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PRIMARY-PRODUCTIVITY GRADIENTS AND SHORT-TERM POPULATION
DYNAMICS IN OPEN SYSTEMS

R. M. NiISBET, S. DIEHL,! W. G. WILSON,2 S. D. CooPER, D. D. DONALSON, AND K. KrRATZ

Department of Ecology, Evolution and Marine Biology, University of California,
Santa Barbara, California 93106 USA

Abstract. We present three models representing the trophic and behavioral dynamics
of a simple food chain (primary producers, grazers, and predators) at temporal scales shorter
than the scale of consumer reproduction, and at the spatial scales typically employed in
field experiments. These models incorporate flexible behavioral responses of organisms to
their predators and resources in spatially heterogeneous environments that are open to
immigration and emigration. The basic models include passive immigration at all trophic
levels, producer growth rates and losses to grazer consumption, grazer emigration rate as
a behavioral response to producer and predator densities, grazer losses to predator con-
sumption, and predator emigration as a function of grazer density. We model this system
as: (1) a set of ordinary differential equations (‘‘well-mixed model”’); (2) a set of partial
differential equations describing a population of discrete grazers foraging on discrete patch-
es of primary producers (‘‘discrete-grazer model”’); and (3) a set of simulation rules de-
scribing the movement and foraging of individual grazers and the growth of primary pro-
ducers on discrete patches in explicit space (‘‘individual-based model’’). The ordinary
differential-equation models produced similar results to individual-based models with well-
mixed producers, and the discrete-grazer and individual-based models produced similar
results when grazers possessed a long-term memory of patch reward rates. The well-mixed
and discrete-grazer models thus represent specific, limiting cases of the general individual-
based model.

Multiple equilibria and sustained oscillations are possible but are less likely in the
discrete-grazer and individual-based models than in the well-mixed model, because local-
ized foraging of discrete grazers leads to the rapid development of spatial heterogeneity in
producer biomass and, hence, to a decrease in overall primary production. All models
predict that stable equilibrium densities of all trophic levels increase with enrichment,
provided grazers increase their emigration rates as predator density increases. If increasing
predator density leads to decreasing grazer-emigration rates, predator and grazer densities
increase, but producer biomass may increase or decrease with enrichment. These results
contrast with predictions from models that assume ideal free distributions of grazers and/or
predators with respect to their resources. Our models also predict that densities at all trophic
levels will increase with increasing producer immigration, and that producer density will
decline with increasing grazer immigration and increase with increasing predator immi-
gration. Our qualitative findings on enrichment are used to interpret an experiment dealing
with the short-term dynamics of a stream community open to grazers and predators.

Key words: discrete-grazer model; food-chain dynamics; grazers, individual-based models; pop-

ulation dynamics in open systems; primary producers; primary-productivity gradients; trophic and
behavioral dynamics.

INTRODUCTION

Simple models of trophic dynamics have played a
significant role in increasing our understanding of
mechanisms influencing community and ecosystem
structure. Models of food chains in closed systems have
proven particularly instructive, owing to their sharp
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predictions concerning the responses of higher trophic
levels to changes in the fundamental quantities—Ilight
and inorganic nutrients—controlling primary produc-
tion. Assuming that individuals do not interfere with
each other, and hence that competition within consumer
trophic levels is mediated only through effects of con-
sumers on their resources, these models predict that
increases in primary productivity translate into in-
creased equilibrium biomasses of the top trophic level
and even-numbered trophic levels below it, whereas
the equilibrium biomasses of trophic levels at odd-
numbered positions below the top level do not change
(Rosenzweig and MacArthur 1963, Smith 1969, Oks-
anen et al. 1981; but see Abrams and Roth [1994a, b]
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for systems with unstable equilibria). These predictions
constitute a particularly powerful ‘“‘null hypothesis” for
comparisons to data, as deviations provide the starting
point for evaluating the importance of the many com-
plicating features of natural systems not included in
the basic model.

In this paper, we explore the short-term population
consequences of three deviations from the assumptions
of simple food-chain models: (1) most systems are
open, i.e., population dynamics are affected by not only
birth and death rates but also by migration and dispersal
processes (Cooper et al. 1990, Gaines and Bertness
1993); (2) the behavior of many (if not most) organisms
is flexible and adaptive, so that dispersal rates are in-
fluenced by the environment; (3) many systems are not
well mixed, and over many spatial scales populations
consist of heterogeneously distributed individuals
(Levin 1992, Cooper et al. 1997a and references there-
in) and interactions are more likely to take place among
neighbors than among spatially distant organisms (Mc-
Auliffe 1984, Pacala and Silander 1990).

Few attempts have been made to explore the popu- )

lation consequences of any of these factors in systems
with more than two trophic levels (e.g., the open food-
chain models of Ross et al. [1993, 1994], and Abrams’
[1984, 1992] models of flexible individual dispersal
behavior). Nor, to the best of our knowledge, have there
been any theoretical studies of the combined effects of
system openness, spatial heterogeneity, and the behav-
ioral flexibility of organisms on consumer—resource in-
teractions. In many environments, these features are
closely linked, because movement within and across
system boundaries is partly or totally under the behav-
ioral control of individual organisms.

Such theory would be potentially applicable in a
wide range of habitats (e.g., streams, marine benthos)
and, with minor modifications, would also be appli-
cable to the detritus food chain. The particular models
presented in this paper are motivated by our empirical
work in stream systems consisting of benthic algae,
invertebrate grazers, and vertebrate and invertebrate
predators (Cooper et al. 1997b). Most organisms drift
and/or move actively in streams, making migration a
significant factor affecting local population dynamics
(Townsend and Hildrew 1976, Cooper et al. 1990). Em-
igration of grazers and predators out of local patches
is mostly under the behavioral control of these organ-
isms and related to foraging return and predation risk
(Kohler 1985, Kohler and McPeek 1989, Sih et al.
1992). Also, in temperate streams, algae grow contin-
uously for much of the year, whereas reproduction of
many grazers and predators occurs annually. Thus we
model local population dynamics over time scales at
which grazers and predators do not reproduce, and
equilibria are determined only by algal growth rates
and by consumer dispersal and feeding rates.

Different species of grazers show a variety of move-
ment patterns during foraging, with important conse-
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quences for spatial heterogeneity in their algal re-
sources (Kohler 1992, Schmitt 1996). We therefore use
different modeling approaches that explore the extreme
cases of grazer foraging strategies, including grazers
that skim off local peaks in algal biomass and tend to
equalize standing stocks of algae over their foraging
range, and grazers that totally deplete local foraging
patches before they move on, thereby enhancing spatial
heterogeneity in algal biomass.

Our first family of models is formulated as ordinary
differential equations (ODEs). The use of the ODE for-
malism presupposes that population sizes are large, that
organisms are homogeneously distributed within the
system, and, consequently, that the dynamics of the
system can be described using per capita rates of feed-
ing, growth, and migration that depend on average pop-
ulation densities. From an individual-based perspec-
tive, ODE models assume a well-mixed system in which
all organisms of a particular species experience the
same average environment at any particular time. This
also corresponds to a situation where individual grazers
forage in a way that effectively homogenizes the bio-
mass of sessile algae.

Over certain spatial scales, it may be reasonable to
think of producer density as a continuous variable, but
to recognize discrete grazers. An example in our stream
system would be a mat of microalgae with mayflies as
grazers. Several recent papers have shown (using spa-
tially explicit simulations) that models of interacting
populations of discrete individuals may exhibit dynam-
ics that differ qualitatively from those of the analogous
systems of ODEs (e.g., Wolff 1988, DeRoos et al 1990,
McCauley et al. 1993, Durrett and Levin 1994, D. D.
Donalson and R. M. Nisbet, unpublished manuscript).
Our second family of models, discrete-grazer models,
assumes that discrete grazers forage in a way that leads
to the rapid development of a spatially heterogeneous
producer distribution. Mathematical tractability is
achieved through the use of an idealization that allows
us to describe the dynamics in terms of partial differ-
ential equations (PDEs) similar to those used to de-
scribe the dynamics of structured populations (e.g.,
Metz and Diekmann 1986).

