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Abstract. A major goal of middleware is to allow seamless software
integration across programming languages. CORBA, for example, sup-
ports multiple languages by specifying communication standards and
language-specific bindings. Although this approach works well for desk-
top systems, it is problematic for embedded systems, where strict mem-
ory limits discourage multiple middleware implementations.

A common memory-efficient alternative allows sharing of middleware by
exposing functionality through language-specific wrappers; for instance,
middleware may be implemented in C++ but exposed to Java through
the Java Native Interface (JNI). Like most language wrappers, however,
JNI degrades performance, especially with aggregate data types.

We present “late demarshalling”: a fast, memory-efficient technique for
multi-language middleware. By passing arguments at the middleware
message level as a packed stream and unpacking them after crossing
the language boundary, we obtain both high performance and reduced
memory footprint. We provide a proof-of-concept implementation for
Java and C++ with measurements showing improved performance and
footprint.

1 Introduction

Middleware for embedded systems is becoming increasingly widespread and im-
portant. It plays an active role in telecommunication networks (e.g., wireless
phone service), manufacturing automation (e.g., vehicle assembly lines), mili-
tary defense (e.g., avionics mission control), and similar domains. A variety of
middleware implementations exist, but they all share a common goal: to provide
seamless integration of software across heterogeneous platforms.

On the desktop platform, a number of middleware implementations have
reached for this goal. Frameworks such as CORBA [1], COM+ [2], Java RMI [3],

* This work was supported by Boeing DARPA contract Z20402 and AFOSR grant
F49620-00-1-0330.



and .NET [4] are examples of successful middleware that reduce the complexity
of building distributed systems. By managing the interaction of diverse applica-
tions, usually without regard to network and platform differences, they offload
many tedious and error-prone tasks from application developers and move them
onto the shoulders of middleware developers.

Middleware is more than just a way of off-loading tedious chores. It can also
provide enhanced features, including object location transparency, distributed
event management, and language independence. In particular, support for more
than one language at the middleware level allows developers to build systems
by mixing and matching objects from a variety of sources, focusing on what the
objects do rather than how they do it. For instance, performance-sensitive or
hardware-dependent tasks could be written in a low-level language such as C,
while code not bound to the CPU could be written in a simpler, more developer-
friendly language such as Java. This freedom to choose the right language for
the right job is one of the key advantages of middleware for distributed systems.

High-level languages like Java are certainly not a requirement for building
distributed systems, but they have a distinct advantage with regard to porta-
bility and ease of maintenance. As time-to-market pressures constantly push
for shorter development cycles, these productivity advantages are making high-
level languages increasingly popular. Perhaps the strongest push toward high-
level languages comes from an unlikely source: The new generation of university
graduates, often well-versed in Java but with little training in low-level languages
such as C, are driving Java toward adoption in large-scale distributed system
projects.

1.1 The Challenge of Multi-language Embedded Systems

Despite the growing popularity and perceived benefits of high-level languages,
bringing them to the world of distributed embedded systems is still a challenging
task. The greatest challenge is the severe shortage of memory in an embedded
device. This lack of resources has hindered the adoption of high-level languages
in embedded systems, as well as in the middleware required to support them,
simply because of their greater memory requirements. As a result, developers
lose many of the benefits that come from high-level languages, including easier
maintenance and shorter production cycles.

This situation must change if embedded systems developers want to reach
the same level of productivity as their desktop counterparts. The challenge for
researchers and the industry is to bring to embedded devices flexible and powerful
middleware that can support multiple languages while maintaining the small
footprint that these devices require. Unfortunately, the resource limitations are
not the only problem:

— While the codebase of a desktop application usually lasts only a few years,
the lifetime of an embedded system can easily reach ten or more. Because of
this longevity, many existing embedded systems continue to be maintained



in their original language. Thus, middleware for embedded systems will need
to support old languages as well as the new.

— Even when an embedded project starts from scratch, there is a resistance to
adopting new languages. Java, for instance, does not provide flexibility and
simplicity without cost: Its slower speed and increased memory requirements
make it unsuitable for some embedded systems projects.

— Mixing multiple languages could greatly increase the resource requirements
of the design, perhaps forcing the purchase of more expensive hardware. In
the embedded market, where enough devices are produced that the cost of
each individual unit becomes a crucial factor, the consequence of even a
slight increase in hardware cost could be painful.

