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Abstract

The axial bodyplan of Drosophila melanogaster is determined during a process called morphogenesis. Shortly after
fertilization, maternal bicoid mRNA is translated into Bicoid (Bcd). This protein establishes a spatially graded morphogen
distribution along the anterior-posterior (AP) axis of the embryo. Bcd initiates AP axis determination by triggering ex-
pression of gap genes that subsequently regulate each other’s expression to form a precisely controlled spatial distribution
of gene products. Reaction-diffusion models of gap gene expression on a 1D domain have previously been used to infer
complex genetic regulatory network (GRN) interactions by optimizing model parameters with respect to 1D gap gene
expression data. Here we construct a finite element reaction-diffusion model with a realistic 3D geometry fit to full 3D gap
gene expression data. Though gap gene products exhibit dorsal-ventral asymmetries, we discover that previously inferred
gap GRNs yield qualitatively correct AP distributions on the 3D domain only when DV-symmetric initial conditions are
employed. Model patterning loses qualitative agreement with experimental data when we incorporate a realistic DV-
asymmetric distribution of Bcd. Further, we find that geometry alone is insufficient to account for DV-asymmetries in the
final gap gene distribution. Additional GRN optimization confirms that the 3D model remains sensitive to GRN parameter
perturbations. Finally, we find that incorporation of 3D data in simulation and optimization does not constrain the search
space or improve optimization results.
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Introduction

Embryonic development in Drosophila melanogaster is initiated

with the formation of spatial morphogen distributions in the early

embryo. The dynamic spatial patterns of diffusive morphogens

encode information which specifies organism-scale development

[1,2]. Nonuniform initial spatial distributions of maternally depo-

sited morphogen mRNAs, coupled with diffusion, decay, and com-

plex genetic regulatory interactions, give rise to finer patterns that

subdivide the dorsal-ventral (DV) [3–5] and anterior-posterior

(AP) axes [2,6] into distinct developmental regions.

The gap gene system is one of the most widely studied mor-

phogen systems in Drosophila and is involved in delineation of

boundaries of gene expression within the AP body plan [2]. AP

patterning events begin approximately one hour post-fertilization.

This patterning foreshadows the subsequent segmentation of the

embryo [1,2,6–9]. During early development, the embryo is a

polynucleated syncytium; most nuclei are arrayed in a thin layer

near the surface of the embryo. Due in part to a cytoplasmic

viscosity gradient common to insect embryos [10], morphogens

(here, gap gene products) are thought to diffuse freely through

periplasm near the embryonic surface and less substantially

through the interior. Here, they regulate transcription within the

periplasmic nuclei [2]. The process is initiated by the gene

products of maternally-deposited, spatially-heterogeneous bicoid

(Bcd), caudal (Cad), and nanos mRNAs [2,11,12]. Maternally

deposited RNA species regulate expression of the gap genes: Hun-

chback (Hb, with a maternal mRNA contribution), Giant (Gt),

Tailless (Tll), Krüppel (Kr), and Knirps (Kni) (see Fig. 1a)

[11,13,14]. The gap genes, in turn, regulate the pair-rule genes

which in turn control segment-polarity genes and embryonic

segmentation [1,2,6,15].

Most inferences regarding the gap genetic regulatory network

(GRN) have been drawn from mutant and gene dosage studies in

which the effects on morphology, gap, pair-rule, or segment

polarity genes are observed [12,16–36]. While these experiments

are informative, it is difficult to unambiguously derive genetic

regulatory interactions from such data; phenotypic changes may

arise via direct action of the perturbed gene or via downstream

targets of that gene. In contrast, Reinitz, Jaeger, and others app-

lied a reverse engineering approach using dynamic wild-type data.

Computational studies have modeled gap gene patterning using

1D partial differential equation (PDE) systems or ordinary differ-

ential equation systems that include an implicit approximation to

the PDE [13,14,37–40] and logical rule sets [41]. These models

represent the lateral trunk region of the Drosophila embryo along

the AP axis, typically omitting the anterior and posterior end

regions (with the exception of [40]). GRN topology is represented

by a regulatory weight matrix and gene expression is modeled by

a transfer function that sums the regulatory impact of each

PLoS ONE | www.plosone.org 1 November 2011 | Volume 6 | Issue 11 | e26797



regulatory protein on expression of the others (see Fig. 1b) [13].

Model-driven inferences about GRN topology (i.e., inferring

whether and to what degree one morphogen regulates expression

of other morphogens) have been obtained by inverse modeling:

optimizing the regulatory weight matrix against experimental gap

gene expression data in hopes of recovering ‘‘true’’ GRNs [14,42–

45]. Findings have been mixed. Biological systems are thought to

be robust (and thus insensitive) to perturbations. Some GRN

parameters are highly sensitive while considerable uncertainty is

associated with others [44,45].

Previous 1D PDE models have been used effectively to infer

network topology and investigate patterning regulation [13,14,42,

45,46], but there are some questions that are better investigated

using a full 3D spatial patterning model. Many important 3D

effects, including variable diffusive path lengths around the em-

bryo surface and optimization against 3D data, cannot be ob-

served in a 1D model domain. DV asymmetries in gap gene

distribution and possible interactions between the gap gene system

and DV patterning systems are also neglected. Further, these 3D

data may serve to constrain GRN optimization and inference.

Quantitative spatiotemporal atlases of gene expression data in the

Drosophila embryo have been published and provide the starting

point for quantitative analysis. [47–49]. The atlas includes measure-

ment of gap gene expression collected from hundreds of individual

embryos and registered onto a standardized 3D mesh of nuclei

coordinates using pair-rule gene expression patterns as fiduciary

points (mesh coordinates available in File S1). This composite

VirtualEmbryo (VE) is a logical starting point for the development of

3D embryonic GRN models. It provides a ready-made embryonic

geometry for full spatial PDE representations of the gap gene system.

It also contains quantitative expression data against which we can

optimize model parameters (and thus infer GRNs).

Using the VE data, we evaluate the impact of 1D model assum-

ptions, conversion from 1D to 3D geometries, and incorporation

of fully 3D protein distribution data in model simulation. Herein

we reconstruct the 1D gap gene model of Jaeger et al. [13] using

the finite element method (FEM) and extend it to the 3D VE

geometry (Fig. S1). The 1D model of Jaeger et al. [13], M1D{P

(see Table 1 for model definitions), is refit to lateral expression data

from the VE. We then extend the 1D model PDEs to the full 3D

embryonic geometry described by Fowlkes et al. and compare

GRNs inferred from 1D and 3D models. Though 1D models focus

on the lateral AP axis in 1D simulations, gap genes are not uni-

formly distributed along the DV axis. Coupled with the 3D

geometry, DV asymmetries in initial conditions may encode posi-

tional information partially responsible for the observed AP

patterning. As a preliminary exploration of asymmetric DV effects

in an embryonic geometry, we evaluate the model using DV-

asymmetric Bcd concentration data from thirteen embryos com-

piled in the VE.

