UCSF

UC San Francisco Previously Published Works

Title

Longitudinal magnetic resonance imaging in progressive supranuclear palsy: A new
combined score for clinical trials

Permalink
https://escholarship.org/uc/item/77g0{9vh
Journal

Movement Disorders, 32(6)

ISSN
0885-3185

Authors
Hoglinger, Gunter U
Schope, Jakob
Stamelou, Maria

Publication Date
2017-06-01

DOI
10.1002/mds.26973

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/77q0j9vh
https://escholarship.org/uc/item/77q0j9vh#author
https://escholarship.org
http://www.cdlib.org/

1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Mov Disord. Author manuscript; available in PMC 2018 February 12.

-, HHS Public Access
«

Published in final edited form as:
Mov Disord. 2017 June ; 32(6): 842-852. doi:10.1002/mds.26973.

Longitudinal MRI in progressive supranuclear palsy: a new
combined score for clinical trials

Giinter U. Hoglinger, MD1:2:3, Jakob Schépe, MSc#, Maria Stamelou, MD35, Jan Kassubek,
MDS, Teodoro del Ser, MD’, Adam L Boxer, MD, PhD8, Stefan Wagenpfeil, PhD?, and Hans-
Jurgen Huppertz, MD? for the AL-108-231 Investigators, the Tauros MRI Investigators, and
the Movement Disorder Society-endorsed PSP Study Group

1Department of Neurology, Technische Universitéat Miinchen, Munich, Germany 2German Center
for Neurodegenerative Diseases (DZNE), Munich, Germany *Department of Neurology, University
Hospital GieBen and Marburg, Marburg, Germany “Institute for Medical Biometry, Epidemiology
and Medical Informatics, Saarland, University, Campus Homburg, Germany °Second Department
of Neurology, Attikon University Hospital, University of Athens, Greece ®Department of Neurology,
University of UIm, Ulm, Germany “Medical Department, Noscira SA, Madrid, Spain. Present
affiliation: Alzheimer Project Research Unit, Fundacion CIEN, Madrid, Spain 8Memory and Aging
Center, Department of Neurology, University of California, San Francisco, CA, USA °Swiss
Epilepsy Centre, Klinik Lengg, Zurich, Switzerland

Abstract

Background—Two recent randomized, placebo-controlled phase 11/111 trials (clinicaltrials.gov:
NCT01110720, NCT01049399) of davunetide and tideglusib in progressive supranuclear palsy
(PSP) generated prospective, 1-year longitudinal datasets of high-resolution T1-weighted 3D MRI.

Objectives—Develop a quantitative MRI disease progression measurement for clinical trials.

Methods—We performed a fully automated quantitative MRI analysis employing atlas-based
volumetry and provide sample size calculations based on data collected in N=99 PSP patients,
assigned to placebo in these trials. Based on individual volumes of N=44 brain compartments and
structures at baseline and 52 weeks follow-up, means and standard deviations of annualized
percentage volume changes were used to estimate standardized effect sizes and the required
sample sizes per group for future two-armed, placebo-controlled therapeutic trials.

Results—The highest standardized effect sizes were found for midbrain, frontal lobes, and third
ventricle. Using the annualized percentage volume change of these structures to detect a 50%
change in the 1-year progression (80% power, significance level 5%) required lower numbers of
patients per group [third ventricle, N=32; midbrain, N=37; frontal lobe, N= 43] than the best
clinical scale (PSP rating scale total score, N=58). A combination of volume changes in these
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three structures reduced the number of required patients to only N=20 and correlated best with the
progression in the clinical scales.

Conclusions—\We propose the 1-year change in the volumes of third ventricle, midbrain, and
frontal lobe as combined imaging read-out for clinical trials in PSP, requiring the least number of
patients for detecting efficacy to reduce brain atrophy.

Keywords

Progressive supranuclear palsy; magnetic resonance imaging; volumetry; power calculation;
clinical trials

Introduction

Progressive supranuclear palsy (PSP) is a neurodegenerative disease caused by intracellular
aggregation of the tau protein. There is currently no treatment approved.! However, several
compounds are awaiting clinical evaluation. Rational trial design is therefore important to
allow clear conclusions while saving resources.

