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Abstract. Detailed and reliable numerical modeling of laser-plasma accelera-
tors, where a short and intense laser pulse interacts with an underdense plasma
over distances of up to a meter, is a formidably challenging task. This is due to the
great disparity among the length scales involved in the modeling, ranging from the
micron scale of the laser wavelength to the meter scale of the total laser-plasma
interaction length. The use of the time-averaged ponderomotive force approxima-
tion, where the laser pulse is described by means of its envelope, enables efficient
modeling of laser-plasma accelerators by removing the need to model the details of
electron motion at the laser wavelength scale. Furthermore, it allows simulations
in cylindrical geometry which captures relevant 3D physics at 2D computational
cost. A key element of any code based on the time-averaged ponderomotive force
approximation is the laser envelope solver. In this paper we present the accurate
and efficient envelope solver used in the code INF&RNO (INtegrated Fluid &
paRticle simulatioN cOde). The features of the INF&RNO laser solver enable
an accurate description of the laser pulse evolution deep into depletion even at a
reasonably low resolution, resulting in significant computational speed-ups.

1. Introduction

Laser-plasma accelerators (LPAs) have received substantial theoretical and experimen-
tal interest because of their ability to produce large accelerating gradients, enabling
compact accelerating structures [1]. In an LPA, a short and intense laser pulse propa-
gating in an underdense plasma ponderomotively drives a plasma wave (or wakefield).
The plasma wave has a relativistic phase velocity (of the order of the driver velocity),



2

and can support large longitudinal and transverse fields suitable for accelerating and
focusing a particle bunch properly delayed with respect to the laser driver. For opti-
mal wake excitation the laser pulse length, L, has to be ~ k, ! [where k, = w,/c is the
plasma skin depth, w, = (4mnge?/m)/? is the plasma frequency for a plasma with a
density ng, m and e being, respectively, the electron mass and charge, and c is the
speed of light], and the laser intensity has to be high enough so that the peak normal-
ized laser field strength satisfies ag = eAg/mc® ~ 8.5-10710\[um](Io[W /cm?])V/2 ~ 1
(where A is the peak amplitude of the laser vector potential, Ag the laser wavelength,
typically ~ 1 pum , and Iy the laser peak intensity). The accelerating gradient in
an LPA driven by an optimal laser pulse and operating at a density ng is of order
E, ~ Ey = mewp/e x né/2 (for ng ~ 108 em=3, Ey ~ 100 GV/m, which is three
orders of magnitude higher than in conventional radio-frequency-based accelerators).
The acceleration length, Lacc, is limited by laser driver depletion or bunch dephas-
ing (i.e., the accelerating particles outrun the wake), and scales with the density as
Lace o n83/2 (for ng ~ 10'® ecm™3, Lacc is ~ cm-scale). The energy gain provided by
an LPA stage is then AW o E, X Lyce < nal. For instance, a mm-scale LPA with
no ~ 10 em~3 has produced in experiments ~ 100 MeV electron beams [2, 3, 4],
while a few cm-long LPA with ng ~ 10'® ¢cm™3 produces ~ 1 GeV beams [5]. A
meter-scale LPA with ng ~ 10'7 cm™2 is anticipated to produce 10 GeV-class beams
[1]. The rapid development and the properties of LPAs make them interesting candi-
dates for applications to future compact radiation sources [6, 7, 8, 9] and high-energy
linear colliders [10, 11, 12].