These are significant obstacles to overcome, but the potential benefits of
multi-language systems are too important to ignore. A primary goal of our re-
search is to combine all of these benefits from the desktop world—smooth migra-
tion between languages, support for high-level languages, and flexible, standard
middleware—and bring them to embedded systems developers. Ideally, we want
to give these developers the same freedoms that desktop developers have enjoyed
for years. Accomplishing this goal is not simply a matter of optimizing mem-
ory usage of a middleware implementation or allowing Java and C to call each
other’s methods. As we discuss in Sect. 2, neither approach goes far enough in
overcoming memory limitations while maintaining good performance. Instead,
novel designs are required.

In this paper, we present one such design, which we call late demarshalling,
to enable multi-language' middleware that is both time- and space-efficient.
It specifically targets the performance bottleneck that exists in the boundary
between two languages. By optimizing this boundary, it allows one middleware
implementation to support more than one language while maintaining high speed
and small size. Thus, it is a significant step forward in achieving our goal of
supporting multiple languages in standard middleware for embedded systems.

2 Conventional Solutions for Multi-language Systems

Before discussing our technique, it is helpful to understand current methods
for enabling multiple languages in a system and why those methods are often
unsuitable for memory-constrained embedded systems. In this section, as well
as the remainder of the paper, we focus on methods that depend on CORBA
middleware, although the issues are relevant to virtually any type of middleware
that supports multiple languages. Likewise, we present explanations and example
code under the assumption that Java and C++ are the two languages we are
mixing, but the problems we address can be extended to any two languages that
provide a direct interface to each other.

1 'We use the term multi-language middleware to mean any middleware implementation
that can activate and manage objects not written in its native language.



2.1 Dual ORBs

The most common of these methods is to supply multiple implementations of
middleware, one for each language in the system. The idea behind this straight-
forward approach is to harness the power of CORBA to do what it was designed
for: bringing objects together regardless of programming language. The key ben-
efit of this solution is that a minimum of code has to be rewritten. For example,
existing Java code can be wrapped with a Java skeleton for CORBA (gener-
ated at compile time by the ORB without any effort by the programmer), while
C++ code can be wrapped with a C++ skeleton, also generated automatically. At
run time, the two ORBs load their respective objects and begin communicating
through traditional CORBA mechanisms, as shown in Fig. 1.

Embedded device

C++ ORB CORBA Java ORB

C+ + object Java object

Fig. 1. Dual ORBs. Popular in desktop systems, the two-ORB approach requires two
complete and independent implementations of middleware, one for each language in the
system. In CORBA, for example, a C++ object and a Java object can communicate if
each are registered in a C++-based ORB and Java-based ORB respectively, as shown in
this illustration. The appeal of this solution is its simplicity: The ORBs can be obtained
from commercial off-the-shelf (COTS) sources, and system integration requires little
development effort because the objects need not be rewritten, only tied together. The
problem with this approach is the large amount of memory required to support two
ORBs, making it unacceptable for embedded systems.

Although this approach works well for desktop systems, which usually hold
enough memory to run multiple ORBs at the same time, even one additional
ORB can be too many for a resource-constrained embedded system. Although
much of our current research [5] has focused on reducing the memory footprint
of ORBs, it is unlikely that in the near future we will be able to place two
ORB implementations on a typical embedded device. Although simple footprint
reduction techniques? may mitigate the problem, the two-ORB solution is sim-
ply not possible when limited memory prevents it. Nevertheless, it offers good
performance and a clean, low-maintenance design, so it may be a reasonable
approach in embedded systems with greater memory capacity.

2 The Minimum CORBA [6] specification eliminates the dynamic aspects of CORBA
in order to reduce its resource requirements. Because it is static, however, it cannot
adapt to the needs of the developer, possibly over-estimating the features required.
Thus, even when both ORB implementations conform to Minimum CORBA, the
total footprint may still be too large for an embedded system.



2.2 Simple Wrappers

To avoid the large footprint of the dual-ORB solution, a common alternative
is to settle on one language for the middleware, usually C or C++, and provide
a simple interface to “foreign” languages. This solution has the advantage of
reduced memory because only a single ORB instance is installed and running
in the system. Moreover, the interface is entirely transparent to the host ORB
and to the CORBA object; it is simply an inter-language adapter that forwards
requests from a native-language proxy to the true object implementation in the
foreign language.