In addition to GRN sensitivities highlighted by previous 1D

analyses [14,38,39,44,50], we find that the 3D model exhibits

fragility with respect to the shape of maternal gradients: GRNs

which were inferred by optimization of 1D models showed similar

gap gene patterning when applied to 3D models with DV-

symmetric Bcd. However, these GRNs gave rise to qualitatively

different patterns in DV-asymmetric models. These realistic Bcd

gradient models also captured some of the DV-asymmetries in gap

Figure 1. Gap gene genetic regulatory network. The model representation of the gap gene network. The network topology in (A) represents
negative (black box, flat line) and positive (white box, arrowhead line) regulatory effects on each target gene (blue). Dashed lines represent near-zero
regulatory inputs that may be negligible. This qualitative topology is quantified in (B) as a set of genetic regulatory network (GRN) weight parameters
wb,a, the influence of gene b on gene a. From left to right, each set of seven inputs represent Cad, Gt, Hb, Kni, Kr, Tll, and Bcd. Each cluster of seven
interactions represents a target gene Cad, Gt, Hb, Kni, Kr, and Tll.
doi:10.1371/journal.pone.0026797.g001

Gap Gene Regulation in a 3D Model of Drosophila
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gene patterning. The 3D models were also sensitive to small

perturbations in GRNs; regulatory networks which were qualita-

tively similar (i.e., all network interactions maintained the same

excitatory or inhibitory relationships and differed only by small

changes in magnitude) led to qualitatively different gap gene

patterns. Refitting of the DV-asymmetric 3D model to VE data

produced a GRN which was similar to 1D GRNs but which

produced an improved fit.

Another question addressed in this study is whether inclusion of

3D data improves optimization by the inclusion of additional

constraints without increasing the degrees of freedom in the

model. Unexpectedly, we found that the incorporation of addi-

tional 3D information in the form of a realistic DV-asymmetric

Bcd worsened the error between optimized 3D models and data.

This suggests the involvement of additional regulators in the

formation of DV-asymmetries and indicates a direction for future

modeling studies.

Results

One-Dimensional Model Analysis
Before analyzing the effects of embryonic geometry and DV-

asymmetric positional information, we reimplemented the 1D

model of Jaeger et al. using the finite element method. In this work

we denote model variants with M; superscripts represent model

domains and subscripts signify initial conditions if multiple initial

conditions are used. The 1D model of Jaeger et al. is called M1D{P

(using a 1D domain representing a partial AP length of 35%–92%;

full model nomenclature available in Table 1). We verified

M1D{P against Jaeger et al. ’s simulated output. Whereas the

original model limited gene expression to a finite number of

discrete nuclear coordinates along the 35–92% region of the

embryonic AP axis, the FEM approximates a continuous solution

to these equations along this domain. Discrete versus continuous

model comparisons by Gursky et al. suggest that embryonic

patterning is not strongly coupled to nuclear position and that

continuous models are comparable to discrete models of gene

expression [51]. Our results agree with this finding. FEM

simulations produce model output comparable to Jaeger et al. ’s

discrete 1D model (Fig. 2a, dashed line, cf. Figure S20 in [13]).

Though M1D{P recapitulated previous results when simulated

in the region from 35–92% on the AP axis, we sought to determine

whether moving the boundaries to the embryo ends perturbed gap

gene patterning in the trunk region. It is unclear a priori how

modification of boundary conditions might impact the model

output, because the selection of boundaries at 35% and 92% in

earlier work appears to coincide with either maxima or minima of

gap gene distributions; at these positions, spatial derivatives are

near zero and diffusive flux may be negligible. Using no-flux

boundaries at 0% and 100% EL, coupled with the parameters and

initial conditions specified in the original model [13], we evaluated

M1D{P and M1D{F using the GRN parameters P0 reported by

Jaeger et al. [13]. Herein, parameter sets are denoted P and

super- and subscripts have model-specific meanings. The simulat-

ed patterns from the original 35–92% AP and the 0–100% AP

domains are shown in Figure 2a’s dashed and solid lines,

respectively.

Pronounced shifts in Tll and Kr distributions, coupled with the

qualitative change in the anterior Gt distribution, demonstrate the

role boundary conditions play in the in the distribution of gap gen

products for a given set of parameters. Though the output of

M1D{P qualitatively resembles the expression data collected

previously when evaluated at P0 [13], these findings suggest that

M1D{P’s agreement with data arises from a combination of the

inferred GRN and the domain’s boundary conditions. Thus, the

internal zero-flux boundary conditions used in previous models may

bias GRN inference. To evaluate the impact of boundary placement

on GRN inference, we performed a numerical gradient descent

search of the parameter space to minimize the root mean squared

error (RMSE) between M1D{F and M1D{P (represented by the

dashed line in Figure 2a). The search was initialized with the

previously reported optimal P0. The result of this search, optimized

GRN P1D{F
1D{P (superscript denotes the model being optimized and

subscript denotes data with which the model is optimized), is

illustrated in Figure 2b. Here, the output of M1D{P represents

extant models’ with internal no-flux boundaries.

Though domain boundary placement affects the banding pa-

ttern, Figure 2b suggests that these constraints have a limited

effect on GRN inference. Optimizing the GRN parameters of

M1D{F to fit the original model output recovered a quantitatively

similar patterning within the 35–92% AP length of the full 1D

domain. Additionally, the optimized GRN P1D{F
1D{P was qualita-

tively similar to P0 (e.g., though optimized parameters underwent

small changes in magnitude, all parameters maintained the same

sign, Fig. 2e).

To facilitate a direct comparison between 1D and 3D models

presented herein, we first evaluated the goodness-of-fit between

the 35–92% AP (M1D{P) and full AP domain (M1D{F ) 1D

Table 1. Model Variants and Corresponding Optimal Parameter Sets.

Model Geometry Initial Conditions Optimal GRN Parameters* (MModel
Data )

M1D{P 1D domain representing
partial 35%–92% AP axis

Gt0 = Kni0 = Kr0 = Tll0 = 0; BcdSS, Hb0, Cad0 values
in Jaeger et al. [13]

N/A (evaluated with Jaeger et al.’s

reported GRN, P0)

M1D{F 1D domain representing
full 0%–100% AP axis

Gt0 = Kni0 = Kr0 = Tll0 = 0; BcdSS, Hb0, Cad0 values
in Jaeger et al.

P1D{F
1D{P (fit to Jaeger’s model output);

P1D{F
VE (fit to VirtualEmbryo data)

M3D
Bcd1D

VE 3D domain Gt0 = Kni0 = Kr0 = Tll0 = 0; BcdSS, Hb0, Cad0 values
in Jaeger et al. projected about AP axis (see Fig. 3b–d)

P3D
Bcd1D (evaluated with GRN P1D{F

VE )

M3D
Bcd3D

VE 3D domain Gt0 = Kni0 = Kr0 = Tll0 = 0 Hb0, Cad0 values in Jaeger
et al. projected about AP axis. BcdSS interpolated
from VE data (Fig. 3e).

