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Landslides are devastating phenomena that cause huge damages around the world. This 

paper presents a quasi-global landslide model derived using satellite precipitation data, 

land-use land cover maps, and 250 m topography information. This suggested landslide 

model is based on the Support Vector Machines (SVM), a machine learning algorithm. The 

National Aeronautics and Space Administration (NASA) Goddard Space Flight Center 

(GSFC) land-slide inventory data is used as observations and reference data. 70% of the 

data are used for model development and training, whereas 30% are used for validation 

and verification. The results of 100 random sub-samples of available landslide observations 

revealed that the suggested landslide model can predict historical landslides reliably. The 

average error of 100 iterations of landslide prediction is estimated approximately 7%, while 

approximately 2% false landslide events are observed. 
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Chapter 1

Introduction

Each year, landslides cause thousands of casualties and billions of dollars in damages across

the world. According to the US Geological Survey (USGS), landslides result in 10 of deaths

and over 1-2 billion in property damages ([47]). For example, the Western United States

has suffered from several storm-triggered landslides during the El Nino seasons of 1982-1983,

resulting in millions of dollars in loss ([20]; [44]). In several other landslide events, thousands

of people died or disappeared within a few minutes/hours (e.g., 1999 landslide in Vargas,

Venezuela; see [32]).Also, in Southeast Asia, landslides are one of the most widespread

disasters mainly because of the climate condition, mountainous terrain and socioeconomic

conditions ([3]). For instance, in 2006, after a period of heavy rainfall, a series of landslides

in the Leyte Island, Philippines claimed over 1000 fatalities ([39]).

The factors involved in the occurrence of landslides are divided into two categories: trigger-

ing processes and preparatory conditions ([13]). Triggering factors are dynamic processes

which trigger a slope failure, such as heavy precipitation events (e.g., 1999 landslide in Var-

gas, Venezuela) and/or earthquakes (e.g., 2008 Wenchuan earthquake in Sichuan, China).

Typically, hurricanes and typhoons lead to extensive rainfall over several days and thus,
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may trigger landslides. In 1998, Hurricane Mitch alone triggered over 9,800 landslides across

Guatemala resulting in over 14,000 casualties ([7]).

In addition to the presence of a triggering factor, preparatory conditions play important roles

in the occurrence of landslides. These include conditions which make a region susceptible to

landslides such as soil property, slope, topography, land use land cover, hillslope saturation

and vegetation. For example, the effect of pore water pressure and soil porosity on the

occurrence of landslides has been discussed in [25].

Thus far, various statistical, analytical and numerical approaches have been introduced to

model landslides ([11]; [10], [45], [14], [38]; [6]; [48]; [40]; [26]; [41]; [46]; [50]; [9]; [31]).

Based on the soil wetness condition and topographic attributes, [36] has offered a simplified

Geographic Information System (GIS) based Bayesian model to identify landslides. Using

satellite data and GIS techniques, [22] proposed a methodology to map landslide susceptibil-

ity. The approach is based on a weighted linear combination of landslide controlling factors

including slope, soil type and texture, elevation, land cover type, and drainage density.

Rainfall intensity duration curves both in regional ([33]; [16]) and global scales ([8]; [20];

[21]) have been used in developing landslide models. The model presented in [8] is based on

a rain gauge precipitation observations, while [8] is based on Tropical Rainfall Measurement

Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA; [24]).

In a recent effort, the National Aeronautics and Space Administration (NASA) Goddard

Space Flight Center (GSFC) released a valuable inventory of landslide events over the globe

([29]). It can potentially be used for more detailed research on the relationship between

landslide events, controlling factors and climate conditions. The NASA global landslide

inventory has been evaluated in a number of landslide studies (e.g., [30]; [20]).