Because of this clean transparency, code changes are minimal, and thus the
development effort is small compared to the cost of reimplementation. More
importantly, the work is most often borne by a handful of middleware developers,
freeing application developers for more important work. Examples of this type
of shared work can be found in omniORB [7], a C++ ORB that can register
Python objects through its omniORBpy wrapper, and ORBit [8], a C ORB that
can register C++, Python, and Perl objects through its orbitcpp, PyORBit, and
CORBA::ORBit wrappers, respectively.

Figure 2 shows a specific example of how we have applied the same technique
to ZEN, our Java-based ORB [9]. In this case, we run a C++ object in the same
address space as the Java ORB, saving a significant amount® of memory that
would otherwise be used for implementing a C++ ORB. As shown in the figure,
we rely on the Java Native Interface, or JNI, as a means of crossing the language
boundary between Java and C++. Although other interfaces are available for
calling native functions from Java? JNI is the most portable and the most
popular, and we focus on it exclusively for this paper.

2.3 The Problem with Simple Wrappers

Intuitively, this solution seems ideal. It avoids the memory penalty of duplicate
ORBEs, and it is relatively straightforward to implement. With the help of a com-
piler, the work of implementing the language wrapper could even be eliminated,
making the technique even more attractive. For example, an Interface Definition
Language (IDL) compiler that normally generates Java code could be modified
to generate a JNI wrapper for C++ instead.

However, the simple JNI wrapper technique suffers from a serious perfor-
mance penalty. The works of [10] and [11] have shown through quantitative
analysis that JNI with native code can be slower than interpreted Java code.
They emphasize avoiding JNI calls as much as possible.

With small numbers of primitive data types, such as integers or strings,
minimal JNI calls are required. However, with complex aggregate data types,
such as structures composed of structures, performance degrades significantly.

3 In Sect. 4, we provide detailed measurements of code size reduction.
4 The Cygnus Native Interface, popularized by the GNU Compiler for Java, and the
K Native Interface for Sun’s K Virtual Machine are two alternatives to JNI.
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Fig. 2. Single ORB, simple wrapper. The dual-ORB solution is one way to handle
both Java and C++ objects on one device, although the memory overhead of running
two ORBs is excessive. As an alternative, the C++ ORB can be thrown away, and in its
place, a simple Java proxy can be wrapped around the C++ object, making it appear to
the ORB as a Java object. As shown in the diagram, the Java Native Interface makes
this possible. The Java proxy intercepts calls sent from the ORB and forwards them,
via JNI, to the true C++ object.

The degradation occurs when a large aggregate data type passes through the
language boundary and requires many calls to JNI.

Large aggregate data types may seem rare in everyday applications. Typical
function definitions consist of just a few parameters of primitive types. Neverthe-
less, aggregate data types are often seen in complex programs to make them more
manageable. Applying such data types is analogous to applying object-oriented
design: Developers take advantage of reappearing definitions and logically group
their data. This contributes to more readable code and reduces the chance of
errors. As a real-world example, consider the data type definition shown in Fig. 3.

Note that the ADSL_Line structure (lines 14-17) is the third level of a hi-
erarchy; it contains two structures which in turn contain two other structures.
The ADSL_Line_Card structure (lines 23-26) makes the data type even more
complex by composing a sequence of structures of structures of structures. This
complexity, especially when coupled with a large sequence size, makes the data
a performance bottleneck when it is passed through a language boundary.

To see why this bottleneck occurs only across a language boundary such as
JNI, and not with Java objects alone, we have to examine JNI more closely. Like
other Java-to-native interfaces, JNI suffers from the fact that there is no direct
mapping of Java to C++. Because of this incongruity, JNI must add overhead
such as:

— Locking Java arrays so that they are contiguous and immovable, allowing
pointer arithmetic on them in C++

— Adding restrictions, known as “write barriers,” on how and when fields in
a data structure can be modified so that C++ does not interfere with Java’s
garbage collector

— Converting Java’s big-endian data types to little-endian for C++ (if neces-

sary)
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class ADSL_Line_.End_RAW {
// Low—level line information (signal loss, signal—to—mnoise ratio)