P3D
Bcd3D (evaluated with GRN P1D{F

VE )

M3D
Bcd3D{S

VE 3D domain Gt0 = Kni0 = Kr0 = Tll0 = 0; Hb0, Cad0 values in Jaeger
et al. projected about AP axis. [Bcd]SS interpolated
from VE data and smoothed (Fig. 3f).

P3D
Bcd3D{S

*optimized by fitting model output to Virtual Embryo data unless otherwise noted.
doi:10.1371/journal.pone.0026797.t001

Gap Gene Regulation in a 3D Model of Drosophila
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models using VE data. When possible, we use protein expression

data from the VE: Gt, Hb, Kni, and Kr protein data is available

across six equidistant time points spanning 50 minutes. Tll protein

data is unavailable and we use Tll mRNA data as a surrogate for

the protein distributions. Cad protein distributions are also un-

available in the VE; we substitute 1D Cad data from Jaeger et al.

[13] that spans 45 minutes with seven time points. Because the 1D

model domains represent the lateral region of the full embryo, we

extracted expression data from this region of the VE (Fig. 2c). We

performed a constrained search of GRN parameters initialized at

P1D{F
1D{P to yield an optimized GRN P1D{F

VE (subscript VE denotes

VE training data). The resulting model output and a comparison

of model parameters are shown in Figures 2d–e.

Though M1D{F was capable of recovering the output of

M1D{P (with parameter set P1D{F
1D{P ) and VE data (P1D{F

VE ) within

the 35–92% AP axis, poor fit to VE data persisted outside of this

region. The 0–35% and 92–100% AP regions exhibit qualitative

disagreement with VE data in these regions consistent with the

biological requirement for additional head and tail patterning

genes (Fig. 2c–d).

Three-Dimensional Model Analysis
Beginning with the GRN optimized on the full 1D domain, we

extended the model to a 3D domain using the geometry in the VE.

This was performed by implementing the system of PDEs on a 2D

surface ‘‘wrapped’’ around the VE geometry. We used this model to

evaluate the effects of both model geometry and DV-asymmetric

initial conditions on model output.

To assess the effects of model geometry on patterning inde-

pendent of initial conditions, the model was first simulated using

DV-symmetric initial conditions (M3D
Bcd1D): Bcd, Hb, and Cad

distributions at time zero were obtained from the original 1D mo-

del and projected around the surface of the embryo (Fig. 3a–d).

Evaluated at the previously inferred optimal 1D GRN (P1D{F
VE ),

Figure 2. One-dimensional model results. Model output was simulated over a 0–100% AP length domain using the optimal GRN reported by
Jaeger et al. Solid vertical lines represent the original model boundaries, not used in this simulation. (A) M1D{F (solid lines) shows qualitative
agreement with the Jaeger model M1D{P (dashed lines) in the 35–92% AP range, but shows discrepancies at either end of the domain due to the
movement of boundaries; all species displayed at t = 70 min. (B) The best-fit GRN from Jaeger et al. was locally optimized to improve the agreement
of the 0–100% AP length, model M1D{F (solid lines), and the original Jaeger et al. original model (M1D{P dashed lines); all species displayed at
t = 70 min. (C) VE protein data for Gt, Hb, Kni, Kr at t = 70 min; VE mRNA data for Tll at t = 70 min; protein data from Jaeger et al. for Cad at t = 56 min.
(D) Model output (M1D{F ) was also optimized against VE data (RMSE = 13.992); Gt, Hb, Kni, Kr, Tll at t = 70 min; Cad at t = 56 min. Despite modest
improvements in model agreement in the 35% and 92% region (C–D), the resulting changes in parameter values were small. (E) Optimized
parameter magnitudes vary but signs remained the same in most cases (blue - P0 ; green - P1D{F

1D{P ; red - P1D{F
VE ).

doi:10.1371/journal.pone.0026797.g002

Gap Gene Regulation in a 3D Model of Drosophila
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model M3D
Bcd1D yielded patterning qualitatively similar to the full

length 1D model output (Fig. 4a–g, column 2). To confirm our

derivation of the diffusion constants (see Methods) and rule out

unintentional adjustment of the diffusive length constant (
ffiffiffiffiffiffiffiffiffi
Da=la

p
),

we performed a continuation of diffusion constants while holding

decay parameters (la) values constant (Figs. S2, S3). While band

overlap does vary with diffusion constants, they are quantitatively

similar. Interestingly, symmetric Bcd models appear robust against

increased diffusion (Fig. S2) while increased diffusion disrupted

patterning in asymmetric Bcd models (Fig. S3). The pattern

formation timecourse for Bcd-symmetric patterning is animated in

Movies S1, S2, S3, S4, S5, S6.

Though there are some DV-asymmetries present in the output

(e.g., slight curvature of the anterior Gt stripe), 1D versus 3D

domain geometry alone has only a modest impact on DV

patterning of gap genes. This suggests that the pronounced DV-

asymmetries present in the final distributions of the proteins at

the onset of nuclear division 14 (Fig. 4, column 1) stem from

other sources. We consider the effect of spatial information

encoded in initial DV asymmetries of protein distributions. The

coupling of gap gene regulation with DV-patterning systems

[5,52,53] is another possibility.

Effect of Dorsal-Ventral Asymmetric Bcd
To evaluate the impact of DV-asymmetric inputs on the model,

we modified the steady-state Bcd distribution shown in Figure 3b
to incorporate a realistic DV gradient (Fig. 3e). Unlike other

morphogens, the Bcd distribution is static over the entire time course

of model simulation. This allowed us to create a single interpolant of

VE Bcd data and use it as a model input for all 70 minutes of the

simulation. The pattern formation timecourse for Bcd-asymmetric

patterning is animated in Movies S7, S8, S9, S10, S11, S12.

Evaluated at the optimal 1D GRN P1D{F
VE , model M3D

Bcd1D

produces patterning that is radically different from DV-symmetric

1D (M1D{F ) and 3D (M3D
Bcd1D) models (Figs. 4a–g, column 3).

The most striking example of this is the Kr model output; whereas

Kr forms a full band in vivo, M3D
Bcd3D lacks full lateral expression of

Kr and has an anomalous region of expression at the anterior end

of the embryo (Fig. 4f, column 3). Similarly, the simulated Hb

concentrations remain above observed levels (Fig. 4d, column
3). The posterior Hb band also shifts to the posterior end of the

embryo. Gt exhibits qualitative disagreement with the VE data;

whereas anterior Gt expression is observed only in a limited dorsal

region of the embryo (Fig. 4c, column 1), the anterior of the

M3D
Bcd3D is saturated with Gt (Fig. 4c, column 3). Further, though

Figure 3. 1D and 3D initial conditions. Initial conditions in various models. (A) 1D model initial conditions, reported by Jaeger et al., and used in
models M1D{P and M1D{F . (B) 1D initial conditions were mapped onto the 3D embryonic geometry (M3D

Bcd1D). (C), 1D initial Cad protein
distribution, (D) 1D initial Hb protein distribution. Subsequent models incorporated (E) DV-asymmetric interpolated [Bcd] distribution (M3D

Bcd3D) or (F)
smoothed DV-asymmetric interpolated [Bcd] distribution (M3D

Bcd3D{S ).
doi:10.1371/journal.pone.0026797.g003

Gap Gene Regulation in a 3D Model of Drosophila

PLoS ONE | www.plosone.org 5 November 2011 | Volume 6 | Issue 11 | e26797



the experimentally observed posterior Gt band (Fig. 4c, column
1) is predicted by simulation, it exhibits unusual differences in

width along the DV axis. As in previous versions of the model, the

best agreement between model and data was found in the lateral

35–92% AP region (Fig. 4b–g, column 3 white boxes).