The randomized, placebo-controlled phase I1/111 trials of davunetide and tideglusib
(clinicaltrials.gov: NCT01110720, NCT01049399) studied patients according to similar
protocols for 12 months.2~ Their placebo-data allowed to identify rating scales suited to
measure disease progression and to estimate sample sizes for future trials.> These trials also
generated prospective high-resolution T1-weighted 3D MRI data. A recent study analyzed
the atrophy rate of four selected volumes (whole brain, ventricles, superior cerebellar
peduncle, and midbrain) using label propagation with Statistical Parametric Mapping (SPM)
5 software in all (i.e. placebo and verum) patients from the davunetide trial and concluded
that midbrain volumetry as outcome measure in a 1-year parallel-group trial would require
comparable numbers of patients® as the best performing clinical scale, the PSP-rating scale
(PSPRS).>7 Another study8 proposed that annual midbrain volume change measured with
SPM12 would require 44% less patients than the PSPRS.

Unbiased by a priori hypotheses, we aimed to analyze which volumetric parameters perform
best as outcome measures, allowing trials with fewer patients despite comparable power to
detect efficacy to slow brain atrophy. We used fully-automated atlas-based volumetry (ABV)
to quantify structural changes in individual patients with an intrascanner variability of <1%.
910 |n the tideglusib study, this method revealed lower cerebral atrophy rates in verum- vs.
placebo-treated patients.4 Furthermore, in conjunction with support vector machine
classification, this method reliably identified PSP patients in a large mixture of parkinsonian
syndromes.1! Here, we performed ABV using SPM12 on 44 brain structures of N=99
placebo-patients from the davunetide and tideglusib trials at baseline and 1-year follow-up,
calculated annualized volume changes, and estimated standardized effect sizes and sample
sizes for two-armed, placebo-controlled therapeutic trials. We also studied if the cross-
sectional regional atrophy at baseline would predict longitudinal atrophy rates. Finally, we
correlated longitudinal regional volumes changes with change in clinical scales, to examine
their relevance as surrogate markers for disease progression.

Mov Disord. Author manuscript; available in PMC 2018 February 12.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Héglinger et al.

Page 3

Materials and Methods

Study population

Raw data were obtained from PSP patients of the placebo arms from two randomized,
controlled trials with similar inclusion-exclusion criteria.2:3 In the davunetide trial,2 N=313
patients from 48 centres met the following criteria: at least a 12-month history of postural
instability or falls during the first 3 years from onset; reduced downward saccade velocity or
supranuclear gaze palsy; an akinetic-rigid syndrome with prominent axial rigidity; ability to
take at least five steps with minimal assistance. In the tideglusib trial,3 N=139 patients from
24 centres met the possible or probable NINDS-SPSP criteria;12 ability to ambulate
independently or with minimal assistance (PSP staging system!3 score < 5). The tideglusib
MRI sub-study was conducted in 17 European sites.# Detailed inclusion and exclusion
criteria, clinical assessments and follow-up visits schedules are reported elsewhere.2

For comparison, healthy controls without neurological or psychiatric disease were recruited
in a similar time period in the Departments of Neurology at Marburg and Ulm, Germany.11
A subset of N=50 of these controls was matched to the PSP-cohort for age and gender
distribution.

Ethics approval was obtained at each site from the local ethics committee, and all
participants gave written informed consent.

Clinical assessments

The Schwab & England Activities of Daily Living (SEADL) scale,14 PSPRS,’ and Clinical
Global Impression of Disease Severity (CGIDS)® were obtained at the baseline and 52-
week visit in both trials.