Most previous landslide studies have been in a local or regional scale (e.g., ([45]; [48]; [28];

[35]; [46]; [11]; [50]; [17]; [9]; [36]; [18]; [34]). This study introduces a quasi-global (hereafter,
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global) landslide monitoring model using satellite precipitation data, land-use land cover

maps, and 250 m topography information. This suggested landslide model is based on the

Support Vector Machines (SVM) that can classify landslide and non-landslide events based

on their climatological and geographical conditions.
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Chapter 2

Study Area and Data Resources

The study area extends from -60 to +60 latitudes where real-time satellite precipitation data

is available. The data sets used in this study include:

• NASA global landslide inventory ([29]): This data set represents landslides, mudslides,

rockslides, debris slides and a combination of two or more of them. It includes nominal

location information (country, county, city), time of occurrence, triggering factor, type

of the event, relative size of landslide, geographic location (latitude and longitude) with

a measure of location accuracy and impact information such as casualties and economic

damage. The relative size classification is based on a scale of 1 (small landslide or

mudslide) to 5 (massive landslide). The location accuracy classification is defined

based on the radius of confidence on a scale of 1 (>75 km - little confidence in landslide

location) to 5 (<5 km - high confidence in landslide location). Currently, the landslide

inventory includes events occurred in 2003, 2007, 2008 and 2009. For more information

about this landslide inventory, please refer to [29].

• Precipitation data: Satellite precipitation data is obtained from the real-time version

of the Precipitation Estimation from Remotely Sensed Information Using Artificial
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Neural Networks (PERSIANN; [23]; [43]). This data set is primarily based on longwave

infrared imagery from geosynchronous satellite (GOES-IR) calibrated with satellite

microwave data.

• Slope: Topographical information is derived based on a Digital Elevation Model (DEM)

from the NASA Shuttle Radar Topography Mission ([27]). This data set is a high

resolution elevation information with a spatial resolution of 250 m. Based on this

elevation data set, a global slope map is created using Geographical Information System

(GIS) techniques.

• Global land cover condition: Land-use land cover information is derived from a global

database described in [4] and [15]. This data set includes 1 km land use land cover

information with 23 classes.
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Chapter 3

Methodology

The model concept is based on the SVM which is a powerful method for classification. In

fact, SVM is a decision support machine that can be used to as a two-class or multiple

class classifier. In this study, SVM is used to classify landslide and non-landslide events

based on historical observations (here, observed landslide events). SVM classification solves

a convex optimization problem in which all local solutions (e.g., individual landslide events)

are classified into a global optimum ([5]). Throughout this study, a conventional approach

of splitting data into a 70% training and a 30% validation is used.

In this study, the linear classifier of SVM is used for classification of landslide from non-

landslide events. Let the training set be {(xi, yi)}i=1,...,n where xi ∈ RN , and yi ∈ {−1, 1}

([19]). xi Represents the N dimensional patterns (here, 5 dimensions including three vectors

of precipitation, topographical information and land use) and yi is the class label (i.e., 1

for landslide and -1 for non-landslide events). Figure 3.1 schematically presents the SVM

model concept for classification. In the figure, blue points correspond to the landslide label,

whereas the red points refer to the non-landslide label. The green line in Figure 3.1 is

the optimal hyperplane classifier, which connects the two convex hulls of two classes (i.e.,
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landslide and non-landslide events) and has the same distance from each of the convex hulls.

The general form of the optimal SVM classifier (the green line in Figure 3.1) is (w.x)+b = 0,

w ∈ RN and b ∈ R, with the decision function for classification being ([19]):

f(x) = sign((w.x) + b) (3.1)

There exists a w (vector) and a b (scalar) such that for all training sets ([12]):


((w.xi) + b) ≥ +1 if yi = 1

((w.xi) + b) ≤ −1 if yi = −1

(3.2)

The above inequalities can be written in the form ([12]):

yi × ((w.xi) + b) > 1, i = 1, . . . , n (3.3)

Using the above inequality, one can show (see [12] for details and proof):


minw.x

|w| = 1
|w| for y = 1

maxw.x
|w| = −1

|w| for y = −1

(3.4)
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where |w| is defined as
√
w.w. The distance between two convex hulls of the two classes is

termed as ρ (see Figure 3.1) and can be expressed as:

ρ(w, b) = min

(
w.x

|w|

)
y=1

−max
(
w.x

|w|

)
y=−1

(3.5)

=
1

|w|
− −1

|w|

=
2

|w|

The optimal classifier can be obtained by maximizing the distance ρ(w, b). Let’s denote the

optimal SVM classifier as (w0.x)+ b0 = 0 and hence, ρ(w0, b0) = 2/|w0|. In other words, for

classifying the two landslide and non-landslide labels, one needs to solve the optimization

problem of maximizing the margin ρ(w0, b0). To maximize ρ(w0, b0), the term |w0| should

be minimized under the constraint yi × ((w.xi) + b) > 1, i = 1, . . . , n. This is a quadratic

optimization problem that can be solved using the sequential minimal optimization(SMO)

outlined in [37].