}

class ADSL_Line_.End_ATM {
// ATM-related line information (link loss, cell count)

class ADSL_Line_.End {
ADSL_Line_End_RAW raw ;
ADSL_Line_End_ATM atm

}

class ADSL_Line {
ADSL_Line_End near;
ADSL_Line_End far;

}

class Line_Card {
// Card—specific data (power comsumption , uptime)

class ADSL_Line_Card {
Line_Card card;
ADSL_Line [] line;

Fig.3. An aggregate data type. Large aggregate data types are not uncommon,
especially in object-oriented or otherwise hierarchical organized programs. These def-
initions exemplify the performance monitoring data types of an Asymmetric Digital
Subscriber Line (ADSL) line unit (e.g. following the G.992.1 standard, published by
the International Telecommunication Union). Embedded software that implements the
performance monitoring improves its readability and maintainability by composing
several structures into a single aggregate structure: ADSL_Line_Card in this example.

The overhead becomes obvious in the code listing of Fig. 4, which shows an
example of how C++ would access the data type of Fig. 3 via JNI. Note that
access to a class field requires three function calls: one to get a handle to the
class (lines 9 and 18), one to get a handle to the JNI-specific type identifier
(lines 10-11 and 19-20), and another to obtain the field’s value (lines 14-15 and
23-24). As our measurements in Sect. 4 reveal, the loss in performance due to
this overhead is significant and is directly proportional to the number of JNI
calls.

3 The Late Demarshalling Solution

To alleviate the performance limitations of this simple wrapper approach, the
number of function calls crossing the language boundary must be minimized. We
have developed a technique, which we call late demarshalling, that reduces the
number of JNT calls to just two, regardless of data type complexity. We have seen
performance increases of up to three times for complex data types such as the
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jfiedlID nearID, farID, rawID, atmID;
jclass lineCls, endCls, rawCls, atmCls;
jsize length = env—>GetArrayLength(lineArray );

for (i = 0; i < length; i+4) {
jobject obj = env—>GetObjectArrayElement(lineArray, i);

if (0=1 ) {
lineCls = env—>GetObjectClass(obj);
nearlD env—>GetFieldID (lineCls ,”near” ,” LADSL_Line_-End;” );
farID env—>GetFieldID (lineCls ,” far” ,” LADSL_Line_End;” );

}

jobject near
jobject far

= env—>GetObjectField (obj, nearID);

= env—>GetObjectField (obj, farID);

if (0 i {
endCls = env—>GetObjectClass(near);
rawID env—>GetFieldID (endCls ,”raw” ,” LADSL_Line_End_RAW ;" );
atmID env—>GetFieldID (endCls ,”atm” ,” LADSL_Line_End_ATM;” ) ;

}

jobject raw
jobject atm

env—>GetObjectField (obj, rawlD);
env—>GetObjectField (obj, nearID);

Fig. 4. The cross-language bottleneck in detail. This code snippet provides some
insight into why cross-language interfaces such as JNI perform poorly. The code shows
how middleware applying the simple wrapper technique would extract data from an
array of ADSL_Line objects as in line 25 of Fig. 3. Note that each field access requires
two function calls: one to retrieve a handle to the field’s type (lines 10-11 and 19-20)
and another to retrieve the field’s data (lines 14-15 and 23-24). Although the initial
function call is necessary only in the first iteration of the loop, the total overhead of
these multiple function calls adds up to a considerable performance penalty.

one shown in Fig. 3. Although the technique does not improve performance for
simple data types passed to and from objects, it does not decrease performance
in this case.’

Our technique minimizes cross-language calls by taking advantage of a stan-
dard middleware practice known as marshalling. When middleware prepares
to invoke a remote method, it packs (or marshals) the parameter data into a
message stream called, in CORBA parlance, the Common Data Representation
(CDR). The stream is then routed through the network to the remote object.
On the server side, the CDR stream is unpacked, and the original parameters
are recreated.