Image acquisition

The core MRI protocol for all participants comprised 3D T1-weighted 3D magnetization
prepared rapid gradient echo (MPRAGE) sequence with 1x1x1 mm resolution according to
the Alzheimer’s Disease Neuroimaging Initiative (UCLA, CA, USA; www.loni.ucla.edu/
ADNI) recommendations for volumetric analysis, and axial T2 sequences to detect vascular
lesions, acquired on 1.5 or 3T scanners. Patients were scanned within 4 weeks prior to
baseline and within +1 (davunetide) or +4 (tideglusib) weeks of the 52-week visit. For each
patient, baseline and follow-up MRI were acquired on the same scanner using the same
sequence parameters. Controls were scanned only once (baseline). We performed quality
control of each scan and excluded those with obvious factors biasing volumetry (e.g.
movement artefacts, signs of head traumatization, or different sequences at baseline and
follow-up).

Image processing/atlas-based volumetry

MPRAGE sequences were pseudonymised, converted to ANALYZE 7.5 format, and
analyzed by a fully-automated, observer-independent method of atlas- and mask-based
volumetry on MATLAB (R2014b, Mathworks, USA) using SPM12 (Wellcome Trust Centre
for Neuroimaging, London, UK, www.fil.ion.ucl.ac.uk/spm), as described (Fig. 1).911 In
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short, each T1-weighted volume dataset was normalized to Montreal Neurological Institute
(MNI) template space using diffeomorphic anatomical registration through exponentiated
Lie algebra (DARTEL)16 and segmented into different brain compartments, i.e. gray matter
(GM), white matter (WM), and cerebrospinal fluid (CSF) using the ‘unified segmentation’
algorithm of SPM12 with default parameters. Volumetric measures of brain structures were
calculated by voxel-by-voxel multiplication and subsequent integration of normalized and
modulated component images (GM, WM or CSF) with predefined masks in the same space.
Masks were derived from different probabilistic brain atlases, because not all regions of
interest are comprised in a single atlas: the Harvard-Oxford atlas of subcortical structures
distributed with the FSL packagel’=20 for the hippocampus, amygdala, caudate, putamen,
nucleus accumbens, pallidum and thalamus; the Hammers_mith atlas n30r8321 for third and
lateral ventricles; the LONI Probabilistic Brain Atlas (LPBA40)22 for all other structures.
GM, WM and CSF volumes and intracranial volume (ICV) were determined by the “Tissue
Volumes” utility of SPM12.23 The volumes of N=37 brain structures and compartments and
the areas of midsagittal planes across N=7 structures were determined. In the midsagittal
planes, several previous studies suggested the midbrain area and midbrain tegmentum area
as reliable markers of atrophy in PSP.24:25 For comparison, the midsagittal areas of other
structures (corpus callosum, pons and pars basilaris of pons, medulla oblongata, cerebellar
vermis) have also been determined. All cross-sectional results of ABV were ICV-corrected
and normalized to the mean ICV of the whole study population.26 Each dataset was
processed independently with the same protocol. Processing of follow-up scans did not
require co-registration to baseline scans. Differences in absolute volumes and areas between
baseline and follow-up were transformed to annualized percentage changes for each patient.

Statistical analysis

Data are given as mean = standard deviation, unless indicated otherwise. Normality of data
was verified with the Kolmogorov-Smirnov-test. Patients and controls were compared by
two-sample t-tests for age, and by chi-squared test for gender distribution. Score changes in
patients between baseline and follow-up were compared by paired t-test. P-values are shown
both uncorrected and corrected for multiple testing based on Holm’s method.2” We
calculated Pearson’s r for linear correlation analysis.

Calculation of standardized effect sizes and sample sizes

Sample size calculation was conducted using the pwr-package in R version 3.2.1 28 with
cases for which both baseline and follow-up measurements were available. Standardized
effect sizes were estimated as:

I J17AN
oAv (1)

where pAv and oAv are the mean and standard deviation of the observed annualized volume
differences in a particular intracranial structure or compartment without treatment. Sample
size calculations were based on a two-sided significance level (a) of 5%, and a power (1-B)
of 80%. Assuming a normal distribution and equal variances in two equally sized groups
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(control and intervention group), minimum required sample sizes per group for an
independent two-sample t-test were obtained using the following equation, where d is the
standardized effect size according to (1), and z* denotes the x" quantile of the standard
normal distribution:

9
N _14q . (z1-g+21-5) n foa/Z
B 2(ltg)

Assuming equally sized groups defined by the allocation ratio (with g = 1), one would yield:

15.6978
Nyroup=—55—+0.9604

Including e as the expected treatment effect (e.g. e = 0.5 for 50% reduction of atrophy rate)
the formula would be:

15.6978
Ngmup: W +09604

For a standardized effect size of 1, e.g., this would yield:

15.6978
group:ﬁ+0.9604:63.8 = 64
(1%0.5)

For the Mann-Whitney U test, the result is derived by dividing Ny, by 0.864.29

Study population

N=106 patients (97 from davunetide/9 from tideglusib; 56 female/50 male) received placebo
and had MRI data at baseline and follow-up of sufficient quality to be considered for
analysis. We excluded N=7 of these because of factors biasing volumetry (movement
artefacts, signs of head traumatization, different sequences at baseline and follow-up;
Supplementary Fig. 1). N=50 healthy controls from our previously reported series'! were
matched for age at baseline and gender distribution.

The clinical features of the included PSP patients and controls are reported in Table 1,
showing demographic data, rating scales scores at baseline and follow-up visits, 1-year
differences, standard effect sizes, and sample sizes required for a two-arm 1-year follow-up
therapeutic trial to detect 50%-change in the progression of these scales without adjusting
for an expected drop-out rate. These data differ slightly from our previous report® since the
former included all N=187 placebo-patients both trials, while the current work focuses
patients with available MRI data only. The davunetide study did not use NINDS-SPSP
criteria and thus did not distinguish between possible and probable PSP. From the tideglusib
study, 6 patients had probable, 3 possible PSP. Based on their inclusion criteria, both studies
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mainly recruited Richardson’s syndrome, but characterization of PSP-phenotypes was not
part of their protocol.

Volumetric analyses

Table 2 shows the ABV quantification of the N=44 brain structures of controls and patients
at baseline and follow-up, the mean differences between controls and patients at baseline,
the mean differences between patients at baseline and follow-up, and the standardized effect
sizes. The last three columns display the required numbers of patients per group in a
therapeutic study with an expected treatment effect of 20%, 30% or 50%, respectively, i.e.
when the annual volume change expected by the natural course of the disease is reduced by
these amounts (the two-sample t-test can be applied for normal distributions of volume
results, otherwise the Mann-Whitney U test would be appropriate).

The compartment with the highest effect size, i.e. the third ventricle, required a 45% smaller
number of patients than the clinical rating scale with the highest effect size (PSPRS total
score) to detect a treatment effect of 50% (N=32 vs. N=58, cf. last column in Table 1 and 2,
respectively).

To further minimize the numbers of patients required by combined analysis of individual
structures, we selected the three non-overlapping structures with the highest individual effect
sizes, i.e. the third ventricle, frontal lobe, and midbrain. The annualized percentage volume
changes of these structures were summed up for each individual patient, with negative signs
for the third ventricle, since the enlargement of the CSF space runs counter the atrophy of
the brain parenchyma. This approach further increased the effect size and reduced the
required sample size for detecting a 50% treatment effect to N=20, i.e. 65% less than the
PSPRS total score (Table 2).

For completeness, we also present the demographic and clinical data (Supplementary Table
1) and ABV analyses (Supplementary Table 2) of the total PSP cohort (N=106 patients)
without exclusion of technically compromised MRIs, which only marginally decreased the
standardized effect sizes and increased the required sample sizes, demonstrating the strong
reliability of this approach.

Correlation analysis

First, we analyzed if the degree of regional atrophy at baseline would predict the rate of
longitudinal atrophy in PSP patients during the follow-up period. Therefore, we calculated
on a group level the correlation of a) the mean cross-sectional difference at baseline between
the N=99 patients vs. all N=50 controls, with b) the mean longitudinal annualized change in
all patients. The correlation was moderate when including all structures as data points
(N=44, r=0.69, p<0.01), strong when including CSF structures only (N=3, r=0.99, p<0.05),
absent when including parenchymal structures only (N=41, r=0.08, not significant), and
absent when including frontal lobe, midbrain, and third ventricle only (N=3, r=0.97, not
significant). These data demonstrate that on a group level, the baseline atrophy of
parenchymal structures in PSP does not predict the atrophy rate in the following 1-year
period.