The cell-to-cell variability in patterning found for many simu-

lated proteins (e.g., Gt, Cad, and Kni) in M3D
Bcd3D led us to consider

the effect of noise in the VE Bcd distribution. Diffusion of Bcd may

serve to smooth this variation in vivo; our use of a single static Bcd

interpolant in M3D
Bcd3D leads to an artificial persistence of the noise

found in VE data (Fig. 3e). To test for and remove this artificial

condition, we created a regularized version of the Bcd interpolant

(Fig. 3f). This was constructed by building a simple source

diffusion decay (SDD) reaction-diffusion model of Bcd alone [18].

This SDD model was fit to VE data and the steady-state solution

was used as the smoothed Bcd interpolant. The model incor-

porating regularized Bcd, M3D
Bcd3D{S , did not show significant

improvement over M3D
Bcd3D when evaluated with P1D{F

VE (Fig. 4 a–
g, column 4). However, it did eliminate the cell-to-cell variability

present in M3D
Bcd3D. The model’s artificial sensitivity to Bcd noise

was especially evident in Gt (Fig. 4c, columns 3–4). Two

anterior and one posterior Gt bands in M3D
Bcd3D changed width

and AP position after smoothing of Bcd. This result suggests that

while diffusion may serve as a buffer against transient stochastic

variations in protein expression and local concentration (in agree-

ment with stochastic simulation [54]), sustained cell-to-cell vari-

ability has the potential to disrupt patterning.

Having observed that a GRN inferred on the 1D domain (and

lacking DV asymmetries) produces a qualitatively incorrect fit

compared to 3D data, we attempted to optimize the GRN with

Matlab’s constrained search function fmincon() initialized at

P1D{F
VE (previously used to estimate P1D{F

1D{P and P1D{F
VE ). This

approach failed to reduce model error. Fomekong-Nanfack et al.

demonstrated that 1D gap gene systems are amenable to opti-

mization by evolutionary algorithms [45]. We therefore employed a

genetic algorithm (GA) to more broadly survey the parame-

ter space. Do to computational cost, we used a small population size

of 20 genomes to search the GRN parameter space (42 parameters),

the GA identified an optimal GRN for M3D
Bcd3D{S . The resulting

GRN, P3D
Bcd3D{S , led to a reduction in model error and a modest

qualitative improvement with respect to 3D data (Fig. 4, column
5). The lateral Kr band missing from the 1D-inferred GRN P1D{F

VE

(Fig. 4f, columns 3–4) is restored (Fig. 4f, column 5), though it

is not as wide as the experimentally observed band. Tll no longer

shows relative over-expression at the posterior end of the embryo

(Fig. 4g, column 5). Hb continues to exhibit relative over-

expression at the anterior end of the embryo, though its posterior

band is shifted closer to its correct position (Fig. 4d, column 5).

Similarly, the anterior distribution of Gt extends beyond the dorsal

region observed in the VE (Fig. 4c, column 1). However, its

posterior band is now located correctly in Figure 4c, column 5
(though it is wider than the observed protein band). Beyond

differences in concentration of individual proteins, DV-asymmetric

Bcd causes a notable qualitative difference in the AP position and

emergence of protein bands. Compared to the M3D
Bcd1D (Fig. 4,

column 2), the DV-asymmetric GRNs (Fig. 4, columns 4–5)

exhibit DV-asymmetries in their output. For example, the dorsal

terminus of the anterior Gt band is posterior to its ventral terminus;

it is splayed toward the anterior. This behavior agrees with observed

data in the anterior half of the embryo, but the expected DV

curvature is either absent (posterior Hb Fig. 4d, column 5) or

inverted in the posterior half of the embryo. For example, Kni,

Figure 4. Three-dimensional model results. Simulation results in the 3D model. (A–H) Lateral view of VE geometry is shown in rows A–G (Gt,
Hb, Kni, Kr, Tll at t = 70 min, Cad at t = 56 min); row H displays RMSE difference between model and VE data summed with all time points. Column 1
shows scaled VE data. Column 2 displays output from M3D

Bcd1D evaluated with GRN P1D{F
VE . Column 3 contains output from M3D

Bcd3D incorporating DV-
asymmetric Bcd data and GRN P1D{F

VE ; Column 4 illustrates the effect of the smoothed Bcd interpolant in M3D
Bcd3D{S while considering the same GRN

P1D{F
VE . Column 5 displays output from M3D

Bcd3D{S with reoptimized parameters P3D
Bcd3D{S . White boxes indicate the lateral areas where Jaeger et al.

optimized their 1D model. Animations of pattern development are available for column 2 (M3D
Bcd1D , Movies S1, S2, S3, S4 S5, S6) and column 5

(M3D
Bcd3D{S , Movies S7, S8, S9, S10, S11, S12) in the supplementary material.

doi:10.1371/journal.pone.0026797.g004
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whose dorsal terminus should exhibit posterior-splaying (Fig. 4e,
column 5), is inverted. This DV curvature corresponds in direction

to the DV asymmetry of Bcd. The absence of reversed splaying in

the output in the posterior portion of the model (though present in

the data) suggests that the model may be lacking additional posterior

determinant(s) affecting the gap gene system.

In the 3D regime, M3D
Bcd3D{S demonstrated considerable sensitivity

to small changes in GRN parameter values. The model was simulated

after adding normally distributed noise scaled by each parameter

value, pi, across a range of magnitudes (sample model output in

Fig. 5). The model gives output qualitatively similar to the optimal

GRN P3D
Bcd3D{S only when parameter noise is low (e.g., 0.1% pi in

Fig. 5, column 1). All other simulations, with noise terms of 1%pi

and higher, yielded drastically and qualitatively different outputs.

>In summary, the GRNs we inferred in this study are quali-

tatively similar: magnitudes of parameters vary by approximately

10% and parameter sign stays the same in all but a few low-

magnitude parameters (see Table S1). A notable exception is the

regulatory parameter for the KniRTll interaction; here the sign of

the parameter (and thus the regulatory relationship) is reversed.