Figure 3.2 schematically describes the model structure. As shown, the input data include

two types of static information (land use land cover condition and topographical informa-

tion) and one dynamic input (precipitation). It should be noted that the coordinates of

the observed landslide locations in the NASA landslide inventory are in fact approximate

locations of landslides ([29]). Therefore, using the slopes of landslide coordinates could lead

to misleading results. For this reason, instead of using the slope of the provided coordinates

in the inventory, a Topography Index is used that indicates the 95th percentile of 250 m

slope values in a 0.25o box. Note that the 0.25o is the original resolution of precipitation
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Figure 3.1: Support Vector Machine (SVM) model concept for classification.

Location # Latitude Longitude Slope Topography Index
1 34.972 54.983 0.09 0.14
2 -4.4032 136.0438 0.30 22.60

Table 3.1: Topography Index for two areas: The Lut Desert (location 1), which is flat and
not susceptible to landslides; and a mountainous region in Indonesia (location 2), which has
frequently experienced landslides

data. In other words, a Topography Index is used to distinguish topographically complex

regions from relatively flat areas.

The suggested Topography Index is relatively larger for mountainous regions compared to

flat areas. As an example, Table 3.1 lists the Topography Index for two areas: The Lut

Desert (location 1 in Table 3.1), which is flat and not susceptible to landslides; and a

mountainous region in Indonesia (location 2 in Table 3.1), which has previously experienced

landslides. One can see that the slopes of the two locations are not significantly different

(location 1: 0.09; location 2: 0.30 - see column 4 in Table 3.1). However, the Topography

Index distinguishes the difference between the two regions (location 1 (flat region): 0.14;

location 2 (mountainous region): 22.6 - see column 5 in Table 3.1).
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Figure 3.2: Schematic view of the model structure.

In addition to topography index, precipitation is used as a dynamic input in the model.

There are two key factors associated with a rainfall that could lead to a landslide: intensity

and duration. Landslides may occur due to heavy precipitation rates in a relatively short

period of time or even after a low intensity rainfall over a long period of time. For this

reason, three vectors of precipitation rates from rainfall accumulations in the past are used

as input to the model: (a) 24 hr; (b) 48 hr; and (c) 72 hr. In a recent study, [2] showed

that there are high uncertainties associated to satellite-based heavy precipitation rates at

high temporal intervals (e.g., 3 hr - see also [1]). For this reason, at any given time, rainfall

accumulations over the past 24, 48, and 72 hours are used as input to the model.

The soil wetness condition is indirectly computed from the past three-day rainfall informa-

tion. Figure 3.3 displays the 24-hr precipitation accumulation (on the day of landslide

occurrence) for the entire observed landslide events used in the model for both training and

validation. One can see that the observations include 581 landslide events with 24-hr rainfall

accumulations from 5 mm to over 200 mm. Note that the original NASA landslide inventory
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Figure 3.3: 24-hr precipitation accumulations over landslide observation points.

includes more landslide events. However, many of the events may not have been triggered

by rainfall, as no rainfall has been recorded (earthquake triggered landslides). Alternatively,

satellite data may have missed precipitation for a number of landslide events. Since the

presented model is solely designed for rainfall triggered landslide events, those with 24-hr

rainfall accumulation of 5 mm or less were eliminated from the analysis.