Mov Disord. Author manuscript; available in PMC 2018 February 12.
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Also when using the /ndividual patients’ values as data points (N=99), there was no
significant correlation between a) the cross-sectional %-differences to controls at baseline
with b) the longitudinal annualized %-change for the frontal lobe, midbrain, and third
ventricle and for their combination (frontal lobe + midbrain - third ventricle). These data
demonstrate that the degree of atrophy in individual PSP patients at baseline does not predict
the ensuing atrophy in these regions of interest. However, the %-difference vs. controls at
baseline in the CSF volumes in individual patients significantly correlated with their
longitudinal %-changes (r=0.31, p<0.01).

Finally, we analyzed if the rate of regional brain atrophy during the follow-up period would
predict the clinical disease progression. Therefore, we correlated the annualized change of
the three structures with the highest individual effect sizes (and their combination) with the
annualized change in the three most relevant clinical scales (Table 3). SEADL and PSPRS
total score significantly correlated with the volume change in third ventricle, frontal lobe and
midbrain individually. The highest correlation of SEADL, CGIDS and PSPRS total score
was observed with the combined volume change of these three structures.

Discussion

The study evaluated the 1-year change in brain structures by ABV on prospectively acquired
3D MRI datasets of N=99 placebo-treated PSP patients from the davunetide and tideglusib
trials. We found that the annualized % volume change of one single structure (third
ventricle) required 45% less patients than the clinical scale with the best effect size (PSPRS
total score) to detect a 50% treatment effect (N=32 vs. N=58), when including only patients
with excellent MRIs. Combined analysis of the three non-overlapping compartments with
the highest individual effect sizes (third ventricle, frontal lobe, midbrain) even allowed to
reduce the required sample size to N=20 (65% less than the PSPRS total score),
demonstrating low variability in the atrophy pattern in our cohort. Furthermore, the
combined volume changes of these three structures significantly correlated with the score
changes in relevant clinical scales (SEADL, CGIDS, PSPRS total score), suggesting this
imaging parameter to have clinical relevance as biomarker of disease progression. Thus, we
propose the combined analysis of volume change within 1-year in the third ventricle, frontal
lobe and midbrain as outcome measure for clinical trials aimed at determining disease
modification in PSP.

One prior monocentric prospective study in N=17 PSP patients analyzed MRI volumetric
changes in N=7 brain structures (brain, pons, midbrain, superior cerebellar peduncle,
cerebellum, lateral ventricles, third ventricle) at baseline and 1-year follow-up3° and
determined the midbrain volume as the parameter requiring the smallest sample size (N=147
for a presumed treatment effect of 30% and power of 90%). Another monocentric
prospective study in N=16 PSP patients analyzed MRI volumetric changes in N=5 brain
structures (brain, ventricles, superior frontal lobe, thalamus, midbrain) after a 1-year
interval3! and also identified the midbrain volume as the parameter requiring the smallest
sample size (N=84 for a treatment effect of 30% and power of 90%). A recent study®
analyzed the change rate in N=4 brain volumes (whole brain, ventricles, superior cerebellar
peduncle, midbrain) in N=189 placebo- and verum-patients from the davunetide trial, and
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again identified midbrain volume as best performing outcome measure for a 1-year trial
(N=113 at a treatment effect of 25% and power of 90%). The numbers in the studies
including both possible and probable PSP patients®-30 compare well with our results for
midbrain volume (N=100 for a treatment effect of 30% and power of 80%) and thus, suggest
reliability of this parameter across different populations and methods of volumetric analyses.
The smaller numbers reported by Whitwell et al.31 may result from the fact that they only
included patients with a clinical diagnosis of probable PSP (NINDS-SPSP criteria), whereas
the other studies®39 and our study also included patients with possible PSP or modified
diagnostic criteria, which may affect the variability in disease progression markers. Finally, a
most recent study 8 used SPM12-based longitudinal morphometric analysis and found that
the annual change in midbrain volume as outcome measure requires only 56% of patients as
the PSPRS. This rate compares well with the 63% observed in our study, which also used
SPM12. The different absolute case numbers resulting from the power calculations between
the former8 and the current work were most probably the result from differences in the study
populations.