With the simple wrapper approach, this demarshalling occurs as soon as the
middleware receives the data, as shown in Fig. 5. This results in two layers of

5 For local objects, however, where a C++ and a Java object reside in the same address

space, the simple wrapper approach holds an advantage when simple data types are
passed between them. Our late demarshalling technique does not improve perfor-
mance in this case until data types become significantly complex, as described in
Sect. 4.
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Fig. 5. Simple wrapper in detail. In the simple wrapper approach to multi-language
middleware, the parameters of a function call flow from a Java object to a C++ object
in the following sequence: 1) The Java object calls a stub acting as the target object;
2) the stub marshals the parameters into a CDR stream; 3) the middleware sends the
stream to the target object; 4) the target object’s skeleton demarshals the parameters
from the CDR stream; 5) the skeleton calls the object proxy; 6) the proxy calls the
C++ object implementation via JNI; 7) the C++ implementation uses JNI to retrieve
each parameter one at a time.

overhead: one to convert the CDR stream into the middleware’s native-language
data types, and another to convert these native-language data types into the
data types of the foreign language. For instance, with Java middleware and C++
objects, a stream is translated into a Java class, and then the Java class must
be translated again into a C++ class. These redundant translations contribute
to substantial overhead, especially for the final translation, which may require a
large number of JNI calls for complex data types.

In contrast, our technique postpones demarshalling until the moment it is
needed. We alter the proxy servant shown in Fig. 2 to send the entire CDR
stream, unmodified, through the language boundary. As illustrated in Fig. 6, we
then demarshal the parameters once the stream has arrived on the other side of
the boundary. No additional calls to the cross-language interface are necessary,
and the object can access the parameters directly and naturally in its native
language.

Compared to the traditional approach using a simple wrapper, our late de-
marshalling technique provides three key advantages:

— Eliminates the step of converting the CDR stream into data types of the
middleware’s native language
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Fig. 6. Late demarshalling in detail. In our late demarshalling technique, we min-
imize the overhead of the language barrier by postponing demarshalling until after the
CDR stream has crossed the language barrier. The parameters of a late-demarshalled
function flow from a Java object to a C++ object in this sequence: 1) The Java object
calls a stub acting as the target object; 2) the stub marshals the parameters into a
CDR stream; 3) the middleware sends the stream to the target object; 4) the target
object forwards the CDR stream directly to the C++ object’s skeleton via JNI; 5) the
C++ object’s skeleton demarshals the parameters from the CDR stream; 6) the skeleton
calls the C++ object’s implementation.

— Reduces cross-language function calls to two: one to lock the CDR stream
in memory and another to release it

— Performs demarshalling in the target object’s native language, and in the
case of Java middleware with C++ objects, gains an increase in speed

Together, these advantages add up to significant gains in performance, veri-
fied by the measurements shown in Sect 4. Like the simple wrapper solution, we
require only one middleware implementation, and thus we maintain the advan-
tage of low memory footprint.

4 Empirical Results

In order to verify that our late demarshalling technique is a significant advance
for multi-language middleware, we performed a series of benchmarks and code
size measurements.’ The data show that late demarshalling combines the best
of both worlds: the small footprint of the simple wrapper approach plus the high
performance of dual middleware implementations. In this section, we present
and analyze these results.

4.1 Test Setup

Because multi-language middleware is vulnerable to the complexity of data cross-
ing the language boundary, we focused on the performance of the three tech-

6 The source code to the full benchmark suite can be found in the perf.JNI package
of the ZEN distribution, available at http://www.zen.uci.edu.



niques as a function of data type complexity. We quantify the “complexity” of a
data type according to the number of cross-language calls that are required for
the simple wrapper solution. In the case of Java and C++, the number of JNI
calls represents complexity very closely; we observed in multiple experiments
that the performance of each solution follows a trend according to the number
of JNT calls.

To obtain sufficient data points, we selected a wide range of types for our
tests, from simple primitives to complex aggregates. Because the size of the data
influences performance as well, we also selected various sizes of each data type
by defining a sequence of the type and varying its length. We ensured that the
benchmarks for different complexities are comparable by scaling the sequence
length so that the total size of the aggregate remains constant for a given test.

We then constructed the aggregate data types bottom-up. That is, more
complex data types were composed of one or more simpler data types. Because
of this inheritance, we present here only the most complex type, SequenceF.
Figure 7 shows a graphical depiction of SequenceF.