Modeling of LPAs requires self-consistently solving Maxwell’'s equations,
describing the behavior of the laser and the electromagnetic fields, coupled to the
equations of motion for the plasma [13]. The numerical modeling, in 3D, of LPAs is a
computationally challenging task. This is due to the great disparity among the length
scales involved in the simulation, ranging from the micron scale of the laser wavelength
(e.g., electron quivering in the laser field) to the total laser-plasma interaction length
that can be up to a meter for a 10 GeV LPA stage. In general, the computational
complexity of an LPA simulation scales as & (Lacc/Xo)*?. Here we assume that
the accelerator length is the pump depletion length. For instance, a conventional 3D
particle-in-cell (PIC) simulation [13] of a centimeter-scale plasma requires ~ 10¢ CPU
hours on a modern supercomputer like Edison (Cray XC30) at the National Energy
Research Scientific Computing Center (NERSC). We expect that the modeling of a
meter-long, 10 GeV-class LPA stage would require ~ 108 CPU hours, and so it is
practically unfeasible with standard numerical tools. However, extensive numerical
modeling of current and future LPAs is required since LPA physics is, in general,
highly nonlinear, and so modeling plays a central role in guiding our understanding
of such physics. Detailed and extensive simulation campaigns are also required when
designing an LPA experiment and/or when interpreting experimental results (e.g.,
exploration of parameter space to understand trends in the physics, feedback between
experiment and numerical modeling to optimize experimental results, etc.).

In order to make simulations of multi-GeV LPA stages readily available, a
reduction of the computational complexity of the problem is required. This can
be achieved, for instance, by performing simulations using reduced physics models.
Reduced models allow for a significant computational speedup compared to full PIC
simulations either because of dimensionality reduction (e.g., 2D cylindrical or quasi-
3D instead of full 3D Cartesian) or because of approximations in the description of



3

the physics of the system (e.g., quasi-static instead of fully dynamic plasma response,
fluid instead of fully kinetic, time-averaged ponderomotive approximation instead of
full Lorentz force, etc.). Even if they may lack some aspects of the LPA physics (e.g.,
a quasi-static code is unable to describe self-injection, etc.), their use has been proven
to be successful in several relevant scenarios [14, 15, 16, 17, 18, 19, 20]. Performing the
simulation using the boosted Lorentz frame technique [21] also results in a reduction
of the computational complexity of the problem if backward propagating waves (e.g.,
Raman backscattering) can be neglected.

The computational framework INF&RNO [22, 23, 24] developed at LBNL, is a
reduced code specifically designed to efficiently model LPAs and addresses the need for
extensive numerical modeling by carefully selecting the amount and type of physics to
compute. The plasma can be modeled using either a PIC or a cold fluid description,
and for both modalities a (full) time-explicit or a quasi-static description can be
employed. Both PIC and fluid modalities are integrated in the same computational
framework allowing for staged simulations (e.g., PIC-mode for injection and fluid-mode
for acceleration). The code works in 2D cylindrical (r — z) geometry (a 1D version
of the code is also available) and makes use of the time-averaged ponderomotive force
approximation to describe the interaction of the laser pulse with the plasma. The
adoption of the cylindrical geometry allows the description of key 3D physics (laser
evolution, electromagnetic field structure) at 2D computational cost. In the time-
averaged ponderomotive force approximation, the equations describing the motion of
the electrons in the fields due to the laser and the wake are analytically averaged
over the fast laser oscillations. The averaging removes the need to model the details
of electron motion at the laser wavelength scale, and this reduces the imbalance
between the physical scales involved in the modeling. In fact, in this case, the plasma
wavelength (or the laser pulse length) becomes the minimum physical spatial scale.
The analytical averaging is possible due to the time scale separation between the (fast)
laser field, characterized by the laser frequency wo = 2m¢/ Ao, and the (slow) wakefield,
characterized by the plasma frequency, w,. Typically, for laser-plasma parameters of
interest for LPAs, we have wy/wp > 1. The reduction of the computational complexity
provided by the time-averaged ponderomotive force approximation can be quantified
in~ w2/ wf, [25, 26, 27]. Within this approximation, we have that the wakefield evolves
according to Maxwell’s equations (coupled to the equations for the plasma averaged
over the fast laser oscillations), while the laser driver is decomposed into a fast phase
component and a slow (complex) envelope, and only the evolution of the envelope is
calculated [14].

