP q, CwpP qq. The

NEPv (6.2) was solved using the self-consistent field (SCF) iteration:

(6.3) Pk`1 Ð eigenvectors of the p largest eigenvalues of pCbpPkq, CwpPkqq.

The approach was named WDA-eig. There are major issues with this approach.

‚ The OT matrices needed in CbpPkq and CwpPkq are computed using SK algorithm. As a

result, WDA-eig suffers from the same shortcomings as WDA-gd of needing a large number

of SK iterations.

‚ As discussed in Section 2.2.1.1, (RTopt) can be a poor approximation to (TRopt), often

leading to suboptimal solutions and inferior classification outcomes compared to (TRopt).

Similarly, in the case of their nonlinear extensions, the surrogate trace ratio model (6.1)

may also serve as a poor approximation to NTRopt-WDA (5.22). In Figure 6.6, we present

an illustration demonstrating that the surrogate model (6.1) leads to suboptimal solutions.

‚ There is no proper quantification for the quality of the surrogate model (6.1) to the

NEPv (6.2). It is not known if the solution P of the model (6.1) corresponds to the

p largest eigenvectors of the NEPv (6.2). Therefore, the converged projection from the

SCF iteration (6.3) may not be the solution to the surrogate model (6.1).
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6.2. A Bi-Level Nonlinear Eigenvector Algorithm

In this section, we present a new algorithm, called WDA-nepv, to address the shortcomings

of WDA-gd and WDA-eig. Unlike WDA-gd, WDA-nepv eliminates the need for computing the

derivatives of the objective function qpP q in NTRopt-WDA (5.22). Meanwhile, unlike WDA-

eig, WDA-nepv directly tackles the objective function qpP q without using a surrogate function.

Therefore, WDA-nepv is derivative-free and surrogate-model-free. WDA-nepv fully leverages the

bi-level structure of NTRopt-WDA (5.22) by formulating both the inner and outer optimizations

as NEPvs. This approach presents a unified framework for addressing NTRopt-WDA (5.22).

6.2.1. Algorithm Outline. WDA-nepv follows a bi-level or inner-outer iteration scheme in

which at each iteration the projection dependence on the cross-covariance matrices is fixed and the

projection is updated as the solution of the resulting trace ratio optimization (TRopt). There lie

two NEPvs in WDA-nepv: one for computing the OT matrices of the cross-covariance matrices

and the other for computing (TRopt). Here is an outline of WDA-nepv:

(1) Start with an initial projection P0 with P T
0 P0 “ Ip.

(2) At the kth iteration:

(a) Compute the OT matrices T c,c1

pPkq and T c,cpPkq by an NEPv (Sec. 6.2.2).

(b) Use the OTmatrices T c,c1

pPkq and T c,cpPkq to form between and within cross-covariances

CbpPkq and CwpPkq by level-3 BLAS (Basic Linear Algebra Subprograms) (see Sec. 6.2.3).

(c) Compute Pk`1:

(6.4) Pk`1 “ argmax
PTP“Ip

TrpP TCbpPkqP q

TrpP TCwpPkqP q

by another NEPv for (TRopt) (see Sec. 6.2.4);

(3) Terminate when Pk and Pk`1 are sufficiently close (see remarks of Algorithm 4).

We solve both NEPvs using the self-consistent field (SCF) iteration.

6.2.2. Computing OT Matrices by NEPv. In NTRopt-WDA (5.22), a key computation

step involves computing the OT matrices defined in (5.14). The OT matrices take an integral

part in quantifying the global and local relations of data points. Therefore, accurate and efficient

computations of OT matrices are crucial. According to Theorem 5.2.1, the computation of the OT
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matrices can be recast as a matrix balancing problem. In this section, we discuss Sinkhorn-Knopp

(SK) algorithm, one of the most well-known algorithms for the matrix balancing problem, followed

by its accelerated variant (named Acc-SK) that can converge in a smaller number of iterations. In

contrast to WDA-gd and WDA-eig which use SK algorithm directly, we use Acc-SK to compute

the OT matrices. We conclude the section with two examples to demonstrate the efficiency and

accuracy of Acc-SK in comparison to SK.

6.2.2.1. Matrix Balancing Problem. For the sake of simplicity, we denote the OT matrices

T c,c1

pPkq and Euclidean distance matrix MPT
k Xc,PT

k Xc1 as T λ P Rnˆm
` and M P Rnˆm

` , respectively.

According to Theorem 5.2.1,

T λ “ DpuqKDpvq

where K :“ e´λM is an element-wise exponential, and u P Rn
` and v P Rm

` satisfy the relation

$

’

&

’

%

DpuqKDpvq1m “ 1
n1n

DpvqKTDpuq1n “ 1
m1m.

(6.5)

Computing u P Rn
` and v P Rm

` from K to satisfy the relation (6.5) is known as the matrix balancing

problem.

There is a vast literature on the matrix balancing problem and one of its earliest works can

be dated back as far as 1937 [66] where the problem arose in the calculation of traffic flow. Its

applications lie in many different areas such as balancing the matrix to improve the sensitivity

of the eigenvalue problem [85] or balancing the matrix pencil to improve the sensitivity of the

generalized eigenvalue problem [39,70,116] in order to compute more accurate eigenvalues, and in

optimal transport [34] to compute the distance between probability vectors. See [53] for further

discussions on the applications and the historical remarks of the matrix balancing problems.

The most notable work on the matrix balancing problem is Sinkhorn’s paper in 1964 [97] that

showed the matrix balancing problem is solvable for a positive square matrix. In 1967 [98], Sinkhorn

further extended his result to prove the existence of a matrix with prescribed row and column sums

from a positive rectangular matrix, and with Knopp, derived conditions for the existence of a doubly

stochastic matrix from a non-negative square matrix [99].
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6.2.2.2. Sinkhorn-Knopp (SK) Algorithm. Sinkhorn-Knopp (SK) algorithm [97, 98, 99], also

known as RAS method or Bregman’s balancing method, is one of the most well-known algorithms

for the matrix balancing problem. SK iteratively scales the matrix involving only matrix-vector

multiplications, and converges linearly [47,56,62]. Applied to computing the OT matrix T λ, SK

obtains the vectors v and u satisfying (6.5) by an alternating updating scheme on the matrix K:

$

’

&

’

%

vk`1 “ 1
m1m.{pKTukq

uk`1 “ 1
n1n.{pKvk`1q.

(6.6)

6.2.2.3. Reformulation of SK as Nonlinear Mapping and NEPv. While simple, the SK algorithm

is subject to slow convergence [4,62]. There are variants of the SK algorithm for acceleration. They

include a different updating scheme for scaling the matrix [83], an inner-outer iteration algorithm

based on Newton’s method [63], a greedy Sinkhorn algorithm called Greenkhorn algorithm [2,3],

and the SCF iteration for solving the NEPv formulation [4].

In our algorithm WDA-nepv, we consider accelerating the SK algorithm by solving the NEPv

formulation. We note that the SK iteration (6.6) for obtaining the vector v can be rewritten as the

following iteration

(6.7) vk`1 “ Rpvkq,

where

(6.8) Rpvq :“ D´1

ˆ

KTD´1

ˆ

Kv

˙

1n
n

˙

1m
m

is a nonlinear mapping. R is a contraction mapping on the space of non-negative vectors [22].

Thus, the fixed point of R exists and is unique.