However, we acknowledge that the treatment of Tll as a state

variable under gap gene regulation is artificial and this biological

relevance of this observation is questionable. Optimization leaves

most regulatory parameters with the same sign and changes only the

magnitudes, and those regulatory weights which change sign have

small magnitudes (i.e., small regulatory effects). The use of a global

search method (GA) to optimize M3D
Bcd3D{S did not recover a

superior GRN that differed qualitatively from the original P0.

Discussion
The understanding of Drosophila developmental gene regulation

has benefited from advances in quantitative modeling of gene

regulation. However, existing PDE models of AP patterning have

been limited to 1D approximations of the 3D geometry. By ex-

tending a model of gap gene regulation to a 3D embryonic geo-

metry and adding realistic DV-asymmetry to upstream maternal

Bcd, this work allows us to pose new questions about the effects of

embryonic shape and DV gradients on gap gene patterning. Jaeger

et al. ’s 2004 model has been succeeded by more recent models of

gap gene development incorporating additional regulatory inputs

[37–39,46,55–58]. However, recent models of AP patterning

retain partial domains (e.g., 35%–92% AP) with internal no-flux

boundary conditions and use regulatory schema similar to eqns
1–3 (see Methods) to represent GRNs. We chose the Jaeger et al.

’s 2004 model as a case study in 1D vs. 3D modeling because it is

the representative of many existing 1D models.

Before comparing 1D and 3D geometries, we examined the

effect of boundary position in PDE solutions. Though embryos do

not contain physical barriers to diffusion at 35% and 92% of the

AP axis, small spatial gradients (Fig. 2a, dashed lines) at those

positions suggested that small diffusive flux would minimize the

effects of these internal boundaries. However, we found that the

system was sensitive to boundary placement (cf. Fig. 2a, solid
lines). Though this finding indicates the importance of using

biologically realistic boundary conditions (i.e., no-flux boundaries

at 0% and 100% AP), the simulations in Figure 2 also illustrate

our limited representation of regulation beyond the 35%–92%

trunk region: Omission of terminal gap genes and regulators re-

sult in optimized parameter sets that cannot recapitulate ex-

pression patterns from 0%–35% and 92%–100% AP in M1D{F

(Fig. 2a,c). Optimization to correct the boundary artifacts

(M1D{F with P1D{F
1D{P ) likewise fail to improve agreement with

data outside of the 35%–92% region (Fig. 2b). The inclusion of

terminal gap genes such as Huckebein in 1D gap gene models [37]

Figure 5. Model M3D
Bcd3D{S is not robust to noise in GRN parameters. Parametric noise alters model output. Lateral view of VE geometry for all

genes is shown in rows A–G (all outputs at t = 70 min). Each column displays M3D
Bcd3D{S output at t = 70 min evaluated with GRN P3D

Bcd3D{S . Columns
2–5 represent randomly chosen sample output when a normally distributed noise vector e is added to the GRN parameter set (denoted h). e has
mean of 0 and variance that scales with h.
doi:10.1371/journal.pone.0026797.g005
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provides a basis for extension to full 100% AP 1D and 3D models,

though inclusion of Huckebein in a recent 3D modeling study

yielded only modest improvements in overall cost and qualitative

agreement at the AP extrema [59].

Prior analyses demonstrated the sensitivity of gap gene models

to GRN parameter values [14,43,44] and examination of boun-

dary conditions support this finding: GRN parameter optimiza-

tion corrected boundary artifacts with extremely small changes to

parameter values (Fig. 2e). Optimization against VE data pro-

duced similar small changes in GRN parameters (Fig. 2e). The

GRN sensitivity of 1D models M1D{P and M1D{F was also found

in 3D models. Table S1 collects all parameter values and reports

the standard deviation for each parameter across 1D and 3D

model optimizations. Parameter wGt,Bcd exhibits the highest de-

viation across models with a standard deviation of 0.05, but this

represents only 13% of the total parameter range ([20.2,0.2]).

These small changes in GRN parameters do more than shift

protein band location as observed in Figure 2; they are capable

of effecting qualitative patterning changes (e.g., changing the

number of protein bands present on the embryo). For example,

the transition from P1D{F
VE to P3D

Bcd3D{S in model M3D
Bcd3D{S leads

to the loss of a posterior Gt band and the creation of a posterior

Kr band (Fig. 4c,f, columns 4–5). Figure 5 shows randomly

selected sample model outputs at t = 70 min with increasing levels

of normally distributed noised added to the GRN parameter

vector. One percent noise was sufficient to induce qualitatively

different banding patterns on the 3D geometry. The qualitative

changes in patterning for all but the smallest levels of noise

confirm the observations of parameter sensitivity in 1D and 3D

models. The extreme sensitivity of model outputs to small changes

in GRN parameters challenges analyses of GRN evolution posi-

ting phenotypically robust fitness landscapes [60–62]. Unfortu-

nately, the computational expense of PDE models prevented an

exhaustive exploration of the GRN parameter space and cor-

responding approximation of a fitness landscape. The fragility of

the gap gene system to GRN perturbations bears further study,

especially in its contrast to prevailing thoughts that evolution

occurs on networks with highly-connected neutral (selectively

equivalent) genotypes.

In addition to the parameter sensitivity and boundary conditions,

our work also demonstrate the use of accurate 3D geometry and its

effects on model predictions. We found that geometry alone has

a limited effect on gap gene patterning: Excepting slight DV-

asymmetry brought about by the curvature of the 3D embryo, 1D

output from M1D{F (Fig. 2d) and 3D output from M3D
Bcd1D (Fig. 4,

column 2) display qualitatively similar band position along the AP

axis. The path length from anterior to posterior extrema differs with

DV position: For example, the distance from anterior to posterior

extrema is shorter along the dorsal surface than the ventral surface.

We thought that this difference in diffusion distance might account

for the anterior splaying displayed in VE data (Fig. 4, column 1),

but this was not the case.

Though the 3D embryonic geometry was insufficient to explain

DV-asymmetries in gap gene data, it allowed us to explore the

effect of DV-asymmetric protein distributions on patterning.

Notably, the 1D Bcd distribution of M3D
Bcd1D (Fig. 3b) differed

from the typical dorsal-anterior distribution [63,64] also found in

the VE (Fig. 3e). Experimental noise in this data led to aberrant

patterning in most gap genes in M3D
Bcd3D (Fig. 4, column 3), but a

regularized version of the distribution (Fig. 3f) produced cleaner

(though qualitatively incorrect) band appearance and position in

M3D
Bcd3D{S (Fig. 4, column 4). It also produced anterior-splaying

in the anterior bands of Gt, Hb, Kni, and Kr. As previously noted,

optimization of the sensitive GRN parameters improved qualita-

tive agreement in model patterning with only small changes to

parameter values (Table S1).

When considering 3D models and the data associated with

them, we endeavored to identify any constraints on model optimi-

zation. This model has many degrees of freedom and additional

information encoded in the DV asymmetries of gap genes might

better guide parameter searches toward accurate GRNs. However,

we observed no improvement in RMSE values and failed to find

any novel GRNs for DV-asymmetric models.