In this paper, we describe the details of the INF&RNO laser-envelope solver.
Compared to other implementations of the envelope solver used in other codes
[25, 26, 27], the INF&RNO solver retains the full wave operator. Furthermore, by
using a polar representation for the complex envelope when solving the envelope
evolution equation via a finite differences scheme, the INF&RNO solver provides an
accurate description of the laser pulse evolution as it approaches depletion, even at a
reasonably low resolution. This and other features, such as, for instance, the adoption
of independent computational grids for the laser and the plasma [24], allow INF&RNO
to achieve a speedup of several orders of magnitude compared to standard full 3D PIC
simulations while still retaining physical fidelity.

This paper is structured as follows. The implementation of the INF&RNO laser
solver is described in Sec. 2. In Sec. 3 we illustrate the performance of the solver.
Discussions and conclusions are presented in Sec. 4.



2. Implementation of the advanced laser envelope solver

The code INF&RNO works in 2D cylindrical geometry, it adopts the normalized co-
moving coordinate ( = k,(z — c¢t) (where z is the longitudinal coordinate, ¢ is the
time, and k, is the plasma skin depth corresponding to chosen reference density ng) to
describe the longitudinal degree of freedom, and p = k,r as the normalized transverse
coordinate. The time is normalized according to 7 = wyt = k,ct.

The laser field is described by means of the transverse normalized vector potential
defined as a, (¢,p;7) = eAL(¢,p;7)/mc?, where A is the transverse component
of the vector potential of the laser (we assume linear polarization) from which
the high-frequency electric and magnetic laser fields can be computed. The laser
vector potential is decomposed into a fast phase and a slow envelope according
to ai(¢,p;7) = [a(C, p;7)/2] expli(ko/kp)C] + c.c. (we assume that the laser pulse
propagates towards the positive z direction), where the exponential term describes
the fast laser oscillations, and @ is the slow (complex) laser envelope. The evolution
equation for the envelope is [1]

ko O 0? 0%\ . .
where kg = 27/ is the central laser wavenumber, and x = n/(10Yp1aema) 1S the proper
density [n is the local (perturbed) electron plasma density and 7,j..m. is the relativistic
factor associated with the local plasma fluid motion, including the quiver motion in the
laser field]. In deriving Eq. (1) we neglected the contribution of a high-frequency scalar
potential term that is generally small for LPA-relevant parameters. A discussion of the
limits of validity of Eq. (1) can be found in Refs. [1] and [14]. The first term on the left
hand side (1.h.s.) of Eq. (1) describes laser diffraction, in cylindrical geometry we have
V3 =p7'9,+02. The second term sets the characteristic scale of envelope evolution,
typically 8, ~ 1/(k,Z,), where Z, is the Rayleigh length (Z, = mw /Ao for a Gaussian
laser pulse with a waist wp). For LPA-relevant parameters we have k,Z, > 1. The
third term on the L.h.s. of Eq. (1) describes variation in the local laser group velocity
and frequency as the laser propagates in the plasma. The fourth term, describing
backward propagating waves, is usually neglected in most codes that use an envelope
description for the laser [25, 26, 27|, but it is retained in the INF&RNO solver. This
term is generally small in the early stages of the laser-plasma interaction, however it
becomes important at later times when the laser is depleted [28]. The term on the
right hand side (r.h.s.) of Eq. (1) represents the envelope of the rapidly varying part
of the plasma current density driven by the laser and describes the coupling between
the plasma and the laser (i.e., self-focusing, plasma-wave guiding, etc.). In order to
solve Eq. (1) we need to know the proper density y, and this can be determined by
solving the laser envelope equation together with the equations describing the plasma
(either by using a full time-explicit or a quasi-static approach). Details on how the
plasma equations are solved in INF&RNO are described in Refs. [22] and [24]. In this
paper, for the purpose of discussing the numerical solution to Eq. (1), we will assume
that x is known at the desired location in space and time.