In the following, we show that the fixed point v of the mapping R is an eigenvector corresponding

to the largest eigenvalue of JRpvq P Rmˆm, the Jacobian of the mapping R. First, we have the

following theorem due to [4, Theorem 5].1

1Although only positive square matrices were subject to discussion in [4], we can extend their results to positive
rectangular matrices.
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Theorem 6.2.1. For a positive vector v, it holds

(6.9) Rpvq “ JRpvqv,

where JR is the Jacobian of the mapping R defined as in (6.8).

Proof. The equation (6.8) can be written as the composition of mappings

Rpvq “
n

m
UpKTSpvqq(6.10)

where U and S are defined as

(6.11) Upvq “ 1.{v and Spvq “ UpKvq.

Note that we define U as a component-wise reciprocal operator for vectors of any size. In particular,

since K is n ˆ m, U in the operator S operates on the vector of size n.

The Jacobian of U is

JU pvq “ ´D´2pvq “ ´D2p1.{vq “ ´D2pUpvqq,(6.12)

where the last equality holds by (6.11). The Jacobian of S is

JSpvq “ ´D´2pKvqK “ ´D2p1n.{pKvqqK “ ´D2pUpKvqqK “ ´D2pSpvqqK,(6.13)

where the last two equalities hold by (6.11).

By the chain rule, the Jacobian matrix of the mapping R is

JRpvq “ J n
m
UKTSpvq “

n

m
JU pKTSpvqq ¨ KT ¨ JSpvq.

Utilizing the results (6.12), (6.13) and substituting the mappings R (6.10), JRpvq is further simpli-

fied as

JRpvq “
n

m
r´D2pUpKTSpvqqqsrKT sr´D2pSpvqqKs

“
m

n
D2pRpvqqKTD2pSpvqqK(6.14)
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Then,

JRpvqv “
m

n
D2pRpvqqKTD2pSpvqqKv “

m

n
D2pRpvqqKTD2pUpKvqqKv

“
m

n
D2pRpvqqKTD´2pKvqKv “

m

n
D2pRpvqqKTD´1pKvq1n

“
m

n
D2pRpvqqKTDpUpKvqq1n “

m

n
D2pRpvqqKTSpvq

“
n

m
D´2pKTSpvqqKTSpvq “

n

m
D´1pKTSpvqq1m

“
n

m
DpUpKTSpvqqq1m “ DpRpvqq1m “ Rpvq

□

By Theorem 6.2.1, the fixed point v of the mapping R satisfies

(6.15) JRpvqv “ v,

i.e., v is an eigenvector of JRpvq corresponding to the eigenvalue µ “ 1. Note that the fixed

point v is strictly positive and the exponential Euclidean distance matrix K is strictly positive.

Consequently, it is clear from the equation (6.14) that JRpvq is a positive matrix. Therefore, by the

Perron-Frobenius theorem [49], v must be the eigenvector corresponding to the largest eigenvalue

of the NEPv:

(6.16) JRpvqv “ µv

6.2.2.4. Accelerated Sinkhorn-Knopp (Acc-SK) Algorithm. The above discussion indicates that

the SK algorithm (6.6) is equivalent to finding the eigenvector v corresponding to the largest

eigenvalue of JRpvq. To accelerate the SK iteration, we can apply the following SCF iteration for

solving the NEPv (6.16):

(6.17) vk`1 Ð eigenvector of µmaxpJRpvkqq.

The SCF iteration (6.17) is referred to as Acc-SK. Once Acc-SK converges to v, u is computed by

an extra update (6.6), i.e.,

u “
1

n
1n.{pKvq.
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In summary, Acc-SK for computing the OT matrix T λ is shown in Algorithm 3. The eigenvalue

problem in line 4 of Algorithm 3 can be efficiently solved by a Krylov-subspace eigensolver such as

the implicitly restarted Arnoldi method [100]. The stopping criteria in line 5 checks whether the

distance between vk`1 and vk is smaller than a preset tolerance tol.

Algorithm 3 Computation of T λ via NEPv

Input: Matrix K P Rnˆm
` , tolerance tol

Output: the OT matrix T λ in (5.9)

1: Create a starting v0 ą 0
2: for k “ 0, 1, . . . do
3: Set Jk “ JRpvkq

4: Set vk`1 as the eigenvector of the largest eigenvalue of Jk
5: if dpvk`1, vkq ă tol then
6: return v “ vk`1

7: end if
8: end for
9: Compute u “ 1

n1n.{pKvq

10: Return T λ “ DpuqKDpvq

6.2.2.5. Advantages of Acc-SK. Acc-SK significantly improves over SK in number of iterations

when the magnitude of the components of an input matrix is small [4]. In the context of NTRopt-

WDA (5.22), this situation can occur when the regularization parameter λ is sufficiently large, i.e.,

when the local relationships between data points are emphasized. We illustrate the acceleration

of Acc-SK over SK in the following two examples: the first example for general synthetic matrices

and the second example for computing the OT matrices of NTRopt-WDA (5.22). For both SK and

Acc-SK, the starting vector is taken as v0 “ 1
m1m and the convergence behavior is displayed by

the error }vk`1 ´ vk}2. We show that while SK is subject to slow convergence, Acc-SK converges

efficiently in a small number of iterations.

Example 6.2.1. Consider the following synthetic matrices

K1 “

»

–

1 ϵ

1 1

fi

fl , K2 “

»

—

—

—

–

1 ϵ

1 1

1 1

fi

ffi

ffi

ffi

fl
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where ϵ is a small positive number. The convergence behaviors of SK and Acc-SK for the matrices

K1 and K2 with ϵ “ 10´8 in Figure 6.1 shows that SK is unable to converge within 50 iterations

for matrix K1 and that while it converges for the matrix K2, it does so slowly. Meanwhile, Acc-SK

converges in around 10 iterations for both matrices.

(a) Matrix K1 (b) Matrix K2

Figure 6.1. Convergence behaviors of SK and Acc-SK on matrices K1 and K2.
Each plot displays the error }vk`1 ´ vk}2 of SK and Acc-SK.

Example 6.2.2. Using the synthetic dataset (see Sec. 6.3.1 for its description), we create data

matrices X1 P R2ˆ60, X2 P R2ˆ100. We choose a sufficiently large regularization parameter λ “ 1 to

emphasize the local relations of the data points and form exponential Euclidean distance matrices

K1,2 P R60ˆ100
` and K1,1 P R60ˆ60

` . With this choice of the regularization parameter, some of the

components of K1,2 and K1,1 are small. Figure 6.2 depicts the convergence behavior. We observe

that SK exhibits slow convergence for K1,2 and does not converge below the error 10´5 for K1,1. On

the other hand, Acc-SK displays fast and accurate convergence, converging in just two iterations

for both K1,2 and K1,1.

6.2.3. Computation of Cross-covariance Matrices CbpPkq and CwpPkq. Recall that the

between and within cross-covariance matrices CbpPkq and CwpPkq defined in (5.23) and (5.24)

CbpPkq “
ÿ

c,c1ąc

ÿ

ij

T c,c1

ij pPkqpxci ´ xc
1

j qpxci ´ xc
1

j qT ,

CwpPkq “
ÿ

c

ÿ

ij

T c,c
ij pPkqpxci ´ xcjqpxci ´ xcjq

T
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Figure 6.2. Convergence behaviors of SK and Acc-SK on matrices K1,2 and K1,1.
Each plot displays the error }vk`1 ´ vk}2 of SK and Acc-SK.

are the weighted sums of the outer products of the data points, where the weights are the compo-

nents of the OT matrices. The number of double sums in CbpPkq and CwpPkq are

Nb :“
C

ÿ

c,c1ąc

NcNc1 and Nw :“
C

ÿ

c

N2
c ,

respectively. Overall, the number of double sums grow quadratically in the number of classes or

data points.