Finally, and critical to establishing the credibility
and limitations of the previous two families of models,
we use a spatially explicit, individual-based simulation
model (IBM), which follows the movement and feeding
of individual organisms on a grid of discrete resource
patches.

We start by exploring the dynamic behavior of a two-
trophic-level system containing only primary produc-
ers and grazers and show that multiple equilibria and
sustained oscillations are possible with the ‘“‘well-
mixed” model. In contrast, multiple equilibria and os-
cillations are less likely in the ‘“‘discrete-grazer’’ mod-
els, consistent with results from IBM simulations. We
then explore the responses of two- and three-trophic-
level systems to gradients in enrichment and in im-
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migration rates, and use our results to examine exper-
iments involving primary productivity gradients in
streams.

MODEL FORMULATIONS

‘We model the population dynamics of benthic algae,
grazers, and predators within a fixed region of space
(e.g., stream reach), and over a limited period of time
during which reproduction of grazers and predators
does not occur. Immigration at all trophic levels is as-
sumed to be governed by external factors and to be
independent of population densities within the system.
In contrast, emigration rates of consumers may depend
on the densities of their resources and/or predators, and
feeding rates of consumers depend on the densities of
their resources. Growth of primary producers (algae)
depends on their own density. Note that we incorporate
no direct consumer density dependence (sensu Mur-
doch 1994) as no per capita rates affecting a particular
consumer’s dynamics depend directly on the density of
that consumer (Kratz 1996).

“Well-mixed producer’ model

The structure of the ‘“‘well-mixed”” model is sum-
marized in Table 1. The state variables are biomass
density of producers (i.e., dry mass of producers per
unit area), and numerical density (i.e., number of in-
dividuals per unit area) of grazers and predators. We
use numerical densities of consumers in order to be
able to legitimately include behavior such as emigra-
tion, which involves decisions by individuals, not bio-
mass units. The model equations involve functions de-
scribing producer growth, and consumer feeding and
migration. For maximum generality, we initially do not
assume particular functional forms. Instead, we assume
that these functions obey certain inequalities, listed in
Table 1 and discussed below.

Producer dynamics.—The model allows for both
passive recruitment (at a constant rate I, per unit area)
and internal growth of producers. The specific growth
rate is written in the form rp(A, K), where r represents
the maximum attainable growth rate, attained only
when A is close to zero, and K is the carrying capacity,
set by light or nutrients depending on the system under
study. The function p(A, K), is the fractional reduction
from this maximum growth rate at biomass density A,
and is assumed to be a decreasing function of A and
an increasing function of K. If, for example, algal
growth is logistic, the function would be

p(4, K) = (1 — AIK). 6)

Producers leave the system only through consumption
by grazers.

Grazer and predator dynamics.—Grazers and pred-
ators enter the system at constant rates I; and I, per
unit area. Grazers leave the system both through con-
sumption by predators and by emigration. Based on
empirical work in streams (Malmqvist and Sjostrom
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TABLE 1. The basic (well-mixed producer) model and its
components. All immigration rates are constant; emigration
rates are a response to the local environment.

A. Definitions
Variables

A(t) = Density of producers at time ¢ (biomass per
unit area)

G(t) =Density of grazers at time ¢ (no. of grazers
per unit area)

P(t) = Density of predators at time ¢ (no. of predators
per unit area)

Passive immigration
I, =Total producer supply rate from external
sources (biomass per unit area per unit time)
I = Total grazer supply rate from external sources
(grazers per unit area per unit time)
I, =Total predator supply rate from external
sources (predators per unit area per unit time)

B. Dynamic equations

A

i?t =1, + rAp(A, K) — f6(A)G (Producers)
dG
-(; = I — eg(A, P)G — fp(G)P  (Grazers)
dP

E = I, — Pep(G), where (Predators)

Feeding and growth
p(A, K) =Proportion of maximum specific growth rate
of producers
fo(A) =Functional response of grazers (producer bio-
mass per grazer per unit time)
f+(G) = Functional response of predators (grazers per
predator per unit time)

Emigration behavior

ec(A, P)=Per capita emigration rate of grazers
ep(G) = Per capita emigration rate of predators
Parameters

r = Maximum specific growth rate of producers
K = Producer carrying capacity (biomass per unit area)
fs(A)

= lim
A-0

o = Grazer attack coefficient

(area per grazer per unit time)

Assumptions
9 9
P <0 and £>0 foralla, K>0
9A oK
(Producer growth)
deg(A, P deg(A, P L
—% = 0 % =0 (Grazer emigration)
dep(G
ﬁ(—z =0 (Predator emigration)
G
9 i)
B—f > 0 B_g >0 (Functional responses)

1987, Kohler and McPeek 1989, Forrester 1994, K. W.
Kratz 1996 and personal communication), we assume
that grazer per capita emigration rates increase in re-
sponse to predator density and decrease in response to
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TABLE 2. Partial differential equations (PDEs) and defini-
tions for the ‘“‘discrete-grazer’” model. Further mathemat-
ical details are in Appendix A.

Variables
T = ‘“Age” of a patch (time since last attack)
n(t, t)dv = Fraction of patches aged 7 — 7 + dr at time ¢
a(7, f) = Producer biomass on a patch aged T at time ¢
A(0) =[5 a(r, Hn(r, Hdr = total producer biomass at time ¢
G(t) = Total grazer density at time ¢

Rates

w(?) = Attack rate per patch at time ¢
g(f) = Biomass growth rate on a patch aged T at time ¢
PDEs

on on
—=-—— - pn
ot aT w0
da _ _da
at oT
Boundary conditions
n(0, 1) = ()
a0, =0
Functions

+ g(a, 1)

oG(1)

w0 = T oA

¢ t)=IA+ra(l —%)—8a+ A

producer density but are independent of grazer density.
For example, we might have

es(A, P) = ego(l + vP)exp[—aA] )

where e, is the grazer emigration rate from an empty
system (i.e., no producers or predators present) and «
and v are parameters that describe how this rate changes
in response to producer and predator densities. Simi-
larly, the per capita rate of predator emigration is as-
sumed to be a decreasing function of grazer density.
We revisit these assumtions on emigration rates later
in the paper.

The functional responses of the grazers and predators
are increasing functions of their arguments, an as-
sumption that is normally plausible, but may be invalid
with certain foraging mechanisms (Abrams 1989,
1990); however for much of our analysis it is not nec-
essary to further restrict their shape (e.g., Holling types
I, II, and III are all permissible). Where specificity is
necessary (e.g., in comparing the predictions of our
three models), we use a type II functional response with

A
fold) = ——— 3)

1 + obA

where o represents the area searched per grazer per unit
time (Table 1), and b represents the handling time per
unit of producer biomass. Note that as we do not model
consumer growth or reproduction, the ‘“‘functional re-
sponse”’ may include all losses caused by the consumers,
not only true feeding losses. Thus, for example, in a
stream model we might choose a form that included
sloughing export of algae disturbed by grazers.

R. M. NISBET ET AL.
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1
2 084
vl
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< 06 . B
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< 0.4 1
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0 T T T . T =
0 1 2 3 4 5
Time
Fic. 1. Schematic concept of discrete-grazer model. Bro-

ken lines represent producer biomass on individual patches,
which drops to zero when a grazer visits the patch. The bold
continuous line is the average producer biomass.

“Discrete-grazer’’ model

The equations for the ‘‘discrete-grazer’” model are

listed in Table 2. We represent ‘‘space’ as an arena

made up of a large number of very small patches. In-
dividual grazers move randomly among patches and
feed on primary producers. We assume that the indi-
vidual primary producers are much smaller than the
grazers (e.g., microalgae and aquatic invertebrate graz-
ers), and that each patch is large enough to allow us
to model producer dynamics within the patch as a con-
tinuous process, but small enough that all producer
biomass in the patch is consumed if the patch is visited
by an individual grazer. The importance of individual
grazers is that they generate a distribution of producer
densities over the large number of small patches. Fig.
1 shows how this distribution arises: immediately after
an attack by a grazer on a particular patch, the producer
density on that patch is reset to zero, but the density
on other patches is unchanged. Following an attack,
the local producer density recovers in accordance with
the same ordinary differential equation (ODE) that we
use to describe producer dynamics in the well-mixed
system.