SequenceF
VYN A N D I B B B B B B
struct StructF {
7 s S D S C
| S T S B (i L
StructD b; StructC b; short b;
} } }
struct StructC {
short a;

short b;

}
struct StructD {

StructC a; ———)p struct StructC

StructC b; short a;
} short b;
}
struct StructC

short a;
short b;
}

Fig.7. A complex data type for benchmarking. SequenceF, the most complex
data type used in our tests, consists of a sequence of structures. Each structure contains
a structure of two structures of two structures of two 16-bit integers.

The simpler data types are smaller versions of the structure hierarchy de-
picted in the figure. For example, SequenceD contains elements of type StructD,
which contains a sequence of StructC. This pattern of decreasing complexity
continues until SequenceA, the simplest data type consisting only of 16-bit inte-
gers, or shorts.

We tested our proof-of-concept implementation on ZEN, our Java-based
ORB, extended to handle C++ servers. In each test, we transferred a sequence
of each data type from a client to a server with the configurations described



in Fig. 8. The testbed for all configurations was a dual-processor 1.7 GHz In-
tel Xeon system with 1 GB of RAM running a Debian distribution of Linux
with kernel version 2.4.18. All C and C++ code was compiled with GCC 3.3.3.
All Java code was compiled with AspectJ 1.1 and executed under the Sun Java
Virtual Machine 1.4.2. The CORBA stubs and skeletons for C++ were generated
with omniORB 4.0.4; for Java, they were generated with ZEN’s default compiler,
OpenORB 1.3.1.

Dual ORBs [Simple Wrapper Late Demarshalling
Client ORB ZEN 1.0.1 ZEN 1.0.1 ZEN 1.0.1
Client Language Java Java Java
Server ORB omniORB 4.0.4 ZEN 1.0.1 ZEN 1.0.1
Server Object C++ C++ C++
Language
Server Object None Simple wrapper |Late demarshalling JNI wrapper with
Proxy with JNI CDR stream library from omniORB

Fig. 8. Test configurations. This table shows the basic software setup that we used
for testing the three basic approaches toward multi-language middleware.

The client, based on ZEN, was identical for all tests, but the server changed
according to the method. For example, the dual-ORB approach uses a C++-
based ORB to load the C++ server object and therefore requires no proxy. The
simple wrapper and late demarshalling approaches use a Java-based ORB and
thus require a proxy to cross the language barrier into C++.

To implement these proxies, we modified the skeleton code that had been
generated from the IDL we had written for our data types. For the simple wrap-
per implementation, we added the minimum number of JNI calls necessary to
extract the data from the Java-based middleware and transfer it to our C++
server.” For the late demarshalling implementation, we added two JNI calls—
one to lock the CDR stream in memory and another to release it—and simply
forwarded the stream to omniORB’s CDR, stream demarshalling library. After
omniORB unpacked the data from the stream, we forwarded it to the appropri-
ate method of the C++ server.

4.2 Round-Trip Time Measurements

For the performance tests, a common client implemented in Java using the ZEN
ORB invoked a method on the server of each configuration 1000 times for each
data type. This set of benchmarks was performed under two types of environ-
ments:

7 Although we refer to “client” and “server” when describing our test setup, the dif-
ference between client and server objects is only contextual in this case. Although
we tested server implementations exclusively, all of the methods for multi-language
middleware are symmetric and apply to foreign-language clients as well as servers.
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Average Round-trip Delay (ms)

A (3 calls) B (18k calls) C (24k calls) D (28k calls) E (35k calls) F (37k calls)
Data Type

Fig. 9. Performance versus complexity for remote calls. This graph shows the
average round-trip delay of a single remote method call as the complexity of the method
parameter changes. The horizontal axis represents individual data types sorted by
complexity; values in parentheses indicate the number of cross-language calls required
to retrieve the data in the simple wrapper approach. The total amount of data for
each aggregate data type remains constant at 32 KB to allow comparisons between
complexities.

Remote: Client and server in separate ORB instances. This represents
the typical middleware setup in which two objects in different hosts com-
municate over a network. For our tests, we prevented interference due to
network traffic by executing both ORB instances on the same host and di-
recting messages through TCP via the local loopback interface.

Local: Client and server in the same ORB instance. Although not as com-
mon as the remote case, objects may sometimes reside in the same host and
in the same ORB instance. Many implementations of middleware perform
co-location optimizations in this case.