To perform the temporal discretization of the envelope evolution equation we
introduce the discretized time 7, = nA, (n = 0,1,---), where A, is the temporal
discretization step. We use standard centered 2nd-order finite-difference schemes
to represent the first and the second time derivatives of the laser envelope, namely
Oralr—r, = (a"*!' —a""1)/2A,, and 0%a|,—,, = (a"*t! —2a" 4+ a"~1)/A2, where
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al = a(¢, p;7 = 7). In addition, for the V2 term and for the envelope amplitude on the

r.h.s. of Eq. (1), we use the Crank-Nicolson method, namely a|,—,, — (a"Tt+a""1)/2.
The temporal discretization of Eq. (1) then reads

~n+1 ~n—1 ~n+1 ~n—1
5 (G +a _@ g a —a
n(Es) elgegl () e

dn-l-l — 24" + dn—l ndn—i-l + dn—l
B A2 X 2
T

n
)

and "~ ! we can

where x"* = x(({,p;7 = 7). By using Eq. (2), knowing a", x
determine a"t!.

To perform the spatial discretization of Eq. (2) we introduce a 2D grid of
N¢ x N, points, where N¢ [N,] is the number of grid points in the longitudinal [radial]
direction. The physical domain sampled by the computational grid is identified by
the coordinates (pip < ¢ < (max and 0 < p < pmax. The grid resolution is then
A¢ = (Cmax — Cmin)/(N¢ — 1) in the longitudinal direction and A, = pmax/(N, — 1)
in the radial direction. A generic point on the grid is identified by the two integers
(4, k), with 0 < j < Ne—1and 0 <k < N, —1, and the physical coordinates of the
point are ((j, px), with ¢ = (in + JA¢ and p = kA,

For the spatial discretization of the transverse Laplacian operator in cylindrical
symmetry, V2, we use the 2nd-order accurate expression given in Ref. [13]. For
any given function f = f((,p;7) [in our case f = (a"~! + a"*1)/2], defining
le,C = f(¢;, pu; 7 = 1), and for k # 0 (i.e., p > 0), we have

20 _ [LOF ﬁ]
Vi fl= |2+ 5 o
_ fjl',k+1 - fgl',kfl + fgl',k+1 - 2lek + le',kfl
2kA2 A2

=Ly fina+ LRFj e+ L Finrn, (3)
where [V2 f]ék is the value of the transverse Laplacian at the spatial locations
identified by (j, k) for 7 = 7, , and where L7 = (1£1/2k)/A2, and L) = —2/A2. For
k =0 (i.e., on-axis), assuming f is an even function of p [i.e., (¢, p;7) = f({, —p; T),

yielding le-ﬁl = fjl-yl], we have

o*f A(fja — fio)
[Vif]é',o = {2ﬁ] = J'Ag == 58 gl‘,0+£5rfgl',1a(4)
P~ l¢=¢;.p=0,r=n p
where £ = —4/A% and L§ = 4/A2 (for completeness, we also define L5 = 0).
We assume reflecting boundary conditions for p = pmax, which implies imposing
EEfl = 0. This is a good assumption as long as the laser is guided (confined)

and remains far from the boundary. The implementation of an absorbing boundary
condition is currently underway.

Discretization of the longitudinal derivative, 0 [second term in Eq. (2)], requires
particular care in order to design an accurate and efficient solver. In a code based on
a laser envelope model that adopts the ponderomotive approximation to describe the
laser-matter interaction, there is no need, in principle, to resolve the laser wavelength,
and the characteristic length of the pulse, L, is the smallest relevant scale of interest.
However, during propagation in the plasma, as a consequence of laser-pulse redshifting,
structures smaller than L arise in the laser envelope [27, 28, 29]. In Fig. 1 we show,
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laser envelope, a(¢)

longitudinal position, ¢

Figure 1. Evolution of the laser envelope in a 1D simulation with parameters
ao = 1.5,ko/kp = 20,L =1 [a®({,7 = 0) = a2 exp(—(¢?/2L?)]. The dashed black
lines refer to 7 = 0 and 7 = 1500. For 7 = 1500 the real (red) and imaginary
(blue) part of a are also shown.