Though our ensemble of models has led to interesting findings, we

acknowledge model limitations. Recent modeling studies recognize

that Cad and Tll patterning cannot be completely accounted for by

gap genes in existing models; maternal mRNA complicates Cad

expression and Tll is under the regulation of additional proteins

[38]. Instead, newer models use data interpolants to represent these

proteins [38]. The absence of these interpolants in our models may

contribute to the unrealistic sensitivity of the 3D model parameters

and DV-information. 3D interpolating functions incorporating VE

data for Cad and Tll are under development; we will use these to

explore the behavior of more recent 1D models on the 3D

embryonic geometry.

The primary focus of this work is the comparison of 1D and 3D

model geometries. Figures 2d and 4, column 2 reveal that differ-

ences in model geometry can be accommodated by relatively minor

adjustments to GRN parameters. The 3D implementation (M3D
Bcd1D)

exhibits minor DV-asymmetries but otherwise mirrors M1D{F .

However, consideration of AP patterning in three dimensions allows

us to address the experimentally observed DV-asymmetry in mater-

nal Bcd and downstream AP morphogens. The inclusion of a DV-

asymmetric Bcd signal led to qualitatively different patterning with

P1D{F
VE (Fig. 4, columns 2,4). This suggests that the assumption of

DV and AP independence in previous modeling studies is violated.

Parameter sensitivity remained high; parameter optimization made

small changes to parameter values but led to significantly improved

RMSE error (Fig. 4, columns 4,5).

Finally, two cases of DV model mismatch suggest modifica-

tions that could be incorporated into future models. First,

anterior Gt is more highly expressed on the dorsal side of the

embryo in vivo, but posterior Gt displays posterior-splaying. This

expression localization is not accounted for by Bcd distribution

alone and should be addressed in future models that also include

input from the DV patterning system downstream of the active

Dorsal protein distribution [65,66]. Second, many protein

species display DV-asymmetry in terms of anterior or posterior

splaying. E.g., Cad bands anterior to the AP midline are

anterior-splayed (Fig. 4b, column 1) while bands posterior to

the AP midline are posterior-splayed. This pattern is observed

for all modeled proteins (Fig. 4, column 1), though it is lacking

in DV-symmetric M3D
Bcd1D (Fig. 4, column 2). Addition of DV-

symmetric Bcd (M3D
Bcd1D) restores anterior-splaying aligned with

the DV Bcd gradient (Fig. 4, column 5). This suggests that a

missing posterior determinant may be responsible for posterior-

splaying. The posterior maternal morphogen Nanos is a can-

didate that has not been included in previous models. With

interpolated Cad and Tll, future models will explore the effects

of posterior determinants such as Nanos [67] and, as examined

in prior 1D models, Huckebein [37].

Methods

Model Construction
Building on the successful 1D/3D embryonic modeling ap-

proach of Umulis et al., [4,68], we reimplemented the Jaeger et al.

model of gap gene regulation (M1D{P) using the finite element
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method (FEM). This model represents six gene products as state

variables: Cad, Gt, Hb, Kr, Kni, and Tll [13]. A seventh protein,

Bcd (Bcd), is maintained at a constant concentration during gap

gene patterning and is represented as a spatially heterogeneous

stationary input [13,63]. Each of the state variables is represented

by a PDE,

Lca

Lt
~Da+2cazRawa uað Þ{laca, ð1Þ

where ca is the concentration of protein a, the first term on the

right hand side represents diffusion, the second term represents

gene expression, and the third term represents first order decay

[13]. Da is the diffusion constant of protein a and la is the first

order decay constant of protein a. Ra is the maximal rate of gene

expression of proteins a and Wa is a sigmoid function,

wa uað Þ~
1

2

uaffiffiffiffiffi
u2

a

p
z1

z1

 !
, ð2Þ

which ranges from zero to one and accepts a regulatory argument

ua:

ua~haz
X

b

wb,aca: ð3Þ

Here, ha is a minimal regulatory threshold for expression, wb,a is an

element in the regulatory matrix W representing the influence of

protein b on the expression of protein a (ranging from 20.2 to 0.2),

and cb is the local concentration of protein b. There are six PDEs

representing protein proteins a = Cad, Gt, Hb, Kr, Kni, Tll (eqn.

1). In each PDE, the regulatory effects of all seven proteins, b = [41

Kr, Kni, Tll, Bcd], control protein expression (eqns. 2–3). PDEs

are numerically solved using the FEM implemented in the

software package COMSOL Multiphysics 3.5a [69]. Except for

GRN parameters wb,a, these parameters are fixed at values in

Jaeger et al. [13] and may be found in Table S2.

Note that previous 1D models were simulated by the spatially-

discretized ordinary differential equations using the finite differ-

ence method: concentrations were tracked at uniformly-distributed

nodes (nuclei) along the AP axis and diffusive fluxes across the Dx

inter-node distance were modeled as a first-order differential

equations. As such, previously reported diffusion parameters (Ďa)

were in units of inverse time [1/t]. To convert these parameters to

diffusion constants (Da) with units of squared-length-per-time [L2/

t], we multiplied Ďa by (Dx)2. To compute Dx, we took into account

the length of the original model’s domain (0.57 EL) and the

number of nodes where the finite difference model was solved (58

nuclei). From these values, we approximated Dx as 0.57EL/57.

The model spans 0.35–0.92 or 0.57 EL and is divided into 57

intervals between 58 nodes. In the case of the 3D geometry, we

further accounted for the curvature of the embryo in our approxi-

mation of Dx. Scaling the embryo length to unity (1 EL), we

observed an arc length of 1.14 along the lateral AP. Upon the

assumption that curvature was uniformly-distributed along the AP

axis, Dx was computed as (0.57/1.14)EL/57. The approach

slightly overestimates Da in the 3D model relative to 1D because

most curvature occurs at the AP extrema and not the trunk, but

this does not translate to a large impact on AP patterning versus

1D. Whereas finite difference models explicitly modify Ďa values to

account for mitotic nuclear division and the halving of Dx,

the continuous FEM representation renders diffusion constants

independent of nuclear density. It should be noted that this repre-

sentation does not account for reduced effective diffusivity due to

increased nuclear trapping. While nuclear density has been linked

with decreased effective diffusivity in some simulations of Bcd

diffusion [70], Grimm and Wieschaus found that transcription

factor distributions are largely independent of nuclear density

[71]. 3D nuclear density distributions have been published [47]

and nuclear density-dependent diffusion is an area for further

investigation.