Figure 9 shows the average round-trip time for the remote case. Of the two
memory-efficient single-ORB solutions (simple wrapper and late demarshalling),
late demarshalling outperforms the simple approach in all complexities. For sim-
ple data types, such as type A, the performance advantage is small; passing a
few simple types through JNI does not add significant overhead. However, as
complexity increases, the advantage of late demarshalling grows linearly. While
the simple wrapper approach must increase its calls to JNI, the number of JNI
calls in the late demarshalling approach remains relatively constant.

The performance advantage of late demarshalling can also be attributed to
the speedup of C++ versus Java: In this particular setup, CDR stream demar-
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Fig. 10. Performance versus complexity for local calls. This graph is a comple-
ment to Fig. 9. The tests in this figure are identical except that they were performed
locally with the client and server in the same address space.

shalling occurs in Java for the simple wrapper approach and in C++ for late de-
marshalling. We have seen from additional measurements that Java contributes
to approximately one-third of the performance penalty for simple wrapping in
this case. Note that the baseline measurement, the dual-ORB approach, gives
slightly better performance in all cases. It contains only C++ code on the server
side and therefore does not suffer from any cross-language overhead.

The second set of tests, shown in Fig. 10, represents the local case in which
client and server reside in the same address space. The graph reveals the effect of
co-location optimizations where the client and server can communicate directly.
As a result, the ORB creates no CDR stream, and the method call requires
only a small amount of overhead. The simple wrapper approach profits from
this optimization, making it faster than late demarshalling for simple data types
(such as the sequence of integers in type A and the sequence of simple structures
in type B).

As the data grows more complex, however, the overhead of CDR stream de-
marshalling remains almost constant. This helps late demarshalling outperform
the simple wrapper approach starting with moderately complex data structures
(in particular, the two-level structure of type C). Note that the dual-ORB ap-
proach also benefits from the near-constant overhead of CDR, although it still
performs worse than late demarshalling because it cannot take advantage of
co-location optimizations.

The results presented thus far are based on constant data size and vari-
able complexity. In contrast, the graph of Fig. 11 shows how the three methods
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Fig. 11. Performance versus data size. This graph shows the average round-trip
delay of a single remote method call for the SequenceE data type as the size of the
data changes. A logarithmic scale is used for both axes in order to make the differences
visible over a large range of data sizes (64 bytes to 32 KB).

perform with variable data size and constant complexity. With the selected com-
plexity, SequenceE, data sizes below 512 bytes can cross the language boundary
faster with the simple wrapper approach. Late demarshalling and the dual-ORB
approach are limited by the overhead of unpacking the CDR stream.

With data sizes greater than 512 bytes, the situation reverses. Both late de-
marshalling and the dual-ORB approach outperform the simple wrapper due to
the linearly increasing effort of passing parameters through the language bound-
ary and the near-constant effort of demarshalling the CDR stream. Note that
the dual-ORB approach cannot match the performance of late demarshalling be-
cause it must send its CDR stream between processes via the TCP local loopback
interface.

We have measured the performance of other data types for varying sizes, but
we do not present them here. They differ only in the cross-over point at which
simple wrapping and late demarshalling have equal performance. This point is
reached earlier for more complex data types.

4.3 Footprint Measurements

A second aspect of our measurements is footprint, an important concern for
memory-constrained embedded systems. Because all solutions require some form
of Java, we do not measure the footprint of Java support code (such as a vir-
tual machine or API library) because it is a constant factor. Instead, we focus



on the increase in footprint due to multi-language support. We divide our foot-
print measurements into three categories: built-in ORB code, marshalling, and
dynamic memory.

Built-in ORB code. An ORB contains internal code and built-in functions that
provide basic CORBA features independent of user-defined code. These func-
tions manipulate object references, query services, and perform other necessary
housekeeping tasks for CORBA objects.

For the dual-ORB solution, these built-in functions are the main reason for
the hight footprint requirements; they are duplicated in both ORBs. Even when
both ORBs conform to the Minimum CORBA [6] standard, such duplication can
increase the code size to a point where this solution is simply not practical for
embedded systems. TAO [12], for example, a popular C++ ORB, has a 1.9 MB
code footprint [13] in its Minimum CORBA configuration.