A straightforward implementation for computing these cross-covariance matrices is by a double

for-loop with Nb and Nw calls to level-2 BLAS in forming the outer products of CbpPkq and CwpPkq,

respectively. However, memory access is the bottleneck on modern computing platforms. Unlike

level-2 BLAS, level-3 BLAS makes full reuse of data and avoids excessive movement of data to

and from memory [38]. Therefore, we propose to compute the cross-covariance matrices using

level-3 BLAS to improve computational efficiency. Specifically, we reformulate the sum of the outer

products as a matrix-matrix multiplication:

(6.18) CbpPkq “ pCbpPkq pCT
b pPkq and CwpPkq “ pCwpPkq pCT

w pPkq
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where pCbpPkq P RdˆNb and pCwpPkq P RdˆNw have columns

b

T c,c1

ij pPkqpxci ´ xc
1

j q and
b

T c,c
ij pPkqpxci ´ xcjq,

respectively. As level-3 BLAS, the matrix-matrix multiplications (6.18) are far more efficient than

forming the sum of outer products. In particular, the improvement in efficiency becomes more

prominent as the data dimension gets large. For an instance of the synthetic dataset (see Section 6.3

for its description) with d “ 2000, the running time of the sum of outer products took 127 seconds

while the level-3 BLAS formulation only took 0.63 seconds.

We note that efficient computations of the cross-covariance matrices using level-3 BLAS is a

novelty of this work. In WDA-gd, cross-covariance matrices are not formed explicitly. Instead,

each regularized Wasserstein distance is computed directly as the weighted sum (5.17) and the

reciprocal of the objective function (5.16) is an input in Pymanopt [108], an optimizer on matrix

manifold. In WDA-eig, the cross-covariance matrices are implemented directly from their double

sum formulations using tensor operations.

6.2.4. Solving TRopt by NEPv. Now let us consider the outer iteration for solving the

TRopt (6.4). For notation convenience, set

A “ CbpPkq, B “ CwpPkq.

Note that by (6.18), A and B are symmetric positive semi-definite. Furthermore, given that the

number of data points is typically larger than the dimension size, we can safely assume that A

and B are positive definite. Then, the corresponding TRopt (6.4) can be solved by Algorithm 1,

the SCF iteration on the NEPv (2.7). Algorithm 1 is monotonic, globally convergent to the global

maximizer for any initial projection P0, and has a local quadratic convergence.

6.2.5. WDA-nepv. Combining Algorithm 3 and Algorithm 1, WDA-nepv is presented in

Algorithm 4. A possible choice of the initial projection P0 is using a random orthogonal projection

or using the projection obtained as the solution to PCA or as the solution to LDA. In line 4,

the initial for Algorithm 3 can be chosen as the uniformly distributed probability vector, i.e.,

v0 “ 1Nc1 {Nc1 and v0 “ 1Nc{Nc for T c,c1

pPkq and T c,cpPkq, respectively. In line 6, the initial
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Algorithm 4 WDA-nepv

Input: Data matrices X1 P RdˆN1 , . . . , XC P RdˆNc , regularization λ ě 0, tolerance tol
Output: solution P to NTRopt-WDA (5.22)

1: Create a starting P0 with P T
0 P0 “ Ip

2: for k “ 0, 1, . . . do

3: Compute Kc,c1

pPkq P RNcˆNc1 with rKc,c1

pPkqsij “ e´λ}PT
k xc

i´PT
k xc1

j }22 and Kc,cpPkq P RNcˆNc

with rKc,cpPkqsij “ e´λ}PT
k xc

i´PT
k xc

j}22

4: Compute OT matrices T c,c1

pPkq P RNcˆNc1 and T c,cpPkq P RNcˆNc by Alg. 3 with Kc,c1

pPkq

and Kc,cpPkq

5: Compute CbpPkq and CwpPkq by level-3 BLAS (6.18)
6: Compute Pk`1 by Alg. 1 with CbpPkq and CwpPkq

7: if dpPk`1, Pkq ă tol then
8: Return P “ Pk`1

9: end if
10: end for

projection for Algorithm 1 can be chosen as Pk, the current kth projection. The stopping criteria

dpPk`1, Pkq ă tol in line 7 is measured as the largest principal angle between the subspaces spanned

by the matrices Pk`1 and Pk [49].

Regarding the complexity of Algorithm 4, suppose that the numbers of data points of classes are

the same, i.e., N “ Nc for all c “ 1, 2, . . . , C. Then, for one iteration of Algorithm 4: OpC2q many

OT matrices are computed, and each OT matrix costs OpN2q at each iteration of Algorithm 3.

The formation of the cross-covariance matrices CbpPkq and CwpPwq are OpN2d2q. The other cost

is a Krylov subspace eigensolver for SCF in Algorithm 1, whose leading cost is Opd2q for the

matrix-vector products on the d ˆ d covariance matrices. In summary, WDA-nepv (Algorithm 4)

is quadratic in the number of data points N and the dimension d.

6.2.6. Convergence of WDA-nepv. In this section, we provide the convergence analysis

of the proposed WDA-nepv. We first note that given Pk, the inner optimization (Algorithm 3)

to compute the OT matrices T c,c1

pPkq is globally convergent. Furthermore, for applications of

WDA, the desired accuracy is typically low, say at the range of tol “ 10´3 to 10´5. Therefore,

for simplicity, in our analysis we assume that the OT matrices are accurately computed so that

they can be regarded as “exact”. Similarly, the SCF iteration for TRopts (Algorithm 1) in the

outer optimization is also globally convergent so that Pk`1 is accurately computed to be regarded
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as “exact”. Therefore, we have

(6.19)

«

CbpPkq ´
TrpP T

k`1CbpPkqPk`1q

TrpP T
k`1CwpPkqPk`1q

CwpPkq

ff

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

“: rHk

Pk`1 “ Pk`1Λk,

where the eigenvalues of Λk consist of the p largest eigenvalues of rHk.

Next, we make the following so-called monotonicity assumption whose rigorous verification

remains open but is numerically demonstrated throughout all our numerical tests.

Assumption 6.2.1. For orthonormal P, pP P Rdˆp and the function qpP q defined in NTRopt-

WDA (5.22), if

(6.20)
Trp pP TCbpP q pP q

Trp pP TCwpP q pP q
ě qpP q ` η,

where η P R, then

(6.21) qp pP q ě qpP q ` cη

for some constant c ą 0, independent of P, pP .

The convergence of WDA-nepv is stated in the following theorem. It provides a theoretical

justification of the SCF framework for solving NTRopt-WDA (5.22).

Theorem 6.2.2. Suppose Assumption (6.2.1) holds and that the sum of the p smallest eigenval-

ues of CwpP q is uniformly bounded below for all orthonormal P P Rdˆp. Similarly, suppose that the

sum of the p largest eigenvalues of CwpP q is uniformly bounded above for all orthonormal P P Rdˆp.

Let the sequence tPku8
k“0 be generated by WDA-nepv (Algorithm 4). The following statements hold.

(a) tqpPkqu8
k“0 is monotonically increasing and convergent.

(b) tPku8
k“0 has a convergent subsequence tPkukPI, converging to P˚, and

lim
kÑ8

qpPkq “ qpP˚q.

(c) P˚ is an orthonormal eigenbasis matrix of H˚ :“ HpP˚q “ CbpP˚q ´ qpP˚qCwpP˚q associ-

ated with its p largest eigenvalues.
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(d) If λppH˚q ´ λp`1pH˚q ą 0, then

(6.22) P˚ “ arg max
PTP“Ip

TrpP TCbpP˚qP q

TrpP TCwpP˚qP q
,

where λipH˚q is the ith largest eigenvalues of H˚.