It should be noted that few landslide events are recorded in the landslide inventory with

slopes and Topography Index near zero ( below 10%), and these were also eliminated. In

other words, the presented mode is designed and validated for rainfall triggered landslides for

areas with a Topography Index > 10%. Figure 3.4 displays the histogram of the Topography

Index for the 581 landslides events that are used as input to the model. The horizontal axis

shows Topography Index intervals, while the vertical axis displays the number of landslides

in each interval.

As mentioned earlier, land-use land cover information is used as a static input to the model.

Figure 3.5 shows the histogram of the observed landslides. The horizontal axis represents

the 23 land use land cover categories listed in Table 3.2, whereas the vertical axis indicates

11



Figure 3.4: Histogram of Topography Index for landslide observations based on 250m Digital
Elevation Model (DEM)

the number of occurrences in each land use land cover category. The observed landslides are

then re-categorized into four major groups based on their land use land cover conditions:

Tree Cover (# categories 1 to 10); Shrub Cover (#categories 11 to 15); Artificial Surfaces

(categories 16 to 18 and 22); and Bare Areas (# 19). Note that Water Bodies, Snow and Ice

and No Data (# 20, 21, 23) are eliminated from the analysis. This re-categorization is based

on similarities between land-use land cover conditions. Finally, the distribution of landslide

occurrences in the recategorized land use land cover conditions is presented in Figure 3.6.

Based on the recategorized data, Artificial Surfaces (46%) and Tree Cover (38%) are more

susceptible to landslides as more events have occurred in the past. The four re-categorized

groups are scaled between 0 and 1 (Artificial Surfaces) with one being the most susceptible

land use to landslides.
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Figure 3.5: Distribution of landslides in the 23 land use land cover classes listed in Table
3.2

Figure 3.6: Distribution of landslides in the four re-categorized land cover classes
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Table 3.2: The land use land cover classes in [4] and [15]

Number Land Use Type
1 Tree Cover, Broadleaved, Evergreen
2 Tree Cover, Broadleaved, Deciduous, Closed
3 Tree Cover, Broadleaved, Deciduous, Open
4 Tree Cover, Needleleaved, Evergreen
5 Tree Cover, Needleleaved, Deciduous
6 Tree Cover, Mixed leaf type
7 Tree Cover, Regularly Flooded, Fresh Water
8 Tree Cover, Regularly Flooded, Saline Water
9 Mosaic, Tree Cover, Other Natural Vegetation
10 Tree Cover, Burnt
11 Shrub cover, Closed-Open, Evergreen
12 Shrub cover, closed-Open, Deciduous
13 Herbaceous Cover, Closed-Open
14 Sparse Herbaceous or Sparse Shrub Cover
15 Regularly Flooded Shrub and/or Herbaceous Cover
16 Cultivated and Managed Areas
17 Mosaic, Cropland, Tree Cover, Other Natural Vegetation
18 Mosaic, cropland, Shrub Cover or Grass Cover
19 Bare Areas
20 Water Bodies
21 Snow and Ice
22 Artificial Surfaces and Associate Areas
23 No Data

14



Chapter 4

Results and Discussion

The SVM is a machine learning algorithm that requires data from training and validation.

In this study, 70% of the 581 landslide observations are used for model training and 30% for

model validation and verification. The model builds a classifier, called the SVM classifier,

based on the training data. The SVM classifier is then be validated using the validation

data set. The target of the SVM classifier is either 0 or 1 . Zero represents a non-landslide

condition, while one indicates the occurrence of a landslide event. If both model output

and target lead to the same value (either 0 or 1), the algorithm has successfully classified

landslides from non-landslide events. Otherwise, the model has failed to predict the event.

Model output of 1 with a target of 0 indicates a false landslide prediction. On the other

hand, a model output of 0 with a target of 1 indicates missed landslide prediction.

In the following example, a total of 6,391 events (581 landslide events and 5,810 non-landslide

events) are sampled from across the globe. The 5,810 non-landslide events are sampled from

precipitation areas and from different land use land cover conditions and slopes from all

over the world. Samples are randomly taken from 2003, 2007, 2008 and 2009 for which

observations are available. Of course the target values of non-landslide events are set to 0
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and observed events are set to 1.