as an illustration, the evolution of the laser envelope from 7 = 0 to 7 = 1500 in a
1D simulation with ag = 1.5,ko/k, = 20,L = 1 [we assume, initially, a laser pulse
of the form a?(¢,7 = 0) = adexp(—(¢?/2L?)]. The red and blue lines in Fig. 1
are, respectively, the lineout of the real (R[a]) and imaginary (3[a]) part of the laser
envelope for 7 = 1500. At later times during the laser-plasma interaction, the presence
of structures (oscillations) in R[a] and [a] with a characteristic length scale much
smaller than the characteristic length of the envelope (~ L) is evident. This has to be
taken into account when designing a numerical scheme for the laser envelope evolution
equation, or when choosing the longitudinal resolution to be used in the simulation. In
fact, when such small-scale structures in @ develop and are not well captured/resolved
by the computational grid (this is the case for depleted laser pulses if the longitudinal
resolution is not sufficiently high), a not optimal discrete form of the operator 9, might
introduce significant numerical errors and could prevent a correct description of the
laser evolution [27].

In INF&RNO this issue is addressed by means of a technique that involves the
polar form for the representation of the complex field a, namely a® = a exp(i6), where
a = |a| = (R[a]? + S{a]?)'/? and @ = arg(a), instead of the Cartesian representation,
a2 = R[a] + iS[a). We found that, as a function of ¢, the polar amplitude and
phase, a and 6, are reasonably well behaved and less prone to show an oscillatory
behavior and/or significant variations over small scales compared to R[a] and 3[a].
The numerical evaluation of the longitudinal derivative of the laser envelope field
using the polar form, namely [9:a]®) = 9ca exp(if) + i0:0a (instead of the Cartesian
form, [0:a]® = O:R[a] + i0;Ia]), has then some numerical advantage. This is
shown in Fig. (2), where we compare the real part of ;4 computed numerically
using the Cartesian (black) and the polar (red) representation of & using different
longitudinal resolutions. The laser envelope a is the one presented in Fig. 1 for
7 = 1500. Longitudinal derivatives are computed using a 2nd-order upwind scheme,
namely O¢ fle=¢; = (=3f;j +4fj4+1— fj+2)/2A¢. The dashed lines refer to a case where
data for @ are discretized on a longitudinal grid with a resolution A, = 0.005, high
enough so that the structures (oscillations) in G are well resolved. We see that, in this
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Figure 2. Real part of d;a computed numerically using the Cartesian (black)
and the polar (red) representation of & using different longitudinal resolutions.
The dashed lines refer to a case where data for a are discretized on a longitudinal
grid with resolution As = 0.005 (high resolution case). The dots refer to a case
with A¢ = 0.06 (low resolution case). The laser envelope & is the one presented
in Fig. 1 for 7 = 1500.

case, the value of the derivative obtained with both representations is essentially the
same. The dots refer to a case where the envelope data are discretized on a grid with
a coarse resolution (A, = 0.06) so the structures in R[a] and J[a] are poorly resolved.
We see that, even at low resolution, the value of the derivative obtained with the polar
representation (red dots) is in very good agreement with that obtained in the high
resolution case, while the derivative obtained with the Cartesian representation (black
dots) is affected by a large error.

We notice that in Eq. (2) the operator d; acts on a"~! and a"*'. To simplify
the algorithm (retrieving the phase is a time-consuming operation) we use the
phase of " in evaluating both d:a" ™! and d:a"~'. Formally, the error associated
with this approximation is of first order in A,. More specifically, denoting by
0" = 0(¢,p;7 = T1,) the function describing the phase of ", from the identity
antl = an*lexp(—if™) exp(i™) we obtain

Ant1l ~ntl_—i0" n
da — 8(& € )eiG" iaidn:tl, (5)
¢ ¢ a¢
where the terms a"*! exp(—if") and 6" are, respectively, approximate expressions for

the amplitude and phase of a"*! and, as shown beforehand, are smooth functions of
¢. Discretizing Eq. (5) using the 2nd-order upwind scheme for J; gives

|:a&n:i:1:| 7#
9 Jemtypmpe 2B¢

Ant1 ei(@;k—eyﬂyk)} LD, gt

{ —3al "t +dal] el e (6)