We developed two FEM meshes on which to simulate spatio-

temporal gap gene evolution. A 1D linear domain represents the 35–

92% AP axis, and replicates the domain used in previous models

[13]. By scaling diffusion constants and choosing initial conditions,

the 1D domain also represents the 0–100% AP length (M1D{F ). A

3D mesh modified from the VE geometry represents a realistic

embryonic geometry. Though the embryonic syncytium includes the

yolk interior of the embryo, nuclei are located within the periplasmic

domain of the exterior surface [10,49]. Cytoplasmic viscosity

increases in the embryonic interior and is presumed to limit effective

diffusion of gap gene products to the 2D layer in the periplasmic

volume containing the nuclei. While some gap gene products may

diffuse into yolk, this process may be considered as part of the decay

terms, la. We took this into account when constructing the 3D

domain. The reaction-diffusion equations (eqns. 1–3) are imple-

mented as weak form PDEs on a 2D manifold (Fig. S1); this

manifold is ‘‘wrapped’’ around the 3D embryonic geometry in 3D

model implementations(M3D
Bcd1D,M3D

Bcd3D,M3D
Bcd3D{S ).

Though the 3D domain is a closed surface without AP flux

boundaries, the partial (M1D{P) and full (M1D{F ) 1D domains

are bounded at both termini by zero-flux conditions. These

internal boundaries are unrealistic in the case of the partial AP

length domain as there are no such physical barriers in the

embryo; they were introduced in previous gap gene models to help

account for artifacts in previously inferred GRNs [14,42–44]. In

full length 1D models the anterior and posterior ends of the

embryo are realistically represented by zero-flux boundaries.

Numerical integration of PDEs requires specification of initial

conditions as well as boundary conditions. For purposes of model

comparison, we chose initial conditions specified in previous

models [13]. On both 1D and 3D domains, the proteins Gt, Kni,

Kr, and Tll have initial uniform concentrations of zero. Jaeger

et al. provide initial non-uniform 1D distributions for Cad and Hb

(Fig. 3a) [13]. These distributions span the entire AP length and

provide initial conditions for both the partial and full length

domains. Jaeger et al. also provide a constant exponential 1D Bcd

distribution for the full AP length. These 1D distributions were

used as initial conditions in the 1D models (M1D{F and M1D{P).

They were projected onto the 3D domain to approximate full 3D

initial conditions (M3D
Bcd1D, Fig. 3b–d). This projection was per-

formed using built-in interpolation tools in the Comsol package.

Provided AP-coordinates and corresponding concentration values,

Comsol created a linear interpolant of DV-symmetric concentra-

tion values along the AP-axis of the 3D geometry.

While the Bcd data provided by Jaeger et al. describes the lateral

AP distribution of Bcd, it fails to capture the observed DV

asymmetry found in embryonic Bcd. Though sufficient for a 1D

model (Fig. 3a), the resulting 3D distribution (Fig. 3b) qualita-

tively disagrees with VE data (Fig. 3e). We therefore built an

interpolating function from the VE Bcd data and used this

interpolant when simulating the model (M3D
Bcd3D). Again, we used

Comsol’s interpolation functionality. However, this interpolant

required full 3D specification of coordinates. We used the co-

ordinates of nuclei and corresponding Bcd concentration values

provided in the VE. Because the software does not support

interpolation on a 2D boundary (the periplasmic space) in a 3D
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geometry, we used nearest-neighbor interpolation (Fig. 3e). Be-

cause this Bcd distribution is represented in the model as a static

interpolant, noise in the data (and hence the interpolant) is not

smoothed by diffusion and decay. Initial attempts at directly im-

porting VE Bcd data resulted in persistent asymmetries and

mottled distributions inconsistent with data (Fig. 4, column 3).

In an ideal situation, inter-embryo variability would be averaged

out of VE data. However, the data set was generated with few

replicates (13 embryos for Bcd [49]) and spatial noise remained.

To remove this noise from the interpolant, we first fit a steady-state

source-diffusion-decay (SDD) model of Bcd production [18] to VE

Bcd data on the 3D domain (Fig. 4a, column 1). Once we had

obtained agreement between this regularized Bcd distribution and

the data, we used the solution of the SDD model to create a new

interpolant. This smoothed interpolant shown in Figure 3f and

M3D
Bcd3D{S ’s output (Fig. 4b–g, columns 4–5) compares favor-

ably with the results M3D
Bcd3D (Fig. 4b–g, columns 3).

Spatiotemporal regulation of gap gene expression spans the

mitotic nuclear division between nuclear cycle 13 and 14a. For

purposes of comparison, we chose to simulate the same time-course

as previous models. We begin by simulating the conclusion of cycle

13 for sixteen minutes, mitosis for five minutes, and continue to

simulate cycle 14a for the remaining forty-nine minutes [13]. The

reaction-diffusion equations (eqn. 1–3) describe the model during

interphase. During mitosis, gene expression (the second term in eqn.

1) is set to zero. Molecules may diffuse and decay, but they are not

transcribed or translated while the chromatin is compacted for

mitotic division.

This set of initial and boundary conditions, coupled with the

reaction-diffusion equations and a geometric domain, constitutes a

numerically soluble model. To calculate model error, we used a

straightforward root mean squared error cost function:

JRMSE~
X6

t~1

X6

a~1

Xn

i~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ca,mod h,i,tð Þ{ca,exp i,tð Þ
� �2

6n

s
: ð5Þ

Here, h is the GRN parameter set, n is the number of data points

in the 35%–92% EL region of the embryo, a is the index of protein

species, i is the index of n nuclear coordinates, and t is the time

index. This function sums the root squared error between model

output from a given GRN, ca,mod(h,i,t), and experimental data,

cx,exp(i,t), over data points i, model proteins a, and time t.

M1D{P was originally fit to immunofluorescence data in Jaeger

et al. [13]. As a result, both the model’s concentration units and

GRN parameters are scaled to reflect observed relative intensity

ranges of those data. To facilitate fitting between models utilizing

Jaeger et al. ’s parameters and VE data, we pre-scaled the VE data

to agree with the initial conditions reported by Jaeger et al. This

was performed by optimizing scaling factors Aa and offsets ba such

that the difference between Jaeger et al.’s initial conditions and the

VE data was minimized,

min
A,b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AacVE,a{bað Þ{cJaeger,a

� �2
q

: ð6Þ

The resulting scaling was applied to the VE data, allowing for direct

comparison of model outputs. VE protein data is unavailable for

Cad and Tll. For the former, we substituted expression data used by

Jaeger et al. to fit the original model [13]. For the latter, we

substituted Tll mRNA data from the VE and scaled it according to

eqn. 6.

Optimization
Using the cost function (eqn. 5), we optimized the full 1D and

3D models against scaled VE data using the Optimization

Toolbox in MATLAB R2009a [72]. We began with local searches

of the GRN weight matrix W (containing 42 parameters) using the

constrained nonlinear minimization function fmincon(). We ini-

tialized these searches at the best-fit inferred GRN parameter set

of the original modeling study and bounded all parameters within

the interval [20.2, 0.2] [13]. Parameter and cost function toler-

ances for stopping criteria were set to zero and the search was

allowed to progress for 4200 model evaluations (100 evaluations

per parameter), resulting in arrival at local minima. In the case of

the DV-asymmetric Bcd model (M3D
Bcd3D), we subsequently

included this locally optimal GRN in the initial population of a

global search using genetic algorithms (GAs).