The regions analyzed in these prior studies®8:39:31 have been selected on the basis of
preceding imaging and pathological studies, which had demonstrated atrophy in PSP
patients vs. healthy controls. Measurements of these regions, and ratios thereof (e.g.
midbrain-pons ratio, MR-Parkinson-index) proofed therefore very helpful as markers for the
cross-sectional differential diagnosis of Parkinson syndromes, 2425 however, only limited
data addressed the utility of these ratios as progression measurement.8

In contrast to these studies, we hypothesized here that the cross-sectional degree of atrophy
at baseline in patients vs. controls might not be reliable predictors for the ensuing
longitudinal atrophy rate in PSP patients, since regional atrophy rates might change during
the course of the disease. Particularly, regions showing already marked atrophy at baseline
might have lower atrophy rates during follow-up. Consistently, we did not find significant
correlations of baseline atrophy rates with the longitudinal changes in the N=41
parenchymal structures analyzed. Moreover, regions with similar degrees of baseline atrophy
(about 15%-16%) showed surprisingly high divergence in the 1-year volume change in our
cohort (e.g. cerebellum white matter +0.1%, pallidum —1.5%, midbrain —2.3%).
Furthermore, longitudinal atrophy rates do not translate linearly into sample sizes, since the
latter incorporate both the atrophy rate and the variability of the measurement, which again
depends on both inter-individual and methodological variability.

Therefore, we undertook for the first time an unbiased approach to identify the MRI
measurement providing the highest effect size by starting our analysis with N=44 brain
structures or compartments and identified unexpectedly the third ventricle as best individual
structure. Also, the approach to combine the annualized volume change in three non-
redundant brain structures had not been attempted in any prior study in PSP to our
knowledge. This approach seems promising, since it allows further reducing the required
sample sizes for clinical trials.

The observation that outcome measures based on neuroimaging can translate into very small
sample sizes for clinical studies has already been described for Alzheimer’s or Huntington’s
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disease or multiple sclerosis.32-35 Advantages of imaging above clinical parameters, which
have been reported previously3® and was also recognized in our study, are probably due to
the higher variability of clinical ratings, which reduces effect sizes. Among the
neuroimaging parameters ventricular volumes often achieve highest effect sizes, perhaps due
to more distinct boundaries than in other structures.32:33 Consequently, also in our study the
highest effect size was determined for a CSF compartment, i.e. the third ventricle. However,
combining several measures has been proposed to further increase effect sizes3” and also in
our study turned out to be the optimal approach.

Limitations of our study concern the study population, intra- scanner variability, longitudinal
fitting models, inter-scanner variability, and the generalizability of the results. All patients
included in our study fulfilled the MDS-criteria for probable PSP-Richardson syndrome
(“vertical supranuclear gaze palsy’ or ‘slow vertical saccades’, with ‘repeated unprovoked
falls within 3 years’ or “tendency to fall on the pull-test within 3 years’)38 and had an
annualized PSP-RS progression consistent with prior cohorts,> however, they were not
consecutively referred, but volunteers participating in clinical trials, and might therefore
differ from other PSP patients.