Proof. (a) Recall that the projection Pk`1 is computed exactly to form an orthonormal

eigenbasis matrix corresponding to the p largest eigenvalues of rHk. Therefore, by the Ky

Fan trace theorem (Theorem 2.1.2) Pk`1 is a solution to the following optimization:

(6.23) max
PTP“Ip

TrpP T
rHkP q,

and we have from (6.19) that

0 “ TrpP T
k`1

rHkPk`1q “ TrpΛkq ě TrpP T
k

rHkPkq,

which yields (6.20) with P “ Pk, pP “ Pk`1, and η “ 0. Hence, by assumption 6.2.1, we

conclude qpPk`1q ě qpPkq.

According to (2.6), we know that TrpP TCwpP qP q is not smaller than the sum of the

p smallest eigenvalues of CwpP q. Since the sum of the p smallest eigenvalues of CwpP q

is assumed to be uniformly bounded from below for any orthonormal P , tqpPkqu8
k“0 is

monotonically increasing and bounded and hence convergent.

(b) Since tPku8
k“0 is a bounded sequence, it has a convergent subsequence tPkukPI, converging

to an orthonormal P˚. As qpP q is continuous with respect to P , by item (a), we have

lim
kÑ8

qpPkq “ lim
IQkÑ8

qpPkq “ qp lim
IQkÑ8

Pkq “ qpP˚q.

(c) Let ω be the uniform upper bound of the sum of the p largest eigenvalues of CwpP q.

Recall that we have (6.19). tPk`1ukPI, as a bounded sequence, has a convergent sub-

sequence tPk`1ukPI1 , converging to an orthonormal pP˚, where I1 Ă I. Letting I1 Q k Ñ 8
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in (6.19) yields

«

CbpP˚q ´
Trp pP T

˚ CbpP˚q pP˚q

Trp pP T
˚ CwpP˚q pP˚q

CwpP˚q

ff

looooooooooooooooooooooooomooooooooooooooooooooooooon

“: rH˚

pP˚ “ pP˚Λ˚,

where the eigenvalues of Λ˚ consist of the p largest eigenvalues of rH˚. We claim that P˚ is

an orthonormal eigenbasis matrix of rH˚ associated with its p largest eigenvalues as well,

just like pP˚ is. Otherwise, according to (2.5),

η “ Trp pP T
˚

rH˚
pP˚q ´ TrpP T

˚
rH˚P˚q ą 0,

yielding

Trp pP T
˚ CbpP˚q pP˚q

Trp pP T
˚ CwpP˚q pP˚q

“ qpP˚q `
η

TrpP T
˚ CwpP˚qP˚q

ě qpP˚q `
η

ω
.

By continuity, there is an k0 P I1 such that

TrpP T
k0`1CbpPk0qPk0`1q

TrpP T
k0`1CwpPk0qPk0`1q

ě
Trp pP T

˚ CbpP˚q pP˚q

Trp pP T
˚ CwpP˚q pP˚q

´
1

3

η

ω
,

and

qpPk0q ě qpP˚q ´
1

3

cη

ω
.

Therefore,

TrpP T
k0`1CbpPk0qPk0`1q

TrpP T
k0`1CwpPk0qPk0`1q

ě qpP˚q `
η

ω
´

1

3

η

ω
“ qpP˚q `

2

3

η

ω
ě qpPk0q `

2

3

η

ω
.

By assumption 6.2.1, we get

qpPk0`1q ě qpPk0q ` c
2

3

η

ω
ě qpP˚q ´

1

3

cη

ω
` c

2

3

η

ω
“ qpP˚q `

1

3

cη

ω
ą qpP˚q,

contradicting all qpPkq ď qpP˚q.

The contradiction indicates that P˚ is an orthonormal eigenbasis matrix of rH˚ associ-

ated with its p largest eigenvalues, and hence η “ 0, i.e.,

Trp pP T
˚ CbpP˚q pP˚q

Trp pP T
˚ CwpP˚q pP˚q

“ qpP˚q,

83



implying rH˚ “ H˚. Therefore, in conclusion, P˚ is an orthonormal eigenbasis matrix of

H˚ associated with its p largest eigenvalues.

(d) In proving item (c), we concluded that rH˚ “ H˚ and so we haveH˚
pP˚ “ pP˚Λ˚ upon letting

I1 Q k Ñ 8 in (6.19), where the eigenvalues of Λ˚ consist of the p largest eigenvalue of H˚.

By item (c), P˚ and pP˚ are two orthonormal eigenbasis matrices of H˚ associated with

its p largest eigenvalues. By the assumption that λppH˚q ´ λp`1pH˚q ą 0, we conclude

pP˚ “ P˚Q where Q P Rpˆp is an orthogonal matrix. Hence, we have

P˚ “ arg max
PTP“Ip

TrpP TCbpP˚qP q

TrpP TCwpP˚qP q
.

□

6.3. Numerical Experiments

In this section, we demonstrate the convergence, classification accuracy, and scalability of WDA-

nepv. The outline of the section is as follows: first, we provide a brief summary of datasets that

we perform numerical experiments on. Then, we demonstrate the convergence behaviors of WDA-

nepv, followed by a discussion on non-optimal convergence. Using the K-Nearest-Neighbors (KNN)

algorithm to measure the classification accuracy, we demonstrate that WDA-nepv performs either

competitively or better than WDA-gd and WDA-eig. Finally, we demonstrate that WDA-nepv

scales linearly in subspace dimension p, and quadratically in dimension d and in number of data

points N .

The experiments were conducted using Python on a PC with an Intel Core i7-7500U processor

with 16GB of RAM. To advocate for reproducible research, we share our Python implementation

of WDA-nepv for the experiment results presented2. The codes of WDA-gd and WDA-eig are

provided by their respective authors3. For all experiments, the initial projection P0 is chosen as a

random orthogonal matrix. Unless otherwise stated, the stopping tolerance parameter is preset at

10´5.

6.3.1. Datasets.

2Github page for WDA-nepv: https://github.com/gnodking7/WDAnepv
3Code for WDA-gd: https://pythonot.github.io/auto_examples/others/plot_WDA.html.
Github page for WDA-eig: https://github.com/HexuanLiu/WDA_eig
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6.3.1.1. Synthetic Dataset. We consider the synthetic dataset used in [45, 72]. The dataset

consists of three bi-modal classes such that the corresponding three data matrices are

(6.24) X1 P RdˆN1 , X2 P RdˆN2 , X3 P RdˆN3 .

Each data point is a d dimensional vector whose first two components are discriminative and

the remaining components are Gaussian noise, i.e., drawn from the standard normal distribution

N p0, 1q. In particular, each class consists of two separate modes in its discriminative components

such that the number of data points is equally split among the two modes.

The discriminative behavior is shown in Figure 6.3 for an example N1 “ 30, N2 “ 40, N3 “ 30:

the left subplot shows the first two components and the right subplot the next two components.

Figure 6.3. Each of the three classes is displayed in a different color. The left
figure is the plot of the first two components of the data points, and the right figure
is the plot of the next two components.

6.3.1.2. UCI Datasets. The UCI Repository [42] is a collection of datasets that are widely

used by the machine learning community for the empirical analysis of machine learning algorithms.

In particular, the repository provides a wide variety of datasets that are suitable for clustering

and classification tasks. Among the datasets, we choose the real-life datasets named Iris, Wine,

Ionosphere, LSVT, and Parkinson’s Disease. In Table 6.1, their dimension size, number of data

points, and number of classes are displayed.
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Iris Wine Ionosphere LSVT Parkinson
Dimension (d) 4 13 34 309 754

Data points (
ř

Nc) 150 178 351 126 756
Classes (C) 3 3 2 2 2

Table 6.1. UCI datasets description.