The global producer dynamics are described using
equations similar to those introduced by Hastings
(1991) in a theoretical study of metapopulation dynam-
ics in a system with intermittent, uncorrelated catas-
trophes on individual patches. Producer patches are
characterized by their ‘“age,” T where ‘‘age’’ means
time elapsed since the last visit by a grazer. We require
two functions: n(t, t), the age distribution of the cells
at time #, and a(T, #), the producer density on a patch
of age T at time . Like Hastings, we assume the number
of patches to be sufficiently large that the age-distri-
bution function may be regarded as continuous. For
example, when modeling mayflies grazing on a mat of
algae covering 10 m? of stream, an appropriate ‘‘patch’’
in this model might typically have an area of a few
square millimeters, leading to ~10° patches. With such
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a large number of patches, partial differential equations
provide a good approximation to the dynamics of the
age distribution. The equations we use are very similar
to those used to model size-structured populations (e.g.,
Metz and Diekmann 1986, de Roos 1997), and the read-
er is referred to that literature for mathematical details.
The precise biological interpretation of the terms in the
equations differs from these previous models, as here
we are modeling the distribution of producer biomasses
on a collection of patches rather than the age or size
distribution of a collection of individual organisms.
.The form taken by the equation in Table 2 for dn/ot
arises because two factors lead to changes in the num-
ber of patches of age T: aging (associated with the term
on/at), and grazing (the term w(#)n). The boundary con-
dition n(0, #) takes a very simple form, because the
total rate of loss of patches through grazing is exactly
equal to the rate of creation of new patches of age zero.
The equation for da/dt has two terms on the right-hand
side because growth and aging occur simultaneously.

We achieve a corresponding major simplification in
-modeling grazer dynamics if we assume that the total
number of grazers is sufficiently large that demograph-
ic stochasticity (Nisbet and Gurney 1982) is unimpor-
tant, so that we can treat the fotal number of grazers
in the system, G(#), as a continuous variable. In our
previous example of the mayflies in a stream, this ide-
alization would be reasonable if the mayfly population
in the study area consisted of around 100 or more in-
dividuals. Grazers are assumed to “‘explore” the sys-
tem rapidly and to attack patches randomly at a rate
w(?) that may depend on the average producer density
in the system, A(#) (for example through satiation), but
is independent of local producer density; thus the rate
i (#) at which grazers attack cells is equal to G(¢) times
some function of A(f). For example, with a type II
functional response, we have

oG
w0 = T A

Similarly, the rate es(f) at which grazers leave the
system is assumed to depend only on the average pro-
ducer density, A(¢), and/or on the density of predators
in the system, P(?), e.g., through the function repre-
sented in Eq. 2. Thus grazers obey the same ODEs as
in the well-mixed system (Table 1). A similar argument
applies to predators.

Thus far, the model allows no mixing of producers
among patches. This is deliberate: our aim is to con-
struct a model that will highlight the consequences of
deviations from the common assumption of perfect
mixing. However, for the purpose of comparison with
the other models, it is useful to incorporate (imperfect)
mixing by assuming that a fraction, &, of producer bio-
mass is constantly lost from each patch to a hypothet-
ical “‘pool’” that is mixed and redistributed evenly
among patches. If ¢ is large compared with all other
rates in the system, at any given time, all patches will

C))
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TABLE 3. Notation for the individual-based model. The
rules are described in the text.

Symbol Definition

t Time

At Time increment in simulations (small)

N Total number of algal patches

a, Algal density in patch i

r Intrinsic growth rate of algae (takes same
value for all patches)

Carrying capacity for a patch

Producer immigration rate per patch

Speed of grazer movement

Probability per unit time that grazer changes
direction

Maximum gut content of grazer

Handling time during which grazer empties gut

Memory parameter ’

Minimum residence time for grazer on a patch

Nl Tx e <R

have essentially the same producer biomass, and we
expect the dynamics to resemble those of the well-
mixed producer model. We emphasize that this repre-
sentation of mixing is introduced in order to facilitate
model comparison, and is not a serious representation
of the biology of the stream systems that motivated this
study.

Spatially explicit, individual-based model

The notation for the individual-based model is listed
in Table 3. This model differs from the previous ‘‘dis-
crete-grazer’’ model in that the patches containing pri-
mary producers now have well-defined locations in
space, being arranged on a square 128 X 128 lattice.
Each grid square has unit area. For computational con-
venience, we use cyclic boundary conditions, i.e., the
lattice has the topology of a torus. Individual grazers,
which are characterized by the two state variables gut
content and location in space, move around and feed
on primary producers, emptying any patch they attack.
We restrict our studies of this model to the case where
there are no predators in the system.

Time advances in small discrete steps of duration At.
At the beginning of each simulation step the producer
biomass in each patch is incremented by an amount
Aa, = [I, + ra(l — a/K)]At, where q, is the producer
biomass in patch i. This is a discrete-time analog of
the local ODE in the discrete-grazer model. If @, + Aaq,
> K (overshooting by discretization), the updated patch
biomass is set to K. Primary producers do not grow
laterally into neighboring patches.

Grazers move in straight lines at a fixed speed V,
and have a probability ¢A? of changing direction at
each time step. If there is a change in direction, the
new direction is uncorrelated with the previous direc-
tion, chosen at random from a uniform distribution over
0-360°. After each time step, every grazer’s spatial
coordinates are matched to a specific patch i. Unless
the grazer is sated, all of the producer biomass in this
patch is consumed by the grazer; consequently the
patch’s producer biomass is set to zero, and the grazer’s
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gut content is incremented by a;. On the rare occasions
where two or more grazers occupy the same patch, the
first grazer to be matched with the patch consumes all
of the producers. After consuming R biomass units of
algae, the grazer is assumed to be sated, irrespective
of the time taken for this consumption, and it enters a
latent period of duration b during which it continues
to move around on the lattice but does not consume
algae. This is the implementation of a Type II func-
tional response used by de Roos et al. (1990). Provided
we choose V > 2/At (as we did in all simulations re-
ported in this paper), the grazer will never be in the
same patch at successive time steps, and the area visited
per unit time (1/Af) is independent of V.

During each time step, a constant number of I;Af
new grazers enters the system from outside. Immigrants
are assumed to have gut content zero and are placed
randomly on the lattice. The probability for an indi-
vidual grazer to leave the lattice (emigrate) during a
particular time step does not depend on the average
producer biomass (as in the previous two models), but
depends on that particular grazer’s estimate, w, of av-
erage producer biomass. Thus we require rules describ-
ing how a grazer ‘“‘learns’’ the state of its environment,
and ‘‘computes’’ the instantaneous value of .

Our principal assumption is that the grazer’s estimate
of producer biomass is based only on knowledge ob-
tained from patches it has visited. Upon immigration,
the grazer’s 7 value is set equal to the producer biomass
in the patch on which it settles. At later times, the value
of m for a grazer on patch i is updated according to the
rule

Terar = YQiriar + 1 - 'Y)Trx- (5)

The parameter y (0 < y = 1) characterizes the grazer’s
“memory’’; an individual with y = 1 has no memory,
whereas an individual with y = 0 would never update
its estimate from the instant it arrives on the lattice.
With intermediate values of vy, the individual grazer is
estimating its environment by exponential smoothing,
with significant ‘“memory’’ of its experience over a
number of time steps of order 1/y. Exponential smooth-
ing is described in detail in most texts on time-series
analysis (e.g., Chatfield 1975); it is arguably the sim-
plest approach to forecasting the value of a fluctuating
variable from a single, short, time series, and is a nat-
ural, if simplistic, way to describe learning. In order
to allow sufficient time for a reasonable initial estimate
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of the ‘‘average’ producer biomass, we arbitrarily re-
quire that, after settling on the lattice, individuals re-
main for a certain minimum time 7, before emigration
is allowed. After that time has elapsed, a grazer emi-
grates in accordance with the same rule used in the
previous models, except with m replacing A. Thus the
emigration probability per time step is egexp(—am)At
(cf. Eq. 2). Because sated grazers continue to move
around and assess the environment, we assume that gut
status does not directly affect a grazer’s probability of
emigrating.