In order to ensure stability of the results, the 70 percent training data was randomly sampled

100 times. In other words, the results are tested by running the model 100 times with

different combinations of training and validation data. Figure 4.1(a) presents the overall

error of the model landslide prediction in percentage. In Figure 4.1(a), the horizontal axis

represents the iterations (i.e., 100), and the vertical axis displays the error (%) that includes

the error of both landslide and non-landslide events. As shown, the average error is between

6 to 7 percent in 100 iterations. In order to provide more insight, two other error plots are

presented: missed landslides (Figure 4.1(b)) and false landslides (Figure 4.1(c)). Here,

false and missed events are calculated based on the common approach used for validation of

remote sensing data as outlined in [49]. The missed landslide plot (Figure 4.1(b)) indicates

the error in the number of missed landslide events divided by the total number of landslide

observations used for validation. On the other hand, 4.1(c) displays the error in the number

of falsely predicted events divided by the total number of non-landslide samples. Note that

this model does not attempt to simulate landslides where the slope is less than 10 degree

and 24-hr precipitation accumulation is less than 5mm (same conditions applied to sample

from landslide observations). One can see that the missed and false landslide errors are

approximately 7 and 2 percent, respectively (see Figures 4.1(b) and (c)).

Figure 4.1(b) indicates that the error of missed landslides at few iterations is very high.

This is due to limited number of observed landslides that could lead in no or limited sample

from certain types of landslides for training. For this reason, one needs to run the model

with multiple randomly selected samples of training and validation to make sure the training

data is sufficient for landslide modeling and prediction. In this example, one can see that

many combinations of training and validation lead to a small error in missed landslides.

For better illustration, Figure 4.2 displays the SVM-based model output for one iteration. In

Figure 4.2, red circles indicate landslides identified correctly, whereas blue circles show non-

16



Figure 4.1: (a) Total error; (b) Error of missed landslides; and (c) Error of false landslides of
the model for 100 simulations with different combinations of 70% training and 30% validation
data

17



Figure 4.2: An example of the SVM-based model output for one iteration. The red circles
indicate landslides identified correctly, whereas blue circles show non-landslides identified
correctly

landslides identified correctly. For the same iteration, Figure 4.3 displays false landslides (red

squares) and missed landslides (blue squares) - events incorrectly identified by the model.

In other words, in figure 4.3, the red squares are non-landslide events detected incorrectly as

landslides by the model. Similarly, blue squares are actual landslide events that the model

failed to detect.
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Figure 4.3: False landslides (red squares) and missed landslides (blue squares) for the same
iteration shown in Figure 4.2.
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Chapter 5

conclusions

Landslides are devastating phenomena that cause huge damages around the world. This

paper presents a quasi-global landslide model using SVM approach. The input data in-

clude satellite precipitation data, land-use land cover maps, and 250 m topography informa-

tion. The model was tested and verified against the NASA GSFC landslide inventory data.

Throughout the study, 70% of the data were used for model development and training, while

30% were used for validation and verification.

The model was used to simulate 100 iterations with random sub-samples of 70% training and

30% validation. It should be noted that a large number of non-landslide events (10 times more

than the observations) were randomly sampled to evaluate the performance of the model in

detecting both landslides and non-landslide events. The results showed that the suggested

landslide model can predict historical landslides reliably. The average error of 100 iterations

of landslide prediction was estimated as approximately 6 to 7%, while approximately 2%

false landslide and approximately 7% missed landslide events were observed.

The authors point out that these conclusions are based on exploratory data analysis us-

ing observed records of landslide events. We acknowledge that remotely sensed precipitation
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events have uncertainties, especially with respect to heavy precipitation rates ([1]) that could

affect landslide monitoring and prediction. However, satellite data sets are the only source

of real-time and consistent precipitation observations especially over remote and topographi-

cally complex regions ([42]). In fact, landslides typically occur in mountainous regions where

other sources of information (e.g., radar and gauge measurements) are not available. For this

reason, the model has been developed with satellite observation so that it can be applied to

remote and topographically complex regions. This model cannot be considered as a general

landslide model as it does not consider earthquake triggered landslides. Efforts are underway

to further develop this model into a real-time landslide prediction model.
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