Controls were only scanned once, which did not allow accurately correcting for the
influence of aging on ABV. The calculation of longitudinal volume changes in individual
patients was mainly affected by intra-scanner variability, since baseline and follow-up MRI
was acquired on the same scanner using the same sequences for each patient. Intra-scanner
variability of atlas-based volumetry was less than 1% for most structures in a prior study
comparing two MRIs in single subjects.3° In the present study, atrophy rates (and
subsequently effect sizes and sample sizes) are based on the average of N=99 patients.
Consequently, intra-scanner variability influenced the results by a factor of 99 less, i.e., in
the range of 0.01% of the measured volumes. Compared to atrophy rates of the relevant
structures [2.6—7.6%], this influence can be regarded as negligible. The ideal modelling of
longitudinal volumetric changes and the choice of a suitable fitting model (e.g. linear or non-
linear, for example quadratic) are debated issues. There is evidence that non-parametric
approaches may be advantageous in certain instances.*0-42 With only two measurements
(baseline, follow-up) in the present study, we decided to calculate a simple volume
difference for each patient (corresponding to a linear fit) and to determine the mean volume
change in the cohort by averaging the patients’ results. We deliberately refrained from
applying more sophisticated nonlinear models for fitting volume changes since they would
only be sufficiently supported by more than two measurements in time. The MRIs of
different patients in this study were acquired in various centres and on different scanners.
These scanners may differ from each other by imaging quality, signal homogeneity and
contrast. Although regular phantom scans have ascertained quality standards in both the
tideglusib and davunetide studies, inter-scanner variability can be regarded as a
disadvantage. However, in the davunetide dataset, no significant effect of the MRI scanner
on longitudinal atrophy rates was identified.® Furthermore, recruitment at multiple sites and
imaging at different scanners reflects the realistic scenario for future clinical trials and
should be seen as advantage, since such multi-center analyses have better generalizability,
the feasibility of which is demonstrated in the current work.
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Although imaging-based outcome measures are not accepted as primary endpoints in phase
I11 trials aimed at demonstration of clinical efficacy to improve the feeling, functioning and
survival of patients, they might still be of high relevance in small scale proof-of-concept
studies, as interim read-out in longer efficacy studies, or as secondary outcome measures in
efficacy studies with a primary clinical read-out.33

In conclusion, we propose the 1-year change in the volumes of third ventricle, frontal lobe
and midbrain as combined imaging read-out for clinical trials in PSP, requiring the least
number of patients for detecting biological evidence for efficacy to slow down disease
progression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Raw T1 Image
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Figure 1.
Image processing and volume determination shown exemplarily for the left caudate nucleus:

1) Segmentation of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF)
compartments by applying the ‘unified segmentation’ algorithm of SPM12 to a T1-weighted
3D image. 2) Normalization of the resulting GM image in native space using diffeomorphic
anatomical registration through exponentiated Lie algebra (DARTEL) 16 with predefined
templates in Montreal Neurological Institute (MNI) space. 3) Multiplication of the
modulated GM image derived by DARTEL normalization with a mask of the left caudate
nucleus. In this example the masking image is derived from the Harvard-Oxford
probabilistic brain atlas of subcortical structures. 18-21 The voxel-wise multiplication results
in a modulated GM image with the caudate nucleus isolated. Due to ‘modulation’ of the
grey matter image, the effect of normalization (i.e. extension or shrinkage of the investigated
structure) is compensated for so that the sum of the residual voxels in the final image
represents the volume of the original structure in native space. For volume measurements of
white matter structures or CSF compartments the same image processing steps are based on
normalized and modulated white matter or CSF images, respectively.
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Héglinger et al.

Correlation between 1-year changes in clinical rating scales and annualized brain volume changes.

Table 3

SEADL CGIDS PSPRS-total
Third Ventricle r=-035 "% r=025"ms. | r=0.24%ns.
Frontal Lobe r=023"ms. | 1=009ns/ns. | = _p217ns.
Midbrain r=0.26"n.s. r=022%s. | r=-031"7"
Combined: Midbrain + Frontal Lobe - Third Ventricle | (=042 **%* | r=-028 *%* | r=-034 *%*

Page 22

Pearson’s r was calculated on the basis of N=95 cases with complete availability of all clinical and MRI data (in N=4 of the total N=99 cases
individual clinical data points were missing); P-values are shown uncorrected/corrected for multiple testing based on Holm’s method; n.s., non

significant;

*
P<0.05,

*:

*
P<0.01,

*:

Aok
P<0.001.
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