DYNAMICS OF THE PRODUCER—-GRAZER SYSTEM

The repertoire of possible dynamical behavior in our
models is very great, and an exhaustive mathematical
analysis would be a major undertaking. Previous work
on linear food chains (e.g., Hastings and Powell 1991)
leaves little doubt that there will be choices of functions
and regions of parameter space for which chaotic dy-
namics can occur; however, the primary focus of this
paper is stable equilibria, and we restrict our analysis

" to establishing that there is a wide range of situations

in which unique, stable equilibria can be expected. For
simplicity, we work primarily with the two-level mod-
els that are obtained if there are no predators, and iden-
tify those circumstances under which the equilibria are
either (a) non-unique, or (b) locally unstable.

Intuition on the dynamics produced by the three
types of models is helped by establishing connections
among them. Thus we start by establishing that the
well-mixed-producer model is a limiting case of the
other two if reassortment of producers among patches
is sufficiently rapid, and that the discrete-grazer model
is a good approximation to the individual-based rep-
resentation provided grazers base their decision to em-
igrate on a sufficiently large number of patches. We
then study two problems related to equilibria: non-
uniqueness (i.e, existence of more than one possible
equilibrium), and local instability leading to oscilla-
tions.

Interrelationships among the models

The discrete-grazer model should behave like the
well-mixed ordinary differential equation (ODE) mod-
el if the mixing rate among patches, ¢, is very large.
Similarly, if producers were redistributed evenly
among all patches on the lattice at the beginning of
each time step, the individual-based model (IBM)

—
FIG. 2. Simulations illustrating the relationship among the three models. For detailed explanation see Dynamics of the
producer—grazer system: Interrelationships. . . . Parameters for the well-mixed ODE (ordinary differential equation) model

are: I, = 0.02, r = 1.5, g0 = 1.0, = 4,0 =1, b = 1, and I; = 0.1 (row 1). The discrete-grazer model runs used these
parameters together with ¢ = 50 (row 2) and € = O (row 4). The IBM (individual-based model) runs used the well-mixed
model parameters, except for a(=1/At; see Model formulation: Spatially explicit individual-based model) and b, and in addition
had At = 0.01, V = 0.022, R = 3, b = 0.03, and ¢ = 0.1. The IBM runs in rows 3 and 5 had y = 0.1 and T, = 0.1. The
‘“‘short-memory”’ runs in row 6 had vy = 0.9 and T, = 0. In all panels, the broken line represents producer density, the
continuous line grazer density. (For definitions of most variables see Tables 1 and 3.) In all cases the y axis represents relative

population density.
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would be expected to exhibit broadly similar dynamics
to the well-mixed ODE model.

The top three rows of Fig. 2 confirms the validity of
these claims for runs using all three models with the
model functions given by Eqs. 1-3. The only exception
occurred with parameter combinations for which the
ODE model produced weakly damped oscillations of
algae and grazers (K = 2.4 in Fig. 2). The correspond-
ing IBM runs exhibited sustained oscillations. We iden-
tified the hunger state of immigrant grazers as the pri-
mary reason for this discrepancy. In the ODE model,
immigrants are identical to residents in that both re-
spond to mean algal density. In the IBM, immigrants
have gut content zero and feed in accordance with their
individual hunger states, which are different from the
mean hunger state of residents (McCauley et al. 1993).
During periods of low algal densities and declining
grazer densities, immigrants with zero gut content con-
stitute an increasingly large proportion of the grazer
population, resulting in a higher overall grazing rate
than in the ODE model. This tends to accentuate pop-
ulation troughs and may inhibit the decay of oscilla-
tions.

Rows 4 and 5 of Fig. 2 compare discrete-grazer and
IBM outputs for a situation where the IBM’s individ-
uals have long memory (y = 0.1). The IBM results
show demographic stochasticity due to the finite lattice
used in the simulations, but the plots confirm that the
discrete-grazer representation is consistent with the in-
dividual-based behavior, provided that individuals base
their decision to emigrate on the average resource en-
vironment experienced over many time steps. The im-
portance of the memory of individual grazers is dem-
onstrated by the plots in the bottom row of Fig. 2, which
come from IBM runs for individuals with very short
memory (y = 0.9). The equilibria in these simulations
have fewer grazers and higher producer biomass than
those from the runs with long memory, since grazers
enountering even a single low-density patch have a
high probability of leaving.

Multiple equilibria

We first establish that multiple equilibria are possible
in the well-mixed producer model. To demonstrate this
property in the simplest possible context, we initially
make one additional assumption, namely that the em-
igration rate of grazers is independent of producer bio-
mass. Thus the equilibrium grazer density is simply

G* = I;/eg. ©

Once the grazer equilibrium is known, the producer
equilibrium is obtained from the equation for producer
dynamics, namely

I, + rA*p(A*, K) — f(A*)G* = 0. @)

Depending on the form of the functions p(A, K) and
f5(A) this equation may have many solutions (e.g., Noy-
Meir 1975, May 1977). In the special case where I, =
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0, one of these is always A* = 0. This zero solution
is stable if

r < oG*. (8)

The parameter o, formally defined in Table 1, can be
interpreted as the area searched per grazer per unit time.
Thus if the equilibrium grazer density is sufficiently
high, the primary producers are unable to persist in the
system.

At equilibrium the total grazing rate must balance
the combined effects of producer immigration and
growth. Fig. 3 illustrates the possibilities with logistic
producer growth and three possible forms of functional
response for the grazers: type I, type II, and type IIL
With a type I functional response in a system closed
to input of producers (I, = 0), there are only two pos-
sibilities: if r > o G* (Fig. 3a), there is a unique, stable
producer equilibrium, but if this inequality is reversed
(Fig. 3b), the equilibrium grazing rate exceeds the max-
imum possible producer growth rate and the producers
are eventually cleared from the system. If I, > 0 (not

" shown), there is always a stable producer equilibrium.

With a type II functional response, two stable equi-
libria are possible only if » < oG* (Fig. 3f and g). In
this case, the grazers may drive the producers extinct
if I, = 0. If I, > 0, the lower of the stable producer
equilibria is nonzero and represents primarily a balance
between producer immigration and grazing losses. The
higher equilibrium is present in all cases considered
(Fig. 3b, c, f, and g), if grazer satiation reduces the
grazing rate sufficiently. In the absence of producer
immigration, only a type III functional response can
produce two, nonzero, stable equilibria (Fig. 3h).

If grazer emigration rate is a function of producer
biomass, the equilibria cannot be described using Fig.
3, and it is necessary to consider zero isoclines. The
previous assumption of grazer emigration being inde-
pendent of producer biomass yields a grazer isocline
parallel to the producer axis. In contrast, if per capita
grazer emigration is a decreasing function of producer
biomass, the grazer isocline has a positive slope (Fig.
4). The slope of the grazer isocline has quantitative
implications for the producer and consumer equilibria
(see Effects of enrichment and immigration . . . : Effects
of enrichment, below), but does not affect the quali-
tative conclusions on the number and stability of equi-
libria derived from Fig. 3. This can be seen easily by
comparing the corresponding panels of Figs. 3 and 4
(i.e., Figs. 3c vs. 4a, 3f vs. 4b, 3g vs. 4c).