T G2k 3k k >

where DY) = (=307, +407,, , — 07, ;)/2A¢, and where 07} = 0((j, pr; 7 = 7).
We note that the choice of the upwind scheme to evaluate 0, has the advantage of

allowing a simple implementation of the open boundary condition in the longitudinal

direction. In fact, owing to the definition of the co-moving coordinate, for { > (max
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(i.e., ahead of the laser driver) we can assume that all the laser-related quantities
are zero. This can be easily implemented in the algorithm by adding two layers of
“ghost” grid points to the right of the ( = (max boundary at a longitudinal location
corresponding to j = N¢ and j = N + 1 (i.e., on the front of the computational
domain), such that dé\,@k = lequLk = 0, for any k£ and [. On the other hand, for
¢ = (min-» the evolution of the laser envelope in the points with j = 0 is determined
by the status of the system in the points with j = 1 and j = 2, which are within the
computational domain, and no other information or condition is required.

The INF&RNO envelope solver is obtained by combining the expressions given
by Egs. (2, 3, 4, 6), we have

Ly 1 o+ Xik An—i-l Ly Gt
T |-G ponat s Sah= 0
2 ~n
A2 Dk
‘C; ~n—1 0,— Xnk i n An—1 Lz An—1
-t - TN oot - S
2€i(0j’k_9j+l’k) [dn+1 _ d'n,fl ]
AA; Gk~ Gk
" PUCHI IR [dﬂ"‘l e ]
ATAC 7+2,k J+2,kD
where
£kl 3 1 1
o s 1L 8
FT D TR A, T2A A, A2 ()

Once aj . Yand a ay), are specified (initial condition), the values of a”Jr1 are determined

by solvmg recursively Eq. (7) starting at the front of the computatlonal domain
(j = N¢ —1). The solution at the longitudinal location j relies on the knowledge
of the solution in j + 1 and j + 2. For any j, the values of the envelope in the N,
transverse points are obtained by solving a tridiagonal system. We recall that this
solver, being based on a Crank-Nicolson scheme, is unconditionally stable, i.e., there
is no Courant-Friedrichs-Lewy condition restricting the time step A,. The choice of
A is only dictated by the physics of the problem being modeled. We presented a
derivation of the scheme in 2D Cylindrical geometry, however, extension to 2D/3D
Cartesian geometry is straightforward. (In particular, in 3D Cartesian geometry the
structure of the algorithm remains essentially the same as described in this paper with
the tridiagonal solver replaced by a 2D Poisson solver.) A 1D version of the solver can
be easily obtained from Eq. (7) taking £ = LY =0fork=0,1,---,N, — 1.

3. Performance of the INF&RNO solver

An example (in 1D) of the performance of the laser envelope solver implemented in
INF&RNO is shown in Figs. 3 and 4. We consider an LPA stage with parameters
ap = 1, k,L = 1 [the initial laser profile is a®(¢,7 = 0) = a3 exp(—¢?/2L?)], and
ko/kp = 100. The LPA length is Lacc ~ 0.7 m. These parameters are of interest for
a 10 GeV-class LPA stage. The proper density, required to solve the laser envelope
equation, was evaluated using the quasi-static 1D fluid theory [1].
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Figure 3. Evolution of the peak laser envelope as a function of the propagation
distance, @peax(7), computed with different laser solvers. The laser-plasma
parameters are ap = 1, L = 1 and ko/kp = 100. The dashed blue line is obtained
with the high-order explicit PIC code ALaDyn at high resolution (40 points per
laser wavelength), and can be considered exact for practical purposes. The black
curves are the results obtained with an envelope solver that does not use the
polar representation in evaluating the longitudinal derivatives of the laser envelope
(Cartesian-based solver). The resolutions considered are L/A¢ = 30,50, 100, 500
(with Ar =1). The red curves refer to the results obtained with the INF&RNO
solver Eq. (7) (polar-based solver) for L/A¢ = 30,50, 100, and A = 1.