6.3.2. WDA-nepv: Convergence Behavior.

Example 6.3.1. To investigate the convergence behavior of WDA-nepv, we use a synthetic

dataset with a dimension of d “ 10 and three classes of data points of sizes pN1, N2, N3q “

p30, 40, 30q. We perform two experiments to investigate the convergence behavior of WDA-nepv:

‚ With fixed regularization parameter λ “ 0.01, the convergence behavior of WDA-nepv is

depicted for various subspace dimensions p P t1, 2, 3, 4, 5u; see Figure 6.4(a).

‚ With fixed subspace dimension p “ 2, the convergence behavior of WDA-nepv is reported

for various regularization parameters λ P t0.001, 0.01, 0.1u; see Figure 6.4(b).

(a) Varying p (b) Varying λ

Figure 6.4. Convergence behavior of WDA-nepv on the synthetic dataset.

Both plots in Figure 6.4 illustrate linear convergence for WDA-nepv regardless of the choice of

the regularization parameter or the subspace dimension. WDA-nepv achieves the fastest conver-

gence rate for the subspace dimension p “ 2, the dimension size of the true discriminative subspace

of the dataset. For a similar subspace dimension size p “ 1 WDA-nepv achieves a similar conver-

gence rate as p “ 2, while as the subspace dimension p increases the convergence rate slows down.

We also observe that the convergence rate slows down as the regularization parameter λ increases.
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When λ is small, NTRopt-WDA (5.22) can be considered as LDA with a small perturbation to the

cross-covariance matrices. In this case, as LDA is known to have a local quadratic convergence [25],

WDA-nepv converges faster than the cases where λ is larger.

6.3.2.1. Many Local Maxima and Non-optimal Convergence. NTRopt-WDA (5.22) is a highly

nonlinear, non-convex bi-level optimization that often has many local optimizers. The following

example illustrates this.

Example 6.3.2. Let us consider the Synthetic dataset with d “ 2 and the number of data

points N1 “ 30, N2 “ 40, N3 “ 30. We desire to compute a projection P that projects these data

points onto a subspace of dimension p “ 1, i.e., P is a normalized vector p P R2ˆ1. We define qpP q

as the value of the objective function of NTRopt-WDA at a normalized vector p. That is,

qppq :“
TrppTCbppqpq

TrppTCwppqpq
.(6.25)

Figure 6.5 plots the values qpP q (gray points) at 2000 random normalized vectors p, where the

regularization parameter is chosen as λ “ 0.1 for plot (a) and λ “ 1 for plot (b). We observe that

for both regularization parameters, there are many local maxima.

Finding a global optimizer of a non-convex problem is NP-hard. Algorithms for non-convex

problems are prone to converge towards a local optimizer, and consequently, lead to a suboptimal

solution. A suboptimal solution is not desirable in optimization and for the task at hand. For

instance, in a classification task, relying on a suboptimal projection often proves insufficient for

identifying the subspace that effectively discriminates the projected data points.

Example 6.3.3. In order to analyze the convergence behaviors of WDA-gd, WDA-eig and

WDA-nepv, we examine the history of their NTRopt-WDA values for the problem described in

Example 6.3.2. That is, for projections pk obtained at each iteration of an algorithm, we examine

how the values qppkq (6.25) are changing. Figure 6.5 illustrates the local convergence behavior for

WDA-nepv, WDA-gd, and WDA-eig.

For both regularization parameters λ P t0.1, 1u, the same initial projection p0 corresponding

to a local minimizer is used and shared by all three algorithms. In the figure, the value qpp0q is
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(a) λ “ 0.1 (b) λ “ 1

Figure 6.5. Plots of NTRopt-WDA values qppkq (gray points) at random normal-
ized vectors, with regularization parameter λ “ 0.1 in (a) and λ “ 1 in (b). For
all three considered algorithms, the initial projection p0 (a green triangle) is chosen
as a local minimizer. The values qppkq of WDA-nepv (red circles), WDA-gd (black
circles), and WDA-eig (blue circles) are displayed for the projections pk obtained at
each iteration of an algorithm. For each algorithm, the value qpp˚q for the converged
projection p˚ is displayed as the ‘ˆ’ symbol.

represented as a green triangle, while the values qppkq are shown as red circles for WDA-nepv, black

circles for WDA-gd, and blue circles for WDA-eig. The final value qpp˚q for the converged projection

p˚ is displayed as the ‘ˆ’ symbol, with each color corresponding to the respective algorithm.

In Figure 6.5(a), we observe that for a regularization parameter λ “ 0.1, WDA-nepv and

WDA-eig converge towards a local maximizer while WDA-gd successfully finds a global maximizer.

However, in Figure 6.5(b), when λ “ 1, we also observe that WDA-gd fails to find a global maximizer

and remains trapped in the initial local minimizer.

Example 6.3.4. In addition, we use the UCI datasets Wine and Iris to further illustrate the

convergence towards non-global local optimizers. We set the regularization parameter as λ “ 0.01

for the Wine dataset and λ “ 1 for the Iris dataset. For both datasets, we solve the NTRopt-WDA

problem for subspace dimensions p P t2, 3u. The history of the NTRopt-WDA values, denoted as

qpPkq, is plotted in Figure 6.6. All three algorithms share the same initial projection P0, resulting

in the same value of qpP0q.
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Figure 6.6. History of the NTRopt-WDA values for Wine and Iris. Subspace
dimensions p P t1, 2, 3u are considered and regularization parameters are set at
λ “ 0.01 and λ “ 1 for Wine and Iris, respectively.

For the Wine dataset, we observe that both WDA-gd and WDA-nepv achieve the same optimal

value, qpP˚q, while WDA-eig’s optimal value, qpP˚q, is smaller for both p “ 2 and p “ 3, indicat-

ing that WDA-eig found a suboptimal solution. This highlights the suboptimality of WDA-eig’s

surrogate ratio trace model (6.1).

Regarding the Iris dataset, WDA-nepv obtains the largest optimal value, qpP˚q, among the

three algorithms for all considered subspace dimensions. Moreover, WDA-nepv demonstrates faster

convergence, requiring significantly fewer iterations compared to WDA-gd.
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Both Example 6.3.3 and Example 6.3.4 illustrate that convergence to non-global optima can

be a prevalent issue for all three algorithms. The convergence behavior varies across datasets, with

instances where some or all three algorithms successfully converge to the same optimizer, as well

as instances where they converge to different optimizers. Notably, when the initial projection is

chosen close to the global maximizer, it can lead to global convergence. However, since the global

maximizer is typically unknown in advance, obtaining an initial projection close to it may require

multiple attempts.

6.3.3. WDA-nepv: Classification Accuracy. One of the many goals of DR methods is to

derive a projection such that the projected data vectors maintain or amplify the coherent structure

of the original dataset. For a supervised linear DR method, one hopes to obtain an optimal

projection matrix P such that the class structure of the original data vectors in the projected

subspace is more pronounced. For this reason, the effectiveness of a supervised linear DR method

is often measured by the accuracy of classification on the projected data vectors. Measuring the

accuracy of NTRopt-WDA (5.22) is no exception. To evaluate the classification accuracy of an

algorithm, we follow the following conventional steps:

(1) Randomly divide a given dataset into a training dataset and a testing dataset, with equal

size of 50% each.

(2) Compute the optimal projection matrix P˚ using the training dataset.

(3) Project the testing dataset onto the lower-dimensional subspace using the optimal projec-

tion matrix P˚.