Multiple equilibria are also possible with the dis-
crete-grazer model, but are much less likely (in the
sense that they are found in a much smaller region of
parameter space). This is most easily demonstrated by
calculating the total rate of increase of the producer
population (=total primary production, the integral in
Eq. A.2 [see Appendix A]) and comparing the result
with that for the well-mixed model. Numerical calcu-
lations show that the effect of heterogeneity in producer



November 1997

a)  r>0G* I,=0,typel

m stable \
O unstable \

c) r>0G* 1,>0, type Il

Algal production and consumption rates

SHORT-TERM DYNAMICS IN OPEN SYSTEMS 543

e) r<oG* I,=0,typel

f) r<oG* 1,=0,typell
A yp

Algal biomass

FiG. 3.

Number and stability of equilibria in a producer—grazer system with logistic growth of the algae and grazer

emigration independent of algal density. Hump-shaped curves represent producer production rates at low K (-« ) and high

K (— —), respectively;

= total producer loss rates caused by grazing, assuming linear (type I), type II, or type III

functional responses of the grazers; O = locally unstable equilibria, ll = locally stable equilibria.

biomass among patches is always to reduce total pri-
mary production (Fig. 5a), and that the producer iso-
cline is then much less likely to have a significant
“hump’’ (Fig. 5b). Thus, multiple equilibria are always
less likely in the discrete-grazer model than in the well-
mixed model.

We have also investigated the occurrence of multiple
equilibria with our individual-based model. For con-
sistency with the previous analyses, we fixed the num-
ber of grazers on the lattice. In the case of constant
mixing of the system, the IBM produces multiple stable
equilibria with domains of attraction that closely match
the solutions of the corresponding ODEs, but as with

the discrete-grazer model, these multiple equilibria
commonly disappear when mixing is removed.

Producer—grazer oscillations

If grazer emigration rate depends on producer bio-
mass (e.g., by Eq. 2), then the system may exhibit
sustained oscillations similar to those found in standard
consumer-resource models of closed systems (with
consumer reproduction). Fig. 2 (top row) shows a spe-
cific example where increases in K gradually destabi-
lize a well-mixed system and eventually produce pop-
ulation cycles through a similar mechanism to the par-
adox of enrichment in closed-system, multi-generation,
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FiG. 4. Examples of the effects of increasing producer carrying capacity (K) on equilibrium levels of producers and
grazers in a producer—grazer system with grazers having a type II functional response and grazer per capita emigration being
a decreasing function of producer density. Lines (isoclines) represent combinations of producer and grazer densities at which
populations do not change. Producer densities (-+----- ; — —) increase (decrease) below (above) the isoclines (dA/dt = 0).
Grazer populations ( ) increase (decrease) to the right (left) of the isoclines (dG/dt = 0). Where producer and grazer
isoclines intersect, the system is at an equilibrium; O = locally unstable equilibria; ll = locally stable equilibria. In the
absence of producer immigration (a, b), the intersection of the grazer isocline with the grazer axis is also an equilibrium.
(a) Producer immigration rate I, = 0, low grazer immigration. The system has a stable equilibrium that will eventually
become unstable, yielding limit cycles if K increases even more than shown. (b) I, = 0, high grazer immigration. At low K,
grazers exclude producers from the system. At high K, two stable equilibria are possible, but one has zero producer density.
(c) I, > 0, high grazer immigration. The system can have two stable equilibria at which producer biomass is nonzero. In all
cases, the equilibrium levels of both producers and grazers increase with K for stable equilibria (with nonzero producer

biomass).

population dynamics (Rosenzweig 1971). Cycles occur
through the “‘prey-escape’” mechanism (de Roos et al.
1990): the producer population escapes the control of
the consumer population and grows rapidly until self-
limited. Once producers become self-limited and start
to decline, emigration of grazers is too slow to prevent
rapid decline of the producers to levels well below
equilibrium. Eventually, enough consumers emigrate
for the producer recovery to start and the cycle is re-
peated.

Small-scale producer heterogeneity makes oscilla-
tions less likely. We have already shown that if pro-
ducer biomass is homogenized at each time step, the
discrete-grazer model and the IBM exhibit similar dy-
namics to the well-mixed model (Fig. 2). The lower
panels in Fig. 2 show an example of the stabilizing
effect of producer spatial heterogeneity. We have not
attempted a formal local-stability analysis of the dis-
crete-grazer model, but the plots of producer produc-
tivity and producer isoclines in Fig. 5 suggest that the
explanation may be similar to that invoked to explain
the reduced likelihood of multiple equilibria: a reduc-
tion in productivity removing the ‘“hump” from the
isocline. This argument is not rigorous, as there is no
simple interpretation of points above and below the
isoclines with the discrete-grazer model. For example,
values of G and A above the line may represent a system
in which A is increasing or decreasing, depending on
the instantaneous biomass distribution.

EFFECTS OF ENRICHMENT AND IMMIGRATION ON
EQUILIBRIUM DENSITIES

Effects of enrichment

One important property of simple models of closed
two-level producer—consumer systems is that the equi-
librium density of producers is set solely by parameters
describing properties of the consumer. Consequently,
an increase in the values of r or K (the parameters
describing producer growth) leads ultimately to an in-
crease solely in consumer density, provided the equi-
librium remains stable. Fig. 4 shows isoclines for a
well-mixed open producer—grazer model with producer
growth and grazer feeding and emigration described by
Egs. 1-3. Three situations are displayed. In Fig. 4a,
there is only one stable equilibrium irrespective of the
value of K, whereas Fig. 4b and c depicts situations
where increasing the value of K leads to the appearance
of multiple stable equilibria. These figures suggest that
stable, nonzero, equilibrium levels of both producers
and consumers will increase with increasing K, pro-
vided the equilibrium is locally stable.

This result does not depend on the specific functional
forms chosen to describe grazing, emigration and/or
producer growth. In Appendix B we show that it is
possible to determine the signs of a sufficient number
of elements of the Jacobian matrix of the general model
described by the inequalities in Table 1 to prove, for
locally stable equilibria, the generality of the positive
relationship between K and the equilibrium densities
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Fi1G. 5. Typical forms for (a) producer growth curves and (b) producer isoclines for the well-mixed model and discrete-

grazer model.

of producers and consumers. In Appendix C we then
use the same method to establish that this prediction
extends to three-level systems. For our most general
ODE (ordinary differential equation) model of an open
three-level food chain (Table 1), equilibrium levels of
producers, grazers, and predators all increase with K,
provided the equilibrium is locally stable (Fig. 6a,b).

An analogous result cannot be proved rigorously for

scope of this paper. However, in all cases studied nu-
merically, equilibrium densities of all trophic levels
increase with K, a result we suspect is general. We have
not conducted an exhaustive check of the K dependence
of equilibria in the IBM (individual-based model), but
previous demonstrations that this model’s dynamics are
broadly similar to those of the discrete-grazer model
make it likely that here, too, all stable equilibria in-

crease with enrichment.
The assumption that grazers increase their emigra-

the discrete-grazer model without performing a local
stability analysis, which as already noted is beyond the