The single-ORB solutions (simple wrapper and late demarshalling) do not
suffer from this code duplication. However, they require cross-language wrappers
that expose the native ORB’s built-in functions to foreign languages. Measuring
the true cost of this overhead is a massive undertaking because wrappers for
each of the more than 200 built-in ORB functions (as specified by the CORBA
standard) must be implemented and measured. We have targeted this task for
our future work.

To gain preliminary results, we have estimated the size of the wrapper foot-
print without a full implementation of all function wrappers. We began by sepa-
rating the functions into categories based on their unique parameter signatures.
We then implemented a single generic wrapper for each of the 45 categories and
measured its code size. Finally, we multiplied the size by the number of func-
tions in its category and then took the sum. Assuming that wrappers of identical
signatures have similar code size, we concluded that exposing the built-in ORB
functions of a Java ORB using JNI would require approximately 150 KB.

Marshalling. In addition to built-in ORB functions and user-defined code, mar-
shalling (and demarshalling) algorithms are also contributors to code size. For
the dual-ORB and simple wrapper solutions, these algorithms are built-in to the
ORB and are accounted for in the code size measurements of the ORB itself.
The late demarshalling solution, however, requires multiple implementations of
marshalling, one for each supported language. Our late demarshalling prototype,
for example, relies on the built-in routines of ZEN for Java marshalling and sup-
ports C and C++ by grafting omniORB’s marshalling routines onto ZEN. Our
measurements show that these extra marshalling routines add about 218 KB to
the code size. This relatively large size is due to the thorough implementation
of the routines, including full read/write support for Unicode and international
character code sets.

Dynamic memory. Dynamic (run-time) memory footprint is a concern, but we
did not measure dynamic memory requirements in this first phase of our research.



However, dynamic memory footprint can be inferred without measurement be-
cause it follows the same pattern as code size. In the dual-ORB solution, for
example, the second ORB instance greatly increases the amount of dynamic
memory required for runtime data structures (e.g. message buffers), just as it
increases the code size. Likewise, the simple wrapper and late demarshalling so-
lutions, which need only one ORB, require much less dynamic memory overhead.
They leverage the resources of the original ORB and therefore have a significant
advantage in dynamic memory footprint as well as static code size.
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Fig. 12. Code size versus implementation type. This diagram shows the increase
in code size required to support a second language (C++) on top of the native language
(Java) in the three approaches to multi-language middleware. Generated code refers to
code generated by an IDL compiler to support user-defined application interfaces, while
built-in ORB code includes the CORBA API and marshalling/demarshalling support.

As shown in Fig. 12, the simple wrapper offers the lowest footprint because
it adds only enough wrappers to expose built-in ORB functions to C++ servants.
The late demarshalling solution requires a larger footprint to support marshalling
in C++. Both approaches, however, easily outperform the dual-ORB solution,
which requires more than four times the space.

The generated code yields similar results. At 54 KB, the stub/skeleton code
generated by TAO is the largest because it must provide a complete implementa-
tion for client and servant. The simple wrapper, a minimal implementation in C,
has the smallest footprint at 8.6 KB. The late demarshalling solution is slightly
larger at 20 KB because its C++ implementation uses the complete skeleton
framework from omniORB.



5 Conclusion

Late demarshalling is an efficient method for multi-language middleware. Our
measurements have shown that it performs better than conventional methods of
multi-language middleware in the case of remote objects. Even for local objects
that employ co-location optimizations, late demarshalling is a performance im-
provement for complex aggregate data types. Furthermore, late demarshalling
provides a reduction in footprint comparable to the simple wrapper approach.

In our future work, we intend to expand the proof-of-concept implementation
into an optional feature of our ZEN middleware, including IDL compiler support
for the late demarshalling technique. In a second step, we will extend the IDL
compiler to detect when a data type is too simple to benefit from the late de-
marshalling, and in such a case, the compiler will generate simple wrapper code
for local invocations, taking advantage of both approaches.

In other avenues of research, we will measure pre-compiled Java solutions
and investigate how other Java-to-native interfaces compare to JNI. We will
also add footprint measurements for specific embedded Java solutions such as
Sun’s K Virtual Machine. We believe that research in these directions will show
that late demarshalling is valuable outside of the middleware domain.
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