(4) Employ the K-Nearest-Neighbors classifier (KNN) on the projected testing dataset to

compute the classification accuracy.

The classification accuracy is quantified in terms of prediction error. A smaller error indicates

better performance.

Example 6.3.5. Using the UCI datasets Wine, Ionosphere, LSVT, and Parkinson’s Disease,

the classification accuracy of WDA-nepv is compared with the classification accuracy of WDA-gd

and WDA-eig. As suggested in WDA-eig [72], we add a small perturbation term ϵId with ϵ “ 1

to the matrix CwpPkq. This enforces the positive definiteness of CwpPkq in practice and helps the
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robustness of the computation of the eigenvalue problems. The regularization parameter λ “ 0.01 is

fixed throughout and the stopping tolerance parameter is set at 10´5. Each experiment is repeated

20 times, and the average and the min-max interval of classification errors are reported. Two

different experiments are considered; one to observe the algorithm behavior in KNN number and

another in subspace dimension.

‚ With fixed subspace dimension p “ 5, various KNN numbersK P t1, 3, 5, 7, 9, 11, 13, 15, 17, 19u

are considered; see left column of Figure 6.7.

‚ With fixed KNN number K “ 11, various subspace dimensions p P t1, 2, 3, 4, 5u are con-

sidered; see right column of Figure 6.7.

For Wine and Ionosphere, we observe that WDA-nepv performs comparable to WDA-gd and

WDA-eig, achieving similar accuracy as the other two WDA algorithms - when looking at the

averages, less than 1% classification accuracy difference exists between WDA-nepv and the best

performing algorithm for all considered values of KNN numbers and subspace dimensions.

For higher dimensional datasets LSVT and Parkinson, WDA-nepv achieves lowest average pre-

diction errors and has the smallest min-max error intervals among the three algorithms. For LSVT,

WDA-nepv achieves, on average, at least 2% to 4% higher classification accuracy for considered

KNN numbers, and at least 1% to 4% higher classification accuracy for considered subspace di-

mensions. For Parkinson, WDA-nepv achieves, on average, at least 2% to 4% higher classification

accuracy for considered KNN numbers, and at least 3% to 5% higher classification accuracy for

considered subspace dimensions.

6.3.4. WDA-nepv: Timing and Scalability. We demonstrate the efficiency of WDA-nepv

by reporting its running time and its scalability.

Example 6.3.6. We compare the running time of WDA-gd, WDA-eig, and WDA-nepv on the

UCI datasets Wine, Ionosphere, LSVT, and Parkinson. For the fixed regularization parameter

λ “ 0.01, we measure the running time for different subspace dimensions p P t3, 4, 5u for Wine and

Ionosphere, and p P t15, 20, 25u for larger dimensional datasets LSVT and Parkinson. We repeat

the experiment 20 times and report the average running times are shown in the following table:
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p “ 3 p “ 4 p “ 5
WDA-gd 1.854 2.354 2.078
WDA-eig 0.019 0.018 0.017
WDA-nepv 0.031 0.028 0.028

(a) Wine

p “ 3 p “ 4 p “ 5
WDA-gd 12.234 12.530 11.896
WDA-eig 0.868 0.902 0.891
WDA-nepv 0.242 0.241 0.284

(b) Ionosphere

p “ 15 p “ 20 p “ 25
WDA-gd 11.332 12.965 14.106
WDA-eig 13.689 14.007 14.153
WDA-nepv 4.683 4.811 5.068

(c) LSVT

p “ 15 p “ 20 p “ 25
WDA-gd 1060.76 1000.56 1001.29
WDA-eig 258.33 285.68 281.66
WDA-nepv 180.32 189.82 205.89

(d) Parkinson

For a small dimensional Wine, we observe that while WDA-eig has the shortest running time,

the running time of WDA-nepv only differs from WDA-eig by around 0.01 seconds. For larger

dimensional Ionosphere, LSVT, and Parkinon, however, WDA-nepv achieves a running time that

is more than half of the running time of WDA-gd and WDA-eig. Unlike WDA-gd, which incurs

heavy computational costs from computing the derivatives, WDA-nepv is derivative-free and has a

short running time. Additionally, the efficient use of level-3 BLAS for the cross-covariance matrices

gives WDA-nepv an edge over WDA-eig in terms of running time.

Example 6.3.7. We demonstrate that WDA-nepv scales linearly in subspace dimension p and

quadratically in data dimension d, and number of data points N using the Synthetic dataset. The

regularization parameters λ “ 0.1, 0.01, 0.001 are considered, and the reported scalability results

are averaged over 100 trials. Three experiments are performed:

‚ With dimension d “ 10 and number of total data points N “ 100 with pN1, N2, N3q “

p30, 40, 30q, various subspace dimensions p P t1, 2, 3, 4, 5u are considered.

‚ With subspace dimension p “ 2 and number of total data pointsN “ 100 with pN1, N2, N3q “

p30, 40, 30q, various dimensions d P t80, 160, 320, 640, 1280, 2560u are considered.

‚ With dimension d “ 50 and subspace dimension p “ 2, various number of total data points

N P t100, 200, 300, 500, 1000u are considered.

Figure 6.8 illustrates that larger λ incurs more running time. As discussed previously, as λ

approaches zero, WDA-nepv becomes increasingly similar to LDA, which has a local quadratic

convergence. Therefore, convergence speed is generally faster for small values of λ. The left plot

indicates that the running time of WDA-nepv scales linearly in subspace dimension p. This linear
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scalability in p is due to the matrix-vector multiplications involved in the exponential Euclidean

distance matrices K and the number of dominant eigenvectors in (TRopt) computations. The

scalability in data dimension d and number of data points N is displayed in the center and right log-

log plots, respectively, in order to exemplify their quadratic scalability. Moreover, a line of quadratic

function is included in the log-log plots. We observe that the slope of the lines corresponding to the

running time of WDA-nepv match closely with the line of a quadratic function, indicating that the

running time of WDA-nepv scales quadratically in data dimension d and number of data points N .

These quadratic scalability are due to the level-3 BLAS in the evaluation of the cross-covariance

matrices CbpP q and CwpP q (6.18).
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Figure 6.7. Prediction errors for WDA-gd, WDA-eig, and WDA-nepv.
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Figure 6.8. Scalability of WDA-nepv on the synthetic dataset: varying subspace
dimension p (left); varying dimension d (middle); varying number of data points N
(right).
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CHAPTER 7

Conclusion

The dissertation presented eigenvector algorithms to solve the nonlinear Rayleigh quotient op-

timization and the nonlinear trace ratio optimization. As preliminaries, we discussed the classical

result of the connection between the Rayleigh quotient optimization and a linear eigenvalue problem.

In addition, we showed that the trace ratio optimization is equivalent to an eigenvector-dependent

nonlinear eigenvalue problem. Afterwards, we investigated the robust common spatial pattern,

a signal processing method in brain-computer interface system. In this context, we encountered

the nonlinear Rayleigh quotient optimization, which we characterized as an eigenvector-dependent

nonlinear eigenvalue problem. The effectiveness of the self-consistent field iteration in solving this

nonlinear eigenvalue problem was demonstrated through numerous numerical results using real-

world data, highlighting its advantages over existing algorithms. Finally, we explored Wasserstein

discriminant analysis, a dimensionality reduction method in machine learning that can dynamically

capture global and local relations among the data. The bi-level optimization structure of Wasser-

stein discriminant analysis is formulated into a nonlinear trace ratio optimization. We proposed an

eigenvector algorithm that solves the eigenvector-dependent nonlinear eigenvalue problems in both

the inner and outer optimizations of Wasserstein discriminant analysis. Furthermore, we provided

numerical results showcasing the convergence, classification rates, and scalability of the proposed

eigenvector algorithm for Wasserstein discriminant analysis.