a) <)
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FiG. 6. Examples of isoclines of a producer—grazer—predator system. For clarity of presentation, the producer isocline is
shown separately from the grazer and predator isoclines. In all panels, the origin is marked with O. (a) Producer isocline
(dA/dt = 0). Producers increase when the system is below the isocline and decrease when the system is above the isocline.
Producer immigration is assumed to be zero. Nonzero producer emigration would yield a three-dimensional extension of the
producer isocline in Fig. 4c. With increasing K, the producer isocline moves upward and to the right. (b) and (c) Grazer
(dG/dt = 0) and predator (dP/dt = 0) isoclines for two different assumptions about grazer emigration behavior. Grazers
increase when the system is below the grazer isocline and decrease when the system is above the grazer isocline. Predators
increase when the system is above the predator isocline and decrease when the system is below the predator isocline. The
system is at an equilibrium where producer, grazer, and predator isoclines intersect. In (b) grazers increase their emigration
rates with increasing predator abundance, as assumed in our well-mixed model. In that case, stable equilibria are associated
with the descending limb of the algal isocline. Consequently, as K increases, the stable equilibrium moves up along the thick
solid line, i.e., the equilibrium densities of algae, grazers, and predators all increase. In (c) grazers are assumed to decrease
their emigration rates with increasing predator abundance. In that case, stable equilibria can be associated with either the
ascending or the descending limb of the producer isocline. Stable equilibria associated with the descending limb of the
producer isocline move up and to the right along the front part of the thick solid line. Stable equilibria associated with the
ascending limb of the producer isocline move up and to the left along the distant part of the thick solid line. Consequently,
with increasing K, grazer and predator equilibrium densities always increase, but producers may either increase or decrease.
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tion rates in response to increasing predator density is
probably not universally valid. Depending on predator
foraging mode (e.g., benthic or drift feeding), some
prey taxa may actually decrease their emigration rates
in the presence of predators (Andersson et al. 1986,
Bechara et al. 1993, Douglas et al. 1994, Wooster and
Sih 1995, Dahl and Greenberg 1996). If so, the grazer
isocline will shift upward and to the left (compare graz-
er isoclines in Fig. 4b and c), creating the potential for
two alternative stable equilibria, one of which behaves
as above with producers, grazers, and predators all in-
creasing with K. The second equilibrium, which only
occurs if the peak of the hump in the producer isocline
is relatively high, but which may be the only equilib-
rium if K is high, occurs at a lower producer biomass
and higher abundances of grazers and predators than
the first equilibrium. In this case, grazers and predators
still increase, but producers decrease with increasing
K. Thus, the direction of change of the producer level
with changing K is indeterminate, as can be shown
analytically using the method outlined in Appendix C.
The dynamics of a three-level model with a negative
relationship between grazer emigration and predator
density may in reality be even more complex, because
the emigration and foraging behavior of grazers are
probably not independent. A grazer that reduces its
emigration rate in response to predators is likely to
reduce all risky activities, thereby affecting grazing
rates and predator feeding and emigration rates.

Effects of immigration rates

With the ODE model, the same approach used to
analyze the effects of changes in K on equilibrium den-
sities can, in principle, also be used to analyze the
effects of changes in immigration rates on equilibrium
densities of all trophic levels. Again, the analysis ap-
plies only to equilibria that are locally stable. The ef-
fects of changes in algal immigration rate on the equi-
librium densities of all trophic levels are equivalent to
the effects of changes in K, i.e., equilibrium densities
of producers, grazers, and predators all increase with
increasing I,.

Because the sign of the effect of producers on their
own growth rate at equilibrium is undetermined in both
the two- and three-level models, we can only make
limited predictions of the effects of changes in con-
sumer immigration rates (see Appendices B and C).
Increases in grazer immigration rate have a negative
effect on equilibrium producer biomass in both the two-
and three-level models. Producer biomass always in-
creases in response to increases in predator immigra-
tion rate. The analyses in Appendices B and C show
that the effects of changes in consumer immigration
rates on consumer densities cannot be determined, and
it is possible that the signs of these effects are contin-
gent on the equilibrium densities. Under most condi-
tions, increasing I; (the total grazer supply from ex-
ternal sources) will either increase G* (the equilibrium
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grazer density) or, if G* decreases, will destabilize the
equilibrium (and our analysis no longer applies). How-
ever there are cases where an increase in I; decreases
G*. For example, consider I, = 0; r = 1.5; K = 2.5;
e =05 a=4,0=1;,b=1;1;=0.045 and I; =
0.5 (see Table 1 for symbol definitions).

Effects of passive immigration vs. ideal free
distributions: comparisons to empirical data

The prediction that the abundances of all trophic
levels should increase with the carrying capacity of the
basal resource crucially depends on the assumption that
immigration into the system at all trophic levels is in-
dependent of the system’s internal state. Alternative
predictions arise if we consider the open systems of
our models as components (‘‘habitats’’) within the larg-
er range of a highly mobile top consumer and if we
assume that top consumers distribute themselves
among habitats in an ideal free manner (sensu Fretwell
and Lucas 1970). The latter assumption implies that,

- at equilibrium, the levels of the top consumers’ re-

sources are equal among habitats and independent of
habitat productivities (Gilliam and Fraser 1988, Woot-
ton and Power 1993, Hugie and Dill 1994, Oksanen et
al. 1995). Applied to a three-level stream system, a
model assuming an ideal free distribution of predators
would predict constant grazer abundances across prod-
uctivities, but positive relationships between habitat
productivity and the abundances of algae and predators
(Wootton and Power 1993). Similarly, in a two-level
system, algal biomass should be independent of pro-
ductivity, whereas grazer abundance should increase
with productivity (Sarnelle 1992, Oksanen et al. 1995).

Empirical data that can be used to discriminate
among models assuming passive vs. ideal free immi-
gration of stream organisms are scarce, because stream
enrichment studies have often been conducted in sys-
tems that were closed to grazer migration (Hill and
Harvey 1990, Rosemund 1993, Rosemund et al. 1993),
or did not report the responses of consumers (Stockner
and Shortread 1978, Perrin et al. 1987, Stewart 1987).
Organisms that move actively up and down streams
may be able to achieve ideal free habitat distributions.
For example, the distributions of grazing catfish among
pools in a Panamanian stream conformed to an ideal
free model, and the catfish kept algal biomass constant
across pools differing in algal productivity (Power
1984, Oksanen et al. 1995). Similarly, algal standing
stocks in Tennessee streams responded to small-scale
(20 X 20 cm) enrichment only in grazer-exclusion treat-
ments. In treatments open to grazer migration, grazing
snails aggregated in enriched sites and kept algal bio-
mass similar across productivities (Hill et al. 1992). In
contrast, when whole-stream sections (120-150 m)
were enriched, both algae and grazing snails showed
positive responses after 100 d (Elwood et al. 1981),
suggesting that ideal free distributions can only be ex-
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pected at spatial scales close to the ranges of active
movement of consumers.

In contrast to fish, many stream invertebrates in their
aquatic stages have limited capacities to move up-
stream, but can drift kilometers downstream over a
1-mo period (Hershey et al. 1993). Drifting inverte-
brates probably have limited abilities to assess habitat
quality downstream, and the assumption of our models
that immigration into a habitat is unidirectional and
independent of that habitat’s quality is likely to be valid
for most drifting invertebrates. In accordance with our
model predictions, Hart and Robinson (1990) observed
an increase in the abundances of both periphyton and
grazing caddisfly larvae in enriched, open in situ stream
channels (0.3 X 3 m) compared to open, unenriched,
control channels. Similarly, the abundances of both pe-
riphyton and grazing mayflies increased downstream
of experimental fertilization in an Alaskan stream (Pe-
terson et al. 1993), owing to reduced per capita emi-
gration of mayflies at the enriched site (Hershey et al.
1993). Unfortunately, these results cannot be inter-

preted in the framework of our models, because pred- -

atory fish were prevented from moving between en-
riched and control sites.

To our knowledge, the only study of enrichment in
an open stream system that reports abundance re-
sponses of three trophic levels was performed by Woot-
ton and Power (1993). Wootton and Power created a
gradient of primary productivity through differential
shading of 0.7 X 3 m cages, which excluded secondary
carnivores (large fish), but did not restrict the move-
ment of grazers and their predators (small fish, pred-
atory invertebrates). Biomasses of all trophic levels
remained roughly constant between days 30 and 55,
suggesting that experimental cages had reached equi-
librium. Both algae and predators increased with in-
creasing productivity (irradiation). Grazer biomass also
increased with increasing productivity, but the rela-
tionship was not statistically significant, leading Woot-
ton and Power (1993) to conclude that there was no
relationship between irradiation and grazer biomass. It
can be argued, however, that the lack of statistical sig-
nificance reflected low statistical power rather than the
lack of a relationship. In fact, the positive relationship
between irradiation and grazer biomass on day 55 be-
comes statistically highly significant after the removal
of one outlier that is responsible for >70% of the unex-
plained variance (Fig. 7). Note that the slope of the
regression line is only slightly affected by the removal
of this outlier. The positive relationship between pro-
ductivity and grazer biomass suggests that passive im-
migration might be a reasonable assumption for at least
some of the grazers and their predators.