In Fig. 3 we plot the evolution of the peak laser envelope as a function of
the propagation distance, @,..(7), computed with different laser solvers and with
different spatial resolutions. The blue dashed line is the result obtained with the
high-order explicit PIC code ALaDyn [30] at high resolution (40 points per laser
wavelength), and can be considered exact for practical purposes (convergence verified).
The black curves refer to results obtained with an envelope solver that does not
use the polar representation in evaluating the longitudinal derivatives of the laser
envelope (i.e., Cartesian-based solver). Different resolutions are considered, namely
L/A: = 30,50,100,500, and A; =1 (see figure for details). We see that this scheme
exhibits a slow convergence rate, requiring at least a resolution L/As ~ 500 to obtain a
correct laser evolution in the late stages of the laser-plasma interaction when the laser
driver is depleted. The red curves refer to the results obtained with the INF&RNO
solver Eq. (7) (i.e., polar-based solver) for L/A¢ = 30, 50,100, and A, =1 (see figure
for details). The optimized INF&RNO solver shows a much faster convergence rate
compared to the previous case, and convergence is essentially reached for L/A¢ ~ 50.

In Fig. 4 we plot the longitudinal lineout of the laser envelope, |a(¢)|, for two
propagation distances corresponding to 7/Lscc = 0.63 (a) and 7/Lgec = 0.91 (b).
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Figure 4. Longitudinal lineout of the laser envelope, |a(¢)|, plotted for a
propagation distance of 7/Lgce = 0.63 (a) and 7/Lace = 0.91 (b), computed
with different laser solvers. The laser-plasma parameters are ag = 1, L = 1 and
ko/kp = 100. The dashed blue line is obtained with the high-order explicit PIC
code ALaDyn at high resolution (40 points per laser wavelength). The black
curves are the results obtained with a Cartesian-based solver. The resolutions
considered are L/A; = 50,100,500 (with Ar = 1). The red curve refers to
the result obtained with the INF&RNO (polar-based) solver Eq. (7) (polar-based
solver) for L/A; =50, and A, = 1.

Different plots refer to calculations performed, as before, with different laser solvers
and with different spatial resolutions. The blu dashed line is the result obtained with
the PIC code ALaDyn at high resolution. The black curves refer to results obtained
with a Cartesian-based envelope solver. Different resolutions are considered, namely
L/A: = 50,100,500, and A, =1 (see figure for details). The red squares refer to the
results obtained with the INF&RNO solver Eq. (7) for L/A¢ = 50, and A, = 1. With
the INF&RNO solver convergence of the laser envelope profile to the correct shape
is achieved for L/A; ~ 50, even when strongly depleted laser stages are considered,
while a much higher resolution is required with a Cartesian-based solver.

The INF&RNO solver allows to obtain speed-ups of one order of magnitude
compared to solvers that do not use the polar representation to evaluate the
longitudinal derivatives of the laser envelope. This computational gain is obtained
also in the 2D cylindrical case.

4. Discussion and conclusion

In this paper we presented the details of the accurate and efficient laser envelope solver
implemented in the code INF&RNO. The solver, based on an implicit Crank-Nicolson
scheme, retains the full wave operator in the envelope evolution equation, and adopts a
polar representation in evaluating the longitudinal derivative of the laser envelope. We
showed that the INF&RNO solver provides an accurate description of the laser pulse
evolution deep into depletion, even at a reasonably low resolution, allowing for the full
exploitation of the computational gains provided by the time-averaged ponderomotive
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approximation. The current implementation of the envelope solver works in 1D and
2D-cylindrical geometry. Extension to 2D/3D Cartesian geometry is straightforward.

The envelope solver is a key component of the INF&RNO computational
framework. The unique properties of the solver, together with other features of the
code such as, for instance, the adoption of independent computational grids for the
laser and the plasma, allow INF&RNO to achieve a speedup of several orders of
magnitude (from 2 to 6 orders, depending on the particular problem considered)
compared to standard explicit 3D PIC codes while still retaining physical fidelity.
INF&RNO enables efficient and abundant modeling of multi-GeV LPAs in a reasonable
time (a few hours/days) and on small computer clusters.
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