Mathematically, a main open question remains regarding the nonlinear Rayleigh quotient opti-

mization and the nonlinear trace ratio optimization. Given their linear counterparts are linked to

the linear eigenvalue problem and the eigenvector-dependent nonlinear eigenvalue problem, respec-

tively, a natural question arises:

Under what conditions can we characterize the nonlinear Rayleigh quotient optimization

and the nonlinear trace ratio optimization with an eigenvalue problem?
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Specifically, we would like to understand the conditions of the nonlinear matrices Apxq, Bpxq, for

the nonlinear Rayleigh quotient optimization, and ApXq, BpXq, for the nonlinear trace ratio opti-

mization, that impact the answer to the above question.

From an algorithmic perspective, understanding the behavior of the self-consistent field iteration

for solving the eigenvector-dependent nonlinear eigenvalue problem is critical. We aim to study

the conditions under which the convergence of the self-consistent field iteration is guaranteed for

the related eigenvector-dependent nonlinear eigenvalue problems. Additionally, we plan to explore

various strategies to accelerate its convergence.
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APPENDIX A

Vector and Matrix Calculus

Let x be a vector of size n,

x “

»

—

—

—

—

—

—

—

–

x1

x2
...

xn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Rn,

and let X be a matrix of size n ˆ p

X “

»

—

—

—

—

—

—

—

–

x11 x12 ¨ ¨ ¨ x1p

x21 x22 ¨ ¨ ¨ x2p
...

...

xn1 xn2 ¨ ¨ ¨ xnp

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Rnˆp.

The gradient of a differentiable function apxq : Rn Ñ R with respect to x is defined as

(A.1) ∇apxq :“

»

—

—

—

—

—

—

—

–

Bapxq

Bx1

Bapxq

Bx2

...

Bapxq

Bxn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

P Rn.
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Similarly, the gradient of a differentiable vector-valued function ypxq : Rn Ñ Rm with respect to x

is defined as

∇ypxq :“

»

—

—

—

—

—

—

—

–

By1pxq

Bx1

By2pxq

Bx1
¨ ¨ ¨

Bympxq

Bx1

By1pxq

Bx2

By2pxq

Bx2
¨ ¨ ¨

Bympxq

Bx2

...
...

...

By1pxq

Bxn

By2pxq

Bxn
¨ ¨ ¨

Bympxq

Bxn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

”

∇y1pxq ∇y2pxq ¨ ¨ ¨ ∇ympxq

ı

P Rnˆm,(A.2)

where ∇yipxq P Rn is the gradient of the ith component of ypxq.

In the following two lemmas, the first lemma consists of basic vector and matrix gradients

involving a symmetric matrix whose proofs can be found in a textbook such as [35, Appendix D].

For the second lemma, we provide the proofs.

Lemma A.0.1. Let A P Rnˆn be a symmetric matrix. Then, the following gradients hold:

(a) ∇pAxq “ A.

(b) ∇pxTAxq “ 2Ax.

(c) ∇TrpXTAXq “ 2AX.

Lemma A.0.2. Let apxq : Rn Ñ R be a differentiable real-valued function of x. Let ypxq : Rn Ñ

Rm be a differentiable vector-valued function of x. Let Bpxq : Rn Ñ Rnˆm be a differentiable matrix-

valued function of x, where the column vectors of Bpxq are represented as bipxq for i “ 1, 2, . . . ,m.

(a) Given a diagonal matrix W P Rmˆm, ∇pypxqTWypxqq “ 2∇ypxqWypxq P Rn.

(b) ∇pBpxqypxqq “
řm

i“1 yipxq∇bipxq ` ∇ypxqBpxqT P Rnˆn.

(c) ∇papxqypxqq “ ∇apxqypxqT ` apxq∇ypxq P Rnˆm.

Proof. (a) We have ypxqTWypxq “
řm

i“1wipyipxqq2 where wi is the i
th diagonal element

of W . Then, by the chain rule,

∇pypxqTWypxqq “

m
ÿ

i“1

2wiyipxq∇yipxq,

which is precisely 2∇ypxqWypxq.
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(b) We have

Bpxqypxq “

»

—

—

—

–

b11pxq ¨ ¨ ¨ b1mpxq

...
...

bn1pxq ¨ ¨ ¨ bnmpxq

fi

ffi

ffi

ffi

fl

»

—

—

—

–

y1pxq

...

ympxq

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

řm
j“1 b1jpxqyjpxq

...
řm

j“1 bnjpxqyjpxq

fi

ffi

ffi

ffi

fl

P Rn,

so that the ith column of the gradient ∇pBpxqypxqq P Rnˆn is the gradient of Bpxqypxq’s

ith element:

∇p

m
ÿ

j“1

bijpxqyjpxqq “

m
ÿ

j“1

yjpxq∇bijpxq `

m
ÿ

j“1

bijpxq∇yjpxq.

∇pBpxqypxqq can then be written as a sum of two matrices

∇pBpxqypxqq “ Bpxq ` Ypxq,

where

Bpxq :“
”

řm
j“1 yjpxq∇b1jpxq

řm
j“1 yjpxq∇b2jpxq ¨ ¨ ¨

řm
j“1 yjpxq∇bnjpxq

ı

P Rnˆn

and

Ypxq :“
”

řm
j“1 b1jpxq∇yjpxq

řm
j“1 b2jpxq∇yjpxq ¨ ¨ ¨

řm
j“1 bnjpxq∇yjpxq

ı

P Rnˆn.
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By decomposing, Bpxq is equal to the sum of m many n ˆ n matrices:

Bpxq “

”

y1pxq∇b11pxq y1pxq∇b21pxq ¨ ¨ ¨ y1pxq∇bn1pxq

ı

`

”

y2pxq∇b12pxq y2pxq∇b22pxq ¨ ¨ ¨ y2pxq∇bn2pxq

ı

` ¨ ¨ ¨ `

”

ympxq∇b1mpxq ympxq∇b2mpxq ¨ ¨ ¨ ympxq∇bnmpxq

ı

“ y1pxq

”

∇b11pxq ∇b21pxq ¨ ¨ ¨ ∇bn1pxq

ı

` y2pxq

”

∇b12pxq ∇b22pxq ¨ ¨ ¨ ∇bn2pxq

ı

` ¨ ¨ ¨ ` ympxq

”

∇b1mpxq ∇b2mpxq ¨ ¨ ¨ ∇bnmpxq

ı

“

m
ÿ

i“1

yipxq∇bipxq

where ∇bipxq is the gradient of the ith column of Bpxq.

For Ypxq, note that

∇ypxqBpxqT “

m
ÿ

j“1

∇yjpxqbjpxqT .

This indicates that the ith column of ∇ypxqBpxqT corresponds to
řm

j“1 bijpxq∇yjpxq,

which is the ith column of Ypxq. Hence, we have Ypxq “ ∇ypxqBpxqT .

(c) We have

apxqypxq “

»

—

—

—

—

—

—

—

–

apxqy1pxq

apxqy2pxq

...

apxqympxq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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so that

∇papxqypxqq “

”

∇papxqy1pxqq ¨ ¨ ¨ ∇papxqympxqq

ı

“

”

y1pxq∇apxq ` apxq∇y1pxq ¨ ¨ ¨ ympxq∇apxq ` apxq∇ympxq

ı

“

”

y1pxq∇apxq ¨ ¨ ¨ ympxq∇apxq

ı

`

”

apxq∇y1pxq ¨ ¨ ¨ apxq∇ympxq

ı

“ ∇apxqypxqT ` apxq∇ypxq.