DISCUSSION

Implications of open system boundaries and the
temporal and spatial scales of empirical studies

Open system boundaries allow short-term equilibria
to be set by the balance of population gains (immigra-
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FiG. 7. Relationship between manipulated light level (ir-
radiation, a correlate of primary productivity) and biomass
of invertebrate grazers on day 55 of the experiment by Woot-
ton and Power (1993). Hatched line: linear regression in-
cluding all 25 data points (Grazer biomass = 0.81 +
0.0008(Light), > = 0.06, P = 0.23). Solid line: linear re-
gression excluding the outlier marked by [J (Grazer biomass
= 0.48 + 0.0009(Light), > = 0.31, P = 0.005). Data from
Wootton and Power (1993).

tion) and losses (emigration, mortality) of consumers.
The short response time for the approach to equilibrium
makes model predictions highly testable at the temporal
and spatial scales at which field experiments are rou-
tinely conducted. For example, the experiments by Hart
and Robinson (1990) and Wootton and Power (1993)
were carried out in 3-m-long channels and lasted three
and two months, respectively, which was probably long
enough to yield equilibria for taxa with high per capita
drift rates.

It is important to note that per capita emigration rates
as treated in our models are sensitive to the size of the
system (e.g., the size of channels or cages used in ex-
periments). The spatial scale of a study is a crucial
determinant of the equilibrium population densities and
of the time until equilibrium is reached. For example,
in a stream system, immigration and emigration are
defined as the rates at which organisms cross the up-
stream and downstream boundaries. Expressed on a per
capita basis, migration rates decrease rapidly with sys-
tem length. System length will therefore affect a sys-
tem’s rate of approach to equilibrium as well as the
equilibrium population densities. Consequently, our
models should be most useful when the size of the
system is scaled to a relevant biological property, e.g.,
the median distance drifted per day by the species/
trophic level with the shortest drift distance. When the
size of the system is large, assumptions of our models
(e.g., that immigrants are equally likely to settle at any
point within the system) are violated. Modeling the
short-term dynamics of populations over larger spatial
scales would require modified or different models.

Our models were created for time scales on which
reproductive responses of consumers are negligible.
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The investigation of longer-term dynamics is beyond
the scope of this paper. It is clear that the temporal
scale of such a population model will, again, be inti-
mately related to its spatial scale. For many open sys-
tems, long-term dynamics can only be meaningfully
studied at large spatial scales, because reproductive
stages (e.g., terrestrial stages of many stream insects)
disperse over large distances. One potential way of
approaching long-term dynamics could be a model of
subsystems (similar to our models) linked by drift,
which settle to short-term equilibria. Periodically, the
subsystems generate an overall reproductive output of
consumers that is then redistributed over the global
system, possibly resetting subsystems to initial con-
ditions away from their short-term equilibria. Such a
resetting of the global system could also be used to
model periodic or stochastic disturbance events.

Implications of behavioral flexibility
in emigration rates

Our simple models allow only two ways in which
the abundance of a consumer trophic level can be de-
coupled from the carrying capacity of its resource. Ei-
ther the consumer’s predators must be able to distribute
themselves in an ideal free manner among habitats (as
in the model of Wootton and Power 1993), or the con-
sumer’s emigration rate must be independent of re-
source density. In the former case the consumer isocline
is a straight line parallel to the consumer axis (Oksanen
et al. 1995), whereas in the latter case the consumer
isocline is a straight line parallel to the producer axis.
We have argued that ideal free distributions are unlikely
for unidirectionally drifting organisms, because drift
immigration into a system is probably independent of
that system’s internal state. However, we do assume
that consumers are able to assess the quality of the
habitat after they have arrived and respond to it by
adjusting their emigration rates. It is this behavioral
flexibility in combination with uninformed, passive im-
migration that creates slanting isoclines of both grazers
and predators and thus causes all trophic levels to
change with increasing carrying capacity of the pro-
ducers.

Our model predictions rely on two further assump-
tions about the emigration behavior of consumers that
are supported by empirical data. First, both grazers and
predators may decrease their per capita emigration rates
in response to increasing levels of their respective re-
sources (Kohler 1985, 1992, Richards and Minshall
1988, Hershey et al. 1993, Kratz 1996). Second, grazers
increase their emigration rates with increasing predator
levels (Walde and Davies 1984, Malmqvist and Sjos-
trom 1987, Peckarsky 1988, Kohler and McPeek 1989,
Forrester 1994, Kratz 1996). Both of these assumptions
are sufficient to yield the prediction that, for stable
equilibria, all trophic levels increase with an increase
in the carrying capacity of the primary producers. How-
ever we noted earlier that grazers do not always in-
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crease their emigration rates in response to increasing
predator density, and that, in this situation, producer
density may increase or decrease with increasing K
(Wooster and Sih 1995, Dahl and Greenberg 1996).

Effects of enrichment in detritus-based food chains

The predictions from our ODE (ordinary differential
equation) models of the effects of enrichment on equi-
librium biomasses of trophic levels are only valid under
conditions when equilibria are stable. Uncertainty
about the stability of equilibria arises from the density
dependence in the production of the basal resource. If
we assume that the food chain is not based on primary
producers but on detritus from external sources, all
ambiguities disappear, because the per capita rate of
change of the basal resource (in Appendices B and C)
will normally be a negative function of its own density.
Thus the equilibria of detritus-based systems with two
and three trophic levels are always stable (no sustained
oscillations), and the prediction that all trophic levels
increase with enrichment (increased input of detritus)

" is general (see empirical verification in Richardson

1991). For the same reasons, all ambiguities regarding
the effects of increased immigration rates of consumers
on equilibrium densities disappear in a detritus-based
system. When detritivore immigration rates increase,
detritus always decreases and detritivores and predators
always increase. When predator immigration increases,
detritivores always decrease, and detritus and predators
always increase.

Implications of grazer foraging behavior

The discrete-grazer model suggests that the mecha-
nism for the likely absence of multiple equilibria and of
sustained oscillations in individual-based model (IBM)
simulations of a two-level system is the rapid devel-
opment of spatial variability in producer biomass due
to the localized foraging of discrete grazers. Two key
assumptions of both models are that grazer movement
among producer patches is random and that grazers re-
move all primary producers from a patch before they
move on. These assumptions produce a maximum in the
spatial heterogeneity of producer biomass produced by
grazing, and represent a limiting case of grazer foraging
behavior (remove all producer biomass per patch, but
visit few patches per unit time), which Schmitt (1996)
termed ‘‘area-intensive grazing.” At the opposite end of
the behavioral continuum are grazers that search non-
randomly, move quickly among high-resource patches,
and do not deplete all of the algal biomass in a patch
(‘“‘area extensive grazing,”” Schmitt 1996). In the lim-
iting case of optimal patch choice and patch residence
time (Charnov 1976), this foraging behavior results in
the dynamics of our ODE model. Thus, the spatial scale
at which consumer foraging should be modeled may
depend on foraging strategies. If grazing is area inten-
sive, this should increase spatial heterogeneity in algal
biomass and a discrete-grazer model may be necessary
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to describe algae—grazer dynamics. If grazing is area
extensive, this should tend to homogenize spatial dif-
ferences in algal biomass, and an ODE model may be
a good approximation.