We used the GA as implemented in MATLAB. The population

of size twenty genomes (parameter sets) was initialized with nineteen

randomized parameter sets and the locally-optimized parameter set

found for M3D
Bcd3D. Stopping criteria were specified as a maximum of

100 generations or failure to improve cost function values above a

tolerance of 1026. The latter criterion increments a ‘‘stall’’ counter

for each generation that fails to improve the score, ending the GA

when the counter reaches fifty [72]. This algorithm was used to

search the parameter space while fitting the 3D model incorporating

DV-asymmetric Bcd (M3D
Bcd3D{S ).

Supporting Information

Figure S1 The VirtualEmbryo geometry. A three-quarters

view of the embryonic geometry with anterior (A), posterior (P),

dorsal (D) and ventral (V) poles indicated.

(TIF)

Figure S2 Scaled diffusion constants in DV-symmetric
Bcd model M3D

Bcd1D. The model is insensitive to small changes in

the diffusion constant. (A–G) Lateral view of VE geometry is

shown in rows A–G (Gt, Hb, Kni, Kr, Tll at t = 70 min, Cad at

t = 56 min); Column 1 displays output from M3D
Bcd1D evaluated

with GRN P1D{F
VE and diffusion constants Da scaled by 0.1;

Column 2 displays output from M3D
Bcd1D evaluated with GRN

P1D{F
VE and diffusion constants Da scaled by 0.5; Column 3 displays

output from M3D
Bcd1D evaluated with GRN P1D{F

VE and diffusion

constants Da scaled by 1; Column 4 displays output from M3D
Bcd1D

evaluated with GRN P1D{F
VE and diffusion constants Da scaled by

2; Column 5 displays output from M3D
Bcd1D evaluated with GRN

P1D{F
VE and diffusion constants Da scaled by 10.

(TIF)

Figure S3 Scaled diffusion constants in DV-asymmetric
Bcd model M3D

Bcd3D{S. The model is insensitive to small changes

in the diffusion constant. (A–G) Lateral view of VE geometry is

shown in rows A–G (Gt, Hb, Kni, Kr, Tll at t = 70 min, Cad at

t = 56 min); Column 1 displays output from M3D
Bcd3D{S evaluated

with GRN P3D
Bcd3D{S and diffusion constants Da scaled by 0.1;

Column displays output from M3D
Bcd3D{S evaluated with GRN

P3D
Bcd3D{S and diffusion constants Da scaled by 0.5; Column 3

displays output from M3D
Bcd3D{S evaluated with GRN P3D

Bcd3D{S and

diffusion constants Da scaled by 1; Column 4 displays output from

M3D
Bcd3D{S evaluated with GRN P3D

Bcd3D{S and diffusion constants

Da scaled by 2; Column 5 displays output from M3D
Bcd3D{S evaluated

with GRN P3D
Bcd3D{S and diffusion constants Da scaled by 10.

(TIF)

Movie S1 Animated Cad pattern formation in the DV-
symmetric Bcd model. M3D

Bcd1D. Model output for Cad

evaluated at the parameter set P1D{F
VE . The video spans t = 0–
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70 min. Concentration colormap is identical to Fig. 4 and spans

0–250 concentration units.

(M4V)

Movie S2 Animated Gt pattern formation in the DV-
symmetric Bcd model. M3D

Bcd1D. Model output for Gt

evaluated at the parameter set P1D{F
VE . The video spans t = 0–

70 min. Concentration colormap is identical to Fig. 4 and spans

0–250 concentration units.

(M4V)

Movie S3 Animated Hb pattern formation in the DV-
symmetric Bcd model. M3D

Bcd1D. Model output for Hb

evaluated at the parameter set P1D{F
VE . The video spans t = 0–

70 min. Concentration colormap is identical to Fig. 4 and spans

0–250 concentration units.

(M4V)

Movie S4 Animated Kni pattern formation in the DV-
symmetric Bcd model. M3D

Bcd1D. Model output for Kni

evaluated at the parameter set P1D{F
VE . The video spans t = 0–

70 min. Concentration colormap is identical to Fig. 4 and spans

0–250 concentration units.

(M4V)

Movie S5 Animated Kr pattern formation in the DV-
symmetric Bcd model. M3D

Bcd1D. Model output for Kr

evaluated at the parameter set P1D{F
VE . The video spans t = 0–

70 min. Concentration colormap is identical to Fig. 4 and spans

0–250 concentration units.

(M4V)

Movie S6 Animated Tll pattern formation in the DV-
symmetric Bcd model. M3D

Bcd1D. Model output for Tll

evaluated at the parameter set P1D{F
VE . The video spans t = 0–

70 min. Concentration colormap is identical to Fig. 4 and spans

0–250 concentration units.

(M4V)

Movie S7 Animated Cad pattern formation in the DV-
asymmetric Bcd model. M3D

Bcd3D{S. Model output for Cad

evaluated at the parameter set P3D
Bcd3D{S . The video spans t = 0–

70 min. Concentration colormap is identical to Fig. 4 and spans

0–250 concentration units.

(M4V)

Movie S8 Animated Gt pattern formation in the DV-
asymmetric Bcd model. M3D

Bcd3D{S. Model output for Gt

evaluated at the parameter set P3D
Bcd3D{S . The video spans t = 0–

70 min. Concentration colormap is identical to Fig. 4 and spans

0–250 concentration units.

(M4V)

Movie S9 Animated Hb pattern formation in the DV-
asymmetric Bcd model. M3D

Bcd3D{S. Model output for Hb

evaluated at the parameter set P3D
Bcd3D{S . The video spans t = 0–

70 min. Concentration colormap is identical to Fig. 4 and spans

0–250 concentration units.

(M4V)

Movie S10 Animated Kni pattern formation in the DV-
asymmetric Bcd model. M3D

Bcd3D{S. Model output for Kni

evaluated at the parameter set P3D
Bcd3D{S . The video spans t = 0–

70 min. Concentration colormap is identical to Fig. 4 and spans

0–250 concentration units.

(M4V)

Movie S11 Animated Kr pattern formation in the DV-
asymmetric Bcd model. M3D

Bcd3D{S. Model output for Kr

evaluated at the parameter set P3D
Bcd3D{S . The video spans t = 0–

70 min. Concentration colormap is identical to Fig. 4 and spans

0–250 concentration units.

(M4V)

Movie S12 Animated Tll pattern formation in the DV-
asymmetric Bcd model. M3D

Bcd3D{S. Model output for Tll

evaluated at the parameter set P3D
Bcd3D{S . The video spans t = 0–

70 min. Concentration colormap is identical to Fig. 4 and spans

0–250 concentration units.

(M4V)

File S1 Mesh coordinates for the VirtualEmbryo.
Matlab-accessible file containing indexed vertex coordinates and

relations defining the triangular elements of the mesh in Figure S1.

(MAT)

Table S1 GRN Parameter Values.

(DOC)

Table S2 Non-GRN Parameters (Unoptimized).

(DOC)
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