□
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APPENDIX B

Dinkelbach’s Algorithm

Introduced in 1967, the Dinkelbach’s algorithm [37] is an approach used to solve nonlinear

fractional programmings through the utilization of a parametrization technique. It is based on the

observation that the global optimum of the nonlinear fractional programming is the unique root of

the closely related parametric function, which is defined as a nonlinear parametric programming.

Moreover, the solution of the parametric programming at the root of the parametric function

corresponds to the global optimal solution of the nonlinear fractional programming. By solving the

parametric programming, the Dinkelbach’s algorithm obtains a parameter sequence that exhibits

monotonic behavior and converges globally to the root of the parametric function.

B.1. Preliminaries

Let NpXq and DpXq be continuous and real-valued functions defined over a compact, connected

subset S Ď Rnˆp with DpXq ą 0 for all X P S. We are interested in solving the following nonlinear

fractional programming (NFP):

(NFP) max
XPS

NpXq

DpXq
.

A closely related problem to (NFP) is the following nonlinear parametric programming (NPP):

(NPP) fpqq “ max
XPS

tNpXq ´ qDpXqu , q P R.

In both (NFP) and (NPP), the functions NpXq and DpXq are continuous on the compact subset

S, and DpXq ą 0. This guarantees the existence of solutions for both problems.

Lemma B.1.1 ( [37]). For the parametric function fpqq of (NPP), the following properties hold:

(a) fpqq is a convex function over R.

(b) fpqq is a continuous function over R.
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(c) fpqq is a strictly monotonic decreasing function, i.e., fpq2q ă fpq1q if q1 ă q2.

(d) fpqq has a unique root, denoted by q˚.

(e) If q0 “
NpX0q

DpX0q
for some X0 P S, then fpq0q ě 0.

Proof. (a) Let Xt maximize (NPP) corresponding to fptq1 ` p1 ´ tqq2q with q1 ‰ q2 and

0 ď t ď 1. Then,

fptq1 ` p1 ´ tqq2q “ NpXtq ´ ptq1 ` p1 ´ tqq2qDpXtq

“ trNpXtq ´ q1DpXtqs ` p1 ´ tqrNpXtq ´ q2DpXtqs

ď tfpq1q ` p1 ´ tqfpq2q.

(b) Since f is finite and convex over an open set R, it is continuous.

(c) Let X2 maximize (NPP) corresponding to fpq2q. Then,

fpq2q “ NpX2q ´ q2DpX2q ă NpX2q ´ q1DpX2q ď fpq1q.

(d) This follows since f is continuous, monotonically decreasing, and limqÑ´8 fpqq “ 8 and

limqÑ8 fpqq “ ´8.

(e) Let q0 “
NpX0q

DpX0q
for some X0 P S. Then,

fpq0q “ max
XPS

tNpXq ´ q0DpXqu ě NpX0q ´ q0DpX0q “ 0.

□

The following theorem establishes that the global maximum of (NFP) corresponds to the root

q˚ of the parametric function fpqq. Additionally, the global maximizer of (NFP) is also the global

maximizer of the (NPP) corresponding to fpq˚q.

Theorem B.1.1 ( [37]). q˚ “
NpX˚q

DpX˚q
“ maxXPS

NpXq

DpXq
if and only if fpq˚q “ NpX˚q´q˚DpX˚q “

maxXPStNpXq ´ q˚DpXqu “ 0.

Proof. Let X˚ be the global maximizer to (NFP). Then, it holds that q˚ “
NpX˚q

DpX˚q
ě

NpXq

DpXq
for

all X P S so that

NpXq ´ q˚DpXq ď 0 for all X P S.
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Since NpX˚q ´ q˚DpX˚q “ 0, X˚ maximizes (NPP) corresponding to fpq˚q.

Conversely, let X˚ be the global maximizer of (NPP) corresponding to fpq˚q, where q˚ is the

root of fpqq. Thus, NpX˚q ´ q˚DpX˚q “ 0. Then, we have

NpXq ´ q˚DpXq ď NpX˚q ´ q˚DpX˚q “ 0 for all X P S.

Therefore, NpXq

DpXq
ď q˚ for all X P S, indicating that q˚ is the global maxima of (NFP). Moreover,

q˚ “
NpX˚q

DpX˚q
, which implies that X˚ is the global maximizer of (NFP). □

B.2. Algorithm

We introduce the Dinkelbach’s algorithm [37] for solving (NFP). The algorithm generates a

monotonically increasing sequence tqku that approaches the root q˚ of the parametric function fpqq.

The sequence is generated by iteratively solving (NPP).

Algorithm 5 Dinkelbach’s Algorithm

Input: Initial X0 P S, tolerance tol.

Output: Global maximizer X˚ of (NFP).

1: for k “ 0, 1, . . . do

2: Set qk “
NpXkq

DpXkq
.

3: Compute the global maximizer Xk`1 to fpqkq “ maxXPStNpXq ´ qkDpXqu.

4: if fpqkq ď tol then

5: return X˚ “ Xk`1.

6: end if

7: end for

The stopping criteria in line 4 of Algorithm 5 checks whether qk is the root of the parametric

function fpqq. If so, Xk`1 computed in line 3 is the global maximizer of (NFP).

We emphasize that an accurate computation of the global maximizer of (NPP) in line 3 is

crucial for the success of the Dinkelbach’s algorithm. When NpXq is concave and DpXq is convex,

concave programming methods can be employed to solve (NPP). However, it is important to note

that (NPP) can be a challenging problem in general, requiring careful consideration and specialized

techniques.
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B.2.1. Convergence proof of tqku of Algorithm 5. In the following analysis, we con-

sider Xk`1 to be accurately computed and regarded as “exact”. We show that the sequence tqku

generated by Algorithm 5 converges monotonically to q˚, the root of the parametric function fpqq.

We first show that the sequence tqku is strictly monotonically increasing, i.e., qk`1 ą qk. Here,

we assume that qk ‰ q˚ since Algorithm 5 would have converged otherwise. Then, fpqkq ą 0

according to Lemma B.1.1(e) and Lemma B.1.1(d). Consequently, we obtain

(B.1) 0 ă fpqkq “ NpXk`1q ´ qkDpXk`1q “ qk`1DpXk`1q ´ qkDpXk`1q “ pqk`1 ´ qkqDpxk`1q.

Since DpXq ą 0 for all X P S, this inequality shows that qk`1 ą qk.

For qk ‰ q˚, we have fpqkq ą 0. According to Lemma B.1.1(c), this indicates qk ă q˚. Hence,

we have a strictly monotonic increasing sequence tqku that is bounded above by q˚. Consequently,

the sequence must converge to some limit point rq. We show that rq “ q˚.

Suppose on the contrary that rq ‰ q˚ so that rq ă q˚ and fprqq ą 0. Since qk monotonically

increases towards rq, for any ϵ ą 0, there exists a large enough k such that rq ´ qk ă ϵ. Specifically,

we choose

0 ă ϵ “
fprqq

rD
ď

fprqq

DpXk`1q
,

where rD :“ maxXPS DpXq. Then, by fpqkq “ pqk`1 ´ qkqDpxk`1q from (B.1) and the fact that

fpqkq ě fprqq, we have

qk`1 “ qk `
fpqkq

DpXk`1q
ě qk `

fprqq

DpXk`1q
ě qk ` ϵ ą rq,

which contradicts the assumption that rq is the limit point of tqku. Therefore, we conclude that

rq “ q˚.
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