We conclude by noting that all our results rest on
critical assumptions regarding spatial scale. Our dis-
crete-grazer and individual-based models incorporate
variability at the small scales on which individual graz-
ers forage (Scrimgeour et al. 1991, Sinsabaugh et al.
1991, Downes et al. 1993, 1995), but we have investi-
gated neither small-scale heterogeneity caused by en-
vironmental variables, such as shading from terrestrial
vegetation, current speed, and substrate composition
(see references in Cooper et al. 1997b), nor any forms
of heterogeneity over larger scales. Of particular interest
in streams are large-scale, smooth gradients in enrich-
ment, and sharp discontinuities in flow regime (e.g., rif-
fle, pool). We have work in progress exploring these
issues.
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APPENDIX A
EQUILIBRIA AND ISOCLINES FOR THE DISCRETE-GRAZER MODEL

The model equations are set out in Table 2. The total pro-
ducer biomass density is obtained by recognizing that
n(t, t)a(7, t) dt represents the contribution to biomass density
from patches aged 7 to T + dr at time ¢. Thus the total algal
biomass density is

A@) = f n(t, Ha(r, t) dr. (A.1)
0
By similar reasoning the contribution to producer growth rate
from patches aged 7 to T + dr at time ¢, is n(7, Hg(r, t) dt.
All patches are equally likely to be visited by a grazer. Thus
the total biomass density loss rate is w(f)A(#), and we conclude
that
dA ~
— = n(T, Hgla(r), H) dv — W(OA®).
dt o
The same result can be obtained more formally by differ-
entiating Eq. A.1 to obtain

dA “( da on
— = n— + a—|dr.
dt o aT aT

A few manipulations involving integrations by parts and sub-

(A2)

(A3)

stitutions from the partial differential equations in Table 2 -

Thus the general recipe for numerical evaluation of the
equilibria in the producer—grazer system is to solve simul-
taneously three equations: Eq. A.5, the equation defining p,

aoG*

T 1+ obA* (A-6)

Wk
and the equation obtained by setting dG/dt = 0O (see Table
2),

I + e(A*)G* = 0. (A7)

Calculating the equilibria for the three-level system simply
involves including a fourth equation—obtained by setting dP/
dt = 0.

The isocline dA/dt = 0 in the A-G plane is defined para-
metrically by Eqs. A.5 and A.6. The only difficulty is that
Eq. A.5 requires knowledge (numerical or analytic) of the
producer growth curve, a(t), on a patch. For all the graphs
shown in this paper, we assumed that

ﬂ—l +raf1-2
dr K

with @ = 0 when 7 = 0. Eq. A.8 can be solved to give
B KaB(er@+pr—1)

(A.8)

lead to Eq. A.2. a(T) Fapprar (A9)
If w* denotes the attack rate on patches when the grazer B+ ae
and producers are at equilibrium, the equilibrium age distri-  with
bution of the patches is given by \/1"'—47_ 1
n*(1t) = p¥*exp(—p*T). (A.4) o= — (A.10)
Substituting from Eq. A.4 into Eq. A.2, using the property
that dA/dt = 0 at equilibrium, we obtain B - I+ VI + 4y 1D
* = 2 :
A* = f e g(a(r)) dr = p* e *1a(t)dr  (A.S)
o b and
(the second equality involving an integration by parts). Y = L/(rK).
APPENDIX B
ANALYSIS OF THE TWO-LEVEL ODE MODEL
In the absence of predators, our basic model takes the form i.e.,
dA 3A 80, |3K
— = - = -—= B.7
& 1, + rAp(A, K) — f5(A)G (B.1) 256 k| o (B.7)
aG where
— = 1I; — eg(A)G. (B.2)
dt
If defi %, 8,
we define 5 A 3G as
0.4 G K) = I, + rAp(A, K) = [o(HG  (B3) 27 0, a0, | 9
0:(A, G) = I — e6(AG (B.4) 0A oG

then at equilibrium
0,(A, G, K) =0 and 6,A, G) = 0.

We want to know whether the equilibrium values of A and
G increase or decrease as K increases. Consider a small
change 8K in K. The corresponding changes 8A and 8G can
be determined by implicit differentiation:

39, a0, 39,
0=280, = —184 + —28G + —3K B.5
04 3G K B35
30, 30,
0 =86, = —284 + —5G B.6
2 84 3G (B.6)

Note that the (Jacobian) matrix J, on the left hand side of
Eq. B.7 is the matrix that appears in routine local-stability
analyses. Thus if we are describing a locally stable equilib-
rium, the determinant

36,00, 46,6,

T 0A 3G 3G A

must necessarily be positive. From this point on, we assume
A > 0, which implies that J, has an inverse. Eq. B.7 can thus
be solved to give

(B.9)

A
3G

3K
ol

09,

.1
K2 (B.10)
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Using the rules for forming an inverse matrix,
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Thus if the system is at a locally stable equilibrium, the
effect of an increase in the value of K is to increase the
equilibrium values of ‘G and A. However, increasing K may

%, 99, also lead to oscillatory instability as the sign of 96,/0A is not
1 _ Al 9C oG fixed and hence the trace of the Jacobian matrix may change
Jt=A 3. a6 (B.11) sign.
-= = Similar reasoning can be used to determine the effects of
dA  9A . .
a change in /;, the result being
The inequalities in Table 1, together with the assumption that dA| 08, 0 B.1S
A > 0, then imply that the signs of the elements of J;! are: 5G - ol 2 81, (B.15)
-_— + . .
3= ) (B.12) from which it follows that
- 49, 90 dA
) BA = A1—=—151, = — < 0. (B.16)
where *“?”” means that the sign of the matrix element is un- al; 3G 3l
determined. It follows from Egs. B.10-B.12 that The corresponding expression for 3G is
39, 96 A :
84 = —A L 2K o = > 0 B.13 N
oK 3G K 7 oK B.13) 5G = — AT (B.17)
96, 86, 3G but here the si f 3G i d ined, si the si f
G = A1 P2gp 2T B.14 gn o is undetermined, since the sign o
dK 9A 3K ( ) 96,/0A is undetermined.
APPENDIX C

ANALYSIS OF THE THREE-LEVEL ODE MODEL

We follow the same approach as in Appendix B. The full
model takes the form:

dA
— = Ia T rAp(A, K) — fo4)G (C.1)
dG
o I — ec(A, PYG — fp(G)P (C2)
dP
o = I, — ep(G)P. (C.3)
We define
0,(A, G K) = I, + rAp(A, K) — fc(A)G (C4)
0,(A, G, P) = I — ec(Alp)G — fp(GDP (C5)
03(G, P) = I, — ex(G)P (C.6)
and at equilibrium
6,4, G, K) = 0; 0,(4, G, P) = 0; 0;(G, P) = 0.
We again consider a small change 8K, and find that
a9, 30, a0,
=80, = —'84 + —8G + —'8K :
0 = 38, aASA aGG 3K (C.7)
00, 2, 0,
=30, = —8A + —38G + —dP .
0=28 =73 oG aP €3
20, 20,
0 =80, = —3G + —3dP C.9
G G €9
ie.,
A 3K
a0,
3G|=—-——| 0 C.10
Js K (C.10)
3P 0

where the Jacobian matrix J; is defined by

99, 99,
— 1 9
A oG
30, 90, 96,
== =2 =2/ C.11
Is A 3G 9P C1h
o 06
aG 9P

Again, this is the matrix that appears in local-stability anal-

yses. Its determinant is given by

_ 29,090, _ 90, 0, 305 _ 90, 30; 36,
0A oG P 4G 0A 9P dA oP oG

and at a stable equilibrium, I' must be negative. The signs of

all the matrix elements except J;; can be determined from the
inequalities in Table 1, the result being

r (C.12)

J3=+__
0+ -

(C.13)

The signs of some of the elements of the inverse matrix
J5! are now determined:

+ - +
=T+ 2 2 (C.14)
+ 7 9

Using these signs in Eq. C.10 and noting that I' < 0, 96,/0K
> 0, we find

dA 3G 3P

— > 0; — > 0; — > 0.

3K 8K 0 3K 0
Thus, as with the two-level system, we find that an increase
in K leads to an increase in the values of stable equilibria for
all three trophic levels.

Again, we can use the same approach to explore the effects

on equilibrium densities of changes in /; and I,. As in the
two-level model, the signs of the effects of consumer im-
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migration can only be determined unequivocally for the pro- The signs of the effects of consumer immigration on con-
ducers, the relationships being : sumer equilibrium densities remain undetermined for both
grazers and predators.





